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Regulating Financial Networks Under Uncertainty

ABSTRACT

I study the problem of regulating a network of interdependent financial institutions that is

prone to contagion when there is uncertainty regarding its precise structure. I show that

such uncertainty reduces the scope for welfare-improving interventions. While improving

network transparency potentially reduces this uncertainty, it does not always lead to welfare

improvements. Under certain conditions, regulation that reduces the risk-taking incentives

of a small set of institutions can improve welfare. The size and composition of such a set

crucially depend on the interplay between (i) the (expected) susceptibility of the network

to contagion, (ii) the cost of improving network transparency, (iii) the cost of regulating

institutions, and (iv) investors’ preferences.

Keywords : Financial networks, contagion, policy design under uncertainty.
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The financial crisis that began in 2007 underscored the relevance of interdependencies

among financial institutions—e.g., banks, money market funds, investment banks, and

insurance companies—in the functioning of modern economies. While, in normal times,

connections among institutions—in the form of contractual obligations or common exposures—

can be beneficial, as they help institutions manage liquidity or diversity risk, they can also

create channels through which shocks propagate in times of economic stress. These channels

might cause problems at one institution to spread to others, potentially leading to cascades

of distress with economy-wide implications.

In light of the potential harmful side effects of these connections, policymakers across the

globe implemented responses that directly or indirectly take into account the interconnected

nature of modern financial systems so as to preserve the benefits of connections while

managing their unintended negative consequences. When designing these responses, however,

policymakers are confronted with an inconvenient truth: it is hard to determine the precise

structure of the network of exposures among financial institutions because of the opacity,

complexity, and multifaceted nature of their connections. Importantly, this problem becomes

particularly acute in times of economic stress, as spirals of fire sales may become relevant. A

natural question then arises: How can policymakers regulate a network of interdependent

financial institutions when those policymakers are fundamentally uncertain about its precise

structure? Despite its importance, this question has been overlooked by most of the literature.

This paper partially fills this gap by developing a model to study the behavior of such

policymakers.

I show that uncertainty about the precise structure of the network can reduce the

scope for welfare-improving interventions, as such uncertainty gives rise to substantial

difficulties in determining the likelihood of systemic events. However, this lack of certainty

does not necessarily justify a non-interventionist policy, considering the profound negative

consequences of cascades of distress. While improving network transparency could help

policymakers overcome forecasting limitations, it does not necessarily lead to welfare improving
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interventions as improving network transparency is also costly. For example, improving

network transparency tends to be suboptimal in networks that exhibit highly symmetric

structures, as detailed knowledge of the network might not be needed if institutions behave

in a similar fashion from the perspective of shock propagation. Under certain conditions,

regulation that reduces the risk-taking incentives of a small set of institutions can increase

welfare. The size and optimal composition of that set is determined by the interplay between

(i) the (expected) susceptibility of the network to contagion, (ii) the cost of improving network

transparency, (iii) the cost of regulating institutions, and (iv) investors’ preferences.

The model is motivated by a large economy in which financial institutions (banks, for

short) are interconnected through an exogenous network of opaque exposures, on either the

asset side or the liability side, that cannot be mitigated through contractual protections.

In times of economic stress, some of these exposures (henceforth referred to as contagious

exposures) function as propagation mechanisms, as banks become more vulnerable to distress

affecting related banks (henceforth referred to as neighbors). Cascades of distress may occur

as a result of contagion, as the distress affecting one bank could cause distress to that bank’s

neighbors, which, in turn, may cause distress to the neighbors’ neighbors, and so on.

To capture policymakers’ inability to ascertain the precise structure of the network in times

of economic stress, I assume that the set of contagious exposures is randomly determined and

unknown when designing interventions. Because banks fail to internalize the consequences

of their actions on the spread of distress, introducing regulation can potentially lead to a

Pareto improvement. A (social) planner seeks to maximize expected total output by imposing

preemptive liquidity restrictions on a set of banks. While liquidity restrictions decrease banks’

likelihood of distress, they are not costless. Liquidity restrictions adversely increase banks’

cost of lending, as they limit banks’ ability to allocate funds toward more productive projects,

thereby introducing resource misallocation. While the planner is uncertain which exposures

may propagate distress, she can improve transparency regarding the network of contagious

exposures. By improving network transparency, the planner can strategically target banks to
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limit the spread of distress while at the same time avoiding dead-weight losses associated

with regulating an excessively large number of banks. Importantly, improving network

transparency is socially costly, as it might decrease banks’ confidentiality, compromising their

market position and potentially decreasing market efficiency.

I first analyze the behavior of the planner when the degree distribution of the network of

contagious exposures—which captures the distribution of contagious exposures across banks—

is known. I show that the optimal policy—which is jointly determined by a choice of network

transparency and a selection of restricted banks—is shaped by the interplay between aggregate

characteristics of this degree distribution, the cost of improving network transparency, and

the costs of restricting banks. If the network exhibits a highly asymmetric structure, then a

handful of banks play an important role in the propagation of distress. Learning the identity

of those banks becomes critical to adequately avoid contagion, as regulating them effectively

deters the emergence of cascades of distress. As a result, improving network transparency

tends to be optimal. However, if the network exhibits a highly symmetric structure, improving

network transparency tends not to be optimal. In this case, more information regarding the

precise structure of the network is not necessarily informative, as every bank is likely to play

a similar role in the propagation of distress when conditions deteriorate. Finally, higher costs

of restricting banks lead to a smaller fraction of banks that can be restricted.

Next, I analyze the behavior of the policymaker when she is unsure about the degree

distribution of the network of contagious exposures. The optimal policy intervention is then

affected by investors’ attitudes toward ambiguity and their beliefs regarding the susceptibility

of the network to contagion. Under certain conditions, small changes in beliefs generate

significant changes in the optimal fraction of restricted banks. When investors are sufficiently

ambiguity averse, they are worried that the number of restricted banks might not be sufficiently

large to prevent large cascades of distress when aggregate conditions deteriorate. As a result,

more banks might need to be restricted as network uncertainty increases. Importantly, the

(social) value of improving network transparency is intimately linked to the interplay between

5



network uncertainty and the symmetry of the network. In symmetric structures—that is,

when banks behave in a similar fashion—the higher the model uncertainty, the less informative

the information regarding the precise structure of the network. However, in asymmetric

structures—that is, when only a few banks play a key role in the propagation of distress—

improving network transparency may be more valuable as network uncertainty increases. The

reason is that more transparency allows the planner to limit the negative consequences of

network uncertainty on the robustness of policy interventions.

The first set of results informs the ongoing debate regarding the optimal design of

macroprudential regulations. While post-crisis reforms with a macroprudential dimension

have focused principally on large financial institutions, my results underscore that the

architecture of the financial system (and not just the size of institutions) matters for policy

design. In addition, these results provide a rationale for regulation that seeks to improve

network transparency and, in particular, improve information disclosure, as institution-level

information may be critical to effectively limit the effect of cascades of distress. More broadly,

these results highlight the importance of developing privacy-preserving methods for sharing

financial exposures of institutions that could play an important role in the propagation of

distress when a crisis manifests. The second set of results highlights that an appropriate

macroprudential regulatory framework must be mindful of the uncertainty regarding the

pattern of relationships among institutions.

Related literature. This paper contributes to several strands of the literature. First,

this paper adds to a body of work that explores how network features of the financial system

affect the likelihood of contagion. An incomplete list includes Rochet and Tirole (1996), Allen

and Gale (2000), Freixas et al. (2000), Eisenberg and Noe (2001), Lagunoff and Schreft

(2001), Dasgupta (2004), Leitner (2005), Nier et al. (2007), Allen and Babus (2009), Hal-

dane and May (2011), Allen et al. (2012), Amini et al. (2013), Cont et al. (2013), Georg

(2013), Zawadowski (2013), Cabrales et al. (2014), Elliott et al. (2014), Glasserman and

Young (2015, 2016), Acemoglu et al. (2015), and Castiglionesi et al. (2017). Unlike these
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papers, my paper explicitly focuses on the planner’s problem in the presence of spillovers and

uncertainty regarding the pattern of connections among institutions. Second, my paper adds

to recent research that explores how policy interventions affect the mechanism through which

shocks propagate (see, for example, Beale et al. (2011), Gai et al. (2011), Battiston et al.

(2012), Goyal and Vigier (2014), Adrian et al. (2015), Erol and Ordoñez (2017), Aldasoro

et al. (2017), and Galeotti et al. (2018)). While my paper also focuses on how contagion

varies with different policy interventions, it provides a tractable framework in which optimal

policies can be determined under uncertainty regarding the economy’s connectivity structure.

The rest of the paper is organized as follows. Section I introduces the baseline model.

Section II explores how regulation affects the likelihood of contagion and, in doing so, the

distribution of total output. Section III describes the optimal intervention. Section IV

extends the baseline model to environments wherein investors are uncertain about aggregate

characteristics of the economy’s connectivity structure. Section V concludes. All derivations

appear in the Appendix.

I. Baseline Model

Though stylized, the baseline model conveys the main intuition for how uncertainty about

the precise structure of the network reduces the scope for welfare-improving interventions.

A. The economy

Environment. The economy consists of n banks, a continuum of entrepreneurs, and

numerous investors. Banks’ payoffs are linked via exogenous inter-bank exposures.1 To keep

things simple, while banks may differ in their number of exposures, they are ex ante identical

in other respects, such as size and leverage.

1It is useful to think of the network of inter-bank exposures as a reduced form that captures the overall
effect of multiple financial linkages among banks within a multilayer network. Treating the multilayer network
as a single network simplifies the analysis by allowing me to circumvent the complications that arise from
having to model how dependencies among banks are aggregated in equilibrium.
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There are three periods, indexed by t = {0, 1, 2}. At t = 0, a planner imposes liquidity

restrictions on a set of banks to maximize expected total output. At t = 1, investors endow

each bank with one unit of resources. Immediately after, each bank faces a continuum of

entrepreneurs with measure 1. Subject to their regulatory constraints, banks invest their

funds in a (risky) portfolio consisting of entrepreneurs’ projects (henceforth referred to as

illiquid assets) and liquid assets. Liquid assets are (exogenously determined) investment

opportunities that can be easily converted into cash. At t = 2, payoffs are realized and

consumption occurs. Just before payoffs are realized, aggregate conditions deteriorate, and

banks become vulnerable to (unanticipated) adverse liquidity shocks affecting their neighbors.

Cascades of liquidity shocks might occur if the liquidity shock affecting one bank causes a

liquidity shock to some of its neighbors, which may cause a liquidity shock to the neighbors’

neighbors, and so on.2

Propagation of liquidity shocks. The propagation of liquidity shocks is determined

by a simple stochastic process. First, one randomly chosen bank faces an adverse liquidity

shock. Second, if that bank is affected, this shock might spread to others via randomly

selected contagious exposures. Bank i faces an adverse liquidity shock if two things happen:

(1) there is a sequence of contagious exposures between i and the first bank that faces the

liquidity shock, and (2) every bank in that sequence is affected by the liquidity shock.3

2In practice, cascades of liquidity shocks may capture liquidity-driven crises (as in Diamond and Rajan
(2011) and Caballero and Simsek (2013)) in which the liquidity shocks affecting a small set of banks induces
adverse liquidity shocks for some of their neighbors. When market participants face high uncertainty, those
neighbors may face a run due to solvency concerns, which, in turn, potentially causes solvency concerns about
some of the neighbors’ neighbors, possibly generating cascades of runs. Consequently, cascades of liquidity
shocks could also capture crises of confidence. Another example of cascades relates to situations in which the
liquidity shocks affecting some banks lead to write-downs in the balance sheets of some of their neighbors. If
resulting losses exceed the capital of such neighbors, those neighbors will face liquidity shocks, which, in turn,
may cause other banks to face liquidity shocks as well.

3The shock propagation mechanism is similar to the one used in Ramı́rez (2017). The main results
continue to hold if a small set of banks is initially affected by liquidity shocks. Conditional on banks i, j,
and k being connected via contagious exposures, the existence of a contagious exposure between i and j is
independent of the existence of a contagious exposure between j and k. A richer model would include local
dependencies among such events so that the effect that a single distressed neighbor has on a bank depends
critically on whether other neighbors face liquidity shocks. For a model that introduces such dependencies,
see Watts (2002). If one introduces such dependencies, the basic trade-off behind the main results should
continue to appear.
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For concreteness, I assume that the resulting distribution of contagious exposures across

banks—which basically determines the susceptibility of the economy to contagion—can be

characterized by an arbitrary distribution {pαk}
n−1
k=0 , with shape parameter α, where pαk denotes

the likelihood that a randomly chosen bank has k contagious exposures at t = 2. While

the number of contagious exposures per bank is unknown at t = 0, the planner knows the

functional form of {pαk}
n−1
k=0 . Section IV discusses extending the baseline model to environments

wherein this functional form is unknown, even by the planner.

