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1 Introduction

Economic uncertainty, or market variance, plays a key role in finance. Uncertainty

can affect asset returns if economic agents prefer an early resolution of uncertainty

(Bansal and Yaron, 2005). Uncertainty also affects corporate investment and hiring

(Bloom, 2009) and thus, can have predictive information about the business cycle

(Bekaert and Hoerova, 2014). Perceptions of uncertainty often manifest in derivative

prices. In particular, stock index options have been widely used to infer the market’s

expectation of future uncertainty.

In this paper, I introduce an alternative approach to measuring the market’s

expectation of uncertainty using a new class of derivatives: VIX futures and options

(collectively, VIX derivatives). VIX derivatives reference the VIX index, which is

in turn derived from SPX option prices. As a result, the VIX derivatives-implied

variance (VIV) should be consistent with the SPX options-implied variance (SIV) if

the two markets are well integrated. However, I find significant gaps between the

VIV and SIV, especially in the wake of the Lehman Brothers’ bankruptcy. The gaps

(henceforth referred to as variance disparity) suggest that some trading impediments

may have deterred the integration of the two markets. That noted, the goal of this

paper is to understand the roles played by illiquidity and asymmetric information

in the variance market segmentation and draw implications of the segmentation for

practitioners and policymakers.1

My analysis indicates that funding liquidity, as measured by the London inter-

bank offered rate (LIBOR)–overnight index swap (OIS) spread, is a key driver of

variance disparity.2 This result is associated with the margins required in options

and futures trading because margins can impair market makers’ ability to provide

liquidity in derivatives markets and arbitrageurs’ ability to exploit price differentials

between the two markets. Importantly, margins are subject to daily marking-to-

market, so market makers and arbitrageurs may shy away from the markets when

concerned about a margin call and an unwanted liquidation of their positions at a

loss. Overall, the importance of funding liquidity can be explained by the Gârleanu

1 In her presidential address, O’Hara (2003) points to liquidity and asymmetric information as
two essential frictions that should be incorporated into asset pricing models.

2 Such an interest rate spread has been widely adopted as a proxy for funding liquidity in empirical
research (Hameed, Kang, and Viswanathan, 2010; Boyson, Stahel, and Stulz, 2010; and Karolyi, Lee,
and Van Dijk, 2012).
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and Pedersen (2011) model which shows that when heterogeneous agents face margin

constraints, the price gaps between two identical assets should depend on the shadow

cost of capital.

My analysis also suggests that market illiquidity, as measured by bid–ask spreads,

is another significant source of variance disparity. This result is consistent with em-

pirical evidence that market illiquidity deters convergence between two equivalent

asset prices (see, for example, Roll, Schwartz, and Subrahmanyam, 2007; Chordia,

Roll, and Subrahmanyam, 2008; and Deville and Riva, 2007). Related to this find-

ing, Oehmke (2011) provides a theoretical model which shows that market illiquidity

results in gradual arbitrage.

It should be emphasized that funding and market liquidity proxies are separately

important for explaining variance disparity. Funding liquidity and market liquidity

can mutually reinforce each other (Brunnermeier and Pedersen, 2009). Moreover,

Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) and Hameed,

Kang, and Viswanathan (2010) have provided empirical evidence that the capital

constraint faced by market makers is a key determinant of bid–ask spreads in the

stock market. Given the endogenous relation between the two liquidity factors, it

is possible that one type of liquidity might serve as a mediating channel through

which the other type of liquidity drives variance disparity. However, a multivariate

regression analysis indicates that both liquidity factors have a direct effect on variance

disparity, even when the Lehman Brothers crisis period is excluded.

In addition to liquidity factors, I provide evidence that informed trading about

future variance contributes to variance disparity. The VIX derivatives market pro-

vides a new way for informed traders to capitalize on their expectation of future

variance. Importantly, the VIX derivatives market is subject to different margins and

liquidity than the SPX options market; therefore, informed traders may prefer one

market to the other. Several variance discovery analyses, including those by Gonzalo

and Granger (1995) and Hasbrouck (1995), suggest that VIX derivatives are far more

informative about future variance than SPX options. This result suggests that in-

formed trading may cause variance disparity as information is incorporated into VIX

derivative prices before SPX option prices.

To confirm the effect of informed trading on variance disparity, I use the volume

ratio of VIX futures to SPX options (F/O) as a measure of informed trading with
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respect to future variance. Option writers are required to post far greater margins

than option buyers.3 For example, in my sample period, margins on option sales are,

on average, one order of magnitude larger than those on option purchases. Because

of such asymmetric option margins, when expecting a lower future variance, informed

traders may find it easier to sell VIX futures instead of delta-neutral SPX options.

Therefore, I conjecture that a higher F/O may be associated with a lower future

variance. Consistent with this expectation, I demonstrate that as the volume ratio

rises, VIX derivatives (which are more informative) tend to imply lower levels of

variance than SPX options (which are less informative), resulting in further deviations

between the VIV and SIV.

This paper contributes to the finance literature in several ways. First, it is related

to the extensive literature studying no-arbitrage violations in various financial mar-

kets, including papers on interest rate parity violations (Coffey, Hrung, and Sarkar,

2009; Baba and Packer, 2009; Fong, Valente, and Fung, 2010; and Mancini Griffoli

and Ranaldo, 2012); American Depository Receipt (ADR) parity violations (Gagnon

and Karolyi, 2010; and Pasquariello, 2014); credit default swap (CDS)–bond par-

ity violations (Gârleanu and Pedersen, 2011; and Bai and Collin-Dufresne, 2013);

and TIPS (Treasury Inflation-Protected Securities)–Treasury bond parity violations

(Fleckenstein, Longstaff, and Lustig, 2014). Some of these existing papers focus on

identifying important impediments to arbitrage, similar to this paper. For example,

Gagnon and Karolyi (2010) attribute ADR parity violations to the holding cost mea-

sured by idiosyncratic risk; Gârleanu and Pedersen (2011) impute CDS–bond parity

violations to funding liquidity; and Roll, Schwartz, and Subrahmanyam (2007) as-

sess whether transaction cost deters convergence between future markets and cash

markets. However, the current paper studies the role of liquidity and asymmetric

information in the segmentation of variance trading markets.

Second, this paper contributes to the literature on the informational role of

derivatives. Chakravarty, Gulen, and Mayhew (2004), Holowczak, Simaan, and Wu

(2006), and Muravyev, Pearson, and Broussard (2013) compare the price informa-

tiveness of stock options to that of the underlying stocks, while Hasbrouck (2003)

and Blanco, Brennan, and Marsh (2005) study the informational role of stock index

futures and CDS, respectively. However, to the best of my knowledge, this paper

3 It is because option writers impose greater counterparty risk on central clearing houses than
option buyers.
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is the first to study the variance discovery process between SPX options and VIX

derivatives.

Third, this paper is related to the literature on a volume-based measure of in-

formed trading with respect to future stock prices. For example, Pan and Poteshman

(2006) report that put–call volume ratios are predictive of future stock returns and

attribute this finding to informed trading in options markets. Johnson and So (2012)

and Ge, Lin, and Pearson (2016) find that option-to-stock volume ratios contain pre-

dictive information for stock returns and attribute their results to informed trading

in options markets. However, my paper makes a unique contribution to the literature

by introducing a volume-based measure of informed trading with respect to future

variance.

The remainder of this paper is organized as follows: In Section 2, I introduce

two equivalent measures of variance implied by SPX options and VIX derivatives and

show firsthand evidence of variance disparity; in Section 3, I introduce methodology

to study the determinants of variance disparity; in Section 4, I examine the impact

of liquidity on variance disparity; in Section 5, I investigate the impact of informed

trading on variance disparity; and I conclude in Section 6.

2 Variance disparity

2.1 SPX options-implied variance (SIV)

It is well documented that a risk-neutral measure of variance can be replicated by a

static portfolio of stock options. Early work by Carr and Madan (1998), Britten-Jones

and Neuberger (2000), and Demeterfi, Derman, Kamal, and Zou (1999) introduced

model-free formulas under the assumption of continuous stock prices. Subsequent

researchers, such as Jiang and Tian (2005) and Carr and Wu (2009), extended this

idea to cases in which stock prices are driven by both diffusion and jump components.

To begin with, I assume a risk-neutral probability space (Ω,F ,Q) and informa-

tion filtration {Ft}. Let the stock price, St, take the following stochastic differential

equation under the Q measure:

dSt

St

= rtdt+ σtdB
Q
t +

∫

R
(exp (x)− 1)[JQ(dx, dt)− νQt (dx)dt], (1)
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where rt is the risk-free rate, σt is the instantaneous diffusive volatility, B
Q
t is a stan-

dard Brownian motion under the Q measure, JQ(dx, dt) is a random jump measure,

and νQ
t (dx) is a jump compensator for the log price.

Given Equation (1), return variance, or annualized quadratic variation, may be

expressed as the sum of integrated variance and jump variation as follows:

V(t, T ) =
1

T − t

[ ∫ T

t

σ2
sds

︸ ︷︷ ︸

Integrated Variance

+

∫ T

t

∫

R
x2JQ(dx, ds)

︸ ︷︷ ︸

Jump Variation

]

,
(2)

where V(t, T ) denotes the return variance over the (t, T ] horizon. The risk-neutral

expectation of return variance is given by

EQ
t [V(t, T )] =

1

T − t
EQ

t

[ ∫ T

t

λQ
s ds

]

, (3)

where

λQ
s = σ2

s +

∫

R
x2νQs (dx).

