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Abstract

This note presents a simplified version of the model of voluntary reserve targets

(VRT) developed in Baughman and Carapella (forthcoming), with a Walrasian inter-

bank market. First, the model makes transparent the role of target setting in con-

trolling the market rate. Second, the simplicity of the model allows for an analysis

of the interaction between VRT and tolerance bands, which are a common tool for

controlling rate variability. We find that the persistent overshooting of interbank rates

observed during the Bank of England’s experiment with VRT may derive from the

interaction between target setting and tolerance bands, a new explanation relative to

the literature. We also suggest a simple remedy.

1 Introduction

The Federal Reserve System has been, throughout 2019, conducting a strategic review of

its approach to monetary policy (Clarida, 2019). An important part of a central bank’s

overall monetary policy strategy is the set of short-run tactics employed to implement its

∗Contact: francesca.carapella@frb.gov. The opinions are those of the authors and do not represent the

views of the Federal Reserve System.
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desired policy rate. Different central banks employ a variety of such tactics including reserve

requirements, open market operations, and standing deposit and lending facilities. Taken

together, the set of tools employed comprise a central bank’s framework for monetary policy

implementation. Building a simplified version of the model in Baughman and Carapella

(forthcoming), this note describes a framework based on voluntary reserve targets (VRT).

Relative to Baughman and Carapella (forthcoming), this paper provides insight into the

interaction between the interbank interest rate and banks’ targets, and considers a technique

designed to limit rate variability.1

Before the 2008 financial crisis, the Bank of England (BoE) experimented with a VRT

framework with the goal of reducing rate variability (Clews, 2005). In this framework, banks

would set a target for their reserves (targeted reserves), and would then be held to this

target up to a small error allowance termed a tolerance band (Bank of England, 2006). The

BoE incentivized banks to set targets and manage reserves by remunerating those reserves.

Targeted reserves were paid at the BoE’s target rate, balances above the target (excess

reserves) were paid the target rate less a spread, while banks with balances below the target

(reserve shortages) would need to borrow from the BoE at the target rate plus the same

spread; a form of symmetric corridor (Berentsen and Monnet, 2008). Voluntary targets,

once set, served a similar function to reserve requirements in other countries, as the BoE

lacks the authority to set substantial reserve requirements. Specifically, targets can serve as

the basis for two methods to limit rate variability – tolerance bands and reserve averaging –

both of which depend on binding requirements.2

Here, complementary to Baughman and Carapella (forthcoming), we consider in detail

the effect of target setting on the market rate.3 We provide a simple argument that, given

1The Federal Reserve Open Market Committee (FOMC) has, as recently as March 2019, committed to
continue its current framework (Federal Open Market Committee (2019)), but has previously considered a
VRT framework. For citations and discussion of FOMC transcripts, see the introduction of Baughman and
Carapella (forthcoming).

2See Clouse and Dow (2002) and Hamilton (1996) on reserve averaging, and Armenter (2016) and Lee
(2016) on tolerance bands.

3Baughman and Carapella (forthcoming) considered a decentralized, OTC interbank market, focusing
on a variety of complexities of the US system. In the current paper, we offer a streamlined model with a
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an appropriate remuneration function, optimal target setting itself helps to guide market

rates. A reserve remuneration function which features a certain separability induces banks

to set targets which move the expected market rate to equal the rate on targeted reserves.4

Hence, simply by setting the rate on targeted reserves, a central bank moves the market rate

without the need for open market operations – providing the simplicity and flexibility of a

floor system discussed in Keister et al. (2008), but still providing an incentive for interbank

trade.

A remuneration function without the needed separability may provide perverse incen-

tives, moving market rates away from the rate on targeted reserves. Specifically, with a

remuneration function where tolerance bands are based on targeted reserves, the expected

market rate exceeds the target rate because of banks’ optimal target setting strategy. This

reflects the BoE’s experience. While the VRT system implemented by the BoE was largely

successful at controlling rate variability, the average interbank rate consistently exceeded the

BoE’s target. One plausible explanation, explored by Lee (2016), places the blame on im-

plicit asymmetries in the corridor due to stigma, collateral costs, or credit risk. Our analysis

of target setting instead points to tolerance bands, and rules out the shape of the corridor.