Planner’s information. Before restricting banks, the planner observes noisy signals

about the future number of contagious exposures per bank. While signals are not informative

by themselves, the planner can improve their precision—and, in doing so, improve network

transparency—by collecting bank-level information at a cost κ > 0. Parameter κ can be

broadly interpreted as the (social) cost of designing and implementing policies to improve

information disclosure and transparency regarding the network of contagious exposures.4

Importantly, while more transparency is important when targeting banks, it also decreases

banks’ confidentiality. As information might be valuable to banks, revealing it could com-

promise their market position, reducing their incentives to lend and potentially decreasing

market efficiency.5 Hence, acquiring information is socially costly. For simplicity, all those

costs are captured by parameter κ.

Figure 1 depicts the timeline of events.

4Additionally, these policies may allow regulators to uncover banks that play an important role in
the transmission of shocks when a crisis materializes. Two important examples of such policies are the
Comprehensive Liquidity Assessment and Review (CLAR) and the Dodd-Frank Act supervisory stress test,
run annually by the Federal Reserve. In these programs, regulators evaluate the liquidity risk profile of
bank holding companies (BHCs) through a range of metrics and project whether BHCs would be vulnerable
during times of weak economic conditions. Other examples include programs implemented by the SEC such
as forms N-MFP and PF. Form N-MFP requires registered money market funds to report their portfolio
holdings and other information on a monthly basis, while form PF requires private funds to report assets
under management.

5Thinking in banks as secret keepers is also consistent with this idea; see Dang et al. (2017) for more
details.
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Figure 1. Model timeline

B. Banks’ and the Planner’s problems

Banks’ problem. Banks choose the composition of their portfolio to maximize expected

profits subject to their regulatory constraints. Let RL and RI denote the (random) payoff of

liquid and illiquid assets to every bank, respectively. For each unit invested at t = 1, the

(random) payoff of bank i at t = 2, πi, equals

πi(ωi) = ωi ×RL + (1− ωi)×RI − βωi × εi, (1)

where ωi denotes the fraction of bank i’s portfolio invested in liquid assets. Random variable

εi equals 1 if bank i faces an adverse liquidity shock at t = 2; otherwise, εi = 0. The term βωi

captures the effect of liquidity shocks on bank i’s payoff. For simplicity, ωi takes two values,

ωL or ωH , with 0 ≤ ωL < ωH ≤ 1. Moreover, illiquid assets yield a higher expected payoff;

hence, E[RL] < E[RI ].

Importantly, the liquidity of bank i’s portfolio, ωi, alters the effect of εi on bank i’s payoff.

In particular,

βωi =


0, if ωi = ωH

ωL ×RL + (1− ωL)×RI , otherwise.

(2)

Equation (2) has two implications. First, banks with more liquid portfolios are not affected
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by liquidity shocks when aggregate conditions deteriorate, while banks with more illiquid

portfolios default when facing a liquidity shock as they yield a payoff of zero. Consequently,

when choosing ωi, bank i faces the following trade-off: the more liquid its portfolio, the higher

its resilience to liquidity shocks, but potentially the lower its future payoff. Second, banks

with more liquid portfolios do not propagate liquidity shocks, as they are unaffected by such

shocks. As a result, the planner’s selection of restricted banks alters the spread of liquidity

shocks at t = 2.

Within the model, restrictions take a simple form: the planner forces restricted banks to

hold more liquid portfolios. By doing so, she aims to increase the likelihood that restricted

banks absorb, rather than amplify, adverse liquidity shocks when a crisis manifests, mitigating

the severity of cascades of liquidity shocks. The optimal portfolio allocation of bank i, ω∗i ,

then solves

max
ωi∈{ωL,ωH}

Ei [πi(ωi)] (3)

s.t. ωH × ei ≤ ωi (regulatory constraint),

where ei equals 1 if bank i is restricted at t = 0 and 0 otherwise; operator Ei emphasizes

that bank i chooses ω∗i based on its available information and subjective beliefs. Problem (3)

underscores that regulated banks optimize within the confines of regulatory constraints.

Importantly, from bank i’s perspective, investing in illiquid assets is more lucrative than

storing funds in cash, as banks underestimate the likelihood of being affected by cascades

of liquidity shocks (in a sense properly specified in Appendix A.A).6 Consequently, bank i

chooses ω∗i = ωL, unless the planner imposes restrictions on i.

The planner’s problem. For ease of exposition, suppose the planner has decided

whether to acquire bank-level information so as to improve network transparency. Let I

6This feature of the model is consistent with the “underestimated risks” factor highlighted by the IGM
Forum (2017) as one of the most prominent factors contributing to the 2007–2009 financial crisis as well as
banks’ lack of appreciation of downside risks highlighted by Gennaioli and Shleifer (2018).
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denote her information set, and let RI denote a set of banks restricted based on I, whose

cardinality is denoted by |RI |, with 0 ≤ |RI | ≤ n. The planner chooses RI to solve

max
RI

E
[

1

n
TO
∣∣RI]− κ× 1κ (4)

where TO =
∑n

i=1[πi + (1− ωi)y] denotes total output and y denotes the (random) output

of projects financed at t = 1, with E[y] = µ > 0;
(

1
n

)
is a normalization term. Variable 1κ

is an indicator function that equals 1 if the planner acquires bank-level information and 0

otherwise. Notably, problem (4) underscores that the selection of RI requires a holistic view

of the health of the economy rather than of the health of individual banks, being mindful of

the role the network structure plays in the propagation of liquidity shocks.

While restricting banks potentially curbs the spread of liquidity shocks—as restricted

banks neither face nor propagate shocks—it also increases the losses associated with regulation.

These losses arise because (a) restricted banks invest a higher fraction of their portfolio

in assets that generate lower expected payoffs, and (b) fewer entrepreneurs are financed

at t = 1, thereby decreasing their contribution to expected total output. Consequently,

increasing network transparency might be important, as it could allow the planner to dampen

contagion more efficiently. Although improving network transparency is socially costly, not

improving transparency is also costly, as it results in welfare losses associated with regulating

an excessively large number of banks.

Using the previous analysis, I now fully formulate the planner’s problem. Let I1 denote the

planner’s information set after acquiring bank-level information; otherwise, her information

set is denoted by I0. The planner chooses I ∈ {I0, I1} and RI to solve

max
I ∈ {I0,I1}

{
max
RI0

E
[

1

n
TO
∣∣RI0] , max

RI1

(
E
[

1

n
TO
∣∣RI1]− κ)} . (5)
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C. Discussion of Assumptions and Equilibrium Outcomes

Why are contagious exposures randomly determined? The random selection of

contagious exposures serves as a metaphor for the planner having difficulty assessing how

cross-exposures will react when aggregate conditions deteriorate, as even regulators rarely

have a comprehensive view of all relationships among banks. This difficulty makes the planner

fundamentally uncertain which banks are more prone to propagate liquidity shocks in times

of economic stress. Of course, this random selection provides a crude approximation of how

liquidity shocks propagate when a crisis manifests. Yet, it allows me to provide a tractable

analysis of cascades of liquidity shocks within the model.

What happens if contagious exposures are known? If contagious exposures are

known, banks’ actions would be strategic substitutes: an increase in the liquidity of bank i’s

portfolio reduces the incentives of its neighbors to increase the liquidity of their portfolios.

Because bank i is resilient to liquidity shocks, its neighbors are less vulnerable to shocks that

propagate through i, and, thus, i’s neighbors have fewer incentives to increase the liquidity

of their portfolios. It follows from Galeotti et al. (2018) that optimal interventions would

target banks that do not necessarily share exposures so as to move neighbors’ incentives in

opposite directions. However, within my model, contagious exposures are unknown, and,

thus, banks are ex ante identical—which, to an extent, facilitates the analysis, as banks’

strategic considerations do not play a critical role.

Mapping liquidity restrictions to other policy tools. In a broad sense, liquidity

restrictions within the model conceptually capture a diverse set of regulatory tools imple-

mented after the 2007–2009 financial crisis. In particular, ωH is assumed to be sufficiently

large so that banks with more liquid portfolios are not vulnerable to liquidity shocks when

aggregate conditions deteriorate. As a result, restrictions implicitly provide banks with better

incentives for prudent risk-taking, generating greater buffers to support their operations when

a crisis manifests.7

7In reality, liquidity restrictions take different forms. For example, with the aim of promoting the
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While different forms of regulation, such as the risk-weighted capital ratio (RWC) and the

liquidity coverage ratio (LCR) seek to address different distortions, arguments in favor of them

share a common ground with the benefits of liquidity restrictions in the model. For example,

the RWC aims to increase banks’ skin in the game, effectively reducing their incentives to

engage in excessive risk-taking, therefore decreasing banks’ insolvency risk. Likewise, the

LCR seeks to curb banks’ incentives to engage in risky funding activities, thereby decreasing

the likelihood of runs due to solvency concerns.

Inefficiency of the market equilibrium. Without regulation, every bank holds a

fraction ωL of its portfolio in liquid assets, as banks underestimate the likelihood of being

affected by cascades of liquidity shocks at t = 2. To ensure that regulation potentially

leads to a Pareto improvement, I assume there exists at least one bank that if restricted

would cause expected total output to increase. Intuitively, an increase in the resilience of

this bank—and the resilience of its (direct and indirect) neighbors—more than compensates

the dead-weight losses associated with regulating such a bank. Consequently, the market

equilibrium is not efficient and regulatory interventions are potentially welfare-improving.

Appendix A.B provides detailed derivations.

II. Welfare Effects of Regulation

This section studies how regulation alters expected total output. Because restricted banks

are forced to change their risk-taking behavior, regulation reshapes the way that liquidity

shocks propagate at t = 2. In doing so, regulation modifies the distribution of total output

when a crisis manifests.

Choosing how many banks to regulate. Within the model, restricted banks become

resilient to liquidity shocks and their contagious exposures do not contribute to the spread

short-term resilience of banks, the liquidity coverage ratio requires banks to have enough liquidity to cover
a 30-calendar-day liquidity stress period. Another example is the net stable funding ratio, which seeks to
address significant maturity mismatches between assets and liabilities, providing banks with better buffers to
absorb losses when affected by adverse liquidity shocks. See Tarullo (2019) for a broad description of the
post-crisis approach to prudential regulation.
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of shocks. Consequently, imposing restrictions on a set of banks can be represented by

the removal of such banks (and their exposures) from any realized network of contagious

exposures.

For ease of exposition, suppose the planner has decided whether to acquire bank-level

information and restricts all banks belonging to an arbitrary set R of size n × x, with

0 ≤ x ≤ 1. Then,

(
1

n

)
TO =

(
1

n

)(∑
i∈R

πi + (1− ωH)y

)
+

(
1

n

)(∑
i/∈R

πi + (1− ωL)y

)

= x(RI − ωH∆R) +

(
1

n

)(∑
i/∈R

πi

)
+ y(1− ωL − x∆ω),

where ∆ω ≡ ωH − ωL and ∆R ≡ RI −RL. To determine the distribution of
(

1
n

) (∑
i/∈R πi

)
,

it is illustrative to analyze how shocks propagate when aggregate conditions deteriorate.

Because the bank that initially faces a liquidity shock is selected uniformly at random, the

probability that such a bank was restricted at t = 0 is x. In this case, contagion is prevented

from its onset, as restricted banks do not propagate liquidity shocks. However, if such a bank

was not restricted, then at least one bank faces a liquidity shock and that shock might spread.

Therefore,

(
1

n

)∑
i/∈R

πi =


(1− x)[RI − ωL∆R], with probability x(
1− x− m

n

)
[RI − ωL∆R], with probability (1− x)φxm with m = 1, · · · , n(1− x),

where φxm denotes the probability that m banks are affected by a liquidity shock at t = 2

once a fraction x of banks have been restricted. After some algebra, it can be shown that

(see Appendix A.C)

(
1

n

)
E[TO|x] = η − ν(1− x)

〈φx〉
n︸ ︷︷ ︸−x∆ω(E[∆R] + µ),︸ ︷︷ ︸ (6)

costs of contagion dead-weight losses
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where ν ≡ E[RI ] − ωLE[∆R] and η ≡ ν + µ(1 − ωL). The term 〈φx〉 ≡
(∑n(1−x)

m=1 mφxm

)
denotes the expected number of banks affected by liquidity shocks when aggregate conditions

deteriorate once a fraction x of banks have been restricted.

It directly follows from (6) that increasing x not only alters the costs arising from the

spread of liquidity shocks—captured by ν(1− x) 〈φ
x〉
n

—but also increases the losses arising

from liquidity restrictions—captured by x∆ω(E[∆R] + µ). Intuitively, once a fraction x of

banks are restricted, (a) banks’ expected payoffs decrease by x∆ωE[∆R], as restricted banks

invest a higher fraction of their portfolio in assets with lower expected returns, and (b) the

expected return from entrepreneurs drops from (1− ωL)µ—when all banks invest a higher

fraction of their portfolios in illiquid assets—to (1−ωL)µ−xµ∆ω, when a fraction x of banks

invests a higher proportion of their portfolios in liquid assets. As a result, the dead-weight

losses associated with restricting a fraction x of banks is x∆ω(E[∆R] + µ).