Here λQ
s is referred to as the Q-spot variance. Jiang and Tian (2005) and Carr and

Wu (2009) show that Equation (3) can be approximated using the prices of out-of-

the-money (OTM) SPX options up to a high-order error term as follows:

EQ
t [V(t, T )] ≈

2 exp (rt(T − t))

T − t

[
∫

∞

Ft(T )

Ct(T,K)

K2
dK +

∫ Ft(T )

0

Pt(T,K)

K2
dK

]

, (4)

where Ft(T ) is the SPX future price at time t and Ct(T,K) and Pt(T,K) are the SPX

call and put prices, respectively, with a maturity of T and a strike price of K at time

t.4

2.2 VIX derivatives-implied variance (VIV)

Let V Ft(T ) denote the VIX future price with a maturity of T at time t. By con-

struction, the VIX future price is the same as the risk-neutral expectation of the

time-T VIX index: V Ft(T ) = EQ
t [V IXT ]. By Jensen’s inequality, it follows that the

squared VIX future price is less than or equal to the risk-neutral expectation of a

4 Aı̈t-Sahalia, Karaman, and Mancini (2018) compared synthetic variance swaps implied by SPX
options and actual over-the-counter variance swaps and found that the high-order error term may
be nontrivial.
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forward-starting return variance:

V Ft(T )
2 =

(

EQ
t [V IXT ]

)2

≤ EQ
t [V IX2

T ]

= EQ
t [E

Q
T [V(T, T + 30d)]]

= EQ
t [V(T, T + 30d)],

(5)

where 30d stands for 30 calendar days and V(T, T +30d) denotes the return variance

starting on date T with a fixed 30-day window.

The difference between the risk-neutral expectation of a forward-starting variance

(with a fixed 30-day window) and the squared VIX future price is called a convexity

adjustment term. This term is associated with the variance of the time-T VIX index,

which can be backed out from a cross-section of the OTM VIX option prices.

Proposition 1. Under no arbitrage, the variance of the time-T VIX index, which I

denote by vart(V IXT ), may be expressed in terms of a cross-section of the VIX option

prices with different strike prices but with the same maturity of T :

vart(V IXT ) = 2 exp (rt(T − t))

[
∫

∞

V Ft(T )
V Ct(T,K)dK +

∫ V Ft(T )

0
V Pt(T,K)dK

]

, (6)

where V Ct(T,K) and V Pt(T,K) are the VIX call and put prices with a maturity of

T and a strike price of K at time t, respectively.

See Appendix A for the proof. Adding the convexity adjustment term to the

squared VIX future price, I can infer the risk-neutral expectation of a forward-starting

return variance with a fixed 30-day window as follows:

EQ
t [V(T, T + 30d)] = V Ft(T )

2 + 2 exp (rt(T − t))

[
∫

∞

V Ft(T )
V Ct(T,K)dK +

∫ V Ft(T )

0
V Pt(T,K)dK

]

.

(7)

To evaluate the relative magnitude of the convexity adjustment term in measure-

ments of return variance, I define a convexity ratio, CV RTt(T ), as

CV RTt(T ) =
vart(V IXT )

EQ
t [V(T, T + 30d)]

, (8)

where the numerator and the denominator are given by Equations (6) and (7), re-
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spectively. Table 1 shows the summary statistics of the convexity ratios divided into

short and long maturities (less than three months and more than three months, re-

spectively). Figure 1 shows the histograms of the short-term and long-term convexity

ratios. The average short-term convexity ratio is 9%, implying that VIX options

contribute 9% of the total VIV measurement. In general, the long-term convexity

ratios are larger than the short-term ones, suggesting that accounting for convexity

adjustment is particularly important for long-term VIV measures.

2.3 Firsthand evidence of variance disparity

Let SIVt(T ) and V IVt(T ) denote the variance measures implied by SPX options and

VIX derivatives, respectively, with a maturity of T ; that is, SIVt(T ) = EQ
t [V(t, T )]

and V IVt(T ) = EQ
t [V(T, T+30d)]. Note that the two variance measures are differently

associated with over-the-counter variance swaps.5 SIVt(T ) can be thought of as

a synthetic strike price for a variance swap starting today with a tenor of T − t,

whereas V IVt(T ) can be considered as a synthetic strike price for a forward variance

swap that starts at time T with a fixed 30-day tenor.

Although the SIV and VIV are not directly comparable because of their different

time horizons, it is possible to replicate a VIV measure with a maturity of T using

two SIV measures with maturities of T and T + 30d as follows:

˜V IVt(T ) = EQ
t [V(T, T + 30d)]

=

(
T + 30d− t

30d

)

EQ
t [V(t, T + 30d)]−

(
T − t

30d

)

EQ
t [V(t, T )]

=

(
T + 30d− t

30d

)

SIVt(T + 30d)−

(
T − t

30d

)

SIVt(T ),

(9)

where ˜V IVt(T ) denotes a replicated version of the VIV measure computed from the

SIV measures. In practice, the two SIV measures in Equation (9) may not be available

for a given maturity, so I interpolate them from the available SIV data using a cubic

smoothing spline and replicate the VIV measures from the interpolated SIV measures.

Figure 2 shows the time series plots of the original and replicated VIV measures

5 A variance swap is an OTC swap that exchanges the future realized variance of the underlying
asset for a prespecified strike price at the expiration date. Because no money changes hands at the
initiation of a variance swap contract, a no-arbitrage condition requires that the strike price be equal
to the risk-neutral expectation of the variance of the underlying asset over the horizon.
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with a three-month maturity. Panels A and B correspond to the entire sample period

and a subsample during the Lehman Brothers crisis, respectively. Although the two

VIV measures remain close to each other for most of the sample period (see Panel

A), massive differences are observed in the wake of the Lehman Brothers’ bankruptcy

(see Panel B).6

I acknowledge that deviations in the two VIV measures do not necessarily indi-

cate real-world arbitrage opportunities for two main reasons. First, the original VIV

measure is not replicable by a static VIX derivatives position because the squared

VIX future price is not a tradable asset, although the convexity adjustment term is

replicable by an equally weighted portfolio of OTM VIX options. Second, the repli-

cated VIV measure is subject to truncation and interpolation errors because of the

limited availability of strike prices and maturities.

Nevertheless, frictions can drive the segmentation of variance trading markets be-

cause they can make it difficult for sophisticated investors to implement relative value

trading to exploit price differentials between the two markets or for market makers

to intermediate the markets. Therefore, the goal of this paper is to understand the

roles played by frictions in the variance market segmentation and draw implications

of the segmentation for practitioners and policymakers.

3 Methodology

3.1 Stochastic variance models

This subsection introduces three kinds of stochastic variance models: the market

integration (SV2) model, the market segmentation (SV4) model, and the market

segmentation with error corrections (SV4-EC) model. These models are designed to

shed light on whether the SPX options and VIX derivatives markets are integrated or

segmented and which of the two markets is more informative about future variance.

6 The replicated VIV measures (dotted line) had some negative values in October 2008. The
negative values arise because the near-term SIV measures are too large compared with the long-
term SIV measures.
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3.1.1 Market integration (SV2) model

Existing studies have found that a two-factor variance structure is essential to de-

scribe the term structure of return variance (see Gallant, Hsu, and Tauchen, 1999;

Christoffersen, Heston, and Jacobs, 2009; Aı̈t-Sahalia, Amengual, and Manresa, 2015;

and others). Furthermore, the literature has shown that modeling the logarithm of

variance fits the data better than modeling variance itself (Jones, 2003; Aı̈t-Sahalia

and Kimmel, 2007; and Durham, 2013). I thus accommodate these two important

findings in the joint modeling of the SIV and VIV. The model that follow is similar

to the term structure models of variance swap rates (see, for example, Aı̈t-Sahalia,

Karaman, and Mancini, 2018; Filipović, Gourier, and Mancini, 2016; and Amengual

and Xiu, 2018).

In the SV2 model, the SIV and VIV data are generated by the same two-factor

stochastic variance model. Let v1t and u1t denote the short-run and long-run variance

factors, respectively. I assume that Xt = (v1t, u1t)
′ takes the following stochastic

differential equation under the Q measure:

dv1t = −κv1v1tdt+ σv1dB
Q
1t

du1t = −κu1
u1tdt+ σu1

dBQ
2t,

(10)

where κv1 and κu1
are the persistence parameters, σv1 and σu1

are the variance-of-

variance parameters, and BQ
1t and BQ

2t are independent standard Brownian motions

under the Q measure. I also assume that the SIV and VIV are determined by the

same form of the Q-spot variance process:

λQ
1t = exp (µ1 + v1t + u1t), (11)

where µ1 captures the risk-neutral long-term level of the variance measures.7

Let M(Xt, t, T ;φ) denote the moment-generating function of XT at time t under

the Q measure: M(Xt, t, T ;φ) = EQ
t [exp(φ′XT )]. The model prices of the SIV and

VIV, which I denote by SIVt(T ; θ) and V IVt(T ; θ), respectively, are obtained by

7 Modeling of the Q-spot variance process is introduced by Filipović, Gourier, and Mancini (2016).
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integrating out the moment-generating function with φ = (1, 1)′ as follows:

SIVt(T ; θ) =
exp (µ1)

T − t

∫ T

t

M(Xt, t, τ ;φ = (1, 1)′)dτ

V IVt(T ; θ) =
exp (µ1)

30d

∫ T+30d

T

M(Xt, t, τ ;φ = (1, 1)′)dτ,

(12)

where θ denotes the set of model parameters.8 Note that the pricing formula of the

SIV has the same integrand (the moment-generating function) as that of the VIV.

3.1.2 Market segmentation (SV4) model

In the SV4 model, the SIV and VIV are driven by different two-factor stochastic

variance models. That is, I assume that only the SIV data are driven by the model

specified in Equations (10) and (11). To separately model the dynamics of the VIV

data, I introduce another pair of short-run and long-run variance factors, v2t and

u2t. The new variance pair, (v2t, u2t)
′, is assumed to follow the stochastic differential

equation below:

dv2t = −κv2v2tdt+ σv2dB
Q
3t

du2t = −κu2
u2tdt+ σu2

dBQ
4t,

(13)

where κv2 and κu2
are the persistence parameters, σv2 and σu2

are the variance-of-

variance parameters, and BQ
3t and BQ

4t are independent standard Brownian motions

under the Q measure. I assume that the VIV is determined by the following Q-spot

variance process:

λQ
2t = exp (µ2 + v2t + u2t), (14)

where µ2 captures the risk-neutral long-term level of the VIV. The model price of the

VIV can be similarly obtained as in Equation (12).

