
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Inflation at Risk
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López-Salido, David, and Francesca Loria (2020). “Inflation at Risk,” Finance and Eco-
nomics Discussion Series 2020-013. Washington: Board of Governors of the Federal Reserve
System, https://doi.org/10.17016/FEDS.2020.013.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Inflation at Risk
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“Monetary policy responded first in the summer of 2012 by acting to defuse the sovereign debt crisis,
which had evolved from a tail risk for inflation into a material threat to price stability.”

Mario Draghi, ECB President, Sintra, June 2019.1

1 Introduction

Since the upheavals of the global financial crisis, the emergence of downside risks to the inflation
outlook have increasingly become a source of macroeconomic concern. Yet, much of the economic
analysis has been devoted to studying the factors underlying the muted response of the conditional
mean of inflation to economic and financial conditions. At the same time, much has been said
on the inability of past and current labor market conditions to explain recent inflation outcomes.
The Phillips curve linkages seem to be breaking down. In this paper, we find that some of the
macroeconomic factors covered under the “Phillips curve umbrella” are still at work in the tails of
the inflation distribution. Moreover, we also show that looking at the entire inflation distribution
uncovers – after controlling for the state of the labor market and inflation expectations – that tight
financial conditions carry substantial low-inflation risks, an aspect of inflation behavior overlooked
by much of the literature.

President Draghi’s quote is an excellent reminder that, in the presence of tail risks, the condi-
tional inflation mean does not necessarily adequately represent the inflation outlook. Indeed, it has
been documented that the deterioration in credit market conditions led to a substantial decline in
economic activity as well as a deterioration in the odds of low growth and of high unemployment.
Tight financial conditions moved the conditional distribution of real GDP growth to the left (e.g.,
Adrian, Boyarchenko, and Giannone, 2019) – with its left tail being the most sensitive to macroeco-
nomic shocks (see Loria, Matthes, and Zhang, 2019a) – and implied medium-term upside risks to
unemployment (see Kiley, 2018).2 Yet, against this backdrop, the modal outlook for inflation seemed
to remain somewhat insensitive to these developments. We show that the contrasting response of
the tails and the median of the inflation distribution reveals a more complete picture of the e�ects
that real and financial shocks impinge on inflation. The objective of this paper is to see what con-
clusions can be drawn from a closer look at the entire conditional inflation distribution, using data
both for the United States and the euro area.

We investigate how macroeconomic drivers a�ect the predictive inflation distribution as well as
the probability that inflation will run above or below certain thresholds over the near term. This
is what we refer to as Inflation-at-Risk – a measure of the tail risks to the inflation outlook.3 Our
econometric strategy first constructs inflation quantiles conditioning on observed economic and
financial variables (“risk factors”) using a quantile regression model, where the commonly used
approach is to fit a linear curve (e.g., Koenker, 2005).4

1Mario Draghi, “Twenty Years of the European Central Bank’s Monetary Policy,” speech delivered at the ECB Forumon Central Banking in Sintra on June 18th, 2019 (available at https://www.bis.org/review/r190618c.htm).2In a cross-section of countries, Cecchetti (2008) finds that asset price booms increase growth and inflation risks.3Readers may glean some lack of novelty in this label, as we adapted this name from the Value-at-Risk literature.4As shown in the literature, this is done mainly because linear models enjoy good approximation properties as wellas desirable computational properties (e.g., Chernozhukov, Fernandez-Val, and Galichon, 2010).
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We frame the e�ects of di�erent risk factors on inflation within an “augmented” quantile Phillips
curve model using data since the 1970s.5 That is, we extend the standard regression analysis –
designed to ascertain the drivers of the conditional mean of inflation – to di�erent inflation quan-
tiles.6 This setup allows to relate the risks to the inflation outlook to variations in labor market
slack, and changes in the persistence of inflation and inflation expectations, as well as movements
in relative prices (imported goods and/or oil). More importantly, we extend the analysis to consider
the e�ect of financial conditions on the inflation distribution and on the odds of low inflation.

The conditional distribution of future inflation is constructed by fitting a flexible distribution
on the estimated conditional inflation quantile distribution. Thus, in our econometric approach,
variations in the conditional inflation distribution depend on the evolution of economic and fi-
nancial factors and how they (a)symmetrically a�ect the inflation quantiles. These variations are
not limited to a change in the mean and in the variance. Indeed, we find that periods featuring
a relatively tight and centered inflation distribution evolve into periods in which the tails of the
distribution increase substantially, leading to a change in the kurtosis of the distribution; or to pe-
riods in which the symmetry of the distribution is tilted towards the left (or the right), leading to a
change in the skewness. Finally, our framework links the persistence in the evolution of economic
and financial conditions to the persistence, not just of the conditional mean, but also of the infla-
tion tails. This is illustrated with historical contributions of economic and financial conditions to
the evolution of the median, the lower and the upper quantiles of inflation.

As noted above, our “augmented” quantile Phillips-curve model considers changes in credit
spreads as an additional factor a�ecting the entire inflation distribution. In this regard, the re-
cent global financial crisis is an ideal case study for illustrating how both economic and financial
headwinds influenced the inflation outlook both in the United States and in the euro area.

In the United States, average inflation experienced only a modest reduction despite the fall in
output triggered by the financial crisis. Likewise, it featured only a shy rebound despite the recov-
ery and subsequent growth of the U.S. economy. The inability of conventional economic wisdom
– derived from the historical Phillips-curve relationship between inflation and economic condi-
tions – to explain this phenomenon is referred to by economists as the “missing disinflation and
inflation puzzle”. There are two lead explanations supporting this lack of response in average in-
flation. First, inflation expectations were well anchored (Yellen, 2013). Second, as financial shocks
increased the cost of external finance, liquidity-constrained firms have restrained from cutting
price below marginal cost to support their cash-flow and thus hedge against these risks (Gilchrist,
Schoenle, Sim, and Zakrajšek, 2017).

5Our approach hence di�ers from, and complements, studies that define inflation risks as the chance of lost pur-chasing power resulting from negative inflation-adjusted returns. These studies evaluate the inflation risk premiumassociated with the compensation required by investors for future expected inflation or deflation – typically using in-formation contained in financial market quotes. An important departure from our approach is that, in general, they lackan explicit link of these risks to specific macroeconomic outcomes.6Korobilis (2017) finds that the predictive densities coming from a quantile regression Bayesian model averaging(QR-BMA) model are superior to and better calibrated than those of the traditional regression BMA model and that thismethodology is competitive with popular nonlinear specifications for U.S. inflation. Manzan and Zerom (2013) find thatincorporating macroeconomic variables into quantile regressions improves the accuracy of inflation density forecasts.
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We find that this view is incomplete, as it ignores how inflation risks moved over this period.
Indeed, to anticipate some of our results, we show that although the conditional mean of infla-
tion held up during the crisis, the inflation distribution shifted to the left and was characterized
by a substantial left tail. As a result, the odds of very low inflation or even deflation increased.
These odds stayed at considerable levels for some time: the downside risks to the inflation outlook
were quite persistent, as they only vanished well into the recovery. Most interestingly, their dra-
matic increase was mainly the reflection of soaring credit spreads during the financial meltdown.
Subsequently, stable long-term inflation expectations sustained the recovery of the left tail of the
inflation distribution, accompanied by easing of credit conditions (as well as, to a lesser extent,
improvements in the labor market).7

These patterns have been less benign in the euro area, where the sovereign debt crisis triggered
an increase in the odds of low inflation which was more prolonged to the more limited role of in-
flation expectations in counteracting downside risks to inflation posed by the economic slowdown
and financial distress.

New research by Christiano, Motto, and Rostagno (2014), Christiano, Eichenbaum, and Tra-
bandt (2015), Del Negro, Giannoni, and Schor�eide (2015), and Gilchrist, Schoenle, Sim, and Za-
krajšek (2017) argues that, in models with financial frictions, firms’ financial conditions help to
explain inflation dynamics. However, these papers have almost exclusively focused on explaining
the response of the conditional mean of inflation and hardly paid any attention to how financial
conditions a�ect the tails of the inflation distribution. Our paper o�ers a new empirical perspec-
tive on these issues, one that shows that changes in credit conditions are key to understand the
tail-risk dynamics of inflation.

Finally, we check whether the distribution of United States inflation embodied in financial op-
tions is consistent with some of the conclusions about inflation risks derived from our analysis.
Not only do inflation probabilities coming from financial markets and from our quantile Phillips
curve model point in the same direction but they also share a defining feature, namely that tight
financial conditions carry substantial downside inflation risks and most strongly so for the left tail.

Outline The paper is structured as follows. In Section 2 we organize ideas by presenting our
theoretical framework and empirical strategy. We then study the role of economic and financial
conditions for the risks to the United States inflation outlook in Section 3 using our full sample. As
time-variation emerges in the characterization of the determinants of the inflation distribution, we
illustrate subsample results in Section 4 and use them to shed new light on the “missing disinflation
and inflation” debate. In Section 5 we then compare the United States and euro area inflation
experiences in the last 20 years and explore the role of financial conditions in a�ecting the odds
of low inflation during and after the global financial crisis. We then perform external validation of
our approach in Section 6. Concluding remarks and policy implications are o�ered in Section 7.

7As Yellen (2013) noted: “After the onset of the financial crisis, these stable [long-run inflation] expectations alsohelped the United States avoid excessive disinflation or even deflation.”
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2 Quantile Regressions and Inflation-at-Risk

In many circumstances the study of the determinants of the conditional mean of inflation may be
su�cient to produce a good representation of the modal dynamics of inflation. In other cases,
however, studying the response of the tails of the predictive inflation distribution is essential for
providing a more complete picture. This is likely to be the case, for instance, in the presence of
large real or financial shocks, as it aids understanding the e�ects that these shocks have on infla-
tion. Because of these considerations, we extend the standard regression analysis – designed to
ascertain the drivers of the conditional mean of inflation – to the entire inflation distribution.

In this section we describe the econometric specification we use to link economic and financial
conditions with risks to the inflation outlook. We first describe conditional inflation quantiles as a
function of observed economic and financial variables (risk factors). Second, we use these quantiles
to approximate the inflation distribution. Variations in inflation risks are then measured according
to how much the tails of the inflation distribution vary with the evolution of economic and financial
factors. We refer to these “tail risks” to the inflation outlook as Inflation-at-Risk (IaR).

We frame the e�ects of di�erent risk factors on inflation within an augmented quantile Phillips
curve model. This setup allows us to relate inflation risks to variations in the amount of slack
in the labor market, changes in inflation persistence, variations in inflation expectations, as well
as movements in relative prices (usually, imported goods and/or oil). Our Phillips curve model is
“augmented” as it also incorporates financial conditions (approximated by credit spreads) as an
additional factor a�ecting not just the mean, but mainly the tails of the inflation distribution.

2.1 (Phillips-Curve) Quantile Regressions

Quantile regression models are a flexible tool for studying the determinants of IaR.8 Our inflation
measure of interest is the (annualized) average inflation rate between quarter t and quarter t + 4,
π̄t,t+4.9 We consider a linear model for the conditional inflation quantiles whose predicted value

Q̂τ (π̄t,t+4|xt) = xtβ̂τ , (1)
is a consistent linear estimator10 of the quantile function of π̄t,t+4 conditional on xt – where τ ∈

(0, 1), xt is a 1×k-dimensional vector of conditioning (risk) variables, and β̂τ is a k×1-dimensional
vector of estimated quantile-specific parameters. Accordingly, a determinant xt may exert non-
linear e�ects on inflation dynamics if it a�ects di�erently the median and the tails.