Although increasing x directly increases the aforementioned losses, an increase in x does

not necessarily decrease the cost arising from the spread of liquidity shocks. While increasing

x decreases (1 − x), increasing x might increase or decrease 〈φx〉
n

. It is then pivotal to

determine probabilities {φxm}
n(1−x)
m=1 . While computing these probabilities is challenging—as

liquidity shocks may propagate in intricate ways—these probabilities can be analytically

determined within my model for economies with arbitrary sizes and connectivity structures;

see Proposition 1 in Appendix A.C for more details.

Notably, the dependence of 〈φ
x〉
n

on x hinges on the interplay between (a) the susceptibility

of the economy to contagion—which is encoded in the distribution {pαk}k—and (b) how

restricted banks are selected, as the composition of banks in R profoundly affects probabilities

{φxm}
n(1−x)
m=1 . Figures 2 and 3 illustrate this result, assuming {pαk}

n
k=1 follows a Poisson

distribution.8 Figure 2(a) depicts 〈φx〉 as a function of x if the planner were to restrict banks

at random. When α = 1, 〈φx〉 is a weakly decreasing function of x, as increasing x tilts

the distribution {φxm}
n(1−x)
m=1 (see figure 3(a)), making cascades of liquidity shocks relatively

8For more details about this result, see Proposition 2 in Appendix A.C.
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less likely, thereby decreasing 〈φx〉. However, when α > 1, 〈φx〉 may increase or decrease

with x. For small values of x, increasing x tends to isolate banks with only few contagious

exposures, making cascades relatively more likely (see figure 3(b)), which, in turn, increases

〈φx〉. But, when x is relatively large, increasing x isolates a sufficiently large number of

banks to tilt the distribution {φxm}
n(1−x)
m=1 , curbing the likelihood of large cascades, thereby

decreasing 〈φx〉 (see figure 3(c)). Figure 2(b) highlights the importance of how restricted

banks are selected by depicting 〈φx〉 as a function of x if the planner were to restrict all

banks with contagious exposures above a certain threshold—assuming she could rank banks

based on their number of contagious exposures. As figure 2(b) shows, 〈φx〉 continues to vary

with x, but not necessarily in a continuous fashion.

Improving network transparency. It follows from (6) that a planner’s decision to

collect bank-level information so as to improve network transparency depends on how much

that information helps reduce 〈φ
x〉
n

. If only a few banks play a key role in the propagation of

shocks, targeting those banks substantially reduces 〈φ
x〉
n

, and, hence, collecting information

about their identities may be worth the cost. Consequently, improving network transparency

has an intrinsic social value to the extent that it allows the planner to dampen cascades

of liquidity shocks more effectively. As the next section shows, this value is determined

by aggregate characteristics of the distribution {pαk}k and dictates the optimal choice of

information.

III. Optimal Intervention

This section describes the optimal intervention—which is jointly determined by a choice

of network transparency and a selection of restricted banks—and explores how that policy

varies with the primitives of the model. For ease of exposition, I first explore the optimal

selection of restricted banks, given a choice of network transparency. I then study the optimal

choice of information.
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A. Selecting the optimal set of restricted banks

Given a choice of network transparency, an optimal choice of x exists under somewhat

general conditions; see Proposition 3 in Appendix A.D. To help illustrate the planner’s

trade-off when choosing x, I rewrite the first order condition of her optimization problem as

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
︸ ︷︷ ︸ = ∆ω(E[∆R] + µ).︸ ︷︷ ︸ (7)

marginal benefit marginal cost

Equation (7) shows that the optimal fraction of restricted banks, x∗, is deliberately selected

so that the benefits of restricting the last bank are equal to the dead-weight losses associated

with restricting such a bank. The marginal benefit arises because restricting the last bank

not only increases the resilience of that bank but also increase the resilience of its (direct and

indirect) neighbors, thereby decreasing the expected number of banks affected by the spread

of liquidity shocks. The marginal cost arises because (a) the last restricted bank is forced to

hold a higher fraction of its portfolio in assets with lower expected returns, and (b) a lower

fraction of productive projects are financed at t = 1. To sum up, x∗ is selected so as to limit

the spread of liquidity shocks while at the same time avoiding excessive dead-weight losses

from liquidity restrictions.9

B. Optimal choice of network transparency

Before choosing x∗, the planner decides whether to collect bank-level information to

improve transparency regarding the structure of the network of contagious exposures. If

she decides not to collect information, then banks are ex-ante identical from her point of

view. By collecting information, however, she can strategically choose x∗ to ensure that the

9Proposition 4 in Appendix A.D shows that, under certain conditions, the solution of the planner’s
problem is interior. More importantly, the optimal fraction of restricted banks gets arbitrarily close to x∗—the
solution of equation (7)—as the economy grows large. For details about the general case, see Proposition 5 in
Appendix A.D.
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smallest number of banks possible is affected by the spread of liquidity shocks. Naturally,

her decision to collect information will depend on how much that information helps her to

mitigate contagion more effectively.

Let x1 denote the optimal fraction of restricted banks chosen after acquiring certain

bank-level information, and let x0 denote the optimal fraction of restricted banks chosen

when no information is acquired. The (social) value of improving network transparency, SVI,

is then

SVI ≡
(

1

n

)
(E[TO|x1]− E[TO|x0]) = (x0 − x1)∆ω(E[∆R] + µ)

+ ν

(
(1− x0)

〈φx0〉
n
− (1− x1)

〈φx1〉
n

)
. (8)

Equation (8) highlights the two components of the value of information. Notably, these

two components relate to the fact that improving network transparency potentially allows

the planner to limit the spread of liquidity shocks more effectively. The first term, (x0 −

x1)∆ω(E[∆R] + µ), captures the idea that more transparency might allow the planner to

restrict fewer banks, decreasing the dead-weight losses associated with regulation. The second

term, ν
(

(1− x0) 〈φ
x0 〉
n
− (1− x1) 〈φ

x1 〉
n

)
, captures the idea that more transparency might allow

the planner to decrease the spread of liquidity shocks more effectively, as she strategically

chooses x1 to ensure that the smallest number of banks possible are affected by contagion.

Importantly, different connectivity structures yield different values of network transparency,

as SVI varies with {pαk}k, because x0, x1, 〈φx0〉, and 〈φx1〉 are implicit functions of {pαk}k. For

example, when {pαk}k is regular—that is, all banks exhibit the same number of contagious

exposures at t = 2—banks behave in a similar fashion in times of economic stress. Thus,

improving network transparency is not optimal, as more transparency does not allow the

planner to uncover differences across banks in their role spreading liquidity shocks. However,

when the number of contagious exposures varies across banks, improving transparency is

potentially valuable.
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Optimal rule. Within the model, the optimal choice of network transparency follows a

simple rule. If SVI ≥ κ, then the social benefit of more transparency outweighs its cost, and,

thus, it is optimal to improve network transparency. Namely, improving network transparency

is optimal if and only if

(x0 − x1)∆ω(E[∆R] + µ) + ν

(
(1− x0)

〈φx0〉
n
− (1− x1)

〈φx1〉
n

)
≥ κ.

Intuitively, different pieces of information yield different levels of network transparency,

allowing the planner to target banks differently. As a result, the planner’s decision to collect

granular information is closely linked to (a) how much transparency the planner is able to

obtain from such information, and (b) how useful that transparency is to limit the negative

effects of cascades of liquidity shocks. Importantly, how useful transparency is fundamentally

depends on the pattern of contagious exposures across banks.

C. Optimal interventions in large economies

While I can numerically solve for the optimal intervention, this section derives the optimal

intervention in closed form under certain conditions in order to illustrate the importance of

{pαk}k for policy design. Within this section, I focus on an economy of infinite size. This is

convenient for two reasons: (1) it considerably facilitates computations, and (2) it provides

results that are potentially useful, as modern economies are comprised of a large number of

institutions. Additionally, I assume that bank-level information allows the planner to rank

banks based on their future number of contagious exposures. While, in reality, the planner

might collect different pieces of information and, thus, decide between intermediate levels of

network transparency, this assumption simplifies computations even further. Appendix A.E

provides detailed derivations.
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Under the aforementioned assumptions, the optimal fraction of restricted banks, x∗, equals

x∗ =


xr, if ∆ω(E[∆R] + µ) ≤ min

{
ν
xr
, κ

∆x

}
xt, if min

{
ν
xr
, κ

∆x

}
< ∆ω(E[∆R] + µ) ≤ ν−κ

xt

0, otherwise.

(9)

where xt and xr denote the smallest fraction of banks that must be restricted to prevent

large cascades of liquidity shocks if the planner targets banks with or without bank-level

information, respectively; ∆x ≡ xr − xt. Large cascades of liquidity shocks are defined as

events in which a finite fraction of banks in an economy of infinite size face a liquidity shock

as a result of any one bank initially facing a liquidity shock.10

Intuitively, when ∆ω(E[∆R] + µ) ≤ min
{

ν
xr
, κ

∆x

}
, dead-weight losses associated with less

efficient targeting—which results from not acquiring bank-level information—are sufficiently

small. It is then optimal not to improve network transparency, and, thus, x∗ = xr. When

min
{

ν
xr
, κ

∆x

}
< ∆ω(E[∆R] + µ) ≤ ν−κ

xt
, less efficient targeting becomes sufficiently costly, as

it involves restricting an excessively large fraction of banks. It is then optimal to improve

network transparency so as to strategically select banks, and, thus, x∗ = xt. Finally, when

∆ω(E[∆R] + µ) > ν−κ
xt

, dead-weight losses associated with regulation are too large, and, thus,

a non-interventionist policy is optimal; that is, x∗ = 0. Notably, preventing large cascades of

liquidity shocks is not optimal in this case, regardless of how susceptible to contagion the

economy might be.

The social value of improving network transparency, SVI, equals

SVI =


∆x∆ω(E[∆R] + µ), if ∆ω(E[∆R] + µ) ≤ ν

xr

ν − xt∆ω(E[∆R] + µ), if ν
xr
< ∆ω(E[∆R] + µ) ≤ ν

xt

0, otherwise.

(10)

10In practice, these cascades capture situations in which a non-negligible fraction of banks in a large but
finite economy face liquidity shocks as a result of a small set of banks initially facing liquidity shocks.
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That is, if the marginal cost of regulation, ∆ω(E[∆R]+µ), is sufficiently small, i.e., ∆ω(E[∆R]+

µ) ≤ ν
xr

, the value of improving network transparency is proportional to ∆x, as more

transparency allows the planner to target banks more effectively. Importantly, the value

of improving transparency increases with ∆ω(E[∆R] + µ), as strategically targeting banks

directly reduces the losses associated with excessive regulation. For intermediate values of

∆ω(E[∆R] + µ), i.e., ν
xr
< ∆ω(E[∆R] + µ) ≤ ν

xt
, it becomes optimal to improve network

transparency as long as the cost of doing so is sufficiently small. The value of improving

transparency then decreases with ∆ω(E[∆R] + µ) because, as ∆ω(E[∆R] + µ) increases, any

intervention becomes more costly to begin with. For sufficiently large values of ∆ω(E[∆R]+µ),

a non-interventionist policy is optimal, and, thus, network transparency adds no efficiency

gains from a policy perspective; therefore, SVI = 0.

Importantly, expressions (9) and (10) show that the optimal intervention crucially depends

on the interplay between

• the marginal cost of regulation, ∆ω (E[∆R] + µ),

• xt and xr, and

• the (social) cost of improving network transparency, κ.

As a result, the interaction between these variables determines the optimal policy within the

model. Importantly, this interaction is shaped by the nature of the network of contagious

exposures, {pαk}k, as xt and xr are functions of {pαk}k.

To better illustrate how the optimal intervention varies with changes in the network

structure, I now provide comparative statics under two distinct families of networks: Poisson

and Power-law. In symmetric structures, such as Poisson networks, banks behave in a similar

fashion from a shock propagation perspective. Consequently, the benefit of improving network

transparency is capped by the network structure, as more transparency does not necessarily

allow the planner to target banks more effectively. However, asymmetric structures, such

as Power-law networks, exhibit a fundamentally different behavior, as a small fraction of

banks drives the spread of liquidity shocks. As a result, the scope for welfare-improving
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interventions is intimately linked to the symmetry of the network of contagious exposures.

Poisson networks. Suppose pαk follows a Poisson distribution with parameter α > 1—

that is, pαk = αke−α

k!
. Then,

xr = 1− 1

α
and xt = xr −

e−ααKα

Kα!
,

where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
. Thus, ∆x = e−ααKα

Kα!
.

Notably, ∆x→ 0 as α→∞. While more transparency allows the planner to deliberately

target banks, strategic targeting becomes less effective as α grows large. When {pαk}k follows

a Poisson distribution, banks behave in a similar fashion from the perspective of shock

propagation. As α grows large, contagious exposures become more frequent. Consequently,

there is less room for policy improvement, as more banks can transmit shocks widely as they

exhibit an excessively high number of contagious exposures.

Figure 4(a) depicts xr and xt as a function of α. As α grows, the number of contagious

exposures increases on average. Thereby, with or without bank-level information, a larger

fraction of banks must be restricted to prevent large cascades.

