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1 Introduction

Macroeconomists have long understood the important role that expectations play in determining

the effects of monetary policy. Although it is common to analyze the effects of monetary policy

in models in which agents form expectations rationally, the role of this assumption has come

under increased scrutiny. Motivated by experimental evidence on human judgement and limits

to cognitive abilities, a growing literature has moved away from this assumption and developed

behavioral macroeconomic models to examine the effects of monetary policy.1 This literature has

highlighted several advantages of these models, including that the effects of changes in future

policy rates on the macroeconomy are more realistic in these models. More specifically, advocates

of behavioral macro models point to a “forward guidance puzzle” in New Keynesian (NK) models

with rational agents because a credible promise to keep the policy rate unchanged in the distant

future produces counterfactual large effects on current inflation and output. In contrast, NK models

in which agents’ expectations are consistent with behavioral evidence do not display such a puzzle.2

From this standpoint, behavioral macro models are a promising alternative to those with rational

expectations. Nonetheless, it remains an open question whether these models can be developed

into empirically-realistic ones capable of providing guidance to monetary policy on a broad range

of issues.

In this paper, we take a step towards addressing this question by estimating several New Key-

nesian (NK) models with behavioral features and assessing their ability to account for fluctuations

in inflation, output, and interest rates in the United States. Our analysis suggests that the finite-

horizon (FH) approach developed in a recent contribution by Woodford (2018) is a promising

framework for explaining aggregate data and analyzing monetary policy. A chief advantage of the

FH approach that we identify in the aggregate data is its ability to deliver an explanation for the

persistence observed in aggregate output and prices. This ability hinges in the behavioral assump-

tions that underlie the way households and firms plan about their future decisions. In particular, in

this model households and firms are forward-looking in thinking about events over their planning

horizon but are backward looking regarding events beyond that point. This generates sluggishness

in their consumption and price decisions that translate into output and price persistence without

resorting to additional features such as habit persistence and price contracts indexed to lagged

inflation.

As argued in Schorfheide (2013), one of the key challenges in developing empirically-realistic

1Recent contributions include Gabaix (2018), Garcia-Schmidt and Woodford (2019) and Farhi and Werning (2018),
and Angeletos and Lian (2018). For a broader discussion of behavioral macroeconomics, see De Grauwe (2012). This
literature is closely related to earlier work in models with boundedly rational agents; see, for example, Sargent (1993)
and Evans and Honkapohja (2001).

2See Del Negro, Giannoni, and Patterson (2012) and McKay, Nakamura, and Steinsson (2016) for a discussion of
the forward guidance puzzle. While the behavioral NK literature has emphasized the importance of incorporating
boundedly rational agents into monetary models, others have emphasized the assumption that households and firms
may not view promises about future rates as perfectly credible. In an estimated model, Gust, Herbst, and Lopez-
Salido (2018), for example, show that imperfect credibility could have been an important reason why the Federal
Reserve’s forward guidance was less effective than otherwise.
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macroeconomic models is to explain the substantial low frequency variation in macroeconomic

data and produce accurate inference about business cycle fluctuations. A number of researchers

have attempted to address this issue by incorporating shock processes into models to capture

movements in trends; however, under this approach most of the persistence observed in aggregate

data remains largely exogenous.3 In contrast, in the finite-horizon approach of Woodford (2018),

cyclical fluctuations as well as low frequency variation in aggregate prices and quantities depend

on agents’ planning horizon. In a nutshell, the key contribution of this paper is to empirically

evaluate this feature of the model. To understand how Woodford (2018)’s FH model gives rise to

a theory by which the cycle contributes to slow-moving trends, it is useful to review key features

of his framework.

The backbone of the model is still New Keynesian, as monopolistically-competitive firms set

prices in a staggered fashion and households make intertemporal consumption and savings decisions.

Households and firms, as in a standard NK model, are infinitely-lived and need to look into the

far distant future to make their current decisions. In doing so, households and firms are still quite

sophisticated in that their current decisions involve making forecasts and fully-state contingent

plans over their finite planning horizons. But, beyond their planning horizon, households and firms

are less sophisticated, as a key assumption of the FH approach is that households and firms are

boundedly rational regarding the continuation values of their plans over their infinite lifetimes. In

particular, instead of viewing the value functions that govern these continuation values as fully

state-contingent—as it would be if their expectations were fully rational, these continuation values

are assumed to be coarser in their state dependence. Moreover, households and firms do not

fully use the relationships in the model to infer these continuation values; instead, they update

them, based on past data that they observe. In this way, households’ and firms’ learn about their

continuation values as the economy evolves.4

Because of this decision-making process, households and firms who are forward-looking in think-

ing about events over their planning horizon are also backward looking in thinking about events

beyond that point. If the planning horizons of households and firms becomes very long, the dynam-

ics of the FH model mimic those of a standard NK model so that the backward-looking behavior

of households and firms becomes irrelevant. However, if a significant fraction of agents have short

planning horizons, the dynamics of the model are notably different from those of a more standard

NK model. In particular, changes in future policy rates are not as effective in influencing current

output, and future changes in output also have a much smaller effect on current inflation.

Most importantly, when a material fraction of agents have short-planning horizons, the model is

capable of generating persistence endogenously through the way agents update their beliefs about

the continuation values to their plans. Because of this feature, the model’s equilibrium conditions

can be decomposed into a cyclical component governed by agents’ forward looking behavior and a

3See Canova (2014) for a discussion of the issue and approaches in which the trends are modeled exogenously and
independently from the structural model used to explain business cycle fluctuations.

4Woodford (2018) motivates such decision making based on the complex intertemporal choices made by sophisti-
cated artificial intelligence programs.
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trend component explained by the way agents update the continuation values to their plans. Be-

cause agents update their beliefs in a backward-looking manner, the model is capable of generating

substantial persistence in output and inflation. For instance, in line with empirical evidence, we

show that the model is capable of generating substantial inflation persistence and a hump-shaped

response of output following a monetary policy shock. Notably, it does so in the absence of incor-

porating habit persistence in consumption, price-indexation contracts tied to lagged inflation, or

adjustment costs to investment.5

In our empirical analysis, we employ Bayesian methods to estimate the FH model as well as

other behavioral macro models using U.S. quarterly data on output growth, inflation, and interest

rates from 1966 until 2007. Besides comparing the FH model’s performance to other behavioral

macro models, we also compare its performance to a hybrid NK model that incorporates habit

persistence and price-indexation contracts tied to lagged inflation. Because there is notable low

frequency variation in the variables over the sample period that we estimate, we also compare the

FH model’s ability to fit the data relative to a NK model in which we introduce exogenous and

separate processes to approximate the trends in output, inflation, and nominal short-term interest

rates.

Regarding the estimation of the FH model, we find that we can reject parameterizations in

which there is a considerable fraction of agents with long planning horizons including the standard

NK model in which agents are purely forward looking. Our mean estimates suggest that about 50

percent of households and firms have planning horizons that include only the current quarter, 25

percent have planning horizons of two quarters, and only a small fraction have a planning horizon

beyond 2 years. Thus, our estimates imply that there is a substantial degree of short term planning.

Our evidence is also consistent with agents updating their value functions slowly in response to

recently observed data so that the model’s implied trends also adjust slowly. We show that because

of this feature the model can account for the substantial changes that occurred to trend inflation

and trend interest rates in the 1970s and 1980s. Interestingly, as a form of external validation,

we show that the model’s measure of trend inflation displays similar movements to a measure of

longer-term inflation expectations coming from the Survey of Professional Forecasters.

We also show that the FH model fits the observed dynamics of output, inflation, and interest

rates better than the hybrid NK model. This reflects both the endogenous persistence generated

by agents’ learning about their value functions as well as the reduced degree of forward-looking

behavior associated with short-term planning horizons. Because of this model’s ability to generate

slow moving trends, its “goodness of fit” measure is substantially better than that of behavioral

macro models of Angeletos and Lian (2018) and Gabaix (2018). Surprisingly, the FH model fit

is nearly as good as the fit of a NK model that incorporates exogenous and separate trends in

output, inflation, and interest rates. This is true despite the considerable flexibilty of the model

with exogenous trends relative to the FH model. Finally, we show that the heterogeneity in plan-

5These mechanisms are often described as forms of generating “intrinsic persistence” in output and inflation (e.g.,
Smets and Wouters (2007) and Christiano, Eichenbaum, and Evans (2005)). Sims (1998) is an important earlier
contribution to the discussion of issues related to modeling persistence in the context of macroeconomic models.
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ning horizons embodied in the FH model is not necessary to track the aggregate variables in our

estimation. Indeed, a simplified version of the model, where all agents have a one-period planning

horizon, slightly outperforms the version of the model in which agents have heterogenous planning

horizons. Overall, we view these results as suggesting that the FH framework offers a parsimonious

and fruitful way for understanding monetary policy and business cycle dynamics.

The rest of the paper is structured as follows. The next section describes the FH model of

Woodford (2018) paying particular attention to the role of monetary policy and the model’s trend-

cycle decomposition. Section 3 analyzes the dynamic properties of the model further and shows that

the model is capable of generating realistic dynamics following a monetary policy shock. Section

4 discusses the data and methodology we use to estimate the model, while Section 5 presents the

estimation results including the role of demand, supply, and monetary shocks in accounting for

trend and cyclical movements in output and inflation. Section 6 compares the fit of the FH model

to the other models that we estimate. Section 7 concludes and offers directions for further research.

2 An NK Model with Finite-Horizon Planning

We now present a description of the key structural relationships of the finite-horizon model that

we estimate. The derivation of these expressions can be found in Woodford (2018).

To help motivate the finite-horizon approach, it is helpful to first review the structural relation-

ships from the canonical NK model.6 In that model, aggregate output yt and inflation πt (expressed

in log-deviations from steady state) evolve according to the following expressions:

yt − ξt = Et[yt+1 − ξt+1]− σ [it − Et(πt+1)] (1)

πt = βEt[πt+1] + κ(yt − y∗t ) (2)

where Et denotes the model-consistent expectations operator conditional on available information

at time t, ξt is a demand or preference shock and y∗t is exogenous and captures the effects of

supply shocks. The parameters β, σ, and κ are the discount factor, the inverse of the household’s

relative risk aversion, and the slope of the inflation equation with respect to aggregate output. The

parameter κ itself is a function of structural model parameters including the parameter governing

the frequency of price adjustment and the elasticity of output to labor in a firm’s production

function. To close the model, a central bank is assumed to follow an interest-rate (it) policy rule:

it = φππt + φyyt + i∗t , (3)

where φπ > 0, φy > 0, and i∗t as an exogenous monetary policy surprise. These three equations can

be used to characterize the equilibrium for output, inflation and the short-term interest rate in the

canonical NK model.