8For an introduction to the quantile regression methodology, see Koenker (2005).9A similar approach is taken in Adrian, Boyarchenko, and Giannone (2019) for the average growth rate of GDP. Analternative approach is taken by Ghysels, Iania, and Striaukas (2018) who use a Quantile Autoregressive Distributed LagMixed-Frequency Data Sampling (QADL-MIDAS) regression model to construct measures of inflation risk.
10Formally, the dependency between xt and a given quantile τ ∈ (0, 1) of π̄t,t+4 is measured by the coe�cient β̂τ :

β̂τ = arg min
βτ∈Rk

T−h∑
t=1

(
τ · 1(π̄t,t+4≥xtβ)|π̄t,t+4 − xtβτ |+ (1− τ) · 1(π̄t,t+4<xtβ)|π̄t,t+4 − xtβτ |

)
,

where 1(·) denotes the indicator function, taking the value one if the condition is satisfied.
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Our model for conditional inflation quantiles extends the Phillips-curve model used in the lit-
erature. In particular, we closely follow Blanchard, Cerutti, and Summers (2015) – a recent paper
that nicely summarized a vast empirical literature on inflation dynamics. Formally, the baseline
quantile regression model in (1) can be written as an augmented Phillips curve model:

Q̂τ (π̄t,t+4|xt) = (1− λ̂τ )π∗t−1 + λ̂τπ
LTE
t + θ̂τ (ut − u∗t ) + γ̂τ (πRt − πt) + δ̂τFt, (2)

where risk factors a�ecting the distribution of future inflation can be divided in di�erent blocks.11
First, the variables π∗t−1 and πLTEt respectively represent average inflation over the previous

four quarters and a measure of long-term inflation expectations. Lagged average inflation cap-
tures the role of “intrinsic persistence” or di�erent forms of inertia in the price setting process
that could precipitate upward or downward drift in the aggregate inflation rate.12 In some models,
this variable proxies adaptive or non-rational expectations whereas in others it is used to capture
backward-looking or simple rule-of-thumb pricing rules. Long-term inflation expectations ap-
proximate the importance of some firms setting prices in a rather forward-looking way. Which of
these two elements dominates the persistence observed in the distribution of aggregate inflation
depends on the size of the parameter λτ .13

The second risk factor is linked to variations in the amount of labor market slack – as measured
by the unemployment gap (ut−u∗t ), where ut is the civilian unemployment rate and u∗t is the natural
rate of unemployment. Most of the recent literature has concentrated on the stability over time of
the parameters λ and θ to explain the evolution of average inflation. This literature has focused, for
instance, on understanding the failure of average inflation to respond to unemployment – i.e., the
flattening of the Phillips curve – and on the increasingly dominant role of inflation expectations
in explaining inflation persistence – i.e., the well-anchoring of long-run inflation expectations. In
this paper we extend this analysis by exploring the e�ects of these variables on the tails of the dis-
tribution of inflation. The importance of these e�ects is captured by the variation across quantiles
of the parameters λτ , (1− λτ ) and θτ in expression (2).

The third risk factor in (2) is given by (πRt − πt), which reflects variations in relative prices. We
use the quarterly change in relative import prices (πIt −πt). As in Blanchard, Cerutti, and Summers
(2015), this variable is usually included to capture the pass-through of both nominal exchange rates
and oil prices into core inflation measures and is perceived as having been a key driver of the
run-up of inflation in the late seventies and the eighties. Lately, this variable has been used to
approximate a wide range of risk factors, from changes in global commodity prices, taxes and
tari�s to other global influences on domestic inflation. Its e�ects on the inflation distribution are
captured by the cross-quantile variation in the parameters γτ in expression (2).

11A full description of the data is provided in Appendix A.12Wolters and Tillmann (2015) use a quantile regression model of core CPI and core PCE inflation which solely con-ditions on past inflation to study how inflation persistence di�ers across quantiles.13To preserve the notion that actual inflation persistently deviates from longer-run inflation expectations, we im-pose the homogeneity constraint in prices by constraining the two coe�cients to sum up to one. When λτ = 0, thequantile model becomes an extension of the accelerationist Phillips curve, where changes in inflation are a function ofthe unemployment gap. We impose (1−λτ )+λτ = 1, 0 ≤ (1−λτ ) ≤ 1 and 0 ≤ λτ ≤ 1 following Koenker and Ng (2005).
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The last, but not least, risk factor that we consider is related to financial conditions. According
to conventional wisdom, economic factors – labor market slack, inflation expectations, and rel-
ative prices – have been considered as the major sources of variation in the conditional mean of
inflation. However, recent research by Del Negro, Giannoni, and Schor�eide (2015), Christiano,
Eichenbaum, and Trabandt (2015), Christiano, Motto, and Rostagno (2014) and Gilchrist, Schoenle,
Sim, and Zakrajšek (2017) suggests that changes in firms’ financial conditions (proxied by varia-
tions in credit spreads) also helps to explain inflation dynamics. After the financial stress of the
fall of 2008, these studies aim at explaining how the sharp contraction in economic activity was
accompanied by only a modest decline in (average) inflation. However, they mostly discuss the role
of financial frictions in amplifying the business cycle and creating adverse feedback loops, while
leaving its implications for inflation not fully developed.

In this sense, these papers do not completely analyze the potential nonlinearities in the re-
sponse of inflation to financial distress as a useful diagnostic of the models. For instance, Gilchrist
and Zakrajšek (2015) and Gilchrist, Schoenle, Sim, and Zakrajšek (2017) noted that there is still room
for changes in firms’ financial conditions to influence not just average inflation, but also the distri-
bution of inflation. In particular, these authors observed that a rich heterogeneity in price settings
will arise from changes in firms’ credit conditions: When external financing is expensive, a liq-
uidity constrained firm may have to sacrifice current and future demand to get liquid funds today
by not lowering prices in response to tighter credit conditions; but firms with abundant liquidity
may cut prices substantially.14 Some of these distributional e�ects may be reflected not just in the
median but also in the tails of the aggregate inflation distribution when the model is solved at third
(or higher) order so as to capture changes in skewness (and kurtosis). We thus allow for financial
conditions Ft in expression (2), to a�ect di�erently the conditional inflation quantiles. This allows a
test for the presence of di�erential e�ects of financial variables on the mean versus the tails of the
inflation distribution (e.g., through the variation in δτ ). Following these authors, and as especially
recommended by Gilchrist and Zakrajšek (2012), we approximate Ft by the credit spread, cst.

2.2 Quantile Function of Inflation

The estimated conditional quantiles are approximations to the so-called “quantile function”, that
is, Qτ (π̄t,t+4|xt) = F−1(π̄t,t+4|xt), where F−1(·) is the conditional inverse cumulative distribu-
tion function (CDF) of average future inflation. As noted by Adrian, Boyarchenko, and Giannone
(2019), in practice it is challenging to map these estimates into a probability distribution function
(PDF) because of approximation error and estimation noise. We therefore follow their approach by
smoothing the quantile function using the skewed t−distribution proposed by Azzalini and Capi-
tanio (2003). This flexible distribution is characterized by four parameters and given by:

f(π̄t,t+4|xt, µt, σt, ηt, κt) =
2

σt
× t (zt,t+4;κt)× T

(
ηt zt,t+4

√
κt + 1

κt + z2
t,t+4

;κt + 1

)
, (3)

14See also Chevalier and Scharfstein (1996) for an earlier analysis of this mechanism.
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where zt,t+4 =
π̄t,t+4(xt)−µt

σt
and t and T respectively represent the density and cumulative distri-

bution function of the student t-distribution. The constants µt ∈ R and σt ∈ R+ are location and
scale parameters, whereas the constants ηt ∈ R and κt ∈ Z+ control the skewness and the kurto-
sis of the distribution, respectively. As in Adrian, Boyarchenko, and Giannone (2019), we compute
these parameters at each point in time t to minimize the squared distance between our estimated
quantile function Q̂τ (π̄t,t+4|xt), obtained from the quantile Phillips-curve model (2), and the quan-
tile function of the skewed t−distribution F−1(π̄t,t+4|xt, µt, σt, ηt, κt) to match the 5th, 25th, 75th and
95th quantiles.15

2.3 Inflation-at-Risk

We refer to “Inflation-at-Risk” (IaR) as the probability that inflation falls above or below a certain
threshold. These risks are two-sided, with upside risks coming from “excessive inflation” and
downside risks from too low or even negative inflation (i.e., deflation).16 There are two key elements
that characterize our measure of IaR: (i) a pre-specified threshold, i.e., an upper (lower) level of
inflation above (below) which inflation is “at risk” and (ii) a time period (say, t + k) over which the
risk to the inflation outlook is assessed. These elements are necessary to substantiate statements
such as: “With (100-τ ) percent confidence we shall not experience, on average, inflation below
(above) the level π̄∗ over the next t+ k periods.”

The conditional downside inflation-at-risk,PDt (π̄t,t+4|xt) ≡ Prob (π̄t,t+4 < π̄∗|xt)17 , is the prob-
ability mass below π̄∗ in the conditional density f(π̄t,t+k|xt, µt, σt, ηt, κt):

PDt (π̄t,t+4|xt) ≡
∫ π̄∗

−∞
f(π̄t,t+k|xt, µt, σt, ηt, κt)dπ̄t,t+k, (5)

where at (100-τ ) percent confidence, inflation will not be, on average, below the level π̄∗ over
the next t + k periods.18 In other words, this expression defines the (downside) inflation-at-risk
through the integral of the PDF over the inflation support up to a specified threshold or, equiva-
lently, through the CDF.

15The parameters are thus functions of the conditioning variables xt. This dependence is not made explicit for no-tational convenience.16Our approach di�ers from the Value-at-Risk literature in two ways. First, in that literature, V aR(τ) is not a prob-ability but the threshold such that the probability of future returns (not) exceeding that threshold is equal to τ . In thatsense, V aR(τ) is the τ th quantile of future returns. Formally, according to that definition, inflation-at-risk IaR(τ) isthus the τ th conditional inflation quantile,Qτ (π̄t,t+4|xt), implicitly defined by the integral over the conditional inflationdensity f(π̄t,t+k|xt) that sums up to τ : ∫ Qτ (π̄t,t+4|xt)

−∞
f(π̄t,t+k|xt)dπ̄t,t+k = τ. (4)

Second, (VaR) analysis and the recent “Growth-at-Risk” literature focus on measuring one-sided “downside risks” tothe economic outlook (e.g., Adrian, Boyarchenko, and Giannone, 2019).17For simplicity, our notation suppresses the dependence of PDt (π̄t,t+4|xt) and PUt (π̄t,t+4|xt) on the parameters
µt, σt, ηt, κt which, in turn, depend on xt.18Similarly, we can define the conditional upside inflation-at-risk PUt ≡ Prob (π̄t,t+4 > π̄∗|xt, µt, σt, ηt, κt) as∫∞
π̄∗ f(π̄t,t+k|xt, µt, σt, ηt, κt)dπ̄t,t+k = PUt (π̄t,t+4|xt), which is the probability that future inflation will be, on average,above the level π̄∗ over the next t+ k periods.
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Figure 1 illustrates the link between IaR and the quantiles of the inflation distribution. Down-
side risks to inflation can be characterized by the probability mass to the left tail of the distribution
(left panel). The red area indicates that at 4 percent confidence level, inflation at risk is “zero per-
cent”. Or, equivalently, that a zero (or below) inflation rate corresponds to the 4th quantile of the
inflation distribution. Similarly, the right panel illustrates that, with a 15 percent probability, aver-
age future inflation can be above 3 percent – in other words, the upside (tail) risk associated with
“excessive inflation” is 15 percent. More generally, measuring τ th-percent IaR is akin to estimating
the τ th quantile of the probability distribution of inflation (or its outlook).

