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In 1960, Working noted that time aggregation of a random walk

induces serial correlation in the first difference that is not present

in the original series. This important contribution has been over-

looked in a recent literature analyzing income and consumption

in panel data. I examine Blundell, Pistaferri and Preston (2008)

as an important example for which time aggregation has quan-

titatively large effects. Using new techniques to correct for the

problem, I find the estimate for the partial insurance to transitory

shocks, originally estimated to be 0.05, increases to 0.24. This

larger estimate resolves the dissonance between the low partial con-

sumption insurance estimates of Blundell, Pistaferri and Preston

(2008) and the high marginal propensities to consume found in the

natural experiment literature.
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In a short note in Econometrica, Working (1960) made the simple but impor-

tant point that time aggregation can induce serial correlation that is not present

in the original series. This fact was readily absorbed by the macroeconomic lit-

erature, where time aggregated series are common1 and a small literature has

grown around how to account for time aggregation in various settings.2

However, the effect of time aggregation has been overlooked in much of the

literature studying the covariance structure of household income and consumption

dynamics.3 This oversight can result in significant bias. I examine Blundell,

Pistaferri and Preston (2008) (henceforth BPP) not only as a way to demonstrate

new techniques to overcome the bias, but also because the consumption responses

to transitory and permanent income shocks are of significant economic interest in

themselves. Indeed, Kaplan and Violante (2010) argue that “the BPP insurance

coefficients should become central in quantitative macroeconomics”. Using the

same Panel Study of Income Dynmics (PSID) data as in BPP, I update their

underlying model to account for time aggregation. I find the estimate for partial

insurance to transitory shocks, originally estimated in BPP to be 0.05, to be

0.24 when time aggregation is accounted for. This new estimate resolves the

dissonance between BPP’s “full insurance of transitory shocks” and a parallel

literature that, using natural experiments, finds large consumption responses to

transitory income shocks.4 While this paper will focus on the implications of

time aggregation for the methodology in BPP, the techniques can be applied to

a broad swath of the literature.

1For an example see Campbell and Mankiw (1989)
2A sample of this literature includes Amemiya and Wu (1972), Weiss (1984) and Drost and Nijman

(1993).
3The literature goes back to early work such as Hause (1973), Weiss and Lillard (1979) and MaCurdy

(1982) that look at the covariance structure of the income process. Following BPP, a number of papers
have looked at income and consumption together, for example Arellano, Blundell and Bonhomme (2017)
.

4A small sample of this literature includes Parker et al. (2013), Agarwal and Qian (2014) and Sahm,
Shapiro and Slemrod (2010). Consumers also answer that they have a high marginal propensity to
consume when asked, see Fuster, Kaplan and Zafar (2018) and Jappelli and Pistaferri (2014). For an
overview of the entire literature on consumption responses to income shocks, see Jappelli and Pistaferri
(2010). Note the dissonance between BPP and the natural experiment literature is also addressed by
Commault (2017). In contrast to this paper, her approach makes structural changes to the underlying
model but does not address time aggregation.
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Figure 1. Income Flow and Observed Income

I. What is Time Aggregation?

Time aggregation occurs when a time series is observed at a lower frequency

than the underlying data that generates it. For example, income is often observed

at an annual frequency when it may in fact consist of paychecks arriving at a

monthly, biweekly or irregular timetable. To transform income into an annual

frequency, we sum up all the income that was received by a household during the

year. The key insight of Working (1960) is that even if there is no correlation

between changes in income at the underlying frequency, changes in the resulting

time aggregated series will show positive autocorrelation. The intuition behind

this can be seen in figure 1, showing the income process of a household that begins

with an annual salary of $50,000 and receives a permanent pay rise to $100,000

mid-way through the second year. The solid line shows this jump in income
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flow occurring just once. The crosses show the income we actually observe in

annual data. During the second year the household receives an annual $50,000

salary for six months, followed by $100,000 in the second six months, resulting

in a reported income of $75,000 for the entire year. The single shock to income

therefore appears in the time aggregated data as two increases. In this way, an

income change in one year is positively correlated with an income change in the

following year, even if the underlying income process follows a random walk.

II. Modelling Time Aggregation in Blundell, Pistaferri and Preston (2008)

A. The Model in Discrete Time Without Time Aggregation

Here I briefly describe the method used by Blundell, Pistaferri and Preston

(2008) to estimate household consumption responses to permanent and transitory

income shocks. The model described here is a simplified version of the original in

order to highlight the role played by time aggregation.5

The core of the model is the assumptions made on the income and consumption

processes. Unexplained log income growth for household i follows the process:

∆yi,t = ζi,t + ∆νi,t

where ζi,t (the change in permanent income) and νi,t (transitory income) are each

mean zero, finite variance, i.i.d. and independent of each other.