The finite-horizon model in Woodford (2018) maintains two key ingredients of the canonical

6See Woodford (2003) or Gaĺı (2008) for the derivations of the canonical NK model.
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model. In particular, monopolistically-competitive firms set prices in a staggered fashion according

to Calvo (1983) contracts and households make intertemporal choices regarding consumption and

savings. However, the finite-horizon approach departs from the assumption that households and

firms formulate complete state-contingent plans over an infinite-horizon. Instead, infinitely-lived

households and firms make state-contingent plans over a fixed k−period horizon taking their infinite-

horizon continuation values as given. While households and firms are sophisticated about their

plans over this fixed horizon, they are less sophisticated in thinking about the continuation value

to their plans. In particular, Woodford (2018) assumes that agents are not able to use their model

environment to correctly deduce their value functions and how they differ across each possible state.

Instead, the value function is coarser in its state dependence. Agents update their beliefs about

their value functions as they gain information about them as the economy evolves.

This assumption introduces a form of bounded rationality in which agents choose a plan at

date t over the next k periods but only implement the date t part of the plan. To make their

decisions about date t variables, households and firms take into account the state contingencies

that could arise over the next k periods, working backwards from their current beliefs about their

value-functions.7 In period t+ 1, an agent will not continue with the plan originally chosen at time

t but will choose a new plan and base their time t+ 1 decisions on that revised plan. An agent will

also not necessarily use the same value-function that she used at date t, as an agent may update

her value function for decisions at date t+ 1.

The model allows for heterogeneity over the horizons with which firms and households make

their plans. In the presence of this heterogeneity, Woodford (2018) is able to derive a log-linear

approximation to the finite-horizon model whose aggregate variables evolve in a manner resembling

the equilibrium conditions of the canonical NK model. In particular, aggregate output and inflation

satisfy:

yt − ξt − yt = ρEt[yt+1 − ξt+1 − yt+1]− σ
[
it − it − ρEt(πt+1 − πt+1)

]
(4)

πt − πt = βρEt[πt+1 − πt+1] + κ(yt − y∗t − yt) (5)

Two elements stand out about aggregate dynamics of the finite-horizon model. First, there is

an additional parameter, 0 < ρ < 1, in front of the expected future values for output and inflation.

Second, aggregate output and inflation are written in deviations from endogenously-determined

“trends”; the trends vary over time and are represented by a “bar” over a variable.

Finally, monetary policy responds to the deviation of inflation and output from their trends

and allows for a time-varying intercept (it):

it − it = φπ(πt − πt) + φy(yt − yt) + i∗t (6)

We discuss each of these elements in more detail below.

7Woodford (2018) motivates this approach based on sophisticated, artificial intelligence programs constructed to
play games like chess and go.
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2.1 Microeconomic Heterogeneity and Short-term Planning

The parameter ρ is an aggregate parameter reflecting that planning horizons differ across households

and firms. To understand this, let ωj and ω̃j be the fraction of households and firms, respectively,

that have planning horizon j for j = 0, 1, 2, ...; the sequences of ω′s satisfy
∑

j ωj =
∑

j ω̃j = 1. The

parameter ρ also satisfies ωj = ω̃j = (1− ρ)ρj where 0 < ρ < 1. Aggregate spending and inflation

are themselves the sum of spending and pricing decisions over the heterogeneous households and

firms. As a result, yt =
∑

j(1 − ρ)ρjyjt and πt =
∑

j(1 − ρ)ρjπjt , where yjt denotes the amount of

spending of a household with planning horizon j and πjt denotes the inflation rate set by a firm

with planning horizon j.8

The parameter ρ governs the distribution of planning horizons agents have in the economy

and has important implications for aggregate dynamics. A relatively low value of ρ implies that

the fraction of agents with a short planning horizon is relatively high. And, as a consequence,

the dynamics characterizing aggregate output and inflation are less “forward-looking” than in the

canonical model. When ρ → 1, there are an increasing number of households and firms with long

planning horizons and the aggregate dynamics become like those of the canonical model in which

agents have rational expectations. Because of its prominent role in affecting the cyclical component

of aggregate dynamics, one aim of this paper is to estimate the value of ρ and see how much short-

term planning by households and firms is necessary to explain the observed persistence in output,

inflation, and interest rates.

Woodford (2018) also emphasizes the important role that ρ < 1 plays in overcoming the forward

guidance puzzle inherent in the canonical NK model – i.e., the powerful effects on current output

and inflation of credible promises about future interest rates. To understand how this works,

equation (4) can be rewritten as:

ỹt = −σ
∞∑
s=0

ρsEt(̃it+s − π̃t+s+1)− σ(1− ρ)

∞∑
s=0

ρsEtπ̃t+s+1 (7)

where the symbol “ ˜ ” represents the cyclical component of the variables (i.e., the value of the

variable in deviation from its trend: x̃t = xt − xt).9 The expression above differs in two important

ways from the aggregate output equation in the canonical NK. Current (cyclical) output depends

on the “discounted future” path of the (cyclical) short-term real rates, and the geometric weights

of future cyclical rates on cyclical output are a function of the parameter ρ. In particular, the effect

on cyclical output from a change in the cyclical real rate in period t + s is given by −σρs. With

ρ < 1, a near-term change in the real rate has a larger effect on cyclical output than a longer-run

change. In contrast, in the canonical NK model in which ρ = 1, there is no difference in the effect

8With an infinite number of household and firm types, the existence of the equilibrium requires that these (infinite)
sums converge.

9All cyclical variables are defined in this way except for cyclical output, which is defined as ỹt = yt − ξt − yt.
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of a near-term change and one in the far future.10

The second term on the right-hand side of expression (7) reflects that, as noted in Woodford

(2018), the Fisher equation does not hold in the short run. For the cyclical variables, short-run

planning horizons introduces a form of “money illusion” in which higher expected inflation relative

to trend, holding the (cyclical) real rates constant, reduces cyclical output.11 However, the Fisher

equation does hold in the long run. In particular, once the response of the trends is incorporated

into the analysis, a permanent increase in inflation leads to a permanently higher nominal rate,

leaving the level of output unchanged in the long run. The next section describes how the model’s

trends are determined.

2.2 A Theory-Based Trend-Cycle Decomposition

Expressions (4) and (5) describe the evolution of aggregate output and inflation in deviation from

trend. The trend variables in equations (4)-(6) themselves are in deviation from nonstochastic

steady state so that these trends can reflect very low frequency movements in these variables that

are not associated with a change in the model’s steady state. Instead, these time-varying trends

reflect changes in agents’ beliefs about the longer-run continuation values of their plans. Because

agents update their continuation values based on observation of past data, this updating can induce

persistent trends in output, inflation, and the short-term interest rate. We now turn to discussing

how the finite-horizon approach leads to such a trend-cycle decomposition.

To understand how agents in the model parse trend from cycle, it is necessary to describe the

value functions of households and firms. In the case of a household, its value function depends

on its wealth or asset position. The derivative of the value function with respect to wealth is a

key determinant of their optimal decisions. This derivative determines the marginal (continuation)

value to a household of holding a particular amount of wealth. Unlike under rational expectations,

this function is not fully state-contingent and it is assumed that agents can not deduce it using the

relationships of the model. Instead, they update the parameters governing the marginal value of

wealth based on past experience. More specifically, in log-linear form the marginal value of wealth

consists of an intercept term and a slope coefficient on household wealth. Under constant-gain

learning, Woodford (2018) proves that only the intercept-term needs to be updated, as the slope

coefficient can be shown to converge to a constant. Constant-gain learning implies that a household

10A similar property holds for equation (5) which can be rewritten as:

π̃t = κ

∞∑
s=0

(βρ)sEtỹt+s

where βρ < β. Accordingly, in the FH horizon, the effects of future changes in the output gap on cyclical inflation
can in principle be much smaller than in the canonical NK model.

11This effect is related to the one discussed in Modigliani and Cohn (1979). In their model, agents do not distinguish
correctly between real and nominal rates of return and mistakenly attribute a decrease (increase) in inflation to a
decline (increase) in real rates. See also Brunnermeier and Julliard (2008).
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updates the intercept-term of her marginal value of wealth according to:

vt+1 = (1− γ)vt + γvestt , (8)

where vt denotes the (log-linearized) intercept of the marginal value of wealth at date t. Also, the

constant-gain parameter, γ, satisfies 0 < γ < 1 and determines how much weight a household put

on the current estimate of this intercept in the updating step. The variable vestt denotes an updated

(estimate for the) intercept that a household computes based on information acquired at date t.

Through recursive substitution of expression (8), one can see that vt, is a weighted sum of all the

past values of vestt with distant past values getting more weight the larger is (1− γ). As shown in

Woodford (2018), up to first order, this new continuation value has an intercept term satisfying:

vestt = yt − ξt + σπt. (9)

Thus, the updated intercept term depends on current spending and current inflation as well as the

shock to preferences. Combining this expression with equation (8) yields an expression in which

the marginal value of wealth depends on all past values of yt, ξt, and πt.

We turn now to the discussion of how firms update their value functions. Each period only a

fraction 1 − α of firms have the opportunity to reset its (relative) price. Accordingly, a firm that

has the opportunity to do so at date t maximizes its expected discounted stream of profits taking

into account that it may not have the opportunity to re-optimize its price in future periods. A

firm that can re-optimize its price at date t only plans ahead for a finite number of periods and

evaluates possible situations beyond that point with its value function.

As was the case for households, this value function is not fully state-contingent and it is assumed

that firms can not deduce it using the relationships of the model. Instead, the firm updates it

based on past experience. Specifically, a firm’s first order conditions for its optimal price depend

on the derivative of a firm’s value-function with respect to its relative price, or in other words the

marginal continuation value associated with its price. The (marginal) continuation value for a firm

is a function that in its log-linear form has an intercept term and a slope coefficient with respect

to a firm’s relative price. Similar to households, it is sufficient only to update the intercept term,

ṽt, which evolves according to:

ṽt+1 = (1− γ̃)ṽt + γ̃ṽestt , (10)

where γ̃ is the constant-gain learning parameter and ṽest is a new estimate of a firm’s marginal

continuation value.

Taking its current continuation value as given, a firm’s objective function can be differentiated

with respect to a firm’s price to determine a new estimate of the marginal continuation value-

function. Woodford (2018) shows that a first order approximation of a firm’s marginal continuation

value satisfies:

ṽestt = (1− α)−1πt, (11)
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so that the new estimate depends on the average duration of a price contract, (1−α)−1, as well as

the average inflation rate.

Because the (longer-run) continuation values of households and firms reflect averages of past

values of spending and inflation, they can induce slow moving trends in these aggregate variables.