Figure 1: Inflation-at-Risk.
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Note: The figure displays simulated distributions. In the left panel, the probability of the average future inflation ratefalling below 0% is 4 percent. In the right panel the probability of average future inflation exceeding 3% is 15 percent.

3 Inflation-at-Risk Across Time

In this section, we first present full-sample estimates of the Phillips-curve quantile model to gauge
the influence of the inflation drivers on the tails of the conditional inflation distribution. This
naturally leads us to consider the presence (or not) of non-linear inflation dynamics, where the
non-linearity is intended as arising from the asymmetry in the importance of inflation determi-
nants across quantiles. We complement the analysis by reporting the historical decomposition of
the lower and upper inflation tails. We close the section by providing estimates of the conditional
distribution of average future inflation.

Our measure of inflation is “core inflation”. This measure provides information about the rate
toward which headline inflation will converge in the medium term if present patterns continue; as
volatile transient shocks will fade over time, the core rate is intended to be a reliable predictor of
future headline inflation. We focus on core CPI inflation, where inflation is measured as quarter-
over-quarter annualized growth rates in the underlying price index. In particular, our working
measure of inflation is the average inflation rate between t and t + 4 quarters. We also present
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in Appendix C results for core PCE inflation and for Stock and Watson (2019) “Cyclically Sensitive
Inflation”, which are qualitatively the same. Our sample spans the period from 1973:Q1 to 2019:Q1,
as the Gilchrist and Zakrajšek (2012) credit spread is only available starting in the early 70’s.

The four top panels of Figure 2 report the estimated slope coe�cients θ̂τ , (1 − λ̂τ ), λ̂τ and γ̂τ
of the quantile regression model (2).19 They also visualize the partial fitted regression lines along
with scatterplots of one-year-ahead average inflation against the relevant inflation determinant.
In all figures we focus on three partial fitted regression lines, corresponding to the 10th, 50th and
90th quantiles. We also include the partial fitted OLS regression line, which is obtained from the
commonly estimated Phillips curve. These slopes are informative about whether economic and
financial conditions a�ect the tails of the inflation distribution di�erently than the median, which
is indicative of the presence of non-linearities in inflation dynamics.20

The top-left panel of Figure 2 presents the quantile-specific Phillips curve coe�cients asso-
ciated with variations in the unemployment gap. The results are in line with the recent evidence
suggesting a substantial flatness in the Phillips curve, as the conditional median of inflation re-
mains relatively muted in its response to changes in the unemployment gap. This pattern carries
over to the tails, albeit to a lesser extent. Indeed, the lower tail is somewhat more responsive to
the unemployment gap than the median. These results point to a mildly asymmetric response of
inflation to changes in the unemployment gap.

As the top-right panel of Figure 2 reveals, changes in relative import price inflation most strongly
a�ect the upper tail of inflation. Increases in relative import prices tilt the inflation distribution
to the upside, hence substantially increasing the odds of upside inflation risks. However, reduc-
tions in relative prices make the distribution tighter around the median, a consequence of the less
significant response of the lower tail.21

The second row of panels in Figure 2 shows how the inflation quantiles respond to average
past inflation and to inflation expectations. Here, we uncover yet another interesting asymme-
try: While movements in the median and in the upper tail are mostly dominated by average past
inflation, the lower tail of the distribution shows the largest response to changes in inflation ex-
pectations. That is, persistently high past inflation experiences tend to tilt the distribution to the
upside, hence creating upside risks to the inflation outlook (and barely a�ecting the lower tail). In
contrast, the modest e�ect of past inflation on the lower tail of the distribution implies that persis-
tently low inflation experiences do not generate significant downside risks to the inflation outlook
as the distribution does not shift to the left, but rather gets more compressed around the median.
Conversely, changes in long-run inflation expectations translate one-for-one to the left tail, while
the e�ects on the median and the upper tail are smaller. In other words, a sustained decline in
longer-run inflation expectations poses serious downside inflation risks, while the e�ects of such
a decline on upside risk are much more muted.

19The quantile slopes and OLS estimates as well as their confidence intervals can be found in Figure B-1.20In section 5, we complement the information in these figures by showing the confidence bands of the estimatedslopes constructed by “blocks-of-blocks” bootstrapping. See also Appendix B for details.21Results are similar using relative oil price inflation (πOt −πt) (see Appendix D.1), share-weighted core import pricesand the real exchange rate (results available upon request).
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Figure 2: Quantile Regression Slopes.
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For each economic factor, we highlight its relationship with the inflation outlook during the
most recent period with the black cloud of points which focuses on observations from the year 2000
onwards. As we will show in Section 4 the roles of the unemployment gap and of relative prices
in accounting for variations in average future inflation are considerably dampened. At the same
time, we find that the ability of inflation inertia to move the inflation distribution is dramatically
reduced, bestowing its predominant role to long-run inflation expectations.

The lowest panel of Figure 2 shows the e�ects of changes in credit spreads on the inflation quan-
tiles.22 Overall, the negative sign suggests that high credit spreads (i.e., tight financial conditions)
generate downside inflation risks. Interestingly, credit spreads a�ect both tails of the inflation dis-
tribution. However, as the figure shows, there is substantial subsample instability governing the
link between the tails and variations in credit spreads. The sub-period 1973-1999 is characterized
by relatively small variations in credit spreads in a period of high and volatile inflation induced in
part by systematic increases in energy prices. This is captured by the light-grey cloud of points.
From 2000 onward, low variability of inflation around 2 percent has been a notable aspect of the
stability of the macroeconomic landscape that has coexisted with substantial variation in credit
spreads, a phenomenon amplified by the global financial crisis. These combinations correspond to
the black cloud of points. As we will show in Section 5, this more recent period helps in correctly
identifying the relationship between the tails of the distribution and the credit spread, which is
confounded by the time aggregation. We find that in the post-2000 period, most of the reduction
in inflation following high credit spreads is concentrated in the lower tail of the distribution, while
the e�ects on the upper tail are poorly estimated (i.e., the point estimates are associated with high
levels of uncertainty). Thus, the results point to a close relationship between a tightening of finan-
cial conditions and risks of “low inflation”, while periods of “frothiness” and bully financial markets
have little e�ects on the upper tail of the inflation distribution; instead, they make the distribution
of inflation more concentrated around the median.

3.1 The Role of Financial Conditions

We now illustrate the influence of credit spreads on downside risks to inflation and their variations
over time (later on, we will focus on the last subsample starting in 2000 by comparing the United
States with the experience in the euro area). To do so we construct the 10th quantile of inflation
arising from the quantile model in its baseline version and in a version in which ignores the role of
financial variables.

Figure 3 displays the evolution over time of the 10th inflation quantile in the baseline model –
which includes the e�ects of credit spreads (straight blue line) – and the 10th quantile constructed
by shutting down the e�ects of this financial variable (black dash-dotted line). The graph also in-
cludes the time series of the credit spread (purple dashed line). It is evident that the quantile model
in which the role of financial variables is disregarded can be a misleading measure of downside in-
flation risk if there are significant changes in credit spreads. As credit spreads have been growing

22In Appendix D.2 we show that these results are robust to the choice of other financial variables.
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over time, so does this model’s miss. Indeed, earlier in the sample the 10th quantile is barely af-
fected by credit conditions, while starting in the early 2000s – once the model accounts for more
pronounced variations in credit spreads – headwinds coming from financial conditions substan-
tially increase the odds of low inflation.

Figure 3: Time Evolution of 10th Inflation Quantile Across Models.
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Note: The figure displays the time evolution of the 10th inflation quantile estimated from the quantile regressionsmodel (2), in its baseline version (blue straight) and in its version where the e�ect of credit spreads is set to zero (blackdash-dotted). The credit spread (purple dashed) is also reported. Shaded bars indicate NBER-dated recessions.
During the 1990s, there is a progressive reduction in the lower tail of the distribution that re-

mained fairly insensitive to financial developments. Starting in the 2000s, the 10th quantile showed
a remarkable resistance to go well below 2 percent. This phenomenon ended at the onset of the
global financial crisis and the subsequent zero lower bound episode. The lower tail of the distri-
bution was such that downside inflation risks materialized, with non-zero deflation probabilities.
The aftermath of the global financial crisis shows that the lower tail of the distribution exhibits
substantial persistence. That is, the tightening in credit conditions tilted the distribution to the
downside for a prolonged period. The reduction in downside risks was enabled by improvements
in the labor market and sustained by inflation expectations.
Predictive Ability We now formally assess how financial variables influence the accuracy with
which the quantile model characterizes the actual distribution of average future inflation. In par-
ticular, we test for correct calibration of the conditional predictive distributions implied by the
baseline model in one case and by the model which does not condition on financial variables in
the other. To do so we use the test of Rossi and Sekhposyan (2019), which evaluates the absolute
predictive ability of a model at its estimated parameter values and, thus, in finite samples.23 In this
sense, both the parametric model and the estimation technique employed are being evaluated.

23See Rossi (2014) for an excellent summary of density forecast evaluations.
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To run the test, we first define the probability integral transform (PIT), i.e., the conditional
quantile zt that corresponds to the realized observation π̄∗t,t+4:

zt ≡ F−1
(
π̄∗t,t+4|xt

)
= Prob

(
π̄t,t+4 < π̄∗t,t+4|xt

)
, (6)

where F−1
(
π̄∗t,t+4|xt

) refers to the inverse of the conditional CDF or, equivalently, to the condi-
tional quantile function evaluated at the realized value π̄∗t,t+4. In a perfectly calibrated model, the
predictive density should feature a CDF which is uniform, i.e., equal to the 45◦ line. This property
implies that the probability that the realized value is above or below the predicted value is the same
(on average, across time) irrespectively of whether high or low realizations of the predicted variable
are considered. Following this logic, if the empirical CDF of the PITs lies outside of the 5% critical
values, then the Rossi and Sekhposyan (2019) rejects the null hypothesis of correct calibration.

Figure 4: Rossi and Sekhposyan (2019) Test for Correct Calibration of Predictive Density.
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Note: The figure illustrates the CDF of a uniform distribution along with the empirical CDFs of out-of-sample PITsobtained from the quantile regressions model (2), in its baseline version (blue) and in two versions which either do notcondition on financial variables in estimation (green) or in the construction of the inflation quantiles (black). The 5%critical values for each model (dashed-dotted), are bootstrapped following the Rossi and Sekhposyan (2019) procedure formulti-step-ahead forecasts. As in Adrian, Boyarchenko, and Giannone (2019), the PITs are constructed via an expandingrolling windows estimation initially using 20 years of data. Confidence bands should thus be taken as general guidancesince Rossi and Sekhposyan (2019) derive them for PITs computed using a fixed rolling window scheme.

In Figure 4 we plot the CDF of a uniform distribution (red, dashed) as well as the empirical CDFs
of the PITs obtained from the baseline model (blue line) and from two versions which either do not
condition on the credit spread in the estimation (green line) or in the construction of the inflation
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quantiles (black line), along with their 5% critical values (dash-dotted lines). These critical values
are bootstrapped following the Rossi and Sekhposyan (2019) procedure for multi-step-ahead fore-
casts. As in Adrian, Boyarchenko, and Giannone (2019), the PITs are constructed via an expanding
rolling windows estimation initially using 20 years of data. Confidence bands should thus be taken
as general guidance since Rossi and Sekhposyan (2019) derive them for PITs computed using a fixed
rolling window scheme.24

Unlike the baseline model, the model that disregards the role of financial variables in the con-
struction of the quantiles does not pass the test for correct calibration – as it poorly specifies the
predictive inflation distribution by placing too little mass on its lower tail. The model neglect-
ing financial variables in estimation performs worse than the baseline along the entire inflation
distribution except on the upper tail.