The SV4 model is a two-market model in which each market has a two-factor

variance structure; no market has a four-factor variance structure. There is no interac-

tion between the pair (v1t, u1t) and the pair (v2t, u2t). Thus, despite the multi-market

nature, the dynamics of v1t and u1t (v2t and u2t) can be separately estimated only

using the SIV (VIV) data.

8 An analytic solution to the moment-generating function is provided in Appendix B.1.
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3.1.3 Market segmentation with error corrections (SV4-EC) model

In the SV4-EC model, error correction mechanisms are added to the short-run vari-

ance dynamics. Let Xt = (v1t, u1t, v2t, u2t)
′, where v1t and u1t drive the SIV and v2t

and u2t drive the VIV. I assume that Xt takes the following stochastic differential

equation under the Q measure:

dv1t = −κv1v1tdt+ γv1(v1t − v2t)dt+ σv1dB
Q
1t

du1t = −κu1
u1tdt+ σu1

dBQ
2t

dv2t = −κv2v2tdt+ γv2(v1t − v2t)dt+ σv2dB
Q
3t

du2t = −κu2
u2tdt+ σu2

dBQ
4t,

(15)

where γv1 and γv2 capture the speed of convergence between the two short-run variance

factors and the other model parameters are similarly defined as in the SV4 model. I

also assume that the SIV and VIV are determined by the Q-spot variance processes

specified in Equations (11) and (14), respectively. Note that the SV4-EC model nests

the SV4 model, with the restrictions: γv1 = 0 and γv2 = 0.

The error correction terms γv1(v1t − v2t) and γv2(v1t − v2t) allow for convergence

between the two short-run variance factors and, thus, between the SIV and VIV.

If one market is informationally efficient, it will not respond to deviations from the

other market. However, if neither of the two markets is informationally efficient

and information diffusion occurs in both directions, γv1 and γv2 should be negative

and positive, respectively. Importantly, the magnitudes of the speed-of-convergence

parameters allow us to compare price informativeness between the two markets. The

larger the speed of convergence in magnitude, the less informationally efficient the

market.

In a discrete-time version of the SV4-EC model, the conditional variance will be

affected by the cross-market lagged variance state as well as its own lagged variance

state.9 This cross-market interaction is not conceptually new. In many of the mul-

tivariate generalized autoregressive conditional heteroskedasticity (GARCH) models,

conditional variance and covariance are allowed to influence one another through their

cross-market lagged values (as well as their cross-market squared innovation terms).

For example, authors such as Karolyi (1995), Kearney and Patton (2000), and Ma-

9 A discrete-time model can be obtained by applying an Euler approximation to the continuous-
time model specified in Equation (15).
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lik and Ewing (2009) study volatility transmission phenomena across closely related

markets using the BEKK (Baba, Engle, Kraft, and Kroner, 1989) model, a type of

multivariate GARCH models.

Let M(Xt, t, T ;φ) denote the moment-generating function of XT at time t under

the Q measure.10 The model prices of the SIV and VIV are obtained by integrating

out the moment-generating function with different boundary conditions as follows:

SIVt(T ; θ) =
exp (µ1)

T − t

∫ T

t

M(Xt, t, τ ;φ = (1, 1, 0, 0)′)dτ

V IVt(T ; θ) =
exp (µ2)

30d

∫ T+30d

T

M(Xt, t, τ ;φ = (0, 0, 1, 1)′)dτ,

(16)

where θ denotes the set of model parameters. Note that because of the interaction

between v1t and v2t, the SV4-EC model should be jointly estimated using both the

SIV and VIV data, unlike the SV4 model.

3.2 Estimation method

The model prices of the SIV and VIV are nonlinear functions of the state vector,

and therefore, the standard Kalman filtering is inappropriate. Instead, I implement

unscented Kalman filtering, a variant of the standard Kalman filtering in which a set

of sample points is carefully chosen to represent the true mean and covariance of the

state vector. This method is accurate up to the third order for a Gaussian state vector

and the second order for a non-Gaussian state vector, and has been widely used in the

option pricing literature (see Carr and Wu, 2007; Trolle and Schwartz, 2009a,b; and

Menćıa and Sentana, 2012). In particular, Christoffersen, Dorion, Jacobs, and Karoui

(2014) show that unscented Kalman filtering is superior to extended Kalman filtering

in the application of interest rate derivatives. Refer to Appendix C for further details

on unscented Kalman filtering and Appendix D for the data used in the estimation.

3.3 Parameter estimates and model comparison

Table 2 presents parameter estimates for all three models across three sample periods.

Panels A, B, and C correspond to the full sample period (July 1, 2006 to August

10 A quasi-analytic solution to the moment-generating function is provided in Appendix B.2.
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31, 2014), the pre-crisis period (July 1, 2006 to August 31, 2008), and the post-

crisis period (December 1, 2008 to August 31, 2014), respectively. The table also

reports two kinds of model comparison criteria: Akaike information criteria (AIC)

and Schwarz information criteria (SIC). These criteria are based on the log likelihoods

of the estimation and various penalty scores, which depend on the number of free

parameters. The lower the information criteria, the better the model.

The SV4 model is strongly preferred to the SV2 model based on the informa-

tion criteria, regardless of the sample periods. In the SV4 model, the parameter

estimates for the SIV are notably different from those for the VIV. Specifically, the

SIV dynamics have a lower long-run mean (µ1 < µ2), lower degrees of persistence

(κv1 > κv2 and κu1
> κu2

), and higher levels of variance-of-variance (σv1 > σv2 and

σu1
> σu2

) than the VIV dynamics. Overall, the two derivative markets appear to

imply different variance dynamics, a result consistent with that of Bardgett, Gourier,

and Leippold (2013) that the SPX options and VIX derivatives markets contained

different information on variance during the market distress.

The SV4-EC model is strongly preferred to the SV4 model based on the infor-

mation criteria. Note that γv1 and γv2 are estimated to be negative and positive,

respectively, for every sample period considered. These signs suggest that informa-

tion diffuses in both directions, although the speed of convergence depends on the

directions. Importantly, γv1 is larger than γv2 in absolute terms, suggesting that de-

viations between the SIV and VIV are largely resolved in the SPX options market

rather than in the VIX derivatives market (this issue will be further discussed in

Section 5.1.2).

3.4 Introducing a measure of variance disparity

I introduce a measure of variance disparity using the full-sample estimation result

of the SV4 model. Let θ̂SIV (θ̂V IV ) denote the parameter set that is obtained by

estimating a two-factor stochastic variance model using the SIV (VIV) data alone.

Thus, θ̂SIV and θ̂V IV represent the two distinct variance dynamics implied by the

SPX options and VIX derivatives markets, respectively.

To measure the extent of variance disparity, I first calculate a model price for the

VIV using the parameter θ̂V IV , which I denote by V IVt(T ; θ̂V IV ). This model price
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represents a fair price for the VIV in the VIX derivatives market. I calculate another

model price for the same VIV observation using the parameter θ̂SIV , which I denote

by V IVt(T ; θ̂SIV ). The second model price represents a fair price for the VIV in the

SPX options market. I then define a basis in the VIV as the logarithmic difference

between the two model prices as follows:

V BASISt(T ) ≡ log (V IVt(T ; θ̂V IV ))− log (V IVt(T ; θ̂SIV )), (17)

where V BASISt(T ) denotes a basis in V IVt(T ). A positive V BASISt(T ) means

that the VIX derivatives market would price the VIV observation higher than the

SPX options market, while a negative V BASISt(T ) means than the VIX derivatives

market would price the VIV observation lower than the SPX options market.

Similarly, I can define a basis in the SIV as the logarithmic difference between

its two model prices as follows:

SBASISt(T ) ≡ log (SIVt(T ; θ̂V IV ))− log (SIVt(T ; θ̂SIV )), (18)

where SBASISt(T ) denotes a basis in SIVt(T ). Again, a positive or negative SBASISt(T )

means that the VIX derivatives market would price the SIV observation higher or

lower, respectively, than the SPX options market.

For a given date, there are multiple VIV and SIV observations, so I average the

bases to obtain a measure of variance disparity:

BASISt =
1

Kt +Nt

(
Kt∑

i=1

V BASISt(Ti) +

Nt∑

i=1

SBASISt(Ti)

)

, (19)

where BASISt denotes an average of the bases at date t, and Kt and Nt denote the

number of VIV observations and the number of SIV observations, respectively, at

time t.

Figure 3 shows the time evolution of the variance disparity measure, BASISt. A

remarkable finding shown in the figure is that the bases skyrocketed to about 100%

in the wake of the Lehman Brothers’ bankruptcy. In particular, positive bases during

the crisis mean that investors were willing to pay higher prices for VIX derivatives

relative to SPX options. There were other ups and downs in the bases, although

the magnitudes were smaller than those observed right after the Lehman Brothers’

bankruptcy. Overall, the figure shows wide fluctuations in the bases over time, with

15



the largest during the Lehman Brothers crisis.

4 Liquidity as a driver of variance disparity

This section investigates whether measures of funding and market liquidity can ex-

plain time variation in the bases.

4.1 Role of funding liquidity

I conjecture that limited capital might explain time variation in the bases. It is

known that market makers tend to take negative net holdings of SPX options and

positive net holdings of VIX futures (see, for example, Bollen and Whaley, 2004; and

Gârleanu, Pedersen, and Poteshman, 2009). However, their ability to hedge non-

zero derivative positions can be impaired by limited capital. Recently, Barras and

Malkhozov (2016) and Fournier and Jacobs (2016) find evidence that market makers’

risk bearing capacity affects their willingness to provide liquidity in option markets

and, thus, option prices. In addition, arbitrageurs are also subject to limited capital

because a margin is required for any arbitrage position in futures and options markets.

