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1 Introduction

All major strands of the International Macroeconomics literature study topics in which incom-

plete asset markets play a key role (e.g., business cycles in emerging economies, sovereign default,

Sudden Stops, global imbalances, nominal rigidities, macroprudential regulation, unconventional

monetary policies, currency carry trade, etc). Since the dynamics of external wealth or net for-

eign assets (NFA) generally lack analytic solutions under incomplete markets, researchers rely on

numerical methods to study the implications of theoretical models. Choosing the appropriate nu-

merical methods is difficult, however, because deterministic models yield stationary equilibria de-

pendent on initial conditions and, under uncertainty, market incompleteness makes the evolution

of wealth state-contingent and influenced by precautionary savings. Certainty equivalence fails

and the NFA position grows infinitely large if the rate of interest equals the rate of time preference.

The literature follows two approaches to address these issues. The first approach, based on the

influentialwork by Schmitt-Grohé andUribe (2003),modifies themodels by introducing “stationarity-

inducing” assumptions that yield a well-defined deterministic steady state for NFA, independent

of initial conditions, and implements log-linear or first-order (1OA) approximations around that

steady state, recovering certainty equivalence. Schmitt-Grohé and Uribe proposed introducing

one of three assumptions: a debt-elastic interest rate (DEIR) function by which the real interest

rate rises as NFA falls below its steady state, quadratic costs that make NFA costly to deviate

from steady state, or a subjective discount factor that varies with individual or aggregate con-

sumption.1 Important innovations were made subsequently to improve local methods, including

second- (2OA) and higher-order approximation methods (e.g., Devereux and Sutherland (2010),

Fernandez-Villaverde et al. (2011)), the risky steady state (RSS) method proposed by Coeurdacier

et al. (2011), and the algorithms for solving models with occasionally binding constraints (e.g.,

OccBin by Guerrieri and Iacoviello (2015), DynareOBC by Holden (2016a)).

The second approach uses global methods to solve directly for the nonlinear decision rules and

long-run distribution of wealth of the models in their original form. These methods are analo-

gous to those used in other fields in Macroeconomics, particularly to solve models of heteroge-

neous agents with incomplete markets. Open-economy applications of these methods date back

to Mendoza’s (1991) RBC model of a small open economy, and there are now many applications

in quantitative studies of sovereign default (e.g., Aguiar and Gopinath (2006), Arellano (2008)),
1Schmitt-Grohé and Uribe showed that the business cycle moments of an RBC small-open-economy model solved

using any of these assumptions are similar, and impulse response functions to a TFP shock are virtually identical.
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emerging markets business cycles (e.g., Neumeyer and Perri (2005), Mendoza (1995), Uribe and

Yue (2006)), global imbalances (e.g., Mendoza et al. (2009)), Sudden Stops (e.g., Mendoza and

Smith (2006), Durdu et. al (2009), Mendoza (2010)), andmacro-financial regulation (e.g., Bianchi

(2011), Benigno et al. (2016), Bianchi et al. (2012), Schmitt-Grohé and Uribe (2017)).

Tables 1 and 2 document the usage of local and globalmethods for solving open-economymod-

els with incomplete markets in research articles and policy institutions. Table 1 includes 61 papers.

The list is meant to be illustrative, because constructing a complete list of the articles in the litera-

ture that use these methods is beyond the scope of this paper. It includes the 50 most cited papers

inGoogle Scholar that cite Schmitt-Grohé andUribe (2003), excluding textbooks and review articles.

It also includes all quantitative papers in the references of this paper that are not in that top-50 list,

and several well-known papers going back to the early 1990s when the first numerical solutions of

open-economy models with incomplete markets were produced. Table 2 lists the models used in

eight policy institutions, using information obtained from publicly available documents.

Table 1 shows that both local and global methods are widely used in research. 1OA is the

most common local method, and from the assumptions to induce stationarity, DEIR is the most

common. Table 2 shows that all eight policy models use the 1OA method. Five of these models

use DEIR. Of all solutions that use DEIR, the majority set the value of the debt elasticity parameter

ψ to an arbitrary small number, with the aim of preventing the DEIR function from playing a role

other than inducing stationarity, since ideally this function should be an endogenous object.2 The

ψ values range from 0.00001 to 0.01, and the most common is 0.001, which is the value proposed

by Schmitt-Grohé and Uribe.3 In other cases, the value of ψ is set by calibration or obtained via

estimation, although for some policymodels the value ofψ and/or themethod followed to set it are

not reported. In calibrated cases (three research papers and three policy models), ψ is in the 0.01-

0.1 range, and in estimated cases (four research papers and one policy model), the point estimates

or the medians of posterior distributions in Bayesian estimation are in the 0.00014-2.8 range.

While global methods have the advantage that the models are solved in their original form and

capture the dynamics of wealth accurately, they suffer from the traditional curse-of-dimensionality

problem: They are impractical in large models because the methods become exponentially ineffi-
2Garcia-Cicco et al. (2010) explain that, following Schmitt-Grohé and Uribe (2003), the standard practice is to set ψ

to a small value because the DEIR function aims to obtain independence of the deterministic steady state from initial
conditions without affecting cyclical dynamics. They also studied a model in which ψ represents financial frictions, and
in this case they estimated ψ using Bayesian methods.

3Note, however, that the DEIR functional forms are not always the same, so ψ values are not directly comparable.
When relevant for our quantitative analysis, we control for this by making comparisons in terms of the elasticity of the
interest rate with respect to percent deviations of NFA from steady state.
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cient as the number of endogenous state variables rises. The local methods have the advantage that

they can be applied in large-scalemodels, but have the shortcoming that they need the stationarity-

inducing assumptions that are not part of the originalmodels, andmore importantly, aswe show in

this paper, these extra assumptions may not be innocuous for the numerical results. Hence, these

tradeoffs pose two key questions: Under what conditions are local solutions better approximations

to the “exact” solutions obtainedwith global methods? When those conditions are satisfied, which

features of the global solutions are approximated accurately and which are not?

This paper provides answers to these questions by comparing local and global solutions. For

the local methods, we use 1OA, 2OA, RSS, and DynareOBC. For the global methods, we use the

fixed-point iteration (FiPIt) algorithm proposed byMendoza and Villalvazo (2019), which applies

fixed-point iteration to solve for NFA (asset prices) in the Euler equation of bonds (capital).4

With the global method, the existence of a well-defined stochastic steady state follows from the

same condition as in the Bewley-Aiyagari-Hugget class of heterogeneous-agents models: the rate

of time preference must be lower than the interest rate.5 In multicountry models this is a general

equilibrium result, because if the rate of interest equals the rate of time preference, all countries

would desire an infinitely large stock of NFA for self-insurance, which is inconsistent with world

general equilibrium (see Mendoza et al. (2009)). Hence, assuming an interest rate lower than the

rate of time preference in small-open-economy models is an implication of the assumption that the

interest rate is a world-determined price. With the local methods, the DEIR function is constructed

so that at a pre-determined steady state the rate of interest equals the rate of time preference.

We compare local v. global solutions for three widely-used small open economy models: An

endowment economy model, a real business cycle (RBC) model, and a model of Sudden Stops

(SS) with an occasionally-binding credit constraint linked to market prices. In each case, we start

with “baseline calibrations” in which the local methods use DEIR with ψ = 0.001 and the center of

approximation of the 1OA, 2OA and DynareOBC methods is the deterministic steady state, and

RSS is centered at its risky steady state. Then we consider “targeted calibrations,” for which ψ is

calibrated to match the first-order autocorrelation of NFA in the global solutions.6 For RSS and
4We also solved the model proposed in Section 2 using value function iteration and obtained very similar results

(see Appendix D.1). This method is slow in models with more than one endogenous state variable and often requires
efficient equilibria, but does not require differentiability or convexity of the optimization problems, which FiPIt requires.
Moreover, FiPIt does not use the contraction mapping property so its convergence is not guaranteed.

5Preferences with endogenous discounting proposed by Uzawa (1968) and Epstein (1983) also support a well-
defined limiting distribution of NFA. In Appendix Section D.1, we report results of the global solution of the model
of Section 2 obtained with these preferences.

6We also studied an alternative in which the center of approximation is the average NFA of the global solutions, but
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DynareOBC, we also solve variants without DEIR in which the rate of interest is lower than the

rate of time preference, so that credit constraints bind at the deterministic steady state. We conduct

both time-domain comparisons of statistical moments and dynamics in response to shocks, and

frequency-domain comparisons based on spectral density analysis. In addition, for the SS model

we compare multipliers, financial premia and macro responses when the credit constraint binds.

The results show important differences between local and global solutions, which are due to

differences in the decision rule driving NFA, the key endogenous state variable in open economy

models. In the global solutions, the NFA decision rule is solved for “exactly,” and the model’s

equilibrium stochastic processes are jointly determined by this decision rule (and the one for capital

in the RBC and SS models) and the stochastic process of exogenous shocks. In the local solutions

(other than DynareOBC), the NFA decision rule is a first- or second-order approximation around

the deterministic steady state or the risky steady state for the RSS method. Hence, differences

across the solution methods can be summarized by comparing NFA decision rules, particularly

their first-order autocorrelations and their implications for two key moments: (a) the mean of

NFA, which is an indicator of precautionary savings and the critical variable in research topics

like global imbalances or reserves accumulation; and (b) the autocorrelation of net exports, since

net exports are also a key variable in the analysis of open-economy models (see Mendoza (1991),

Aguiar and Gopinath (2006), and Garcia Cicco et al. (2010)).

Global methods pin down the “true” NFA autocorrelation, while local solutions yield approxi-

mations that differ depending on the solution method and the criteria used to set ψ and the center

of approximation. Both global and local methods produce a near-unit-root NFA process. In all

calibrated exercises, the NFA autocorrelations exceed 0.95. The autocorrelations differ slightly,

however, and because they are near-unit-roots these small differences have major implications.

The largest difference between global and local solutions is in the long-run average of NFA.

Small differences in the autocorrelation and intercepts of the NFA decision rules cause large dif-

ferences in mean NFA, and the local methods can yield NFA averages above or below the global

solution. The local methods also yield very different results for the effects of parameter changes

that alter precautionary savings. For instance, the global solution predicts large increases in mean

NFAwith higher variability of shocks, lower rate of time preference or higher coefficient of relative

risk aversion (CRRA). In contrast, the 1OA method preserves certainty equivalence, and hence

keeps mean NFA equal to the deterministic stationary equilibrium implied by the DEIR function.

targeting the autocorrelation produces a closer match to the global solutions.
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The 2OA and RSSmethods produce long-run averages of NFA that are much larger or smaller than

the mean of the global methods, depending on the model, the parameter change considered, and

whether we use baseline or targeted calibrations. For example, changing income volatility in the

endowment economy, the 2OA method overestimates average NFA while the RSS underestimates

it using baseline calibrations, while for targeted calibrations both methods underestimate average

NFA significantly. Similarly, DynareOBC calibrated to a steady state in which the credit constraint

binds (does not bind) yieldsmeanNFAmarkedly below (above) the global solution. Thus, amajor

drawback of local methods is that they do poorly at quantifying precautionary savings.

Small differences in the autocorrelation of NFA also yield large differences in the autocorrela-

tions of the net exports-GDP ratio (NX), because NX is a quasi first-difference of a near-unit-root

NFA process, as shown in Section 2. For instance, in the endowment model with the baseline cali-

bration, the global solution predicts that raising the persistence of income from near 0 to 0.8 makes

the autocorrelation ofNFA rise from 0.83 to 0.99 but that of NX varies from -0.09 to 0.77. In contrast,

the 20A and RSS solutions predict that the autocorrelation of NFA always exceeds 0.99 while that

of NX varies from 0.24 to 0.95. For a given autocorrelation of income in the 0-0.8 range, the local

solutions always overestimate the autocorrelations of NFA and NX.

The local methods do better at matching the moments of the global solution with the targeted

calibrations (i.e. with ψ set to match the autocorrelation of NFA in the global solution). Averages

of NFA get closer to the global solution. The autocorrelations of NFA and NX are similar when

the persistence of income is such that the autocorrelation of NFA in the global solution is greater

or equal to that obtained with the baseline calibration (0.977), but for less persistent income, and

hence lower autocorrelations of NFA in the global solution, again the local solutions overestimate

the autocorrelations ofNFAandNX.Moreover, the targeted calibration approach has the drawback

that it requires obtaining first the global solution so as to find the first-order autocorrelation of NFA

to calibrate ψ, and doing this again for any parametric change that alters the NFA autocorrelation.

Comparing alternative local methods also yields important findings. 1OA, 2OA and RSS so-

lutions yield similar second- and higher-order moments and similar impulse response functions

for all endogenous variables in the endowment and RBC models. We use analytic solutions of the

endowment model NFA decision rules to show that this is due to two features of the results: First,

the coefficient on lagged NFA is nearly the same in the RSS and 2OA solutions when ψ is small

(less than 0.1), unless the deterministic and risky steady states of NFA differ by a very large mar-

gin (at least 40 percentage points of GDP). Second, the coefficients in the square and interaction
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terms of the 2OA decision rules are very small. As a result, the three methods yield different first

moments because of their different centers of approximation (and different intercept for 1OA), but

the second- and higher-order moments and impulse response functions are about the same.

Targeted calibrations require increasing ψ from the common calibration setting of 0.001 to val-

ues of 0.0469 (0.0063) and 0.0469 (0.0045) for the 2OA and RSSmethods applied to the endowment

(RBC) economy respectively. These variations imply large increases in the elasticity of the DEIR

function, by factors of 4.5 to 25, which make this function play a more significant role than when

ψ = 0.001. In particular, the required ψ values effectively make deviations of NFA from steady

state too costly, and as a result even the first moments of 2OA and RSS are similar and they are

both also close to the 1OA solution (i.e., certainty equivalence approximately holds). In these

cases, 1OA should be the preferable local method, but it also means that precautionary savings are

disregarded entirely. On the other hand, keeping ψ = 0.001 implies that predictions about some

key moments, like the autocorrelation of NX, deviate significantly from the “true” solutions.

The global and local solutions also show important differences in the moments that measure

the variability, persistence and output-correlation of consumption in the three models. In contrast,

and in line with the findings of Schmitt-Grohé and Uribe (2003), the moments for output and

investment in the RBC and Sudden Stops models are similar. This is an implication of the small

excess return on capital typical of RBC models, which keeps the capital decision rule close to the

one consistentwith Fisherian separation of investment from savingdue to arbitrage of asset returns.

The frequency-domain analysis shows that local and globalmethods yield equilibrium stochas-

tic processes that display different behavior at most frequencies, and not just in business cycle mo-

ments and long-run averages. Non-parametric periodograms for the endowment economy with

the baseline calibrations show that local methods overestimate significantly the contribution of

low-frequency movements to the variability of NFA and NX, which is consistent with the result

indicating that the local methods overestimate the autocorrelation of NFA. As a result, the local

methods also overestimate (underestimate) the contribution of low-frequency (high-frequency)

movements to consumption fluctuations. The targeted calibrations perform much better at ap-

proximating the spectral density of NFA and NX, but for consumption they still underestimate the

contribution of high-frequency fluctuations by a largemargin. Similar results are obtained forNFA,

NX and consumption in the RBC model, but in this case the local and global methods yield sim-

ilar periodograms for capital, investment and output, in line with the finding that the time-series

moments for these variables are similar with both methods.
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Standard 2OA and RSS methods cannot be used for solving the SS model, because they can-

not handle the occasionally binding constraint. We used instead Holden’s (2016a) DynareOBC

toolkit. DynareOBC uses also a local approximation but introduces news shocks which hit every

time the constraint is violated and push the relevant variables back to the constraint. To ensure the

solution is consistent with rational expectations, these news shocks are constructed as if they were

expected by agents along a perfect-foresight path and so are akin to “endogenous news shocks.”

This method, when solved in first order and without integrating over future uncertainty, ignores

precautionary savings and the risk of alternative future paths in which the constraint may or may

not bind, and hence it also ignores the equity risk premium. We examined DynareOBC solutions

with and without the constraint binding at the deterministic steady state.

The results show that our findings from the endowment andRBCmodel extend to the SSmodel.

Local and global solutions yield large differences in the amount of precautionary savings induced

by the credit constraint, business cycle moments, the probability of hitting the constraint, impulse

responses, and spectral densities. Moreover, the near-unit-root nature of NFA increases Dynare-

OBC execution time considerably, because it requiresmultiple, long perfect-foresight paths to form

the news shocks realizations needed to implement the constraint, and long time-series simula-

tions to attain convergence of long-run moments. DynareOBC also underestimates significantly

the tightness of the credit constraint and its effects on financial premia and macro responses. In

particular, it yields mean shadow interest premia when the constraint binds of 0.13 to 0.8 percent

v. 2.6 percent in the global solution and average equity premia of 0.1 to 0.64 percent v. 2.2 per-

cent. In turn, lower equity returns imply higher equity prices and investment when the constraint

binds, and hence higher borrowing capacity. As a result, DynareOBC with the constraint binding

at steady state yields weaker Sudden Stop macro responses when the credit constraint binds, and

DynareOBCwith the constraint not binding at steady state cannot capture Sudden Stop responses.

In terms of computational performance, the FiPIt method is easy to implement in Matlab. It

is faster than the local methods for solving the endowment model and of comparable speed to

DynareOBC for solving the Sudden Stops model, but it is slower than local methods for the RBC

model. For all three models, however, the local methods yield much larger Euler equation errors.

This paper is related to the broader literature comparing solutionmethods of nonlinear rational

expectations models. The comprehensive study by Taylor and Uhlig (1990) showed that several

methods that approximate global solutions of a canonical RBC model yield different results for

simulated sample paths, density functions and cyclical moments. Dou et al. (2019) compared
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1OA, 2OA and OccBin local solutions v. global solutions of a DSGE model with financial frictions

and found that the local solutions approximate poorly the model’s nonlinear dynamics and yield

biased impulse responses. Rabitsch et al. (2015) compared the DS local method proposed by

Devereux and Sutherland (2010) for solving portfolio allocations in a two-country, incomplete-

marketsmodel v. a globalmethod. In theDSmethod, non-stationarity of theNFAposition remains

an issue, but given NFA it yields an accurate portfolio structure. They found that the DS method

is accurate only with particular calibrations and with symmetric countries with long-run NFA set

to 0. With asymmetric countries, and using endogenous discounting to induce stationarity, the

DS method performs poorly unless the center of approximation matches the global solution, and

more so if NFA decision rules are nonlinear. Our work differs from these studies in three key

respects: We study 1OA, 2OA,RSS andDynareOBCmethods using the dominantDEIR approach to

induce stationarity; we compare results in both the time and frequency domains; and we consider

endowment, RBC and SS models, and for the latter we compare global v. DynareOBC solutions.

