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Abstract

We develop a dynamic decomposition of the empirical Beveridge curve, i.e., the level of

vacancies conditional on unemployment. Using a standard model, we show that three

factors can shift the Beveridge curve: reduced-form matching efficiency, changes in the

job separation rate, and out-of-steady-state dynamics. We find that the shift in the Bev-

eridge curve during and after the Great Recession was due to all three factors, and each

factor taken separately had a large effect. Comparing the pre-2010 period to the post-

2010 period, a fall in matching efficiency and out-of-steady-state dynamics both pushed

the curve upward, while the changes in the separation rate pushed the curve downward.

The net effect was the observed upward shift in vacancies given unemployment. In pre-

vious recessions changes in matching efficiency were relatively unimportant, while dy-

namics and the separation rate had more impact. Thus, the unusual feature of the Great

Recession was the deterioration in matching efficiency, while separations and dynamics

have played significant, partially offsetting roles in most downturns. The importance

of these latter two margins contrasts with much of the literature, which abstracts from

one or both of them. We show that these factors affect the slope of the empirical Bev-

eridge curve, an important feature in recent welfare analyses estimating the natural rate

of unemployment.
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1 Introduction

The empirical Beveridge curve—the level of vacancies conditional on unemployment—has

long been of interest to economists and policy makers. Interest intensified in the wake of

the Great Recession, as the curve appeared to shift upwards (see Figure 1), fueling concerns

about the functioning of the labor market. There is not currently consensus on the cause

of this shift (or historical Beveridge curve shifts). Many papers have attributed the shift

to falling matching efficiency (whether due to mismatch, duration dependence, recruiting

intensity, heterogeneity, or other causes.) Other researchers have argued that mechanical

out-of-steady state dynamics can account for the apparent shift. Finally, it has also been

noted that variation in the employment separation rate can also produce shifts in the Bev-

eridge curve. Each of these threads of the literature has taken a slightly different modelling

approach. Some authors use steady-state approximations, while others assume a constant

job separation rate.

In this paper we provide a new, unified accounting model for the Beveridge curve and a

related decomposition method. In our baseline model, where the labor-force status is either

employed or unemployed, there are three main factors that matter for the position of the

Beveridge curve: (1) matching efficiency, (2) the job-separation probability, and (3) out-of-

steady-state dynamics. We analyze how much each of these factors shifted the Beveridge

curve. The model allows us to estimate how the contribution of each factor changed in

different recessionary and recovery episodes. We extend our model to include the labor-

force participation margin, to see how important labor-supply factors are in the dynamics

of Beveridge curve.

We find that matching efficiency, job separations and out-of-steady-state dynamics are

all important in understanding the shifts of the Beveridge curve over business cycles, par-

ticularly in the Great Recession. Out-of-steady state dynamics (defined below) produced a

net upward shift in the Beveridge curve during and after the Great Recession, as suggested
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Figure 1: The Beveridge curve

by Christiano et al. (2015) and Furlanetto and Groshenny (2016).1 Those papers assume a

constant job separation rate (i.e., the rate at which workers lose their jobs and enter unem-

ployment is constant over the business cycle), but we find that changes in the job separation

rate shifted the Beveridge curve sharply down on net in the later part of the Great Reces-

sion. This downward shift of the Beveridge curve partially offset the combined upward

shifts from out-of-steady-state dynamics and matching efficiency. In fact, changes in the

separation rate were the largest single factor moving the Beveridge curve.

Our accounting exercise is conditional on the observed path of unemployment. When

considering, say, a counterfactual path for matching efficiency, we calculate the level of va-

cancies in each period that is consistent with the actual path of unemployment unemploy-

ment under counterfactual matching efficiency. Intuitively, conditional on a path for un-

employment, lower matching efficiency require more vacancies to offset lower hiring rates

1See also Eichenbaum (2015) for related discussion.
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conditional on tightness. Thus, lower matching efficiency shifts the level of vacancies (the

Beveridge curve) up.

Perhaps less intuitively, a higher job separation rate will shift the Beveridge curve up.

Higher separations implies more inflows to unemployment. To keep unemployment at the

observed levels, vacancies must be higher, to absorb the extra workers. The job separation

probability was high in the downswing of the Great Recession, and it later fell back to more

normal levels in the recovery. This had the effect of shifting the Beveridge curve up in the

downswing and down in upswing. Elsby et al. (2015) documented a similar point, though

they did not quantify the extent of the shift or compare it to the other shifters.2 We also

find that matching efficiency fell significantly during and after the Great Recession, which

pushed the Beveridge curve up. This result is consistent with, e.g., Barnichon and Figura

(2015).3

Analyses which ignore one or more of these shifters will either fail to match the data or

will risk making mistaken inferences. This leads to several concrete conclusions and rec-

ommendations: First, the importance of out-of-steady-state dynamics implies that the usual

flow steady-state approximations are not appropriate for studying the Great Recession, or

similar periods of rapid change in the unemployment rate. Flow steady-state approxima-

tions have become a fundamental tool for simplifying and understanding the labor market

(see, for example, Fujita and Ramey (2009), Elsby et al. (2009), Shimer (2012), Barnichon et

al. (2012), Elsby et al. (2015).) Unfortunately, in the Great Recession unemployment was

consistently far from the steady-state value implied by inflows and outflows, thus the ap-

proximation is poor during this period. Similarly, We find a large role for out-of-steady-state

dynamics in some previous recessions.

Second, time-variation in the job separation probability is critical for understanding the

Beveridge curve, and indeed was the single largest shifter of the Beveridge curve in the

2Hall and Schulhofer-Wohl (2018) also noted the unemployment inflow rate complicates the behavior of the
Beveridge curve.