To understand the role of limited capital in variance disparity, I take the LIBOR–

OIS spread (LIBOIS) as a measure of funding liquidity. Such an interest rate spread

between risky and risk-free debt has been widely adopted as a proxy for funding

friction (see, for example, Hameed, Kang, and Viswanathan, 2010; Boyson, Stahel,

and Stulz, 2010; and Karolyi, Lee, and Van Dijk, 2012). More formally, Gârleanu and

Pedersen (2011) show that when agents are constrained by margins, an interest rate

spread between uncollateralized and collateralized loans captures the shadow cost of

capital.

Figure 4 shows the time series plot of LIBOIS. Before August 9, 2007, LIBOIS

averaged about 10 basis points. The next day, LIBOIS rose to about 40 basis points

and continued to climb to 365 basis points until the peak of the financial crisis.

Starting from the fourth quarter of 2009, LIBOIS returned to pre-crisis levels.

Panel A of Table 3 shows the univariate regression results of the bases (BASIS)

onto the funding liquidity proxy for two sample periods. In the subsample analy-
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sis (ex-crisis), I exclude the three-month window corresponding to the peak of the

Lehman Brothers crisis to determine if the result is driven by the Lehman Brothers’

bankruptcy. All explanatory variables are standardized in the regression, so each

coefficient can be interpreted as a change in the dependent variable in response to a

one standard deviation change in the explanatory variable. The summary statistics

and correlation matrix for explanatory variables are provided in Table 4.

In the full sample, LIBOIS (the funding liquidity measure) alone can explain

29% of the variation in BASIS. However, in the ex-crisis sample, the explanatory

power is significantly reduced to 3%. Nevertheless, all of the results are statistically

significant at the l% level for both samples. Note that LIBOIS is positively associ-

ated with the bases in both of the sample periods. These positive signs suggest that

as funding conditions deteriorate, investors are willing to pay higher prices for VIX

derivatives relative to SPX options.

I also consider other interest rate spreads, such as the LIBOR–general collateral

repo spread and the LIBOR–Treasury bill spread, and the results (not shown in this

paper) suggest that other interest rate spreads have an explanatory power similar to

or slightly weaker than LIBOIS. Overall, regardless of the choice of an interest rate

spread, funding liquidity is associated with the bases, consistent with the Gârleanu

and Pedersen (2011) model which states that when heterogeneous agents face margin

constraints, price gaps between two identical assets should depend on the shadow cost

of capital.

4.2 Role of market liquidity

Several existing studies suggest that market illiquidity deters convergence between

two equivalent asset prices (see, for example, Roll, Schwartz, and Subrahmanyam,

2007; Deville and Riva, 2007; Chordia, Roll, and Subrahmanyam, 2008; and Oehmke,

2011). I thus conjecture that market illiquidity might be another important driver of

the bases.

As a proxy for market illiquidity, I obtain weekly moving averages of three relative

bid–ask spreads corresponding to SPX options (SPRDS), VIX futures (SPRDF ),

and VIX options (SPRDV ).11 Their time series plots are provided in Figure 5. The

11 When taking a weekly moving average of the relative bid–ask spreads for each derivatives
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three bid–ask spreads all increased in the wake of the Lehman Brothers’ bankruptcy,

although the increases were not as dramatic as those seen for LIBOIS.

Panel B of Table 3 shows the results of regressing the bases onto the three bid–ask

spread measures only. In the full sample, the three market liquidity proxies together

can explain 31% of the variation in BASIS. In the ex-crisis sample, the explanatory

power is significantly reduced to 4%. Statistical significance is obtained at different

levels. SPRDS is statistically significant at the 1% level in the full sample and at

the 5% level in the ex-crisis sample. SPRDF is statistically significant at the 1%

level in both the full and ex-crisis samples. SPRDV is statistically significant at the

1% level in the full sample only.

Note that the coefficients on the bid–ask spreads always have positive signs.

These signs suggest that as market liquidity deteriorates, VIX derivatives tend to im-

ply higher levels of variance than SPX options. That said, market liquidity is another

key driver of variance disparity, a finding that is consistent with the conventional

wisdom that transaction cost impedes convergence between two identical assets.

4.3 Joint role of funding liquidity and market liquidity

In the framework of Brunnermeier and Pedersen (2009), funding and market liq-

uidity can mutually reinforce each other. There is also empirical evidence that the

capital constraint faced by market makers is a key determinant of bid–ask spreads

in the stock market (Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes,

2010; and Hameed, Kang, and Viswanathan, 2010). Consistent with this endogenous

relation, LIBOIS is positively associated with the three bid–ask spread measures,

with correlations between 0.39 and 0.47 (see Table 4). As a result, market liquidity

might be a mediating channel through which funding liquidity drives variance dispar-

ity. Although less likely, market liquidity alone might be the true source of variance

disparity.

Panel C of Table 3 shows the joint effect of the funding and market liquidity

factors on the bases. The combined explanatory power goes up to 37% in the full

sample. Again, the explanatory power is significantly decreased if the peak of the crisis

is excluded from the regression. Nonetheless, LIBOIS is still statistically significant

market, I include only the contracts with trading volume of more than 10 contracts on that date.
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at the 1% level in the full sample and at the 5% level in the ex-crisis sample. SPRDS

is also statistically significant at the 1% level in the full sample and at the 5% level

in the ex-crisis sample. SPRDF is statistically significant at the 5% level in both

the full and ex-crisis samples. Overall, the results suggest that funding liquidity and

market liquidity are both critical drivers of variance disparity.

Holding cost—defined as the cost that occurs while an arbitrage position remains

open—is known as one of the greatest impediments to arbitrage (Pontiff, 2006). In

particular, Gagnon and Karolyi (2010) find that idiosyncratic risk, a measure of

holding cost, is a key driver of the parity violations in ADRs and other cross-listed

stocks. Holding cost is also relevant for futures and options because arbitrageurs

facing a margin call may need to liquidate their positions prematurely at a loss. I

thus include two stochastic risk proxies as controls in the regression: the VIX and

the SKEW indexes.12 These indexes are taken as proxies for arbitrage holding cost

because they are associated with the variance risk and jump risk, respectively, inherent

in the markets in this study. Panel D of Table 3 shows that while the holding cost

proxies have some effects on the bases, funding liquidity and market liquidity remain

statistically significant. Interestingly, after the holding cost proxies are accounted for,

LIBOIS and SPRDS have even larger marginal effects on the bases, with stronger

statistical significance.

4.4 Robustness to hedging pressure

There is a large literature suggesting that agents’ hedging pressure can distort the

prices of futures and options. Hirshleifer (1989, 1990), Bessembinder (1992), and

de Roon, Nijman, and Veld (2000) are good examples for futures markets. Bollen

and Whaley (2004) and Gârleanu, Pedersen, and Poteshman (2009) show that option

prices are also affected by demand pressure. More directly related to this work,

Mixon and Onur (2015) show that demand from asset managers puts upward pressure

on VIX futures prices, and Cheng (2018) finds that a falling risk premium in VIX

futures when risk rises is associated with a falling hedging demand. In addition,

rebalancing demand arising from VIX-linked exchange-traded products (ETPs) can

impose additional pressure in VIX futures market.

12 These data are obtained directly from the Chicago Board of Options Exchange.
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Given the importance of hedging demand in derivatives, it is possible that vari-

ance disparity may have been driven by some agents’ hedging pressure in VIX fu-

tures. To check such possibility, I obtain hedging pressure measures based on the

disaggregated Commitments of Traders report from the Commodity Futures Trading

Commission, where the hedging pressure measure is defined as each group’s net open

interest divided by the overall open interest.13 These data show that variance dis-

parity is somewhat related to the hedging pressure from asset managers and leverage

funds, but not from dealers (the results are not reported in this paper). More impor-

tantly, the significance of illiquidity measures that I have found earlier is robust to

the hedging pressure of any investor group.

5 Informed trading as a driver of variance dispar-

ity

This section proceeds in three steps. First, I provide evidence of informed trading

with respect to future variance. Second, I introduce a measure of informed trading

using the volume data on VIX futures and SPX options. Third, I examine whether

the informed trading measure can explain time variation in the bases in addition to

funding and market liquidity.

5.1 Evidence of informed trading

5.1.1 Nonparametric analysis

I provide evidence of informed trading about future variance by running a vector error

correction (VEC) model between the replicated and original constant-maturity VIV

measures:

∆yt = α(β′yt−1 + c0) +

p
∑

j=1

Aj∆yt−j + εt, (20)

where yt = (log( ˜V IVt(T )), log(V IVt(T )))
′, α = (α1, α2)

′ is the speed-of-adjustment

vector, β is the co-integrating relation vector, c0 captures an intercept in the co-

13 Note that some dealers’ ETN-related trading is captured through dealers’ positions, and
ProShares VIX ETFs-related trading is captured through asset managers’ positions.
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integrating vector, Aj is the autoregressive coefficient matrix, εt is an independently

and identically distributed normal shock, and the autoregressive order, p, is deter-

mined using a likelihood ratio test.14 Table 5 displays the summary statistics of the

square root of the two equivalent VIV measures for three chosen maturities: one,

three, and five months. I refer to this subsection as a nonparametric analysis because

the model-free measures of return variance are directly used to illuminate informed

traders’ behavior without any parametric model assumption.

Table 6 shows the estimates of the speed-of-adjustment parameters for two sub-

periods: the pre-crisis period and the post-crisis period.15 Note that α1 is negative for

every maturity in both periods, indicating that SPX option prices adjust to eliminate

the departure from VIX derivative prices. Similarly, α2 is positive for every maturity

in both the pre-crisis and post-crisis periods, suggesting that VIX derivative prices

also adjust to eliminate the departure from SPX option prices.

Two common approaches to measuring the relative contribution of each market

to price discovery can be found in Gonzalo and Granger (1995) and Hasbrouck (1995).

Following the Gonzalo and Granger (1995) approach, I define the portion of variance

discovery that is attributable to VIX derivatives, which I denote by GG, as

GG =
α1

α1 − α2
. (21)

The GG metric measures the relative contribution of innovations in the original VIV

measure to innovations in efficient prices.