It is also worth noting that Holden (2016b) compared DynareOBC v. global solutions of a

small open economy model with endowment income (i.e., NFA as the single endogenous state)

and subject to a constant debt limit and two non-negativity constraints as occasionally binding

constraints. Our results differ in that we solve an SS model with two endogenous states (capital

and NFA) and a credit constraint that depends on both states and on asset prices. Holden found

thatDynareOBC is not far from the global solution, whilewe found that the solutions differ sharply.

The rest of the paper is organized as follows. Section 2 compares the endowment model solu-

tions, providing analytic and quantitative results. Section 3 compares RBC model solutions. Sec-

tion 4 compares global v. DynareOBC solutions of the SS model. Section 5 provides conclusions.

2 Endowment economy

2.1 Model structure and equilibrium

Consider first a small open economymodel with stochastic endowment income. We use this setup

to derive analytic results and characterize NFA dynamics under incompletemarkets. The economy

is inhabited by a representative agent with preferences given by:

E0

{ ∞∑
t=0

βtu(ct)

}
, u(ct) =

c1−σt

1− σ
. (1)
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where β ∈ (0, 1) is the subjective discount factor, ct is consumption and σ is the CRRA coefficient.

The economy’s resource constraint is:

ct = ezt ȳ −A+ bt − qbt+1, (2)

where ezt ȳ is stochastic income or GDP that fluctuates around a mean ȳ with shocks zt of expo-

nential term ezt , bt denotes the NFA position in one-period, non-state-contingent discount bonds

traded in a frictionless global credit market at a an exogenous price q = 1
1+r , where r is the world

real interest rate, and A is a constant that represents investment and government expenditures

(which is introduced so that the model can be calibrated to observed average consumption-GDP

ratios).7 Income shocks follow an AR(1) process: zt = ρzzt−1 + σzε
z
t where εzt is i.i.d.

The agent chooses the optimal sequences of bonds and consumption so as to maximize (1)

subject to (2). This optimization problem is analogous to the one solved by a single individual in

heterogeneous-agent models of precautionary savings (e.g., Bewley (1977), Aiyagari (1994) and

Hugget (1993)). As in thosemodels, the Inada condition of CRRA utility implies that themarginal

utility of consumption goes to infinity as consumption goes to zero from above. This implies that

the small open economy faces Aiyagari’s Natural Debt Limit (NDL), by which the NFA position

never exceeds the annuity value of the worst realization of net income bt+1 ≥ −min(ezt ȳ − A)/r,

otherwise agents would be exposed to the possibility of nonpositive consumption with positive

probability. We can also impose a tighter ad-hoc debt limit ϕ, following Aiyagari (1994), such that

bt+1 ≥ ϕ ≥ −min(ezt ȳ −A)/r. As we show later, this is useful for model calibration.

Using the resource constraint, we can express the Euler equation for bonds as follows:

uc(e
zt ȳ −A+ bt − qbt+1) = (1 + r)βEt [uc(e

zt+1 ȳ −A+ bt+1 − qbt+2)] + µt, (3)

where uc(t) is the marginal utility of ct and µt is the Lagrange multiplier of the debt limit.

A competitive equilibrium for this economy is defined by stochastic sequences [ct, bt+1]
∞
t=0 that

satisfy equation (3) for all twith bt+1 ≥ ϕ. As we discuss next, the incompleteness of asset markets

plays a critical role in determining key features of this equilibrium.

Consider first the equilibrium under complete markets of contingent claims. If income shocks

are idiosyncratic to the small open economy, the economy diversifies away all the risk of its en-

dowment fluctuations. As a result, the equilibrium features a constant consumption stream and
7We assume that r is constant, but study later the implications of allowing it to be stochastic.
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the economy’s wealth position is time- and state-invariant. The solution would be the same as in a

perfect-foresight model with β(1 + r) = 1 and wealth (the present value of income plus the initial

NFA holdings) scaled to represent the same wealth as in the complete markets economy.

Under incompletemarkets, the equilibriumdiffers sharply, becausewealth becomes state-contingent

and consumption cannot attain a perfectly smooth path. As shown in Chapter 18 of Ljungqvist and

Sargent (2012), the Euler equation (3) implies thatMt ≡ (1 + r)tβtuc(t) forms a supermartingale,

which converges almost surely to a non-negative random variable because of the Supermartingale

Convergence Theorem. If β(1 + r) ≥ 1, this convergence implies that consumption and NFA di-

verge to infinity because marginal utility converges to zero almost surely, which is the cause of the

non-stationarity problem that led to the use of the DEIR function in local solution methods. The

economy builds an infinitely large stock of precautionary savings so that self-insurance can sustain

a consumption path that satisfies uc(t) ≥ β(1+r)Et [uc(t+ 1)] and still leads to convergence inMt.

Hence, in this case the model lacks a “nice” stochastic stationary state with a well-defined limit-

ing distribution of NFA. In contrast, if β (1 + r) < 1, the economy attains a well-defined stochastic

steady state with finite long-run averages of assets and consumption, and the rest of the moments

of the model’s endogenous variables are also well-defined. A crude intuition is that the oppos-

ing forces of the incentive to save for self-insurance and the pro-borrowing incentive implied by

β (1 + r) < 1 make NFA fluctuate within an ergodic set. When NFA falls too much the precaution-

ary savings force prevails and when NFA rises too much the pro-borrowing force prevails.

It is important to note that β (1 + r) < 1 is also a general equilibrium outcome in multi-country

models with incomplete markets, because otherwise all countries would want an infinite amount

of NFA, which is inconsistent with world market clearing in the market of risk-free assets (see

Mendoza et al. (2009)). Thus, in small-open-economy models β (1 + r) < 1 is not an arbitrary

assumption but an implication of the assumption that the real interest rate is a world-determined

price. This also implies that the issues raised here are not particular to small open economymodels,

they are relevant for multi-country models and closed-economy models with incomplete markets.

2.2 Global methods

Global methods solve for the competitive equilibrium in recursive form. Since the equilibrium is

efficient in this economy, we can represent it as the solution to this dynamic programming problem:

V (b, z) = max
c,b′

{
c1−σ

1− σ
+ β

∑
z′

π(z′, z)V
(
b′, z′

)}
, (4)
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s.t. c = ez ȳ −A+ b− qb′, b′ ≥ ϕ.

The AR(1) process of income is approximated as a discrete Markov chain with transition probabil-

ity matrix π(z′, z). The solution to the Bellman equation is characterized by a decision rule b′(b, z)

and the associated value function V (b, z). This decision rule and the Markov process of the shocks

induce a joint ergodic (unconditional) distribution of NFA and income λ(b, z).

We solve for b′(b, z) over a discrete state space of (b, z) pairs using the FiPIt method.8 This

method solves the recursive equilibrium conditions using a fixed-point iteration algorithm (see

Mendoza and Villalvazo (2019) for details). For this simple model, the FiPIt method iterates on

the following representation of the Euler equation:

cj+1(b, z) =

{
βR
∑
z′

π(z′, z)

[(
cj(b̂

′
j(b, z), z

′)
)−σ]}− 1

σ

(5)

Given a conjecture of the decision rule b̂′j(b, z) in iteration j, the associated consumption function is

cj(b, z) = ez ȳ−A+b−qb̂′j(b, z). This consumption function is interpolated over its first argument in

order to determine cj(b̂′j(b, z), z′), so that the above equation solves directly for a new consumption

function cj+1(b, z). Using the resource constraint, the new consumption function yields a new

decision rule for bonds b′j+1(b, z), which is re-set to b′j+1(b, z) = ϕ if b′j+1(b, z) ≤ ϕ. Then the

decision rule conjecture is updated to b̂′j+1(b, z) as a convex combination of b̂′j(b, z) and b′j+1(b, z),

and the process is repeated until b′j+1(b, z) = b̂′j(b, z) up to a convergence criterion.

FiPIt uses a standard fixed-point iteration approach to solve transcendental equations so that

the Euler equation solves directly instead of using a non-linear solver. Mendoza and Villalvazo

(2019) provide a detailed comparison of this algorithm with other Euler equation methods, in-

cluding time iteration and endogenous grids methods. They show that this method is fast and

easy to implement and optimize in Matlab for models with one or two endogenous state variables,

including problems with occasionally binding constraints. In contrast, time-iteration with two en-

dogenous states requires solving two nonlinear simultaneous equations and the endogenous grids

method requires complex interpolation techniques because the endogenous grids are irregular.

The global method solves the model in its “original form” without additional assumptions to

impose stationarity. If β(1 + r) = 1, the true solution is that NFA diverges to infinity, which is

unpleasant but is the equilibrium outcome. β(1 + r) < 1 is, however, the relevant case, because
8We show in Appendix D.1 that solving by value function iteration yields nearly identical results.
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as noted above it is implied by world general equilibrium. Note also that with β(1 + r) < 1 the

deterministic stationary state converges to the natural or ad-hoc debt limit, with consumption falling

at a gross rate of (β (1 + r))1/σ. Hence, without quantitative analysis, we can predict already that

the long-run average of NFA in the stochastic, incomplete-markets model will differ significantly

from the deterministic steady state and that the difference is due to precautionary savings.

2.3 Local methods

The local methods solve for the competitive equilibrium using a local approximation of the opti-

mality conditions (equations (2) and (3)) either around the deterministic steady state (bdss) for

the 1OA and 2OA methods or the risky steady state (brss) for the RSS solutions. Also, since the

model in its original form yields a deterministic stationary state that is either dependent on initial

conditions (if β(1 + r) = 1) or the debt limit (if β(1 + r) < 1), 1OA and 2OA methods require one

of the stationarity-inducing assumptions. As noted in the Introduction, the most widely used of

these assumptions is to introduce the DEIR function, which generally adopts the following form:

1 + rt = 1 + r + ψ
[
eb
dss−bt+1 − 1

]
, (6)

where ψ determines the elasticity of rt with respect to NFA. For small deviations of NFA from bdss,

the elasticity of rt with respect to percent deviations of bt+1 from bdss is given by ηr ≡ −ψbdss.

We implement the 1OA and 2OA methods following Scmitt-Grohe and Uribe (2004) and the

RSS method following Coeurdacier et al. (2011).9 1OA and 2OA solve for local approximations

around bdss in standard fashion, by solving a first- or second-order approximation of the decision

rules jointly with approximations of the same order of the model’s optimality conditions. In con-

trast, RSS uses brss as center of approximation and assumes β(1 + r) < 1 (see the Appendix for

details). The risky steady state aims to take into account future risk, so that the center of approx-

imation may approximate better the precautionary savings motive. The value of brss is obtained

from a second-order approximation to the conditional expectation of the steady-state Euler equa-

tion, which is solved jointly with the coefficients of a first-order approximation of the decision rules

using a conditional second-order approximation of the full equilibrium conditions’ Jacobian, which

requires the third derivatives of the equilibrium conditions. As explained by de Groot (2014), this

second part of the solution is crucial to obtain stationary NFA dynamics in the RSS solution. We
9Using Andreasen et al. (2018) to solve using 2OA and 3OA yields similar findings. Kliem and Uhlig (2016) also

proposed a RSS method, in the context of an asset pricing model.
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also consider a variant of the RSS method in which brss is computed in the same way, but is then

used togetherwith theDEIR function and standard first-order approximations of the decision rules

and equilibrium conditions to obtain stationary dynamics. We refer to the original RSS method as

“full RSS” and the alternative with the DEIR function as “partial RSS.” Partial RSS is faster and, for

other than first-order moments, it yields similar results as full RSS in our quantitative applications.

2.4 Calibration

We use the same baseline calibration as in Durdu et al. (2009), which was based on annual data for

Mexico. Table 3 lists the calibration parameters. The table shows a subset of parameters common

to local and global solutions, as well as the parameters that are particular to each, including for the

local methods both baseline and targeted calibrations of ψ.

The common baseline calibration parameters are set as follows. The CRRA coefficient is set

to σ = 2, which is a standard value. Mean income is normalized to ȳ = 1. The steady state real

interest rate is set to 5.9 percent, which is the average of Uribe and Yue’s (2006) real interest rate

including the EMBI spread for Mexico. The target average ratio of net foreign assets to GDP is set

to −44 percent, which is the average of Mexico’s NFA-GDP ratio over the period 1985–2004 in the

database constructed by Lane and Milesi-Ferretti (2006), and the target consumption-GDP ratio is

0.692, which is the average ratio in Mexican data for the 1965–2005 period. These parameter values

and the steady-state resource constraint imply that A = ȳ+ rb− c = 0.282. The standard deviation

and first-order autocorrelation of the endowment process are set to estimates obtained using the

HP-detrended cyclical component of GDP computed also from the Mexican data. This yields σz =

0.0327 and ρz = 0.597. When using local methods, these parameters define the AR(1) process of

income shocks that is part of the equilibrium conditions. In the global solution, we approximate

this process as a five-point Markov chain using Tauchen and Hussey (1991)’s quadrature method.

The baseline calibration for the global solutions requires also calibrating the values of ϕ and β.

As explained inDurdu et al. (2009), these parameters are set to values such that themodelmatches

the−0.44 long run average of the NFA-GDP ratio observed inMexican data together withMexico’s

cyclical variability of private consumption of 3.28 percent over the 1965–2005 period. This implies

ϕ = −0.51 and β = 0.94. Two parameters are required to identify the calibration, becausewhile the

average NFA-GDP ratio can be matched by simply adjusting ϕ, this can result in stochastic steady

states in which the distribution of bond holdings is clustered near the debt limit and consumption

fluctuates too much, or has a high variance and consumption fluctuates too little.
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In the baseline calibration for the local methods, we set the deterministic steady state of NFA

to the same value of ϕ in the calibration of the global solutions, hence bdss = −0.51. This is done

so that both solutions have the same bdss (recall that the deterministic steady state of the global

solution is ϕ because β(1 + r) < 1). The value of β for the local methods (except in the full RSS

solution) is set to 1
1+r , because the functional form of the DEIR function implies that the rate of

interest equals the rate of time preference in the deterministic steady state. Note, however, that the

discount factors of the global and local calibrations differ only slightly (0.944 v. 0.94). The baseline

value of ψ is the commonly-used value of 0.001, taken from Schmitt-Grohé and Uribe (2003). In

the targeted calibrations, we set ψ to values so that the solution for a given local method matches

the autocorrelation of NFA obtained with the global solution. This yields ψ = 0.0469 for both the

2OA and RSS. We do this because, as we show below, approximating closely the autocorrelation

of the equilibrium law of motion of NFA gives the local methods the best chance to match the

global solution. Recall also that for a given value of ψ the elasticity of debt with respect to percent

deviations of NFA from steady state varies with bdss, since ηr ≡ −ψbdss for small deviations.

2.5 Comparison of quantitative results

We compare global and local solutions along five dimensions. First, the NFA decision rule and

its implications for net exports. Second, the full set of long-run moments. Third, impulse re-

sponse functions for income shocks. Fourth, spectral density functions. Fifth, an environment

with interest-rate shocks, in addition to income shocks.

a) Decision rules of NFA and Net Exports

We start by examining differences in the first-order autocorrelations of NFA and net exports

(nx). Given that the trade balance is a quasi first-difference of NFA, since nxt = qbt+1 − bt, and

assuming that b follows anAR(1) processwith autocorrelation coefficient ρb, we show inAppendix

Section A that the first-order autocorrelation of net exports (ρnx) is:10

ρnx =
q2ρb + ρb − q − qρ2b

1 + q2 − 2qρb
. (7)

Hence, if ρb is close to 1, as is typically the case in models with non-state-contingent assets, small

differences in ρb induce large differences in ρnx. Thus, small errors in the local solution for ρb can

result in large errors in their solution for ρnx. We show below that this is indeed the case here.
10NFA is an AR(1) process in the 1OA and RSS solutions. In the 2OA solution it includes squared and interaction

terms in bt−1 and yt, but these terms are quantitatively negligible in all of our experiments.
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The global methods produce “exact solutions” for ρb and ρnx that are computed using λ(b, z),

π(z′, z), b′(b, z) and the definition of net exports. The local methods produce solutions implied by

the local decision rules. The 2OA decision rule of NFA can be expressed as:

b̃t+1 = hbb̃t + hyỹt +
1

2

(
hbbb̃

2
t + hyyỹ

2
t

)
+ hby b̃tỹt +

1

2

(
hσzσzσ

2
z

)
(8)

where b̃t ≡ bt − bdss and ỹt ≡ yt − ȳ. The 1OA and RSS methods have similar expressions, except

that they only have the first two terms in the right-hand side, because they both use a first-order

approximation of the decision rules. The RSS method also differs in that it uses brss instead of bdss.

The key coefficient to analyze is hb, because it is themain determinant of ρb. This is the case even

for the 2OA solutions because in all of our quantitative applications hbb, hyy and hby are negligibly

small.11 The term hσzσzσ
2
z is also important, because it isolates the effect of income variability on

meanNFA. It is an estimate of the amount of precautionary savings that the 2OA solution captures.

Moreover, since this is the only term that is quantitatively relevant of those that distinguish 2OA

from 1OA solutions, and both of these solutions have the same hb term (as shown by Schmitt-

Grohé and Uribe (2004)), these results also imply that the 2OA and 1OA solutions should be very

similar, except in their first moments.

For the RSSmethod, deGroot (2014) showed that income volatilitymatters for determining brss

because the coefficient of variation of consumption (relative to its risky steady state) is constant,

at a level that depends on β, r and σ.12 Intuitively, this captures precautionary savings because, if

income variability rises and the shares of income allocated to savings v. consumption remain un-

changed, the volatility of consumption would increase. But by increasing NFA relative to income,

more of the disposable income comes from interest income, so that the coefficient of variation of

consumption can remain constant. Since the RSS decision rule follows from a first-order approx-

imation, however, the ρb value will differ from that implied by the 1OA and 2OA solutions only

to the extent that bdss and brss differ, and as we document below, this requires larger differences

than those obtained under the baseline and targeted calibrations. Hence, 1OA, 2OA and partial

RSS solutions are likely to be very similar, except for differences in first moments.