3See also Barnichon and Figura (2010) and Barnichon et al. (2012) for more on matching efficiency.
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Great Recession. Thus, the common simplifying assumption of a constant separation rate

(made in, e.g., Christiano et al. (2015)) is not appropriate when trying to model the Beveridge

curve. In fact, we find that variation in the separation rate was an important shifter of the

Beveridge curve in many previous recessions as well, and this variation also affects the slope

of the empirical curve. Our analysis does not speak directly to the debate over the relative

importance of the separations versus the job findings for the evolution of unemployment

(see, e.g., Fujita and Ramey (2009), Elsby et al. (2009), Shimer (2012), Ahn and Hamilton

(2019)). Rather, we simply point out that the Beveridge curve cannot be properly understood

without this ingredient.

Third, we confirm that there was a clear fall in reduced-form matching efficiency in the

Great Recession, as has been documented in several other papers (see Elsby et al. (2010),

Barnichon and Figura (2015)). We show that this drop in matching efficiency shifted the

Beveridge curve substantially and persistently upward in the Great Recession (though the

other shifters partially obscure this effect.) In this paper we do not attempt to explain why

matching efficiency fell, instead we seek to quantify the effects on the Beveridge curve and

the interactions with other factors.4

Though all three of these factors are crucial in understanding the Beveridge curve, we

also find that the relative importance of each factor differed across recessionary episodes.5

We find that the 1990’s recession was similar to the Great Recession in that matching effi-

ciency was the key factor to the persistent outward shift of Beveridge curve. However, in

the other recessions in the 1970’s, 1980’s and 2001, the job separation probability and out-of-

steady-state dynamics played more important roles than matching efficiency.

In addition to clarifying the source of loops in the Beveridge curve, we show that these

shifters affect the slope of the empirical Beveridge curve. This occurs because the curve is

being shifted while labor market upswings and downswings progress, not just at peaks and

4Many papers have offered explanations for the fall in reduced-form matching efficiency among them Davis
et al. (2013), Sahin et al. (2014), Elsby et al. (2015), Barnichon and Figura (2015), Kroft et al. (2016), Ahn and
Hamilton (2019), and Hall and Schulhofer-Wohl (2018).

5Daly et al. (2011) and Diamond and Sahin (2015) document historical Beveridge curve shifts.
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troughs. Thus the slope of the steady-state Beveridge curve under constant separations and

constant matching efficiency is very different from the empirical slope. This has direct im-

plications for the work of Michaillat and Saez (2019), who exploit the slope of the Beveridge

curve to estimate the efficient level of unemployment and the unemployment gap. A back

of the envelope exercise shows that using an arguably more appropriate slope cuts the es-

timated unemployment gap in half, relative to Michaillat and Saez (2019). We view this as

evidence that more work is needed to understand how time-varying factors affect the slope

of the empirical Beveridge curve.

For our baseline results, we work with a log-linearized Beveridge curve, which expresses

the vacancy rate a linear function of various factors. This first-order approximation matches

the observed Beveridge curve quite well, and the factors and their associated coefficients

are easily interpretable. This analytical tool makes it easy to trace out the contributions of

factors to the shifts in the Beveridge curve, and trace out counterfactual curves that hold

various factors constant.

One possible concern is that results based on a Taylor series approximation can be inac-

curate. In addition, under an approximate Beveridge curve the implied paths of vacancies

will not be exactly consistent with the matching function and the law of motion for unem-

ployment. To address this concern we perform similar decompositions, holding various

factors constant, using the actual, non-linear Beveridge curve relation, and show that the

results are nearly unchanged. Of course, when using the non-linear version the exact con-

tributions of each margin depend on the ordering of the variables in the decomposition. But

the results are qualitatively consistent across all orderings.

The next section introduces the basic model. Section 3 discusses the data. Section 4

linearizes the model and presents the results for the Great Recession. Previous recessions

are covered in Section 5, and the results of a three-state model are discussed in Section

6. Section 7 concludes. Appendix A addresses the robustness of the linearized results by

calculating exact non-linear decompositions.
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2 Model

This section derives a version of the simple Beveridge curve framework used in Christiano et

al. (2015) (hereafter CET) and Eichenbaum (2015), which is nearly identical to that of Elsby et

al. (2015). We do not close the model by making assumptions about the job creation process,

wage determination, or other fundamentals. Instead we focus on deriving conclusions that

must hold for any general equilibrium model whose labor market is described by (1) the

standard law of motion for unemployment and (2) the usual matching function relationship.

Let Ut be the unemployment rate in month t. Similarly, let Vt and Ht denote the vacancy

and hires rates both of which are normalized by the labor force. There is no on-the-job

search, no participation margin, and the size of the labor force is constant and normalized

to unity.At the beginning of each period the unemployed search for jobs, and those that find

matches are hired. At the end of the period a fraction of continuing (and not new) matches

are destroyed. The flow of new hires in month t, Ht, is given by the standard Cobb-Douglas

matching function:

Ht = σtU1−α
t Vα

t (1)

where α is the elasticity of the matching function and σt is matching efficiency, which can

vary over time. Then the job-finding probability is given by

ft = σt(Vt/Ut)
α. (2)

The law of motion for unemployment is

Ut+1 = st (1−Ut)− ftUt + Ut (3)

where st is the job separation probability. Substituting equation (2) into (3) and rearranging
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we arrive at

Vt =

[
st(1−Ut)− ∆Ut+1

σtU1−α
t

]1/α

(4)

where ∆Ut+1 = Ut+1−Ut. This is a slight generalization of CET equation 5.2. Whereas CET

assume that st and σt are constants, we permit time-variation in these parameters. Note that

if st is set to its observed values and σt is chosen to verify equation (1), then equation (4) is

an identity.