More concretely, the finite-horizon model implies that output and inflation can be decomposed into

a cyclical component (denoted using a tilde) and trend component (denoted using a bar) so that

yt = ỹt + yt and πt = π̃t + πt. The trend components represent how the spending and pricing

decisions are affected by vt and ṽt, while the cyclical component represents these decisions in the

absence of any changes in vt and ṽt, respectively. Because a household is (still) forward-looking, its

plan for spending in future periods as well as the plan’s continuation value matter for its current

spending decision. Similarly, a firm with the opportunity to reset its price is forward looking so

that ṽt matters for that decision.

Formally, averaging across the different household types, Woodford (2018) shows that the effect

of vt on aggregate spending is given by:

ȳt =
−σ

1− ρ (̄ıt − ρπ̄t) + vt, (12)

where ı̄t is the trend interest rate discussed further below. Similarly, averaging across firms with

different planning horizons, the effect of ṽt on average price inflation is given by:

π̄t =
κ

1− βρȳt +
(1− ρ)(1− α)β

1− βρ ṽt. (13)

Holding fixed the trend interest rate, equations (12) and (13) relate trend output and inflation to

the longer-run continuation values of households and firms. These continuation values, as reflected

in vt and ṽt, in turn depend on the entire past history of aggregate spending and inflation and

thus the model is capable of generating substantial persistence in output and inflation trends.

Importantly, as indicated by the presence of īt in equation (12), trend output and inflation depend

on agents’ views about monetary policy, which we now specify.

2.3 Monetary Policy

Given our focus on the empirical performance of this model, we extend Woodford (2018) by allowing

for the monetary policy rule to have a time-varying intercept that depends on agents’ beliefs about

longer-run trends.12 In particular, the intercept term in equation (6) is specified as:

it = φππt + φyyt. (14)

12We also estimated the model with a policy rule that allowed the policy rate to depend on its lag instead of using
equation (3). The fit of the model deteriorated noticeably relative to including a time-varying intercept that varies
with agents’ perceptions of longer-run inflation.
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We view this time-varying intercept as capturing two aspects of monetary policy. First, monetary

policymakers do not view the ‘equilibrium’ or longer-run real interest rate as a constant. Instead,

they see it as time-varying and view agents’ beliefs about trend output as useful in determining

its value. Second, by allowing the time-varying intercept to depend on agent’s beliefs about trend

inflation, we allow for the possibility that monetary policy responds more aggressively to deviations

from the inflation target than agents believe will persist (i.e., π̄t) than to deviations from the

inflation target that those deviations they view as less persistent (i.e., π̃t). In that case, φπ > φπ,

and in our empirical analysis, we evaluate whether such a response is a better characterization

of monetary policy than the case in which monetary policy responds equiproportionately so that

φπ=φπ.

In our empirical analysis, we assess the performance of the model both when the intercept is

time-varying according to equation (14) and when φπ = φπ and φy = φy so that the intercept is

a constant. In the latter case, the rule is the same as the one in Woodford (2018) and is given

by equation (3), where the policy rate simply depends on the deviations of aggregate output and

inflation from their steady state.

3 Short-Term Planning and Macroeconomic Persistence

In this section, we investigate the model’s trend-cycle decomposition more thoroughly and show

how it induces persistent movements in output and inflation following a monetary policy shock.

We begin by showing that in the finite-horizon model, cyclical fluctuations are independent from

the trend. However, the trends depend on the cycle and thus on monetary policy.

3.1 Trend-Cycle Decomposition and Monetary Policy

To see that the cycle is independent of the trend, note that equations (4)-(6) are block recursive

when we express output, inflation, and the policy rate as deviations from trends. Specifically, after

substituting out the policy rate deviation using the interest-rate rule, the remaining two equations

yield:

x̃t = ρM · Et[x̃t+1] +N · ut, (15)

where x̃t = (ỹt − ξt, π̃t)′ and ut = (i∗t + φyξt, ξt − y∗t )′ Also, M and N are 2-by-2 matrices whose

elements depend on the model’s structural parameters including the rule parameters, φπ and φy.

(The appendix shows the elements of M and N as a function of the model’s parameters.) This

system can be used to solve for the cyclical variables, x̃t, as a function of the economy’s shocks,

ut, independently of the trends for output, inflation, or the policy rate. As a result, the cyclical

variables do not depend on the long-run response of monetary policy to the trends (i.e., φ̄π and

φ̄y).

The trends, however, depend on the cycle. To see that, expressions (12) and (13) can be used
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to solve for yt and πt as a function of vt and ṽt:

xt = (1− ρ)ΘVt, (16)

where we have substituted out it using equation (14), xt = (yt, πt)
′, and Vt = (vt, ṽt)

′. The 2-by-2

matrix, Θ, is shown in the appendix and depends on structural model parameters that include φ̄π

and φ̄y. Thus, since monetary policy affects agents’ longer-run continuation values, the trends for

output and inflation depend on how monetary policy reacts to their movements.

To express the trends, xt, as a function of the cycle, it is convenient to rewrite the laws of

motion for the intercepts of the marginal value-function as:

Vt = (I − Γ)Vt−1 + ΓΦxt−1, (17)

where xt = (yt − ξt, πt)′, and Γ and Φ are 2-by-2 matrices shown in the appendix. Importantly, they

do not depend on the monetary policy rule parameters. Combining expression (17) with equation

(16) yields:

xt = Λxt−1 + (1− ρ)γQxt−1, (18)

where Λ = Θ(I − Γ)Θ−1 and Q = ΘΓΦ are also 2-by-2 matrices shown in the appendix. Using

x̃t = xt−xt, we can rewrite this expression so that the trends for output and inflation are a function

of the past cyclical values for these variables:

xt = [Λ + (1− ρ)γQ]xt−1 + (1− ρ)γQx̃t−1 (19)

The aggregate equilibrium consists of the forward-looking system given by expression (15) char-

acterizing the cycle and a backward-looking system given by expression (19) characterizing the

trends. Because the cycle is independent of agents’ beliefs about the trends, one can determine

the cycle by solving the system in expression (15) for ỹt and π̃t and then using these values to

determine the trends using expression (19).

Discussion. So far, our analysis of the model’s trend-cycle decomposition has followed Woodford

(2018). Here we extend the analysis. First, while Woodford (2018) shows that the stability of the

trends depends on 0 < γ < 1 and 0 < γ̃ < 1, we show that a modified Taylor principle is necessary

for stability of the forward-looking system. For the stability of the system given by expression (15),

the standard Taylor principle needs to be modified. As shown in the appendix, the modified Taylor

principle for the FH model is: (
1− ρβ
κ

)
φy + φπ > ρ. (20)

Accordingly, the canonical model is a special case in which ρ → 1, and in general the Taylor

principle is relaxed relative to the canonical model when agents have finite horizons (i.e. ρ < 1).

Moreover, the Taylor principle depends on how policy responds in the short run and not on how

policy responds to fluctuations in trends.

11



Second, in the appendix, we provide analytical expressions for the matrices, Λ and Q, allowing

for a better understanding of the model’s trend-cycle decomposition. Thus, from expression (19), it

follows that the impact the cycle has on trend inflation depends on the planning horizon of agents,

the speed at which they update their value functions, and how responsive policy is to movements

in trend variables. As ρ increases toward one, agents have long planning horizons and the trends

no longer depend on the cycle. In fact, the trends become constants at their steady state values

and the model’s cyclical dynamics mimic those of the canonical NK model.

Third, monetary policy has important implications for the dynamics of the trends. With γ = γ̃,

households and firms update their value-functions at the same rate, the analysis simplifies consid-

erably. As shown in the appendix, the feedback matrix Λ becomes a scalar, 1− γ, and the matrix

Q is independent of γ. Thus, from equation (19) follows that if agents update their value functions

more quickly (i.e., the value of γ approaches one), then both trends become more responsive to cy-

cles. From expression (19) it also follows that the “long-run monetary policy response coefficients”

affect the persistence of these trends as well as the pass-through of the cycle through the matrix

Q. To get some insights on the trend and cycle dynamics, the appendix shows that the matrix Q

simplifies to:

Q =
1

∆

(
1− βρ σ(1− βφπ)

κ κσ + (1− ρ+ σφy)β

)
(21)

where ∆ = (1− βρ)(1− ρ+ σφy) + κσ(φπ − ρ).

Our estimates imply that monetary policy responds aggressively to movements in trend inflation.

In that case, the matrix Q implies that trend inflation becomes less sensitive to movements in

cyclical inflation or output. Moreover, trend output also becomes less responsive to movements in

cyclical output; however, trend output falls more in response to a cyclical increase in inflation for

larger values of φ̄π for values of φ̄π > 1.

These results highlight that the FH approach gives rise to a theory through which trend and

cycle can be correlated. In the context of macroeconomic models, this idea has been considered in

reduced-form econometric analysis since Nelson and Plosser (1982). In statistical models, allowing

for such a correlation can make identification difficult without stark assumptions (i.e., independence

of trend and cycle). In the finite-horizon approach, theoretical restrictions from the model preclude

confounding of trend and cycle. In fact, the model’s trend-cycle decomposition can be directly

related to monetary policy and to assumptions about household and firm behavior. Moreover,

the finite-horizon approach allows one to decompose the cycle and trend into structural shocks.

However, it remains an open question how well such an approach can explain aggregate data. This

is the key question that we investigate in our empirical analysis.

3.2 Dynamic Responses to a Monetary Policy Shock

An important feature of the model is its ability to generate endogenous persistence without any

need for habit persistence or the indexation of inflation to past values of inflation. To illustrate
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this property, we examine the impulse responses to a shock that affects the monetary policy rule.

This shock is assumed to follow an AR(1) process:

i∗t = ρi∗i
∗
t−1 + εi,t (22)

We examine a policy tightening for three different parameterizations. In the first, ρ = 1.0, which

corresponds to the forward-looking, canonical NK model in which the responses of the aggregate

and cyclical variables are the same, and the model’s trend corresponds to the nonstochastic steady

state. In Figure 1, the canonical NK model’s impulse responses are labelled “Forward”. In the

second and third parameterizations of the model, we set ρ = 0.5 which corresponds to 50 percent of

households and firms doing their planning within the existing quarter, 25 percent of them doing it

in two quarters, and only a small fraction – less than 0.5 percent – of households and firms having

a planning horizon of two years or more. The second parameterization, labelled “Large gain”

in Figure 1, sets γ = 0.5, which implies that households and firms put a relatively large weight

on current observations in updating their value functions. The third parameterization, labelled

“Small gain”, is the same as the second one except that γ = 0.05. This value implies that current

observations get a relatively small weight in the updating of agents’ value functions.13

Figure 1 displays the impulse responses of output, yt, inflation, πt, and the short-term interest

rates, it to a unit increase in εi,t at date 0. (All variables are expressed in deviation from their

values in the nonstochastic steady state.) The first row in the figure corresponds to the responses

of the aggregate variables, the second row to the trend responses, and the third row to the cyclical

responses. As shown in the first row of the figure, a policy tightening results in an immediate fall

in output of a little more than 2 percent and a 15 basis point fall in inflation in the canonical

model (green lines). Thereafter, the responses of output and inflation converge back monotonically

to their steady state values. This monotonic convergence entirely reflects the persistence of the

shock. The middle and lower panels of the figure confirm that in the canonical model, there is

no difference between the trends and steady state values of the model so that the aggregate and

cyclical responses are the same.