Hasbrouck (1995) defines the relative contribution to price discovery as each

market’s contribution to the total variance of innovations in efficient prices, and calls

it information share. Using the speed-of-adjustment parameters and the variance

matrix of errors in the VECmodel, I define the lower and upper bounds on information

share of VIX derivatives, which I denote by HASL and HASU , respectively, as

HASL =
α2
1(σ

2
2 − σ2

12/σ
2
1)

α2
2σ

2
1 − 2α1α2σ12 + α2

1σ
2
2

HASU =
(α1σ2 − α2σ12/σ2)

2

α2
2σ

2
1 − 2α1α2σ12 + α2

1σ
2
2

,

(22)

14 The replicated and original VIV measures appear to be integrated and co-integrated with each
other (see Appendix E).

15 Note that I exclude the three-month period corresponding to the peak of the Lehman Brothers
crisis (September 1, 2008 to November 30, 2008) because the replicated VIV measures sometimes
had negative values in that period.
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where σ2
1, σ12, and σ2

2 constitute the variance matrix of εt.

The variance discovery ratios are shown in the last three columns of Table 6.

The GG metric ranges from 76% to 94% in the pre-crisis period and from 42% to

96% in the post-crisis period, depending on the maturities. A similar result can be

found based on the information shares, although they have wide ranges between the

lower and upper bounds. Overall, it is clear that VIX derivatives contribute more to

the variance discovery process than SPX options. In short, the tail wags the dog.

The large informational role of VIX derivatives may be explained by a literature

arguing that leverage is a key driver of informed trading behavior (Black, 1975; and

Easley, O’Hara, and Srinivas, 1998). Moreover, Ge, Lin, and Pearson (2016) present

empirical evidence of the importance of leverage in informed trading. My result

that VIX derivatives are more informative than SPX options is consistent with the

existing papers because the former require much smaller margins than the latter. For

example, VIX futures margins in my sample period are, on average, 24.7%, whereas

SPX options margins are at least as large as their full prices if the maturities are less

than nine months (see Appendix F for details on futures and options margins).

However, a surprising finding is that VIX derivatives played a large role in assim-

ilating information even during the pre-crisis period. Existing research argues that

liquidity matters in informed trading because it helps informed traders hide their pri-

vate information (Easley, O’Hara, and Srinivas, 1998; and Anand and Chakravarty,

2007). However, although the VIX derivatives market grew dramatically in recent

years, they were thinly traded in the beginning of the sample period (see Figure

6). Nonetheless, despite the low trading volume during this period, the VIX deriva-

tive market is found to have been a preferred venue for informed trading. Overall, it

seems that stealth is not as important as leverage for informed trading in the variance

trading markets.

I should acknowledge some methodological limitations in this nonparametric

analysis. First, the VIV measures appear to have a unit root (see Appendix E), but

the sample period went through a number of the crisis events, including the Lehman

Brothers crisis, the Greek debt crisis, and the U.S. debt ceiling crisis. Such exogenous,

perhaps structural, shocks tend to make the standard unit root tests falsely conclude

the existence of a unit root even if the true data-generating process is stationary (Per-

ron, 1989). Second, the model-free measures of variance are subject to measurement
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errors because we do not observe a full continuum of strike prices for SPX and VIX

options. Authors such as Jiang and Tian (2007) and Andersen, Bondarenko, and

Gonzalez-Perez (2015) demonstrate that measurement errors in the VIX index are

nontrivial. Third, the nonparametric analysis was unable to accommodate the peak

of the crisis because the replicated VIV measures sometimes had negative values.

5.1.2 Parametric analysis

This subsection is intended to complement the previous nonparametric analysis using

the SV4-EC model. Note that the parametric analysis here can account for the con-

cerns raised about the nonparametric analysis to some degree. First, the stochastic

variance models introduced in this paper assume that the variance process is station-

ary rather than nonstationary. Second, measurement errors in the SIV and VIV are

accounted for in the observation equations (see Appendix C). Third, the parametric

analysis can be applied to the full sample because the SIV and VIV data are directly

fed into the estimation method.

In the SV4-EC model, the speed-of-convergence parameters are indicative of the

magnitude of information transmission. Following the Gonzalo and Granger (1995)

idea, I quantify the relative contribution of VIX derivatives to the variance discovery

as

PDR =
γv1

γv1 − γv2
, (23)

where PDR stands for the parametric variance discovery ratio. Following this for-

mula, PDR is 73.2% in the full sample, 71.5% in the pre-crisis sample, and 66.7% in

the post-crisis sample. These numbers suggest that information about future variance

is largely revealed in VIX derivatives rather than in SPX options, consistent with the

results of the preceding nonparametric analysis.

Recall that the SV4-EC model allows for error corrections between the two short-

run variance factors. I also estimate an alternative error correction specification in

which error corrections occur between the two long-run variance factors. Although the

estimation result is not reported in this paper, I demonstrate that deviations between

the two long-run variance factors are resolved mainly in the SPX option prices rather

than in the VIX derivative prices, further confirming the previous results.
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5.2 Introducing a measure of informed trading

The stock option literature has found that the unsigned volume ratio of options to

stocks is associated with informed trading with respect to stock prices (Roll, Schwartz,

and Subrahmanyam, 2010; Johnson and So, 2012; and Ge, Lin, and Pearson, 2016).

Specifically, short sale constraints on stocks drive greater informed trading in options

relative to stocks especially during economic downturns. As a result, there is a well-

documented negative relationship between option-to-stock volume ratios and future

stock returns.

Drawing from the existing literature, I conjecture that the volume ratio of VIX

futures to SPX options, or F/O, may be a good proxy for informed trading with

respect to future variance. Option writers impose greater counterparty risk on central

clearing houses than option buyers, and therefore, the former are required to post far

greater margins than the latter. In my sample period, margins on option sales are,

on average, at least 10 times larger than those on option purchases (see Appendix F

for further details on the asymmetric option margins). As a result, when expecting a

lower future variance, informed traders may find it easier to sell VIX futures instead

of delta-neutral SPX options. That said, a higher F/O may be associated with a

lower future variance.

The top panel of Figure 7 shows the time series plot of the logarithm of F/O.

It is apparent that F/O has an upward trend in the sample period. This secular

trend can be, in part, attributed to the fact that VIX futures have become a popular

hedge against stock market downturns and macroeconomic uncertainty since the 2008

financial crisis. The growing interest in variance trading has further motivated the

introduction of VIX-linked ETPs, which are designed to attract retail investors.16

The sponsors and issuers of the VIX-linked ETPs mostly use VIX futures to hedge

the variance risks that they have taken in their products. The dotted vertical line

in the figure refers to January 29, 2009 when the first, and most actively traded,

VIX-linked ETP (ticker: VXX) was introduced. A stronger upward trend is observed

after this issuance.

These market developments indicate that the secular trend in F/O is unlikely

to be associated with informed trading. To define a measure of informed trading,

16 See Whaley (2013) and Alexander and Korovilas (2013) for the introduction to the VIX-linked
ETPs.
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I need to remove the secular trend in F/O to isolate the time variation pertaining

to informed trading. This task is done by running a linear time trend regression as

log(F/Ot) = a + bt + εt. I then take the standardized fitted residuals as a measure

of informed trading (IT ). The IT measure is depicted in the bottom panel of Figure

7. Unlike F/O, the IT measure appears to be stationary, while having substantial

fluctuations over time.

5.3 Effect of informed trading on variance disparity

Arrivals of low-variance information may strengthen informed trading in VIX futures

relative to SPX options, while causing more negative bases between the VIV (which

is more informative) and the SIV (which is less informative). I thus hypothesize a

negative relationship between the informed trading measure and the bases.

Panel A of Table 7 shows the univariate regression results of the bases onto the

IT measure. Consistent with my expectation, the coefficients on the IT measure

are negative in both the full and ex-crisis samples, with the statistical significance

at the 1% level. Panel B of Table 7 shows the multivariate regression results of the

bases onto the IT measure, the liquidity measures, and the holding cost proxies. The

coefficient and statistical significance of the IT measure are not materially affected

by the inclusion of the liquidity and holding cost proxies.

In an unreported table, I show that the results highlighted in this paper are

robust to other detrending methods, such as a quadratic time trend and a partial

linear time trend, which permits a linear time trend only after the introduction of the

first VIX-linked ETP. To summarize, informed trading regarding future variance is a

contributor to variance disparity in addition to liquidity and holding cost.

6 Conclusion

Derivative markets provide rich ground for understanding the market’s perceptions

of future market variance or economic uncertainty. While it is well established that a

measure of expected market variance can be inferred from SPX options, I introduce

an alternative model-free approach to measuring the market’s expectation of future

variance from VIX derivatives. VIX derivative prices are ultimately derived from SPX

25



option prices, so the former should convey similar information about future variance

to the latter if the two derivatives markets are well integrated.

However, this paper documents significant gaps between two variance measures

implied by S&P 500 (SPX) options and VIX derivatives, and attributes these gaps to

illiquidity and asymmetric information. Specifically, as funding liquidity and market

liquidity deteriorate, VIX derivatives tend to imply higher levels of market variance

than SPX options. Moreover, informed trading about future variance is more active

in VIX derivatives than in SPX options, causing further gaps. While frictions have

deterred the integration of variance derivatives markets, several variance discovery

analyses points to the superior information role of VIX derivatives relative to SPX

options. This result is even true before the 2008 financial crisis when they were thinly

traded.

My findings have two implications for investors and policymakers. First, market

variance determines asset returns as well as corporate investment and hiring decisions.

Investors and policymakers also keep track of variance risk premiums because they

are informative of investors’ risk aversion or sentiment. Given the importance of

market variance or economic uncertainty, my analyses suggest that VIX derivatives

would offer a more reliable estimate of expected market variance than SPX options

especially in crisis periods when frictions are severe.