The unexplained change in log consumption is modeled as a random walk that

moves in response to permanent and transitory income shocks:

∆ci,t = φζi,t + ψνi,t

where φ and ψ are the partial insurance parameters. A value of zero for either φ or

5In this simplified model I assume insurance parameters are constant across both time and households,
that the transitory component of income has no persistence, and that there are no taste shocks. These
elements are reintroduced in section III in which I show the quantitative effect of time aggregation.
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ψ implies full insurance to permanent or transitory shocks respectively (consump-

tion does not respond at all to the income shock), while a value of one implies

no insurance. The transitory insurance parameter will be of particular interest in

this analysis. The core of the empirical methodology is to identify these insurance

parameters in the data from the following identities:

φ =
Cov(∆ct,∆yt−1 + ∆yt + ∆yt+1)

Cov(∆yt,∆yt−1 + ∆yt + ∆yt+1)
(1)

ψ =
Cov(∆ct,∆yt+1)

Cov(∆yt,∆yt+1)
(2)

B. The Model in Continuous Time with Time Aggregation

In this section I show how time aggregation can significantly bias the partial

insurance parameter estimates obtained by equations 1 and 2. The model in this

section will be the exact analog of the discrete time model just described, but

embedded in continuous time where shocks are spread uniformly throughout the

year.6 The main result does not hinge on the use of continuous time, and similar

estimates would be obtained by dividing the year into quarters or months.7

Time is continuous and one time unit represents one year. For the income

process we will assume two underlying martingale processes, Pt and Qt such that

for all s1 > s2 > s3 > s4 > 0:

Var(Ps1 − Ps2) = (s1 − s2)σ2
P

Cov(Ps1 − Ps2 , Ps3 − Ps4) = 0

Ps = 0 if s < 0

and similarly for Qt. Brownian motion fits these assumptions, but the slightly

6There is little formal evidence on the distribution of shocks throughout the year. While this as-
sumption is unlikely to be strictly true, it is more reasonable than the implicit assumption of BPP that
shocks all occur 1st January each year.

7The autocorrelation of a time aggregated random walk is 0.25 in continuous time, compared to
0.23 for a discrete quarterly model and almost indistinguishable from a discrete monthly model. The
theoretical moments are however significantly more elegant in continuous time. See appendix A.A2
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more general definition allows for jumps in the income process, such as getting

promoted. Instantaneous income in a period dt is given by:8

dyt = Ptdt+ dQt(3)

that is they receive their permanent income flow (Pt =
∫ t

0 dPs) multiplied by time

dt in addition to a one-off transitory income dQt.

Keeping with the assumption that consumption is a random walk with insurance

parameters φ and ψ, instantaneous consumption is given by:

dct = φPtdt+ ψQtdt(4)

that is, they consume a proportion φ of their permanent income and a proportion

ψ of the cumulation of all the transitory income they have received in their lifetime

(Qt =
∫ t

0 dQs).

In the Panel Study of Income Dynamics (PSID) data, we observe the total

income received over the previous calendar year at time T :

yobsT =

∫ T

T−1
dyt

Consumption is measured by a survey at the beginning of the following calendar

year, which I map to a snapshot of consumption exactly at the end of the calendar

year:9

cobsT = φPT + ψQT(5)

8A more formal treatment of how to relate this to the log income process is given in appendix A.A2.
9BPP use data on food consumption to impute total annual consumption. The questionnaire asks

about food consumption in a typical week, but unfortunately the timing of this ‘typical week’ is not
clear. The questionnaire is usually given at the end of March in the following year. See Altonji and
Siow (1987) and Hall and Mishkin (1982) for differing views. In appendix A.A4 I show that the timing
of the ‘typical’ week can have a large effect on the results. This is an important drawback to using this
method with the PSID data. In Crawley and Kuchler (2018) we use expenditure data imputed from
Danish administrative records in which the timing of expenditure is very clearly defined.
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The BPP method makes use of the changes in observable income and consump-

tion, which in the time aggregated model relate to:

∆yobsT =
(∫ T−1

T−2
(s− (T − 2))dPs +

∫ T

T−1
(T − s)dPs

)
+
(∫ T

T−1
dQt −

∫ T−1

T−2
dQt

)
(6)

∆cobsT = φ

∫ T

T−1
dPs + ψ

∫ T

T−1
dQs(7)

We see that these observable income and consumption changes in equations 1

and 2 recover the permanent, but not the transitory insurance parameter:

Cov(∆cobsT ,∆yobsT−1 + ∆yobsT + ∆yobsT+1)

Cov(∆yobsT ,∆yobsT−1 + ∆yobsT + ∆yobsT+1)
= φ(8)

Cov(∆cobsT ,∆yobsT+1)

Cov(∆yobsT ,∆yobsT+1)
= ψ −

(3φ− ψ)σ2
P

6σ2
Q − σ2

P

(9)

Indeed the transitory insurance coefficient bears little relation to the true value

of ψ. For example, if permanent and transitory variances are equal, and house-

holds follow the permanent income hypothesis (φ = 1, ψ = 0), the estimate for ψ

using this method will be negative 0.6.