3.2 The Predictive Distribution of Inflation

Figure 5 displays, for selected dates, the estimated conditional predictive densities of average one-
year-ahead inflation and their associated fitted inverse cumulative distribution functions – shown
in the inset boxes.25 The top and the bottom panels illustrate the contrast between the odds of high
inflation, which characterized the inflation distribution during the first part of the sample, and the
progressive switch toward downside risks to the inflation outlook which built up at the onset of the
global financial crisis.

As shown in the top panel, during the first subsample we select four dates. We start our time
travel in early 1975:Q1, right after the recession triggered by the first wave of oil shocks and the
easing cycle of the Federal Reserve. The second quarter of 1981 is chosen to capture the e�ects of
the second OPEC shock. We pick these two dates as representative of the Great Inflation period.
Then, we look at the distribution in the mid-eighties, more precisely in 1985:Q2, to capture the
e�ects of the Volcker disinflation – a disinflationary transition period that led the U.S. economy
into the so-called Great Moderation. This last period is represented by showing the estimated
conditional inflation distribution in the last quarter of 1999.

Overall, the estimated quantile models are able to capture how the inflation distribution moved
from the right - with significant upside inflation risks associated with the persistent e�ects of the
oil shocks in the mid-70s and early 80s – to the left, with almost negligible upside risks of inflation
falling above 4 percent at the eve of the 2000s. Beyond these general changes in the distribution, it
is worth noting how the shape of the distribution substantially changed over time. The first OPEC
shock led to an asymmetric inflation distribution, with almost negligible odds of inflation falling
below 6 percent but a long right tail creating very large upside risks to the inflation outlook. These
risks materialized after the second OPEC shock. The distribution shifted further to the right, with

24Nevertheless, if we use a rolling window scheme which uses 20 years of data we can confirm that the model whichdoes not consider the credit spread in the construction of the quantiles fails to pass the test because of poor calibrationof the left tail. Also, we still can’t reject correct specification of the predictive density of our baseline model (results areavailable upon request).
25As formally described in Section 2.3, we construct the skewed t-Student probability density function of inflationusing the quantiles estimated using the regression model (2).
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upside risks becoming more balanced around a much higher average future inflation rate. Chair-
man Volcker’s reaction to the great concern about the rise in long-run inflation expectations led
to the aggressive monetary policy reaction designed to curb inflationary pressures and progres-
sively hamper inflation expectations. The e�ects of this policy are reflected in the noticeable shift-
to-the-left in the estimated inflation distribution, with upside risks substantially reduced by the
mid-80s. During those years, the inflation distribution became more symmetric and substantially
more concentrated around the median. This disinflationary process continued during the 90s,
and by the end of the millennium the distribution concentrated around 2.5 percent, with the lower
tail remaining quite insensitive to economic or financial developments and showing a remarkable
resistance to go below 2 percent, a feature which we analyze in Section 4.

The bottom panel of Figure 5 selects a few dates in the evolution of the inflation distribution
during the last 20 years, and it depicts a completely di�erent story from the first part of our sample
– although there is remarkable similarity between the inflation distribution at the eve of the Great
Recession, the blue line in the bottom panel that corresponds to 2008:Q4, with the one shown for
the last quarter of 1999 in the top panel. During this more recent period the reasons for concern
move from upside inflation risks to low-inflation or even deflation risks – with the ghost of the
Great Depression frightening central banks during the aftermath of the global financial crisis. Al-
though we devote Section 5 to develop this issue in depth, the three dates chosen in the bottom
panel of Figure 5 serve as a useful preamble to that discussion.

The global financial crisis and the dramatic increase in credit spreads translated into a right-
skewed (i.e., fatter left-tailed) inflation distribution, with the median moving progressively closer
to the lower tail. This phenomenon was exacerbated during the subsequent zero lower bound
episode. The lower tail of the distribution was such that downside inflation risks materialized,
with non-zero probabilities of deflation (see the red line that displays the distribution in 2009:Q4).

This emergence of substantial downside risks to inflation has been the main source of increas-
ing concern among researchers and policymakers. Monetary policy provided accommodation to
support a strong job market, to abate the lingering headwinds from the financial crisis, and to keep
inflation expectations well-anchored. These e�ects translated into a substantial shift to the right
in the inflation distribution, curtailing the odds of deflation by the end of 2015 (yellow distribution
shown in the bottom panel of Figure 5). These and other considerations are more deeply explored
in the next section that delves into the role played by labor market dynamics, and especially credit
spreads and inflation expectations across the two subsamples just considered.
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Figure 5: Conditional Predictive Inflation Densities at Selected Time Episodes.
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4 The Time-Varying Dynamics of Inflation-at-Risk

The full sample results anticipated that two distinct subsamples emerge when characterizing the
determinants of the inflation distribution. The first period, running from 1973 to 1999, covers the
OPEC shocks, the subsequent Volcker disinflation and the early stages of the Great-Moderation.
The presence of large shocks to relative prices and the taming of inflation expectations induced
large swings in the upper quantile, while changes in unemployment and past inflation a�ected the
median. These were ubiquitous themes in the description of inflation dynamics.

The first period contrasts with the second subsample, from 2000 to 2019, characterized by
large movements in credit spreads, progressively well-anchored inflation expectations but sub-
dued inflation pressures. These patterns are studied in most of the literature discussing a favorite
whipping boy – the flatness of the Phillips curve. Well-anchored long-run inflation expectations
Yellen (2013), systematic monetary policy (e.g. Ball and Mazumder, 2019, McLeay and Tenreyro,
2018) and mismeasurement of labor market slack (e.g., Stock and Watson, 2019) are the usual sus-
pects in explaining the observed muted response in average inflation. However, the financial crisis
and the period in which monetary policy has been constrained by the zero lower bound, have been
followed by a period of underperformance of inflation relative to explicit or implicit inflation tar-
gets. This period has ended with reductions, of di�erent size, of long-term inflation expectations.
Some authors have pointed out that the risks of persistent below-target inflation are associated
with the emergence of this phenomenon and claim that this set the seeds for further downside
risks to inflation. Through this section we will show that tight credit conditions arising from fi-
nancial crises also contributed to increasing odds of low inflation or even deflation, which point to
a greater role for the labor market recovery and well-anchored inflation expectations in support-
ing average inflation. This point will be further investigated in the next section using contrasting
evidence from the United States and the euro area.

4.1 Subsample Stability and the Missing Deflation/Inflation

To investigate how the importance of risk factors changed across the two subsamples, we report
their estimated quantile-specific slopes in Figure 6.

Three results stand out. First inflation inertia has completely lost its grip on inflation, crown-
ing long-run inflation expectations as the decisive inflation determinant among the variables in
the modern Phillips curve.26 Second, long-run inflation expectations exert a symmetric e�ect on
the inflation distribution. In fact, in this context well-anchored long-run inflation expectations
lower the response of average inflation to labor market slack, financial conditions and relative
price changes. However, it would be misleading to dismiss the role of these factors focusing on the
conditional mean only. Instead, financial conditions and, to a lesser extent, labor market outcomes
are key drivers of downside inflation risk, which in turn are important to characterize the entire

26We obtain long-term inflation expectations from Consensus Economics. Results are similar if we use long-terminflation expectations from the SPF or Michigan survey, which are respectively available from 1987Q1 and 1981Q1.
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inflation distribution and its dynamics. Finally, relative import prices still pose threats to the up-
per inflation quantile, though to a lesser degree than prior to the Great Moderation.27

Figure 6: Quantile Regression Slopes Across Subsamples.
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPIinflation defined in expression (2). Two di�erent subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The barsillustrate the coe�cients associated with the 10th quantile (blue), median (red) and 90th quantile (yellow).

27In Appendix C we show that these results are robust to alternative measures of inflation, either core PCE or CSI.Using current method core CPI or core PCE also delivers similar results (results are available upon request).

18



Inflation Probabilities We now ask how the inflation distribution and the inflation-at-risk prob-
abilities would have looked like from the perspective of these two di�erent subsamples. In partic-
ular, we perform the following experiment. We first consider the subsample running from 1973 to
1999 and use the estimated relationship between inflation and its economic and financial deter-
minants in that period to compute the “counterfactual” inflation quantiles in the post-2000 era.
These quantiles are then used to construct the inflation distribution and the associated inflation-
at-risk probabilities – as if the conditions characterizing inflation in the first subsample had pre-
vailed in the last part of the sample. We then run the opposite experiment. That is, we use the
quantile regression model estimated over the sample ranging from 2000 to 2019 to construct the
inflation distribution and inflation-at-risk probabilities prevailing over that same sample. The as-
sumption of stability in the underlying relationships characterizing the inflation distribution in the
first sample leads to the appearance of “missing” inflationary and deflationary episodes.

In Figure 7 we present the conditional predictive densities (left panel) and inflation probabilities
(right panel) associated with these two “counterfactual” economies. Two striking results stand out.
First, from the point of view of the pre-2000 economy (yellow dash-dotted line), during the zero
lower bound episode we should have observed disinflation, and even deflation, with probability
one as well as left-skewed distributions. In contrast, the post-2000 economy suggests only tiny
deflation and disinflation probabilities and more concentrated inflation distributions. This result
directly speaks to the debate on the “missing deflation”, i.e., the observed discrepancy between
the deflation/disinflation predicted by conventional economic wisdom given the weak inflation
fundamentals and the observed resistance of actual inflation falling to negative territory during
the zero lower bound period. Second, the pre-2000 economy (green straight line) supports a rise
in inflation with the recovery and subsequent expansion of the U.S. economy, as reflected by the
increase in the probability of inflation being above 3 percent for the most recent years and by
the left-skewed distributions. Conversely, the post-2000 economy wouldn’t have suggested any
change in the inflation odds. This tension is related to debate the on “missing inflation”, which is
the mirror image of the “missing deflation” conundrum.

These results can be easily rationalized by recalling the di�erent role of inflation expectations
in the two “counterfactual” economies. While in the pre-2000 economy, the inflation distribu-
tion is equally responsive to inflation inertia and inflation expectations as well as very sensitive
to changes in the unemployment gap and in relative import prices, in the post-2000 economy in-
flation dynamics are mainly driven by inflation expectations. As the latter have been extremely
well-anchored around 2 percent since the early 2000s (as opposed to the period prior to that, see
Appendix A), the post-2000 economy would have predicted average future inflation and its tails
to stay in check. Notice that the time-varying sensitivity of inflation to inflation expectations (and
inflation inertia), as well as its ability to explain the “missing deflation/inflation” puzzle, had al-
ready been explored and established by Blanchard, Cerutti, and Summers (2015). Our analysis thus
extends their findings to the entire distribution of the inflation outlook.

19



Figure 7: “Counterfactual” Predictive Densities (left) and Inflation Probabilities (right).
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Note: The left panels show “counterfactual” skewed t-Student conditional densities of average four-quarter-aheadcore CPI inflation computed using “counterfactual” conditional quantiles over 2000-2019 which were obtained usingdi�erent subsample estimates of the quantile regressions model (2). The right panels show “counterfactual” inflationprobabilities for di�erent cuto�s. These probabilities are computed from the “counterfactual” skewed t-Student con-ditional densities shown in the left panels. Shaded bars indicate NBER-dated recessions.
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While well-anchored inflation expectations go a long-way in accounting for the stability of the
inflation distribution throughout the Great Recession and the subsequent recovery period, it would
be misleading to think that it was its sole driver. In fact, as we pointed out before, downside risks
were also sensitive to changes in the labor market and financial conditions. Thus, monetary pol-
icy not only ensured price stability on average by keeping inflation expectations in check but also
avoided deflation risks by supporting the job market and easing credit conditions. We discuss the
relative role of these risk factors for the inflation outlook next.