We now study how ψ and the center approximation affect the determination of hb in the local

decision rules. For tractability, assume log utility and i.i.d income. Under these assumptions, we
11For instance, as we document in Section B.3 of the Appendix, for the 2OA solution with baseline calibration: hbb =

0.004, hby = 0.005, and hyy = 0.00005.
12Corollary 5 in de Groot (2014) shows that var(c)

(crss)2
= 2

σ(1+σ)
1−βR
βR

.
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show in Appendix C.3 that hb in all the local methods is given by the following expression:13

hb(ψ, b
∗) =

R+ eb
∗ψ(1− b∗ψ + ψ)−

√
R2 + 2eb∗ψ(b∗ψ + ψ − 1)R+ e2b∗ψ (1− b∗ψ + ψ)2

2eb∗ψ
, (9)

whereR ≡ 1+r and b∗ = bdss for 1OAand 2OAor brss for RSS. Since the terms hbb, hyy and hby in (8)

are quantitatively irrelevant, it follows that ρb(ψ, b∗) ≈ hb(ψ, b
∗) for 1OA, 2OA and RSS methods.

Hence, eq. (9) can be used to analyze how ψ and b∗ affect the autocorrelation of the equilibrium

stochastic process of NFA produced by the local methods. Moreover, the above expression also

implies that the value of hb obtained with 1OA and 2OA differs from the RSS solution only to the

extent that bdss and brss differ.

Equation (9) formalizes the argument that setting the value of ψ imposes implicitly the equi-

librium autocorrelation of NFA, and in particular choosing very low values of ψ implies values of

ρb close to 1. For given R and b∗, ψ determines ρb and in fact, as the numerical results reported

below show, ρb is decreasing (increasing) in ψ for relatively low (high) ψ. For the 1OA and 2OA

methods, eq. (9) describes fully the relationship between ψ and ρb, because b∗ = bdss and bdss is

exogenous, but for the RSS method we need to consider that b∗ = brss and brss is solved together

with the coefficients of the decision rules for b̃t+1 and c̃t, which also depend on ψ.

Equation (9) can also be used to illustrate the non-stationarity of the local solutions if a stationarity-

inducing transformation is not used. If ψ = 0, the solution of ρb(ψ, b∗) has two roots, R or 1, so

NFA is non-stationary. In contrast (and assuming b∗ = 0 for simplicity), if ψ > 0 the smaller of the

two roots that solve ρb(ψ, 0) is less than unitary, and thus yields a stable solution.14

We study numerically how variations in ψ and b∗ alter ρb(ψ, b∗). To this end, we set R = 1.059

as in the baseline calibration and solve for ρb(ψ, b∗) or a set of values of ψ and b∗. The results are

summarized in Figure 1. The Figure plots ρb(ψ, b∗) for ψ in the interval [0, 0.9] and three values of

b∗: 0, -0.41 (brss in the baseline calibration) and -0.51 (bdss in the baseline calibration).

Figure 1 yields a key finding: The value of ρb is nearly identical across 2OA and RSS for any

0 ≤ ψ ≤ 0.1, which is an interval that includes the baseline and targeted calibration values and

also all the values of ηr implied by the ψ values used in the papers listed in Table 1.15 Hence, for
13This result applies for both full and partial RSS.
14Schmitt-Grohé and Uribe (2003) obtained similar results by deriving the analytic solution of the decision rule of

NFA for an endowment economy with log utility and using the stationarity-inducing assumption by which the rate of
time preference depends on aggregate consumption.

15The highest ψ in the literature is ψ = 2.8 in Garcia-Cicco et al. (2010), and with their value of bdss = −0.007 yields
ηr = −0.0196. For the interval 0 ≤ ψ ≤ 0.1 with our bdss = −0.51 we obtain an interval of elasticities 0 ≥ ηr ≥ −0.051.
In our baseline and targeted calibrations, ψ = 0.001, 0.0468 which implies ηr = −0.0051,−0.0239.
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the values of ψ used in the literature, the choice of approximating around bdss v. brss and solving with 1OA,

2OA or partial RSS does not make a difference. The two steady-state estimates would have to differ

much more than what the baseline calibration and small variations around it would predict. We

start to notice a non-negligible difference only if bdss is more than forty percentage points of GDP

below brss. Moreover, since in the baseline and targeted calibrations it is also the case that the

terms related to the quadratic and interaction terms of the 2OA decision rule of b are nearly zero, it

follows that we can expect the 2OA and RSS solutions to produce similar second and higher-order

moments for all endogenous variables, as the results reported below will confirm.16

Figure 1 also shows that ρb switches from decreasing to increasing in ψ at a sufficiently high

value of ψ (i.e., ψ ≥ 0.5). However, ψ ≥ 0.5 would imply much larger values of ηr than those used

in the literature, including estimated models.

The above findings indicate that the implications of ρb for ρnx derived in condition (7) by as-

suming that NFA follows an AR(1) process actually apply to the equilibrium stochastic processes

produced by the local methods. The DEIR function with very small ψ imposes values of ρb near 1,

and small differences between these imposed values and the exact solutions of the global solution

result in large differences in the predicted values of ρnx, as we document next.

Table 4 illustrates the relationship between ρb and ρnx in the global (GLB) and local solutions.

To induce changes in ρb, we vary ρz from 0 to 0.8. Panel i) shows the GLB results using the baseline

calibration. Panel ii) shows the 2OA and partial RSS results for their baseline calibration with

ψ = 0.001. Panel iii) shows local solutions for targeted calibrations with ψ set to match ρb = 0.996

(the value in the GLB solution shown in Table 5) which implied ψ = 0.0469 for the 2OA and partial

RSS solutions. Panel iv) shows an additional scenario in which, for each value of ρb obtained with

the GLB solution as ρz changes, we re-calibrate the value of ψ in the local solutions so as to match

that value of ρb (the corresponding values of ψ are also show in this panel).

The first result evident in Table 4 is that 2OA and partial RSS results are always very similar,

indicating that the gap between bdss and brss and the quadratic and interaction terms in the 2OA

decision rules are not large enough to alter significantly the values of ρb and ρnx of the twomethods

under any of the combinations of ρz and ψ considered. Recall also that for the same reasons 1OA

and 2OA solutions are nearly the same.

Panel i) shows that as ρz rises from 0 to 0.8, the GLB solution indicates that the true value of ρb
16The analytic solution for hb(ψ, b∗) is strictly valid only for log utility and i.i.d. shocks, but these implications of the

analysis still hold quantitatively in the solutions with AR(1) shocks.
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rises from 0.82 to 0.99 and ρnx rises from almost -0.1 to 0.85. Thus, as predicted by eq. (7), small

variations in ρb near 1 cause large changes in ρnx. In contrast, Panel ii) shows that with ψ = 0.001,

the local solutions yield values of ρb that always exceed 0.99, which in turn yield values of ρnx

ranging from 0.3 to 0.95. The errors relative to the global solutions are large. For ρz = 0, the true

values of ρb and ρnx are 0.83 and -0.1 respectively, while the 2OA and RSS methods yield ρb = 0.99

and values of ρnx of 0.27 and 0.24 respectively. For the calibrated value of ρz = 0.597 estimated

from the Mexican data, the global solution yields ρb = 0.977 and ρnx = 0.54, while the 2OA and

RSS methods yield ρb = 0.999 and ρnx = 0.82 (see Table 5).17 Thus, these results show that in

order for the local methods to yield an accurate approximation to the model’s true value of ρnx to

contrast with the data, they first need to produce a value of ρb very close to the true value.

Panel iii) shows that the local solutions perform better using the targeted calibrations with

ψ = 0.0469. In this case, GLB and local solutions yield the same ρb for the calibrated value of ρz

(0.597) by construction. For lower values of ρz , the local solutions overestimate slightly the values

of ρb and ρnx relative to the GLB solutions. Panel iv) shows that, if we re-calibrate ψ as we change

ρz so that the local solutionsmatch the ρb of the GLB solutions in each column of the Table, the local

methods do a good job at matching the global solutions. This is true by construction for ρb, but the

solutions of ρnx are also close. In these results, however, the value of ψ had to be increased as ρz

falls, up to a value of 0.185 for ρz = 0. The required values of ψ range from 0.027 to 0.185. These

are significantly larger than the ideal value of 0.001 that keeps the DEIR inessential, and effectively

they make deviations of NFA from its steady state very costly. Moreover, knowing the true value

of ρb that ψ needs to target requires first solving the model with global methods.

b) Long-run moments and precautionary savings

Table 5 shows long-run moments produced by the global and local solutions, including for the

latter results from baseline and targeted calibrations and for partial and full RSS.18 The local solu-

tions under the baseline calibration do poorly at matching the GLB moments. The global solution

yields an averageNFA position of -41.3 percent of GDP, nearly 10 percentage points higher than the

-51 percent at the deterministic steady state (which is the average for the 1OA solution because of

certainty equivalence). The 2OAandpartial RSSmethods yield long-run averages of -28.2 and -45.1

percent of GDP respectively. The former (latter) overestimates (underesestimates) precautionary

savings by about 13 (4) percentage points. The full RSS solution yields a much lower average NFA
17The 1OA and 2OA solutions are nearly identical, and hence we omit the former from the Table.
181OA solutions are not shown because they are nearly the same as the 2OA solutions, except for the averages.
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position of nearly -1120 percent of GDP. This is because this method has the same βR < 1 of the

global method, but it lacks the occasionally binding debt limit ϕ that allows the global method to

simultaneously match the mean of NFA and the variability of consumption observed in the data.19

Hence, the full RSS generates much higher debt and yields a consumption process with a much

lower mean and higher variability than in both the GLB solution and the Mexican data.

Local solutions with baseline calibrations also do poorly at matching the rest of the moments

shown in the Table. The three local methods overestimate significantly the variability and persis-

tence of c, nx and b. The correlations with GDP show the opposite pattern. For these higher-order

moments, full and partial RSS generate similar values, so the large differences in means do not

translate into large differences in higher-order moments. Since partial RSS is much faster and is

much closer to the true mean of NFA, we conclude that partial RSS is better than full RSS.

The local methods again perform better at approximating the global results if we switch to tar-

geted calibrations. Themajor exception is that they doworse at capturing the effect of precautionary

savings, with both RSS and 2OA solutions yielding an average of b/y of nearly -0.51. These aver-

ages are very close to the deterministic steady state, and this occurs because (as explained below)

higher ψ is akin to a higher cost of moving b away from its steady state.20 The local solutions with

the targeted calibrations also have the drawback that they still overestimate the autocorrelation of

consumption, as they did under the baseline calibration. For the rest of the moments, the targeted

calibrations deliver a better approximation to the GLB solution than the baseline calibrations, but

again they require knowledge of the global solution to determine the target value of ψ and the

implied ψ values are much larger than 0.001.

The results in Table 4 showing that the 2OA and partial RSS solutions yield similar ρb and ρnx

extends to nearly all the moments shown in Table 5 under both baseline and targeted calibrations.

The only exception is the mean of b/y under the baseline calibration, which is -0.28 with 2OA v.

-0.45 with RSS, but under the targeted calibration even this moment is nearly the same across 2OA

and RSS. This is further evidence indicating that the different centers of approximation in these

solutions and the extra terms in the 2OA decision rules have negligible quantitative effects.

Figure 2 provides further evidence of the inaccuracy of the local methods at accounting for

precautionary savings. Panels (a) and (b) show how average NFA changes with σz and ρz under
19Full RSS also does not face the NDL, since it yields stationary dynamics around brss, which makes the effects of the

Inada condition on u′(c) irrelevant and the multiplier on the NDL is ignored.
20We could target ψ to match the mean of NFA in the GLB solution (-0.41) instead, but then the local methods do

poorly at matching the GLB value of ρnx. Using this approach, ρnx = 0.74 and 0.88 for the 2OA and RSS solutions
respectively, whereas ρnx = 0.543 in the global solution.
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the baseline calibration. Panels (c) and (d) do the same but for the targeted calibrations. Recall that

for 1OA solutions, certainty equivalence implies thatmean ofNFA is always -0.51 (the deterministic

steady state), regardless of the variability and persistence of income and the value of ψ.

These plots yield two important findings. First, the local methods cannot approximate accu-

rately the long-run averages of NFA produced by the GLB solutions in general, and hence they

yield incorrect measures of precautionary savings. The continuous, blue curves for the GLB so-

lutions show that the model embodies a strong precautionary savings motive. Panels (a) and (c)

((b) and (d)) indicate that increasing the standard deviation (autocorrelation) of income from 1

to 8 percent (0 to 0.8) increases the long-run average of NFA from -0.5 to near zero (-0.47 to -0.34).

In contrast, the local solutions with the baseline calibrations show that the 2OA method overesti-

mates the increase in precautionary savings significantly, with a gap that widens as the variability

or persistence of income increase, while the partial RSS method mostly underestimates average

NFA, although with a smaller error in absolute value than the 2OA solution. Note also that for

high enough ρz in Panel (b), partial RSS actually predicts slightly higher mean NFA than GLB.

The second finding is that the local methods with targeted calibrations are worse than the base-

line calibrations at capturing precautionary savings. Panels c) and d) show that the average ofNFA

in the targeted calibrations increases very slightly above bdss as the variability and persistence of

income rise. Using ψ = 0.1 and 0.2, the result is even stronger, with mean NFA becoming invariant

to income variability and persistence. Moreover, since the terms depending on the quadratic and

interaction terms of the 2OA solutions continue to be quantitatively irrelevant, this result suggests

that unless ψ is kept very low, the 1OA solutions are nearly the same as the 2OA and RSS solutions

in all dimensions, even long-run averages. In addition, the 2OA and RSS solutions also become

nearly identical, since brss becomes very similar to bdss. Thus, while calibrating ψ to match the

persistence of NFA in the GLB solution improves the local methods’ ability to match second- and

higher-order moments, it also removes precautionary savings almost entirely and renders the 2OA

and RSS solutions quantitatively consistent with certainty equivalence!

The fact that precautionary savings nearly vanish from the 2OA and partial RSS solutions as ψ

rises implies that the terms driving the deviations of the unconditional averages of b from bdss are

vanishing too. To shed light on why this happens, we use again the decision rules for log utility

and i.i.d. shocks (together with the quantitative result that the quadratic and interaction terms of
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the 2OA solutions are negligible) to express the unconditional means of the local solutions as:

E[b]2OA = bdss + σ2z
hσzσz

2(1− hb)
, E[b]RSS = bdss + σ2z

g2y
2ψ
, (10)

where gy is the coefficient of the linearized consumption decision rule on income. We showed

earlier that hb is decreasing in ψ for ψ < 0.5. Hence, the denominator in the right-hand-side of both

of the above expressions rises with ψ, which brings the unconditional average closer to bdss. The

coefficients hσzσz and gy also depend on ψ, so there are also effects of ψ on mean NFA operating

through these coefficients, but the quantitative evidence indicating that for ψ ≥ 0.047 the mean

NFA is about the same as bdss indicates that these effects are either working in the same direction

as those operating via the denominators of the expressions, or they are more than offset by them.

The economic intuition for the above result follows from the argument by Schmitt-Grohé and

Uribe (2003) showing that the DEIR function is similar to a setup without DEIR but where agents

incur a quadratic cost (ψ̃/2)(bt+1 − bdss)2 for deviating from steady-state bond holdings. The log-

linearized Euler equations of the two formulations become equivalent if we set ψ̃ = ψ/(1 + r).

Hence, the model with DEIR can be re-interpreted as a model in which agents are penalized for

deviating from bdss, and the cost increases with ψ.21 Moreover, the cost has variable and fixed com-

ponents, since it can be decomposed into these two terms: (ψ̃/2)(bt+1−2bdss)bt+1 and (ψ̃/2)bdss. If

the fixed cost is larger than the benefit derived from precautionary savings, it would be suboptimal

to allow the long-run average of bonds to deviate from bdss. Thus, local solutions using targeted

calibrations have the shortcoming thatwhile they can approximate better the true values of second-

and higher-order moments by setting ψ high enough to match the true value of ρb, it only takes a

modest increase in ψ to make precautionary savings nearly vanish and to make 1OA, 2OA and RSS

solutions about the same in all dimensions.

The last panel in Table 5 shows performance metrics of the algorithms. FiPIt yields the global

solution in 5.9 seconds, while the local methods take 44 to 68 percent longer (see the Table footnote

for details on the software and hardware used in all the computations). The GLB solution is also

significantlymore accurate, as indicated by themuch smallermaximum error in the Euler equation

and the mean andmaximum percent differences in decision rules for NFA and consumption of the

local v. GLB solutions. TheNFA local decision rules show average (maximum) differences ranging

from 7.5 to 12 (12.3 to 37.8) percent.
21With DEIR, for bt+1 < bdss (bt+1 > bdss) agents pay more (get less) for borrowing (saving) more.
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c) Impulse response functions

Figure 3 provides impulse response functions to a one-standard-deviation income shock. In-

come dynamics are shown in Panel g. For the local solutions, Panels a, c, and e (b, d, and f) show

results for the baseline (targeted) calibration. In each plot, the GLB solution is shown in blue. Con-

sumption and output are in percent deviations from their long-run means, while NFA/GDP and

nx/GDP are in differences relative to their long-run means (since ratios are already in percent).

The plots show nearly identical impulse responses for 1OA, 2OA and RSS in each calibration

case, in line with the results that the hb coefficients of the bond decision rules are similar and the

quadratic and interaction terms of the 2OA solutions are very small. On the other hand, the local

impulse responses with the baseline calibration differ sharply from the GLB ones. GLB predicts

a weaker decline in NFA (i.e., less borrowing) and much faster mean reversion than the local so-

lutions. Accordingly, consumption falls nearly twice as much on impact in the GLB solution, and

continues to decline before recovering, displaying also faster mean reversion. These differences

in consumption responses also reflect smaller trade deficits on impact and in the first periods of

transition and a faster recovery into trade surpluses with the GLB solution. Local solutions with

targeted calibrations yield impulse responses that approximate better the GLB solutions, but still

show noticeable discrepancies. In particular, the local solutions now overestimate the fall in con-

sumption on impact.

d) Spectral density analysis

We compare next nonparametric sample periodograms of the various solutions. The goal is to

determine whether in addition to the differences in time-series properties, the methods differ in

their predictions about the relevance of fluctuations at different frequencies for overall variability.

Figure 4 shows periodograms for simulated data of b, c and nx corresponding to a multivariate

spectrum using a Bartlett windowwith the smoothing parameter set to 100.22 These periodograms

are computed based on long time-series simulations including 4500 periods. The y-axis shows the

population spectrum, the x-axis shows the frequency in years, and the vertical lines isolate the

business cycle frequency. The panels on the left (right) are for the baseline (targeted) calibrations.

As in the previous charts, the plots for the GLB solution are identical in both sets of plots, because

the global solution has a single calibration. In addition, as with the time-series results, the spectral

density functions are nearly identical for 2OA and RSS methods, because the local decision rules
22We follow Hamilton(1994) in setting the value of the smoothing parameter. The results for parametric estimates of

the spectral densities are generally smoother but show similar patterns as those of the nonparametric estimates.
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have similar hb terms and the quadratic and interaction terms of the 2OA solutions are irrelevant.