We suggest a simple alteration which could resolve the problem, basing tolerance bands on

something other than targets.

While not the driving factor of interest rates, we find that symmetry of the corridor is

important for quantities such as the level of banks’ targets and individual banks’ demand for

reserves. Under symmetry and other sufficient conditions, aggregate targets equal expected

aggregate reserves, and individual banks trade to exactly meet their targets when the market

rate equals the rate on targeted reserves.

Walrasian market where “the market rate” is a meaningful object that we can clearly connect to banks’
target setting.

4In the text, we consider only piecewise linear remuneration functions. In the appendix, we consider a
general remuneration function, provide precise definitions for separability and symmetry of the remuneration
function, and explore which results depend on which assumptions.
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2 Voluntary Reserve Targets with a Walrasian Market

We describe a model of voluntary reserve targets with a perfectly competitive interbank

market in the style of Poole (1968), first presenting a simplified version of the analysis in

Baughman and Carapella (forthcoming), and then applying the model to study tolerance

bands. In the model, banks’ choice of targets is endogenous, and so are interest rates in the

interbank market. Differently from the over-the-counter, frictional markets of Baughman

and Carapella (forthcoming), the interbank market is modeled here as a frictionless Wal-

rasian market. New relative to our previous work, we allow for aggregate shocks and rich

heterogeneity.

The economy is populated by a unit mass of banks indexed by i, and lasts for one period,

from the evening of one day to the evening of the next day. In the first evening, banks choose

a target for their reserve balances for the next day, Ti. The next morning, the aggregate

state is drawn, ω ∈ Ω. This aggregate state determines the aggregate quantity of reserves,

and affects the distribution of reserve balances of different banks. Banks start the day with

early balances Di drawn from some distribution Gi(Di|ω). After learning the aggregate state

and their individual balances, banks enter the interbank market. Banks observe the market

rate, iF and decide how much to borrow Fi (or lend if Fi < 0). After the close of the market,

banks receive a shock to their balances, εi ∼ H(εi), which is assumed to have a median of

zero (H(0) = 1/2).5

The central bank pays a high rate on balances up to the target, a low rate on balances

over the target, and charges a fee for shortages relative to the target. Specifically, let φ be

the fee on shortages with respect to the target, iE be the rate on reserves in excess of the

target (excess reserves), and iT be the rate on reserves up to the target (targeted reserves).

Assume iE < iT < iT + φ. For notational convenience we drop the index i, highlighting it

again when relevant. The remuneration of end of day reserve holdings D with a target of T

can be expressed concisely as

5This is without loss of generality: If the median value of ε is ε̄, simply redefine D to D+ ε̄ and ε to ε− ε̄.
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R(D,T ) =


iTT + iE(D − T ) if D ≥ T

iTD − φ(T −D) if D < T.

Notice, this can be written as R(D,T ) = iTT + R̃(D − T ) where

R̃ =


(iT + φ)(D − T ) if D ≤ T

iE(D − T ) if D > T

This additively separable form of remuneration into a portion depending on T and a portion

depending on D − T drives our core result, Proposition 1, that the expected market rate

should equal the rate on targeted reserves, iT . Before deriving that, however, let us first

define value functions and solve for optimal decisions working backwards.

Let U(D,T ) = Eε[R(D+ ε, T )] be the expected value of holding reserve balances D after

trading in the interbank market but before learning the final shock. Then

U(D,T ) = iTT +

∫ T−D

−∞
(iT + φ)(D + ε− T )dH(ε) +

∫ ∞
T−D

iE(D + ε− T )dH(ε). (1)

Stepping backward, the expected value entering the interbank market is to choose a quantity

of reserves to trade, F (positive if borrowing, negative if lending), at the market rate iF .

W (D,T ) = max
F

U(D + F, T )− iFF.