Second, policymakers have long been interested in measuring the severity of

frictions because they can cause and exacerbate fire sales and market freeze during

crisis periods. For example, Pasquariello (2014) argues that commonality of no-

arbitrage violations across multiple markets can be useful for monitoring the stability

of the financial system. Given the empirical link between variance disparity and

frictions, a measure of variance disparity can serve as an indicator of the severity of

frictions in financial markets.
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Appendix A Proof for Proposition 1

Let me start with the basic mathematical result (Carr and Madan, 2001):

f(S) = f(S0) + f ′(S0)(S − S0) +

∫
∞

S0

f ′′(K)max(S −K, 0)dK +

∫ S0

0
f ′′(K)max(K − S, 0)dK,

(A.1)

where f(S) is a twice differentiable function. Assuming f(S) = S2 and replacing S

and S0 with V IXT and V Ft(T ), respectively, I obtain

V IX2
T = V Ft(T )

2 + 2V Ft(T )(V IXT − V Ft(T ))

+ 2

∫
∞

V Ft(T )
max(V IXT −K, 0)dK + 2

∫ V Ft(T )

0
max(K − V IXT , 0)dK.

(A.2)

Taking the risk-neutral expectation on Equation (A.2) leads to

EQ
t [V IX2

T ] = V Ft(T )
2 + 2V Ft(T )(E

Q
t (V IXT )− V Ft(T ))

+ 2

∫
∞

V Ft(T )
EQ

t [max(V IXT −K, 0)]dK + 2

∫ V Ft(T )

0
EQ

t [max(K − V IXT , 0)]dK.

(A.3)

Substituting the relations,

V Ft(T ) = EQ
t (V IXT ),

V Ct(T,K) = exp (−rt(T − t))EQ
t [max(V IXT −K, 0)], and

V Pt(T,K) = exp (−rt(T − t))EQ
t [max(K − V IXT , 0)],

into Equation (A.3), I obtain

vart(V IXT ) = EQ
t [V IX2

T ]− V Ft(T )
2

= 2 exp (rt(T − t))

[
∫

∞

V Ft(T )
V Ct(T,K)dK +

∫ V Ft(T )

0
V Pt(T,K)dK

]

.
(A.4)

This equation means that the variance of V IXT can be replicated by an equally

weighted continuum of the OTM VIX options. Q.E.D.
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Appendix B Moment-generating functions

Appendix B.1 Market integration (SV2) model

Given the model specified in Equation (10), the moment-generating function of Xt

evaluated at φ = (1, 1)′ takes an exponentially affine form:

M(Xt, t, T ;φ = (1, 1)′) = exp (α(s) + αv1(s)v1t + αu1
(s)u1t), (B.1)

where s = T − t and the coefficients are given by

α(s) =
σ2
v1

4κv1
(1− exp (−2κv1s)) +

σ2
u1

4κu1

(1− exp (−2κu1
s))

αv1(s) = exp (−κv1s)

αu1
(s) = exp (−κu1

s).

(B.2)

Appendix B.2 Market segmentation with error corrections

(SV4-EC) model

Given the model specified in Equation (15), the moment-generating function of Xt

takes an exponentially affine form as follows:

M(Xt, t, T ;φ) = exp (α(s) + αv1(s)v1t + αu1
(s)u1t + αv2(s)v2t + αu2

(s)u2t), (B.3)

where s = T − t and the coefficients, α(s), αv1(s), αu1
(s), αv2(s), and αu2

(s), satisfy

the system of ordinary differential equations as follows:

α̇(s) =
1

2
(σv1αv1(s))

2 +
1

2
(σv2αv2(s))

2 +
1

2
(σu1

αu1
(s))2 +

1

2
(σu2

αu2
(s))2

α̇v1(s) = −(κv1 − γv1)αv1(s) + γv2αv2(s)

α̇u1
(s) = −κu1

αu1
(s)

α̇v2(s) = −(κv2 + γv2)αv2(s)− γv1αv1(s)

α̇u2
(s) = −κu2

αu2
(s),

(B.4)

where the boundary conditions are given as α(0) = 0 and [αv1(0), αu1
(0), αv2(0), αu2

(0)] =

φ′.

35



Appendix C Unscented Kalman filtering

Unscented Kalman filtering requires us to recast the model under study into a state

space form that comprises observation equations and state equations. With respect

to observation equations, I assume that the logarithmic SIV and VIV observations

have constant measurement errors as follows:

log(SIVt(T )) = log(SIVt(T ; θ)) + σe1ξ1,t

log(V IVt(T )) = log(V IVt(T ; θ)) + σe2ξ2,t,
(C.1)

where σe1 and σe2 capture the size of measurement errors and ξ1,t and ξ2,t are inde-

pendent standard normal random variables.

Let me specify the physical dynamics of the state vector in the SV4-EC model

as
dv1t = −κv1v1tdt+ (ζv1 + ηv1v1t)dt+ γv1(v1t − v2t)dt+ σv1dB

P
1t

du1t = −κu1
u1tdt+ σu1

dBP
2t

dv2t = −κv2v2tdt+ (ζv2 + ηv2v2t)dt+ γv2(v1t − v2t)dt+ σv2dB
P
3t

du2t = −κu2
u2tdt+ σu2

dBP
4t,

(C.2)

where the two terms, (ζv1 + ηv1v1t) and (ζv2 + ηv2v2t), capture the variance risk premi-

ums in v1t and v2t, respectively.
17 Note that zero variance risk premiums are assumed

in the two long-run variance factors because they are estimated to be insignificant. By

applying an Euler approximation to Equation (C.2), I can define discrete-time state

equations, which will be used when I update the state vector. Trolle and Schwartz

(2009a,b) and Christoffersen, Dorion, Jacobs, and Karoui (2014) provide a detailed

procedure for unscented Kalman filtering.

Appendix D Data

The data set comprises the daily prices of SPX options, VIX futures, and VIX options.

The SPX and VIX options data come from OptionMetrics and the futures data are

obtained from Thomson Reuters Datastream. The SPX options market closes 15

minutes after the closing of the SPX cash market. To address the nonsynchronous

trading hours, I back out the SPX spot price for each of the first three pairs of at-the-

17 The physical dynamics of the state vector are similarly defined in the SV2 and SV4 models.
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money SPX put and call options by using the put-call parity and take an average of

the three extracted spot prices. This idea originates from Aı̈t-Sahalia and Lo (1998,

2000).

The sample period is restricted by the short history of VIX futures and options.

The VIX futures market started on March 26, 2004, and the VIX options market

opened about two years later on February 24, 2006. Because the trading of VIX

options was illiquid in the very beginning, my sample period spans from July 1, 2006

to August 31, 2014.

The options market has experienced vibrant changes in the trading environment.

The Chicago Board of Options Exchange (CBOE) has recently introduced weekly and

end-of-month options, but they are not included in my analysis because they were

not accounted for in the computation of the VIX index until October 6, 2014.18 The

CBOE introduced overnight trading hours for SPX options and VIX derivatives, but

only regular trading hours are considered in my analysis.19 Option prices are taken

as the bid–ask midpoint at the close of regular trading hours: 3:15 p.m.

To eliminate inaccurate or illiquid options, various data filters are applied. Specif-

ically, both SPX and VIX options are deleted when the mid price is less than five

cents, the Black-Scholes implied volatility is empty in OptionMetrics, the deviation

between the best bid and offer prices is larger than five dollars, or the lower bound

constraint is violated. I also exclude SPX options with fewer than eight days or more

than one year to maturity, as well as VIX options with fewer than eight days or more

than 11 months to maturity.20 The selection criteria yield a sample of 9,813 SIV

observations and 8,079 VIV observations.

18 Including weekly options would put too much weight on fitting the short end of the term
structure of variance.

19 The trading hours were extended on March 9, 2015 for SPX options; June 23, 2014 for VIX
futures; and March 2, 2015 for VIX options.

20 Note that VIX options with 11 months to maturity cover the horizon between 11 months and
12 months. Thus, the term structure horizon covered by the VIV data matches that covered by the
SIV data.
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Appendix E Unit root and co-integration tests

Here I test whether the replicated and original VIV measures are stationary or inte-

grated by implementing the KPSS (Kwiatkowski, Phillips, Schmidt, and Shin, 1992)

and ADF (Augmented Dickey Fuller) tests. Table A1 reports the test results for the

logarithm of the replicated and original VIV measures, with an optimal lag chosen

using the Akaike information criteria. The null hypothesis of the KPSS test is that a

time series is stationary against the existence of a unit root. The KPSS test rejects

the null hypothesis of stationarity at the 1% level for both the pre-crisis and post-

crisis periods, regardless of the maturities considered, and the ADF test fails to reject

the null hypothesis that the time series has a unit root. The two test results point to

the existence of a unit root in the replicated and original VIV measures.

I next run the Johansen (1988, 1991) co-integration test. The Johansen maximum

eigenvalue test assesses the null hypothesis that the number of co-integrating relations,

the rank of αβ′, is equal to r against r + 1. As shown in Table A1, we can reject

the null of r = 0 but cannot reject the null of r = 1 for every maturity in both the

pre-crisis and post-crisis periods at the 1% level. Thus, the replicated and original

VIV measures appear to have a single co-integrating relation in both the pre-crisis

and post-crisis periods.

Appendix F Margins

A margin is one of the most important tools to protect a central clearing house from

the counterparty risk arising from derivative transactions.21 There are two types of

margins: initial margins and maintenance margins. Initial margins are collected to

cover the potential future loss that may arise in the event of a counterparty’s default.

Maintenance margins, however, are the smallest amount of the margin that should

be maintained throughout the life of a margin account. If the balance of a margin

account drops below the maintenance margin, the investor will be asked to post an

additional margin to bring the balance back to the initial margin. Margins thus play

a crucial role in guaranteeing contractual obligations by ensuring that both realized

21 CBOE options and CFE (CBOE futures exchange) futures are centrally cleared by the Options
Clearing Corporation.
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and future losses will be covered.

VIX future margins are set in terms of dollars (not a percentage) and differ

by the type of margin account.22 For example, the initial margin for a customer’s

speculative account was set at 3,300 dollars on June 19, 2014. This dollar amount

can be translated into a relative initial margin of 31% relative to the day’s VIX index

after the contract size of 1,000 is accounted for. For my sample period, relative initial

margins (dollar margins divided by the VIX index) range from 7.2% to 51.8%, with a

mean of 24.7%.23 Note that margins are symmetric between long and short positions

in VIX futures.