Equation (4) is at the core of our analysis. To understand it better, consider the case

where st, σt and Ut are constants:

V =

[
s(1−U)

σU1−α

]1/α

. (5)

This is the steady state Beveridge curve relationship at the core of textbook search models

(see Pissarides (2000)): a steady-state with low U must have high V, and vice-versa. Taking

equation (5) as the reference point, variation in st, σt and ∆Ut+1 changes the level of Vt given

Ut. Thus, with a slight abuse of terminology, we will refer to these factors as shifters.6

Given a path for unemployment and hypothesized, possibly counterfactual, values of

the parameters (α, st, σt), one can calculate the implied path of vacancies from equation (4)

and compare it to the true path of vacancies. This is the essence of our exercises in Section 4.

3 Data

We require data on all the variables and parameters in equations (3) and (4). We use the

standard approaches, based mostly on Shimer (2012) and Barnichon and Figura (2015). We

set Ut as the number of unemployed divided by the labor force, as measured in the Current

Population Survey (CPS). We set Vt equal to the count of vacancies from Job Openings and

6We use shifters to mean factors that change Vt given Ut. Note s and σ also shift the steady-state Beveridge
curve (5), while ∆Ut+1 does not. The dynamics captured by ∆Ut+1 produce loops around the steady-state Bev-
eridge curve, but do not change that model-based relationship.
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Labor Turnover Survey (JOLTS), divided by the size of the labor force. Figure 2 plots the

two series.

Unemployment and Vacancy Rates
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Note: Monthly data, 2000-2019. NBER recessions shaded in gray.
Source: Current Population Survey (U.S. Census Bureau), Job Openings and Labor Turnover Survey (U.S. Bureau
of Labor Statistics).

Figure 2: Unemployment and Vacancy Rates

We set the monthly job-finding probability, ft as in Shimer (2012), using data on the

number of short-term unemployed each month.7 We then choose st to satisfy the law of

motion (3) exactly.8

Figure 3 shows the job finding and separation probabilities. It is notable that the job

finding probability fell by about 50 percent in the Great Recession and the separation prob-

ability increased by about 50 percent.9 This suggests that both margins may have played a

7That is, we set ft = 1− Ut+1−Us
t+1

Ut
, where Us

t+1 is the number of workers unemployed for less than five weeks
in month t + 1. Thus ft is the probability that a worker unemployed in month t finds a job by t + 1. In the data
it is possible for such a worker to both find and lose a job (or multiple jobs) before t + 1, but the discrete-time
model we use rules out this possibility.

8In both our setup and the continuous time formulation of Shimer (2012), job separation flows are set so as
to make the observed sequence of stocks consistent with the flows. In the three-state model of Section 6 the
transition rates are taken directly from the data and adjusted to be consistent with the stocks.

9Christiano et al. (2015) note that the job separation rate, as measured by JOLTS, fell in the Great Recession.
The JOLTS separation rate includes job-to-job flows, which are known to be highly procylical, as well as flows to
nonparticipation. Their model, like ours, does not allow for job-to-job flows. The JOLTS separation rate is likely
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significant role in the evolution of unemployment. We will confirm this impression in what

follows.

Monthly Job Finding Probability
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Source: Current Population Survey (U.S. Census Bureau), Job Openings and Labor Turnover Survey (U.S. Bureau
of Labor Statistics).

Figure 3: Observed Transition Probabilities

Measurement of α and σt require estimation of the matching function. We run the usual

regression

ln ft = ln σ + α ln
(

Vt

Ut

)
+ εt (6)

where εt is the mean-zero error term, σt = σ exp(εt) is time-varying matching efficiency, and

σ is interpreted as average matching efficiency.

Figure 4 plots the log job finding probability against the log V-U ratio. The data for differ-

ent periods are plotted in different colors. It is evident that matching efficiency deteriorated

significantly post-2008. Any change in the matching elasticity α was minor by comparison,

the correct measure when considering the firm’s problem, since it gives the expected duration of the match. But
when considering the evolution of unemployment it is better to use the inflow to unemployment, rather than
including job-to-job flows.
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so we will continue assuming that α is a constant throughout the paper (as is standard in

the literature).
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Figure 4: Matching Function Estimation

We run equation (6) on a sample starting in 2000 (when the JOLTS series begins) and

ending in 2007, a period where it is plausible that σ was indeed constant. We also run the

regression on a post-2008 sample. Table 1 presents the results. The point estimates put α

near 0.3, very similar to the estimates of Shimer (2005) and Barnichon and Figura (2015),

who use longer time series. It is evident that average matching efficiency fell about 25%

between the two samples.

4 Linearization and Results

In order to simplify the discussion, we log-linearize equation (4). In particular, we take the

first order Taylor approximation around a point (Ut, st, σt, ∆Ut+1) =
(
U, s, σ, 0

)
. The result

is the following expression
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(1) (2)
Pre-2008 Sample Post-2008 Sample

ln σ −0.77*** −1.00***
(0.02) (0.01)

α 0.27*** 0.34***
(0.03) (0.01)

Notes: OLS estimates of average matching efficiency
(ln σ) and the matching function elasticity (α). *, **, and
*** indicate statistical significance at the 10%, 5%, and
1% levels, respectively. Standard errors are in parenthe-
ses.