Writing D̂ = D + F and using equation (1), the first order condition6 for this problem is

iF = (iT + φ)H(T − D̂) + iE[1−H(T − D̂)], (2)

6The second order condition is satisfied: ∂2U/∂F 2 = −(iT + φ− iE)H ′(T −D) < 0.
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which can be re-written in terms of spreads as

iF − iT = φH(T − D̂)− (iT − iE)[1−H(T − D̂)]. (3)

The quantities φ and iT − iE reflect the width of the corridor around the target rate on the

top and bottom, respectively. If the corridor is symmetric, φ = (iT − iE), the first order

condition (3) reduces to

iT − iF
φ

= 1− 2H(T − D̂). (4)

When the rate is on target, by which we mean iF = iT , we have H(T − D̂) = 1/2. Given

our assumption that the median of H is zero, this implies that D̂ = T . That is, when the

interbank rate equals the rate on targeted reserves and the corridor is symmetric, all banks

trade to reach their targets. If the interbank rate is above the rate on targeted reserves,

iF > iT , then banks trade to below their targets, D̂ < T , and vice versa when rates are

under target.

Consider, also, the demand curve of each individual bank, derived from (3):

Fi = Ti −Di +H−1

(
1

2
− iT − iF

2φ

)

Integrating over the population and using the market clearing condition
∫
Fid i = 0, yields

the result that the relationship between aggregate targets, reserves, and interest rates is the

same as for the individual bank.

∫
i

Di −
∫
i

Ti = H−1

(
1

2
− iT − iF

2φ

)
.

Or, rearranging,

iF = iT + 2φ

[
H

(∫
i

Di −
∫
i

Ti

)
− 1

2

]
. (5)

Since H(0) = 1/2, the market rate will be on target when aggregate reserves equal aggre-
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gate targets, over when they are over, and under when they are under – the same as in the

individual case. Importantly, we can see that the market rate depends only on the differ-

ence between aggregate targets and aggregate reserves – an aggregation result familiar from

representative-bank models such as Whitesell (2006).

Stepping back to the point when banks choose targets, the night before, the expected

value of a given target for bank i, Vi(T ), is

Vi(T ) = Eω,Di,iF [W (Di, T )].

Taking the first order condition with respect to T and substituting from (2) we get

0 = Eω,Di,iF [iT − (iT + φ)H(T −Di)− iE[1−H(T −Di)]] = E[iT − iF ] (6)

Hence, it must be the case that average interbank rates, in equilibrium, equal the rate on

targeted reserves. We have proved

Proposition 1 In equilibrium expected rates equal the target: E[iF ] = iT .

Regardless of the symmetry of the corridor or the shape of each banks’ distribution of

reserves, Gi(Di|ω), banks will set targets in a way that results in an average market rate

equal to the rate on targeted reserves. Indeed, this holds even if there is correlation across

banks, reflected here in the dependence of Gi on the aggregate state, ω. The driving force

for this result is the additive separability of the remuneration schedule which makes trading

decisions affine functions of targets. If banks think that the interbank rate will be higher

than the rate on targeted reserves, they have an incentive to lower targets and lend on the

market. If banks think the interbank rate will be lower than the rate on targeted reserves,

they have an incentive to raise their target and borrow from the market. The only conjecture

for rates consistent with equilibrium is that the expected market rate will equal the rate on

targeted reserves.7 Hence, target setting controls the average rate.

7We restrict attention to the only interesting equilibrium, that is the one with interior choice of targets
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What level of targets should banks set? We can derive a simple prediction for aggregate

targets when both H and Gi are symmetric about their means.

Proposition 2 If the aggregate state ω induces a distribution of aggregate reserves, D̄ ≡∫
i
Di ∼ GD̄, that is symmetric about its mean, E[D̄], and the corridor is symmetric, φ =

iT − iE, then aggregate targets equal expected aggregate reserves, T̄ ≡
∫
i
Ti = E[D̄].

Proof. This is a special case of Theorem 7 in appendix section C, but we provide a proof

using the current notation in appendix section B.

Proposition 1 shows that banks’ targets always track expected reserves, in the sense that

targets result in expected rates that equal the rate on targeted reserves. Additionally, by

Proposition 2, if the corridor and the distribution of aggregate reserves are symmetric, banks

set their targets so that aggregate targets equal expected aggregate reserves.