III. Revised BPP Estimates

In this section I repeat the BPP estimation proceedure, but with the model

moments coming from the continuous time model with time aggregated income.

While the core identification in BPP is illustrated in equations 1 and 2, the

full estimation proceedure minimizes the distance between all the observable co-

variances (Cov(∆yobsT ,∆yobsS ), Cov(∆cobsT ,∆cobsS ) and Cov(∆cobsT ,∆yobsS )) and their

model implied equivalents.10 The full set of these model implied moments for the

continuous time model, extended to include time varying coefficients, transitory

10I follow the exact same diagonally weighted minimum distance proceedure in BPP as described in
appendix D of Blundell, Pistaferri and Preston (2008)
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persistence and taste shocks, can be found in appendix A.A1 and appendix A.A3.

Table 1—Minimum-Distance Partial Insurance and Variance Estimates

BPP Time Agg.

Persistence Type: None MA(1) None Uniform Linear Decay
ψ 0.0503 0.0501 0.2421 0.2510 0.2403
(Partial insurance tran. shock) (0.0505) (0.0430) (0.0431) (0.0428) (0.0417)
φ 0.4692 0.6456 0.3384 0.3287 0.3516
(Partial insurance perm. shock) (0.0598) (0.0941) (0.0471) (0.0580) (0.0627)

Table 1 shows the estimates for the transitory and permanent insurance param-

eters, first using BPP’s original method and then with time aggregation. As there

is no equivalent to an MA(1) process in continuous time, I consider two alternative

ways to introduce persistence in the transitory shock, as well as reporting results

assuming no persistence. First I assume a transitory shock provides a stream

of income uniformly distributed over a short period of time (to be estimated).

Second I assume the stream of income decays linearly over a short period.11 The

time aggregated results are not very sensitive to these assumptions.

The top row of table 1 gives the main result showing the transitory insurance

parameter increases from 0.05 in BPP to 0.24 with time aggregation. This new

estimate is much more in line with the literature that estimates MPCs using

natural experiments.

Note that this large consumption response to transitory shocks, along with a

lifetime budget constraint, is incompatible with the assumption common in both

models that consumption moves as a random walk. This misspecification perhaps

explains why the permanent insurance parameter appears to be relatively small

in the time aggregated model. In Crawley and Kuchler (2018) we suggest ways

to approach this.

11See appendix A.A3 for details.
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IV. Conclusion

This paper highlights the importance of time aggregation when working with

panel data, especially when analyzing the covariance matrix of income and con-

sumption growth. It also resolves the dissonance between BPP’s estimates of

transitory income insurance and the natural experiment literature on marginal

propensity to consume. Going forward, I hope the methods used here to cor-

rect for the time aggregation problem can be useful for researchers, especially as

more and more high quality panel datasets on income and consumption become

available.
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Mathematical Appendix

A1. Identification in the Full Model

In this appendix I calculate the full set of identifying equations for the non-

stationary model with measurement error in consumption and taste shocks. Ap-

pendix A.A3 extends these to add persistence in the transitory shock.

I am interested in the full set of observable covariances:

Cov(∆yobsT ,∆yobsS )

Cov(∆cobsT ,∆cobsS )

Cov(∆cobsT ,∆yobsS )
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for all T and S in {1, 2, ...}. I further make the assumption that while the variance

of the permanent and transitory shocks and insurance coefficients can change from

year to year, within each year these are constant. The variance the permanent

shock in year T is σ2
P,T and the transitory shock σ2

Q,T . I use equation 6 for

the change in observable log income, and extend equation 7 for the change in

observable log consumption to include taste shocks (ξt) and measurement error

(uT ):

∆cobsT = φ

∫ T

T−1
dPs + ψ

∫ T

T−1
dQs +

∫ T

T−1
dξs + uT − uT−1

These two equations allow for the calculation of all the required identification

equations:

Var(∆yobsT ) = E
(∫ T−1

T−2
(s− (T − 2))2dPsdPs +

∫ T

T−1
(T − s)2dPsdPs

)
+ E

(∫ T

T−1
dQtdQt +

∫ T−1

T−2
dQtdQt

)
=

1

3
σ2
P,T +

1

3
σ2
P,T−1 + σ2

Q,T + σ2
Q,T−1(A1)

Cov(∆yobsT ,∆yobsT+1) = E
(∫ T

T−1
(T − s)(s− (T − 1))dPsdPs

)
− E

(∫ T

T−1
dQtdQt

)
=

1

6
σ2
P,T − σ2

Q,T

Cov(∆yobsT ,∆yobsT−1) =
1

6
σ2
P,T−1 − σ2

Q,T−1

Cov(∆yobsT ,∆yobsS ) = 0 ∀S, T such that |S − T | > 1
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Var∆cobsT = φ2E
(∫ T