In contrast to VIX futures margins, SPX options margins differ between long

and short positions. For an option buyer, the initial margin is equivalent to 100%

of the option price if the maturity is less than nine months or 75% otherwise. This

simple margin calculation is because an option buyer is not subject to any contractual

obligation as long as the option price is paid in full. In contrast, the initial margin

calculation is rather complicated for an option writer. Specifically, the initial margin

for a call writer is defined as whichever is the larger of (i) the call price plus 15%

of the underlying index level minus the OTM amount or (ii) the call price plus 10%

of the underlying index level. Here, the term, 15% of the underlying index level, is

associated with a stress scenario in the underlying index price, assumed by the central

clearing house. Similarly, the initial margin for a put writer is defined as whichever is

the larger of (i) the put price plus 15% of the underlying index level minus the OTM

amount or (ii) the put price plus 10% of the strike price.

Let me illustrate the calculation of a margin call. On August 29, 2014, one of

the most actively traded SPX calls, with a strike price of 2,040 and a maturity of

less than nine months, had a closing price of 6.9 dollars. On that day, the SPX index

closed at about 2,003. The initial margin for a buyer is the call price, 6.9 dollars. In

this case, the initial margin equals the margin call. In contrast, the initial margin for

22 VIX futures margin data are available at http://cfe.cboe.com/margins/cfe-margins.
23 Starting on June 27, 2013, margins were set differently depending on the maturity of VIX

futures. In general, margins are higher for short-term contracts than long-term contracts because
the former are more volatile than the latter. When computing the relative margins, I use only the
largest margin for that day.
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a writer is calculated as

max( 6.9
︸︷︷︸

call price

+ 0.15× 2, 003
︸ ︷︷ ︸

stress scenario

− (2, 040− 2, 003)
︸ ︷︷ ︸

OTM amount

, 6.9 + 0.10× 2, 003
︸ ︷︷ ︸

minimum margin

) = 207.2 dollars.

The margin call is then 207.2 − 6.9 = 200.3 dollars as the option sale price can be

applied to the margin account. Thus, the sell-side margin call is about 29 times larger

than the buy-side margin call.

I calculate the sellers’ margin call for every SPX option in my sample and find

that sell-side margin calls are, on average, 145.5 dollars in my sample, while option

prices are, on average, 12.3 dollars.24 Note that the average sell-side margin call is

about one order of magnitude larger than the average buy-side margin call. This

asymmetric margin structure arises because option sellers impose far greater coun-

terparty risk on a central clearing house than option buyers.

24 Here I account for only the OTM SPX options that are used to compute the SIV measures.
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Table 1: Summary statistics of convexity ratios

This table presents the summary statistics for the convexity ratio, CV RTt(T ), which is defined as
the ratio of the convexity adjustment to the VIV measure as follows:

CV RTt(T ) =
vart(V IXT )

V IVt(T )
,

where the numerator and the denominator are defined in Equations (6) and (7), respectively. The
short and long terms are defined as less than three months and more than three months, respectively.

Maturity 1% 5% Median 95% 99% Mean Std. Skew. Kurt.
Short term 0.020 0.033 0.09 0.16 0.18 0.09 0.038 0.11 2.33
Long term 0.082 0.097 0.16 0.20 0.22 0.16 0.032 -0.31 2.83
Total 0.023 0.044 0.13 0.19 0.21 0.13 0.047 -0.25 2.30
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Table 2: Parameter estimates and information criteria

This table shows the parameter estimates and the information criteria. Panels A, B, and C corre-
spond to the full sample period (July 1, 2006 to August 31, 2014), the pre-crisis period (July 1, 2006
to August 31, 2008), and the post-crisis period (December 1, 2008 to August 31, 2014), respectively.
Standard errors are in parentheses. AIC and SIC stand for Akaike information criteria and Schwarz
information criteria, respectively.

Panel A: Full sample period Panel B: Pre-crisis period Panel C: Post-crisis period

SV2 SV4 SV4-EC SV2 SV4 SV4-EC SV2 SV4 SV4-EC

µ1 -3.33 -3.44 -4.26 -3.20 -3.75 -5.04 -2.99 -2.95 -3.20
(0.02) (0.03) (0.05) (0.03) (0.05) (0.43) (0.02) (0.02) (0.02)

µ2 -3.17 -2.98 -3.15 -2.57 -2.74 -2.79
(0.03) (0.03) (0.05) (0.11) (0.02) (0.02)

κv1 4.48 5.89 4.29 5.39 9.78 8.16 4.97 6.34 5.08
(0.02) (0.05) (0.21) (0.05) (0.17) (0.46) (0.03) (0.08) (0.28)

κv2 4.45 4.16 5.31 3.84 5.08 3.73
(0.02) (0.08) (0.06) (0.17) (0.05) (0.15)

σv1 1.75 2.29 4.77 2.23 2.57 5.51 1.68 2.24 4.68
(0.02) (0.04) (0.11) (0.05) (0.08) (0.24) (0.03) (0.05) (0.13)

σv2 1.75 1.80 1.78 2.10 1.81 1.75
(0.04) (0.04) (0.09) (0.12) (0.05) (0.06)

ζv1 -2.41 -1.04 7.53 -1.63 -2.77 1.48 -5.47 -4.89 0.33
(0.74) (1.22) (2.08) (2.19) (2.58) (4.70) (1.08) (1.43) (2.40)

ζv2 -2.08 -3.51 -1.51 -0.42 -4.26 -1.57
(0.98) (0.95) (2.29) (2.08) (1.74) (1.32)

ηv1 -0.26 -1.22 10.05 -6.96 -18.55 -1.70 -3.35 -10.12 -4.75
(0.92) (0.67) (1.62) (5.68) (5.03) (8.04) (1.46) (2.12) (3.09)

ηv2 -0.21 1.61 -2.39 2.70 -3.19 5.47
(0.97) (1.15) (4.01) (4.43) (2.19) (1.78)

κu1
0.39 0.52 0.25 0.29 0.53 0.07 0.74 0.80 0.60
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01)

κu2
0.24 0.23 0.21 0.14 0.62 0.54
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

σu1
0.62 1.05 0.73 0.53 0.89 0.55 0.77 0.94 0.61
(0.01) (0.01) (0.01) (0.02) (0.04) (0.02) (0.02) (0.02) (0.01)

σu2
0.58 0.48 0.55 0.41 0.73 0.52
(0.01) (0.01) (0.02) (0.02) (0.02) (0.01)

γv1 -34.60 -32.47 -30.94
(1.42) (2.01) (1.70)

γv2 12.67 12.96 15.48
(0.34) (0.75) (0.60)

σe1 0.105 0.060 0.054 0.090 0.035 0.029 0.083 0.050 0.044
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

σe2 0.031 0.029 0.029 0.025 0.022 0.024 0.032 0.028 0.028
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

log(L) 30,277 34,946 36,746 8,506 10,531 11,063 23,954 27,163 28,859
AIC -60,535 -69,860 -73,455 -16,993 -21,030 -22,091 -47,891 -54,295 -57,682
SIC -60,485 -69,770 -73,354 -16,955 -20,961 -22,014 -47,843 -54,211 -57,587
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Table 3: Effects of liquidity on variance disparity

This table shows the results of regressing the variance disparity measure, BASIS, on the liquidity proxies. The full sample spans from July
1, 2006 to August 31, 2014. In the ex-crisis sample analysis, I exclude the three-month window corresponding to the peak of the Lehman
Brothers crisis. LIBOIS denotes the LIBOR–OIS spread, SPRDS denotes the relative bid–ask spread of SPX options, SPRDF denotes
the relative bid–ask spread of VIX futures, SPRDV denotes the relative bid–ask spread of VIX options, V IX denotes the CBOE VIX index,
and SKEW denotes the CBOE SKEW index. Newey and West (1987) robust t-statistics with an optimal lag are shown in parentheses. The
symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Sample period const. LIBOIS SPRDS SPRDF SPRDV V IX SKEW adj. R2 Nobs

Panel A: Funding liquidity

Full sample 3.20∗∗∗ 4.14∗∗∗ 0.29 2050
(4.45) (4.10)

Ex-crisis sample 4.92∗∗∗ 0.97∗∗∗ 0.03 1987
(12.36) (3.48)

Panel B: Market liquidity

Full sample −21.28∗∗∗ 3.57∗∗∗ 1.52∗∗∗ 1.28∗∗∗ 0.31 2050
(-3.30) (3.76) (3.45) (3.36)

Ex-crisis sample −0.96 0.63∗∗ 0.91∗∗∗ 0.15 0.04 1987
(-0.34) (2.31) (2.80) (0.52)

Panel C: Funding and market liquidity

Full sample −11.44∗∗∗ 2.67∗∗∗ 2.50∗∗∗ 0.82∗∗ 0.29 0.37 2050
(-2.73) (4.47) (3.91) (2.26) (0.89)

Ex-crisis sample −0.20 0.79∗∗ 0.61∗∗ 0.67∗∗ −0.01 0.06 1987
(-0.07) (2.46) (2.34) (2.01) (-0.03)

Panel D: All explanatory variables

Full sample −5.79 4.23∗∗∗ 2.85∗∗∗ 0.83∗∗ 0.34 −2.31∗∗∗ −0.22 0.41 2050
(-0.78) (5.38) (4.75) (2.24) (1.07) (-3.64) (-0.74)

Ex-crisis sample 11.66∗ 1.43∗∗∗ 0.87∗∗∗ 0.57∗ 0.01 −1.17∗∗∗ −0.60∗∗ 0.09 1987
(1.82) (3.43) (3.49) (1.65) (0.02) (-2.79) (-2.06)
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Table 4: Summary statistics and correlation matrix

BASIS denotes a measure of variance disparity, LIBOIS denotes the LIBOR–OIS spread, SPRDS
denotes the relative bid–ask spread of SPX options, SPRDF denotes the relative bid–ask spread of
VIX futures, SPRDV denotes the relative bid–ask spread of VIX options, V IX denotes the CBOE
VIX index, SKEW denotes the CBOE SKEW index, and IT denotes the informed trading measure
(which is defined as a detrended volume ratio of VIX futures to SPX options).

