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Abstract

We zero in on the expected returns of long-short portfolios based on 120
stock market anomalies by accounting for (1) effective bid-ask spreads, (2)
post-publication effects, and (3) the modern era of trading technology that
began in the early 2000s. Net of these effects, the average anomaly’s ex-
pected return is a measly 8 bps per month. The strongest anomalies return
only 10-20 bps after accounting for data-mining with either out-of-sample
tests or empirical Bayesian methods. Expected returns are negligible de-
spite cost optimizations that produce impressive net returns in-sample and
the omission of additional trading costs like price impact.
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1. Introduction

The literature on stock market anomalies has documented more than one

hundred predictors of the cross-section of stock returns. Using historical data,

these papers demonstrate market-neutral returns that average around 8% per

year. These anomalies range from those based on past return patterns, to those

based purely on accounting variables, and still others based on institutional

stock holdings. Few economic risk factors or behavioral theories are so broad

that they can make a dent in this wide variety of return predictors.

Anomalies’ expected returns, however, may be much lower than the mean

returns found in the literature. With only a couple exceptions, the literature ig-

nores trading costs, which can significantly reduce expected payoffs, and thus ex-

pected returns. Moreover, the historical data used in these papers are stale. The

literature uses data going back to the 1920s, leading to questions about whether

returns from so long ago are still relevant. Indeed, data-mining bias and investor

learning imply that returns in recent years have been much smaller (McLean and

Pontiff 2016). And the early 2000s saw a revolution in information and trading

technologies, implying that data from earlier decades may not be informative

about the future (Chordia, Subrahmanyam, and Tong 2014).

In this paper, we zero in on the expected returns of anomalies by accounting

for both trading costs and the staleness of historical data. Our main result is that,

net of these effects, expected returns are effectively zero.

Figure 1 illustrates how we “zero in.” To generate this figure, we replicate

120 anomaly signals, construct long-short portfolios using state-of-the-art cost

mitigation techniques, and reduce portfolio payoffs by half of the effective bid-

ask spread whenever a portfolio weight is adjusted. Each bar, moving from left to
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Figure 1: Anomaly Mean Long-Short Returns. Error bars show one standard
error.
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right, provides a more refined estimate of the average anomaly’s expected return.

The first bar is the mean return before trading costs (gross return) within the

original papers’ sample periods (in-sample). In our dataset we find an impressive

66 bps per month. Accounting for trading costs reduces the expected return to 38

bps, which is still a notable 4.6% per year. Adding post-publication effects, how-

ever, results in a measly 13 bps per month. Additionally restricting the sample to

the modern era of trading technology (post-2005), we should expect a negligible

8 bps per month.1 These results omit additional trading costs such as price im-

pact and short-sale fees. Indeed, short-sale costs average 10-20 basis points per

month (Cohen, Diether, and Malloy 2007; Drechsler and Drechsler 2016), and

would wipe out the remaining profits.

Though the average anomaly is unprofitable, perhaps the strongest anoma-

lies still offer large expected returns. Indeed, seven anomalies have mean net re-

turns in excess of 60 bps per month in the the data that is both post-publication

1We thank Marie Briere for suggesting this analysis. Post-2003 and post-2004 samples lead to
similar results.

2



and post-2005. This performance should be viewed with suspicion, however, as

some portion of it must be due to luck. Indeed, reporting only anomalies with

the largest mean returns is the very definition of data-mining.

We find, however, that even the strongest anomalies offer negligible expected

returns. To come to this conclusion, we use two data-mining adjustments that

have distinct statistical motivations. Despite their different origins, but both ad-

justments lead to the same quantitative result.

The first data-mining adjustment is a simple out-of-sample test. We sort

anomalies based on information available in their in-sample periods, and then

average post-publication and post-2005 net returns within quantiles. This ex-

ercise avoids using the same data to select and make inference on anomalies,

thus eliminating data-mining bias. We examine four in-sample predictors: the

net return, the net Sharpe ratio, the return reduction due to trading costs, and

turnover.