5 Euro Area vs. United States During the Great Recession

We now analyze the e�ect of inflation drivers on the evolution of the inflation distribution during
the last 20 years of data, comparing the United States experience with that of the euro area. For
the eurozone, the analysis focuses on euro-area-wide core HICP inflation – measured by headline
HICP inflation excluding energy and unprocessed food.28 As for the U.S., the quantile regression
model (2) uses the sample period available for the euro area, that is, from 1999:Q1 to 2017:Q4.

Quantile Phillips Curve Figure 8 displays the estimated slopes of the quantile regression model
(2) for the euro area (left column) and the United States (right column). The information is orga-
nized as follows. Boxes in each row correspond to the covariates of the quantile model. The black
squares report the point estimates of the 10th, 50th, and 90th quantile-specific slopes. The length
of the vertical lines around the point estimates corresponds to the 68 percent confidence intervals
constructed by “blocks-of-blocks” bootstrap (see Appendix B). The OLS point estimates and their
95 percent confidence intervals are given by the horizontal red lines.

The unemployment gap generates fairly similar responses of median inflation in the euro area
and the U.S. but important di�erences emerge when looking at the tails of inflation. In the euro area
the upper tail is the most sensitive segment of the inflation distribution to unemployment, while the
lower tail responds little. Thus, the relative odds of high inflation risks arising from a substantially
tight labor market outweigh the downside risks of low inflation associated with substantial labor
market slack. This pattern is reversed in the U.S., though the degree of asymmetry and the role of
unemployment in general is much more muted.

During this period, changes in the relative price of imported goods played a minor role in the
U.S., and a slightly larger role in the euro area. Still, there are some interesting di�erences across
economies. In the eurozone, the median and the lower tail of the distribution seem more respon-
sive than the upper tail of the distribution of inflation. For the U.S., these results are consistent
with the previous section, in which we pointed to a greatly reduced relevance of relative prices as
inflation determinants starting with the Great Moderation.29

28Busetti, Caivano, and Rodano (2015) use dynamic quantile regressions to estimate and forecast the conditionaldistribution of euro-area inflation. Tagliabracci (2018) estimates this distribution conditioning on Eurocoin.29Busetti, Caivano, Monache, and Pacella (2019) investigate the role of domestic and global determinants of euro areacore inflation by estimating a Phillips curve using an expectile regression approach.
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Figure 8: Quantile Regression Slopes and Confidence Intervals.

Euro Area Core HICP United States Core CPI

Note: The figure displays the slope coe�cients of the quantile regression of average four-quarter-ahead euro areacore HICP (left) and United States Core CPI inflation (right) defined in (2). The black squares correspond to the pointestimates whereas the vertical lines to the 68% confidence intervals computed via “blocks-of-blocks” bootstrap using10,000 replications (see Appendix B) for the 10th quantile (blue), median (red) and 90th quantile (yellow). The estimationperiod is 1999:Q1 to 2017:Q4. The OLS estimates and their 95% confidence intervals are represented by the red lines.
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Longer-term inflation expectations influence strongly the overall inflation distribution in the
U.S., and to a lesser extent in the eurozone. It is striking that, in the U.S., the estimated slope
coe�cient is not statistically di�erent from unity across all quantiles. Accordingly, inflation inertia
– the backward-looking inflation component – plays a negligible role in characterizing inflation in
the United States. In contrast, in the euro area the e�ects of long-term inflation expectations on the
inflation distribution are more asymmetric: Inflation expectations play a major role in explaining
the upper tail of inflation, while odds of low inflation are less sensitive to changes in long-run
inflation expectations as they are also driven by past inflation. In other words, in the eurozone,
unmoored reductions in inflation expectations result in more persistent increases in downside
inflation risks as their negative e�ect is propagated over time through a higher inflation inertia
than in the United States.

The last row in Figure 8 presents the role of credit spreads across inflation quantiles. In the
euro area higher credit spreads (i.e., tighter credit conditions) shift the inflation distribution to the
left as they have a fairly symmetric negative e�ect across inflation quantiles. This contrasts with
the U.S. in which most of the reduction in inflation following high spreads is concentrated in the
lowest tail, while the e�ects on the upper tail are not very significant.30 Most importantly, in the
U.S. financial conditions are the only significant source of asymmetry in the inflation distribution.

Inflation Quantiles Figure 9 highlights key aspects of the evolution of the inflation outlook by
displaying the time series of the median, the 10th and the 90th inflation quantiles. The top panel
shows the evolution for the euro area while the bottom panel focuses on the U.S.

In the eurozone, looking at the lower tail, it appears that downside inflation risks have been
important since the inception of the euro. Strikingly, the inflation distribution tends to tilt to the
upside around the three recessionary episodes, while also widening up significantly. By the end
of the 2001-2003 recession, downside risks to inflation started to trend down (i.e., the lower tail
fell) and after a faint recovery subsequently failed to rebound to the pre-contraction level. This
phenomenon is observed during the global financial crisis of 2008-2009 and repeated around the
2011-2013 recession, when downside risks increased further without recovering since then.

The estimated quantiles for the U.S. in the bottom panel of Figure 9 show some salient dif-
ferences with the eurozone. First, the downward tilts to the distribution associated with the two
recessions were primarily a result of a drop in the left tail, unlike in the euro area where the down-
ward push was more pronounced for the median and the upper tail. This was particularly acute
during the global financial crisis. However, the substantial increase in the odds of low inflation
was followed by a sustained recovery until the distribution became again tightly centered slightly
above 2 percent with the 10th quantile moving back to close to 2 percent. This contrasts the euro-
zone experience, in which the left tail failed to recover after the global financial crisis.

30This result is also robust to limiting the sample to 1995:Q1-2007:Q4 so as to limit the Great Recession period and tousing the short-term instead of the long-term CBO NAIRU measure for u∗t which features a higher level in the aftermathof the Great Recession. Further, in Appendix C we extend these results to two alternative measures of inflation, corePCE and the Stock and Watson (2019) Cyclically Sensitive Inflation index. The e�ects are more symmetric in the case ofcore PCE, while the CSI measure exhibits a similar asymmetry as core CPI although of somewhat larger magnitude.
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Figure 9: Time Evolution of Selected Conditional Inflation Quantiles.
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Note: The figure displays the time evolution of the conditional quantiles of euro area core HICP inflation (top) and ofUnites States core CPI inflation (bottom) estimated from the quantile regression defined in (2). Shaded bars indicateNBER-dated recessions for the United States and OECD-based recession indicators for the euro area.

This opens up the question of which factors contributed to the recovery of the left tail in the
case of the United States and to the failed recovery of the left tail in the case of the euro area. We
thus next investigate the role of the inflation determinants from the Phillips-curve quantile model
in influencing the inflation tails. In this regard, Figure 10 complements the results in Figure 9 by
presenting the contribution of economic and financial factors to changes in the lower and upper
quantiles of the inflation distribution.

Focusing on the United States (the two charts in the right column of Figure 10) it is striking
how long-term inflation expectations have played a predominant role in sustaining the recovery of
the left tail, supported to some extent by improvements in the labor market and more importantly
by the easing in credit conditions. On average, across time, 66 percent of the variation in the
upper quantile of the distribution is explained by changes in long-term inflation expectations, with
the residual di�erence explained by financial conditions (27 percent), the unemployment gap (5
percent) and relative import price inflation (2 percent).
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Figure 10: Historical Contributions of Economic and Financial Factors.
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Note: The figure shows historical contributions of average four-quarter-ahead euro area core HICP (left) and UnitedStates core CPI inflation (right) associated with the quantile regressions model (2). The contribution of a given inflationdeterminant is obtained by multiplying its time series with its estimated slope. Its relative share is then obtained byweighting the contribution with its relative magnitude vis-à-vis the sum of all contributions (the share of the constantterm is distributed across the inflation determinants based on their relative share so as to not distort results). Shadedbars indicate NBER-dated recessions for the United States and OECD-based recession indicators for the euro area.

In the euro area, on the other hand, inflation expectations and labor market conditions had
much less grip on downside inflation risks, with an average share of 37 percent and 4 percent
respectively. Rather, average past inflation had the predominant role in holding down the lower
inflation tail, its average share amounting to 42 percent. As in the U.S., financial factors played
an important role also in the eurozone (15 percent share) and relative prices had no meaningful
implications on the inflation outlook (2 percent share). A striking di�erence to the U.S. is how the
lack of recovery in inflation expectations has driven most of the downward trend in the lower tail
after 2012 – a tendency that diminished somewhat during 2017.

In the U.S. the upper inflation quantile is mainly dominated by changes in expectations, al-
though high unemployment and persistently tight credit conditions have also contributed to make
2 percent an e�ective ceiling – yet another dent left by the global financial crisis. The same can be
said about the eurozone with the important di�erence that financial conditions exerted a stronger
downward pressure on the upper tail, which thus resulted in a lower implicit inflation ceiling.
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We now turn our attention to the increasing role played by changes in credit conditions in in-
fluencing the downside risks of inflation throughout the recovery. In Figure 11, we illustrate the
time evolution of the 10th conditional inflation quantile of euro area core HICP inflation (left) and
of Unites States core CPI inflation (right), both for the baseline version of the model (blue straight)
and for a version where the e�ect of credit spreads is set to zero (black dashed).

The gap between the two lines captures the partial e�ect of credit spreads on the 10th quantile.
It is evident how tighter financial conditions exert a persistent downward pressure on downside
inflation risks and more strongly so, when credit spreads are high. It is remarkable how the large
spike in credit spreads observed in 2008 in the U.S. (bottom right panel of Figure 11) pushed down
the lower inflation quantile, which slowly moved back to about 2 percent by the end of 2017.

Figure 11: Partial E�ect of Credit Spread on 10th Inflation Quantile.
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Note: The figure displays the time evolution of the 10th conditional inflation quantile of euro area core HICP inflation(left) and of Unites States core CPI inflation (right) estimated from the quantile regressions model (2), in its baselineversion (blue straight) and in its version in which the e�ect of credit spreads is set to zero (black dash-dotted). Shadedbars indicate NBER-dated recessions for the United States and OECD-based recession indicators for the euro area.
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The eurozone is a slightly di�erent story. Financial conditions, which played a more limited
role in the lower tail inflation dynamics, became increasingly important after the global financial
crisis. To see this, let us focus on the bottom left panel of Figure 11. This figure clearly shows that
the tightening in credit conditions occurred in two consecutive waves. The initial tightening in
financial conditions happened around 2008 and 2009 and marked a sharp reduction in the lower
quantile of the distribution that, even after some recovery in credit conditions during 2009, would
never rebound. The second wave, linked to the European sovereign debt crisis, exacerbated this
change. As of 2012, the deterioration in credit conditions lifted up substantially the odds of low
inflation. It is remarkable how, early in 2013, economic conditions pointed to a recovery in the
lower quantile. According to our model, however, this would have portrayed a misleading picture
reflecting the lack of consideration of the substantial downward pressures in place originated by
the still very tight credit conditions at that time. To see this more clearly, we translate the variation
in these quantiles into changes of the entire distribution of inflation, to which we turn next.31

The Distribution of Inflation At a speech in London in July 2012, Mario Draghi – President of the
European Central Bank from November 2011 to October 2019 – announced the ECB’s commitment
of doing “whatever it takes” to preserve the euro. The eurozone was in the throes of crisis, bond
yields and credit spreads of weak euro-member governments were soaring, and financial mar-
kets doubted that European institutions could avert disaster. This is part of the historical context
reflected in Figure 12, which plots the estimated euro area core HICP predictive inflation distri-
butions (left column) and their associated quantile functions (right column) across four selected
dates. We start at the dawn of the global financial crisis (2008:Q4), then explore those periods in
which downside risks were most acute (2009:Q4 and 2012:Q4) and finally zoom in the end of our
sample (2017:Q4). The blue straight lines correspond to the baseline quantile model whereas the
black dash-dotted lines parse out the e�ect of credit spreads.