Substituting xr and xt into (9) yields

x* =



(
1− 1

α

)
, if ∆ω(E[∆R] + µ) ≤ min

{
να
α−1

, κKα!
e−ααKα

}
(
1− 1

α

)
−
(
e−ααKα

Kα!

)
, if min

{
να
α−1

, κKα!
e−ααKα

}
< ∆ω(E[∆R] + µ) ≤ ν−κ

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.

(11)

Expression (11) highlights the critical role that the interaction between the network structure,

parameterized by α, and the marginal cost of regulation, ∆ω (E[∆R] + µ), plays in the

determination of x∗. Figure 5(a) depicts x∗ as a function of α for different values of

∆ω (E[∆R] + µ), assuming κ = 1/10. When α is sufficiently small, contagious exposures are

less frequent. Because banks behave in a similar fashion at t = 2, no single bank plays a
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determinant role in the spread of liquidity shocks. As a result, the planner has little incentive

to improve network transparency if ∆ω (E[∆R] + µ) is sufficiently small, and, thus, x∗ = xr.

However, as α increases, the economy becomes more prone to contagion, as more banks

exhibit a higher number of contagious exposures, thereby increasing the planner’s incentives

to identify the set of most contagious banks. Consequently, x∗ = xt, unless ∆ω (E[∆R] + µ)

is sufficiently small. When ∆ω (E[∆R] + µ) is sufficiently large, the dead-weight losses

associated with excessive regulation are considerable. Thus, for larger values of α, x∗ = 0 as

the costs associated with liquidity restrictions overcompensate the benefits associated with

the prevention of large cascades.

Substituting xr and xt into (10) yields

SVI =



(
e−ααKα

Kα!

)
∆ω(E[∆R] + µ), if ∆ω(E[∆R] + µ) ≤ να

α−1

ν −
((

1− 1
α

)
− e−ααKα

Kα!

)
∆ω(E[∆R] + µ), if να

α−1
< ∆ω(E[∆R] + µ) ≤ ν

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.

(12)

Expression (12) shows how SVI depends on the interplay between the network structure and

the marginal cost of regulation. Consistent with the above results, SVI→ 0 as α→∞, as

strategic targeting becomes less effective as α grows large.

To better illustrate how the network structure reshapes SVI, figure 5(b) depicts the

value of improving network transparency as a function of α. Notably, when ∆ω (E[∆R] + µ)

is sufficiently small, SVI increases with α in certain regions while it decreases in others.

Intuitively, in regions where SVI is an increasing function of α, more transparency allows the

planner to mitigate the spread of liquidity shocks more effectively. Hence, as the susceptibility

of the economy to contagion increases, so does the value of network transparency. Why does

SVI sharply decrease with α in certain regions? The reason lays in the behavior of xt(α).

Because more transparency allows the planner to rank banks based on contagious exposures,

the optimal selection strategy takes a simple form within the model: restrict any bank with
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contagious exposures above a certain threshold. Because restricting the most contagious

banks results in the removal of a large fraction of contagious exposures, the fraction of

restricted banks might not always increase with α. This is because the number of banks with

contagious exposures above a certain threshold does not monotonically increase with α. As a

result, ∆x might decrease with α in certain regions, and, in doing so, SVI might decrease with

α. Finally, when ∆ω (E[∆R] + µ) is sufficiently large, improving network transparency tends

to be optimal. However, strategic targeting becomes less effective as contagious exposures

become more frequent. Hence, SVI weakly decreases with α for sufficiently high values of

∆ω (E[∆R] + µ).

Power-law networks. Suppose pαk follows a Power-law distribution—that is, pαk ∝ k−α,

with α > 1. To keep things simple, assume further that the minimum number of contagious

exposures per bank equals one. Then,

xr =


1−

((
2−α
3−α

)
− 1
)−1

if α > 3

1 if 1 < α ≤ 3.

xt = K(1−α)
α

where Kα satisfies K2−α
α − 2 =

(
2−α
3−α

)
(K3−α

α − 1). Thus,

∆x =


1−

((
2−α
3−α

)
− 1
)−1 −K(1−α)

α if α > 3

1−K(1−α)
α if 1 < α ≤ 3.

Figure 4(b) depicts xr and xt as a function of α. Notably, the difference between xr and

xt in the Power-law case is visibly larger than in the Poisson case. Importantly, if α ≤ 3,

preventing large cascades of liquidity shocks without improving network transparency requires

the planner to restrict every bank, which might prove to be too difficult if the planner faces

(exogenous political) restrictions on the maximum number of banks she can restrict. When

α ≤ 3, there is sufficiently high variation in the number of contagious exposures across banks.
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This ensures that liquidity shocks affecting one bank almost surely affect a non-negligible

fraction of them through contagion. Because only a small fraction of banks exhibit an

excessively large number of contagious exposures when α ≤ 3, the planner is likely to miss

such banks if selecting banks without granular information, as she acts as if she were to

restrict banks uniformly at random. Consequently, network transparency proves to be more

helpful in the Power-law than in the Poisson case.

Figure 4(b) also highlights that xt is a non-monotonic function of α. When α ≤ 2, an

extremely small fraction of banks plays a key role in the propagation of liquidity shocks;

hence, restricting these banks dampens the onset of contagion. Next, for larger values of α,

the fraction of banks driving the propagation of shocks increases with α, thereby increasing

the fraction of banks that must be restricted to avoid large cascades. Finally, for even larger

values of α, the fraction of restricted banks decreases with α. This is because the size of the

largest set of banks that are (potentially) affected by the spread of liquidity shocks decreases

with α, even before restrictions are implemented. The same argument explains the behavior

of xr(α) when α ≥ 3.

As before, substituting xr and xt into expressions (9) and (10) yields the optimal fraction

of restricted banks, x∗, and the social value of improving network transparency, SVI, as a

function of α. For conciseness, I omit those expressions and illustrate the importance of the

network structure via figures. Figure 6(a) depicts x∗ as a function of α for different values

of ∆ω (E[∆R] + µ). Consistent with the previous analysis, when α ≤ 3, preventing large

cascades without granular information requires restricting every bank. If ∆ω(E[∆R] + µ) is

not negligible, the planner might prefer to improve network transparency to minimize the

dead-weight losses associated with excessive regulation; hence, x∗ = xt. For larger values of α,

the size of the largest set of banks that are (potentially) affected by contagion decreases with α,

and so does the incentive to improve network transparency. Consequently, when the marginal

costs of regulation are sufficiently small, x∗ = xr. Otherwise, x∗ = xt. However, when the

marginal cost of regulation is sufficiently large, a non-interventionist policy is optimal, and,
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thus, x∗ = 0. Importantly, the region of the parameter space when a non-interventionist

policy is optimal is much smaller in the Power-law case than in the Poisson case.

Figure 6(b) illustrates how the network structure reshapes SVI in Power-law networks.

Because improving network transparency is optimal in a large region of the parameter

space, the behavior of SVI(α) is mostly driven by how ∆x changes with α. When α ≤ 3,

large cascades are effectively prevented by improving transparency, as, without granular

information, large cascades can only be prevented by restricting every bank. Thus, the value

of improving network transparency is proportional to (1− xt) in this case. Now, for larger

values of α, there is no need to restrict every bank to prevent large cascades. However,

restricting banks without information is less efficient, as a considerably larger fraction of

banks must be restricted. Finally, when α is sufficiently large, the value of improving network

transparency decreases with α. This is because the size of the largest set of banks that are

potentially affected by the spread of liquidity shocks decreases with α, even before restrictions

are implemented, and, as a consequence, there is less room for policy improvements as α

increases.

The network structure matters. The marked differences between the connectivity

structures of Poisson and Power-law networks underscore three important results. First,

different network structures exhibit different susceptibility to contagion, imposing distinct

challenges to planners when trying to mitigate cascades of liquidity shocks. Second, the

ability of the planner to prevent cascades of liquidity shocks in certain networks heavily

depends on how restricted banks are selected, and, thus, the knowledge available to the

planner may be critical. Third, the scope for welfare-improving interventions is intimately

linked to the symmetry of the network of contagious exposures.
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IV. Extended Model

This section extends the baseline model to environments wherein the planner is uncertain

about the distribution {pαk}k. This type of uncertainty fundamentally differs from the

uncertainty captured by the baseline model. In the baseline model, the planner does not know

the exact number of contagious exposures per bank, but she knows {pαk}k. Here, however, the

planner is unable to pin down such a distribution. Consequently, she faces model uncertainty,

as she is unsure about the distribution of contagious exposures, which ultimately determines

how the economy behaves when aggregate conditions deteriorate.11

To better appreciate the implications of model uncertainty, suppose parameter α is random

and unknown, while the functional form of {pαk}k continues to be known. Because α affects

how liquidity shocks spread, it is now difficult to analyze the distribution of total output. For

a given value of α, if a fraction x of banks were restricted, the previous analysis shows that

(
1

n

)
Eα[TO|x] = η − ν(1− x)

n(1−x)∑
m=1

m

n
φxm(α)

− x∆ω(E[∆R] + µ)

where probabilities φxm are written as φxm(α) to emphasize their dependence on the distribution

{pαk}k. Importantly, probabilities φxm(α) are now random variables, as α is random, which, in

turn, makes expected total output a random variable. As a result, the previous framework—in

which x is selected to maximize expected total output—is incapable of dealing with this type

of uncertainty.

To capture model uncertainty in a tractable way consistent with the previous analysis, I

extend the baseline model along two dimensions. First, I consider a representative investor

who owns all assets in the economy and has preferences that can be characterized by the

smooth ambiguity model of Klibanoff et al. (2005). In a broad sense, these preferences capture

circumstances in which investors are uncertain about the “true model” that determines the

11See Routledge and Zin (2009) and Easley and OHara (2010) for models that connect liquidity and model
uncertainty. See Ruffino (2014) for a discussion of some implications of model uncertainty for regulation.
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behavior of the economy. Given the uncertainty about the model, investors may exhibit

aversion to (or preference for) that uncertainty. For example, if investors are averse to such

uncertainty, they worry about making non-optimal decisions ex ante because they do not

know the “true model.” Importantly, with these preferences, investors’ tastes for risk and

model uncertainty (henceforth referred to as ambiguity) can be separated in a simple form

that makes it tractable to nest the baseline model into the new framework.

Second, parameter α is unknown, but, to keep things simple, the exact distribution of

contagious exposures across banks is assumed to belong to a known family of distributions—

say,
{
{pαk}

n−1
k=0

}
α∈A—where A denotes the set of plausible values for α. While investors do

not know the exact value of α, the observation of noisy signals allows them to generate

subjective beliefs over A. These beliefs are captured by a distribution f, which denotes a Borel

probability measure on A with barycenter ᾱ ≡
∫
α∈A αdf . For consistency, the barycenter ᾱ

is assumed to satisfy

s∑
k=0

pᾱk =
1

n

n∑
i=1

1si≤s, −∞ < s <∞, (13)

where 1si≤s equals 1 if si ≤ s, and 0 otherwise. Variable si represents a noisy signal about

the future number of contagious exposures of bank i. Equation (13) implies that investors

are able to infer ᾱ from observing signals {si}ni=1.

A. Optimal Intervention

Optimal selection of restricted banks. Taking these two modifications into account,

I now reformulate the planner’s problem. Given a choice of information, the planner chooses

a set of banks to regulate, R, to solve

max
R

Eᾱ
(

1

n
TOα

∣∣R)− (θ
2

)
× Vf

(
1

n
Eα
(
TOα

∣∣R))− κ× 1κ (14)

s.t. 0 ≤ |R| ≤ n,
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where operator Eᾱ (·) denotes the expectation when α = ᾱ. Operator Vf (·) denotes the

variance of expected total output, computed using distribution f . Parameter θ is a non-

negative coefficient capturing the representative investor’s attitude toward ambiguity. Notably,

the extended model is equivalent to the baseline model when A is singleton or θ = 0. When

A is singleton, there is no model uncertainty, as the exact value of α is known. When θ = 0,

investors are ambiguity neutral. Thus, they do not mind not knowing α and behave as if

α = ᾱ.

To better illustrate the planner’s trade-off in this new environment, I now rewrite the

first order condition of her optimization problem (see Appendix A.F for more details)

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
︸ ︷︷ ︸ = ∆ω(E[∆R] + µ)

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa︸ ︷︷ ︸ .

marginal benefit marginal cost

where 〈φxaᾱ 〉 ≡
∑n(1−xa)

m=1 φxm(ᾱ), and 〈φxᾱ〉 ≡
∑n(1−x)

m=1 φxm(ᾱ). Proposition 7 in Appendix A.F

shows that, under certain conditions, the optimal fraction of restricted banks gets arbitrarily

close to xa—which denotes the solution of the above equation—as the economy grows large.12

To appreciate the importance of model uncertainty, it is illustrative to emphasize the

similarities between the above equation and equation (7). While the marginal benefit in both

equations arises from the fact that the planner seeks to limit the spread of liquidity shocks,

the marginal cost now has an extra component—the second term in the RHS of the above

equation. Importantly, this component is unrelated to the dead-weight losses arising from

liquidity restrictions but captures that the representative investor dislikes making non-optimal

decisions ex-ante. This cost arises solely from the fact that (a) investors do not know α,

and (b) they exhibit aversion to ambiguity, as θ > 0. Consequently, the optimal fraction of

12The above equation characterizes the optimal fraction of restricted banks when the solution of the
planner’s problem is interior; for details about the general case, see Proposition 8 in Appendix A.F.
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restricted banks, xa, now also hinges on investors’ subjective beliefs, captured by distribution

f , and their attitudes toward ambiguity, captured by θ.