Table 1: Matching Function Estimates

ln Vt ≈ ln V −
(

U
α
(
1−U

) + 1− α

α

) (
ln Ut − ln U

)
− U

αs(1−U)
∆ ln Ut+1︸ ︷︷ ︸

Shift due to
Dynamics

+
1

α(1−U)
(ln st − ln s)︸ ︷︷ ︸

Shift due to
Separations

−1
α
(ln σt − ln σ)︸ ︷︷ ︸
Shift due to

Matching Efficiency

(7)

where V is equation (4) evaluated at
(
U, s, σ, 0

)
.

The first line of equation (7) is the (approximate) steady-state Beveridge curve. The

second line contains the “shifters”. Treating ln Vt as a linear function of ln Ut, these shifters

move the y-intercept of the steady-state curve up and down. For example, we can see that

when unemployment is rising (∆ ln Ut+1 > 0) then ln Vt will be lower than the steady state

curve. This is because, all else equal, rising unemployment implies low finding and thus low

ln Vt, which is the out-of-steady-state dynamics mechanism outlined in Pissarides (2000).

While increasing in ∆ ln Ut+1 shifts ln Vt down, increases in the job separation probabil-

ity st shift the curve up. The intuition is that a higher job-separation probability, conditional

on a fixed value of ∆ ln Ut+1, requires more equilibrium vacancies to absorb the unemploy-

ment inflows. Increases in matching efficiency σt obviously shift the curve down, as fewer

vacancies are needed to rationalize the observed value of ∆ ln Ut+1.
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We are interested in approximating the Beveridge curve around the Great Recession.

To that end, we center the Taylor approximation around post-2007 averages. This yields

U = 0.068, s = 0.020, and σ = 0.359 . We set ∆ ln Ut+1 = 0 at the approximation point,

which is close to its post-2007 average anyway.

4.1 Results

Figure 5 plots the (log) observed Beveridge curve, the first order approximation, and the

steady-state Beveridge curve. The approximate Beveridge curve, which includes all the

(first order) effects of the shifters, follows the actual curve closely, aside from a brief period

near the trough of the Great Recession. Most importantly, the approximate curve shows

nearly the same shift (between recession downswing and recovery) as the observed curve.

The good fit of the linearized curve gives us confidence that our decomposition of the lin-

earized curve will also be accurate for the exact curve. Appendix A addresses any lingering

concerns about the accuracy of the linearized results by calculating a series of nonlinear

decompositions on the exact Beveridge curve.

Both the actual Beveridge curve and the approximate curve are significantly flatter than

the steady state curve. In log space, the slope of the steady state curve is roughly − 1−α
α =

−2.66, while the slope of the empirical curve is near unity. The difference in slopes is due

to slow variation in the shifters, which pushed vacancies up as the Great Recession took

hold, and then pushed vacancies down in the recovery. Figure 6 plots the time paths of the

three shifter terms in equation (7), along with the net shift (the black line), all normalized to

be zero in April 2007. The blue line shows the shift in the Beveridge curve attributable to

out-of-steady-state dynamics (that is,− U
αs(1−U)

∆ ln Ut+1.) The red and yellow lines similarly

show the shifts due to separations and matching efficiency.

Relative to the pre-Great Recession period (say, 2007), the net effect of the shifters was

to move vacancies sharply upward during the recession. This effect then dissipated very

slowly, with the shifters returning to their pre-recession net value only in 2017. This com-

12
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Figure 5: Beveridge Curves

bined effect explains why the slope of the empirical Beveridge curve is so much flatter than

the steady state curve. We return to this point in Section 4.2.

Turning to each shifter separately, contribution of each factor is complicated and time-

varying. Out-of-steady-state dynamics pushed the Beveridge curve intercept sharply down

in the recession, and modestly up in the recovery, more or less the way Pissarides (2000)

describes. The contribution of separations is roughly the opposite, raising the intercept

sharply, especially late in the recession, and then eventually pushing the intercept down.

Finally, the deterioration in matching efficiency raised the intercept during and after the

recession.

Figure 6 cannot clearly tell us which factors are responsible for the shift in the empirical

Beveridge curve between the downswing and the upswing of the Great Recession. To un-

derstand that, we need to condition on a level of unemployment and examine the vertical

shift evident in Figure 5.
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Figure 6: Shifters of the Approximate Beveridge Curve

Say that there were two months, t and t′, where observed unemployment rates were

exactly equal, Ut = Ut′ . Then using equation (7) we could decompose the (approximate)

difference in vacancies, ln Vt′ − ln Vt, as follows:

ln Vt′ − ln Vt ≈

− U
αs(1−U)

(∆ ln Ut′+1 − ∆ ln Ut+1)︸ ︷︷ ︸
Shift due to
Dynamics

+
1

α(1−U)
(ln st′ − ln st)︸ ︷︷ ︸

Shift due to
Separations

−1
α
(ln σt′ − ln σt)︸ ︷︷ ︸

Shift due to
Matching Efficiency

(8)

Equation (8) provides an additive decomposition of the vertical shift in the Beveridge

curve. The portion of ln Vt′ − ln Vt due to, say, differences in matching efficiency between t

and t′ is just the log difference in matching efficiency, ln σt′ − ln σt, multipled by 1/α. The

shifts due to dynamics and separations are similar. The only wrinkle in implementing equa-

tion (8) is that we never observe two months with exactly the same unemployment rate, so
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Figure 7: Downswing and Upswing Samples

we linearly interpolate all relevant series.

As the reference points, we select the unemployment rates observed between April 2007

and June 2009. These are highlighted in red in Figure 7 (the “downswing sample”). We com-

pare the downswing sample to the upswing sample, which begins in April 2010 (highlighted

in blue). For each of the downswing points, we calculate the vertical distance between ob-

served vacancies and the (linearly interpolated) upswing vacancy levels. We also calculate

each of the terms in equation (8).