The results rea�rm that tight financial concerns played a crucial role in shifting to the left the
inflation distribution during the late 2009 and remarkably so in late 2012 – at the time of Draghi’s
speech. It is noteworthy how by the end of 2008, inflation-at-risk above 3 percent was virtually
non-existent, while the left-tail pointed to some minor downside risks of inflation running below
1 percent. Overall, credit conditions barely a�ected these conclusions. The two waves in which the
financial crisis was reflected in tight credit conditions translated into a remarkable change of the
inflation outlook. The distribution shifted to the left and concentrated around a median inflation
little below 1 percent, with the odds of low inflation – or even deflation – soaring. By the end of 2017
the distribution of inflation had fatter tails, with the odds of high inflation above those observed
at the peak of the crisis, but with substantial downside risks still remaining. The e�ects of credit
conditions on inflation are also illustrated in the right column of Figure 12, which shows that the
inflation quantiles which condition on credit spreads were significantly below those that solely rely
on economic factors.

31In Appendix C we show that, for the U.S. economy the results shown in the top-right panel of Figure 11 are robustto alternative measures of inflation, either core PCE or CSI.
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Figure 12: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
Euro Area Core HICP Inflation.
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Note: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead euro area coreHICP inflation for alternative specifications of the quantile regressions model (2), in its baseline version (blue straight)and in its version where the e�ect of credit spreads is set to zero (black dash-dotted). The right panels show the estimatedskewed t-inverse cumulative associated with the conditional densities in the left panels.
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Figure 13: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
United States Core CPI Inflation.
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Note: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead United States coreCPI inflation for alternative specifications of the quantile regressions model (2), in its baseline version (blue straight) andin its version where the e�ect of credit spreads is set to zero (black dash-dotted). The right panels show the estimatedskewed t-inverse cumulative associated with the conditional densities in the left panels.
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In Figure 13, we compare these results with the experience of the United States, for which we
consider similar dates. We focus on 2009:Q4 as this is when downside risks were most pronounced
in the U.S. following the sharp rise in credit spreads and dire economic conditions. As in the case
of the eurozone, the e�ect of financial variables on the inflation distribution is striking during
those episodes in which financial distress was most acute. In 2009:Q4, for example, tighter credit
conditions contributed to pushing the entire inflation distribution to the left, while making it more
dispersed and poking down substantially its left tail to the point of placing non-zero probability of
deflation occurring on average within the next year (as we will show below).32

Looking at the right columns of Figures 12 and 13, one important di�erence emerges between
the euro area and the U.S. experience – a di�erence we had already encountered when analyzing
the quantile-specific slopes of credit spreads on average future inflation in Figure 8. While in
the eurozone higher credit spreads pushed down the inflation distribution symmetrically across
quantiles, in the United States its e�ects were mostly reflected in the left tail. As we show below,
the translation of these e�ects into the probability of low inflation (i.e., downside inflation-at-risk)
is more pronounced, the more the inflation distribution is right-skewed (i.e., the fatter its left tail).

Inflation-at-Risk: The Role of Skewness We first show that the e�ects of changes in economic
and financial conditions on downside inflation-at-risk depend on the skewness of the inflation
distribution.

To see this, we need to characterize the derivative of PDt (π̄t,t+4|xt) ≡ Prob(π̄t,t+k|xt) < π∗

defined in (5), for a given probability cuto� π̄∗, with respect to an inflation determinantxt. Formally,
∂PDt (π̄t,t+4|xt)

∂xt
=

∂

∂xt

∫ π̄∗

−∞
f(π̄t,t+k, µt, σt, ηt, κt|xt) dπ̄t,t+k, (7)

where we abstract from the dependence of the parameters µt, σt, ηt, κt on xt.
Applying the Leibniz integral rule,

∂PDt (π̄t,t+4|xt)
∂xt

=

∫ π̄∗

−∞

∂f(π̄t,t+k|xt, µt, σt, ηt, κt)
∂π̄t,t+k(xt)

∂π̄t,t+k(xt)

∂xt
dπ̄t,t+k, (8)

and assuming a linear regression quantile model for the mean of π̄t,t+k(xt) simplifies to:
∂PDt (π̄t,t+4|xt)

∂xt
= βOLS

∫ π̄∗

−∞

∂f(π̄t,t+k|xt, µt, σt, ηt, κt)
∂π̄t,t+k(xt)

dπ̄t,t+k. (9)
From expression (9) it follows that changes in any variable xt, besides a�ecting linearly the

quantile of the distribution of inflation, introduces a “nonlinear” e�ect on downside inflation-at-
risk. The first e�ect captures how a change in xt scales (up or down) the support of the inflation
distribution. The strength of this channel is measured by the coe�cient βOLS . This first e�ect gets

32In Appendix C we show that, for the U.S. economy the results shown Figure 13 are robust to alternative measuresof inflation, either core PCE or CSI.
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amplified by the second term that cumulates the derivatives of the conditional density function
with respect to its support up to cuto� level π̄∗. It thus follows that the more right-skewed the
distribution is (i.e., the more mass is on its left tail) at a given point in time, the stronger the density
changes in the left part of the support and, in turn, the bigger the e�ect on downside risk caused
by a change in xt. We o�er an illustrative example of this e�ect in Appendix E.

We now show how credit conditions a�ect the odds of low and very low inflation. Figure 14
displays, beginning in 2000, our estimates of the evolution of the probability of observing inflation
rates below 1 or 2 percent over the next four quarters, respectively. The two columns are used
to contrast the eurozone (left column) with the U.S. (right column). In each panel, we display the
probabilities computed using our baseline model (blue straight line) and its version which omits
the e�ects attributable to changes in credit conditions (black dash-dotted line).

Figure 14: Inflation Probabilities for Alternative Cuto� Values.
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Note: The figure shows the time evolution of inflation probabilities of euro area core HICP inflation (left) and UnitedStates core CPI inflation (right) for di�erent cuto�s. These probabilities are computed from the skewed t-Student con-ditional densities of the average four-quarter-ahead inflation measures which were fitted on the estimated conditionalquantiles for alternative specifications of the quantile regression model (2). Both panels are reported for the specifica-tion without and with the credit spread (in blue straight and black dash-dotted lines, respectively). Shaded bars indicateNBER-dated recessions for the United States and OECD-based recession indicators for the euro area.
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Several conclusions emerge from these comparisons. Since 2000, the model omitting credit
conditions would have assigned zero probability to inflation running below 1 percent in the U.S.,
whereas accounting for the financial meltdown had profound e�ects on the inflation outlook –
with the probability of very low inflation (and deflation) temporarily reaching almost 40 percent in
2010 (upper right panel). Results for the eurozone are more striking on this account. Changes in
the credit spreads in 2009 and especially in 2012 induced sharp increases in the odds of very low
inflation and a remarkable divergence between the blue and the dash-dotted lines in the top-left
panel of Figure 14. By early-2014, this probability was slightly above 80 percent when the model in-
cludes financial variables, while it was around 30 percent in the model accounting for the e�ects of
non-financial variables only. The bottom panels of Figure 14 considers the partial e�ect that credit
conditions impinged on the probability that inflation could run below 2 percent. Even the narrower
credit spread that prevailed in the U.S. during 2015, translated into a non-negligible probability of
inflation running below 2 percent during 2016 and 2017, before subsiding at the end of the sample.
As for the euro area, the credit spread accounts for the probability of inflation being lower than 2
percent remaining at sustained levels around the sovereign debt crisis. Indeed, in the absence of
this channel, during that period the same probability would have been around 50 percent instead
of about 90 percent, on average.

6 External Validation: The Case of the United States

This section is devoted to find an external validation of the previous results for the United States.
We frame the analysis on whether the distribution of inflation embodied in financial options sup-
ports some of our conclusions about inflation risks derived from our quantile regression analysis.
Specifically, to put the emphasis on the lower tail of the inflation distribution, we first compare the
inflation probabilities implied by the “quantile Phillips curve model” with the one-year-ahead CPI
inflation probabilities derived from inflation caps and floors contracts (as described by Kitsul and
Wright, 2013). We focus on the probability of future inflation being below 1 percent.33

The black-continuous line shown in the top panel of Figure 15 displays the options-implied
probability of headline CPI inflation next year being below 1% – from mid-2009 until the end of 2017.
A straight reading from this market portraits a quite striking picture. Market participants have
systematically been pricing a probability of inflation below 1% of around 40 percent up until 2016,
and only after that date this probability has been moving down to levels slightly below 20 percent
– ten years after the global financial crisis. However, many analyses have attributed the level and
evolution of this probability to the high correlation between market-based measures of inflation
expectations and oil-price related shocks (see Loria, Matthes, and Zhang, 2019b) – especially since
the onset of the global financial crisis.

The top panel of Figure 15 corroborates this claim by displaying the inflation probabilities along
with 3-months- and 6-months-ahead oil price surprises – computed using the oil market price ex-

33The inflation probabilities are virtually identical if we consider one-year-ahead inflation instead of average one-year-ahead inflation, as in our quantile regression model.
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pectations that Baumeister and Kilian (2016) recovered from oil futures prices and after controlling
for changes in the risk premium.34 As the figure shows, the options-implied inflation probabilities
exhibits a high correlation with the oil-price surprises. Indeed, concerns about low inflation asso-
ciated with the rise in the probability around mid 2014 to late 2015 coincides with a period in which
financial markets have been steadily surprised to the downside in their oil price expectations.

To improve comparability of the options-based headline CPI inflation probability with our mea-
sure of the tail of the core CPI distribution, we purify the financial markets’ inflation probability
from e�ects of changes in oil, energy and food prices. In particular, we regress it on the two oil
price surprises as well as on energy and food price inflation, which also correlate with the options-
based headline CPI inflation probability (see Figure F-1 in Appendix F).35

The dashed red line displayed at the bottom panel of Figure 15 corresponds to the residual of
this regression (where negative values have been set to zero). The bottom panel compares this
purified financial-market-based probability with the probability of average future U.S. core CPI
inflation being below 1% which arise from the quantile Phillips curve model (previously displayed
in the top right panel of Figure 14). The figure is very suggestive as it shows how both measures
point in the same direction during most of the sample period. The probability of low inflation in
the U.S. increased immediately after the global financial crisis and it subsequently falls to almost
zero – remaining close to zero until 2018, with the exception of 2014/2015 when market participants
consistently expected higher oil prices and when energy prices fell considerably. Accordingly, fi-
nancial markets’ expectations of headline CPI next year being below 1% rose accordingly during
that time (see Figure F-1 in Appendix F).

The small remaining di�erences between the two measures can be explained by several factors.
First, quantile-regression-based inflation probabilities come from a statistical model in which rel-
ative prices are estimated to play no role for the lower inflation tail whereas market participants
seem to pay attention to the latter. More importantly, our regression purifies the financial markets’
headline CPI inflation probabilities only from their average relationship with oil, energy and food
prices – failing to fully capture times in which market participants strongly extracted information
from these prices such that they comoved perfectly with the inflation probabilities (as in 2014/2015).