Social Value of Improving Transparency. Let x1 denote the optimal fraction of

restricted banks chosen after acquiring certain bank-level information, and let x0 denote the

optimal fraction of restricted banks chosen without acquiring information. The social value

of improving transparency, SVI, is then

SVI ≡
(

1

n

)
(Eᾱ[TO|x1]− Eᾱ[TO|x0])−

(
θ

2

)(
Vf

(
1

n
Eα (TO|x1)

)
− Vf

(
1

n
Eα (TO|x0)

))
= (x0 − x1)∆ω(E[∆R] + µ) + ν

(
(1− x0)

〈φx0
ᾱ 〉
n
− (1− x1)

〈φx1
ᾱ 〉
n

)
+

(
θ

2

)
ν2

(
(1− x0)2

[∫
α∈A

(
〈φx0

α 〉
n
− 〈φ

x0
ᾱ 〉
n

)2

df(α)

]
− (1− x1)2

[∫
α∈A

(
〈φx1

α 〉
n
− 〈φ

x1
ᾱ 〉
n

)2

df(α)

])
. (15)

Thus, the social value of network transparency now has three components. The first two terms

in the RHS of the above equation capture ideas similar to the two components described in the

RHS of equation (8). The first term arises from the fact that, on average, more transparency

might help decrease dead-weight losses generated from excessive regulation, as the planner

might be able to restrict fewer banks. The second term captures the fact that, on average,

more transparency might allow the planner to limit the spread of liquidity shocks more

effectively. However, the third term is new and captures that α is unknown and investors are

ambiguity averse. Intuitively, it represents the extent to which more transparency allows the

planner to hedge the risk of making non-optimal decisions ex-ante as a result of not knowing

α. Importantly, the perception of such risk is intimately linked to the underlying family of

distributions {{pαk}k}α∈A as well as investors’ subjective beliefs over A, f .

Optimal choice of network transparency. As before, the optimal choice of network

transparency follows a simple rule. If SVI ≥ κ, the social benefit of more network transparency

outweighs its cost, and, thus, it is optimal to improve network transparency. Notably, the

extent of uncertainty regarding the network now plays a key role in the decision of whether

to improve network transparency.
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B. Importance of network uncertainty

To appreciate the importance of network uncertainty for policy design, I now explore (via

numerical solutions) how the optimal intervention varies with (a) investors’ subjective beliefs,

f(α), and (b) investors’ aversion to ambiguity, θ. To facilitate the comparison between the

baseline and extended models, I focus on Poisson and Power-law networks. For concreteness,

I assume hereafter that ν = 1, ∆ω(E[∆R] + µ) = 2, κ = 1/10, and n = 50, while f(α) follows

a truncated normal distribution with mean ᾱ = 3, variance σ2 > 0, and A = [2, 4]. In what

follows, I capture variation in investors’ subjective beliefs through variation in σ2.

Poisson networks. Figure 7 highlights the implications for policy design of investors’

subjective beliefs and their aversion to ambiguity. Figure 7(a) depicts the optimal fraction of

restricted banks, x∗, as a function of σ2. Unless θ is sufficiently large, variation in investors’

beliefs does not generate variation in x∗. When investors do not experience sufficiently large

disutility from making non-optimal decisions ex ante, it is optimal for the planner to choose

her policy as if investors were to behave as if α = ᾱ. Because ᾱ = 3 and ∆ω(E[∆R] + µ) = 2,

a non-interventionist policy is optimal regardless of the extent of network uncertainty (which

is consistent with figure 5(a)).

However, when investors exhibit sufficiently high aversion to ambiguity, the optimal policy

is heavily affected by changes in investors’ beliefs. As figure 7(a) shows, for even small values

of σ2, it becomes optimal to restrict a much larger fraction of banks. As σ2 increases, the

extent of uncertainty regarding the network structure increases. When facing high network

uncertainty, investors are worried that the fraction of restricted banks may not be sufficiently

large to prevent large cascades when a crisis manifests. As a result, it is optimal to weakly

increase the fraction of restricted banks as network uncertainty increases. In other words, the

lack of certainty about the network structure is not a justification for inaction, but rather

the opposite, considering the considerable negative consequences of large cascades of distress.

Importantly, figure 7(b) shows that in Poisson networks the value of information decreases as

σ2 increases. The reason is simple. The higher σ2, the higher network uncertainty and, thus,

32



the less informative network transparency is in an economy where banks behave in a similar

fashion in times of economic stress. Consequently, improving network transparency is not

optimal when θ and σ2 are sufficiently high.

Power-law networks. Figure 8 shows that differences in the nature of the network

of contagious exposures continue to have important implications for policy making under

network uncertainty. Consistent with the previous results, figure 8(a) shows that x∗ is heavily

affected by changes in network uncertainty when investors exhibit sufficiently high aversion to

ambiguity. Notably, figure 8(b) shows that the value of network transparency weakly increases

with σ2 in Power-law networks. Intuitively, because ∆ω(E[∆R] + µ) is not negligible, it is

costly to make mistakes by restricting an excessively large fraction of banks. Consequently,

the higher the network uncertainty, the higher the planner’s incentives to identify banks that

drive the propagation of liquidity shocks so as to make her intervention more robust. Because

banks dramatically differ in their role spreading liquidity shocks in Power-law networks, the

value of network transparency (weakly) increases as σ2 increases. Finally, for relatively large

values of σ2, the extent of network uncertainty is too large. As a result, SVI does not vary

with σ2, as the informativeness of network transparency is capped by network uncertainty.

V. Conclusion

My primary goal has been to show that it is possible to define an optimal solution of the

problem of regulating a network of interdependent financial institutions under uncertainty

regarding its precise structure. By incorporating results from the literature on random graphs,

my model makes it possible to compute the optimal policy in economies with arbitrary

sizes and network structures. In particular, when the network degree distribution is known,

the baseline model provides a complete description of the optimal policy. When such a

distribution is unknown, an extension of the model describes the optimal policy by drawing

insights from the literature on decision-making under ambiguity. As the size of the economy
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grows large, policies that prevent large cascades of distress can be analytically determined.

While the proposed framework does not capture the economic incentives underlying

the formation of interdependencies or the reasons some institutions may be more prone

to propagating shocks than others, it provides a simple, yet general, approximation of the

problem faced by policymakers nowadays, where the lack of detailed information and the

high complexity of interactions among institutions besets the regulation and supervision of

financial networks. In doing so, the proposed framework provides a benchmark to which

other models can be compared to.

My emphasis on the relevance of network uncertainty should not be understood as

downplaying the important role that leverage, size, and short-term funding play in the

design of optimal policies. As the network structure interacts with these variables, policy

interventions should be mindful of such an interaction so as to take into consideration how

financial (and non financial) institutions react to regulation and how such reactions contribute

to financial stability.

Finally, network uncertainty is not only a problem for regulators as it also gives rise

to uncertainty for market participants, especially in times of economic stress. In doing so,

network uncertainty itself can be a source of cascades of distress. Future research in this area

is certainly called for.
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For Online Publication: Appendix for

“Regulating Financial Networks Under Uncertainty”

Appendix A Mathematical Derivations

This section contains detailed derivations of results and propositions mentioned in the
body of the paper.

A Banks’ beliefs and their behavior

The payoff of bank i is given by

πi = ωiRL + (1− ωi)RI − βωiεi,

where

βωi =

{
(ωLRL + (1− ωL)RI) with probability pi if ωi = ωL,

0, otherwise,

with pi = P[i faces a liquidity shock|ωi = ωL]. Given how liquidity shocks propagate among
banks,

pi(Ci) =
1

n
+

(
1− 1

n

)
E[|Ci|]
n

where Ci denotes the set of banks (directly or indirectly) connected to bank i —via a sequence
of contagious exposures at t = 2—whose portfolio contains a fraction ωL in liquid assets.
From bank i’s perspective,

Ei[πi|ωi = ωH ]− Ei[πi|ωi = ωL] = ν

[
1

n
+

(
1− 1

n

)
Ei[|Ci|]
n

]
−∆ωE[∆R].

Consequently, if bank i tends to underestimate the likelihood of being affected by cascades of
liquidity shocks as n grows large—i.e., Ei[|Ci|] = o(n)—then

lim
n→∞

(Ei[πi|ωi = ωH ]− Ei[πi|ωi = ωL]) < 0.

Namely, investing in illiquid assets is more lucrative than storing funds in cash.
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B Inefficiency of the market equilibrium

Without regulation, every bank holds a fraction ωL of its portfolio in liquid assets. As a
result, the expected total output generated in the market equilibrium, E [TOE], equals

E [TOE] = E

[
n∑
i=1

πi + (1− ωL)y

]

= n (ωLE[RL] + (1− ωL)E[RI ])−

(
n∑
i=1

E0[βωiεi]

)
︸ ︷︷ ︸+n(1− ωL)µ︸ ︷︷ ︸

banks’ profits projects’ payoffs

where E0[βωiεi] = E[βωiεi|ωi = ω−i = ωL]. The first term in the above expression corresponds
to the sum of banks’ expected profits, while the second term corresponds to the expected
payoffs of projects financed at t = 1.

To appreciate the potential benefits of regulation, suppose only one bank, say bank i, is
forced to hold a fraction ωH of its portfolio in liquid assets. Let E [TOi] denote expected
total output in this case. Then, E [TOi] equals

output derived from bank i’s response to regulation

E [TOi] =
︷ ︸︸ ︷
ωHE[RL] + (1− ωH)E[RI ]− E′[βωiεi] + (1− ωH)µ +

(n− 1) (ωLE[RL] + (1− ωL)E[RI ])−

(
n∑
j 6=i

E′′[βωjεj]

)
+ (n− 1)(1− ωL)µ,︸ ︷︷ ︸

output derived from other banks’ actions

with E′[βωiεi] = E[βωiεi|ωi = ωH and ω−i = ωL] and E′′[βωjεj] = E[βωjεj|ωi = ωH and ω−i =
ωL]. Thus, the difference (E [TOi]− E [TOE]) describes the welfare effects of imposing
liquidity requirements on bank i. This difference can be written as

(E0[βωiεi]− E′[βωiεi]) +
n∑
j 6=i

(E0[βωjεj]− E′′[βωjεj])︸ ︷︷ ︸ − ∆ω [E[∆R] + µ]︸ ︷︷ ︸ .
benefit cost

Thus, the benefit of increasing the liquidity of bank i’s portfolio is composed of two terms.
The first term captures the increase in bank i’s resilience to liquidity shocks. The second
term captures the increase in the resilience of bank i’s neighbors (and the neighbors of those
neighbors, and so on), as bank i no longer propagates shocks when conditions deteriorate.
Importantly, bank i fails to internalize this term when choosing ωi. The cost of increasing
bank i’s liquidity is also composed of two terms. The first term captures the decrease in
the expected payoff of bank i, as illiquid assets yield a higher expected payoff. The second
term—which is also not considered by bank i—captures the decrease in the amount of external
financing available to productive projects, as a fraction ∆ω of projects are no longer financed
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as a result of i being force to hold a more liquid portfolio.
To ensure that regulation can potentially lead to a Pareto improvement, I assume that

there exists at least one bank, say bank l, so that the following inequality is satisfied

(E0[βωlεl]− E′[βωlεl]) +
n∑
j 6=l

(E0[βωjεj]− E′′[βωjεj]) > ∆ω [E[∆R] + µ] .

Namely, the increase in resilience of bank l, its neighbors, and the neighbors of those
neighbors, (E0[βωlεl]− E′[βωlεl]) +

∑n
j 6=l(E0[βωjεj]− E′′[βωjεj]), more than compensates the

dead-weight losses associated with regulating bank l, ∆ω [E[∆R] + µ]. Consequently, the
market equilibrium is not efficient, and regulatory interventions are potentially welfare-
improving.