All the periodograms are generally downward sloping because the equilibrium stochastic pro-

cesses are similar to AR(1) processes. Hence, the contribution of lower frequencies to the variances

of the variables exceeds that of business cycle and lower frequencies. The results show, however,

that the local methods under the baseline calibration overestimate the contribution of low fre-

quency movements to the total variance of all three series, which is consistent with their slower

mean-reversion and higher values of ρb relative to the GLB solution. Moreover, while the contribu-

tion of fluctuations at the business cycle frequency or higher for the variability of b is slightly higher

with the local solutions than in the GLB solution, for nx the local methods overestimate it and for

c they underestimate it. In particular, the local methods underestimate significantly the fraction of

consumption fluctuations explained by business cycle and higher frequencies and under-predict

significantly the contribution of low frequencies.

For targeted calibrations, the periodograms of b are nearly the same in the GLB and local solu-

tions almost by construction, because the targeted calibrations are built to match the AR(1) coeffi-

cient of the GLB solution. However, the periodograms of c and nx for the local solutions still differ

sharply from the GLB ones. They still underestimate significantly the contribution of consumption

fluctuations at business cycle and higher frequencies to overall consumption variance.

e) Interest-rate shocks

We examine next the effects of adding interest-rate shocks. We do this for two reasons. First,

because Courdacier et al. (2011) and de Groot (2013) showed that interest-rate shocks play an

important role in the quantitative performance of the RSS method, and second to facilitate com-

parisons of the endowmentmodel resultswith those of the RBCmodel, which also has interest-rate

shocks. The gross real interest rate is now defined as: Rt = ez
R
t R̄, where zRt is a shock with expo-

nential support and R̄ is the mean interest rate.

The two shocks follow a diagonal VAR representation:

 zt

zRt

 =

 ρz 0

0 ρzR

 ·
 zt−1

zRt−1

+

 εzt

εRt

 , Σ =

 σ2εz σεz ,εR

σεz ,εR σ2
εR

 . (11)

where Σ is the variance-covariance matrix of the innovations. Note that if the variance of interest-

rate shocks is zero, the endowment shock process is identical to the one used earlier in this Section.

The value of ρz is the same 0.597 of the original calibration. We minimize the size of the state

space in theGLB solution by using aMarkov chain for two shocks defined by the Simple Persistence
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Rule, which imposes the same autocorrelation on both shocks. Hence, we set ρzR = 0.597.23 The

value of σ2εz is set at 0.00069, so that given ρz we obtain a standard deviation of the endowment

income of σz =
√
σ2εz/(1− ρ2z) = 0.0327, which is the value from the Mexican data in the original

calibration. For the terms that involve the interest-rate process, we solve the model with values of

σ2
εR

and σεz ,εR such that σzR takes values ranging from 0 to 2.5 percent and the correlation between

endowment income and the interest rate is ρz,zR = −0.669, which matches the correlation of the

interest rate with TFP in Mendoza (2010), and is also the value we use in the calibration of the

RBC model in the next Section. The values of σεz ,εR and σ2
εR

change as we change σzR , and they

are given by: σεz ,εR = (1− ρzρzR)ρz,zRσzσzR and σ2
εR

= σ2
zR
/(1− ρ2

zR
).

The Simple Persistence Markov chain is defined by a set of pairs of realizations of the shocks

(z, zR) and a matrix π of transition probabilities of moving from any realization pair to any other

pair in one period. Each shock has two realizations equal to plus/minus one-standard deviation

of each shock (z1 = −z2 = 0.0327, zR1 = −zR2 = σzR , with σzR ranging from 0 to 2.5 percent). The

Simple Persistence rule produces a 4x4 matrix π with elements defined by a formula such that the

standard deviations of the shocks match the realization values, and the unconditional correlation

and autocorrelations of the shocks match the values set in the calibration.

With interest-rate shocks, a well-defined limiting distribution of NFA requires βR̄ < 1, other-

wise βtΠt
j=1Rj diverges to infinity (see Chamberlain and Wilson (2000)). In addition, there are

realizations, and hence histories of realizations, with Rt lower (higher) than R̄ for many periods,

which imply much weaker (stronger) precautionary savings incentives than with a constant inter-

est rate set at R̄. This is easier to see for histories of realizationswith βRt > 1, because they produce

equilibrium subsequences where bt+1 can grow very large, since there is no pro-borrowing effect

due to βRt < 1 offsetting the precautionary savings incentive.24 At some point, each of these histo-

ries shifts to histories of interest-rate realizations with sufficiently lowRt to inducemean-reversion

in NFA. Note also that the NDL is now computed with the highest realization of Rt − 1, so it will

be tighter than when computed with R̄− 1. These effects are at work only in the GLB solution, not

in the local ones, because they result from expectations of histories of future shocks that take the

economy far from its long-run average and the deterministic steady state.

When using the DEIR function, the interest rate is modified so that interest-rate shocks hit only
23This is reasonable because in the Mexican data ρz and ρzR are 0.537 and 0.572, respectively (see Mendoza (2010)).
24Reducing R̄ keeping σzR constant accentuates these effects, because histories with even larger gaps between β and

Rt are possible and with higher probability.
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the world interest rate component, not the premium driven by steady state deviations of bt+1:

1 + rt = ez
r
t R̄+ ψ

[
eb
dss−bt+1 − 1

]
. (12)

Table 6 shows some of the key moments produced by the different solution methods under

baseline and targeted calibrations as σzR rises from 0 to 2.5 percent. The baseline and targeted

calibrations shown in Table 3 are left unchanged. For the GLB solution, we show results with both

the calibrated ad-hoc debt limit (ϕ = −0.51) and the NDL, with the aim of comparing the roles

that the ad-hoc debt limit and interest-rate shocks play in inducing higher mean NFA outcomes,

and with the similar effect of interest-rate shocks in local solutions.

Comparing the GLB solution with the solutions under the baseline calibration for partial RSS

and 2OA, we find that increasing σzR from 0 to 2.5 percent has a much stronger effect on mean

NFA in the local solutions than in the GLB solution. In the former, E(b/y) increases by 140 (109)

percentage points of GDP for the partial RSS (2OA) solution, and actually turns from negative to

positive, while in GLB it increases by just about 3 percentage points of GDP. Notice also that the

ability of the partial RSS v. the 2OA solutions to generate precautionary savings changes as the

variability of the interest rate rises. With low or no interest-rate variability, 2OA generates signifi-

cantly more precautionary savings (E(b/y) = −0.285 v. −0.451), but for interest-rate variability of

2.5 percent the opposite is true (E(b/y) = 0.806 v. 0.942). Larger interest-rate shocks also alter the

result that the baseline RSS and 2OA solutions have similar second- and higher-order moments.

The above findings suggest that interest-rate shocks in the partial RSS solutions with baseline

ψ could be helpful for matching mean NFA, playing the role of NDL in the global solution calibra-

tion. This strategy fails, however, because consumption fluctuates too much in all the scenarios for

partial RSS and 20A solutions. All the local solutions shown in Table 6 overestimate the variability

of consumption in the GLB solutions by ratios ranging from 1.04 (for partial RSS with targeted ψ

and σzR = 0.5%) to 4.01 (for partial RSS with baseline ψ and σzR = 2.5%).

Comparing now GLB solutions v. local solutions with targeted calibrations, we find that the

adjustment-cost-like effect of higher ψ bringing mean NFA close to the deterministic steady state

still dominates. The local solutions yield small increases in E(b/y) of about 1.8 percentage points

(with σzR < 1.5% there is almost no change) and second- and higher-order moments for RSS and

2OA are again very similar. Hence, the result that higherψ values neutralize precautionary savings

and yield very similar 1OA, 2OA and RSS solutions is robust to adding interest-rate shocks.
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Table 6 also shows that full and partial (baseline) RSS solutions do not yield similar second- and

higher-ordermoments once interest-rate shocks are added. The full RSS solution generates sharply

higher variability in consumption and NFA, higher autocorrelations in net exports, and very low

values of E(b/y). In fact, full RSS is closer to the GLB solution that replaces the ad-hoc debt limit

with the NDL than to the baseline or targeted partial RSS solutions. The full RSS solution and the

GLB solutionwith theNDL have, however, themajor shortcoming that they produce unreasonably

large net debt positions of 3 to 11 times the income of the economy! Moreover, for net interest rates

just a notch below the rate of time preference (0.0638), the full RSSmethod always generates much

lower values of E(b/y) than the global solutions with either ad-hoc or natural debt limits. At low

interest rates, the RSS solution violates theNDL very often (e.g., for R̄ = 1.01, NDL is−68.44 while

the average NFA of the full RSS solution is −69.62). Hence, full RSS performs poorly in general at

approximating accurately the long-run average of NFA, even if we remove the ad-hoc debt limit

from the GLB solution.

Summing up, the endowment model analysis yields four key findings: First, local solutions for

baseline calibrations perform poorly in several key dimensions, such as the mean of net foreign

assets, the cyclical moments of consumption and net exports, the impulse response functions to

income shocks, and the characteristics of spectral density functions. Second, targeted calibrations

perform better, but they are still unable to match some key features of the global solutions, and

in order to construct them one needs the exact value of ρb from the global solution to calibrate ψ.

Moreover, the implied values of ψ (0.0469 for both the 2OA and RSS solutions) are much higher

than the 0.001 baseline value used to keep the DEIR function inessential and imply much higher

interest-rate elasticities. These highψ values alsomakemovingNFA from its steady state too costly,

thereby causing precautionary savings to vanish. Third, the targeted calibrations also underper-

form significantly at capturing the effects of parameter variations, particularly those that affect the

precautionary savingsmotive. In order to keep targeted calibrations close to the global solutions, ψ

needs to be recalibrated to match the autocorrelation of NFA of each global solution, which makes

targeted calibrations impractical. Fourth, all the local methods (1OA, 2OA and partial RSS) yield

similar solutions, because second-order terms of the decision rules, other than the variance term,

are quantitatively small and the deterministic and risky steady states are not sufficiently different.

For ψ = 0.001 only the first moments differ, while for ψ = 0.047 or higher even the first moments

are similar. These results are largely robust to the addition of interest-rate shocks, except that local

solutions with ψ = 0.001 can generate sizable precautionary savings effects as interest-rate vari-
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ability rises. Moreover, we also found that for the baselineψ value the full and partial RSS solutions

yield similar second- and higher-order moments without interest-rate shocks, but not when these

shocks are present, and the full RSS always yields excessively large average net debt-income ratios

(larger than GLB solutions constrained only by the natural debt limit).

3 Real business cycle model

We compare next local and global solutions for a workhorse RBC model based on those proposed

by Neumeyer and Perri (2005), Uribe and Yue (2006) and Mendoza (2010).

3.1 Model structure and equilibrium

As in Mendoza (2010), we characterize the model’s competitive equilibrium as the solution to a

representative firm-household problem that is akin to a planner’s problem, except that the wage

rate wt entering in the calculation of working capital is taken as given by the representative agent

and set to satisfy the equilibrium condition that equates wt with the marginal disutility of labor.

The economy produces gross output using a Cobb-Douglas technology that requires capital, kt,

labor, Lt, and imported inputs, υt:

exp(εAt )F (kt, Lt, υt) = exp(εAt )kγt L
α
t υ

η
t , 0 ≤ α, γ, η ≤ 1, α+ γ + η = 1, εAt > 0. (13)

Gross output is a tradable good sold at a world-determined price which is the numeraire and is

assumed to be constant and equal to 1. The price of imported inputs is also determined in world

markets, with the relative price of these inputs in terms of tradable goods given by pt = p exp(εPt ),

where p is the mean price and εPt is a terms-of-trade shock. There are also TFP shocks, εAt , and

interest rate shocks εRt .

A standard working capital constraint requires a fraction φ of the cost of Lt and υt to be paid in

advance of sales. Working capital loans are obtained from foreign lenders at the beginning of each

period and repaid at the end, so that the financing cost of these loans is the net interest rate Rt− 1.

Capital is costly to adjust, with adjustment costs per unit of net investment (kt+1 − kt) de-

termined by the function Ψ(kt+1−kt
kt

) = a
2

(
kt+1−kt

kt

)
, with a ≥ 0. This functional form satisfies

Hayashi’s conditions so that the average and marginal values of Tobin’s Q are equal at equilib-

rium.
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The representative firm-household chooses [ct, Lt, it, υt, bt+1, kt+1]
∞
t=0 so as to maximize:

E0


∞∑
t=0

βt

(
ct − Lωt

ω

)1−σ
1− σ

 , (14)

subject to this budget constraint:

ct(1 + τ) + it = exp(εAt )F (kt, Lt, υt)− ptυt − φ(Rt − 1)(wtLt + ptυt)− qtbt+1 + bt, (15)

with wt set to satisfy the labor supply condition wt = L̄ω−1t , and L̄t denoting the aggregate labor

allocation taken as given by the agent. The only financial asset available is a non-state-contingent

discount bond traded in world markets at price qt. The left-hand-side of the resource constraint

is the sum of consumption, inclusive of an ad-valorem tax τ which will be used to calibrate the

ratio of government expenditures to GDP, plus gross investment, it, where it = δkt + (kt+1 −

kt)
[
1 + Ψ

(
kt+1−kt

kt

)]
and δ denotes the depreciation rate of physical capital. The right-hand-side

equals total supply, which consists of GDP (gross output minus the cost of intermediate goods,

exp(εAt F (kt, L − t, υt) − ptυt) net of foreign interest payments on working capital loans (φ(Rt −

1)(wtLt+ptυt))minus (plus) net resources lent (borrowed) abroad (qtbt+1−bt). The trade balance

is therefore qtbt+1 − bt + φ(Rt − 1)(wtLt + ptυt) = GDPt − ct(1 + τ)− it

The competitive equilibrium is definedby stochastic sequences of allocations [ct, Lt, kt+1, bt+1, υt, it]
∞
0

and prices [wt]
∞
0 such that (a) the representative firm-household solves its optimization problem

taking as given the wage rate and the initial conditions (k0, b0), (b) wages satisfy wt = L̄ω−1t , and

(c) the labor market clears: L̄t = Lt.

We solve this model using the same methods as in the previous section, extended to include

the capital stock as a second endogenous state. For the global solution, we use FiPIt with a state

space consisting of grids of k and b with 30 and 80 nodes respectively. The algorithm iterates to

convergence on the decision rule for bonds and the pricing function for capital. Mendoza and

Villalvazo (2019) provide full details, Matlab codes and an Appendix describing how to use them.

For the local solutions, the DEIR function is now defined as:

1 + rt = exp(εRt )R̄+ ψ

[
e
bdss

ydss
− bt+1

ydss − 1

]
. (16)

Note that rt depends on the gap between bt+1/y
dss and bdss/ydss. The elasticity of the interest rate
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with respect to percent deviations of bt+1 from bdss is ηr ≈ ψbdss/ydss for small deviations. This

facilitates comparisons across calibrations of GLB and local solutions, since output is no longer

equal to 1 at steady state and NFA is calibrated to match the NFA-GDP ratio in the data.

3.2 Calibration

Table 7 shows the calibration parameters for the RBCmodel, most of which were taken fromMen-

doza’s (2010) calibration to Mexican data. The main difference is that we calibrate ϕ and β in

the GLB solution following the same strategy as in the endowment model, by targeting those

two parameters to approximate the mean NFA and the standard deviation of consumption in the

data. Note, however, that since output is endogenous, steady state GDP cannot be normalized to

1. Hence, we searched over values of β and the lower bound of the NFA grid that yield model

solutions close to the target data moments, and then expressed ϕ as a ratio of that lower bound to

ydss. Setting β = 0.92 and ϕ = −0.758 (implied by a lower bound of NFA of -300 and ydss = 396)

we obtained a mean NFA-GDP ratio of -0.372 (v. -0.44 in the data) and a variability ratio of con-

sumption to GDP of 1.29 (v. 1.25 in the data). For the local solutions, we also proceed as in the case

of the endowment model, by setting bdss/ydss to be the same as in the GLB solution and studying

baseline and targeted calibrations of ψ. The baseline value is again ψ = 0.001 and the targeted

values are ψ = 0.0109 for the 2OA solution and ψ = 0.008 for the RSS solution.

The stochastic process of the shocks is also taken from Mendoza (2010). We characterize the

joint process of the three shocks as the following diagonal VAR system:


εAt

εRt

εpt

 =


ρA 0 0

0 ρR 0

0 0 ρp

 ·

εAt−1

εRt−1

εpt−1

+


uAt

uRt

upt

 , Σ =


σ2
uA

σuA,uR 0

σuA,uR σ2
uR

0

0 0 σ2up

 . (17)

In line with the estimates in Mendoza (2010), the above specification imposes the conditions that

the co-movement between TFP and interest-rate shocks is driven only by the covariance of their

innovations, and the price shocks are independent of the other two shocks. Mendoza reports es-

timates of the standard deviations of the shocks of σεA = 0.013, σεR = 0.0196 and σεp = 0.0335

respectively. The first-order autocorrelation coefficients are ρA = 0.537, ρR = 0.572 and ρp = 0.737,

and the correlation between TFP and R is ρεA,εR = −0.669. Since, as we explain below, the discrete

approximation to this VAR system in the global solution requires ρA = ρR, we set the common
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autocorrelation to the average of the two data estimates, and hence ρA = ρR = 0.555. We impose

the same condition on the VAR representation of the shocks used for the local solutions. Given all

these estimates, the elements of the Σ matrix are given by: σ2
uA

= 1.0273e− 04, σuA,uR = −0.0047,

σ2
uR

= 2.4387e− 04, and σ2up = 5.1097e− 04.

In the global solution, the shocks are approximated using symmetric two-point Markov pro-

cesses defined with the Simple Persistence Rule. These processes consist of a set E of all combi-

nations of realizations of the shocks εt = (εAt , ε
R
t , ε

P
t ), and a matrix π of transition probabilities of

moving from εt to εt+1. Each shock has two realizations equal to +/- one-standard-deviation of

their corresponding data counterparts: εA1 = −εA2 = 0.0134, εR1 = εR2 = 0.0196, εP1 = −εP2 = 0.0335,

so E contains 8 triples. The Simple Persistence Rule produces an 8x8 matrix π which yields vari-

ances, correlations and autocorrelations for all the shocks that match those in the data, except that

the procedure requires shocks that are correlated (i.e., εA and εR) to have the same autocorrelation.

As noted above, we set ρA = ρR = 0.555. This restriction is immaterial, because the two shocks

have very similar autocorrelation coefficients in the data (ρA = 0.537, ρR = 0.572).