Financial Market Inflation Probabilities and the Credit Spread Two defining features of our
quantile Phillips curve model are that tight financial conditions carry substantial and persistent
downside risks to inflation and that these risks diminish as one moves to the left to the upper tail
of the inflation distribution. To test whether this relationship also holds in financial markets, we
run a regression of the options-implied inflation probabilities on the credit spread. We confirm

34The oil price surprises are computed as the di�erence between the market expectation of oil prices x-monthsahead and the realized price of the West Texas Intermediate. While these surprises are not i.i.d. but rather feature somepersistence, they still portray the actual surprise in oil price expectations of financial markets participants.
35Since the dependent variable of the regression is a probability which falls between zero and one, we estimate ageneralized linear model with a logit link and the binomial family to ensure that the predicted values are between zeroand one. A standard OLS regressions delivers virtually identical results.
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Figure 15: Inflation Probabilities, Quantile Model vs. Financial Markets.
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Note: The top panel shows the options-implied inflation probabilities of United States headline CPI inflation next yearbeing above 1% along with the 3-months- and 6-months-ahead oil price surprises computed using the oil market priceexpectations that Baumeister and Kilian (2016) recovered from oil futures prices (top panel). The bottom panel shows theprobability of average one-year-ahead core CPI inflation being below 1% coming from the quantile regression model aswell as the probability of one-year-ahead headline CPI being below 1% implied from inflation caps and floors contractsas in Kitsul and Wright (2013), purified from oil, energy and food price e�ects and transformed to quarterly frequency.

that higher credit spreads are associated with a downward pressure on the inflation distribution
and that as the cuto�s for the inflation probabilities increase the relationship weakens. This result
is established via standard OLS regressions and is robust to the inclusion of the regressors used to
purify the inflation probabilities from the oil price e�ects in the previous figure.

In the left panel of Figure 16 we present the coe�cients of the credit spread for various inflation
probabilities derived from financial market, along with their 95 percent confidence intervals. The
slopes are rescaled so as to facilitate the comparison with those coming from our quantile Phillips
curve model (the right panel reproduces the bottom-right box of Figure 8). In particular, the coe�-
cient for the probability of one-year-ahead inflation being below 1% is rescaled to match the slope
estimated on the lowest inflation quantile which arises from the quantile Phillips curve model.
Further, the coe�cient for the probability of inflation being below 1% is transformed from positive
to negative – as a positive correlation between the credit spread and this probability is equivalent
to a negative relationship between the credit spread and the lowest inflation quantile. Despite the
vast disparities in the construction of the tails of the inflation distribution, the estimated slopes
are very similar to each other. Finally, in Appendix F we plot the time series of these financial-
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market-based probabilities together with the credit spread (see Figure F-2). The graphs confirm
the progressive weakening in the relationship between the credit spread and inflation probabili-
ties as one moves further up in the inflation distribution until it completely breaks down once the
upper tail is reached.

Figure 16: Credit Spread Coe�cients, Quantile Regression vs. Financial Markets.

Financial Markets Quantile Regression

Note: The left panel reports the slopes of separate regressions of inflation probabilities on the credit spread (at monthlyfrequency), along with their 95% confidence interval. The coe�cient for the probability of future inflation being below
1% is rescaled to match the slope estimated on the lowest inflation quantile which arises from the quantile Phillips curvemodel (right panel, taken from Figure 8). The coe�cients are transformed from positive to negative for the probabilityof inflation being below 1% – as a positive correlation between the credit spread and this probability is equivalent to anegative relationship between the credit spread and the lowest inflation quantile.

7 Conclusion

In this paper we show that the recent muted response of the conditional mean of inflation to eco-
nomic conditions does not necessarily convey an adequate representation of inflation dynamics.
Including data from the 1970s shows ample variability in the entire conditional distribution of in-
flation, a result which we confirm when restricting our analysis to the post-2000 stable and low
mean inflation period. In particular, using time-series data for the United States and the euro area,
we document that – after controlling for the state of the labor market and inflation expectations –
tight financial conditions generated times of substantial and persistent downside risks to inflation,
an analysis forsaken by much of the literature. Our paper thus o�ers a new empirical perspective
to existing macroeconomic models and to policymakers, showing that changes in credit conditions
are also key to understand the tail-risk dynamics of inflation.
In future research, we plan to construct a “risk-adjusted” inflation measure which can be de-
rived from a central bank’s preferences not only about deviations of inflation from its target but
also about how tolerable (downside and upside) inflation risks are. Finally, we will further study
inflation-at-risk by exploiting time variation in sectoral inflation rates and ask whether particular
sectors make inflation particularly vulnerable.
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A Data Appendix

In this section we provide details on the data for the United States and the euro area.
A.1 United States

• Core Consumer Price Index
– Source: FRED.
– Details: CPILFESL PCA, Consumer Price Index for All Urban Consumers: All Items LessFood and Energy, Compounded Annual Rate of Change, Quarterly, Seasonally Adjusted.

• Stock and Watson (2019) Cyclically Sensitive Inflation
– Source: Replication Material of Stock and Watson (2019) on Professor Mark Watson’sWebsite.
– Details: Quarterly CSI inflation rates.

• Core Personal Consumption Expenditures
– Source: FRED.
– Details: PCEPILFE PCA, Personal Consumption Expenditures Excluding Food and Energy(Chain-Type Price Index), Compounded Annual Rate of Change, Quarterly, SeasonallyAdjusted.

• Long-Term Inflation Expectations
– Source: Blanchard, Cerutti, and Summers (2015) and Consensus Economics (provided bythe Prices and Wages section of the Research & Statistics Division at the Federal ReserveBoard).
– Details: From 1990:Q4 onwards, we use six- to-ten-year-ahead mean CPI inflation fore-casts from semiannual surveys from Consensus Economics. Before that date we use theseries from Blanchard, Cerutti, and Summers (2015).

• Unemployment Rate
– Source: FRED.
– Details: UNRATE, Civilian Unemployment Rate, Percent, Quarterly, Seasonally Adjusted.

• Natural Rate of Unemployment
– Source: FRED.
– Details: NROU, Natural Rate of Unemployment (Long-Term), Percent, Quarterly, Not Sea-sonally Adjusted.

• Import Price Index
– Source: FRED.
– Details: B021RG3Q086SBEA CCA, Imports of goods and services (chain-type price index),Continuously Compounded Annual Rate of Change, Quarterly, Seasonally Adjusted.

39

http://www.princeton.edu/~mwatson/wp.html
http://www.princeton.edu/~mwatson/wp.html


• Oil Price
– Source: FRED.
– Details: WTISPLC CCA, Spot Crude Oil Price: West Texas Intermediate (WTI), Continu-ously Compounded Annual Rate of Change, Quarterly, Not Seasonally Adjusted.

• Gilchrist and Zakrajšek (2012) Credit Spread and Excess Bond Premium
– Source: Data regularly updated in FEDS Note by Favara, Gilchrist, Lewis, and Zakrajšek(2016).
– Details: Credit spread and excess bond premium as constructed by Gilchrist and Za-krajšek (2012).

• Corporate Bond Spread
– Source: FRB/US model package available at this Federal Reserve Board website.
– Details: RBBB minus RG10. RBBB, yield on BBB-rated corporate bonds. RG10, yield on10-year Treasury security.

• National Financial Conditions Index
– Source: FRED.
– Details: NFCI, Chicago Fed National Financial Conditions Index, Index, Quarterly, NotSeasonally Adjusted.

• Inflation Probabilities from Financial Markets
– Source: Provided by the Monetary and Financial Markets Analysis Section of the Mone-tary A�airs Division of the Federal Reserve Board.
– Details: Probabilities are inferred from inflation caps and floors contracts as in Kitsuland Wright (2013).

• Oil Price Surprises
– Source: Downloaded from Professor Christiane Baumeister’s Website.
– Details: Probabilities are inferred from inflation caps and floors contracts as in Baumeis-ter and Kilian (2016).
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Figure A-1: Inflation Measures, United States.
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Figure A-2: Regressors, United States.
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A.2 Euro Area

• Harmonized Index of Consumer Prices
– Source: Statistical O�ce of the European Communities and Haver Analytics (providedby the Advanced Foreign Economies section of the International Finance Division at theFederal Reserve Board).
– Details: EA19, Total excluding energy, food, alcohol and tobacco. Quarter-over-quarterannualized growth rates, seasonally adjusted.

• Long-Term Inflation Expectations
– Source: Consensus Economics (provided by the Advanced Foreign Economies section ofthe International Finance Division at the Federal Reserve Board).
– Details: Six- to-ten-year-ahead mean CPI inflation forecasts from semiannual surveysfrom Consensus Economics. France and Germany.

• Unemployment Rate
– Source: The Area-wide Model (AWM) database.
– Details: Unemployment Rate, Percentage of civilian work force, Total (all ages), Total(male and female), Seasonally adjusted, but not work ing day adjusted data.

• Natural Rate of Unemployment
– Source: Authors’ Calculations.
– Details: HP-filtered trend (with smoothing parameter λ = 1600) of unemployment rate.

• Import Prices
– Source: The Area-wide Model (AWM) database.
– Details: Imports of Goods and Services Deflator, Index, Index base year 1995 (1995 = 1).Defined as the ratio of nominal, and real imports of goods and services. Based on thegross concept, i.e. both extra- and intra- area trade flows are accounted for.

• Oil Prices
– Source: The Area-wide Model (AWM) database.
– Details: Oil Prices, United Kingdom, Petroleum: UK Brent, US dollars per barrel.

• Credit Spread
– Source: Data regularly updated at this Banque de France website.
– Details: euro area bank credit spreads from Gilchrist and Mojon (2018).

• OECD Recession Dates
– Source: FRED.
– Details: EUROREC, OECD based Recession Indicators for euro area from the Period fol-lowing the Peak through the Trough, +1 or 0, Quarterly, Not Seasonally Adjusted.
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Figure A-3: Inflation Measures, Euro Area.

Figure A-4: Regressors, Euro Area.
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B Bootstrap Method

To compute confidence bands for the quantile regression model we revert to “blocks-of-blocks”bootstrap. While more details on this methodology can be found in Kilian and Lütkepohl (2018) (seeChapter 12 therein), we here provide a brief summary of the bootstrap procedure.“Blocks-of-blocks” bootstrap is used in cases where a researcher is interested in computingconfidence intervals around nonsymmetric statistics of the underlying data (e.g., autocorrelationsor estimators of autoregressive slope coe�cients in a time-series context). This is relevant in ourcase since not only the quantile regression slopes are non-linear functions of the data but also,we are de facto running a h-step predictive regression of inflation on its (past) determinants. The“blocks-of-blocks” bootstrap procedure allows to preserve the (time-series) dependency in thedata, which would in most cases be destroyed by a naive bootstrap.More specifically, the “blocks-of-blocks” bootstrap procedure relies on first dividing the de-pendent variable y and the regressors X into l consecutive blocks of all possible m-tuples. At eachbootstrap replication, blocks of data are randomly drawn to form a new sample of the same size asthe original data. Importantly, the blocks are resampled in the same order for both the dependentvariable y and the regressors X , a key step which preserves the time-dependency in the data. Inour particular application, we run the quantile regression (2) and store the estimates correspond-ing to each bootstrap replication. From the distribution of these estimates, 68 percent confidenceintervals are constructed and centered around the point estimate obtained with the original sam-ple. The procedure is asymptotically valid for stationary processes if the block size l increases at asuitable rate as T →∞. Following Berkowitz, Biegean, and Kilian (1999) we set l = m = 3
√
T , where

T is the sample size. Finally, this bootstrap procedure preserves the quantile regression feature ofbeing agnostic about the underlying distribution of the error terms, as this is not a residual-based.
Figure B-1 displays the slope coe�cients of the quantile regression of average four-quarter-ahead United States Core CPI inflation defined in (2). The black squares correspond to the point es-timates whereas the vertical lines to the 68% confidence intervals computed via “blocks-of-blocks”bootstrap using 10,000 replications for the 10th quantile (blue), median (red) and 90th quantile (yel-low). The estimation period is 1973:Q1 to 2019:Q1. The OLS estimates and their 95% confidenceintervals are represented by the red lines.
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Figure B-1: Quantile Regression Slopes and Confidence Intervals.