The best expected returns come from sorting anomalies on their in-sample

net Sharpe ratios. The top quartile of has a mean net return of 21 bps per month

in post-publication and post-2005 data. But net returns are not monotonic,

and the second strongest predictor (turnover) produces at most only 14 bps per

month. Moreover, these results require using equal-weighted implementations.

Restricting our implementations to value-weighting implies expected returns of

11 bps per month, at best.

The second data-mining adjustment uses an empirical Bayes estimator.

These estimators have been shown to effectively adjust for data-mining in a wide

variety of settings (Efron 2012; Azevedo et al. 2019; Liu, Moon, and Schorfheide

2020; Chen and Zimmermann 2019). Such estimators compare the cross-

anomaly dispersion of mean returns to their standard errors to determine how

much dispersion is due to luck. The overall contribution of luck is estimated
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from empirical data using frequentist methods, and then adjustments for indi-

vidual anomalies are derived using Bayesian formulas, hence the name “empiri-

cal Bayes.”

This estimation finds that most of the dispersion in mean net returns in post-

publication and post-2005 data is due to luck. As a result, even the 90th per-

centile anomaly has an expected return of 20 bps per month after adjusting for

data-mining. Even worse, implementations that use only value-weighting pro-

duce only 6 bps in the 90th percentile. These results are remarkably consistent

with our first data-mining adjustment, despite their very different methodolo-

gies.

Our data-mining results are intuitive given the distribution of mean net re-

turns in recent data. The distribution closely resembles a standard normal dis-

tribution. Only 9% of t-stats exceed 2.0 in absolute value, not far from the 5%

implied by a standard normal. Thus, the data can be largely explained by the null

of no predictability, and returns in the right tail of the distribution are mostly due

to luck.

These results may be surprising, as other papers find size, B/M, and mo-

mentum survive trading costs (Novy-Marx and Velikov 2016; Frazzini, Israel, and

Moskowitz 2015; Briere et al. 2019). Individual anomalies, however, have noisy

mean returns that are very sensitive to the sample period. Size, B/M, and mo-

mentum have positive net returns of 30 to 70 bps in the 1998-2013 sample stud-

ied by Frazzini, Israel, and Moskowitz (2015), but their net returns drop to be-

tween -30 and +25 bps post-2005. This change in performance is consistent with

the fact that standard errors on mean returns are around 40 bps per month for

samples of 15 years. This fragility demonstrates the importance of aggregating

across many anomalies, as we do in our paper.

A limitation of our study is that we do not allow for combining multiple
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anomalies. Combining anomalies can improve portfolio performance, particu-

larly when accounting for trading costs (Novy-Marx and Velikov 2016, for exam-

ple). Indeed, DeMiguel et al. (Forthcoming) apply state-of-the-art optimization

techniques to 50 anomalies, and find that combining anomalies has very power-

ful effects on trading costs in the long historical sample. Combining anomalies,

however, does not allow for sharp inferences about more recent data. It is only

by averaging over 120 anomalies that we can obtain the small standard errors

in Figure 1. Indeed, our large dataset allows us to make sharp inferences about

the recent performance of the best anomalies. Both data-mining adjustments

produce standard errors on mean net returns of around 5-10 bps.

Another limitation is that we measure trading costs with effective spreads.

Spreads are a lower bound trading cost because they correspond to the small-

est market orders, but one might argue that even lower costs can be obtained

with the strategic use of limit orders. Indeed, Frazzini, Israel, and Moskowitz

(2018) argue that traders can act as market makers and pay negative spreads,

receiving rather than paying trading costs. Acting as a market maker, however,

results in adverse selection costs (Glosten and Milgrom 1985) and execution risk

(Cont and Kukanov 2017). Moreover, theory suggests that there are fundamen-

tal trading costs that cannot be avoided regardless of the implementation (Kyle

and Obizhaeva 2016), and empirical studies find that effective bid-ask spreads

are closely related to these fundamental costs (Fong, Holden, and Tobek 2017).