The result is Figure 8. The x-axis is the unemployment rate. For each unemployment

rate, the black line shows the vertical distance between the upswing and downswing sam-

ples, as measured in log vacancies. This is the shift in the Beveridge curve we are trying

to explain. The black line is the sum of the other three lines, which are the contributions

in equation (8). There are several striking results. First, the job-separation probability is re-

sponsible for a large shift down in the Beveridge curve. This is because separations rose early
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Figure 8: Accounting for the Vertical Shift
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in the recession. Our accounting exercise is conditional on the path of unemployment, so

rising separations implies a higher level of vacancies to keep unemployment at its observed

values. Separations later fell, resulting in a lower path of vacancies during the recovery.

This net shift is offset by the combined effects of dynamics and matching efficiency, which

both pushed the curve up (on net.)

Interestingly, out-of-steady-state dynamics played a prominent role, with a contribution

larger than that of matching efficiency over much of the range. This specific result is consis-

tent with Christiano et al. (2015)’s argument that, because the Great Recession was so large

and so sudden, dynamics can produce a realistic loop in the Beveridge curve. However,

their analysis ignores the separation probability and matching efficiency, which are at least

as important for understanding what happened. In particular, matching efficiency more

than accounts for the net shift across most of the range, so without a change in matching

efficiency the Beveridge curve would have shifted down, not up.

To summarize, all three of the factors we consider shifted the Beveridge curve in non-

trivial ways. The vertical shift in the empirical Beveridge curve is the net result of out-of-

steady state dynamics and matching efficiency both shifting the curve up, an effect which

is partially offset by a large negative contribution from the separation probability. The time

paths of these shifters are complicated and non-monotonic, leading the slope of the empir-

ical Beveridge curve to differ from the model-implied steady-state curve. We now turn to

this result in more detail.

4.2 The Slope of the Beveridge Curve

Recent innovative work by Michaillat and Saez (2019) (MS) has emphasized the importance

of the Beveridge curve slope for welfare and the natural rate of unemployment. In this

section we show how our measurement methods relate to their results.

In many models with a matching function (e.g., Shimer (2005)), the Beveridge curve

describes the possible steady-state values of vacancies and unemployment. In short, an
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economy that sustains a lower level of unemployment must have more vacancies in equi-

librium, and vice versa. MS point out that this relationship can be used to estimate the

welfare-maximizing level of unemployment in a particularly simple and general way. They

note that a social planner will seek to equalize the costs of additional vacancies to the costs

of additional unemployment. In other words, the social planner will seek the location on

the Beveridge curve where the marginal cost of additional unemployment equals the social

value of the resulting reduction in vacancies. This point then defines the natural rate of un-

employment, and the difference between observed unemployment and natural rate is the

unemployment gap. MS use estimates of the costs of vacancies, the costs of unemployment,

and the slope of the Beveridge curve to make their calculations.

MS measure the slope of the Beveridge curve by estimating regressions of Vt on Ut in

periods where the Beveridge curve appeared stable (dropping the troughs of recessions,

for example.) As we show above, these observed slopes reflect both (1) movements along

a stable Beveridge curve (changes in Ut for fixed separations, matching efficiency and dy-

namics) and (2) time variation in the shifters. This second factor can distort the empirical

Beveridge curve relative to the planner-relevant, steady-state curve. For example, consider

a bare bones model where the separation probability and matching efficiency are exoge-

nous processes, possibly correlated with the aggregate productivity shock. Such a model

fits in our framework (and that of MS), and could produce the observed data, including the

empirical Beveridge curve and the paths of the shifts. However, a planner, facing such an

economy, would not look to the empirical Beveridge curve to estimate the unemployment-

vacancy tradeoff. The reason is that the empirical curve include the effects of the (purely

cyclical) shifters, while the planner is interested in long-run, steady state relationships. The

correct slope for the planner comes from the linearized curve (7), which treats the shifters as

fixed:
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−
(

U
α
(
1−U

) + 1− α

α

)
≈ −1− α

α
(9)

and is determined by the shape of the matching function. The planner would make de-

cisions based on the steady-state curve in Figure 5, not the empirical curve. Thus, in this

toy example the empirical Beveridge curve does not directly give us the planner-relevant,

long-run relationship we seek.

The key question is whether the planner should incorporate the effects of the shifters

when making a choice about the long-run level of unemployment. Clearly, out-of-steady-

state dynamics are fundamentally transitory, so the planner should always purge the Bev-

eridge curve of their effect. However, it is possible that the separation probability and

matching efficiency are, to some extent, functions of the long-run level of unemployment

(unlike in the toy example above). In this case the planner should not remove (all of) their

influence when calculating the vacancy-unemployment tradeoff.

Determining the exact nature of the variation in separations and matching efficiency is

well beyond the scope of this paper. Instead, we provide an example to demonstrate that

these issues can have an economically meaningful impact on welfare calculations. From

equation (9), the slope of the steady-state curve (treating the shifters as fixed) is very close

to − 1−α
α . Averaging together the two estimates of α in Table 1, we set set α = 0.3, implying

a Beveridge curve slope of −2.33. This is far steeper than the estimates of MS, which are

around −0.9 for the same period.