United States Core CPI

Note: The figure displays the slope coe�cients of the quantile regression of average four-quarter-ahead United StatesCore CPI inflation defined in (2). The black squares correspond to the point estimates whereas the vertical lines tothe 68% confidence intervals computed via “blocks-of-blocks” bootstrap using 10,000 replications for the 10th quantile(blue), median (red) and 90th quantile (yellow). The estimation period is 1973:Q1 to 2019:Q1. The OLS estimates and their95% confidence intervals are represented by the red lines.
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C Inspecting Other Inflation Measures

In this appendix we reestimate the quantile regression (2) replacing core CPI with two alternativemeasures of inflation: core PCE and Stock and Watson (2019) “Cyclically Sensitive Inflation”, CSI. Asin the baseline analysis, the dependent variable is the average inflation rate over the period t and
t+4 quarters ahead. The CSI weights 17 core PCE components by their cyclical covariation with realactivity. More specifically, the weights are computed so as to maximize the correlation between acomposite index of cyclical activity (developed in the same paper) and the year-over-year changein the Cyclically Sensitive Inflation index. The CSI is thus meant to provide a real-time measureof cyclical fluctuations in inflation (see Stock and Watson, 2019 for details). The estimated slopesof the quantile regressions are plotted in Figures C-1 and Figure C-2, respectively. The slopes arevery robust for the economic variables. The e�ects of the credit spread on CSI are consistent withthose obtained for core CPI, but less so for core PCE. As noted in the main text, there is substantialsubsample instability in the relationship between credit spreads and inflation. This is confirmedby the subsample results shown in Figure C-3 and Figure C-4. These figures confirm how theimportance of risk factors changed across the two subsamples and mimic the one in the main textin which we report the estimated quantile-specific slopes for core CPI (i.e., Figure 6). Importantly,once we control for subsample stability, the results are extremely similar across these di�erentinflation measures.Figure C-5 mirrors Figure 8 of the main text by displaying the estimated slopes of the quantileregression model (2) for two measures of inflation: core PCE (left column) and CSI (right column),along with their bootstrapped confidence intervals constructed as described in Appendix B. First,and not surprisingly, CSI is clearly more responsive to changes in unemployment, while core PCEis barely sensitive to labor market slack. The last row presents the role of credit spreads acrossinflation quantiles and inflation measures. The e�ects are more symmetric in the case of corePCE, while the CSI measure exhibits a similar asymmetry as core CPI although of somewhat largermagnitude.Figure C-6 confirms the important influence of credit spreads on the 10th quantile of the dis-tribution both for core PCE and for CSI inflation. This figure mimics the top-right panel of Figure6 in the main text.Figure C-7, Figure C-8, and Figure C-9 display similar exercises to those presented in the maintext for these two alternative measures of inflation, core PCE and CSI, respectively.
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Figure C-1: Quantile Regression Slopes, Core PCE.
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Figure C-2: Quantile Regression Slopes, Stock and Watson (2019) CSI.
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Figure C-3: Quantile Regression Slopes Across Subsamples, Core PCE.
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core PCEinflation defined in expression (2). Two di�erent subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The barsillustrate the coe�cients associated with the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure C-4: Quantile Regression Slopes Across Subsamples, Stock and Watson (2019) CSI.
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead Stock andWatson (2019) Cyclically Sensitive Inflation defined in expression (2). Two di�erent subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The bars illustrate the coe�cients associated with the 10th quantile (blue), median (red) and90th quantile (yellow).
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Figure C-5: Quantile Regression Slopes and Confidence Intervals.

Core PCE Stock and Watson (2019) CSI

Note: The figure displays the slope coe�cients of the quantile regression of average four-quarter-ahead of core PCEinflation (left) and Stock and Watson (2019) Cyclically Sensitive Inflation (right) defined in (2). The black squares corre-spond to the point estimates whereas the vertical lines to the 68% confidence intervals computed via “blocks-of-blocks”bootstrap (see Appendix B) using 10,000 replications for the 10th quantile (blue), median (red) and 90th quantile (yellow).The estimation period is 1999:Q1 to 2017:Q4.
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Figure C-6: Partial E�ect of Credit Spread on 10th Inflation Quantiles.
Core PCE and Stock and Watson (2019) CSI Inflation.
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Note: The figure displays the time evolution of the 10th conditional inflation quantile of core PCE inflation (left) andStock and Watson (2019) Cyclically Sensitive Inflation (right) estimated from the quantile regressions model (2), in itsbaseline version (blue straight) and in its version where the e�ect of credit spreads is set to zero (black dash-dotted).Shaded bars indicate NBER-dated recessions.
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Figure C-7: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
Core PCE Inflation.
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Note: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead core PCE inflationfor alternative specifications of the quantile regressions model (2), in its baseline version (blue straight) and in its versionwhere the e�ect of credit spreads is set to zero (black dash-dotted). The right panels show the estimated skewed t-inversecumulative associated with the conditional densities in the left panels.
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Figure C-8: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
Stock and Watson (2019) CSI Inflation.
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Note: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead Stock and Watson(2019) Cyclically Sensitive Inflation for alternative specifications of the quantile regressions model (2), in its baselineversion (blue straight) and in its version where the e�ect of credit spreads is set to zero (black dash-dotted). The rightpanels show the estimated skewed t-inverse cumulative associated with the conditional densities in the left panels.
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Figure C-9: Inflation Probabilities for Alternative Cuto� Values.
Core PCE and Stock and Watson (2019) CSI Inflation.
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Note: The figure shows the time evolution of inflation probabilities of core PCE inflation (left) and Stock and Watson(2019) Cyclically Sensitive Inflation (right) for di�erent cuto�s. These probabilities are computed from the skewed t-Student conditional densities of the average four-quarter-ahead inflation measures which were fitted on the estimatedconditional quantiles for alternative specifications of the quantile regression model (2). Both panels are reported for thespecification without and with the credit spread (in blue straight and black dash-dotted lines, respectively). Shaded barsindicate NBER-dated recessions.
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D Robustness

In this Appendix we present additional robustness results for the U.S. economy. The data are de-scribed in Appendix A. First, we show that conditioning on energy prices instead of imported goodsyields very similar results (see Figure D-1). Figure D-2 displays how changes in the financial variablea�ect the estimated slopes in the baseline quantile regression model – for core CPI inflation – overthe full sample period. We consider three alternative financial variables: corporate bond spreads(top-left panel), excess bond premium as constructed by Gilchrist and Zakrajšek (2012) (top-rightpanel), and the national financial conditions index (bottom-center panel). The results are striking.The lower tail of the distribution of inflation is highly negatively responsive to changes in financialconditions, but the upper tail of distribution is not. As noted, the substantial subsample instabilityis responsible for fuzzing the e�ects on the upper tail. This is confirmed by the subsample stabilityresults shown in Figure D-3, Figure D-4, and Figure D-5.
D.1 Oil vs Import

Figure D-1: Quantile Regressions Slopes Across Relative Price Measures.
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Note: The figure displays the slope coe�cients on relative prices of the quantile regression of average four-quarter-ahead core CPI inflation defined in expression(2). The lines illustrate the slopes associated with the median (red), the10th (blue) and the 90th (yellow) inflation quantile. The black lines are the OLS estimates. Circles indicate scatterplotsof average future inflation against a given inflation determinant. The left panel corresponds to the model where therelative price measure is relative import price inflation, whereas the right panel considers the model where the relativeprice measure is relative oil price inflation. Grey circles indicate scatterplots of average future inflation against a givenfinancial variable prior to 1999:Q4 whereas black circles indicate the scatterplot for the period starting in 2000:Q1.
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D.2 Di�erent Financial Variables

Figure D-2: Quantile Regressions Slopes Across Financial Variables.
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Note: The figure displays the estimated coe�cients of the quantile regression of average four-quarter-ahead core CPIinflation defined in (2), using corporate bond spreads (top, left), the Gilchrist and Zakrajšek (2012) excess bond premium(top, right) and the National Financial Conditions Index (center, bottom) and the same sample period as the baseline. Thelines illustrate the slopes associated with the median (red), the 10th (blue) and the 90th (yellow) inflation quantile. Theblack lines are the OLS estimates. Grey circles indicate scatterplots of average future inflation against a given financialvariable prior to 1999:Q4 whereas black circles indicate the scatterplot for the period starting in 2000:Q1.
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Figure D-3: Quantile Regression Slopes Across Subsamples, Corporate Bond Spreads
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPIinflation defined in expression (2), using corporate bond spreads and the same sample period as the baseline. Twodi�erent subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The bars illustrate the coe�cients associatedwith the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure D-4: Quantile Regression Slopes Across Subsamples, Excess Bond Premium.
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPIinflation defined in expression (2), using the Gilchrist and Zakrajšek (2012) excess bond premium and the same sampleperiod as the baseline. Two di�erent subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The bars illustratethe coe�cients associated with the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure D-5: Quantile Regression Slopes Across Subsamples, NFCI.
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Note: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPIinflation defined in expression (2), using the NFCI and the same sample period as the baseline. Two di�erent subsamplesare considered: (i) 1973-1999 and (iii) 2000-2019. The bars illustrate the coe�cients associated with the 10th quantile(blue), median (red) and 90th quantile (yellow).
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E The Role of Skewness

Figure E-1 below illustrates the e�ect of a change in an inflation determinant on the probability ofaverage one-year-ahead inflation falling below 1% (downside inflation-at-risk). The initial (normal)density is illustrated in the top panel. In this thought experiment, the change in economic/financialconditions induces a change in the mean (center panel) and then also in the skewness of the dis-tribution (bottom panel). It is evident how the e�ect on downside inflation-at-risk is amplified ifthe change in the inflation determinant increases the right-skewness of the distribution.

Figure E-1: Inflation Probabilities and The Role of Skewness.
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Note: The figure displays the three states associated with a change in an inflation determinant that causes the initialnormal density (top panel) to feature a lower mean (center panel) and then also a right-skew (bottom panel).
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F Financial Market Probabilities

Figure F-1: Financial Markets’ Inflation Probabilities vs. Oil, Energy and Food Price Measures.
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Note: The figure shows the monthly options-implied inflation probabilities of headline CPI inflation next year beingabove 1% along with the 3-months- and 6-months-ahead oil price surprises computed using the oil market price ex-pectations that Baumeister and Kilian (2016) recovered from oil futures prices (top panel), the negative of energy priceinflation (mid panel) and the negative of food price inflation (bottom panel).
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Figure F-2: Inflation Probabilities from Financial Markets vs. Credit Spread.

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

Pr
ob

ab
ili

ty

Note: The figures shows the credit spread against quarterly options-implied inflation probabilities of headline CPIinflation next year being above 1% (top panel), between 2% and 3% (mid panel) and above 4% (top panel).

63


	Introduction
	Quantile Regressions and Inflation-at-Risk
	(Phillips-Curve) Quantile Regressions
	Quantile Function of Inflation
	Inflation-at-Risk

	Inflation-at-Risk Across Time
	The Role of Financial Conditions
	The Predictive Distribution of Inflation

	The Time-Varying Dynamics of Inflation-at-Risk
	Subsample Stability and the Missing Deflation/Inflation

	Euro Area vs. United States During the Great Recession
	External Validation: The Case of the United States
	Conclusion
	Data Appendix
	United States
	Euro Area

	Bootstrap Method
	Inspecting Other Inflation Measures
	Robustness
	Oil vs Import
	Different Financial Variables

	The Role of Skewness
	Financial Market Probabilities