C Welfare Effects of Regulation

Suppose the planner restricts all banks in R, with |R| = nx. Then(
1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R]) +

(
1

n

)∑
i/∈R

E[πi] + µ(1− ωL − x∆ω)

It is worth noting that(
1

n

)∑
i/∈R

πi =

{
(1− x)[RI − ωL∆R], with probability x(
1− x− m

n

)
[RI − ωL∆R], with probability (1− x)φxm with m = 1, · · · , n(1− x).

where φxm denotes the probability that m nonrestricted banks are affected by liquidity shocks,
once n× x banks have been restricted. Consequently,(

1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R])

+ (E[RI ]− ωLE[∆R])

x(1− x) + (1− x)2

n(1−x)∑
m=1

φxm


︸ ︷︷ ︸

−(1− x)

n

n(1−x)∑
m=1

mφxm︸ ︷︷ ︸


+ µ(1− ωL − x∆ω) = 1 = 〈φx〉

= x(E[RI ]− ωHE[∆R]) + (1− x)(E[RI ]− ωLE[∆R])

(
1− 〈φ

x〉
n

)
+ µ(1− ωL − x∆ω)

= (E[RI ]− ωLE[∆R]) + µ(1− ωL)− (1− x) (E[RI ]− ωLE[∆R])
〈φx〉
n
− x∆ω(E[∆R] + µ)

= η − ν(1− x)
〈φx〉
n
− x∆ω(E[∆R] + µ)

where 〈φx〉 denotes the expected number of nonrestricted banks affected by liquidity shocks
once n× x banks have been restricted.
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To pin down the optimal set of restricted banks, it is pivotal to determine probabilities
{φxm}

n(1−x)
m=1 . While computing these probabilities is challenging, the following two propositions

tell us that, within the model, these probabilities can be analytically determined.

PROPOSITION 1 (Probabilities φxIm ): Suppose all banks within an arbitrary set RI are

restricted, with |RI |
n

= xI. Let θxIk = θxIk (pαk ) denote the probability that a nonrestricted bank
shares k contagious exposures with other nonrestricted banks, with k = {0, · · · , n− |RI | − 1}.
Then

φxIm =


〈θxI 〉

(m−1)!

(
dm−2

dzm−2

[
g
(
z, {θxIk }k

)m]) ∣∣∣∣
z=0

, with m = {2, · · · , n− |RI |}

θxI0 , with m = 1,

where
(
dm−2

dzm−2

[
g
(
z, {θxIk }k

)m]) ∣∣∣∣
z=0

denotes the (m−2) derivative of g
(
z, {θxIk }k

)m
evaluated

at z = 0, with

g(z, {θxIk }k) =

n−|RI |−2∑
k=0

(
(k + 1)θxIk+1

〈θx〉

)
zk and 〈θxI〉 =

n−|RI |−1∑
k=0

kθxIk .

Proof. It is worth noting that {θrk}
n−r−1
k=0 represents the degree distribution of a randomly

generated network among (n− r) banks. Consequently, φrm is equivalent to the probability
that a randomly chosen nonrestricted bank belongs to a connected subgraph of size m.
Therefore, one can directly apply results in Newman (2007) and show that

φrm =


〈θr〉

(m−1)!

(
dm−2

dzm−2 [g (z, {θrk}k)
m]
) ∣∣∣∣

z=0

, with m = {2, · · · , n− r}

θr0 , with m = 1.

where 〈θr〉 denotes the average number of contagious exposures among nonrestricted banks

and
(
dm−2

dzm−2 [g (z, {θrk}k)
m]
) ∣∣∣∣

z=0

denotes the (m− 2) derivative of g (z, {θrk}k)
m evaluated at

z = 0, where g(z, {θrk}k) represents the excess degree distribution function of {θrk}k, defined
as

g(z, {θrk}k) ≡
n−r−2∑
k=0

(
(k + 1)θrk+1

〈θr〉

)
zk.

REMARK 1 (Numerical solutions): When solving the model numerically, the (m−2) derivative
of g (z, {θrk}k)

m evaluated at z = 0, can be approximated by

1

εm−2

[
m−2∑
j=0

(−1)m−2−j
(
m− 2

j

)
g (jε, {θrk}k)

m

]
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with ε > 0 sufficiently small.

Given probabilities {θxIk }k, Proposition 1 determines the likelihood of cascades of liquidity
shocks for any given size m. In doing so, it allows me to keep track of the entire size
distribution of cascades of liquidity shocks at t = 2. More importantly, it allows me to
characterize the distribution of total output.

The following proposition determines probabilities {θxIk }k as a function of the planner’s
information set and the network of contagious exposures, {pαk}k. Importantly, Proposition 2
highlights the importance of the selection of restricted banks on the distribution of probabilities
{θxIk }k, and, thus, on the susceptibility of the economy to contagion, after restrictions have
been implemented.

PROPOSITION 2 (Probabilities {θxIk (pαk )}k): Let 〈k〉 =
∑n−1

k=0 kp
α
k denote the expected

number of contagious exposures per bank when a crisis manifests and no bank has been
restricted. Suppose the planner restricts a fraction xI of banks, with I = {I0, I1}. Here I0

denotes the planner’s information set when no information is acquired while I1 denotes the
planner’s information set when bank-level information is acquired. Suppose that information
allows the planner to rank banks based on the future number of contagious exposures.

• If I = I0, then

θ
xI0
k =

{∑n−1
j=k p

α
j

(
j
k

)
(1− xI0)k xj−kI0 if k = {0, · · · , n(1− xI0)− 1}

0 otherwise.

• If I = I1, then

θ
xI1
k =

{∑kx
j=k p

α
j

(
j
k

)
(1− κx)kκj−kx if k = {0, · · · , kx}

0 otherwise,

where kx and κx satisfy

xI1 = 1−
kx∑
k=0

pαk , κx = 1− 1

〈k〉

(
kx∑
k=0

kpαk

)
.

Proof. There are two cases.

(a) I = I0. Here, banks are ex ante identical from the point of view of the planner, as she
is unable to identify whether some banks will exhibit more contagious exposures than
others. Hence, when solving her problem, the planner effectively acts as if she restricts
banks uniformly at random.
It is then illustrative to explore the distribution of contagious exposures among non-
restricted banks after imposing restrictions on a fraction r

n
. Consider a bank with k0

contagious exposures. After imposing restrictions, that bank may have k contagious
exposures, with k ≤ k0, as some of its neighbors may be restricted. Additionally,

the probability that a subset of k neighbors is not restricted is
(
1− r

n

)k
, whereas the

probability that the remaining neighbors are restricted is
(
r
n

)k0−k. Because there are

44



(
k0

k

)
different subsets of k neighbors, the distribution of contagious exposures among

nonrestricted banks is

θrk =

{∑n−1
j=k p

α
j

(
j
k

) (
1− r

n

)k ( r
n

)j−k
if k = {0, · · · , n− r − 1}

0 otherwise.
(A1)

In other words, θrk captures the probability that a nonrestricted bank shares k contagious
exposures with other nonrestricted banks, once r banks are restricted.

(b) I = I1. Here, the planner is able to identify which banks will exhibit the highest
number of contagious exposures. Then, she can use that information and restrict such
banks first to prevent contagion more efficiently than restricting at random, as such
intervention results in the removal of a larger fraction of contagious exposures.
Suppose the planner imposes restrictions on all banks with more than kx contagious
exposures, with kx ≥ s∗. Restricting those banks is equivalent to restricting a fraction
x of banks with the highest number of contagious exposures. The relationship between
x and kx is given by

x =
∑
kx<k

pαk =⇒ x = 1−
kx∑
k=0

pαk . (A2)

Implementing the above policy results in an approximate random removal of contagious
exposures from nonrestricted banks, as contagious exposures of restricted banks no
longer propagate liquidity shocks. The probability κx that a contagious exposure leads
to a restricted bank equals

κx =
∑
kx<k

kpαk∑
k kp

α
k

=
1

〈k〉

(∑
kx<k

kpαk

)
=⇒ κx = 1− 1

〈k〉

(
kx∑
k=0

kpαk

)
. (A3)

It is important to note that the network of contagious exposures that remains after
implementing the above policy is equivalent to a network in which the maximum
number of contagious exposures per bank is kx and a fraction κx of banks is restricted
uniformly at random. It follows from the previous analysis that the probability that
a nonrestricted bank has k contagious exposures once a fraction x of banks has been
restricted, ϕxk, is given by

ϕxk =

{∑kx
j=k p

α
j

(
j
k

)
(1− κx)kκj−kx if k = {0, · · · , kx}

0 otherwise.
(A4)

Proposition 2 illustrates the importance of bank-level information for the selection of
restricted banks. When I = I0, the planner cannot identify whether some banks are more
prone to propagate liquidity shocks than others, and, thus, she effectively acts as if she
restricts banks uniformly at random. However, when I = I1, the planner is able to identify
the most contagious banks. She then restricts such banks first to prevent contagion more
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efficiently.
The computation of probabilities {φxIm }

n(1−xI)
m=1 in propositions 1 and 2 requires calculating

sums and derivatives, which can always be done numerically for any finite number of banks.
However, for certain network structures, it is possible to derive a closed-form expression for
these probabilities, as example 1 shows.

EXAMPLE 1 (Poisson Distribution): Suppose {pαk}
n−1
k=0 follows a Poisson distribution, that

is, pαk = e−α α
k

k!
, and a fraction xI of banks is restricted.

• If I = I0, then

φ
xI0
m =

e−(1−xI0)αm ((1− xI0)αm)m−1

m!
, m = {1, · · · , n(1− xI0)} .

• If I = I1, then κx = 1− 1
α

(
e−α

∑kx
k=0

kαk

k!

)
, xI1 = e−α

∑n−1
k=kx

αk

k!
, and

φ
xI1
m =

e−(1−κx)αm ((1− κx)αm)m−1

m!
, m = {1, · · · , dn (1− xI1)e} .

Proof. There are two cases.

(a) I = I0. When {pαk}
n−1
k=0 follows a Poisson distribution with parameter α, {θrk}

n−r−1
k=0

approximately follows a Poisson distribution of parameter
(
1− r

n

)
α. As a result,

g(z, {θrk}
n−r−1
k=0 ) = e(1− r

n)α(z−1),

and, thus,

φrm =
e−(1− r

n)αm ((1− r
n

)
αm
)m−1

m!
, m = {1, · · · , n− r} .

(b) I = I1. Here, pαk = e−α α
k

k!
, with k = {0, n− 1}. The result follows directly from (a)

after substituting pαk into

κx =
∑
kx<k

kpαk∑
k kp

α
k

=
1

〈k〉

(∑
kx<k

kpαk

)
=⇒ κx = 1− 1

〈k〉

(
kx∑
k=0

kpαk

)
.

D Optimal Interventions

PROPOSITION 3 (Existence of the maximum): Suppose the planner only considers inter-

ventions in which 〈φx〉
n

is a lower semi-continuous function of x—that is,

〈φx0〉 ≤ lim inf
x→x0

〈φx〉, with
1

n
≤ x0 ≤ 1.
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Then, there exists a point 1
n
≤ x∗ ≤ 1 that solves

max
x

(
1

n

)
E
[
TO
∣∣x]− κ× 1κ

s.t.
1

n
≤ x ≤ 1,

Proof. Note that
(

1
n

)
E[TO|x] is bounded for all 0 ≤ x ≤ 1, as 0 ≤ 〈φx〉

n
≤ (1 − x). If

g(x) ≡ 〈φx〉
n

is a lower semi-continuous function of x, then the image points near x under g(·)
never fall below g(x) too much. Importantly, these images points can still be vastly greater
than g(x).

Because g(x) is lower semi-continuous,
(

1
n

)
E[TO|x] is an upper semi-continuous function

of x. Baire’s generalization of the Weierstrass’ theorem ensures that
(

1
n

)
E[TO|x] always

attains its maximum over a compact set; see (Ok, 2007, Chapter 4).

Proposition 3 ensures there exists a maximum. The following proposition ensures the
solution is interior.

PROPOSITION 4 (Interior Solution): Let z = (1−α)x0 +αx1 ∈
(

1
n
, 1
)
, with 1

n
≤ x0 < x1 ≤ 1

and α ∈ (0, 1). If

(1− α)(1− x0)〈φx0〉+ α(1− x1)〈φx1〉
(1− α)(1− x0) + α(1− x1)

> 〈φz〉

for all z ∈
(

1
n
, 1
)
, then the optimal intervention, x∗, gets arbitrarily close to the solution of

the following equation

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

〈φx〉
n

∣∣∣∣
x=x∗

)
= ∆ω(E[∆R] + µ)

as n gets large.

Proof. It is worth noting that(
1

n

)
E[TO|z] = η − (1− z)

(ν
n

)
〈φz〉 − z∆ω(E[∆R] + µ)

= (1− α)
(
η − (1− x0)

(ν
n

)
〈φz〉 − x0∆ω(E[∆R] + µ)

)
+ α

(
η − (1− x1)

(ν
n

)
〈φz〉 − x1∆ω(E[∆R] + µ)

)
= (1− α)

(
η − (1− x0)

(ν
n

)
〈φx0〉 − x0∆ω(E[∆R] + µ)

)
+ α

(
η − (1− x1)

(ν
n

)
〈φx1〉 − x1∆ω(E[∆R] + µ)

)
+

(ν
n

)
((1− α)(1− x0)〈φx0〉+ α(1− x1)〈φx1〉 − [(1− α)x0 + α(1− x1)]〈φz〉)

>

(
1

n

)
((1− α)E[TO|x0] + αE[TO|x1])
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where the last inequality holds if and only if

(1− α)(1− x0)〈φx0〉+ α(1− x1)〈φx1〉
(1− α)(1− x0) + α(1− x1)

> 〈φz〉.