We can calculate the efficient levels of unemployment using equation (5) from MS, based

on our two estimates of the Beveridge slope (−2.33 and −0.9). In both cases we use MS’s

preferred values for the costs of vacancies and unemployment. Figure 9 shows the results

(this figure is comparable to Figure 3 Panel D in Michaillat and Saez (2019).) The blue line

is the actual unemployment rate. The red line shows the efficient level of unemployment

according to MS’s calibration, with a Beveridge slope of −0.9. The black line shows the
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Figure 9: Efficient Unemployment Based on the Beveridge Tradeoff

efficient level of unemployment using our preferred Beveridge slope of −2.33. It is evident

that the steeper Beveridge curve significantly raises the efficient level of unemployment, as

reducing unemployment with a steep Beveridge curve is more costly in terms of vacancies.

In our calibration the natural rate of unemployment fluctuates between about 4 percent

and 6 percent, near the range of other estimates including the Congressional Budget Office

(CBO)’s short-term natural rate of unemployment. Notably, our calibrated estimate moves

very similarly to the CBO’s estimate during the post Great-recession period.

Our results suggest that careful work is needed to disentangle which features of the

Beveridge curve the planner should care about. These choices have real consequences for

the measurement of efficiency, as Figure 9 shows. One approach is to specify a more com-

plete model, which explicitly links separations and matching efficiency to the rest of the

economy. With such a model in hand, one could determine the planner-relevant Beveridge

curve slope.
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5 Previous Recessions

We can also use our framework to analyze recessions prior to the Great Recession. In terms

of data, the only change is that up through 2016 we use the composite vacancy series from

Barnichon (2010) instead of JOLTS. After 2016 we continue the series by splicing on the

JOLTS series. For four historical labor market downturns, we calculate the log-linearized

Beveridge curve, as in Section 4. For each episode the curve is linearized around the local

mean, to ensure a good fit. Figure 10 compared the observed and linearized Beveridge

curves. The fit is generally good, although some of the linearized Beveridge curves show

less of a shift, or counter-clockwise loop, than their observed counterparts. We view this as

a topic for further investigation

With the linearized Beveridge curves in hand, we can read off the implied contribution

of each factor to the shift in the curve at every point in time. Figure 11 is analogous to Figure

6 for each recession: the net shift in the Beveridge curve, and the contributions, as functions

of time. It is apparent that in each recession the Beveridge curve intercept began shifting up

at the onset of the recession, and slowly drifted down once unemployment began falling.

Rising separations usually drove this upward shift, partially offset by out-of-steady-state

dynamics.

It can be seen that in all recessions, out-of-steady-state dynamics shifted the Beveridge

curve significantly down in the initial stages and generally up in the recovery. Interestingly,

this shift is partially offset by the contribution of separations, which (as in the Great Reces-

sion) tend to push Beveridge curve sharply upward in the initial stages of a recession and

more moderately upward afterward. Thus the changes in the job-separation probability

tend to flatten the observed Beveridge curve, and cancel out some of the counter-clockwise

loop that out-of-steady-state dynamics induce.

In most previous recessions, changes in matching efficiency had little impact, and were

swamped by changes in the other factors. The 1990 recession appears to be an exception

here. During the 1990 recession and the recovery period, the deterioration in matching effi-
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Figure 10: Observed and Approximate Beveridge Curves
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Figure 11: Decompositions of Approximate Beveridge Curves
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ciency continued to push the Beveridge curve up, which is quite similar to what happened

in the Great Recession. In fact, the two recessions are similar to each other in a sense that

long-term unemployment continued to increase substantially after the recession was over.

This suggests that mismatch or related factors might have been an important driver in the

rise of long-term unemployment in the two recession episodes. We view this line of reason-

ing as a topic for future research.

The tentative conclusion is that the Great Recession was exceptional, insofar as the drop

in matching efficiency had first-order effects on the Beveridge curve (with the possible ex-

ception of the early 1990s recession). In previous recessions matching efficiency usually

played little role. However, the modest counter-clockwise loops in previous recession were

not simply the product of modest out-of-steady-state dynamics, but were the net result dra-

matic dynamics being offset by large contributions from the separations margin. Out-of-

steady-state dynamics and the separations margin played critical roles in all the recessions

examined here.

6 Three State Model

The results so far have assumed that all workers are either employed or unemployed. This

is a simplification, since empirically flows into and out of the labor force are important

for understanding total hires and evolution of unemployment. In this section we add the

participation margin and discuss the robustness of our results in the expanded model.

6.1 Model

The population is still normalized to unity, but we add a nonparticipation state. Let Nt

be the stock of nonparticipants, so that Et + Ut + Nt = 1. Consider the law of motion for
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unemployment when workers can move into and out of the labor force:

∆Ut+1 = Et + Ntnut −Utunt −Utuet (10)

The transition rate from nonparticipation to unemployment in month t is nut. The terms unt

and uet are similarly defined, with eut replacing st for consistency. The law of motion for

nonparticipation is symmetric:

∆Nt+1 = Etent + Utunt − Ntnet − Ntnut (11)

Summing equations (10) and (11) yields an expression involving total hires (Ht = Ntnet +

Utuet)

∆Ut+1 + ∆Nt+1 = Eteut + Etent − Ht (12)

where the flows between unemployment and nonparticipation have canceled.

We can write the matching function as

Ht = σt(Ut + ξN
t Nt)

1−αVα
t (13)

where ξN
t is the search effort of the nonparticipants relative to the unemployed. Thus the

effective mass of searchers is Ut + ξn
t Nt and σt continues to represent reduced-form matching

efficiency.