Both of these results are about expected values taken at the point of target setting, before

ω or Di are revealed. If realized aggregate reserves exceed aggregate targets, then (5) shows

that the market rate will fall below the rate on targeted reserves, and vice versa. A central

bank wishing to control rate volatility could add or subtract reserves according to (5). This

must be done carefully, however. If banks anticipate that the central bank will respond to

their targets, they may strategically alter targets, creating instability discussed in section

5 of Baughman and Carapella (forthcoming). Hence, in order to preserve the rate control

promised by Proposition 1, a central bank should condition its operations not on targets, per

se, but instead on information about the aggregate state, ω – e.g. information on so-called

autonomous factors, like payments to or from the Treasury.

3 Tolerance Bands and Nonseparability

There are other methods to control variability of market rates besides open market operations

that adjust the aggregate quantity of reserves. One technique previously employed by the

and interior interbank rates: Ti ∈ (0,∞), iF ∈∈ (0,∞). To be precise, zero supply (i.e. infinite demand) in
the interbank market and zero interbank rates are also an equilibrium.
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BoE and others is tolerance bands (see Bank of England, 2006, pp. 14). These are analyzed

extensively by Armenter (2016) and Lee (2016), and here we extend their analysis to the

case of VRT. With tolerance bands, small errors within a proportion δ of the target, T ,

are forgiven in the sense that they still earn the rate on targeted reserves. The adjusted

remuneration function becomes

R(D,T ) =


iTD − φ((1− δ)T −D) if D < (1− δ)T

iTD if (1− δ)T ≤ D < (1 + δ)T

iT (1 + δ)T + iE(D − (1 + δ)T ) if (1 + δ)T ≤ D.

(7)

With such a remuneration function, the demand equation (3) becomes8

iT − iF = (iT + φ)H((1− δ)T − D̂) + iE[1−H((1 + δ)T − D̂)] (8)

and, assuming a symmetric corridor and writing

M = (1−H((1 + δ)T − D̂)) +H((1− δ)T − D̂)

for the probability of falling outside the tolerance band, the target choice equation, (6),

becomes

0 = iT − E [iF + φδM] . (9)

So, unless banks are sure they will fall inside the tolerance band, i.e. M = 0 in all states, the

average rate will exceed the rate on targeted reserves. When the width of the tolerance band

is increasing in targets, banks have an incentive to shade targets higher than they otherwise

might in order to increase the width of their tolerance band, so decrease the cost of falling

outside it.

8The details are similar to above, so are relegated to Appendix A.
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Lee (2016) discusses the fact that the BoE had rates on average higher than their target

rate during their operation of VRT, and attributes this to factors that make the corridor

implicitly asymmetric to the top: stigma of borrowing from the central bank or collateral

costs thereof, and credit risk of lending to private counterparties. While these asymmetries

may contribute to the experience of the BoE, equation (9) makes clear that the persistent

deviation of market rates from the rate on targeted reserves directly derives from target

setting and its interaction with tolerance bands even with a symmetric corridor.

As shown in appendix section A.1, this problematic interaction between tolerance bands

and voluntary targets, however, can easily be remedied if tolerance bands are not proportional

to targets. For example, one could set bands as a function of a bank’s lagged average balances,

or some other balance sheet variable like total deposits. TheM term in the target equation

would then disappear, but inverse demands would retain the same shape, and the desirable

qualities of a VRT without tolerance bands – that market rates average to the targeted rate

and aggregate targets track aggregate reserves – could be retained, while still producing the

reduced rate variability which is quantified in Lee (2016).

4 Conclusion

We have provided an analysis of VRT with a Walrasian interbank market, characterizing

targets, interbank trades, and rates, all under the assumption of a piecewise linear remu-

neration function. In section C of the appendix, we re-derive our key results for a general

remuneration function. There, we provide precise definitions of separability and symmetry of

a reserve remuneration function, and make clear which results depend on what assumptions.

Results regarding rates depend only on the separability of the remuneration function into

a part depending on the target and a part depending on deviations from targets. Results

regarding quantities depend on both separability and symmetry, together.