In the remainder of the Introduction, we relate our study to existing litera-

ture. Section 2 describes our methods. Section 3 presents results for the average

anomaly. Section 4 examines the strongest anomalies. We examine size, B/M,

and momentum in Section 4.3. Section 5 concludes.
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Relation to the Literature In a closely-related study, Novy-Marx and Velikov

(2016) (NV) find that trading costs have a large effect on the mean returns of

twenty-three anomalies. However, there are several reasons why NV’s results do

not allow for inference about expected returns on the “anomaly zoo” (McLean

and Pontiff 2016; Freyberger, Neuhierl, and Weber 2017; Feng, Giglio, and Xiu

2017; etc)

First, and foremost, the anomalies studied in NV are not representative of the

anomaly zoo. NV’s anomalies are “twenty-three of the best known, and strongest

performing, anomaly strategies.” In contrast, anomaly zoo papers like McLean

and Pontiff (2016) are drawn from a more-or-less exhaustive literature search,

and include dozens of anomalies that are not popularly known.2

Unlike NV, our anomalies include all 68 of MP’s anomalies that allow for cost

optimization and 52 additional anomalies from Green, Hand, and Zhang (2017)

and Hou, Xue, and Zhang (2017). This large set of anomalies also differentiates

our paper from other trading cost studies, all of which examine small sets of well-

known anomalies (Frazzini, Israel, and Moskowitz 2015, and Briere et al. 2019, for

example).3 Moreover, we reconcile our results with studies of selected anoma-

lies by using data-mining adjustments. These adjustments allow us to study the

strongest anomalies using objective statistics, unlike previous papers which use

judgment to determine notable anomalies.

The second reason NV’s results cannot be used to study expected returns is

2McLean and Pontiff’s anomalies “were mostly identified with search engines such as Econlit
by searching for articles in finance and accounting journals using words such as ‘cross-section.’ ”
David McLean informed us that they also surveyed asset pricing experts to make sure they were
not missing anything.

3For other trading cost studies, see Stoll and Whaley (1983), Schultz (1983), Ball, Kothari, and
Shanken (1995), Knez and Ready (1996), Pontiff and Schill (2001), Korajczyk and Sadka (2004),
Lesmond, Schill, and Zhou (2004), and Hanna and Ready (2005), McLean (2010), Hou, Kim, and
Werner (2016), Patton and Weller (2017), Frazzini, Israel, and Moskowitz (2015), and Briere et al.
(2019). For other papers on the decay of predictability over time, see Schwert (2003), Marquer-
ing, Nisser, and Valla 2006, Huang and Huang 2013, Chordia, Subrahmanyam, and Tong (2014),
Jacobs and Müller (2017), Chu, Hirshleifer, and Ma (2017), and Chen and Zimmermann (2019).
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that NV’s trading cost exhibits a large upward bias in recent years. NV measure

trading costs using Hasbrouck’s (2009) low-frequency spreads, and as we show

in Section 2.2, low-frequency spreads are upward biased by 25-50 bps after 2003.

This bias is consistent with changes in the trading environment since decimal-

ization (Jahan-Parvar and Zikes 2019).

We account for this bias by using high-frequency spreads from NYSE’s Trade

and Quote (TAQ) database. Spreads from TAQ serve as benchmark measures of

liquidity in the microstructure literature (Goyenko, Holden, and Trzcinka 2009;

Fong, Holden, and Trzcinka 2017), and indeed all low frequency (LF) spreads

demonstrate their validity by examining their correlations with HF spreads (Cor-

win and Schultz 2012, for example).

Finally, it is not obvious how to combine NV’s trading cost effects with the

performance decay found in other papers. While performance decay tends to

reduce net returns in recent data, trading costs have plummeted too, with oppo-

site effects. Moreover, theories of limited arbitrage predict that performance de-

cay and trading costs interact cross-sectionally, implying that the measurement

of expected returns must be done at the anomaly level. To accommodate these

interactions, we provide the first joint study of trading costs and performance

decay that uses empirical trading cost data.4

2. Anomalies Data, Trading Cost Measurement, and

Portfolio Implementations

Here we describe our methods. We begin with the anomalies data (Section

2.1), then describe trading cost measurement (Section 2.2), and then describe

4Huang and Huang (2013) also examine trading costs and post-publication returns for many
anomalies and find that expected returns are positive, but they impute trading costs based on
statistics reported in the literature and study only 14 anomalies.
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our portfolio implementations (Section 2.3).