The blue lines, labelled “Large Gain,” in Figure 1 show the impulse responses in the finite

horizon model in which agents heavily weigh recent data in updating their value functions. As

in the canonical NK model, aggregate output and inflation fall on impact; however, the fall is

dampened substantially. Moreover, output and inflation display hump-shaped dynamics despite

the lack of indexation or habit persistence in consumption. While output reaches its peak decline

after about a year, it takes substantially longer for inflation to reach its peak decline. As shown in

the middle panel, these hump-shaped dynamics are driven by the gradual adjustment of the trends.

The trend values for output and inflation fall in response to the policy tightening, reflecting that

the policy shock persistently lower aggregate output and inflation. For output this return back to

trend is relatively quick with a slight overshoot (not shown). However, the inflation trend returns

13For these three cases, we set the remaining parameters as follows: β = 0.995, σ = 1, κ = 0.01, φπ = 1.5, φy = 0.5
4

,
and ρi∗ = 0.85.
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back to its steady state very gradually as agents with finite horizons only come to realize slowly

over time that the policy tightening will have a persistent effect on inflation.

The orange lines, labelled “Small Gain,” show a similar parameterization except that agents

update their value function even more slowly. In this case, the responses of the output and inflation

trends is smaller and even more drawn out over time. Because of the dampened response of trend

output, the response of aggregate output is no longer hump-shaped, as the aggregate effect is

driven primarily by the monotonic cyclical response shown in the bottom left panel. In contrast, the

aggregate inflation response is both dampened and more persistent. In sum, the finite horizon model

is capable of generating substantial persistence in inflation and hump-shaped output responses

following a monetary policy shock. Such dynamics are in line with empirical work examining the

effects of monetary policy shocks on the macroeconomy.14

4 Estimation

4.1 Data and Methodology

We estimate several variants of the model using U.S. data on output growth, inflation, and nominal

interest rates from 1966:Q1 through 2007:Q4, a time period for which there were notable changes

in trends in inflation and output.15 The observation equations for the model are:16

Output Growtht = µQ + yt − yt−1 (23)

Inflationt = πA + 4 · πt (24)

Interest Ratet = πA + rA + 4 · it, (25)

where πA and rA are parameters governing the model’s steady state inflation rate and real rate,

respectively. Also, µQ is the growth rate of output, as we view our model as one that has been

detrended from an economy growing at a constant rate, µQ. Thus, as emphasized earlier, we are

using the model to explain low frequency trends in the data but not the average growth rate or

inflation rate which are exogenous.

The solution to the system of equations (15) and (19) jointly with these observations equations

define the measurement and state transition equations of a linear Gaussian state-space system.

The state-space representation of the DSGE model has a likelihood function, p(Y |θ), where Y is

the observed data and θ is a vector comprised of the model’s structural parameters. We estimate

θ using a Bayesian approach in which the object of the interest is the posterior distribution of

the parameters θ. The posterior distribution is calculated by combining the likelihood and prior

14See, for instance, Christiano, Eichenbaum, and Evans (2005) and the references therein.
15The appendix details the construction of this data.
16We reparameterize β to be written in terms in the of the annualized steady-state real interest rate: β = 1/(1 +

rA/400).
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Figure 1: Impulse Responses to an Unexpected Monetary Tightening
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Note: The figure shows impulse responses to a monetary policy shock. In the Forward model (green lines),
agents have infinite planning horizons (ρ = 1.0), and two in the two remaining models, agents have finite
planning horizons (ρ = 0.5). The first of these models, Large Gain (blue lines), agents update their value
function quickly, (γ = 0.5); in the second one, Small Gain (green lines), agents update their value function
slowly (γ = 0.05).

distribution, p(θ), using Bayes theorem:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

.

The prior distribution for the model’s parameters is generated by a set of independent distri-

butions for each of the structural parameters that are estimated. These distributions are listed in

Table 1. For the shocks, we assume they follow AR(1) processes and use relatively uninformative

priors regarding the coefficients governing these processes. Specifically, the monetary policy shock

follows the AR(1) process given by equation (22) and the processes for the other two shocks are
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given by:

ξt = ρξξt−1 + εξ,t (26)

y∗t = ρy∗y
∗
t−1 + εy∗,t. (27)

The prior for each of the AR(1) coefficients is assumed to be uniform over the unit interval, while

each of the priors for the standard deviations of shocks is assumed to be an inverse gamma distri-

bution with 4 degrees of freedom.

The priors for the gain parameters, γ and γ̃, in the household’s and firm’s learning problems

are also assumed to follow uniform distributions over the unit interval. Similarly, we assume that

the prior distribution for the parameter governing the length of agents’ planning horizons, ρ, is also

a uniform distribution over the unit interval. The prior for rA and πA are chosen to be consistent

with a 2% average real interest rate and 4% average rate of inflation. The prior of the slope of

the Phillips curve, κ, is consistent with moderate-to-low pass through of output to inflation.17

The prior for σ, the coefficient associated with degree of intertemporal substitution, follows a

Gamma distribution with a mean of 2 and standard deviation of 0.5, and hence encompasses the

log preferences frequently used in the literature. The prior distributions of the coefficients of the

monetary policy rule, φπ and φγ , are consistent with a monetary authority that responds strongly

to inflation and moderately to the output gap and encompasses the parameterization in Taylor

(1993).

Because we can only characterize the solution to our model numerically, following Herbst and

Schorfheide (2014), we use sequential Monte Carlo (SMC) techniques to generate draws from the

posterior distribution. Herbst and Schorfheide (2015) provide further details on SMC and Bayesian

estimation of DSGE models more generally. The appendix provides information about the tuning

parameters used to estimate the model as well as convergence diagnostics associated with the SMC

algorithm.

4.2 Models

Table 2 displays the models that we estimate. These models differ in the restrictions on the

parameters governing the length of the horizon, the parameters governing how quickly firms and

households update their value functions, and the parameters in the reaction function for monetary

policy.

The first model, referred to as “Forward” in Table 2, corresponds to the canonical New Keyne-

sian model with three shocks, purely forward looking agents, and a Taylor-type rule for monetary

policy. It is consistent with setting ρ = 1. Because the trends in this model are simply constants,

17The parameter κ is a reduced form parameter that is related to the fraction of firms that have an opportunity
to reset their price, 1− α, a parameter governing the elasticity of substitution for each price-setter’s demand, θ, the
elasticity of production to labor input, 1

φ
, and the Frisch labor supply elasticity, ν. The mean value of our prior for

κ is 0.05, which implies an α ≈ 1
3

with ν = 1, θ = 10, and φ = 1.56. Thus, the mean of the prior for κ is consistent
with an average duration of a firm’s price contract that is under one year.
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Table 1: Prior Distributions

Parameter Distribution
Type Par(1) Par(2)

rA Gamma 2 1
πA Normal 4 1
µQ Normal 0.5 0.1
(ρ, γ, γ̃) Uniform 0 1
σ Gamma 2 0.5
κ Gamma 0.05 0.1
φπ Gamma 1.5 0.25
φy Gamma 0.25 0.25
(σξ, σy∗ , σi∗) Inv. Gamma 1 4
(ρξ, ρy∗ , ρi∗) Uniform 0 1

Note: Par(1) and Par(2) correspond to the mean and standard
deviation of the Gamma and Normal distributions and to the up-
per and lower bounds of the support for the Uniform distribution.
For the Inv. Gamma distribution, Par(1) and Par(2) refer to s

and ν where p(σ|ν, s) is proportional to σ−ν−1e−νs
2/2σ2

.

Table 2: Key Parameters of the Estimated Models

Model Parameters
Type Estimated Fixed Not identified

Forward φπ, φy ρ = 1 γ, γ̃, φπ, φy
Exog. Trends AR(1) trends ρ = 1 γ, γ̃, φπ, φy
FH-baseline ρ, γ, φπ, φy γ = γ̃, φπ = φπ, φy = φy -

FH-γ̃ ρ, γ, γ̃, φπ, φy φπ = φπ, φy = φy -

FH-φ ρ, γ, φπ, φy, φπ, φy γ = γ̃ -

Note: This table presents the key parameters of the different estimated models.

we also consider a version of this model, “Exog. Trends,” which allows for stochastic trends as in

Canova (2014) and Schorfheide (2013). Specifically, with ρ = 1, we augment the model with three

more shocks that allow the trends for output, inflation, and the nominal interest rate to evolve

exogenously:18

yt = ρȳyt−1 + εȳ,t (28)

πt = ρπ̄πt−1 + επ̄,t (29)

it = ρīit−1 + ε̄i,t. (30)

18The prior for the additional parameters is the product of six independent priors, with each autoregressive coeffi-
cient prior following a Beta distribution with mean 0.95 and standard deviation 0.05. The prior standard deviation
of the innovations to these trends is and Inverse Gamma distribution with s = 0.1 and ν = 6. This joint distribution
is informative; it is consistent with the view that these trends are very persistent and that the magnitude of their
innovations are small relative to the shocks of the model.
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The remaining models in Table 2 are all different versions of the FH model. The first, referred

to as “FH-baseline”, estimates ρ and γ but assumes that the constant gain parameter, γ, is the

same across households and firms. In addition, in this baseline version, the intercept term in the

central bank’s reaction function responds to trends in inflation and output in the same manner as

it does to short-run cyclical fluctuations (i.e., φ̄π = φπ, φ̄y = φy). The second variant of the FH

model, referred to as “FH-γ̃”, allows for firms and households to learn about their value function

at different rates so that γ and γ̃ may differ. The third variant of the FH model, referred to as

“FH-φ”, allows for the parameters governing the policy response to trends to differ from those

governing the cyclical response of policy.

5 Results

5.1 Parameter Estimates

Table 3 displays the means and standard deviations from the posterior distribution of the esti-

mated parameters. The results suggest that incorporating finite horizon planning into an otherwise

canonical NK model is helpful in accounting for movements in U.S. output growth, inflation and

interest rates over the 1966-2007 period. In particular, the estimates of ρ in the FH versions of the

model are all substantially less than one. Such estimates are consistent with, but not identical to,

the recent evidence in Gabaix (2018), who estimates that the values for discounting future output

and inflation are around 0.75. In comparison, these mean estimates shown in Table 3 are closer

to 0.5. As discussed earlier, a value of ρ = 0.5 substantially reduces the degree of forward-looking

behavior and as a result dampens the responsiveness of output to interest rate changes and inflation

to changes in the cyclical position of the economy. For example, using β = 0.995, in the canonical

NK model, the effect on current inflation of a (constant) of a 1 percentage point increase in the

output gap over eight consecutive quarters is κ1−β9

1−β y ≈ 9κy. In contrast, in the FH-baseline model

with ρ = 0.5, this response is given by κ1−(βρ)9

1−βρ y ≈ κy and is about 9 times smaller.