T−1
dPsdPs

)
+ ψ2E

(∫ T

T−1
dQsdQs

)
+ E

(∫ T

T−1
dξsdξs

)
+ σ2

u,T + σ2
u,T−1

= φ2σ2
P,T + ψ2σ2

Q,T + σ2
ξ,T + σ2

u,T + σ2
u,T−1

Cov(∆cobsT ,∆cobsT+1) = −σ2
u,T

Cov(∆cobsT ,∆cobsT−1) = −σ2
u,T−1

Cov(∆cobsT ,∆cobsS ) = 0 ∀S, T such that |S − T | > 1

Cov(∆cobsT ,∆yobsT ) = E
(
φT

∫ T

T−1
(T − s)dPsdPs + ψT

∫ T

T−1
dQsdQs

)
=

1

2
φTσ

2
P,T + ψTσ

2
Q,T

Cov(∆cobsT ,∆yobsT+1) = E
(
φT

∫ T

T−1
(s− (T − 1))dPsdPs − ψT

∫ T

T−1
dQsdQs

)
=

1

2
φTσ

2
P,T − ψTσ2

Q,T

Cov(∆cobsT ,∆yobsT−1) = 0

Cov(∆cobsT ,∆yobsS ) = 0 ∀S, T such that |S − T | > 1

A2. Continuous Time Model as Limit of Discrete Model with m Sub-periods

The identifying equations in the paper are calculated using a ‘log’ income pro-

cess that does not directly align with any real-world concept of income. In the

data we take logs on the sum of income over the entire year, but the process we use

in the model informally aligns with log income over an instantaneous period dt.

This is a problem as transitory income arrive as a point mass, making it difficult

to interpret what the ‘log’ income process really represents. Here I show how the

identifying equations can be derived as the limit of discrete time model with m

sub-periods. I show that in the limit the variance of observed log income growth

is the same as derived in the informal model (to a first order approximation).

The rest of the identifying equations can be shown in the same way.

Let pt for t ∈ R+ be a martingale process (possibly with jumps) with in-
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dependent stationary increments and ν be such that E(ept−pt−1) = eν . Define

permanent income as:

Pt = ept−tν

Note that E
(
Pt+s

Pt

)
= 1 for all s ≥ 0. Define the variance of log permanent shocks

to be:

σ2
P = Var

(
log
(Pt+1

Pt

))
= Var(pt+1 − pt)

We will assume changes in permanent income over a one year period are small

enough such that:

Var
(Pt+1

Pt

)
= Var

(Pt+1 − Pt
Pt

)
≈ Var

(
log
(
1 +

Pt+1 − Pt
Pt

))
= Var

(
log
(Pt+1

Pt

))
= σ2

P

For transitory shocks, we define an increasing stochastic process, Θt, which also

has independent stationary increments. The increments in this process will define

the transitory shocks. We set the expectation of increments, and the variance of

the log of an increment of length 1 as:

E(Θt+s −Θt) = s

Var
(

log
(
Θt+1 −Θt

))
= σ2

Θ

Note that for this to be well defined, Θt must not only be increasing but also its in-

crements are almost surely strictly positive (so that log of the increment is defined

almost everywhere). Examples of such a stochastic process would be a gamma

process, or a process that increases linearly with time (non-stochastically) but is
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also subject to positive shocks that arrive as a Poisson process. The stochastic

part of this process has no Brownian motion component as this would necessarily

lead to non-zero probability of a decreasing increment.

We will use these two processes to define an income process in discrete time

with m intervals per period, and then look at the limit as m → ∞. Define θt,m

for t ∈ { 1
m ,

2
m ,

3
m ...} to be the increment of Θt from t− 1

m to t:

θt,m = Θt −Θ1− 1
m

Income is defined for each period t ∈ { 1
m ,

2
m ,

3
m ...} as:

Yt,m = Ptθt,m

Therefore the underlying income process has a pure division into permanent and

transitory shocks. Income is observed for T ∈ {1, 2, 3...} as the sum of income in

each of the subperiods:

ȲT,m =
m−1∑
i=0

PT− i
m
θT− i

m
,m

Note that for m = 1 this the same as the underlying income process, with per-

manent and transitory variance as defined above. We are interested in the log of

observable income growth:

∆ȳT,m = log ȲT,m − log ȲT−1,m

= log

(
m−1∑
i=0

PT− i
m
θT− i

m
,m

)
− log

(
m−1∑
i=0

PT−1− i
m
θT−1− i

m
,m

)

= log

(
m−1∑
i=0

PT− i
m

PT−1
θT− i

m
,m

)
− log

(
m−1∑
i=0

PT−1− i
m

PT−1
θT−1− i

m
,m

)

As Pt and Θt have independent increments, the covariance between each of the
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two parts of the sum above is 0. Therefore:

Var
(

∆1ȳT,m

)
= Var

(
log

(
m−1∑
i=0

PT− i
m

PT−1
θT− i

m
,m

))
+ Var

(
log

(
m−1∑
i=0

PT−1− i
m

PT−1
θT−1− i

m
,m

))

We will treat each of these two variances individually. We begin by looking at

the variable:

log

(
m−1∑
i=0

PT− i
m

PT−1
θT− i

m
,m

)
= log

(
m−1∑
i=0

θT− i
m
,m +

m−1∑
i=0

(PT− i
m

PT−1
− 1
)
θT− i

m
,m

)

= log
(

ΘT −ΘT−1

)
+ log

(
1 +

m−1∑
i=0

(PT− i
m

PT−1
− 1
) θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)

≈ log
(

ΘT −ΘT−1

)
+
m−1∑
i=0

(PT− i
m

PT−1
− 1
) θT− i

m
,m∑m−1

l=0 θT− l
m
,m

Where the approximation comes from the fact that the shocks to permanent

income in a one year period are small. Defining

ζt,m =
Pt

Pt− 1
m
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we have that

Var

(
log

(
m−1∑
i=0

PT− i
m

PT−1
θT− i

m
,m

))
≈ σ2

Θ + Var

(
m−1∑
i=0

(m−1∏
j=i

ζT− j
m
− 1
) θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)

= σ2
Θ + E

[
m−1∑
i=0

(m−1∏
j=i

ζT− j
m
− 1
) θT− i

m
,m∑m−1

l=0 θT− l
m
,m

]2

= σ2
Θ + E

[
m−1∑
i=0

((m−1∏
j=i

ζT− j
m
− 1
)2
(

θT− i
m
,m∑m−1

l=0 θT− l
m
,m

)2

+ 2
∑
k<i

(m−1∏
j=k

ζT− j
m
− 1
)(m−1∏

j=i

ζT− j
m
− 1
) θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

)]

= σ2
Θ +

σ2
P

m

m−1∑
i=0

(
iE

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

+ 2
∑
k<i

(m− 1− i)E

(
θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

))

= σ2
Θ +

σ2
P

m

m(m− 1)

2
E

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

+ 2
σ2
P

m

m−1∑
i=1

i(m− 1− i)E

(
θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

)

= σ2
Θ + σ2

P

m− 1

2
E

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

+ σ2
P

[
(m− 1)2 − (m− 1)(2m− 1)

3

]
E

(
θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

)

Note that:

1 = E

(
m−1∑
i=0

θT− i
m
,m∑m−1

l=0 θT− l
m
,m

)2

=
m−1∑
i=0

E

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

+ 2
∑
k<i

E

(
θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

)
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So that

E

(
θT− k

m
,mθT− i

m
,m(∑m−1

l=0 θT− l
m
,m

)2

)
=

1

m(m− 1)
− 1

m− 1
E

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

This gives:

Var

(
log

(
m−1∑
i=0

PT− i
m

PT−1
θT− i

m
,m

))
≈ σ2

Θ + Var

(
m−1∑
i=0

(m−1∏
j=i

ζT− j
m
− 1
) θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)

≈ σ2
Θ +

m− 2

3m
σ2
P +

m+ 1

6
E

(
θT− i

m
,m∑m−1

l=0 θT− l
m
,m

)2

σ2
P

→ σ2
Θ +

1

3
σ2
P as m→∞

A very similar calculation shows that:

Var

(
log

(
m−1∑
i=0

PT−1− i
m

PT−1
θT−1− i

m
,m

))
→ σ2

Θ +
1

3
σ2
P as m→∞

Putting these together gives:

Var
(

∆ȳT,m

)
→ 2

3
σ2
P + 2σ2

Θ as m→∞

This is the same as the identifying equation for Var
(

∆yobsT

)
(equation A1 from

appendix A.A1, assuming shock variances are constant over time), and the rest

of the identifying equations can be shown as the limit of the discrete time model

in a similar way.

A3. Persistence in Transitory Shock

This appendix shows how to extend the time aggregated model to include per-

sistence in the transitory shock.
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Linear Decay Model

I will walk though the derivation of the moments for the linear decay model

in detail and then just list the moments for the uniform model. In the linear

decay model, a shock of size 1 will arrive with a flow intensity of 2
τ and over the

subsequent time τ the total flow of transitory income will sum to 1. Instantaneous

income can be written as:

dyt =
(∫ t

0
dPs

)
dt+

(∫ t

t−τ

2

τ
(s− (t− τ))dQs

)
dt

So that the observable change in income is given by:

∆yobsT =

∫ T

T−1
ytdt−

∫ T−1

T−2
ytdt

=

∫ T

T−1

∫ t

0
dPsdt−

∫ T−1

T−2

∫ t

0
dPsdt

+

∫ T

T−1

∫ t

t−τ

2

τ
(s− (t− τ))dQsdt−

∫ T−1

T−2

∫ t

t−τ

2

τ
(s− (t− τ))dQsdt

=
(∫ T−1

T−2
(s− (T − 2))dPs +

∫ T

T−1
(T − s)dPs

)
+

2

τ

(∫ T

T−τ

1

2

(
τ − (s− (T − τ))2

τ

)
dQs +

∫ T−τ

T−1

1

2
τdQs +

∫ T−1

T−1−τ

1

2

(s− (T − 1− τ))2

τ
dQs

)
− 2

τ

(∫ T−1

T−1−τ

1

2

(
τ − (s− (T − 1− τ))2

τ

)
dQs +

∫ T−1−τ

T−2

1

2
τdQs

+

∫ T−2

T−2−τ

1

2

(s− (T − 2− τ))2

τ
dQs

)
=

∫ T−1

T−2
(s− (T − 2))dPs +

∫ T

T−1
(T − s)dPs

+

∫ T

T−τ
1−

(s− (T − τ)

τ

)2
dQs +

∫ T−τ

T−1
dQs

−
∫ T−1

T−1−τ
1− 2

(s− (T − 1− τ)

τ

)2
dQs

−
∫ T−1−τ

T−2
dQs −

∫ T−2

T−2−τ

(s− (T − 2− τ)

τ

)2
dQs
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The full set of identification equations used in this model are:

Var(∆yobsT ) = E
(∫ T−1

T−2
(s− (T − 2))2dPsdPs +

∫ T

T−1
(T − s)2dPsdPs

)
+ E

(∫ T

T−τ

(
1−

(s− (T − τ)

τ

)2)2
dQsdQs +

∫ T−τ

T−1
dQsQs

)
+ E

(∫ T−1

T−1−τ

(
1− 2

(s− (T − 1− τ)

τ

)2)2
dQsdQs

)
+ E

(∫ T−1−τ

T−2
dQsdQs +

∫ T−2

T−2−τ

(s− (T − 2− τ)

τ

)4
dQsdQs

)
=

1

3
σ2
P,T +

1

3
σ2
P,T−1

+
8

15
τσ2

Q,T + (1− τ)σ2
Q,T

+
7

15
τσ2

Q,T−1

+ (1− τ)σ2
Q,T−1 +

1

5
τσ2

Q,T−2

=
1

3
σ2
P,T +

1

3
σ2
P,T−1 +

(
1− 7

15
τ
)
σ2
Q,T + (1− 8

15
τ)σ2

Q,T−1 +
1

5
τσ2

Q,T−2

Cov(∆yobsT ,∆yobsT+1) = E
(∫ T

T−1
(T − s)(s− (T − 1))dPsdPs

)
− E

(∫ T

T−τ

(
1−

(s− (T − τ)

τ

)2)(
1− 2

(s− (T − τ)

τ

)2)
dQsdQs

)
− E

(∫ T−τ

T−1
dQsQs

)
+ E

(∫ T−1

T−1−τ

(
1− 2

(s− (T − 1− τ)

τ

)2)(s− (T − 1− τ)

τ

)2
dQsdQs

)
=

1

6
σ2
P,T −

2

5
τσ2

Q,T − (1− τ)σ2
Q,T −

1

15
σ2
Q,T−1

Cov(∆yobsT ,∆yobsT+2) = −E
(∫ T

T−τ

(
1−

(s− (T − τ)

τ

)2)(s− (T − τ)

τ

)2
dQsdQs

)
= − 2

15
τσ2

Q,T
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The above equations also work for Cov(∆yobsT ,∆yobsT−1) and Cov(∆yobsT ,∆yobsT−2)

due to symmetry.

Cov(∆yobsT ,∆yobsS ) = 0 ∀S, T such that |S − T | > 2

The covariance matrix Cov(∆cobsT ,∆cobsS ) is the same as in appendix A.A1.

Cov(∆cobsT ,∆yobsT ) = φTE
(∫ T

T−1
(T − s)dPsdPs

)
+ ψTE

(∫ T

T−τ

(
1−

(s− (T − τ)

τ

)2)
dQsdQs +

∫ T−τ

T−1
dQsdQs

)
=

1

2
φTσ

2
P,T + ψT (1− 1

3
τ)σ2

Q,T

Cov(∆cobsT ,∆yobsT+1) = φTE
(∫ T

T−1
(s− (T − 1))dPsdPs

)
− ψTE

(∫ T

T−τ

(
1− 2

(s− (T − τ)

τ

)2)
dQsdQs +

∫ T−τ

T−1
dQsdQs

)
=

1

2
φTσ

2
P,T − (1− 2

3
τ)ψTσ

2
Q,T

Cov(∆cobsT ,∆yobsT+2) = −ψTE
(∫ T

T−τ

(s− (T − τ)

τ

)2
dQsdQs

)
= −1

5
ψT τσ

2
Q,T

The Uniform Model

In the uniform model, transitory shocks consist of a constant flow of income

that lasts for a time period τ . The full set of moments for this model are:

Var(∆yobsT ) =
1

3
σ2
P,T +

1

3
σ2
P,T−1 +

(
1− 2

3
τ
)
σ2
Q,T + (1− 2

3
τ)σ2

Q,T−1 +
1

3
τσ2

Q,T−2
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Cov(∆yobsT ,∆yobsT+1) =
1

6
σ2
P,T −

1

6
τσ2

Q,T − (1− τ)σ2
Q,T −

1

15
σ2
Q,T−1

Cov(∆yobsT ,∆yobsT+2) = −1

6
τσ2

Q,T

The above equations also work for Cov(∆yobsT ,∆yobsT−1) and Cov(∆yobsT ,∆yobsT−2)

due to symmetry.

Cov(∆yobsT ,∆yobsS ) = 0 ∀S, T such that |S − T | > 2

The covariance matrix Cov(∆cobsT ,∆cobsS ) is the same as in appendix A.A1.

Cov(∆cobsT ,∆yobsT ) =
1

2
φTσ

2
P,T + ψT (1− 1

2
τ)σ2

Q,T

Cov(∆cobsT ,∆yobsT+1) =
1

2
φTσ

2
P,T − (1− τ)ψTσ

2
Q,T

Cov(∆cobsT ,∆yobsT+2) = −1

2
ψT τσ

2
Q,T

A4. Effect of Timing of Consumption in the PSID

BPP impute annual consumption from the question in the PSID asking about

food consumption in a ‘typical’ week. Unfortunately it is not clear if this relates

to an average of the previous calendar year, or some more recent week closer to

when the interview was conducted (normally in March of the following year). In

the paper I have assumed the answer gives a snapshot of consumption at the end

of the calendar year. Here I show that assuming the ‘typical’ week is an average of

consumption over the previous calendar year, the identifying equation from BPP

for transitory insurance coefficient is different again, and still significantly biased.

Under this new assumption the equation for the permanent insurance coefficient
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is unbiased as before:

Cov(∆cobsT ,∆yobsT−1 + ∆yobsT + ∆yobsT+1)

Cov(∆yobsT ,∆yobsT−1 + ∆yobsT + ∆yobsT+1)
= φ

While the identifying equation for the transitory insurance coefficient is:

Cov(∆cobsT ,∆yobsT+1)

Cov(∆yobsT ,∆yobsT+1)
=
−φ1

6σ
2
P + 1

2ψσ
2
Q

−1
6σ

2
P + σ2

Q

6= ψ

Under the permanent income hypothesis with φ = 1, ψ = 0 and permanent and

transitory variances approximately equal, the BPP estimate of ψ would be -0.2.

A5. Other Tables from the BPP paper

Table A1 replicates Table 6 from the original BPP paper.

Table A2 replicates Table 7 from the original BPP paper.

Table A3 replicates Table 8 from the original BPP paper.
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Table A1—Minimum-Distance Partial Insurance and Variance Estimates

Whole Sample No College College
BPP Time Agg. BPP Time Agg. BPP Time Agg.

σ2
P,T 1979-1981 0.0103 0.0247 0.0068 0.0234 0.0101 0.0189

(Variance perm. shock) (0.0034) (0.0043) (0.0037) (0.0063) (0.0053) (0.0050)
1982 0.0208 0.0358 0.0156 0.0290 0.0253 0.0455

(0.0041) (0.0071) (0.0052) (0.0099) (0.0060) (0.0099)
1983 0.0301 0.0333 0.0318 0.0553 0.0234 0.0086

(0.0057) (0.0100) (0.0074) (0.0128) (0.0090) (0.0148)
1984 0.0274 0.0292 0.0334 0.0232 0.0177 0.0361

(0.0049) (0.0114) (0.0073) (0.0131) (0.0060) (0.0161)
1985 0.0295 0.0363 0.0287 0.0504 0.0208 0.0025

(0.0096) (0.0124) (0.0073) (0.0145) (0.0152) (0.0205)
1986 0.0221 0.0327 0.0173 0.0247 0.0311 0.0597

(0.0060) (0.0136) (0.0067) (0.0172) (0.0101) (0.0202)
1987 0.0289 0.0420 0.0202 0.0478 0.0354 0.0229

(0.0063) (0.0143) (0.0073) (0.0182) (0.0098) (0.0211)
1988 0.0158 0.0082 0.0117 -0.0069 0.0183 0.0302

(0.0069) (0.0137) (0.0079) (0.0209) (0.0110) (0.0149)
1989 0.0185 0.0531 0.0107 0.0639 0.0274 0.0414

(0.0059) (0.0129) (0.0101) (0.0214) (0.0061) (0.0149)
1990-92 0.0135 0.0291 0.0093 0.0265 0.0217 0.0291

(0.0042) (0.0042) (0.0045) (0.0063) (0.0065) (0.0057)
σ2
Q,T 1979 0.0379 0.0310 0.0465 0.0364 0.0301 0.0261