3.3 Comparison of quantitative results

a) Long-run moments and performance metrics

Table 8 presents unconditional moments of GLB, 2OA and RSS solutions. 1OA results are omit-

ted because, aswith the endowmentmodel, second- andhigher-ordermoments are nearly identical

to those obtained with 2OA.25 First, we highlight briefly the differences between the RBC and en-

dowment results in the GLB solutions: The RBCmodel predicts higher variability of consumption

relative to GDP and countercyclical net exports, both of which bring the model closer the data.

These changes are due to the presence of the working capital constraint and capital accumulation.

The former amplifies the effects of TFP and input price shocks, and induces higher imports of

inputs during expansions in response to the countercyclical interest-rate shocks. Capital accumu-

lation also generates an incentive to increase imports and run external deficits during expansions,

because of the positive autocorrelation of the three shocks present in the model: “Good times,” in

which TFP is high and both input prices and the interest rate are low, have positive persistence,

which makes it optimal to borrow from abroad to finance investment due to the expectation that

favorable realizations of these shocks will continue to be observed in the near future. The counter-
25As we document in Appendix C.4.1, the first-order coefficients of the decision rules for 1OA and 2OA solutions are

identical, and those for higher-order terms in the 2OA solution, except the variance, are negligible.
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cyclical net exports due to these effects contributes to the excess variability in consumption relative

to GDP.

Compare next the RSS and 2OA solutions under the baseline calibration. The moments for

consumption, net exports and NFA differ slightly between these two solutions in the endowment

model, but in the RBC model the differences are larger. This is, however, consistent with the argu-

ments presented earlier, because in the RBC model brss and bdss differ sharply (36 v. -76 in percent

of GDP), while in the endowment model the difference was too small to matter. The first-order

coefficients of the decision rules (reported in Appendix C.4.1) are again similar for 2OA and RSS,

and the second-order coefficients of the 2OA solution yield again negligible effects, but the large

difference between brss and bdss yields larger differences in long-run moments. This is particularly

the case for the means of the ratios of net exports and NFA to GDP, which are -4.2 and 73.2 percent

respectively in the 2OA solution v. -18.5 and 255.9 percent in the RSS solution.

Comparing local v. global solutions under the baseline calibration, the performance of the for-

mer at approximating the GLB solution for the average NFA-GDP ratio worsens markedly in the

RBC model v. the endowment model. In particular, while for the endowment model the 2OA

and RSS methods produced mean ratios of -0.28 and -0.45, relative to -0.41 in the GLB solution,

in the RBC model they produce positive ratios of 0.73 and 2.56 respectively (i.e., the economy is

a net lender) relative to -0.38 in the GLB solution. Hence, the precautionary savings motive is

sharply overstated by the local solutions. This is partly because the RBC model includes interest-

rate shocks, and we documented earlier that when these shocks are included 2OA and RSS solu-

tions overestimate significantly the mean NFA position even in the endowment model.26 These

findings are also in line with results reported by de Groot (2014), showing large, positive mean

NFA-GDP ratios of 3.6 and 41 in the two stable equilibria produced by the full RSS method for an

endowment economy.27

For second- and higher-order moments, the results are largely in line with what we observed

in the endowment model. In particular, the local solutions overestimate again the persistence of

the balance of trade. The GLB solution generates an autocorrelation of net exports around 0.71

whereas both local methods generate values around 0.85. This occurs again because NFA is a near-

unit root process and small differences in the autocorrelation of NFA (0.996 in GLB v. 0.999 in
26In the endowment model with σzR = 2.5%, the 2OA (RSS) method produced a mean NFA-GDP ratio of 0.806

(0.942), v. -0.38 in the GLB solution.
27Interestingly, de Groot’s analysis showing spurious multiplicity of the full RSS solution shows an additional weak-

ness of this method, namely that it can produce two stable solutions whereas the exact global solution is unique.
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2OA and 0.998 in RSS) imply large differences in the autocorrelation of net exports. Moreover, and

also in line with the endowment model results, the local solutions overestimate significantly the

variability of consumption, net exports and NFA relative to GDP.

Despite the differences in the moments for consumption, net exports and NFA, the cyclical mo-

ments for investment, capital, imported inputs, labor and output are similar across the solutions.

For investment and the capital stock, this occurs because, as shown in Mendoza (1991), the Fish-

erian separation of investment from savings and consumption decisions that holds strictly under

perfect foresight, holds approximately in the RBCmodel. Intuitively, the RBCmodel is in the wide

class ofmodels consistent with negligible equity premia, and in the limit with zero premium Fishe-

rian separation holds exactly. In addition, the GHH structure of preferences prevents consumption

and savings from affecting labor supply, and hence output and all factors of production. The near-

Fisherian separation property is verified in the negligible coefficients of the capital decision rules on

lagged NFA in the 2OA and RSS solutions and the near-zero numerical derivatives of the decision

rule for k′(b, k, ε) with respect to b in the global solutions (the largest of which was 0.0064).

Consider next the local solutions with targeted calibrations, for which matching the GLB value

of ρb required ψ = 0.0109 and ψ = 0.008 in the 2OA and RSS solutions, respectively (see Table

7). These are considerably smaller than the value needed for the targeted calibrations of the en-

dowment economy (0.0469 for both 2OA and RSS). These differences, together with the different

NFA-GDP ratios in the deterministic steady states of the endowment and RBC models, imply val-

ues of ηr of 0.0083 and 0.0061 for the 2OA and RSS solutions of the RBC model respectively, lower

by a factor of 3 than the 0.0239 for the endowment model solutions. This is the case mainly because

the GLB solution of ρb is higher in the RBC than in the endowment model (0.996 v. 0.977).

The lower ψ values under the targeted calibrations of the RBCmodel v. the endowment model

also imply that the mean of NFA can now rise above the deterministic steady state by non-trivial

margins, because the implicit cost of deviating from bdss is smaller. This is even more the case for

the targeted RSS solution, which has a lower ψ than the 2OA solution and thus allows E(b/y) to

rise by more (−0.397 v. −0.62 in the 2OA solution and −0.758 in the deterministic steady state).

The gap between brss and bdss in the RSS and 20A solutions narrows in the targeted calibrations

relative to the baseline calibrations: brss is now −0.591, compared with −0.758 for bdss. With this

smaller difference, we recover the result that the decision rules for RSS and 2OA yield similar

second- and higher-order moments and similar impulse response functions, as shown below.

As in the endowment model, targeted calibrations generally yield moments closer to the GLB
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solution than baseline calibrations. It is still the case, however, that in order to target the calibration

of the local solutions we need to know the GLB solution for ρb. The targeted RSS solution performs

markedly better than the 2OA solution in that it yields a mean NFA-GDP ratio much closer to the

GLB solution. 2OA yields a ratio of −0.62, nearly 24 percentage points of GDP lower than the

true value (−0.38), whereas the RSS solution yields about −0.4, just 1.3 percentage points below

the true value. The targeted RBC calibrations, however, do not get as close to the GLB solution

moments as in the case of the endowment model, even with the RSS solution: The variability of

the NFA-GDP ratio is roughly half of what the GLB solution yields and its correlation with GDP is

3.5 times bigger. The leverage ratio is alsomuch less variable and has amuch lower correlationwith

GDP. Fisherian separation continues to approximately hold, so moments for output, investment,

and factors of production are similar in the targeted calibrations and the GLB solution.

In terms of execution times, the local solutions are still faster than the GLB solution but with

a much smaller margin than in the endowment model solutions. The local solutions take about

2/3rds of the time taken up by the GLB solution (which takes 61 seconds), instead of 1/4th for the

endowment model. The 1OA solution has a similar execution time, and as explained earlier yields

similar second- and higher-ordermoments. The accuracy of local method results show similar lim-

itations as in the endowment model: the local solutions yield significantly larger Euler equation

errors (for capital and NFA with RSS and for capital with 2OA), the average (maximum) differ-

ences in the decision rules for k and c are in the 1.7–1.9 (5.1–6.6) percent range, and those for

NFA are much larger at above 8 (50) percent for the average (maximum) respectively. These large

differences occur at the debt limit ϕ, because the local methods do not handle it as occasionally

binding.

We conducted a robustness analysis of the results reported here by altering the values of some

of the model’s key parameters. The details are provided in Section D of the Appendix. We exam-

ined scenarios increasing the variability of TFP, input price and interest-rate shocks one at a time,

as well as increasing the coefficient of relative risk aversion, the correlation between interest rate

and TFP shocks, and the subjective discount factor. As in the case of the endowment model, local

solutions with a fixed value of ψ calibrated to match ρb in the baseline GLB solution are not useful

for analyzing the effects of any of these parameter changes, because they yield solutions that differ

sharply from the GLB solutions for the same parameter variations. In particular, the local solutions

continue to perform poorly at capturing precautionary savings effects (i.e., the true solution for the
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mean of the NFA-GDP ratio differs sharply from what the local solutions yield).28 In addition, the

local solutions underestimate the variability of NFA and net exports, overestimate (underestimate)

the correlations of NFA and consumption (net exports) with GDP, and underestimate the autocor-

relation of net exports. The local solutions are closer to the GLB solutions if we re-calibrate ψ to

target the new value of ρb from the GLB solution for each new parameterization, but this implies

having obtained the GLB solution first and in addition the long-run moments are not as close to

those of the GLB solution as in the case of the endowment model.

b) Impulse response functions

Figures 5 and 6 show impulse response functions to a negative one-standard-deviation TFP

shock for the GLB and local solutions (baseline and targeted).29 We plot only the first 100 periods

to highlight the differences across the solutions. All impulse responses return to zero in about 500

periods. As in the endowment model, impulse responses for 1OA and 2OA are nearly identical

under baseline and targeted calibrations. This occurs because again the first-order coefficients of

decision rules are identical, and the second-order terms (other than the variance terms) are quan-

titatively irrelevant. Hence we omit the plots for the 1OA results.

For the baseline calibration, RSS yields markedly different responses for NFA-GDP ratio (panel

a.), consumption (panel b.) and the net exports-GDP ratio (panel c.) than 2OA. This is because, as

noted earlier, the gap between brss and bdss is large enough to affect the results. However, since near-

Fisherian separation still holds, the other variables (capital, investment, labor, imported inputs and

GDP) display similar responses in the two local solutions.

2OA and RSS baseline impulse responses differ sharply form those of the GLB solution. In

particular, RSS overestimates the initial rise in the NFA-GDP ratio while 2OA underestimates it

(see panel a.). In fact, RSS yields above-average NFA-GDP ratios for the first 17 periods, while

in both GLB and 2OA the NFA position is always below average. After the 15th period, the two

local solutions predict larger mean deviations of the NFA-GDP ratio than GLB. The local solutions

remain uniformly above the GLB solution until mean reversion is attained. These differences in

NFA are reflected in differences in consumption and net exports (see panels b. and c.). Initially, the

mean deviation of consumption under the GLB solution is lower (higher) than in the RSS (2OA)

solution. After the 30th period, the GLB solution yields significantly smaller mean deviations of
28The only exceptionwas the experiment doubling the variability of input price shocks. This hasminor effects because

imported inputs are only 10 percent of gross output, so that their share in GDP net of working capital is 11 percent
(0.1/(1 − 0.1) = 0.11). Thus, rising σεp from 3.4 to 6.8 percent increases net income variability just a notch.

29We also computed impulse response functions for interest-rate and input price shocks in Appendix D.
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consumption than the two local solutions and the opposite is observed for the net exports-GDP

ratio. Differences in investment, output and factors of production are less noticeable because near-

Fisherian separation holds, but still capital falls slightly more initially in the GLB than in the local

solutions, and then between periods 15 and 80 the GLB solution rises slightly above the local ones.

Since there is no wealth effect on labor supply, these differences in capital stock dynamics translate

into qualitatively similar but quantitatively smaller differences in labor, imported inputs and GDP.

Under the targeted calibrations (Figure 6), the gap between brss and bdss becomes again too

small to make a difference for the 2OA and RSS impulse responses. Hence, our findings for the

endowment and RBC models indicate that, if the choice is limited to local methods, a 1OA solu-

tion is simpler and nearly identical to 2OA and RSS solutions. Relative to the GLB solution, the

targeted local solutions still fail to match important features of the GLB impulse responses. Initial

differences are smaller thanwith the baseline solutions, and now theNFA-GDP ratio always shows

negative deviations from its mean in all three solutions. Beyond the 15th to 20th period, however,

NFA-GDP, consumption and the net exports-GDP ratio in the targeted solutions differ sharply from

the GLB solution, with similar qualitative features as with respect to the baseline solutions, and

in some cases with even larger quantitative differences. The reason for this is that, even tough the

targeted calibrations force the same ρb across GLB and local solutions, the required higher values

of ψ imply that NFA has much less variability than in the GLB solution (see Table 8). The higher

volatility with similar persistence in the GLB solution yield an impulse response for NFA-GDP that

rises more initially and then drops more before returning to zero in the long run. In contrast, in

the local solutions the high ψ values make large deviations of NFA-GDP from its mean too costly,

and hence NFA-GDP never falls more than about 2 percentage points below its mean (v. about 7

percentage points in the GLB solution).

c) Spectral density functions

Figures 7 and 8 show nonparametric periodograms for the key macroeconomic aggregates of

the RBCmodel produced by the global and localmethods. As in the case of the endowmentmodel,

all the periodograms are downward sloping, indicating that lower frequencies contribute more to

the variability of the simulated data than business cycle and higher frequencies. In contrast with

the endowment economy, however, the periodograms for NFA, consumption and net exports pro-

duced by the 20A andRSS solutions under the baseline calibration are different, because in the RBC

baseline calibration the gap between brss and bdss is large enough for 2OA and RSS results to dif-

fer. The other periodograms for 2OA and RSS are similar because of the near-Fisherian-separation
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property noted earlier. Relative to the GLB solution, 2OA and RSS periodograms show differences

that are less stark than for the endowment model, but RSS still overstates the contribution of busi-

ness cycle and higher frequencies to the variability of NFA, and 2OA and RSS still overstate the

contribution of very low frequencies to the variability of NFA, consumption and net exports, as

well as the contribution of business cycle and higher frequencies to the variability of GDP.

For the targeted calibrations, the 2OA and RSS periodograms are nearly identical, reflecting the

result that in this case the gap between brss and bdss is too small to affect the results. Relative to

the GLB solution, both RSS and 2OA yield periodograms that approximate their GLB counterparts

better than under the baseline calibration, in line with what we found for the endowment model.

The local methods underestimate slightly overall NFA and GDP variability. The periodograms for

investment and factors of production are very similar to those under both the GLB solution and

the local baseline calibrations, again because of the near-Fisherian-separation property.

In summary, the analysis of the RBCmodel yields several key results in linewith those obtained

for the endowmentmodel: Localmethods do poorly at quantifying the effects of precautionary sav-

ings. Local methods with baseline calibrations yield very different results than the global solution

for consumption, net exports and NFA. Targeted calibrations perform better but in order to target

the value of ψ it is necessary to solve the model globally to find the exact solution for ρb, and this

needs to be re-done for any parameter variation. 1OA and 2OA solutions yield nearly identical

results (other than first moments), because they have identical first-order terms and the second-

order terms of the 2OA solution (other than the variance term) are quantitatively irrelevant.

The RBC results differ from the endowment model results in that 2OA and RSS solutions with

baseline calibrations differ significantly, because brss and bdss differ enough to yield non-negligible

differences in first-order coefficients of the decision rules. In the targeted calibrations, however, brss

and bdss are close again, and hence 2OA and RSS solutions are very similar. Thus, with targeted

calibrations, 1OA, 2OA and RSS solutions differ only in their first moments, while higher-order

moments, impulse responses and spectral density functions are nearly identical. This makes 1OA

the preferable local method if first moments are not being studied. A second important difference

relative to the endowment model results is that the targeted local solutions are less accurate at

approximating the GLB solution results for NFA, consumption and net exports. This is because the

required ψ values make fluctuations in NFA costly and this reduces NFA variability to about half

of that in the GLB solution. Results for investment, output and factor allocations are similar across

local and GLB solutions because Fisherian separation of savings and investment nearly holds.
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4 Sudden Stops Model

This Section compares local v. global solutions for the SS model proposed by Mendoza (2010),

which adds to the RBC model an occasionally binding credit constraint. Debt and working capital

financing cannot exceed a fraction κ of the market value of capital:

qbt bt+1 − φRt(wtLt + ptυt) ≥ −κqtkt+1. (18)

4.1 Solution Methods

For the GLB solution, we use again the FiPIt algorithm. In each iteration, the algorithm assumes

first that the constraint does not bind, solves for allocations and prices using themodel’s optimality

conditions and then evaluates the constraint. If it binds the results are discarded and new alloca-

tions and prices are solved for with the constraint holding with equality. The algorithm iterates

over three recursive functions of the state variables: the NFA decision rule, the price of capital,

and the Lagrange multiplier on the borrowing constraint (see Mendoza and Villalvazo (2019) for

details).

For the local solution, Appendix Sections C.4 and C.5 describe the model formulation and the

DynareOBC method. This method treats the occasionally biding constraint as a source of endoge-

nous news about the future along perfect-foresight paths. If the constraint is (is not) binding at

the deterministic steady state, it uses news shocks to solve for unconstrained (constrained) periods

along those paths by representing the solution as a mixed integer linear programming problem.

For instance, if the constraint does not bind at steady state, when agents anticipate that the con-

straint will bind at some date t + j conditional on the date-t state variables and the deterministic

evolution of the exogenous shocks, this provides “news” that bond holdings will follow a path

in which they are higher than otherwise. This approach is akin to assuming that agents live in a

world without the constraint, but whenever they are on a path that would lead them to borrow

above what the constraint allows, a series of news shocks hit that makes them borrow only what is

allowed and moderate their borrowing before that happens.30

Themain output ofDynareOBC is a time-series simulation constructed by stitching together the

date-t values of perfect-foresight equilibrium paths conditional on (kt, bt) and the date-t realiza-
30The model with the constraint is approximately equivalent to the same model without the constraint but with se-

quences of news shocks chosen to yield the same equilibrium as the model with the constraint. This equivalence holds
exactly if the model is linear and shock variances are zero, such that any shocks that occur are truly “unexpected.”
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tions of the exogenous shocks. Each path is obtained using an extended path algorithm that traces

equilibrium dynamics up to T periods ahead of t, with the shocks following their deterministic

VAR dynamics. The extended path can be obtained using first- or higher-order approximations,

but we report here results based on the former.31 The path computed for a given starting date t de-

termines the values of the endogenous states (kt+1, bt+1) and these together with the realizations

of the shocks at t and the optimality conditions determine the date-t values of all the endogenous

variables. The rest of the path is discarded and the process is repeated at t + 1 to generate the

values of the time-series simulation for that period. The efficiency of this method hinges on three

factors: (a) T needs to be large enough so that for t > T no further news shocks are needed (if the

constraint does not bind at the deterministic steady state, T needs to be large enough so that the

constraint never binds again, and if it binds at steady state T needs to be large enough so that it al-

ways binds), (b) for each path requiring news shocks, the algorithm needs to find the sequence of

news shocks that supports the correct equilibrium path, and (c) the time-series simulation needs

to be long enough for long-run moments of the endogenous variables to converge. The algorithm

is less efficient in models with very persistent dynamics, which require a large T and a long simu-

lation length, and models in which the news shocks are needed frequently.