The estimates also suggest that the slow updating of agents’ value functions is helpful in ex-

plaining aggregate data. In particular, for all three FH models, the posterior distributions for γ

are concentrated at low values, with means around 0.1. For the “FH-γ̃” model, the posterior dis-

tribution of γ̃, with a mean of 0.31, is similarly consistent with slow updating. Thus, households

and firms both update their value functions relatively slowly to the new data that they observe,

imparting considerable persistence into trend components. As a result of this sluggishness, the

supply shock is much less persistent in the FH versions of the model than in the canonical NK

model. In particular, the mean estimate of ρy∗ is near one in the canonical NK model and close to

0.5 in the FH-baseline model.

Figure 2 provides additional information about the posterior distribution for ρ and γ derived

from the FH-φ̄ model. The grey dots represent draws from the prior distribution while the blue dots

represent draws from the posterior distribution. As indicated by the much smaller blue region than

the grey region, there is substantial information about the values ρ and γ in the data. In particular,
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Table 3: Posterior Distributions

Forward Exog. Trends FH-baseline FH-φ̄ FH-γ̃
Mean SD Mean SD Mean SD Mean SD Mean SD

rA 2.25 0.60 2.06 0.76 2.51 0.37 2.39 0.30 2.55 0.46
πA 3.76 0.76 3.88 0.86 3.98 1.00 3.80 0.91 3.96 0.99
µQ 0.40 0.06 0.43 0.03 0.45 0.01 0.45 0.02 0.44 0.01
ρ 0.50 0.13 0.46 0.14 0.69 0.12
γ 0.14 0.03 0.11 0.02 0.06 0.04
γ̃ 0.31 0.09
σ 0.45 0.33 1.75 0.46 3.57 0.62 3.72 0.65 3.15 0.60
κ 0.31 0.12 0.00 0.00 0.04 0.01 0.03 0.01 0.01 0.01
φπ 2.14 0.33 1.57 0.26 1.07 0.13 0.94 0.15 1.01 0.15
φy 0.10 0.29 0.86 0.19 0.79 0.16 0.75 0.16 0.93 0.20
φ̄π 2.09 0.26
φ̄y 0.05 0.05
ρξ 0.93 0.05 0.83 0.07 0.98 0.02 0.97 0.02 0.93 0.04
ρy∗ 0.99 0.02 0.90 0.22 0.53 0.09 0.57 0.08 0.31 0.11
ρi∗ 0.71 0.09 0.97 0.01 0.97 0.01 0.97 0.02 0.97 0.01
σξ 1.11 0.60 2.44 1.21 2.17 0.42 2.08 0.39 2.62 0.61
σy∗ 1.18 1.60 1.58 0.83 5.93 2.20 5.99 1.94 17.35 8.87
σi∗ 0.63 0.10 0.70 0.15 0.67 0.12 0.58 0.11 0.77 0.16
Log MDD -753.63 0.17 -712.52 0.13 -725.69 0.08 -714.59 0.10 -724.57 0.06

Note: The table shows estimates of the posterior means and standard deviations of the model parameters
computed using 10 runs of the SMC sampler. The mean and standard deviation of the log MDD is computed
across the 10 runs of the SMC algorithm. See the appendix for details.

while the prior contains many draws of ρ near one, there are essentially zero posterior draws greater

than 0.75. This is substantial evidence against models in which ρ is high including the canonical NK

model in which ρ = 1. The data are also very informative about γ which determines how quickly

the finite-horizon households and firms update their value functions. The posterior distribution for

γ lies almost entirely between 0.05 and 0.2, which implies that agent’s update their value functions

slowly and that trends in inflation, output, and the interest rate are highly persistent.

The estimated coefficients of the monetary policy rule imply that the policy rate is less responsive

to cyclical movements in inflation and the output gap in the FH versions of the model than in the

canonical NK model. For example, the responsiveness of the policy rate to inflation deviations is

about 1.5 in the canonical model and in the Exog. Trends model compared to a value close to 1 in

the FH-baseline.

Another important feature of the estimated policy rule is that the data prefers rule coefficients

that differ significantly in the short run from those in the long run. In the FH-φ̄ version of the

model, the coefficient on trend inflation deviations is near 2 while the coefficient on trend output

deviations is close to zero. Hence, the monetary policy rule responds more aggressively to stabilize

deviations of trend inflation from the steady state inflation rate than it does to short-run inflation
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Figure 2: Joint Posterior Distribution of Parameters ρ and γ
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Note: The grey dots represent draws from the prior distribution of (ρ, γ) while the blue dots represent draws
from the posterior distribution of (ρ, γ) from the FH-φ̄ model.

deviations from trend. In addition, policy responds aggressively to short-run deviations of output

from trend but very little to the deviation of trend output from steady state.

5.2 Model Fit

The last row of Table 3 shows, for each model, an estimate of the log marginal data density (MDD),

defined as:

log p(Y ) = log

(∫
p(Y |θ)p(θ)dθ

)
.

This quantity provides a measure of overall model fit, and an estimate of it is computed as a

by-product of the SMC algorithm used to the estimate the posterior of the model. The MDD

of the canonical New Keynesian model is less than MDDs of the FH models by about 20 to 30

log points. This indicates substantial evidence in favor the FH models: In a strict application of

Bayesian calculus, a researcher with equal prior odds on the canonical New Keynesian model FH-φ̄

models, would end up with posteriors odds of about eight trillion to one in favor of the FH-φ̄ model.

Comparing the FH models, the data moderately favors the FH-φ̄ version of the model which allows

for monetary policy to respond more aggressively to deviations in trend inflation than to short-run

deviations of inflation from trend. More surprisingly, the FH-φ̄ is competitive with the exogenous

trends model. The mean estimates of the MDDs are seperated by only two log points, with the

exogenous trends model fitting slightly better. This only small difference in model fit emerges
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despite the fact that the exogenous trends model is substantially more flexible–it has 3 additional

shocks to fit the data–than the FH-φ̄ model. Accordingly, the fit of the FH-φ̄ model is impressive

in light of its parsimony. More broadly, the estimates in Table 3 suggest that finite horizons, slow

learning about the observed trends, and an aggressive policy response to trend inflation are all

important in accounting for movements in inflation, output, and interest rates.

Figure 3 compares the fit of the FH model relative to the canonical NK model over an expanding

sample. Specifically, the figure plots

∆t = log p̂FH−φ̄(Y1:t)− log p̂Forward(Y1:t), (31)

where Y1:t is the observables through period t and log p̂M(Y1:t) is an estimate of the log MDD

for model M for the subsample of Y that ends in period t. Thus, ∆t measures the cumulative

difference in the estimates of the log MDD for the FH-φ̄ from the canonical NK model. The figure

shows that the data begins systematically preferring the FH-φ̄ model beginning in 1979. For the

canonical NK model, this period is difficult to rationalize, since it must capture the upward inflation

trend in the 1970s and its subsequent reversal in the 1980s through large and persistent shocks.

In contrast, the FH-φ̄ model embeds persistence into trend inflation that makes it easier to fit the

Great Inflation episode. Although the relative fit of the canonical NK model improves somewhat

during the Volcker disinflation, as inflation moves back toward the model’s mean estimate for πA

of 4 percent, it continues to fit much worse than the FH-φ̄ for the remainder of the sample. This

better fit of the FH-φ̄ model reflects that this model does a relatively good job capturing the secular

decline in inflation, as inflation moves and remains well below 4 percent over the latter part of the

sample.

5.3 Estimated Effects of a Monetary Policy Shock

As discussed earlier, empirical evidence from the VAR literature has emphasized that following a

monetary policy shock, there is considerable persistence in the price response and a delayed response

in output. Figure 4 plots the 90-percent pointwise credible bands for impulse responses of output,

inflation, and the short-term interest rate to a one standard deviation increase in εi,t from the

FH-φ̄ model. There is a persistent fall in output following a tightening in monetary policy with the

decline in output after one year on par with the initial fall. This response in part reflects the hump

shaped pattern in trend output, which falls slowly over the next year or so before recovering. As

shown earlier, the responses from the estimated model for inflation are highly persistent. Inflation

only drops slightly on impact and its response grows over time as agents revise down their estimates

of the trend. Overall, however, its response is small.
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Figure 3: Difference in Log MDD over time
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Note The figure displays ∆t defined in equation (31).

5.4 Estimated Trend-Cycle Decomposition

Figure 5 decomposes observed inflation into its trend and cyclical components. The top panel

displays the smoothed estimates from the FH-φ̄ model of trend inflation in the top panel. Trend

inflation, according to the model, rose sharply during the 1970s, declined during the 1980s, and then

remained relatively constant from 1990 to 2007. The middle panel shows that the model’s measure

of the deviation of inflation from trend displays little persistence with the possible exception of the

early 1980s when inflation remained below trend for a couple of years. Moreover, as the middle

panel suggests, the model’s estimate of πt−π̄t implies that the volatility of inflation relative to trend

declined during the period of the Great Moderation. The bottom panel of Figure 5 compares the

FH-φ̄ model’s trend inflation estimates to an estimate of longer-run inflation expectations computed

using survey data.19 Although the model uses the GDP deflator to compute trend inflation and

the survey-based measure is for the CPI, the two series display a similar pattern: both measures

fall sharply during the Volcker disinflation and then stabilized in the 1990s at a level well below

19This time series is available in the public FRB/US dataset. Starting in 1991, the variable corresponds to the
Survey of Professional Forecasters median estimate of 10-year average inflation expectations. Prior to 1991, the
variable is constructed using additional surveys along the lines of Kozicki and Tinsley (2001).
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Figure 4: Impulse Responses to a Monetary Policy Tightening
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Note: This figure plots the posterior mean and the 90-percent pointwise credible bands for impulse responses
of model variables to a one standard deviation increase in εi,t for the FH-φ̄ model using 250 draws from the
posterior distribution.

their respective measures in the early 1980s.

The top panel of Figure 6 displays the smoothed estimates from the FH-φ̄ model of the trend

interest rate. The trend interest rate follows the same pattern as the model’s trend inflation series:

rising substantially in the 1970s, falling sharply in the 1980s, and then recovering in the 1990s. The

fact that the movements in the trend interest rate is so similar to those for trend inflation in the

FH-φ̄ model is not too surprising, since the estimates of that model imply that the trend interest

rate is driven almost entirely by trend inflation rather than the trend in output. The lower panel

displays FH-φ̄ model’s estimates of the deviation of the interest rate from trend. The estimates

suggest that monetary policy responded by cutting rates aggressively well below trend during the

recessions in late 1960s and mid-1970s. In both the recessions of 1981-82 and in 2001, it − īt also

fell but from relatively elevated levels.