As a result,
(

1
n

)
E[TO] is a strictly concave function of x, and thus, x∗ approximately satisfies

∂

∂x

((
1

n

)
E[TO]

) ∣∣∣∣
x=x∗

= 0 (A5)

as n grows large.13 Equation (A5) can be rewritten as

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
= ∆ω(E[∆R] + µ)

The next proposition characterizes the optimal fraction of restricted banks if the solution
of the planner’s problem is not interior.

PROPOSITION 5 (Selection of Restricted Banks): Suppose the planner has decided whether
to acquire bank-level information. Define

∆1/n≡ η − ν
(

1− 1

n

)
〈φ1/n〉
n
− ∆ω

n
(E[∆R] + µ),

∆1 ≡ η −∆ω(E[∆R] + µ),

∆I ≡ max
x ∈ (1/n,1)

{
η − ν (1− x)

〈φx〉
n
− x∆ω(E[∆R] + µ)

}
,

The optimal fraction of restricted banks, x∗I, is given by

x∗I =


1/n if ∆1/n > max {∆1,∆I}
1 if ∆1 > max

{
∆1/n,∆I

}
x∗I if ∆I > max

{
∆1,∆1/n

}
,

where x∗I ∈ (1/n, 1) solves

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
= ∆ω(E[∆R] + µ)

Proof. If ∆1/n > max {∆1,∆I}, then x∗I = 1/n as expected total output is maximized with
almost no regulation. If ∆I > max

{
∆1/n,∆1

}
, then the planner’s problem has an interior

solution—that is, x∗I ∈ (1/n, 1) . In this case, x∗I satisfies the first order condition of the

13The fraction of restricted banks must be a rational number because n is a natural number. However,
the solution of equation (A5) could be an irrational number. Nonetheless, the optimal intervention x∗ gets
arbitrarily close to the solution of equation (A5) as n grows large.
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planner’s problem,

ν

(
〈φx∗〉
n
− (1− x∗) ∂

∂x

(
〈φx〉
n

) ∣∣∣∣
x=x∗

)
= ∆ω(E[∆R] + µ)

Finally, if ∆1 > max
{

∆1/n,∆I
}

, then x∗I = 1, as expected total output is maximized by
restricting as many banks as possible.

E Optimal Interventions in Large Economies

When designing optimal interventions, it is pivotal to understand under which conditions
cascades of liquidity shocks are non-negligible. As I focus on a system of infinite size, any
cascade of finite size becomes negligible as the economy grows large. The following section
provides a detailed definition and analysis of cascades of liquidity shocks in large economies.

E.1 Large Cascades of Liquidity Shocks

The Rise of Large Cascades of Liquidity Shocks. To fix notation, let Gn denote
a network of contagious exposures among n banks and {Gn}n∈N denote a sequence of such
networks, indexed by the number of banks n. Let S (Gn) denote the largest subset of connected
banks in Gn, and let |S (Gn) | denote the cardinality of such a set. To determine the condition
under which large cascades of liquidity shocks arise, one can use the following idea, similar to
the one proposed by Molloy and Reed (1995) and Cohen et al. (2000). Let n0 denote a large
natural number. Suppose there are two banks belonging to each element in the subsequence
{S (Gn)}n≥n0

—say, i and j, which are directly connected. If bank i (or j) is also directly
connected to another bank—and loops of contagious exposures can be ignored—then the size
of the largest sequence of connected banks is proportional to the size of the system—i.e.,
limn→∞

E|S(Gn)|
n

> 0—and, thus, large cascades of liquidity shocks occur; otherwise, the largest

sequence of connected banks is fragmented, and, thus, limn→∞
E|S(Gn)|

n
= 0.14 Therefore, the

condition that determines the emergence of large cascades of liquidity shocks is given by

lim
n→∞

En [ki|i↔ j] = lim
n→∞

∑
ki

kiPn [ki|i↔ j] ≤ 2, (A6)

where Pn [ki|i↔ j] denotes the probability that bank i has ki contagious exposures, given
that i and j are connected via one contagious exposure. It follows from Bayes’ rule that

Pn [ki|i↔ j] =
Pn [i↔ j|ki]Pn [ki]

Pn [i↔ j]
.

Because contagious exposures are randomly determined,

Pn [i↔ j] =
En[k]

n− 1
and Pn [i↔ j|ki] =

ki
n− 1

.

14As n grows large, loops of contagious exposures can be ignored for En(k
2)

En(k)
< 2. For more details,

see Cohen et al. (2000).
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Thus, equation (A6) is equivalent to

lim
n→∞

En[k2]

En[k]
≤ 2, (A7)

It is important to note that the derivation of equation (A7) does not rely on the functional
form of Pn[k] and applies to any distribution of links in which banks are randomly connected
to each other. Equation (A7) establishes that if, in the limit, there is enough variation in the
number of contagious exposures among banks, liquidity shocks affecting one bank almost
surely affects a non-negligible fraction of them. High variation in the number of contagious
exposures makes the economy more prone to contagion, as banks with a large number of
contagious exposures can effectively reach a large fraction of banks.

Preventing large cascades of liquidity shocks. Because restricting a bank not
only precludes that bank from facing liquidity shocks, but also precludes that bank from
propagating liquidity shocks, restricting a sufficiently large fraction of banks can potentially
prevent the emergence of large cascades of liquidity shocks. When x exceeds a certain threshold,
x∗, large cascades of liquidity shocks can be prevented, as the network of contagious exposures
disintegrates into smaller and disconnected parts, keeping liquidity shocks locally confined.
Importantly, the value of x∗ critically depends on how restricted bank are selected, as the
ratio in (A7) varies across policies.

First, suppose a fraction x of bank are restricted uniformly at random. After imposing
restrictions, a bank with k0 contagious exposures may only have k contagious exposures,
with k ≤ k0, as some of its neighbors may be restricted. In addition, the probability that a
subset of k neighbors is not restricted is (1− x)k, whereas the probability that the remaining
neighbors are restricted is xk0−k. Because there are

(
k0

k

)
different subsets of k neighbors, the

distribution of contagious exposures among nonrestricted banks is

P′n (k) =
∑
k≥k0

pαk0

(
k0

k

)
(1− x)kxk0−k,

and, thus,

E′n[k] = 〈k〉(1− x) and E′n[k2] = 〈k2〉(1− x)2 + 〈k〉x(1− x), (A8)

where expectations with superscript prime denote expectations after implementing restrictions.
After banks are restricted, large cascades of liquidity shocks arise if and only if

lim
n→∞

E′n[k2]

E′n[k]
≤ 2. (A9)

It then directly follows from substituting equation (A8) into equation (A9) that x∗ must
satisfy

x∗ = 1− 〈k〉
〈k2〉 − 〈k〉

.
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Now, suppose banks with the highest number of contagious exposures are restricted. The
following computations closely follow the ideas in Cohen et al. (2001). Restricting banks with
more than K(x∗) contagious exposures is approximately equivalent to restricting a fraction
x∗ of banks, where x∗ satisfies

x∗ = 1−
K(x∗)∑
k=0

pαk .

Take a bank with k contagious exposures. The fraction of contagious exposures attached to
all banks with k contagious exposures equals

kpαk
〈k〉 . As a consequence, the fraction of contagious

exposures attached to restricted banks is

s(x∗) =
1

〈k〉

 n−1∑
k=K(x∗)+1

kpαk

 = 1− 1

〈k〉

K(x∗)∑
k=0

kpαk


Because imposing restrictions on a set of banks can be represented by the removal of such

banks and their exposures, the optimal policy x∗ must satisfy

s(x∗) = x∗ = 1− 〈k(x∗)〉
〈k(x∗)2〉 − 〈k(x∗)〉

.

Therefore,

1− s(x∗) =
〈k(x∗)〉

〈k(x∗)2〉 − 〈k(x∗)〉

1

〈k〉

K(x∗)∑
k=0

kpαk

 =

∑K(x∗)
k=0 kpαk∑K(x∗)

k=0 k2pαk −
∑K(x∗)

k=0 kpαk

1

〈k〉

K(x∗)∑
k=0

kpαk

 =

∑K(x∗)
k=0 kpαk∑K(x∗)

k=0 k(k − 1)pαk

〈k〉 =

K(x∗)∑
k=0

k(k − 1)pαk . (A10)

which determines the condition under which large cascades of liquidity shocks emerge.
Preventing large cascades in Poisson networks. If the planner cannot identify whether

some banks will exhibit more contagious exposures than others, then

x∗ = 1−
(

1

α

)
.

However, if the planner is able to identify which banks will exhibit the highest number of
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contagious exposures, then

x∗ = 1− e−α
K(x∗)∑

k=0

αk

k!

 , where K(x∗) satisfies α = e−α

K(x∗)∑
k=2

αk

(k − 2)!

 .

Derivation. The derivation of the above equations uses the following arguments. For
a Poisson distribution with parameter α, the first two moments are given by 〈k〉 = α and
〈k2〉 = α2 + α. Thus, when restricting at random, the optimal policy is given by x∗ = 1− 1

α
.

Provided that pαk = e−α α
k

k!
, a direct application of condition (A10) yields

x∗ = 1− e−α
K(x∗)∑

k=0

αk

k!

 , where K(x∗) satisfies α = e−α

K(x∗)∑
k=2

αk

(k − 2)!

 .

Preventing large cascades in Power-law networks. If the planner cannot identify whether
some banks will exhibit more contagious exposures than others, then

x∗ =

{
1−

((
2−α
3−α

)
k0 − 1

)−1
if α > 3

1 if 1 ≤ α ≤ 3.

However, if the planner is able to identify which banks will exhibit the highest number of
contagious exposures, then

x∗ = 1−
K(x∗)∑
k=0

k−α.

where K(x∗) satisfies(
K(x∗)

k0

)2−α

− 2 =

(
2− α
3− α

)
k0

((
K(x∗)

k0

)3−α

− 1

)
.

Derivation. The derivation of the above equations uses the following arguments. A
continuous Power-law distribution with parameter α, minimal value k0, and maximum value
K, satisfies

〈k〉 = kα−1
0 K2−α

(
α− 1

α− 2

)
and 〈k2〉 = kα−1

0 K3−α
(
α− 1

α− 3

)
if 1 < α < 2

〈k〉 = k0

(
α− 1

α− 2

)
and 〈k2〉 = kα−1

0 K3−α
(
α− 1

α− 3

)
if 2 < α < 3

〈k〉 = k0

(
α− 1

α− 2

)
and 〈k2〉 = k2

0

(
α− 1

α− 3

)
if 3 < α
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As a consequence, when K grows large,

〈k〉 = k0

(
α− 1

α− 2

)
if α > 2 and 〈k2〉 = k2

0

(
α− 1

α− 2

)
if α > 3

and they diverge in all other cases.
Now, consider the case when the planner cannot differentiate among banks before im-

plementing her policy. Using the above equations and the condition that determines the
emergence of large cascades of liquidity shocks, it is easy to show that

x∗ =

{
1−

((
2−α
3−α

)
k0 − 1

)−1
if α > 3

1 if 1 ≤ α ≤ 3.

as n grows large.
When the planner can identify banks with the highest number of contagious exposures,

the following equation

kx∑
k=k0

k(k − 1)pk = 〈k〉

determines the emergence of large cascades of liquidity shocks. Because the network follows
a Power-law distribution with parameter α, the above equation is equivalent to

(α− 1)kα−1
0

(
k3−α
x − k3−α

0

3− α
− k2−α

x − k2−α
0

2− α

)
= k0

(
α− 1

α− 2

)
which is equivalent to(

k0

3− α

)((
kx
k0

)3−α

− 1

)
−
(

1

2− α

)((
kx
k0

)2−α

− 2

)
= 0,

and, thus, kx can be derived from α.

E.2 Interventions in Large Economies

Suppose the planner restricts all banks in R, with |R| = nx. Then(
1

n

)
E[TO|x] = x(E[RI ]− ωHE[∆R]) +

(
1

n

)∑
i/∈R

E[πi] + µ(1− ωL − x∆ω)

For a given information set, let x∗ denote the smallest fraction of banks that must be restricted
to prevent the emergence of large cascades of liquidity shocks. As the economy grows large,
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it is worth noting that

lim
n→∞

(
1

n

)∑
i/∈R

πi =


(1− x)[RI − ωL∆R], with probability x if x < x∗

0, with probability (1− x) if x < x∗

(1− x)[RI − ωL∆R], with probability 1 if x ≥ x∗.

Let Rc denote the complement set of R. The above expression follows from the fact that
if x ≥ x∗, then the size of the largest connected component in Rc is almost surely of order
ρ2 log(n), where ρ is the highest degree within Rc. However, if x < x∗ the size of the largest
connected component is of order n—and the size of the second largest connected component
is of order log(n); for more details, see Molloy and Reed (1998). As a result,

lim
n→∞

(
1

n

)
E[TO|x] =

{
x(E[RI ]− ωHE[∆R]) + (1− x)(E[RI ]− ωLE[∆R]) + µ(1− ωL − x∆ω), if x ≥ x∗

x(E[RI ]− ωHE[∆R]) + x(1− x)(E[RI ]− ωLE[∆R]) + µ(1− ωL − x∆ω), if x < x∗.