Figure 9 illustrates the DynareOBC method in a simple example based on the endowment

model of Section 2 with its ad-hoc debt limit and using the DEIR function so that this limit does

not bind at the deterministic steady state (see Appendix C.5.1 for details). Panels (a) and (b) show

the solutions of consumption and bond holdings for t=100 to 250 (black, solid curves) and eleven

of the perfect-foresight paths (red, dashed curves) that generated them, with the corresponding

date-t solution marked with a red circle. In panels (b) and (d), the green, dashed lines indicate

the ad-hoc debt limit. The constraint never binds in seven of the perfect-foresight paths shown in

Panel (b) and in four it does. Hence, endogenous news shocks are needed only in the latter.

Panels (c) and (d) isolate periods t=140 to 180 and show the extended path that generates

the equilibrium values at t=141 (red, dashed curve). DynareOBC computes a sequence of news

shocks that sustains this path as an equilibrium. The comparable path of NFA in the solution

without credit constraint is also provided in Panel (d) (black, dashed curve). Panel (d) shows
31DynareOBC is equivalent to the Guerrieri-Iacoviello OccBin method when using a first-order approximation, with

the difference that it is guaranteed to converge in finite time. Holden (2016b) showed that a second-order approximation
integrating over future uncertainty can be used to approximate precautionary savings inmodelswith simple constraints,
but thismethod is significantly slower and for the SSmodel produced results that deviate sharply from theGLB andfirst-
order DynareOBC solutions. In particular, investment and the net exports-GDP ratio had negative serial autocorrelation
and NFA had near-zero autocorrelation.
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that the constraint first becomes binding along the perfect-foresight path at t=144. It also shows

that, relative to the model without a credit constraint, agents choose higher bond holdings (less

debt) earlier, in anticipation of the constraint becoming binding with perfect foresight (i.e., the

red, dashed curve is above the black, dashed curve at t=142,143). Income is rising gradually on

its path back to its deterministic steady state, so that the constraint continues to bind for several

periods, until income is sufficiently high for NFA to also start rising back towards its steady state

(after t=170).

For comparing v. the GLB solution, it is critical to note that first-order DynareOBC ignores the

risk of hitting the constraint and fluctuating across states where it binds or not. At each date t, it

does not consider the histories of future shocks and associated equilibrium allocations and prices

that can occur, it only considers the news-shock-adjusted perfect-foresight path computed for t and

the date-t shock realizations. Hence, wealth and precautionary-saving effects of the occasionally

binding constraint are ignored, and forward-looking objects like asset prices and excess returns also

abstract from them. This is important in SS models, because a financial crisis with a deep recession

and collapsing prices occurs when the constraint binds, and the risk of these events strengthens

precautionary savings and alters asset prices even in “good times” (seeMendoza (2010), Durdu et

al. (2009)). In contrast, in eachDynareOBCperfect-foresight path, if the constraint binds (does not

bind) at the deterministic steady state, agents anticipate reaching a long-run equilibrium in which

the constraint binds (does not bind) regardless of whether it binds or not at t. They anticipate

deterministically hitting (escaping) the constraint at some date t+j if unconstrained (constrained)

at t and adjust their optimal plans before t+j accordingly, but these plans do not factor in the risk of

the constraint becoming binding or non-binding, and how this risk affects incentives to self-insure,

asset prices and the equity premium.

4.2 Calibration

The calibration is very similar to that of the RBCmodel (see Table 7). The value of κ is set to 0.2, as

in Mendoza (2010). For the GLB solution, we increase the lower bound of the bonds grid to -200

(i.e., a tighter ad-hoc debt limit), which is about about half of steady state GDP.We do this because

strong precautionary savings due to the credit constraint imply that NFA-GDP ratios below−0.192

are never observed in the ergodic distribution of the SS model, and hence we can set ϕ to a higher

value so as to use fewer nodes in the bonds grid to make the algorithm more efficient.

Before discussing the DynareOBC calibration, it is important to note that if the constraint binds
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at the deterministic steady state, the steady-state equilibrium is well defined and there is no need

to induce stationarity. This follows from the steady-state bonds Euler equation:

1 = βR+
µss

u′(css)
, (19)

where µ is the Lagrange multiplier on the borrowing constraint. Note that βR < 1 ⇐⇒ µss > 0,

hence having the constraint bind at steady state requires βR < 1 and viceversa. This Euler equation

is solved together with the other steady-state equilibrium conditions (particularly the steady-state

resource and credit constraints) to solve for the steady-state equilibrium, including css and µss.

We studyDynareOBC solutionswith bothµss > 0 andµss = 0. The first is labeled “DynareOBC-

βR < 1” and the second “DynareOBC-DEIR,” because in the latter case the DEIR function induces

stationarity. For the DynareOBC-βR < 1 case, β is the same as in the GLB solution, which ensures

that the deterministic steady state is the same. Hence, in this case DynareOBC and GLB use identi-

cal calibrations. For the DynareOBC-DEIR case, the target NFA position in the DEIR function is set

so that the deterministic steady state of the NFA-GDP ratio matches the long-run average obtained

in the GLB solution, with β = 1/R (which is required for µss = 0) and ψ = 0.001 (which is the

inessential value). The rationale for looking at this scenario is that in the GLB solution the con-

straint binds rarely and mean NFA is much higher than at the deterministic steady state. Hence, a

local approximation around an unconstrained steady state would be more in line with the uncon-

strained nature of the GLB long-run equilibrium solution.

4.3 Comparison of quantitative results

a) Long-run moments, impulse response functions & performance metrics

Table 9 shows that several moments of the DynareOBC solutions differ from their GLB coun-

terparts, with smaller differences for supply-side variables as was the case for the RBC model.

Long-run averages show the largest differences, particularly for c, nx/y, b/y and the leverage ratio.

The large differences in E[b/y] indicate that the local solutions continue to perform poorly in this

dimension. E[b/y] = 1.5 percent in theGLB solution, relative to−37.2percent in theRBCmodel, in-

dicating that the credit constraint strengthens precautionary savings sharply. DynareOBC-βR < 1

(DynareOBC-DEIR) underestimates (overestimates) this result significantly, yielding E[b/y] =

−10 (20.6) percent. Differences this large have important implications for key research questions.

For example, quantifying the optimal foreign reserves to manage the risk of Sudden Stops requires

determining first how the economy responds to this risk without policy intervention (e.g., Durdu
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et al. (2009)). DynareOBC would yield findings that deviate sharply from the correct result.

Several of the moments that are underestimated in DynareOBC-βR < 1 v. the GLB solu-

tion tend to be overestimated in the DynareOBC-DEIR solution. Relative to the GLB solution,

DynareOBC-βR < 1 (DynareOBC-DEIR) yields markedly lower (higher) variability in NFA, net

exports, consumption, and leverage, lower (higher) correlations of GDP with investment, net ex-

ports, and intermediate goods, and lower (higher) persistence in consumption and net exports.

Interestingly, DynareOBC-DEIR, which was calibrated so that bdss/ydss equals E[b/y] in the GLB

solution also yields a value of ρ(b) close to the GLB solution (0.995 v. 0.99). Hence, it is in line with

the notion of the “targeted calibrations” of the previous Sections even tough we kept ψ = 0.001.

Local and global solutions also differ sharply in that the constraint binds much more often in

the former than in the latter (51.8 and 71.1 percent in the two local solutions v. 2.6 percent in the

GLB solution). This is due in part to the fact that agents do not respond to the risk of the constraint

becoming binding in the first-order DynareOBC solution. However, recall that agents do anticipate

the constraint becoming binding in the perfect-foresight paths for which this happens and borrow

less before hitting the constraint. Hence, although the constraint binds nearly half the time with

DynareOBC, it does so with very small multipliers. Later in this Section we study in more detail

the extent to which the local and global solutions differ when the constraint binds.

The long-run averages of NFA in the DynareOBC solutions are higher than the correspond-

ing deterministic steady states, indicating that certainty equivalence does not hold, even though

the perfect-foresight paths are first-order approximations: bdss/ydss is set at −0.192 (0.015) in

DynareOBC-βR < 1 (DynareOBC-DEIR)whileE[b/y] =−0.1 (0.206). This is not, however, due to

precautionary savings, since DynareOBC does not take into account the risk of future shocks and

the constraint becoming binding. Instead, this occurs because the constraint induces asymmetric

(nonlinear) responses to shocks even without risk. This feature of DynareOBC can be illustrated

using again the endowment model example of Figure 9 (see Appendix Section C.5.1 for details). A

negative endowment shock that causes the constraint to bind along the perfect-foresight path de-

termining the date-t value of the solution reduces bond holdings by less than the increase in bond

holdings in response to a positive shock of the same size in absolute value. As a result, upward

movements in b when positive shocks hit are larger than downward movements when negative

shocks hit if the economy is near or at a point where the constraint binds. Moreover, b cannot move

below the lower bound set by the constraint but it can wander off to high values after sequences of

positive shocks (see again Figure 9). Hence, the outcome is a DynareOBC time-series with obser-
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vations “biased” above the deterministic steady state, which implies a mean above bdss/ydss.32

TheGLB solution features a similar asymmetry but in addition it takes into account precuation-

ary savings effects due to the risk of future shocks and the constraint becoming binding. It does not

follow, however, that the DynareOBC solutions must always yield mean bond positions lower than

the GLB solution. DynareOBC-βR < 1 (DynareOBC-DEIR) yields a significantly lower (higher)

mean of NFA. Both of these results abstract from precautionary savings, but in the DynareOBC-

DEIR solution bdss/ydss is set equal to the value of E[b/y] in the GLB solution (0.015) and the

constraint does not bind at steady state. Hence, the DynareOBC solution is “biased” above 0.015

and therefore it must yield a long-run average higher than that value.

If one had to choose between Dynare-βR < 1 and Dynare-DEIR, the former is preferable. Both

yield long-run moments that differ from the GLB solution, as shown in Table 9, but as we show

later in this Section, Dynare-βR < 1 does better at approximating the effects of the collateral con-

straint. Moreover, Dynare-βR < 1 uses the exact same calibration as the GLB solution and does not

require a stationarity-inducing transformation. In contrast, Dynare-DEIR requires setting a value

for bdss/ydss. We used the average of the GLB solution, but this resulted in a much higher mean

for the NFA-GDP ratio and requires prior knowledge of the mean in the GLB solution.

We compare next performance metrics.33 The main result is that the speed advantage of the

local methods shrinks considerably, particularly for DynareOBC-βR < 1. Speed ratios relative to

the GLB solution rise to 0.901 for DynareOBC-βR < 1 and 0.70 for DynareOBC-DEIR (the GLB

solution takes 268 seconds). Relative to the local RBC solutions using standard 1OA and 20A

algorithms, the DynareOBC execution times are considerable higher at 244 and 188 seconds for

DynareOBC-βR < 1 and DynareOBC-DEIR, respectively. This is due to the three determinants of

the efficiency of DynareOBC noted earlier together with the fact that NFA follows a near-unit-root

process. Each extended path required at least 60 periods and the time-series simulations needed

100,000 periods to converge to invariantmoments, particularly those for b/y, nx/y and the standard

deviation of consumption.34 DynareOBC-βR < 1 is slower than DynareOBC-DEIR because it

required more searches to construct the news shocks sequences that implement the constraint.

The speed comparisons of DynareOBC v. FiPIt need to be pondered carefully. On one hand,

FiPIt suffers from the standard curse of dimensionality of GLB methods related to the number
32Recall that the constraint in this example is a fixed debt limit while in the SS model it depends on qtkt+1.
33See footnote to Table 5 for the hardware and software used to record the performance metrics.
34Intuitively, consider that the estimators of the mean and autocorrelation of an AR(1) process are consistent but

biased in finite samples. The bias is higher the higher the true autocorrelation but it falls as the sample size rises. For a
near-unit-root process, the sample needs to be quite large to make the estimation bias negligible.

42



of state variables, and more so if the model specification requires using a root-finder when the

constraint binds.35 But once the decision rules are solved for, generating stochastic time-series

simulations is very fast. On the other hand, the number of state variables is much less of an issue

for DynareOBC, but execution time rises with the required length of perfect-foresight paths, the

length of the time-series simulation needed for convergence of long-run moments, and the itera-

tions required to compute the news-shocks sequences that implement the constraint. As shown in

Table 4 of Appendix D, DynareOBC-βR < 1 is much slower than FiPIt if the simulation length rises

to 150,000 periods (350 seconds v. 268 seconds) or with fewer exogenous shocks so that the curse

of dimensionality is less severe (with TFP shocks only, FiPIt solves in 42 seconds v. 230 seconds

with DynareOBC). Relaxing the credit constraint by setting κ to 0.3 also results in FiPIt solving

much faster than DynareOBC (137 v. 228 seconds).36 Moreover, solving in second- or higher order

and/or adding the option to integrate over future uncertainty also slows down DynareOBC con-

siderably. Holden (2016b) noted that solving a model similar to the endowment model of Section

2 using first-order DynareOBC integrating over 45 periods of future uncertainty with the highest

accuracy required 2,855 seconds (with different hardware than we used).

In terms of accuracy, FiPIt produces again very accurate GLB results, as indicated by the small

maximum errors of the bonds and capital Euler equations. The accuracy of the DynareOBC solu-

tions cannot be assessed this way because the solution method produces a time-series simulation,

instead of decision rules. Hence, we follow Holden (2016b) and evaluate their accuracy by con-

structing consumption time-series simulations of the GLB solution for the same initial conditions

and sequence of shocks as in each of the two DynareOBC solutions, and computing the maximum

absolute values of the differences across them. The maximum differences in log base 10 are 1.292

percent with DynareOBC-βR < 1, and 1.342 percent with DynareOBC-DEIR. These are signifi-

cantly larger than Holden’s estimates with for the endowment model.

Figure 10 shows impulse responses to a one-standard deviation negative TFP shock. The im-

pulse responses for the GLB solution are conditional on starting at the long-run averages of capital

and NFA, and those for DynareOBC solutions on starting at the deterministic steady states (which

for DynareOBC-DEIR are the same as the GLB averages). The GLB impulse responses are very
35As Mendoza and Villalvazo (2019) explain, this is not needed for several specifications of credit constraints. This is

the case in the SS model without working capital in the constraint, which reduces the FiPIt run time by 57 percent.
36Using DynareOBC also poses logistical hurdles. Since it relies on Dynare, updates to Dynare can make older ver-

sions of DynareOBC inoperable, and some versions of Dynare operate only in certain operating systems and software
environments. For instance, the DynareOBC toolbox we used operates with Dynare 4.4.3 and only with Matlab2016a.
Dynare 4.4.3 operates with the Ubuntu 14.04 Linux operating system but not with Ubuntu 18.04.
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similar to those of the RBC model, because the constraint binds very infrequently in the left tail of

the ergodic distribution. Hence, in the “correct” SS model solution, the responses of macro vari-

ables triggered by shocks of standard magnitudes starting off from long-run means are nearly un-

affected by the credit friction. The means of variables other than the supply-side variables change

across the RBC and SS GLB solutions, but the deviations frommeans triggered by identical shocks

are nearly unchanged. In contrast, the DynareOBC impulse responses are very different from the

local-methods impulse responses of the RBC model, even those for the 1OA solution.

DynareOBC impulse responses of several variables differ sharply from their GLB counterparts.

For DynareOBC-βR < 1, Panel (a) shows that NFA/GDP hardly moves, and Panel (b) shows

that nx/y moves into a surplus on impact, because of reduced demand for imported inputs. This

occurs because the constraint binds at date 0 and the TFP shock tightens the constraint more. For

DynareOBC-DEIR, NFA/GDP declines, offsetting the fall in imported inputs to yield an almost

unchanged trade balance. In contrast, in the GLB solution net exports jump on impact nearly twice

as much as under DynareOBC-βR < 1 and NFA/GDP rises gradually to peak roughly 150 basis

points above itsmean, and after that it falls slowly to a trough 400 basis points below itsmean before

gradually reverting to its mean. The responses of capital are also very different. Both DynareOBC

solutions yield a decline on impact, while in the GLB solution capital is nearly unchanged. Then

capital declines slightly and starts recovering in the two local solutions, while in the GLB solution

it falls by nearly three times as much reaching nearly 1.5 percent below average before starting to

recover. Qualitatively, the responses of consumption, investment, labor, inputs andGDPare similar

in all three solutions, but the declines on impact are significantly larger in the GLB solution.

b) Spectral density functions

Figure 11 shows the nonparametric periodograms for the DynareOBC and GLB solutions. As

in the endowment and RBC models, since all of the variables follow AR(1)-like processes, the

periodograms are generally downward sloping, indicating that low frequencies account for a larger

fraction of the variance of the variables than business cycle and higher frequencies. Moreover, the

periodograms for the GLB solution are very similar to those for the RBC GLB solution, in line with

the finding that theGLB impulse responses of the RBC and SSmodels are similar because the credit

constraint binds infrequently. The periodograms of the DynareOBC solution differ from those of

the 2OA and RSS solutions of the RBC model, so the local methods fail to match the property of

the GLB solutions that spectral densities of the RBC and SS models are similar.

The DynareOBC periodograms for NFA, consumption, net exports, investment and labor differ
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sharply from the GLB results. Consumption has the highest variance in the GLB solution (121.4),

followed byDynareOBC-DEIR (119.2) andDynareOBC-βR < 1with amuch lower variance (65.8).