The top panel of Figure 7 displays the smoothed estimates of the output gap, measured as the
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Figure 5: Trend-Cycle Decomposition: Inflation
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Note: The top panel of this figure shows the time series of 90 percent pointwise credible interval for the
smoothed mean of π̄t, annualized and adjusted by πA (shaded region), as well as observed inflation (solid
line.) The middle panel shows the time series of 90 percent pointwise credible interval for the smoothed mean
of πt− π̄t (shaded region). The bottom panel shows the time series of 90 percent pointwise credible interval for
the smoothed mean of π̄t, annualized and adjusted by πA (shaded region) along with an estimate of long-run
inflation expectations (dashed line) constructed from survey data.

deviation of output relative to trend from the FH-φ̄ model. As shown there, the model’s estimate

of the output gap falls sharply during NBER recession dates. For example, in both of the recessions

in the mid-1970s and in 1981-82, the estimate of yt − ȳt falls more than 2 percentage points. In

contrast, as shown in the middle panel, the model’s estimate of the trend moves much less during

NBER recessions. Trend output, for instance, declines slightly during the severe recession in the

mid-1970s but this decline is small relative to the fall in the model’s cyclical measure for output.

In addition, the level of trend output is unchanged or even increases a bit during other NBER

recessions. The top panel of the figure also compares the smoothed estimates of the output gap

to the output gap measured published by the CBO. The model’s estimate of the output gap and

the CBO measure have a correlation of about 0.65. The two measures differ notably in terms

of how they saw the cyclical position of the economy in the mid to late 1970s and during the

Great Moderation. While the CBO measure saw a significant improvement in the cyclical position

of the economy following the recession in the mid-1970s, the model-based measure shows little

improvement following that recession. In addition, the CBO measure indicates that output was

below potential for most of the 1990-2007 period, while the model-based measure of output was

closer to trend through much of that period.
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Figure 6: Trend-Cycle Decomposition: Short-term Interest Rate
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Note: The top panel of this figure shows the time series of 90 percent pointwise credible interval for the
smoothed mean of īt, annualized and adjusted by πA + rA (shaded region), as well as the observed federal
funds rate (solid line.) The bottom panel shows the time series of 90 percent pointwise credible interval for
the smoothed mean of it − īt (shaded region).

5.5 Estimated Shocks

Figure 8 displays the smoothed estimates of the demand, supply, and monetary policy shocks

over our sample period.20 As shown in the first panel, the estimated demand shock, ξt, is highly

autocorrelated as the mean estimate of its AR(1) coefficient is 0.97. This shock captures a variety

of autonomous factors that affect aggregate spending including changes in household preferences,

financial shocks, and changes in fiscal policy. Our reading of the literature is that several of these

factors were at play over our sample period. For example, the demand shock was low in the 1970s

and fell sharply during the 1973-1975 recession; this is consistent with the large reductions in

defense spending that followed the end of the Vietnam War, as discussed in Ramey (2011). In

addition, Mishkin (1977) emphasizes an unfavorable shift in household balance sheet positions that

contributed to weakness in consumer expenditures during the 1973-1975 recession. The model’s

estimated demand shock picks up notably in the mid-1980s, which is consistent with the evidence

in Ramey (2011) regarding expansionary fiscal policy during the Reagan Presidency. The demand

shock is also high in the early 2000s, possibly reflecting the runup in household wealth associated

with the boom in housing that occurred at the time.

The model’s supply shock, y∗t captures a variety of forces that affect aggregate supply including

20The iid innovations underlying these shocks are shown in the appendix. As shown there, the model is consistent
with there being very infrequent large shocks. See Blanchard and Watson (1986), for example, find a similar result).
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Figure 7: Trend-Cycle Decomposition: Output
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Note: The top panel of the figure shows the time series of 90 percent pointwise bands of the cyclical position
of output, yt − ȳt, for the FH-φ̄ model, as well as the CBO estimate of the output gap. The bottom panel
shows the level of actual output (orange line) as well as the smoothed mean estimates of the trend level of
output (blue line) for the FH-φ̄ model inclusive of trend growth (µQ).

technological and regulatory changes, shocks to oil prices, and other factors that affect firms’ costs

to production. As shown in the middle panel, the estimated supply shock is positively correlated but

less so than the demand shock, as there are a number of infrequent but sharp changes in supply. Two

of those sharp changes occur in 1973-1974 and in 1979-80 when there were large disruptions in world

oil supply. These large contractions in the model’s supply shocks are important in contributing to

the sharp contraction in output and concurrent rise in inflation that occurred during those episodes.

Finally, the supply shock is relatively high in the late 1990s and early 2000s, a time period which

has been identified with a sustained increase in total factor productivity growth by for example,

Fernald (2016).

The lower panel of Figure 8 displays the exogenous shock to the monetary policy rule, i∗t . This

shock is highly persistent as the mean estimate of the AR(1) coefficient for this shock is about 0.97.

Consistent with the evidence in Romer and Romer (2004), there are some notable departures of

monetary policy from the systematic portion of the rule. First, early in the sample – the period from

the mid-1960s until 1974 – our estimates imply that monetary policy was overly accommodative

relative to the rule. Second, our estimates imply that monetary policy tightened considerably

relative to the systematic portion of the rule in the early 1980s, a period commonly referred to

as the “Volcker disinflation.” Finally, our estimates imply that monetary policy was tightening in

the years leading up to the Great Recession but remained relatively accommodative in the years

leading up to that event.
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Figure 8: Estimated Shocks
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Note: The panels of the figure shows the smoothed estimates of the shocks from the FH-φ model.

5.6 Shock Decomposition

Figure 9 shows the contribution of each of the shocks to the estimates of the cyclical and trend

fluctuations in output and inflation.21 Because of the model’s property that the cycle affects the

trend, the three shocks affect not only cyclical fluctuation in output and inflation but also their

trends. As discussed earlier, the monetary policy rule also plays an important role in influencing

the model’s trend-cycle dynamics, and it is useful to reproduce the rule using the mean parameter

estimates:

it − it = φπ(πt − πt) + φy(yt − yt) + i∗t

it = φππt

where in line with those estimates we have imposed that φy = 0. In addition, it is useful to note

that our estimated rule implies an aggressive response to cyclical output, as φy ≈ 0.75 and a more

aggressive response to trend inflation (φπ ≈ 2) than cyclical inflation (φπ ≈ 1).

As shown in Figure 9, the severe upward spiral in inflation during the 1970s is manifested mainly

in the model’s estimate of trend inflation. In the early part of the decade, the upward pressure

on trend inflation reflects accommodative policy stemming from non-systematic deviations from

the rule. However, by the middle of the decade the predominant force pushing up trend inflation

is weakness in aggregate demand that was accommodated by the systematic policy response. Be-

cause these demand shocks lowered yt − yt and πt − πt sharply in 1973-74, monetary policy eased

significantly in response. However, the easing was overly aggressive in the sense that it generated

a substantial increase in agents’ expectations of longer-run or trend inflation. As trend inflation

rose in the mid-to-late 1970s, monetary policy tightened in accordance with the intercept portion

of the rule but too slowly to stave off the persistent increase in inflation. Accordingly, from the

model’s perspective monetary policy was too easy in the early half of the decades and “fell be-

hind the curve” in reacting to upward pressure on inflation stemming from agents’ expectations of

21These contributions are constructed using the smoothed shocks under the mean parameter estimates from the
version of the model in which the short and long-run coefficients of the rule differ (i.e., FH-φ ).
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Figure 9: Trend and Cycle of Output and Inflation: Historical Counterfactuals
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Note: Figure shows the time series of the smoothed means of the trend and cycle of output and inflation for
the FH-φ̄ model(black lines). The figure also shows the contribution to these trajectories of demand shocks
(blue lines), supply shocks (green lines), monetary policy shocks (orange lines), and initial conditions (red
lines) for the FH-φ̄ model.

longer-run inflation.

The model’s estimates also imply that the subsequent disinflation in the 1980s is largely driven

by a substantial and persistent tightening of monetary policy. Tight monetary policy in the early

1980s, both because trend inflation remains high and more importantly because of substantial non-

systematic policy shocks, puts downward pressure on cyclical inflation and is largely responsible for

the significant downturn in output in 1981-82. With the large, non-systematic tightening of policy

persisting through the first half of the 1980s, cyclical inflation remains low and eventually agents’

expectations for longer-run inflation begin to decline as well. While monetary policy shocks play

an important role in the decline in trend inflation, the demand shock also contributes to bringing

trend inflation down.

While the model’s estimates imply that demand and monetary shocks played an important

role in driving trend inflation over our sample period, supply shocks are relegated to a lesser role.

However, these shocks, which are estimated to be less persistent than demand or monetary shocks,

play a prominent role in driving cyclical movements in inflation. In particular, the supply shock

largely explains the jumps in cyclical inflation in 1973-1974 and 1979-80 when there were disruptions

to world oil supply.
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5.7 Aggregate Data and the Role of Heterogeneity

The underlying model used so far allows for heterogeneity in the length of the planning horizons

across households and firms. But, since our focus is on explaining aggregate fluctuations, a le-

gitimate question to ask is how important is this heterogeneity in explaining aggregate data. To

address this question, Table 4 compares the marginal data density of the FH-φ model—in which

households and firms are heterogeneous in their planning horizons—with versions of the model in

which all households and firms have the same planning horizon. In particular, all households solve

an identical problem, with a k -period planning horizon; and all firms solve an identical problem,

also with a k -period planning horizon.

As shown there, the marginal data density is slightly lower for the representative agent version

of the model in which planning horizon includes the current and next quarter (k = 1) than the

marginal data density of the FH-φ model, indicating a slightly better fit using representative agents.

Table 4 also shows that the fit of the representative-agent model deteriorates as the planning

horizon increases. Overall, relative to the heterogeneous planning horizon version of the model,

these results suggest that representative-agent versions of the model remain useful in explaining

aggregate fluctuations. However, this better fits may reflect that the FH-φ model uses a relatively

rigid distribution of agents (i.e. exponential distribution) whose main appeal is in deriving the

elegant expressions for aggregate output and inflation shown in equations (4) and (5).

6 Comparison with other Behavioral NK Models

So far, we have shown how the finite-horizon model can do nearly as well in accounting for inflation

and output dynamics over the Great Inflation and Volcker disinflation periods than a NK model that

incorporates stochastic trends. In this section, we compare the finite-horizon model’s performance

to other ways of incorporating behavioral features into the NK model. In addition, we compare

the model’s performance to the hybrid NK model which includes habit persistence and inflation

indexation in order to generate persistent movements in output and inflation.