Regarding rates, our first result is an aggregation result common to representative-bank
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versions of the Poole model; the market rate depends only on the difference between aggregate

targets and aggregate reserves. The second result is more novel, establishing that VRT

automatically controls rates; the expected market rate equals the rate on targeted reserves

because of banks’ optimal target setting strategy.

Neither result on rates depends on a symmetric corridor. Both results, however, would be

affected by a tolerance band scheme similar to that implemented by the BoE, which violates

separability. Thus, we offer a new explanation for the rate divergence experienced by the

BoE during its operation of VRT. Our explanation links rate divergence to the interaction

between target setting and tolerance bands, instead of either stigma, credit risks, or collateral

costs as discussed in Lee (2016). Nevertheless, that paper provides a quantification of the

effect of tolerance bands on rate variability, and understanding the effects of asymmetries

remains important.

Regarding quantities, our first result states that, if the remuneration function and the

distribution of final shocks are both symmetric, banks trade to exactly satisfy their targets

when the market rate equals the rate on targeted reserves. Second, if one additionally

assumes the aggregate distribution of reserves is symmetric, then aggregate targets will equal

expected aggregate reserves. Deviations of targets from individual or aggregate reserves

are not necessarily cause for concern or intervention, and may simply reflect underlying

asymmetries in the distribution of shocks.
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A Derivations for tolerance bands

Given the remuneration function (7), the expected end-of-day value is

U(D,T ) =

∫ (1−δ)T−D

−∞
−φ(1− δ)T + (iT + φ)(D + ε)dH

+

∫ (1+δ)T−D

(1−δ)T−D
iT (D + ε)dH +

∫ ∞
(1+δ)T−D

(iT − iE)(1 + δ)T + iE(D + ε)dH (10)

Stepping back to the interbank market, one solves for demand from the first order condition
to W (D,T ) = maxF U(D+F, T )−iFF which gives (8). To derive the target choice equation,
take a derivative of V (T ) = E[UF (D,T )] to get

0 = E[(iT + φ)H((1− δ)T − D̂) + iE[1−H((1 + δ)T − D̂)]

+ φδ(1−H((1 + δ)T − D̂)) +H((1− δ)T − D̂)] (11)

Which gives (9) after substituting from (7) and the definition of M.

A.1 Non-proportional tolerance bands

Suppose that the width of the tolerance band is fixed at some constant k instead of being a
proportion of the target. The altered remuneration function becomes

R(D,T ) =


iTD − φ(T − k −D) if D < T − k
iTD if T − k ≤ D < T + k

iT (T + k) + iE(D − T − k) if T + k ≤ D

(12)

Notice that this can be re-written as R(D,T ) = itT + R̃(D − T ) where

R̃(x) =


(iT + φ)x− φk if x < −k
iTx if − k ≤ x < k

(iT − iE)k + iEx if k ≤ x.

When tolerance bands do not depend on T , one restores the additive separability of the
remuneration function into a part dependant on T and a part dependent on D − T . This,
then, removes the M term from the target setting equation (9), and all of the results from
Section 2 go through.

B Proof of Proposition 2

Proof. From (5), we can write

H
(
D̄ − T̄

)
=

1

2
+
iT − iF

2φ
.
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Since E[iF ] = iT by Proposition 1, we have E[H(D̄− T̄ )] = 1/2. So, setting T̄ = E[D̄] yields:

E[H(T̄ − D̄)] =

∫
H(E[D̄]− D̄)dG

(
D̄
)

=

∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)

+

∫ E[D̄]

−∞
H(E[D̄]− D̄)dG

(
D̄
)

=

∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)

+

∫ E[D̄]

−∞

[
1−H(D̄ − E[D̄])

]
dG
(
D̄
)

=

∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)

+
1

2
−
∫ E[D̄]

−∞
H(D̄ − E[D̄])dG

(
D̄
)

=

∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)
−
∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)

+
1

2
(13)

where we used symmetry of H, that is H(x) = 1 − H(−x), and then symmetry of G
about E[D̄].