Combining equations (12) and (13), and assuming balanced matching (that is, hires from

unemployment are a share Ut
Ut+ξN

t Nt
of total hires), we have the following expression for

vacancies:

Vt =

[
(1−Ut − Nt)(eut + ent)− ∆Ut+1 − ∆Nt+1

σt(Ut + ξN
t Nt)1−α

]1/α

(14)

When the non-employed can participate in job search, it is more sensible to think of a Bev-
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eridge curve which relates vacancies to searchers (both unemployed and nonparticipants)

instead of unemployment. To this end, we define two new groups. First, we define the pool

of searchers St as

St = Ut + ξN
t Nt. (15)

Second, we define the pool of “true nonparticipants” as

Ñt =
(

1− ξN
t

)
Nt. (16)

While we take no stand on whether ξN
t is the fraction of nonparticipants who search or the

search effort of each nonparticipant relative to the unemployed, the former interpretation is

convenient here. Note that if ξN
t = 1 all the nonparticipants search and Ñt = 0. Using St

and Ñt, we can write (14) as

Vt =

[(
1− St − Ñt

)
xt − ∆St+1 − ∆Ñt+1

σtS1−α
t

] 1
α

(17)

where xt = eut + ent is the total job-separation probability. Log-linearizing yields

ln Vt = −
1
α
[ln σt − ln σ0]

−
{
(1− α)

α
+

1
α

S0(
1− S0 − Ñ0

)} [ln St − ln S0]

−
{

1
α

S0(
1− S0 − Ñ0

)
x0

}
[∆ ln St+1]

−
{

1
α

Ñ0(
1− S0 − Ñ0

)} [ln Ñt − ln Ñ0
]

−
{

1
α

Ñ0(
1− S0 − Ñ0

)
x0

} [
∆ ln Ñt+1

]
+

1
α
[ln xt − ln x0] (18)
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Like equation (4), equation (17) can be used to analyze the Beveridge curve. This decom-

position, naturally, has more shifters than the two-state model. In this model movements

along the Beveridge curve are captured by the ln St− ln S0 term, since the curve is defined in

terms of searchers, not merely the unemployed. The effects of matching efficiency and sep-

arations still appear, on the first and last lines of equation (17) respectively. Finally, there are

now two out-of-steady state terms, ∆ ln St+1 and ∆ ln Ñt+1, as well as a term capturing the

level of non-searchers, ln Ñt− ln Ñ0. Not all of these terms have a transparent interpretation,

but as we shall see below, many of them are not quantitatively important either.

6.2 Data

To implement the three state model, we need data on the terms appearing in equation (14).

We obtain the stocks of employed, unemployed, and nonparticipants from the CPS labor

force status flows.10 We normalize these stocks to satisfy Et + Ut + Nt = 1 in all periods.

The transition rates eut, nut, unt, uet are also taken from the labor force status flows. These

transition rates are not exactly consistent with the stocks, due to missing month-to-month

linkages and sample rotation. We adjust for the inconsistency by raking the rates until they

are consistent with the stocks.11 This results in very small adjustments to the transition rates.

Under the assumption of balanced matching, ξN
t can be identified by the ratio of transi-

tion rates to employment:

ξN
t =

net

uet

Finally, α and σt can be identified by the matching function regression, using Ut + ξN
t Nt

as the population of effective searchers.
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Figure 12: Three State Approximate Beveridge Curve

6.3 Results

Figure 12 shows that, as with the two state model, the three state approximate Beveridge

curve is a good approximation of the observed curve. Here “searchers” are the pool of

actively searching workers, Ut + ξN
t Nt. To show the direction of time, more recent periods

are shaded darker.

Figure 13 shows the shifters as a function of time, similar to Figure 6 the story is simi-

lar to the two-state model. Matching efficiency slowly and steadily pushed the Beveridge

curve upwards during and after the Great Recession. The separation probability, xt, pushed

the Beveridge curve up during the recession, but this was short-lived. The out-of-steady-

state dynamics terms, on net, pushed the curve down, though interestingly the ∆Ñt+1 term

partially offsets the ∆S̃t+1 term. Strikingly, there is no shift in the Beveridge curve under

10Accessible at https://www.bls.gov/webapps/legacy/cpsflowstab.htm.
11This is also called iterative proportional fitting: alternately scaling each row and column of the transition

matrix to match the stocks until they converge.
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Figure 13: Three State Model - Shifters of the Approximate Beveridge Curve

constant matching efficiency. This confirms the results from the two state model (and much

of the literature) that the decline in matching efficiency was an important contributor to the

loop in the Beveridge curve.

7 Conclusion

The empirical Beveridge curve is easy to calculate, as it only requires data on the stocks of

unemployed workers and job openings. This ease of measurement may help explain the

attention it has received. Unfortunately, the Beveridge curve is (even in a simple model) the

product of multiple factors, and can be difficult to interpret. Our hope is that our results

help clarify the behavior of the Beveridge curve and reconcile some conflicting ideas in the

literature.

We have shown that reduced-form matching efficiency, changes in the separation prob-

ability, and out-of-steady-state dynamics all played important roles in the recent shift of the
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Beveridge curve. Comparing the pre-2010 period to the post-2010 period, out-of-steady-

state dynamics and a fall in matching efficiency both pushed the curve upward, while the

changes in the separation probability pushed the curve downward. The net effect was the

observed upward shift in the empirical Beveridge curve. Our results are largely unchanged

when we include a nonparticipation margin. One area for more research is the effect of

on-the-job search, which would affect the measurement of matching efficiency.

A realistic model of the Great Recession therefore needs, (1) a mechanism for reduced-

form matching efficiency to fall during and after the recession, (2) a non-constant separation

probability, which can generate an increase in job losses towards the end of the recession.

Furthermore, models should not be evaluated using steady-state approximations, since the

rapid changes in the labor market around the Great Recession made out-of-steady-state dy-

namics a first-order issue.