The model with finite horizons is closely related to two recent extensions of the NK model. The

first is discussed in Gabaix (2018), who departs from rational expectations by assuming agents’ be-

liefs are distorted when forecasting future variables. Angeletos and Lian (2018) also extend the NK

Table 4: Log Marginal Data Density Estimates for Single Agent Models

mean std

FH-φ̄ Het. Agent -714.59 0.10
FH-φ̄ Rep. Agent (k = 0) -718.12 0.11
FH-φ̄ Rep. Agent (k = 1) -710.57 0.41
FH-φ̄ Rep. Agent (k = 2) -714.90 0.80
FH-φ̄ Rep. Agent (k = 3) -722.97 1.60
FH-φ̄ Rep. Agent (k = 4) -725.57 0.72
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model so that strategic interactions between agents affect expectations of future variables. Though

the microfoundations differ from the finite-horizon approach discussed here, these recent extensions

give rise to similar expressions characterizing linearized aggregate dynamics. In Angeletos and Lian

(2018), the linearized expressions for output and inflation are given by:

yt = ρEtyt+1 − σ(it − λEtπt+1 − rnt ) (32)

πt = βρfEtπt+1 + κyt + ut (33)

where the parameters ρ, λ, and ρf ∈ [0, 1]. The expressions determining aggregate output and

inflation in Gabaix (2018) are very similar except that λ = 1.

The expressions (32) and (33) are similar to those determining aggregate inflation and output

in the finite-horizon approach; however, in the finite-horizon model, ρ, ρf , and λ are constrained

to be the same. A more important difference is that the variables in the finite-horizon model are

expressed in deviation from trends which are determined endogenously as agents update their value

functions. In contrast, this feature is absent from Angeletos and Lian (2018) and the variables are

expressed as a deviation from their nonstochastic steady state.

Table 5 compares our measure of model fit, the log marginal data density, for the Angeletos and

Lian (2018) to the alternative estimated versions of the finite horizon model discussed earlier.22

The log marginal data density is about 4 points higher in the version of the finite horizon model

in which the monetary policy reaction function is the same in the short and long run (labelled

“FH”) and about 15 points higher when the policy reaction function differs in the long and short

run (labelled FH-φ̄). Accordingly, the fit of the finite-horizon models is better than the model in

Angeletos and Lian (2018) and when the policy reaction function is allowed to differ in the short

and long run in the finite-horizon model, the fit is substantially better. This improved fit reflects

the endogenous persistence the finite-horizon approach can generate through slow moving trends

for output, inflation, and interest rates. Similar results would apply to the model in Gabaix (2018),

since the aggregate dynamics of that model (up to a log-linear approximation) are a special case of

Angeletos and Lian (2018) with λ = 1.

It is interesting to compare the FH model to the hybrid NK model, since both generate endoge-

nous persistence but through different mechanisms. The hybrid NK model introduces persistence

into output and inflation by introducing habit formation in household preferences and indexation

to past inflation in the price contracts of firms, and these features have been used extensively in em-

pirical applications in the literature.23 In the hybrid NK model, the log-linear aggregate dynamics

22For the Angeletos and Lian (2018) model, we use uniform priors on [0, 1] for ρf and λ. The Appendix shows the
posterior distributions of the parameters of this model.

23The underlying preferences for the households are log [Ct − νCat−1] − Ht, where Ht are hours worked and the
parameter ν captures the presence of (external) habits reflecting the influence of “aggregate” past consumption on
current utility. Firms set prices in a staggered way (à la Calvo) and price contracts are indexed to past aggregate
inflation. The indexation parameter is 1− a.
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Table 5: Overall Fit of Alternative
Models

Mean Std. Dev.

Angeletos-Lian -729.22 0.12
Exog. Trends -712.52 0.13
FH-φ̄ -714.59 0.10
FH-γ̃ -724.57 0.06
FH-baseline -725.69 0.09
Forward -753.63 0.18
Hybrid NK -734.78 0.31

Note: Means and standard deviations are
over 10 runs of each algorithm.

(around the non-stochastic steady state) for output and inflation are given by:

(1 + 2α)yt = αyt−1 + (1 + α)Etyt+1 − Et [it − πt+1 − ξt]
[1 + β(1− a)]πt = (1− a)πt−1 + βEtπt+1

+κ(1 + α)yt − καyt−1 + y∗t (34)

where α = ν
1−ν , ν is the habit-formation parameter in the households’ preferences, β is the house-

holds’ discount factor, and 1 − a is the indexation to past inflation of the Calvo’s price contracts

of firms.24

Table 5 shows that the three versions of the finite-horizon model that we estimate all fit the

observed dynamics of output, inflation, and the interest rate better than the hybrid NK model.

This better fit reflects both the endogenous persistence generated by agents’ learning about their

value functions as well as the reduced degree of forward-looking behavior associated with ρ < 1.

Overall, the results in this section suggest the finite-horizon approach with agents’ learning about

their value functions is a parsimonious and fruitful way to fit movements in longer-run trends and

aggregate business cycle dynamics.

7 Conclusion

In this paper, we used aggregate data to estimate and evaluate a behavioral New Keynesian (NK)

model in which households and firms have finite horizons. Our parameter estimates implied that

most households and firms have planning horizons under two years, and we could reject parameter-

izations of the model in which agents had long planning horizons such as the canonical NK model

with rational expectations. Our parameter estimates also implied that households and firms update

their beliefs about their value functions slowly. These slowly evolving beliefs allowed the model

24For the Hybrid NK model, we use uniform distribituion for the prior on a and a Beta distribution with mean 0.7
and standard deviation 0.15 for the prior on ν. The Appendix shows the posterior distributions of the parameters of
this model.
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to generate endogenous persistence that helped it explain persistent trends observed in inflation,

output, and interest rates in the United States over the 1966-2007 period. We also showed that the

FH model outperformed other behavioral NK models as well as rational expectations versions of

the NK model commonly used in empirical applications. Overall, our empirical analysis suggests

that the FH model is a promising framework for explaining aggregate data and analyzing monetary

policy.

Our paper provides estimates of important parameters of the FH model that can be used to

study the heterogeneity of households and firms that underlies the (aggregate) model. Recent

studies in NK models has emphasized the importance of heterogeneity (e.g., Kaplan, Moll, and

Violante (2018)), and with different planning horizons across both individual households and firms,

the FH approach naturally gives rise to disperse beliefs about expected inflation and output. In

future work, it would be interesting to investigate whether these disperse beliefs across households

and firms are consistent with surveys of households and firms.
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Appendices

A Model Dynamics

In this section of the appendix, we provide some of the details that help characterize the dynamics
of the finite-horizon model.

A.1 The Cycle and the Taylor Principle

The system determining the cycle is:

x̃t = ρM · Et[x̃t+1] +N · ut, (A-1)

where the matrices M = 1
δ

(
1 σ(1− βφπ)
κ κσ + β(1 + σφy)

)
and N = 1

δ

(
−σ −σκφπ
−κσ κ(1 + σφy)

)
, with δ =

1 + σ(φy + κσπ). To determine the Taylor principle for the FH model, rewrite the system (A-1) as

Et[x̃t+1] = A[x̃t] +But,

where the relevant matrix A is given by

A =

(
(βρ)−1 −κ(βρ)−1

σ(φπ − β−1) 1 + σ(φy + κβ−1)

)
.

The equilibrium is determinate if and only if the matrix A has both eigenvalues outside the
unit circle (i.e., with modulus larger than one). Invoking proposition (C.1) in Woodford (2003),
this condition is satisfied if and only if

det(A)− tr(A) > −1.

This condition implies: (
1− βρ
κ

)
φy + φπ > ρ.

A.2 Trend-Cycle Decomposition

In this section, we report the matrices that determine the evolution of the model’s trends. The
evolution equations of vt and ṽt are given by:

Vt+1 = (I − Γ)Vt + ΓΦxt, (A-2)

where V ′t =
(
vt ṽt

)
, and the matrices Γ =

(
γ 0
0 γ̃

)
and Φ =

(
1 σ
0 1

(1−α)

)
. The trends can

be written in terms of Vt as: :
xt = (1− ρ)ΘVt, (A-3)

where the matrix of coefficients Θ = 1
∆

(
1− βρ −σ(φπ − ρ)(1− α)β

κ (1− ρ+ σφy)(1− α)β

)
and ∆ = (1− βρ)(1−

ρ+ σφy) + κσ(φ pi − ρ).
Combining expression (A-2) with expression (A-3) yields:

xt = Λxt−1 + (1− ρ)γQxt−1,
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where Λ = Θ(I − Γ)Θ−1 and (1− ρ)γQ = ΘΓΦ. After some algebra these matrices can be written
as:

Λ =
1

∆

 (1− γ)(1− βρ)(1− ρ+ σφy) + (1− γ̃) (φπ−ρ)
(σκ)−1 σ(1− βρ)(φπ − ρ)(γ̃ − γ)

(γ̃ − γ)κ(1− ρ+ σφy) (1− γ̃)(1− βρ)(1− ρ+ σφy) + (1− γ) (φπ−ρ)
(σκ)−1


Q =

1

∆

(
(1− βρ) σ(1− βρ)− γ̃

γσ(φπ − ρ)β

κ κσ + γ̃
γ (1− ρ+ σφy)β

)
.

When γ = γ̃, the system simplifies to:

xt = (1− γ)xt−1 + (1− ρ)γQxt−1,

with Q = 1
∆

(
1− βρ σ(1− βφπ)

κ κσ + (1− ρ+ σφy)β

)
. Note that in this case the feedback of xt on its lag

can be characterized by the scalar, 1−γ, and that Q is independent of γ. Finally, Q can be simplified

further if φy = 0: Q = 1
∆

(
1− βρ σ(1− βφπ)
κ κσ + (1− ρ)β

)
, with ∆ = (1− βρ)(1− ρ) + κσ(φπ − ρ) > 0

if φπ > ρ.

B Data

The data used in the estimation is constructed as follows.

1. Per Capita Real Output Growth. Take the level of real gross domestic product, (FRED
mnemonic “GDPC1”), call itGDPt. Take the quarterly average of the Civilian Non-institutional
Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”), call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the GDP deflator, (FRED mnemonic “GDPDEF”), call it
PGDPt. Then,

Annualized Inflation = 400 ln

(
PGDPt
PGDPt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FEDFUNDS”),
call it FFRt. Then,

Federal Funds Rate = FFRt.

The figures in the paper include two additional series, the CBO estimate of the Output Gap and
longer-run inflation expectations. These data are constructed as follows.

1. CBO Output Gap. The CBO’s estimate of the level of Potential GDP, (FRED mnemonic
“GDPPOT”), call it POTt.

CBO Output Gapt = 100 ln

(
GDPt
POTt

)
.