Lemma 1 If G is symmetric about E[D̄] then∫ ∞
E[D̄]

H(E[D̄]− D̄)dG
(
D̄
)

=

∫ E[D̄]

−∞
H(D̄ − E[D̄])dG

(
D̄
)

Proof. To see this, first rewrite the right hand side of the above equation as∫ E[D̄]

−∞
H(D̄ − E[D̄])g

(
D̄
)
d
(
D̄
)

=

∫ −E[D̄]

+∞
H(−D̄ − E[D̄])g

(
−D̄

) (
−d
(
D̄
))

=

∫ +∞

−E[D̄]

H(−D̄ − E[D̄])g
(
−D̄

)
d
(
D̄
)

We then want to show that∫ ∞
E[D̄]

H(E[D̄]− D̄)g
(
D̄
)
d
(
D̄
)

=

∫ +∞

−E[D̄]

H(−D̄ − E[D̄])g
(
−D̄

)
d
(
D̄
)

(14)

consider each term and do a change of variable: let u = E[D̄]− D̄, so that∫ ∞
E[D̄]

H(E[D̄]− D̄)g
(
D̄
)
d
(
D̄
)

=

∫ −∞
0

H(u)g
(
E[D̄]− u

)
d
(
E[D̄]− u

)
=

∫ 0

−∞
H(u)g

(
E[D̄]− u

)
du
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then let u = −E[D̄]− D̄, so that∫ +∞

−E[D̄]

H(−D̄ − E[D̄])g
(
−D̄

)
d
(
D̄
)

=

∫ −∞
0

H(u)g
(
E[D̄] + u

)
d
(
−E[D̄]− u

)
=

∫ 0

−∞
H(u)g

(
E[D̄] + u

)
du

then (14) can be rearranged as∫ 0

−∞
H(u)g

(
E[D̄]− u

)
du =

∫ 0

−∞
H(u)g

(
E[D̄] + u

)
du

which is always satisfied as g
(
E[D̄]− u

)
= g

(
E[D̄] + u

)
by symmetry of G about E[D̄].

Combining the results from Lemma 1 with (13) yields

E[H(T̄ − D̄)]|T̄=E[D̄] =
1

2
.

Hence T̄ = E[D̄].

C More General Remuneration Functions

In this section, we reconstruct our results with a more general remuneration function, il-
lustrating which results depend on what properties. First, we give our precise definition of
separability.

Definition 1 A remuneration function, R(D,T ), is separable if there exists some R̃ such
that

R(D,T ) = iTT + R̃(D − T ).

Assumption 1 Assume the remuneration function is separable, and R̃ is a.e. differentiable,
weakly concave and injective. Also assume that H has full support.

Next, let γi(x) ≡ Eεi [R̃(x + εi)], h(y) =
∫
i
γ−1
i (y)d i and Γ(x) = h−1(x). Note that γ−1

i and
so Γ exist if one assumes full support for εi. Given these preliminaries, we can state

Theorem 2 Under Assumption 1, the market rate depends only on the difference between
aggregate targets and aggregate reserves: iF = Γ(D̄ − T̄ ).

Proof. When entering the interbank market, a bank solves

W (Di, Ti|iF ) = max
Fi

{
Eεi [iTTi + R̃(Di + Fi + εi − Ti)]− iFFi

}
with first order condition

iF = Eεi [R̃′(Di + Fi + εi − Ti)] = γi(Di + Fi − Ti). (15)
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Inverting γi and integrating over i gives∫
i

Di + Fi − Tid i =

∫
i

γ−1
i (iF )d i = Γ−1(iF ). (16)

Combining (16) with the market clearing condition,
∫
i
Fidi = 0, gives the result.

Theorem 3 Under Assumption 1, the expected market rate equals the rate on targeted re-
serves: iT = E[iF ].

Proof. When choosing targets, a bank makes a conjecture about other banks’ targets, T̄ ,
and solves

max
Ti

Eω,Di

[
W (Di, Ti|iF = Γ(D̄ − T̄ ))

]
.

Substituting in the remuneration function and taking derivatives we arrive at our first order
condition

iT = Eω,Di

[
Eεi [R̃′(Di + Fi + εi − Ti)]

]
= Eω,Di

[γi(Di + Fi − Ti)] .

We arrive at the result by substituting γi(·) = iF from (15).
The results regarding the level of targets depend upon additional assumptions. Hence, we

introduce some further preliminaries: a definition of symmetry for remuneration functions,
and some technical lemmas.