In contrast, the autocorrelation of consumption is highest inDynareOBC-DEIR (0.91) and about the

same in GLB and DynareOBC-βR < 1 (0.83). As a result, the consumption periodograms for the

latter two have the same intercept but the one for GLB is uniformly higher otherwise, while the pe-

riodogram for DynareOBC-DEIR has the highest intercept but is generally below the periodogram

for GLB. The DynareOBC solutions assign significantly less consumption variability to business

cycle and lower frequencies than the GLB solution. Net exports also show higher persistence in

the DynareOBC-DEIR solution while DynareOBC-βR < 1 and GLB have similar persistence, and

opposite from what we observe for consumption, the GLB solution has less overall variance and

less variability at all frequencies. Investment has higher variance and persistence in the GLB than

in the local solutions, and it has uniformly higher variability at all frequencies.

c) Sudden Stops and Risk Effects

We compare next the results that DynareOBC and GLB yield for the effects of the credit con-

straint, particularly for financial premia and for sudden stop responses of macro variables when

the constraint binds. The financial premia include the shadow interest rate premium (SIP ), the

equity premium (EP ), its components due to unpledgeable capital ((1−κ)SIP ) and risk premium

(RP ), and the Sharpe ratio (S). As we explain below, these premia depend on both the tightness

of the constraint and its risk effects. For macro aggregates, we compare deviations from long-run

averages in consumption, the net exports-GDP ratio, investment, GDP, labor and imported inputs.

SIP is the amount by which the subjective rate at which agents are willing to trade current

for future consumption (i.e., the intertemporal marginal rate of substitution u′(t)/[βEt(u′(t+ 1))])

exceeds Rt. The bonds’ Euler equation implies that SIPt = µt(1 + τ)/[βEt(u
′(t + 1))]. Using the

same Euler equation, the denominator can be rewritten without the conditional expectation:

SIPt =
Rtµt(1 + τ)

u′(t)− µt(1 + τ)
. (20)

Since SIPt = 0 if µt = 0, this shadow interest premium is relevant only when the constraint binds.

We can also infer that SIPt rises as the constraint becomes more binding, because µt rises and

Et(u
′(t+ 1)) falls, since the constraint forces agents to defer consumption.

The equity premium is defined as EPt ≡ Et[R
q
t+1] − Rt, where Rqt+1 ≡ (dt+1 + qt+1)/qt is the

return on equity and dt+1 is the dividend payment, where dt ≡ exp(εAt )Fk(t) − δ + a
2
(kt+1−kt)2

k2t
.
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Using the Euler equations for bonds and capital it follows that:

EPt = (1− κ)SIPt +RPt, RPt ≡ −
COVt[u

′(t+ 1), Rqt+1]

Et[u′(t+ 1)]
. (21)

EPt has two components: the standard risk premium (RPt) driven by the conditional covariance

of marginal utility and equity returns and the fraction of SIPt pertaining to the share of kt+1 that

cannot be pledged as collateral ((1 − κ)SIPt). EPt rises when µt > 0 for two reasons: First, SIPt

rises, as explained above. Second, RPt rises, because COVt[u′(t+ 1), Rqt+1] becomes more negative

as consumption is harder to smooth and Et[u′(t+ 1)] falls as the credit constraint forces consump-

tion into the future. Thus, EP responds both to the tightness of the constraint itself via SIPt

and to the larger risk premium that the constraint induces. The Sharpe ratio measures the com-

pensation for risk-taking, defined as the excess returns obtained per unit of variability in returns

(St = E[EP ]/σ(Rq)). Following standard practice, we compute St using uconditional moments.

For the GLB solution, the financial premia are computed for each triple (b, k, ε) in the state

space by applying the above formulae using the Markov process of ε and the recursive optimal

decision rules (see Appendix Section D.4 for details). Conditional and unconditional averages are

then computed using conditional and unconditional distributions of (b, k, ε) of the GLB solution.

For the DynareOBC solution, SIPt is computed using the time-series simulation produced by

Holden’s algorithm. The equity premium is then generated asEPt = (1−κ)SIPt becauseRPt = 0

by construction, since each date-t solution is determined by a perfect-foresight path along which

agents base decisions on expectations such that COVt[u′(t+ 1), Rqt+1] = 0. Computing the uncon-

ditional covariance for the simulated dataset also produces very small values for COV [u′(·), Rq].

Table 10 reports quintile distributions of µ conditional on µ > 0, the associated within-quintile

averages of the financial and macro variables, their overall means and medians, and the Sharpe

ratios.37 The Table shows key differences across GLB and local solutions. The magnitudes of µ are

very small in all five quintiles of both solutions, but this is because µ is in units of marginal utility

with CRRA preferences and σ = 2. For instance, evaluated at the unconditional means of c and L,

marginal utility is about 2.05E-05 (-4.688 in log base 10). Hence, small µ values do not imply that

the constraint is negligibly binding or that model solutions are similar, as we document below.

Table 10 shows that the local solutions yield significantly smaller results than the GLB solution

for the credit constraint multipliers, the financial premia and the macro responses when the con-
37Variables are assigned into quintiles according to the quintile distribution of µ: if a given µi belongs to a particular

quintile of µ, then the corresponding values of the financial and macro variables are assigned to that same quintile.
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straint binds. The differences grow larger for higher µ (i.e., in the fourth and fifth quintiles), and

they are larger compared with the local solution that has the unconstrained deterministic steady

state (DynareOBC-DEIR) v. the one with the constrained steady state (DynareOBC-βR < 1).

For financial premia, GLB yields overall means of 2.6, 2.2, 2.1 and 0.1 percent for SIP , EP ,

(1−κ)SIP andRP , respectively, while DynareOBC-βR < 1 (DynareOBC-DEIR) yields 0.8, 0.6, 0.6

and 0 (0.13, 0.10, 0.10 and 0) percent, respectively. In the GLB solution, RP is about 0.1 percent on

average in each of the five quintiles of µ, but EP still increases sharply with µ because (1− κ)SIP

rises sharply. In the fifth quintile, GLB yields averages of 6.6, 5.4, and 5.3 percent for SIP , EP ,

and (1 − κ)SIP , respectively, while DynareOBC-βR < 1 (DynareOBC-DEIR) yields 3.3, 2.7 and

2.7 (0.64, 0.51 and 0.51) percent, respectively. The local solutions underestimate SIP , and hence

EP , significantly. They also miss the risk premium, but this accounts for a small fraction of the

differences inEP . GLB yields a Sharpe ratio of 1.16, nearly 5 and 30 times the DynareOBC-βR < 1

and DynareOBC-DEIR results, respectively. Since RP is small in the GLB solution and zero in the

local solutions, these differences in S are mostly explained by the large gap in SIP .

Large differences inSIP andEP are important because themodel predicts that they cause very

different responses of macro variables when the constraint binds. To explain how financial premia

affect macro responses, we follow Mendoza and Smith (2005) in using the definition of expected

returns E[Rqt+1] ≡ Et[(dt+1 + qt+1)/qt] to express the forward solution for the price of capital as:

qt = Et

 ∞∑
i=1

 i∏
j=0

1

Et(R
q
t+1+j)

 dt+1+i

 (22)

Since eq. (21) implies that Et[Rqt+1] = (1− κ)SIPt +RPt +Rt, lower SIPt in DynareOBC implies

higher equity prices when µt > 0, which in turn imply weaker Fisherian deflation effects of the

binding credit constraint. Moreover, since equity prices and investment aremonotonic functions of

each other due to the Tobin Q nature of the investment setup, kt+1 should be higher, and so should

be borrowing capacity (κqtkt+1), which is key for determining allocations when µt > 0. This also

affects future dividends, causing further feedback effects into equity prices and borrowing capacity.

The differences in macro responses across the GLB and local solutions when µ > 0 reported

in Table 10 reflect the above arguments. In the GLB solution, the responses are in line with the

standard features of Sudden Stops (i.e., large recessions and sharp reversals in the external ac-

counts). The mean percent declines (relative to long-run averages) are -3.6 in c, -4.1 in i, -1.0 in

GDP , -0.7 in L, and -1.8 in v while NX/GDP rises 2.6 percentage points above its long-run aver-
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age. The responses are generally larger when the constraint binds more, reaching means of -4.9 for

c and -13.5 for iwith a trade balance reversal of 5.1 percentage points for the top quintile of µ. The

DynareOBC-βR < 1 solution underestimates the mean responses of consumption and net exports

(-1.9 v. -3.6 for c and 1.2 v. 2.6 for NX/GDP ) and overestimates those for L, v and GDP . It also

fails to match the property that the responses should be larger when the constraint binds more,

as it yields the largest responses in the third quintile of µ. DynareOBC-DEIR performs even more

poorly, producing positive mean responses for c and i and a negative mean response for NX/Y

(i.e., on average, when the constraint binds consumption and investment rise above their long-

run means and the trade balance falls below its long-run mean). Moreover, these counterfactual

responses grow larger when the constraint binds more, in the fourth and fifth quintiles of µ.

DynareOBC using βR < 1 v. DEIR yield very different results because in the former (latter) the

constraint binds (does not bind) at the deterministic steady state, and using DEIR the steady state

was set to the mean NFA of the GLB solution. The constraint binds often in DynareOBC-DEIR (71

percent frequency) but in all but the first quantile of µ it yields below average net exports and above

average consumption and investment. This failure to produce Sudden Stops when the constraint

binds is a major shortcoming of this solution vis-a-vis both GLB and Dynare-βR < 1 solutions.

In summary, this Section’s results are consistentwith our previous findings indicating that local

solutions fail to capture important features of the global solution in terms of long-run moments,

impulse-response functions and spectral density functions. In addition, local solutions fail tomatch

key properties of the GLB solution when the constraint binds, because first-order DynareOBC ab-

stracts from risk effects and does not approximate accurately the frequency, magnitude and effects

of the occasionally binding credit constraint. DynareOBC yields large differences in the amount

of precautionary savings caused by the constraint, the probability of hitting the constraint, the

tightness of the constraint when it binds and the associated financial premia and macro responses.

5 Conclusions

We compared global and local solutions of open-economy models with incomplete markets in the

time and frequency domains and found major differences. We examined an endowment economy,

an RBC model and a Sudden Stops model with an occasionally binding credit constraint. Local

solutions were produced using 1OA, 2OA, RSS and DynareOBC methods and the global solutions

were generated using the FiPItmethod. Most local methods need a stationarity-inducing transfor-

mation, for whichwe chose thewidely-usedDEIR function thatmakes theworld real interest rate a
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decreasing function of the NFA position. We considered the standard “inessential” approach to set

the DEIR elasticity so that the interest rate remains close to the world interest rate and a variation

in which the elasticity is calibrated to match the autocorrelation of NFA in the global solution.

The main limitation of the local methods is their inability to approximate accurately the effects

of precautionary savings on NFA, net exports and consumption, even using higher-order methods

such as 2OA and RSS. For the Sudden Stops model, first-order DynareOBC has two additional

disadvantages: it underestimates the tightness of the credit constraint and its effects on finan-

cial premia and macro responses to a binding constraint, and it does not capture risk effects of

the credit constraint and their implications for precautionary savings and the determination of

forward-looking variables like asset prices. In terms of speed, the local methods do not have a

clear advantage. They are faster for solving the RBC model, but the FiPIt algorithm computes the

global solution of the endowment model faster and for the Sudden Stops model FiPIt and Dynare-

OBC are of comparable speed. The global solutions also yield significantly smaller Euler equation

errors in all cases. But the curse of dimensionality remains a limitation of the FiPIt global method.

NFA is a near-unit-root process in all three models. Hence, small errors in calculating its “true”

autocorrelation coefficient cause local methods to produce non-trivial errors in other key items,

including long-run averages of NFA, consumption and net exports, as well as various features

of business cycle moments, impulse responses and spectral densities. Local solutions with the

DEIR elasticity targeted to match the NFA autocorrelation of the global solution perform better,

but imply elasticities akin to imposing large costs in moving NFA from its steady state and require

knowing the global solution. Interestingly, 1OA, 2OA, and RSS local methods produce very similar

second- and higher-order moments, impulse responses and periodograms. This is because they

yield decision rules that differ mainly in their intercepts, but otherwise have similar first-order

terms and negligible higher-order terms. Hence, if one is restricted to local methods only, and if

first moments are not central to the question under study, the 1OA method is the best alternative.

Overall, these findings argue in favor of using global methods unless the curse of dimension-

ality makes them unfeasible. The results are robust to several parameter modifications, including

setting the DEIR elasticity to an inessential low value v. targeting the global solution, replacing the

DEIR functionwith the assumption that the rate of interest is lower than the rate of time preference,

introducing different shocks, and changing the variability and persistence of shocks.
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Table 1: Methods Used to Solve Open-Economy Incomplete Markets Models

Authors Year Publication Type of Solution Stationarity ψ

model method assumption

Adolfson et al. 2007 JIE SOE 1OA DEIR .145(e)

Aguiar and Gopinath 2007 JPE SOE 1OA DEIR .001(s)

Angeloni and Ehrmann 2007 BEJ Macro N = 12 1OA DEIR .1(c)

Arellano 2008 AER SOE GLB

Arellano and Mendoza 2002 NBER SOE GLB

Baxter and Crucini 1995 IER N = 2 1OA AHC

Bengui et al. 2012 JME N = 2 GLB

Benigno and Thoenissen 2008 JIMF N = 2 1OA AHC

Benigno et al. 2016 JME SOE GLB

Bergin 2006 JIMF N = 2 1OA DEIR .00384(e)

Bianchi 2011 AER SOE GLB

Bianchi and Mendoza 2018 JPE SOE GLB

Bianchi et al. 2012 IMFER SOE GLB

Bianchi et al. 2016 JIE SOE GLB

Bodenstein 2011 JIE N = 2 1OA ED

Bodenstein et al. 2011 JIE N = 2 1OA DEIR 0.0001(s)

Boz et al. 2011 JME SOE 1OA DEIR .001(s)

Boz and Mendoza 2014 JME SOE GLB

Buch et al. 2005 JIMF N = 2 1OA AHC

Cavallo and Ghironi 2002 JME N = 2 1OA OLG

Coeurdacier et al. 2011 AER P&P SOE RSS

Correia et al. 1995 EER SOE 1OA AHC

Corsetti et al. 2008 RESTUD N = 2 1OA ED

Cuadra and Sapriza 2008 JIE SOE GLB

Devereux et al. 2006 EJ SOE 1OA AHC

Devereux and Sutherland 2010 JMCB N = 2 1OA ED

Devereux and Sutherland 2011 JEEA N = 2 1OA ED

Durdu et al. 2009 JDE SOE GLB

Durdu and Mendoza 2006 JIE SOE GLB

Enders et al. 2011 JIE N = 2 1OA ED

Engel and Wang 2011 JIE N = 2 1OA AHC

Continued on next page
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Table 1 – continued from previous page

Authors Year Journal Type of Solution Stationarity ψ

model method assumption

Fernandez and Chang 2013 IER SOE 1OA DEIR .001 (s)

Fernandez-Villaverde et al. 2011 AER SOE 3OA AHC

Fogli and Perri 2006 NBER N = 2 GLB

Garcia-Cicco et al. 2010 AER SOE 1OA DEIR .001 (s),2.8(e)

Gertler et al. 2007 JMCB SOE 1OA DEIR 0.0001(s)

Ghironi 2006 JIE N = 2 1OA OLG

Ghironi and Melitz 2005 QJE N = 2 1OA AHC

Hatchondo and Martinez 2009 JIE SOE GLB

Heathcote and Perri 2002 JME N = 2 1OA AHC

Heathcote and Perri 2013 JPE N = 2 2OA, 3OA

Jaimovich and Rebelo 2008 JMCB SOE 1OA DEIR .00001(s)

Justiniano and Preston 2010 JIE SOE 1OA DEIR .01(c)

Lubik and Schorfheide 2005 NBER Macro N = 2 1OA CM

Mendoza 1991 AER SOE GLB

Mendoza 1992 IMFSP SOE GLB

Mendoza 1995 IER SOE GLB

Mendoza 2010 AER SOE GLB

Mendoza and Smith 2006 JIE SOE GLB

Mendoza et al. 2009 JPE N = 2, 3 GLB

Mendoza and Yue 2012 QJE SOE GLB

Monacelli 2005 JMCB SOE 1OA CM

Nason and Rogers 2006 JIE SOE 1OA DEIR .00014, .007(e)

Neumeyer and Perri 2005 JME SOE 1OA AHC

Rabanal and Tuesta 2010 JEDC N = 2 1OA AHC

Raffo 2008 JIE N = 2 1OA AHC

Rebelo and Vegh 1995 RESTUD SOE 1OA AHC

Smets and Wouters 2002 JME SOE 1OA OLG

Uribe and Yue 2006 JIE SOE 1OA AHC
Note: SOE denotes a small open economy model. N = denotes a multicountry model with N countries. 1OA, 20A and
3OA are the first-, second- and third-order approximation methods respectively, RSS is the risky steady state method,
and GLB indicates models solved with global methods (including models with standard preferences and βR < 1,
endogenous discounting, or overlapping generations). The approaches used to induce stationarity when using local
methods are the debt-elastic interest rate (DEIR), asset holding costs (AHC), endogenous discounting (ED), over-
lapping generations (OLG) and complete markets (CM). For cases using DEIR, (s), (c) and (e) denote whether the
debt-elasticity parameter ψ was chosen to be small, estimated, or calibrated respectively.
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Table 2: Solution Methods Used in Policy Models

Institution Model Type of Solution Stationarity ψ
name model method assumption

Bank of Canada GEM N = 5 1OA DEIR n.d.
Bank of England COMPASS SOE 1OA ED
ECB NAWM N = 2 and SOE 1OA DEIR .01(s)
European Commission QUEST SOE 1OA DEIR .02(e)
Federal Reserve Board SIGMA N = 2 1OA PAC
IMF GIMF N ≥ 2 1OA OLG
Norges Bank NEMO SOE 1OA DEIR n.d.
Riksbank RAMSES SOE 1OA DEIR .01(c)

Note: See note to Table 1 for details on abbreviations. n.d. denotes that there is no public document disclosing what
value was used.