2. Longer-run Inflation Expectations. An estimate of historical inflation expectations can
be found in the public FRB/US dataset. The variable is called PTRt. Then,

Longer-run Inflation Expectations = PTRt

36

https://www.federalreserve.gov/econres/files/data_only_package.zip


C Posterior Sampler: Details and Additional Results

For most of the models in the paper, our estimation follows Herbst and Schorfheide (2014) with the
following hyperparameters: Npart = 16, 000, Nφ = 500, λ = 2.1, Nblocks = 3, Nintmh = 1. We run
each sampler Nrun = 10 times, and pool the draws from the runs, yielding a posterior distribution
with 160, 000 draws. There are two exceptions: for the Forward and the FH-γ̃ models, we use
Npart = 25, 000, Nφ = 2000, and Nblocks = 6 because of bimodalities in the posterior.

We assess the convergence and efficiency of our algorithm by analyzing the variation of the
estimate of the sample mean across the Nrun runs of the algorithm. This variance serves as an
estimate of the CLT variance associated with the SMC-based estimate of the sample mean (as the
number of particles becomes large). Call this estimated variance VAR[θ̄] for any parameter θ. We
also construct a measure of efficiency of the sampler based on the following idea: Suppose we were
able to compute M i.i.d. draws from the marginal posterior distribution for θ. The variance of the
mean, θ̄, of these draws would be given by

V[θ̄] =
V[θ]

M
,

where V[θ] is the posterior variance of θ. We define the number of effective draws as:

number of effective draws =
V̂[θ]

VAR[θ̄]
,

where the hat indicates that we are using our estimated posterior variance. Such a measure indicates
this (in)efficiency of the sampler, relative to hypothetical i.i.d. draws. Tables A-1 through A-
7 display the estimated mean and 5th and 95th percentiles of the posteriors, in addition to the
standard deviation of the mean across the Nruns runs and Neff , the number of effective draws for
each of the estimated models.

In general the SMC-based estimates of the posterior mean are relatively precise. The parameter
σy∗ , whose posterior mean lies in the tail of its prior distribution for many models, typically has
the noisiest estimates. Across models, the Forward model is the most difficult to estimate, owing
to a bimodality in σ. However, this bimodality does not affect the stability of the estimate model
fit (log MDD), as each model has about the same density height.
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Table A-1: Posterior Distribution of the Forward
Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.25 0.01 1.27 3.26 7060.56
πA 3.76 0.01 2.55 5.03 6140.92
µQ 0.40 0.00 0.31 0.50 1764.48
σ 0.45 0.02 0.23 1.30 410.38
κ 0.31 0.01 0.01 0.49 539.78
φπ 2.14 0.01 1.42 2.61 619.23
φy 0.10 0.01 0.00 0.95 393.38
ρξ 0.93 0.00 0.80 0.97 348.04
ρy∗ 0.99 0.00 0.95 1.00 491.94
ρi∗ 0.71 0.00 0.62 0.96 524.75
σξ 1.11 0.04 0.62 2.39 288.46
σy∗ 1.18 0.06 0.81 2.44 783.37
σi∗ 0.63 0.00 0.51 0.82 726.86

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the Forward model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.
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Table A-2: Posterior Distribution of the
Exogenous Trends Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.06 0.01 0.89 3.36 5815.27
πA 3.88 0.03 2.46 5.30 942.33
µQ 0.43 0.00 0.38 0.47 2611.56
σ 1.75 0.01 1.08 2.57 1790.34
κ 0.00 0.00 0.00 0.00 2098.67
φπ 1.57 0.00 1.17 2.01 3247.53
φy 0.86 0.00 0.60 1.21 2092.40
ρξ 0.83 0.00 0.70 0.92 959.68
ρy∗ 0.90 0.01 0.29 1.00 426.79
ρi∗ 0.97 0.00 0.95 0.99 1767.18
σξ 2.44 0.07 1.02 4.67 279.73
σy∗ 1.58 0.03 0.75 3.15 807.21
σi∗ 0.70 0.00 0.50 0.98 1895.24
ρπ̄ 0.78 0.01 0.58 0.95 286.80
ρī 0.96 0.00 0.90 0.99 1965.97
ρȳ 0.95 0.00 0.86 1.00 3038.06
σπ̄ 0.23 0.00 0.19 0.27 468.25
σī 0.12 0.00 0.07 0.19 3742.10
σȳ 0.12 0.00 0.07 0.19 1254.13

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the Exog. Trends
model, as well as the standard deviation of the posterior
mean across 10 runs of the sampler.
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Table A-3: Posterior Distribution of the FH Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.51 0.01 1.85 3.07 5251.54
πA 3.98 0.01 2.34 5.62 6468.59
µQ 0.45 0.00 0.43 0.47 5544.45
ρ 0.50 0.01 0.27 0.71 639.00
γ 0.14 0.00 0.09 0.19 2192.39
σ 3.57 0.01 2.59 4.64 3790.00
κ 0.04 0.00 0.02 0.06 692.01
φπ 1.07 0.00 0.89 1.30 6865.39
φy 0.79 0.01 0.57 1.07 926.28
ρξ 0.98 0.00 0.94 1.00 4893.74
ρy∗ 0.53 0.00 0.39 0.67 1533.31
ρi∗ 0.97 0.00 0.95 0.99 5370.33
σξ 2.17 0.02 1.62 2.94 515.89
σy∗ 5.93 0.12 3.24 10.12 335.06
σi∗ 0.67 0.00 0.51 0.89 1090.33

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the FH model, as well as the
standard deviation of the posterior mean across 10 runs of
the sampler.
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Table A-4: Posterior Distribution of the FH-γ̃
Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.55 0.00 1.76 3.24 12107.09
πA 3.96 0.01 2.34 5.59 19699.67
µQ 0.44 0.00 0.42 0.46 9307.94
ρ 0.69 0.00 0.47 0.85 915.59
γ 0.06 0.00 0.01 0.14 3165.49
γ̃ 0.31 0.00 0.16 0.46 1650.56
σ 3.15 0.01 2.24 4.21 1719.39
κ 0.01 0.00 0.01 0.03 790.72
φπ 1.01 0.00 0.78 1.29 15744.44
φy 0.93 0.00 0.65 1.30 3400.78
ρξ 0.93 0.00 0.86 0.99 7124.87
ρy∗ 0.31 0.00 0.14 0.51 1662.95
ρi∗ 0.97 0.00 0.95 0.99 8313.81
σξ 2.62 0.01 1.85 3.76 2125.10
σy∗ 17.35 0.42 5.96 34.94 446.74
σi∗ 0.77 0.00 0.56 1.06 4066.76

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the FH-γ̃ model, as well as the
standard deviation of the posterior mean across 10 runs of the
sampler.
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Table A-5: Posterior Distribution of the FH-φ̄
Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.39 0.01 1.88 2.84 2243.90
πA 3.80 0.01 2.33 5.33 3716.65
µQ 0.45 0.00 0.42 0.48 8951.67
ρ 0.46 0.01 0.22 0.68 525.70
γ 0.11 0.00 0.08 0.15 7959.75
σ 3.72 0.02 2.70 4.84 1001.96
κ 0.03 0.00 0.02 0.06 556.04
φπ 0.94 0.00 0.71 1.20 9018.26
φy 0.75 0.00 0.53 1.03 1697.69
φ̄π 2.09 0.00 1.68 2.52 3116.96
φ̄y 0.05 0.00 0.00 0.16 4517.02
ρξ 0.97 0.00 0.93 0.99 4036.74
ρy∗ 0.57 0.00 0.45 0.70 1171.34
ρi∗ 0.97 0.00 0.94 0.99 5604.30
σξ 2.08 0.01 1.56 2.78 775.48
σy∗ 5.99 0.11 3.64 9.61 308.57
σi∗ 0.58 0.00 0.43 0.78 1970.05

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the FH-φ̄ model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.
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Table A-6: Posterior Distribution of the
Angeletos-Lian Model

Mean Std(Mean) Q05 Q95 Neff

rA 1.82 0.02 0.69 3.25 1039.92
πA 4.03 0.01 2.67 5.37 10840.71
µQ 0.41 0.00 0.38 0.45 5028.95
ρ 0.76 0.01 0.44 0.96 206.74
ρf 0.86 0.01 0.24 1.00 317.40
λ 0.08 0.00 0.01 0.22 6899.07
σ 1.88 0.01 1.11 2.79 3745.82
κ 0.03 0.00 0.01 0.12 350.62
φπ 1.45 0.01 1.06 1.89 431.32
φy 0.51 0.01 0.25 0.86 215.16
ρξ 0.87 0.00 0.81 0.94 2129.60
ρy∗ 0.97 0.00 0.93 0.99 415.24
ρi∗ 0.98 0.00 0.96 1.00 474.52
σξ 0.36 0.00 0.30 0.44 231.83
σy∗ 1.43 0.04 0.77 2.60 312.13
σi∗ 0.56 0.00 0.44 0.76 530.02

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the Angeletos-Lian model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.
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Table A-7: Posterior Distribution of the Habit
Model

Mean Std(Mean) Q05 Q95 Neff

rA 1.91 0.01 1.08 2.74 1678.01
πA 4.03 0.03 2.41 5.65 1458.24
µQ 0.46 0.00 0.37 0.56 1381.77
ν 0.87 0.01 0.78 0.93 86.60
a 0.98 0.00 0.94 1.00 6597.47
σ 1.71 0.02 1.05 2.51 879.31
κ 0.00 0.00 0.00 0.00 196.18
φπ 1.65 0.01 1.27 2.06 1926.67
φy 0.23 0.00 0.17 0.28 137.91
ρξ 0.52 0.01 0.38 0.66 81.64
ρy∗ 0.99 0.00 0.97 1.00 325.29
ρi∗ 0.99 0.00 0.98 1.00 352.65
σξ 2.62 0.19 1.25 4.76 35.45
σy∗ 1.78 0.08 0.95 3.25 101.93
σi∗ 0.49 0.00 0.41 0.59 1932.00

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the habit model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.

Figure A-1: Estimated Innovations
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Note: The figure shows the time series of the posterior mean smoothed innovations for the FH-φ̄ model.

44


	Introduction
	An NK Model with Finite-Horizon Planning
	Microeconomic Heterogeneity and Short-term Planning
	A Theory-Based Trend-Cycle Decomposition
	Monetary Policy

	Short-Term Planning and Macroeconomic Persistence
	Trend-Cycle Decomposition and Monetary Policy
	Dynamic Responses to a Monetary Policy Shock

	Estimation
	Data and Methodology
	Models

	Results
	Parameter Estimates
	Model Fit
	Estimated Effects of a Monetary Policy Shock
	Estimated Trend-Cycle Decomposition
	Estimated Shocks
	Shock Decomposition
	Aggregate Data and the Role of Heterogeneity

	Comparison with other Behavioral NK Models
	Conclusion
	Appendices
	Appendices
	Appendices
	Model Dynamics
	The Cycle and the Taylor Principle
	Trend-Cycle Decomposition

	Data
	Posterior Sampler: Details and Additional Results