Definition 2 A remuneration function, R(D,T ), is symmetric if it is separable and if R̃
satisfies

R̃′(x) + R̃′(−x) = 2iT .

Lemma 4 If f : R→ R satisfies f(x) + f(−x) = 2a for all x and some constant a, and Y
is a random variable,which is symmetrically distributed about 0, then g(x) ≡ EY [f(x + Y )]
satisfies g(x) + g(−x) = 2a. Further, f(0) = g(0) = a.

Proof.

g(x) + g(−x) = E[f(x+ Y )] + E[f(−x+ Y )]

= E[f(x+ Y )] + E[f(−x− Y )]

= E[f(x+ Y ) + f(−(x+ Y ))] = 2a

where the second line follows from symmetry of Y which implies E[h(Y )] = E[h(−Y )] for
any function h. To see that f(0) = g(0) = a, suppose f(0) = a + ∆ for some ∆. Then
f(−0) = 2a− f(0) = a−∆. Hence a + ∆ = a−∆, so ∆ = 0. This applies equally well to
g.

Lemma 5 Suppose fi(x) : R → R is a collection of strictly decreasing functions which are
integrable over i and satisfy fi(x) + fi(−x) = 2a for all i. Define

h(x) ≡
∫
i

f−1
i (x).
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Then g(x) ≡ h−1 exists and g(x) + g(−x) = 2a.

Proof. First, fi strictly decreasing implies h is also, so g exists (and is strictly decreasing).
Next, if fi(x) = a+∆, then fi(−x) = 2a−fi(x) = a−∆. Hence, f−1

i (a+∆) = −f−1
i (a−∆).

This implies that, for each ∆ ∈ R,

h(a+ ∆) =

∫
i

f−1
i (a+ ∆) = x =⇒ h(a−∆) =

∫
i

f−1
i (a−∆) = −x.

Hence, g(x) = a+ ∆ and g(−x) = a−∆, giving g(x) + g(−x) = 2a.

Assumption 2 Assume that the remuneration function is symmetric and that end-of-day
errors, εi, have a symmetric distribution around zero (Hi(εi) = 1−Hi(−εi)).

Notice that, under assumption 2, the expected marginal remuneration function, γi, sat-
isfies the assumptions of Lemma 4.

Theorem 6 Given Assumptions 1 and 2, whenever rates are on target, iF = iT , banks trade
to their target: Fi = Ti −Di.

Proof. When iF = iT the first order condition for Fi, equation (15), implies γi(Fi+Di−Ti) =
iT . Let Y = εi and a = iT , so that g(Fi + Di − Ti) = γi(Fi + Di − Ti) = iT in Lemma 4.
Then Lemma 4 implies that one solution to g(Fi +Di − Ti) = iT is Fi +Di − Ti = 0; this is
the only solution by monotonicity of γi and hence g.

Finally, if we add one final assumption, we arrive at the result regarding aggregate targets:

Assumption 3 Assume that the distribution of the aggregate state ω induces a distribution
of aggregate reserves, D̄, that is symmetric about its mean.

Theorem 7 Under Assumptions 1, 2, and 3, aggregate targets equal expected aggregate re-
serves: T̄ = E[D̄].

Proof. From Theorems 2 and 3, we have iT = Eω[Γ(D̄ − T̄ )]. Now let fi = γi in Lemma
5. As γi inherits the properties of R̃, it, therefore, satisfies the assumptions in Lemma 5.
So Γ(x) + Γ(−x) = 2a. As a consequence, Γ(x) satisfies the assumptions in Lemma 4, for
f(x) = Γ(x). By assumption 3 the distribution of aggregate reserves is symmetric, and thus
satisfies the assumptions in Lemma 4 by letting Y = D̄ − Eω[D̄]. Then Lemma 4 implies
that g(0) = f(0) = a for g(x) ≡ Eω[Γ(x + Y )], x = Eω[D̄] − T̄ and a = iT . Hence, for
f(x) = Γ(x), one solution to g(x) = iT is T̄ = Eω[D̄]; this is the only solution because g
inherits monotonicity from Γ.
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