BASIS LIBOIS SPRDS SPRDF SPRDV V IX SKEW IT

Panel A: Summary statistics

Mean 0.07 0.35 0.29 0.01 0.22 0.22 120.48 -0.00
Median 0.06 0.16 0.28 0.01 0.21 0.19 119.92 0.06
Min. -0.22 0.06 0.16 0.00 0.13 0.10 0.00 -4.35
Max. 1.02 3.64 0.81 0.02 0.38 0.81 143.26 3.44
Std. 0.08 0.43 0.06 0.00 0.04 0.10 6.47 1.00
Skew. 4.52 3.47 2.32 1.52 0.60 2.11 -2.63 -0.34
Kurt. 44.46 19.24 16.84 6.26 3.22 8.66 61.32 3.75
AR(1) 0.79 1.00 0.96 0.96 0.97 0.98 0.76 0.58

Panel B: Correlation matrix

BASIS 1.00 0.54 0.46 0.28 0.23 0.34 -0.16 -0.10
LIBOIS 1.00 0.39 0.43 0.47 0.78 -0.34 -0.18
SPRDS 1.00 0.03 -0.04 0.41 -0.00 -0.04
SPRDF 1.00 0.43 0.34 -0.29 0.03
SPRDV 1.00 0.35 -0.26 -0.16
V IX 1.00 -0.31 -0.30
SKEW 1.00 0.03
IT 1.00
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Table 5: Summary statistics of the replicated and original VIV measures

This table presents the summary statistics of the square root of the replicated and original VIV

measures with one-, three-, and five-month maturities, which I denote by ˜V IVt(T ) and V IVt(T ),
respectively. The replicated VIV measure is computed from a pair of the SIV measures. In contrast,
the original VIV measure is computed directly from the prices of VIX futures and options. Panels
A and B correspond to the pre-crisis period (July 1, 2006 to August 31, 2008) and the post-crisis
period (December 1, 2008 to August 31, 2014), respectively.

Variable Mean Median Min. Max. Std. Skew. Kurt. AR(1)

Panel A: Pre-crisis period

Replicated VIV measures:
√

˜V IVt(1) 0.19 0.19 0.11 0.29 0.05 0.11 1.53 0.98
√

˜V IVt(3) 0.20 0.20 0.13 0.28 0.05 0.13 1.41 0.98
√

˜V IVt(5) 0.20 0.19 0.14 0.39 0.04 0.27 1.87 0.97

Original VIV measures:
√

V IVt(1) 0.20 0.21 0.12 0.29 0.05 0.00 1.47 0.99
√

V IVt(3) 0.21 0.22 0.14 0.29 0.05 -0.01 1.37 0.99
√

V IVt(5) 0.21 0.22 0.15 0.29 0.04 0.00 1.38 0.99

Panel B: Post-crisis period

Replicated VIV measures:
√

˜V IVt(1) 0.23 0.21 0.13 0.60 0.09 1.42 5.03 0.98
√

˜V IVt(3) 0.26 0.24 0.15 0.55 0.08 0.93 3.68 0.99
√

˜V IVt(5) 0.27 0.26 0.17 0.52 0.07 0.70 3.05 0.98

Original VIV measures:
√

V IVt(1) 0.24 0.21 0.13 0.61 0.09 1.35 4.81 0.99
√

V IVt(3) 0.26 0.25 0.15 0.54 0.08 0.84 3.48 0.99
√

V IVt(5) 0.28 0.27 0.17 0.49 0.07 0.53 2.76 0.99
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Table 6: Informational role of VIX derivatives: VEC analysis

This table presents the variance discovery analysis between the replicated and original VIV measures,
based on the VEC model as defined in Equation (20). The replicated VIV measure is computed
from a pair of the SIV measures. In contrast, the original VIV measure is computed directly from
the prices of VIX futures and options. The GG (Gonzalo and Granger, 1995) metric measures the
relative contribution of innovations in the original VIV measure to innovations in efficient prices.
HASL and HASU denote the lower and upper bounds on the information share (Hasbrouck, 1995)
of VIX derivatives, respectively. Panels A and B correspond to the pre-crisis period (July 1, 2006 to
August 31, 2008) and the post-crisis period (December 1, 2008 to August 31, 2014), respectively.

Speeds of adjustment Variance discovery ratios

Maturity α1 α2 GG HASL HASU

Panel A: Pre-crisis period

1 month −0.37 0.02 0.94 0.19 1.00
3 month −0.28 0.06 0.83 0.47 0.94
5 month −0.16 0.05 0.76 0.43 0.86

Panel B: Post-crisis period

1 month −0.15 0.21 0.42 0.05 0.92
3 month −0.19 0.09 0.67 0.21 0.93
5 month −0.26 0.01 0.96 0.59 1.00
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Table 7: Effects of informed trading on variance disparity

This table shows the results of regressing the variance disparity measure, BASIS, on the IT measure and control variables. The full sample
spans from July 1, 2006 to August 31, 2014. In the ex-crisis sample analysis, I exclude the three-month window corresponding to the peak
of the Lehman Brothers crisis. IT denotes the informed trading measure (which is defined as a detrended volume ratio of VIX futures to
SPX options), LIBOIS denotes the LIBOR–OIS spread, SPRDS denotes the relative bid–ask spread of SPX options, SPRDF denotes the
relative bid–ask spread of VIX futures, SPRDV denotes the relative bid–ask spread of VIX options, V IX denotes the CBOE VIX index,
and SKEW denotes the CBOE SKEW index. Newey and West (1987) robust t-statistics with an optimal lag are shown in parentheses. The
symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Sample period const. IT LIBOIS SPRDS SPRDF SPRDV V IX SKEW adj. R2 Nobs

Panel A: Informed trading measure only

Full sample 6.57∗∗∗ −0.77∗∗∗ 0.01 2050
(16.07) (-3.38)

Ex-crisis sample 5.95∗∗∗ −0.69∗∗∗ 0.02 1987
(21.84) (-3.32)

Panel B: All explanatory variables

Full sample −4.73 −0.62∗∗∗ 4.29∗∗∗ 2.90∗∗∗ 0.94∗∗ 0.25 −2.58∗∗∗ −0.25 0.41 2050
(-0.63) (-2.84) (5.45) (4.82) (2.55) (0.79) (-3.96) (-0.84)

Ex-crisis sample 13.74∗∗ −0.87∗∗∗ 1.41∗∗∗ 0.89∗∗∗ 0.73∗∗ −0.13 −1.46∗∗∗ −0.66∗∗ 0.11 1987
(2.08) (-4.53) (3.52) (3.61) (2.15) (-0.44) (-3.47) (-2.17)
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Table A1: Unit root and co-integration test results

This table presents the unit-root and co-integration test results for the logarithm of replicated and original VIV measures, which I denote by
˜V IVt(T ) and V IVt(T ), respectively. The replicated VIV measure is computed from a pair of SIV measures, which are extracted from the

SPX option prices. In contrast, the original VIV measure is computed directly from the prices of VIX futures and options. The KPSS test
evaluates the null hypothesis that the time series is stationary against the existence of a unit root. In contrast, the ADF test assesses the
null of the existence of a unit root. The Johansen maximum eigenvalue test assesses the null hypothesis that the number of co-integrating
relations is equal to r against r+1. The pre-crisis period (Panel A) and the post-crisis period (Panel B) are defined as July 1, 2006 to August
31, 2008 and December 1, 2008 to August 31, 2014, respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.

KPSS test ADF test Johansen test

Maturity log Ṽ IV log V IV log Ṽ IV log V IV H0 : r = 0 H0 : r = 1

Panel A: Pre-crisis period

1 month 4.56∗∗∗ 4.81∗∗∗ −0.73 −0.75 92.36∗∗∗ 2.01
3 month 4.61∗∗∗ 5.11∗∗∗ −0.83 −0.88 77.44∗∗∗ 1.61
5 month 4.96∗∗∗ 5.34∗∗∗ −0.99 −0.94 41.15∗∗∗ 1.65

Panel B: Post-crisis period

1 month 4.59∗∗∗ 4.58∗∗∗ 0.30 0.26 204.38∗∗∗ 9.77∗∗

3 month 5.61∗∗∗ 5.95∗∗∗ 0.62 0.67 155.42∗∗∗ 7.36
5 month 6.82∗∗∗ 8.35∗∗∗ 0.85 0.87 154.16∗∗∗ 5.69
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Figure 1: Histograms of the convexity ratios. The convexity ratio, CV RTt(T ), is
defined as the ratio of the convexity adjustment to the VIV measure. Panels A and B
correspond to short-term contracts (less than three months) and long-term contracts
(more than three months), respectively.
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Figure 2: Time series plots of the original and replicated VIV measures with a three-
month maturity. The original VIV measure (solid line) is calculated directly from
the VIX derivative prices. In contrast, the replicated VIV measure (dotted line) is
computed from a pair of the SIV measures.
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Figure 3: Time series plot of the average bases.
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Figure 4: Time series plot of LIBOR–OIS spreads.
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Figure 5: Time series plots of the weekly moving averages of the relative bid–ask
spreads. Panels A, B, and C correspond to SPX options, VIX futures, and VIX
options, respectively.
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Figure 6: Time series plots of trading volume. Panels A, B, and C correspond to SPX
options, VIX futures, and VIX options, respectively.
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Figure 7: Time series plots of the volume ratio of VIX futures to SPX options (F/O)
and the informed trading (IT ) measure. The IT measure (Panel B) is obtained by
detrending the volume ratio of VIX futures to SPX options (Panel A). The dotted
vertical line refers to January 29, 2009 when the first, and most actively traded, VIX-
linked ETP (ticker: VXX) was introduced.
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