Table 3: Calibration of the Endowment Economy Model

Notation Parameter/Variable Value

1. Common parameters

σ Coefficient of relative risk aversion 2.0
y Mean endowment income 1.00
A Absorption constant 0.28
R Gross world interest rate 1.059
σz Standard deviation of income (percent) 3.27
ρz Autocorrelation of income 0.597

2. Global solution parameters

β Discount factor 0.940
ϕ Ad-hoc debt limit −0.51
3. Local solution parameters

Common parameters

β Discount factor 0.944
b̄ Deterministic steady state value of NFA −0.51

Baseline calibration

ψ Inessential DEIR coefficient 0.001
Targeted calibration

ψ DEIR coefficeint for 2OA 0.0469
ψ DEIR coefficient for RSS 0.0469

Note: 2OA and RSS denote the second-order and risky-steady state solutions, respectively.
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Table 4: Autocorrelations of Net Exports, NFA, and Income: Endowment Economy Model

ρε

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
i) GLB

ρNFA 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρNX -0.088 0.010 0.11 0.213 0.321 0.432 0.547 0.661 0.768

ii) Baseline (inessential ψ)
2OA
ρNFA 0.995 0.996 0.996 0.997 0.998 0.998 0.999 0.999 0.999
ρNX 0.238 0.348 0.455 0.556 0.652 0.741 0.821 0.89 0.946

RSS
ρNFA 0.995 0.996 0.997 0.997 0.998 0.998 0.999 0.999 1.000
ρNX 0.239 0.35 0.457 0.559 0.655 0.745 0.826 0.896 0.952

iii) Targeted (calibrated ψ to match baseline GLB ρb)
2OA
ρNFA 0.912 0.928 0.941 0.952 0.961 0.97 0.977 0.984 0.990
ρNX -0.01 0.089 0.188 0.287 0.387 0.486 0.586 0.685 0.786

RSS
ρNFA 0.912 0.928 0.941 0.952 0.961 0.97 0.977 0.984 0.99
ρNX -0.01 0.089 0.188 0.287 0.386 0.485 0.585 0.684 0.784

iv) Targeted for all ρε (calibrated ψ to match each GLB ρb)
2OA
ψ 0.185 0.158 0.13 0.106 0.083 0.064 0.046 0.034 0.027
ρNFA 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρNX -0.029 0.068 0.166 0.267 0.37 0.476 0.586 0.698 0.807

RSS
ψ 0.185 0.158 0.13 0.106 0.083 0.064 0.046 0.034 0.027
ρNFA 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρNX -0.030 0.067 0.166 0.266 0.369 0.475 0.585 0.696 0.804

Note: GLB, 2OA and RSS denote the global, second-order and risky-steady state solutions, respectively.
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Table 5: Long-run Moments: Endowment Economy Model

Baseline Calibration Targeted Calibration

GLB 2OA RSS 2OA RSS

DEIR βR < 1 DEIR DEIR DEIR

ψ = na 0.001 na 0.001 0.0469 0.0469

Averages

E(c) 0.694 0.701 0.093 0.692 0.689 0.689
E(nx/y) 0.022 0.015 0.625 0.025 0.028 0.028
E(b/y) -0.413 -0.282 -11.210 -0.451 -0.502 -0.506

Standard deviations relative to standard deviation of income

σ(c)/σ(y) 0.992 1.594 1.161 1.617 1.001 0.997
σ(nx)/σ(y) 0.660 1.327 1.202 1.346 0.730 0.730
σ(nx/y)/σ(y) 0.643 1.311 1.161 1.331 0.709 0.709
σ(b)/σ(y) 7.461 62.327 1.706 40.078 6.647 6.576
σ(b/y)/σ(y) 7.735 61.989 1.892 40.213 7.174 7.118

Income correlations

ρ(y, c) 0.755 0.202 0.188 0.197 0.684 0.684
ρ(y, nx) 0.729 0.572 0.312 0.567 0.705 0.708
ρ(y, nx/y) 0.704 0.572 0.006 0.567 0.705 0.708
ρ(y, b) 0.449 0.128 0.070 0.124 0.489 0.488
ρ(y, b/y) 0.549 0.156 0.445 0.149 5.593 0.592

First-order autocorrelations

ρc 0.840 0.995 0.996 0.995 0.929 0.929
ρnx 0.543 0.819 0.934 0.823 0.583 0.582
ρnx/y 0.551 0.826 0.995 0.830 0.591 0.590
ρb 0.977 0.999 0.999 0.999 0.977 0.977
ρb/y 0.961 0.998 0.953 0.998 0.958 0.959

Performance metrics

Execution time (secs.) 5.9 8.5 n.a. 9.9 8.5 9.8
ratio rel. to GLB 1.0 1.441 n.a. 1.678 1.441 1.661

Max. Abs. Euler eq. errors 9.60E-05 1.10E-03 4.45E-03 1.00E-03 2.60E-03 2.50E-03
Decision rule diff b 0.120 (0.248) n.a. 0.099 (0.378) 0.086 (0.127) 0.075 (0.123)
Decision rule diff c 0.025 (0.049) n.a. 0.028 (0.055) 0.019 (0.037) 0.020 (0.039)

Note: GLB, 20A and RSS refer to the global, second-order and risky steady state solutions, respectively. σ(·) denotes
the coefficient of variation for variables in levels and the standard deviation for variables in ratios (nx/y, b/y and the
leverage ratio lev/rat.). The results were obtained using Matlab 2016a in a Linux cluster with 128gb of RAM, two 10-
core Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz processors, and a Samsung SSD 840 512GB hard drive. The number
of CPUs called by the parallel computing toolbox was set to minimize execution time. Execution times include elapsed
time up to the solution of decision rules. We used the same software and hardware for all the computations reported in
the paper. Execution times are not reported for the RSS solution with βR < 1 because we used analytic solutions. Euler
equation errors and decision rule differences are computed for all (b, z) pairs in the state space of the GLB solution.
Decision rule differences in the last two rows are differences between the local and GLB solutions in percent of the
latter. We report mean andmaximum (maximum in brackets) differences conditional on bond values that have positive
probability in the ergodic distribution of the GLB solution.
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Table 6: Endowment Economy Model with Income and Interest-Rate Shocks

Std Dev of Int Rate (percent)
0.0 0.5 1.0 1.5 2.0 2.5

Global calibrated
E(b/y) -0.413 -0.411 -0.408 -0.403 -0.396 -0.384
σ(c)/σ(y) 0.992 0.977 1.009 1.058 1.126 1.214
σ(b)/σ(y) 7.461 7.169 7.465 8.009 8.874 10.311
ρ(y, nx) 0.729 0.681 0.617 0.527 0.415 0.298
ρ(nx) 0.543 0.540 0.542 0.546 0.551 0.559
ρ(b) 0.977 0.973 0.975 0.976 0.978 0.981

Global with NDL
E(b/y) -10.778 -9.249 -7.445 -5.991 -4.875 -3.956
σ(c)/σ(y) 9.747 7.375 6.962 6.189 5.563 4.906
σ(b)/σ(y) 1.682 2.418 4.232 5.771 7.194 8.374
ρ(y, nx) 0.684 0.457 0.343 0.308 0.297 0.301
ρ(nx) 0.858 0.880 0.924 0.931 0.927 0.914
ρ(b) 0.999 0.998 0.998 0.998 0.998 0.997

Full RSS w. βR̄ < 1
E(b/y) -11.21 -9.098 -7.182 -5.577 -4.226 -3.075
σ(c)/σ(y) 12.484 11.171 9.672 8.209 6.745 5.322
σ(b)/σ(y) 19.067 38.394 49.967 53.952 52.038 45.600
ρ(y, nx) 0.315 0.077 0.011 -0.021 -0.044 -0.066
ρ(nx) 0.933 0.987 0.993 0.994 0.992 0.986
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

Partial RSS w. baseline ψ
E(b/y) -0.451 -0.426 -0.279 -0.018 0.381 0.942
σ(c)/σ(y) 1.617 1.645 1.773 2.085 2.894 4.969
σ(b)/σ(y) 40.078 43.072 71.486 1327.807 94.562 71.228
ρ(y, nx) 0.567 0.560 0.531 0.469 0.357 0.217
ρ(nx) 0.823 0.823 0.830 0.856 0.910 0.965
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

2OA w. baseline ψ
E(b/y) -0.285 -0.319 -0.179 0.056 0.384 0.806
σ(c)/σ(y) 1.594 1.612 1.664 1.747 1.857 1.990
σ(b)/σ(y) 62.327 55.583 100.480 313.282 47.421 23.101
ρ(y, nx) 0.572 0.568 0.555 0.536 0.512 0.485
ρ(nx) 0.819 0.816 0.809 0.798 0.785 0.771
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

Partial RSS w. targeted ψ
E(b/y) -0.506 -0.507 -0.505 -0.501 -0.495 -0.487
σ(c)/σ(y) 0.997 1.016 1.068 1.150 1.254 1.375
σ(b)/σ(y) 6.576 6.571 6.657 6.805 7.022 7.315
ρ(y, nx) 0.708 0.695 0.663 0.619 0.571 0.523
ρ(nx) 0.582 0.580 0.576 0.570 0.564 0.559
ρ(b) 0.977 0.977 0.977 0.977 0.977 0.977

2OA w. targeted ψ
E(b/y) -0.502 -0.505 -0.502 -0.498 -0.492 -0.484
σ(c)/σ(y) 1.001 1.020 1.073 1.157 1.264 1.391
σ(b)/σ(y) 6.647 6.612 6.694 6.833 7.030 7.287
ρ(y, nx) 0.705 0.693 0.660 0.615 0.564 0.514
ρ(nx) 0.583 0.581 0.577 0.572 0.566 0.561
ρ(b) 0.977 0.977 0.977 0.977 0.977 0.977

Note: The variability and persistence of endowment shocks are kept as in Table 3. The correlation between endowment
and interest-rate shocks is set to−0.669, for all columns with the exception of the first column for which the correlation
is set to 0. GLB, 20A and RSS refer to the global, second-order and risky-steady state solutions, respectively.
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Table 7: Calibration of the RBC & Sudden Stops Models

Notation Parameter/Variable Value

1. Common parameters
σ Coefficient of relative risk aversion 2.0
R Gross world interest rate 1.0857
α Labor share in gross output 0.592
γ Capital share in gross output 0.306
η Imported inputs share in gross output 0.102
δ Depreciation rate of capital 0.088
ω Labor exponent in the utility function 1.846
φ Working capital constraint coefficient 0.2579
a Investment adjustment cost parameter 2.75
τ Consumption tax 0.168
κ Collateral constraint coefficient 0.20
ydss GDP at the deterministic steady state 396

2. RBC global solution parameters
β Discount factor 0.920
ϕ Ad-hoc debt limit as a share of ydss −0.758

3. RBC local solution parameters
Common Parameters
β Discount factor 0.9211
bdss/ydss NFA/GDP at the deterministic steady state −0.758

Baseline Calibration
ψ Inessential DEIR coefficient 0.001

Targeted Calibration
ψ DEIR coefficient for 2OA 0.0109
ψ DEIR coefficient for RSS 0.008

4. Sudden Stops global solution parameters
β Discount factor 0.920
ϕ Ad-hoc debt limit as a share of ydss −0.505
bdss/ydss NFA/GDP at the deterministic steady state −0.192

5. Sudden Stops local solution parameters
DynareOBC with βR < 1
β Discount factor 0.920
bdss/ydss NFA/GDP at the deterministic steady state −0.192

DynareOBC with DEIR
β Discount factor 0.9211
ψ Inessential DEIR coefficient 0.001
bdss/ydss NFA/GDP at the deterministic steady state 0.015

Note: 2OA and RSS denote the second-order and risky-steady state solutions, respectively. For the Sudden Stops model,
the GLB solution has two credit constraints, namely ϕ and the collateral constraint. Credit is constrained at the deter-
ministic steady state, since βR < 1, but ϕ is set low enough so that the collateral constraint binds first.
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Table 8: Long-run Moments: RBC model

Baseline Calibration Targeted Calibration

GLB 2OA RSS 2OA RSS

ψ = na 0.001 0.001 0.0109 0.008

Averages
E(y) 393.847 396.990 396.190 397.050 397.210
E(c) 264.021 294.900 342.850 259.180 265.420
E(I) 67.53 68.008 67.747 68.035 68.063
E(nx/y) 0.045 -0.042 -0.185 0.065 0.046
E(b/y) -0.372 0.732 2.559 -0.620 -0.397
E(lev.rat.) -0.286 -0.237 -1.100 0.400 0.295
E(υ) 42.649 42.938 42.852 42.946 42.975
E(L) 18.433 18.519 18.499 18.521 18.528

Variability relative to variability of GDP
σ(y) 0.040 0.039 0.039 0.041 0.040
σ(c)/σ(y) 1.291 1.910 1.412 1.268 1.212
σ(I)/σ(y) 3.386 3.467 3.493 3.320 3.388
σ(nx/y)/σ(y) 0.885 1.293 1.212 0.712 0.731
σ(b/y)/σ(y) 7.589 13.824 12.909 3.758 4.269
σ(lev.rat.)/σ(y) 3.614 6.549 6.084 1.849 2.053
σ(υ)/σ(y) 1.481 1.496 1.504 1.463 1.482
σ(L)/σ(y) 0.596 0.600 0.600 0.596 0.598

Correlations with GDP
ρ(y, c) 0.773 0.631 0.509 0.929 0.904
ρ(y, I) 0.640 0.632 0.628 0.661 0.648
ρ(y, nx/y) -0.227 -0.278 0.026 -0.476 -0.381
ρ(y, b/y) 0.090 0.200 -0.160 0.511 0.343
ρ(y, lev.rat.) 0.112 -0.206 0.150 -0.532 -0.366
ρ(y, υ) 0.834 0.831 0.830 0.839 0.835
ρ(y, L) 0.995 0.995 0.995 0.995 0.995

First-order autocorrelations
ρ(y) 0.830 0.824 0.820 0.841 0.853
ρ(b) 0.996 0.999 0.998 0.996 0.996
ρ(c) 0.885 0.940 0.918 0.873 0.862
ρ(I) 0.516 0.511 0.509 0.519 0.513
ρ(nx/y) 0.711 0.850 0.843 0.555 0.563
ρ(lev.rat.) 0.997 0.999 0.998 0.991 0.995
ρ(υ) 0.780 0.777 0.774 0.788 0.782
ρ(L) 0.808 0.808 0.799 0.819 0.810

Performance metrics
Time in sec. 61.0 37.8 40.6 37.9 39.6
ratio rel. to GLB 1.0 0.620 0.666 0.621 0.649

Max. Abs. b Euler eq. error 1.17E-07 1.33E-07 6.21E-04 1.43E-07 1.13E-03
Max. Abs. k Euler eq. error 3.84E-16 4.52E-07 8.92E-05 3.95E-07 6.59E-05
Decision rule diff b 0.089 (0.546) 0.089 (0.546) 0.081 (0.505) 0.081 (0.505)
Decision rule diff k 0.017 (0.051) 0.017 (0.051) 0.017 (0.049) 0.017 (0.049)
Decision rule diff c 0.019 (0.066) 0.019 (0.066) 0.019 (0.077) 0.019 (0.077)
See Note to Table 5.
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Table 9: Long-run Moments: Sudden Stops model

GLB DynareOBC-βR < 1 DynareOBC-DEIR

Averages

E(y) 393.619 391.390 395.230
E(c) 274.123 269.610 279.970
E(I) 67.481 66.714 67.897
E(nx/y) 0.015 0.025 0.000
E(b/y) 0.015 -0.100 0.206
E(lev.rat.) -0.102 -0.157 -0.011
E(υ) 42.617 42.263 42.712
E(L) 18.426 18.364 18.469

Variability relative to variability of GDP

σ(y) 0.039 0.032 0.032
σ(c)/σ(y) 1.023 0.937 1.207
σ(I)/σ(y) 3.383 3.492 3.777
σ(nx/y)/σ(y) 0.746 0.927 1.262
σ(b/y)/σ(y) 4.980 3.703 9.595
σ(lev.rat.)/σ(y) 2.340 1.705 4.498
σ(υ)/σ(y) 1.495 1.632 1.612
σ(L)/σ(y) 0.599 0.571 0.569

Correlations with GDP

ρ(y, c) 0.842 0.823 0.557
ρ(y, I) 0.641 0.309 0.224
ρ(y, nx/y) -0.117 0.176 0.223
ρ(y, b/y) -0.120 0.027 -0.054
ρ(y, lev.rat.) -0.111 0.008 -0.056
ρ(y, υ) 0.832 0.777 0.775
ρ(y, L) 0.994 0.987 0.986

First-order autocorrelations

ρ(y) 0.825 0.752 0.754
ρ(b) 0.990 0.980 0.995
ρ(c) 0.829 0.826 0.910
ρ(I) 0.500 0.470 0.502
ρ(nx/y) 0.601 0.456 0.651
ρ(lev.rat.) 0.992 0.988 0.996
ρ(υ) 0.777 0.753 0.756
ρ(L) 0.801 0.761 0.774

Prob.(µ>0) 2.58 51.80 71.06

Performance metrics

Time in sec. 268.0 243.5 187.4
Max. Abs. b Euler eq. error 2.62E-04 na na
Max. Abs. k Euler eq. error 4.25E-16 na na

Note: See Note to Table 5.
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Figure 1: The first-order coefficient of NFA decision rules as the elasticity of the DEIR function varies

ψ

ψ

ψ

ψ

Note: This figure shows how the first-order coefficient of the NFA decision rules, ρb(ψ, b∗), varies with ψ for three
values of b∗: -0.51 (deterministic steady state), -0.41 (risky steady state) and zero.
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Figure 2: Average NFA in the endowment economy as the variability and persistence of output rise
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Note: GLB refers to global solution, 2OA refers to second-order solution, RSS refers to risky-steady state solution.
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Figure 3: Endowment Model Impulse Response Functions to a Negative Income Shock
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Note: GLB, 1OA, 2OA and RSS denote global, first-order, second-order and risky-steady state solutions, respectively.
GLB impulse responses are forecast functions of the equilibrium Markov processes of the endogenous variables with
initial conditions set to E[b] and a value of z equal to a one-standard-deviation shock.
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Figure 4: Spectral Density Functions in the Endowment Economy Model
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA and RSS denote the global,
second-order and risky-steady state solution, respectively.
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Figure 5: RBC Impulse Response Functions to a Negative TFP shock: Baseline Calibration
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Note: GLB, 1OA, 2OA, RSS refer to the global, first-order, second-order and risky-steady state solution, respectively.
GLB impulse responses are forecast functions of the equilibrium Markov processes of the endogenous variables with
initial conditions set to E[b], E[k] and a value of TFP equal to a one-standard-deviation shock. Variables are plotted as
percent deviations from long-run means, with the exception of NFA and net exports, which are plotted as differences
relative to their long-run means (since these variables are measured as GDP ratios, and hence are already in percent).
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Figure 6: RBC Impulse Response Functions to a Negative TFP Shock: Targeted Calibration
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Note: GLB, 1OA, 2OA, RSS refer to the global, first-order, second-order and risky-steady state solution, respectively.
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Figure 7: Spectral Density Functions for the RBC model: Baseline Calibration
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA, and RSS refer to the global,
second-order and risky-steady state solution, respectively.
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Figure 8: Spectral Density Functions for the RBC model: Targeted Calibrations
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Note: These graphs show parametric estimates of spectral density functions. GLB, 2OA, and RSS refer to the global,
second-order and risky-steady state solution, respectively.
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Figure 9: Perfect foresight paths for DynareOBC
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Figure 10: Sudden Stops Model: Impulse Response Functions to a Negative TFP Shock
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Figure 11: Spectral Density Functions for the Sudden Stops Model
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