2.1. Anomalies Data

Our anomalies dataset is created from Chen and Zimmermann’s (2019) (CZ’s)

set of 156 cross-sectional return predictors from 115 publications in accounting,

economics, and finance journals. This dataset contains all 97 from McLean and

Pontiff (2016) and adds 59 predictors from Green, Hand, and Zhang (2017), Hou,

Xue, and Zhang (2017), and Harvey, Liu, and Zhu (2016).

Chen and Zimmermann show that their replicated predictors perform quite

well. The average in-sample (original publication’s sample) return is 0.72% per

month, with an average t-stat of 4.3. Moreover, their in-sample returns are very

similar to hand collected statistics from the original publications, differing by

only a handful of basis points on average.

We exclude 34 predictors that have difficult-to-evaluate trading costs. Many

of these predictors are created from event studies (such as Ritter’s (1991) study

of long-run IPO performance) that are difficult to compare with predictors that

change on a regular basis. In particular, the optimal rebalancing of event study-

based portfolios is difficult to determine, and rebalancing has a large effect when

examining trading costs. We also exclude predictors that are too discrete to be

used in our trading cost mitigation techniques such as Hong and Kacperczyk’s

(2009) sin stock classification. Continuity is important, because our most reliable

cost mitigation, the buy-hold spread, relies on the continuity of the predictor for

more efficient rebalancing.

We also exclude the Fama and MacBeth (1973) CAPM beta and Kelly and

Jiang’s (2014) tail risk factor because some academics may object that these are

not anomalies. Nevertheless, including them has almost no effect on our results.
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The anomalies are constructed from the usual data sources. More than half

of the predictors focus on Compustat data, and about 30% use purely price data.

Most of the remainder use analyst forecasts, though several focus on institutional

ownership data, trading volume, or specialized data (such as Gompers, Ishii, and

Metrick’s (2003) governance index). Appendix A.1 provides a list of the anoma-

lies. For further details, please see Chen and Zimmermann (2019).

2.2. Trading Cost Measurement

We measure returns before trading costs using the ubiquitous monthly CRSP

data. Then to adjust for trading costs, we track portfolio weights, and each time

a position is entered or exited, we assume the effective half spread is paid. This

notion of trading costs is also studied in Hanna and Ready (2005) , Korajczyk and

Sadka (2004), and Novy-Marx and Velikov (2016).

To understand this trading cost measure, it helps to know that prices in CRSP

are predominately determined by closing auctions.5 The hypothetical anomaly

portfolios studied by academics would have added additional demand or sup-

ply to these auctions, increasing the prices for buys and decreasing the prices

for sells. These price deviations, then, would reduce returns compared to the

CRSP benchmark. Our trading cost aims to measure the minimal amount by

which these prices would have been moved.6 An alternative method for measur-

ing trading costs is to exclusively use intraday data as in Knez and Ready (1996),

but this would deviate significantly from the anomalies literature which is based

on closing auction prices.

Our measure of the minimal price deviation is the effective half bid-ask

5The NYSE and NASDAQ closing auctions are described at
https://www.nyse.com/article/nyse-closing-auction-insiders-guide and
https://www.nasdaqtrader.com/content/productsservices/Trading//ClosingCrossfaq.pdf.

6We are grateful to Haoxiang Zhu for suggesting this interpretation.
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spread—that is, the absolute difference between the trade price and the prevail-

ing quoted midpoint. Supposing that the prevailing midpoint is an unbiased

estimated of the frictionless price, a buy trade “overpays” by the effective half

spread and a sell trade receives too little by the same amount. Effective spreads

use trades that are actually executed, and typically imply smaller spreads than

quoted prices due to price improvement (Stoll 2003).