Define ∆x = (x∗ − x). To determine the optimal policy, it is worth noting that H(x) ≡
limn→∞

(
1
n

)
(E[TO|x∗]− E[TO|x]) equals

H(x) =

{
−∆x∆ω(E[∆R] + µ), if x ≥ x∗

(1− x)2(E[RI ]− ωLE[∆R])−∆ω(E[∆R] + µ)∆x, if x < x∗.

If
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
≥ x∗, then H(x) ≥ 0 , ∀ x in [0, x∗]. Thus, x∗ generates higher expected

total output than any other fraction 0 ≤ x ≤ 1, as H(x) is strictly positive when x > x∗.

However, if
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
< x∗, then H(0) < 0. Consequently, H(x) < 0, when

0 ≤ x < x∗, as H(x) is an increasing function of x when x < x∗ and H(x∗) = 0. Therefore,
x = 0 maximizes expected total output. Then, as n grows large, the optimal policy converges
to the following intervention:

xoptimal =

{
x∗, if

(
E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
≥ x∗

0, otherwise.

Importantly, the value of x∗ does not depend on the values of E[RI ], ωL, E[∆R], µ, or
∆ω. However, x∗ does depend on the distribution {pαk}k=1 and how banks are targeted. In

particular, if bank-level information is not acquired, then x∗ = 1 − 〈k〉
〈k2〉−〈k〉 . If bank-level

information is acquired, then x∗ = 1 −
∑K(x∗)

k=kmin
pαk—where K(x∗) is the solution of the

following equation 〈k〉 =
∑K(x∗)

k=kmin
k(k − 1)pαk and kmin is the smallest number of links that a

bank might have.
Let xt and xr denote the smallest fraction of banks that must be restricted to prevent

large cascades of liquidity shocks when targeting with and without bank-level information,
respectively. Because xt ≤ xr, then ∆x ≥ 0.

EXAMPLE 2 (Poisson Networks): If the network exhibits a Poisson degree distribution of
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parameter α, then

xr = 1− 1

α

xt = xr −
e−ααKα

Kα!

where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
. Thus, ∆x = e−ααKα

Kα!
.

Proof. If bank-level information is not acquired, then xr = 1− 〈k〉
〈k2〉−〈k〉 . The result follows

directly from the fact a Poisson network with parameter α yields 〈k〉 = α and 〈k2〉 = α2 + α.
If bank-level information is acquired, then xt = 1−

∑K∗

k=kmin
pαk =

∑∞
k=K∗+1 p

α
k—where K∗ is

the solution of the equation 〈k〉 =
∑K∗

k=kmin
k(k−1)pαk , with pαk = e−ααk

k!
. It is worth noting that

the fraction of exposures (links) attached to restricted banks, p, equals p = 1
〈k〉
∑∞

k=K∗+1 kp
α
k .

Importantly, if p = xr, then large cascades of liquidity shocks are prevented. Because

p = 1
〈k〉
∑∞

k=K∗+1 kp
α
k =

∑∞
k=K∗

e−ααk

k!
= (

∑∞
k=K∗+1

e−ααk

k!
) + e−ααK

∗

K∗!
= xt + e−ααK

∗

K∗!
, then

xt = xr − e−ααK
∗

K∗!
.

EXAMPLE 3 (Power-law Networks): If the network exhibits a Power-law degree distribution
of parameter α and kmin = 1, then

xr =

{
1−

((
2−α
3−α

)
− 1
)−1

if α > 3

1 if 1 ≤ α ≤ 3.

xt = K(1−α)
α

where Kα satisfies

K2−α
α − 2 =

(
2− α
3− α

)(
K3−α
α − 1

)
.

As a result,

∆x =

{
1−

((
2−α
3−α

)
− 1
)−1 −K(1−α)

α if α > 3

1−K(1−α)
α if 1 ≤ α ≤ 3.

To determine the (endogenous) value of bank-level information and optimal intervention,

it is illustrative to analyze how
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
compares to xt and xr. First, suppose

xr ≤
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
. Then, limn→∞

(
1
n

)
(E[TO|xt]− E[TO|xr]) = ∆x∆ω(E[∆R]+µ), which

represents the value of bank-level information. Consequently, if ∆x∆ω(E[∆R] + µ) ≥ κ, then
acquiring bank-level information is optimal and xoptimal = xt. Otherwise, it is optimal not

to acquire information and xoptimal = xr. Second, suppose xt ≤
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
< xr. Then

limn→∞
(

1
n

)
(E[TO|xt]− E[TO|x = 0]) = (E[RI ]− ωLE[∆R])− xt∆ω(E[∆R] + µ) represents

the value of bank-level information. Thus, if (E[RI ]− ωLE[∆R])− xt∆ω(E[∆R] + µ) ≥ κ,

55



then acquiring bank-level information is optimal and xoptimal = xt. Otherwise, acquiring

information is suboptimal and xoptimal = 0. Finally, suppose
(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
< xt. Then,

xoptimal = 0 no matter what, and, thus, the value of information is 0. As a result, acquiring
bank-level information is sub-optimal.

As a consequence, the optimal intervention is given by

xoptimal =



xr, if xr ≤ min
{(

E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
, xt + κ

∆ω(E[∆R]+µ)

}
xt, if κ

∆ω(E[∆R]+µ)
+ xt ≤ xr ≤

(
E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
or

xt ≤
(

E[RI ]−ωLE[∆R]−κ
∆ω(E[∆R]+µ)

)
and

(
E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
< xr

0, otherwise,

(A11)

which can be rewritten as

xoptimal =


xr, if ∆ω(E[∆R] + µ) ≤ min

{
ν
xr
, κ

∆x

}
xt, if min

{
ν
xr
, κ

∆x

}
< ∆ω(E[∆R] + µ) ≤ ν−κ

xt

0, otherwise.

(A12)

The endogenous value of information is

SVI =


∆x∆ω(E[∆R] + µ), if xr ≤

(
E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
(E[RI ]− ωLE[∆R])− xt∆ω(E[∆R] + µ), if xt ≤

(
E[RI ]−ωLE[∆R]
∆ω(E[∆R]+µ)

)
≤ xr

0, otherwise,

(A13)

which is equivalent to

SVI =


∆x∆ω(E[∆R] + µ), if ∆ω(E[∆R] + µ) ≤ ν

xr

ν − xt∆ω(E[∆R] + µ), if ν
xr
< ∆ω(E[∆R] + µ) ≤ ν

xt

0, otherwise.

(A14)

It directly follows from the above analysis

EXAMPLE 4 (Optimal Intervention and Value of Information with Poisson Networks): If
the network exhibits a Poisson degree distribution of parameter α, then

xoptimal =


(
1− 1

α

)
, if ∆ω(E[∆R] + µ) ≤ min

{
να
α−1

, κKα!
e−ααKα

}(
1− 1

α

)
−
(
e−ααKα

Kα!

)
, if min

{
να
α−1

, κKα!
e−ααKα

}
< ∆ω(E[∆R] + µ) ≤ ν−κ

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.
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where Kα solves 1
α

=
∑(Kα−2)

j=0
e−ααj

j!
. The endogenous value of information is

SVI =


(
e−ααKα

Kα!

)
∆ω(E[∆R] + µ), if ∆ω(E[∆R] + µ) ≤ να

α−1

ν −
((

1− 1
α

)
− e−ααKα

Kα!

)
∆ω(E[∆R] + µ), if να

α−1
< ∆ω(E[∆R] + µ) ≤ ν

(1− 1
α)−

(
e−ααKα
Kα!

)
0, otherwise.

F Optimal Interventions under Network Uncertainty

PROPOSITION 6 (Existence of the maximum): Given A and f , suppose the planner only

considers interventions in which 〈φ
x
ᾱ〉
n

and
∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α) are lower semi-continuous

functions of x—that is,

〈φx′ᾱ 〉 ≤ lim inf
x→x′

〈φxᾱ〉 and

∫
α∈A

(
〈φx′α 〉
n
− 〈φ

x′
ᾱ 〉
n

)2

df(α) ≤ lim inf
x→x′

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α).

with 1
n
≤ x′ ≤ 1. Then, there exists a point 1

n
≤ x∗ ≤ 1 that solves

max
x

Eᾱ
(

1

n
TOα

∣∣x)− (θ
2

)
× Vf

(
1

n
Eα
(
TOα

∣∣x))− κ× 1κ

s.t.
1

n
≤ |x| ≤ 1,

Proof. If 〈φ
x
ᾱ〉
n

and
∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α) are lower semi-continuous functions of x, then the

objective function of the aforementioned optimization problem is an upper semi-continuous
function of x. Baire’s generalization of the Weierstrass’ theorem ensures that such an objective
function always attains its maximum over a compact set; see (Ok, 2007, Chapter 4).

PROPOSITION 7 (Interior Solution): Given A and f , suppose

Eᾱ
(

1

n
TOα

∣∣x)− (θ
2

)
× Vf

(
1

n
Eα
(
TOα

∣∣x))
is a strictly concave function of x within the interval

[
1
n
, 1
]
. Then, the optimal intervention,

x∗, gets arbitrarily close to the solution of the equation

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
= ∆ω(E[∆R] + µ)

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa

.

as n get large.

57



Proof. If

Eᾱ
(

1

n
TOα

∣∣x)− (θ
2

)
× Vf

(
1

n
Eα
(
TOα

∣∣x))
is a strictly concave function of x within the interval

[
1
n
, 1
]
, then the solution of the opti-

mization problem is interior. Notably,

Eᾱ
(

1

n
TOα

∣∣x) = η − (1− x)ν
〈φxᾱ〉
n
− x∆ω(E(∆R) + µ)

Vf

(
1

n
Eα
(
TOα

∣∣x)) = (1− x)2ν2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α).

As a result, the first order condition of the planner’s problem can be rewritten as

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
= ∆ω(E[∆R] + µ)

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa

.

Because the fraction of restricted banks must be a rational number, x∗ gets arbitrarily close
to the solution of the above equation as n gets large.

PROPOSITION 8 (Selection of Restricted Banks): Given A and f , suppose the planner has
decided whether to acquire bank-level information. Define

∆1/n≡ η − ν
(

1− 1

n

)
〈φ1/n

ᾱ 〉
n
− ∆ω

n
(E[∆R] + µ)− θ

2
ν2

(
1− 1

n

)2 ∫
α∈A

(
〈φ1/n

α 〉
n
− 〈φ

1/n
ᾱ 〉
n

)2

df(α),

∆1 ≡ η −∆ω(E[∆R] + µ),

∆I ≡ max
x ∈ (1/n,1)

{
η − ν (1− x)

〈φxᾱ〉
n
− x∆ω(E[∆R] + µ)− θ

2
ν2(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

}
,

The optimal fraction of restricted banks, x∗I, is given by

x∗I =


1/n if ∆1/n > max {∆1,∆I}
1 if ∆1 > max

{
∆1/n,∆I

}
x∗I if ∆I > max

{
∆1,∆1/n

}
,
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where x∗I ∈ (1/n, 1) gets arbitrarily close to the solution of the following equation, xa,

ν

(
〈φxaᾱ 〉
n
− (1− xa) ∂

∂x

(
〈φxᾱ〉
n

) ∣∣∣∣
x=xa

)
= ∆ω(E[∆R] + µ)

+

(
θ

2

)
ν2 ∂

∂x

(
(1− x)2

∫
α∈A

(
〈φxα〉
n
− 〈φ

x
ᾱ〉
n

)2

df(α)

)∣∣∣∣∣
x=xa

.

as n grows large.

Proof. If ∆1/n > max {∆1,∆I}, then x∗I = 1/n, as expected total output is maximized
with almost no regulation. If ∆I > max

{
∆1/n,∆1

}
, then the planner’s problem has an

interior solution—that is, x∗I ∈ (1/n, 1) . In this case, as n grows large, x∗I gets arbitrarily
close to the solution of the first order condition of the planner’s problem. Finally, if
∆1 > max

{
∆1/n,∆I

}
, then x∗I = 1, as expected total output is maximized by restricting as

many banks as possible.
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Appendix B Figures

This section contains figures mentioned in the body of the paper.
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(a) 〈φx〉 as a function of x. Random targeting.
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(b) 〈φx〉 as a function of x. Targeting based on banks’ future number of contagious
exposures.

Figure 2. {pαk}k follows a Poisson distribution.
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(a) {φxm}m if α = 1, x ∈ {0.1, 0.2, 0.3}, and n = 100.
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(b) {φxm}m if α = 2, x ∈ {0.1, 0.2, 0.3}, and n = 100.
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(c) {φxm}m if α = 2, x ∈ {0.5, 0.6, 0.7}, and n = 100.

Figure 3. {pαk}k follows a Poisson distribution and restricted banks are selected at random
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Figure 4. Preventing large cascades of distress
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Figure 5. Optimal intervention as a function of α in Poisson networks.
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(b) Social Value of Information

Figure 6. Optimal intervention as a function of α in Power-law networks.
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(b) Social Value of Information

Figure 7. Optimal intervention as a function of σ2 in Poisson networks with model
uncertainty.
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Figure 8. Optimal intervention as a function of σ2 in Power-law networks with model
uncertainty.
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