We reach similar conclusions regarding earlier recessions, though the role of matching

efficiency is generally smaller. Importantly, the relatively small Beveridge curve loops in

earlier recessions were the product of changes in the separation probability nearly offsetting

out-of-steady-state dynamics. We find that these shifters move the intercept of the Beveridge

curve continuously, not just at business cycle peaks and troughs. As a result, the slope of

the empirical Beveridge curve is distinct from the slope of the implied (constant separation

probability, constant matching efficiency) steady-state curve.
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A Full Decompositions

One may be concerned that results based on the Taylor approximation are not robust. While

the fit of the approximate Beveridge curve is strikingly good, it is not perfect. Therefore,

there is some room for non-linearities to affect the results. A related issues is that the log-

linearized Beveridge curve is not dynamically consistent: If we plug implied vacancies into

the matching function and the unemployment law of motion, we generally won’t get the

observed Ut+1 back.

In this section we decompose the shift in the empirical Beveridge curve using the exact

vacancy equation rather than the log-linearized version. Again, the goal is to measure the

contributions to the shift due due to out-of-steady-state dynamics, changes in the separation

probability, and changes in matching efficiency.

The starting point of our decomposition is the standard, steady-state Beveridge curve,

with constant matching efficiency and separations:

Vs,σ,∆U
t =

[
s(1−Ut)

σU1−α
t

]1/α

(19)

The steady state Beveridge curve sets ∆Ut+1 = 0. It therefore the level of vacancies that

would prevail after many months of constant s and σ.

Let tdown be a month from the downswing sample, and let tup be the corresponding

(interpolated) period from the upswing with the same level of unemployment. Then the

observed vertical shift in the Beveridge curve is Vup − Vdown. The steady-state Beveridge

curve (19) obviously entails no shift, so Vs,σ,∆U
up −Vs,σ,∆U

down = 0.

We can define other counterfactual vacancy series. We use superscripts with bars to

denote that the margin is being held constant. Thus, for example,
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Vσ
t =

[
st(1−Ut)− ∆Ut+1

σU1−α
t

]1/α

(20)

Vσ,∆U
t =

[
st(1−Ut)

σU1−α
t

]1/α

(21)

with Vs
t , Vs,σ

t , Vs,∆U
t , and V∆U

t defined similarly.

Next, consider the accounting identity

Vup −Vdown =
(
Vup −Vdown

)
−
(

Vσ
up −Vσ

down

)
+
(

Vσ
up −Vσ

down

)
−
(

Vs,σ
up −Vs,σ

down

)
+
(

Vs,σ
up −Vs,σ

down

)
−
(

Vs,σ,∆U
up −Vs,σ,∆U

down

)
. (22)

This writes Vup − Vdown as three double differences. The terms on the right hand side

have the following interpretation:

•
(
Vup −Vdown

)
−
(

Vσ
up −Vσ

down

)
: The shift in the Beveridge curve accounted for by the

time-variation in matching efficiency, conditional on having st and ∆Ut at their ob-

served values.

•
(

Vσ
up −Vσ

down

)
−
(

Vs,σ
up −Vs,σ

down

)
: The shift accounted for by time-variation in the sep-

aration probability, conditional on having ∆Ut at its observed values and σ held con-

stant.

•
(

Vs,σ
up −Vs,σ

down

)
−
(

Vs,σ,∆U
up −Vs,σ,∆U

down

)
: The shift accounted for by time-variation in

∆Ut+1, conditional on having matching efficiency and the separation probability held

constant. Note that Vs,σ,∆U
up −Vs,σ,∆U

down = 0 by construction.

Thus, we can interpret equation (22) as moving us from the steady-state Beveridge curve
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Ordering Dynamics Separations Matching
∆Ut+1, s, σ 115.26 −177.18 161.92
∆Ut+1, σ, s 115.26 −444.82 429.55
s, ∆Ut+1, σ 121.46 −183.38 161.92
s, σ, ∆Ut+1 213.19 −183.38 70.19
σ, ∆Ut+1, s 205.80 −444.82 339.01
σ, s, ∆Ut+1 213.19 −452.21 339.01

Notes: Percentage point contributions to the vertical shift in the Bev-
eridge curve, averaged over the “downswing” sample points dis-
cussed earlier. “Ordering” column shows the order in which margins
are set to their observed values. For example, the row ∆Ut+1, s, σ
starts with the steady-state curve, then adds observed ∆Ut+1, then
adds observed st, and finally adds the observed σt.

Table 2: Contributions to the Shift in the Beveridge Curve

(which cannot shift by construction) to the observed shift, by successively adding the ob-

served time-variation in margins. Equation (22) first adds observed dynamics, then adds

observed the separation probability, then adds observed matching efficiency. With three

margins there are six possible orderings, and the results will, in general, depend on the

ordering.

Table 2 shows the results of all six orderings. The results are remarkably consistent. In all

versions, separations push the Beveridge curve down during the upswing period, relative

to the downswing period. Both dynamics and matching efficiency have the opposite effect,

contributing to the counter-clockwise loop in the observed Beveridge curve. Generally, the

contribution of matching efficiency is larger than that of dynamics, sometimes dramatically

so. The only outlier is the fourth row. However, we believe that the first two rows are

the most important, because they put ∆Ut+1 first in the ordering, which ensures dynamic

consistency.

Nearly all of the contributions in Table 2 are well above 100 percent. This shows just

how important all three margins are in understanding the shift of the Beveridge curve. The

shift we observe empirically is relatively small, when compared to the effects of the shifters

taken separately.
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