(Variance trans. shock) (0.0059) (0.0049) (0.0096) (0.0080) (0.0056) (0.0043)
1980 0.0298 0.0240 0.0330 0.0247 0.0283 0.0238

(0.0039) (0.0033) (0.0053) (0.0046) (0.0059) (0.0047)
1981 0.0300 0.0265 0.0363 0.0305 0.0253 0.0222

(0.0035) (0.0032) (0.0053) (0.0048) (0.0046) (0.0040)
1982 0.0287 0.0280 0.0375 0.0332 0.0213 0.0237

(0.0039) (0.0034) (0.0063) (0.0057) (0.0042) (0.0036)
1983 0.0262 0.0276 0.0371 0.0378 0.0185 0.0169

(0.0037) (0.0034) (0.0063) (0.0056) (0.0037) (0.0040)
1984 0.0346 0.0350 0.0404 0.0388 0.0304 0.0315

(0.0039) (0.0038) (0.0059) (0.0058) (0.0051) (0.0046)
1985 0.0450 0.0427 0.0355 0.0338 0.0496 0.0465

(0.0075) (0.0071) (0.0056) (0.0053) (0.0130) (0.0122)
1986 0.0458 0.0404 0.0474 0.0373 0.0452 0.0464

(0.0058) (0.0055) (0.0076) (0.0068) (0.0085) (0.0084)
1987 0.0461 0.0445 0.0520 0.0486 0.0421 0.0385

(0.0054) (0.0053) (0.0082) (0.0078) (0.0071) (0.0069)
1988 0.0399 0.0327 0.0471 0.0360 0.0343 0.0313

(0.0047) (0.0044) (0.0074) (0.0072) (0.0060) (0.0055)
1989 0.0378 0.0343 0.0539 0.0475 0.0219 0.0215

(0.0067) (0.0061) (0.0126) (0.0117) (0.0051) (0.0044)
1990-92 0.0441 0.0359 0.0535 0.0408 0.0345 0.0322

(0.0040) (0.0027) (0.0062) (0.0047) (0.0049) (0.0032)
θ 0.1126 N/A 0.1260 N/A 0.1082 N/A

(Serial correl. trans. shock) (0.0248) (0.0319) (0.0342)
σ2
ξ 0.0097 0.0122 0.0065 0.0114 0.0132 0.0146

(Variance unobs. slope heterog.) (0.0041) (0.0039) (0.0079) (0.0070) (0.0040) (0.0039)
φ 0.6456 0.3384 0.9484 0.4365 0.4180 0.2729

(Partial insurance perm. shock) (0.0941) (0.0471) (0.1773) (0.0738) (0.0913) (0.0603)
ψ 0.0501 0.2421 0.0724 0.2870 0.0260 0.1590

(Partial insurance trans. shock) (0.0430) (0.0431) (0.0593) (0.0616) (0.0546) (0.0504)
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Table A2—Minimum-Distance Partial Insurance and Variance Estimates

Consumption: Nondurable Nondurable Nondurable
Income: net income earnings only male earnings
Sample: baseline baseline baseline

BPP Time Agg. BPP Time Agg. BPP Time Agg.
φ 0.6456 0.3384 0.3101 0.1761 0.2240 0.1232
(Partial insurance perm. shock) (0.0941) (0.0471) (0.0572) (0.0339) (0.0492) (0.0316)
ψ 0.0501 0.2421 0.0630 0.1625 0.0502 0.1181
(Partial insurance trans. shock) (0.0430) (0.0431) (0.0306) (0.0280) (0.0293) (0.0244)

Table A3—Minimum-Distance Partial Insurance and Variance Estimates

Consumption: Nondurable Nondurable Nondurable
Income: net income excluding help net income
Sample: baseline baseline low wealth

BPP Time Agg. BPP Time Agg. BPP Time Agg.
φ 0.6456 0.3384 0.6244 0.3422 0.8339 0.8584
(Partial insurance perm. shock) (0.0941) (0.0471) (0.0891) (0.0466) (0.2762) (0.2498)
ψ 0.0501 0.2421 0.0469 0.2404 0.2853 0.4926
(Partial insurance trans. shock) (0.0430) (0.0431) (0.0429) (0.0427) (0.1154) (0.1050)

Consumption: Nondurable Total Nondurable
Income: net income net income net income
Sample: high wealth low wealth baseline+SEO

BPP Time Agg. BPP Time Agg. BPP Time Agg.
φ 0.6278 0.2691 1.0207 1.0580 0.7663 0.4630
(Partial insurance perm. shock) (0.0998) (0.0420) (0.3426) (0.3099) (0.1028) (0.0499)
ψ 0.0088 0.1838 0.3647 0.6185 0.1201 0.3232
(Partial insurance trans. shock) (0.0409) (0.0409) (0.1477) (0.1344) (0.0352) (0.0367)