We use high-frequency HF data to compute spreads whenever it is available.

Our HF data combines the Daily TAQ, Monthly TAQ, and ISSM datasets. Com-

putation of spreads follows Holden and Jacobsen (2014) (HJ) closely.7 To match

the monthly data frequencies used in the anomalies literature, we first aggregate

to a daily level by taking a share-weighted average of intra-day spreads, and then

aggregate across days within each month by taking a simple average following

Hanna and Ready (2005) and others. Anomaly returns are measured using end-

of-month closing prices and thus one may argue that end-of-month spreads are

a better match. However, averaging across the month ensures that our spreads

are not sensitive to outliers. For additional details see Appendix A.2.

Our HF data provide a mostly continuous history of transactions on the NYSE

and AMEX from 1983-2016.8 These datasets are sufficient for estimating trad-

ing costs of anomalies post-publication, as 97% of anomalies are published after

1983. However, we also wish to study the effects of cost optimization, and to

avoid data-mining bias we run our optimizations on pre-publication data.

Thus, we compute effective spreads pre-1983 (and whenever HF data is miss-

ing) using low frequency (LF) proxies based on daily CRSP data. Rather than

7We are grateful to Craig Holden for providing SAS code on his website.
8Data for NASDAQ stocks is somewhat shorter (1987-2016), as ISSM is missing NASDAQ data

before 1987. The older ISSM data also features several gaps in data. NASDAQ data is missing in
April and May 1987, April and July 1988, November and December 1989. In addition, there are 46
trading days with no data for NASDAQ stocks between 1987 and 1991, and 146 trading days with
no data for NYSE/AMEX. These data gaps are also found by Barber, Odean, and Zhu (2008).
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choose any particular LF proxy, we compute four different LF proxies and use

the simple average as our spread. The four LF proxies we use are Hasbrouck’s

(2009) Gibbs estimate (Gibbs), Corwin and Schultz’s (2012) high-low spread (HL),

Abdi and Ranaldo’s (2017) close-high-low spread (CHL), and Fong, Holden, and

Tobek’s (2017) implementation of Kyle and Obizhaeva (2016) invariance-based

volume-over-volatility measure (VoV).

This approach is motivated by the idea that the LF proxies are a forecast (or

backcast) of the unobserved high frequency effective spread. The literature on

economic forecasting has shown that a simple average of forecasts (a.k.a. com-

bination forecasts) significantly outperforms individual forecasts in a wide vari-

ety of settings (Bates and Granger 1969; Timmermann 2006). This improvement

can be understood from a simple diversification argument: the predictive power

of a particular forecast varies across observations, and combining multiple fore-

casts averages out these errors. The averaging of multiple LF illiquidity proxies

is also used in Karnaukh, Ranaldo, and Soderlind (2015), who find that averag-

ing improves on using the constituent proxies alone. Indeed, we find that our LF

average outperforms any individual LF proxy in terms of its ability to match HF

data. For further details see Appendix A.3.

[Table 1 about here.]

Table 1 illustrates the performance of our LF average proxy. Panel A begins

by showing that our four LF proxies, while highly correlated, still contain distinct

information. The typical correlation is around 75%, but can be as low as 0.59 (be-

tween HL and VoV). These results suggest that the logic of combination forecasts

applies here: by combining proxies we can average out their errors.

Panels B and C shows that this logic works. These panels compare our LF

average with HF spreads when they are available. The LF average has the high-
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est correlation with TAQ spreads, at 90%. In comparison, the best individual LF

proxies are Gibbs and VoV, which both have 84% correlations with TAQ. Panel C

shows a similar result with ISSM. The LF average has an even higher 94% cor-

relation with ISSM spreads, compared to 90% for the best individual LF proxy,

CHL.

Though LF spreads are highly correlated with HF spreads, they exhibit a

strong bias, especially in recent data. This problem is shown in Figure 2, which

plots the median difference between LF and HF spreads over time. Post-2003,

spreads are biased upward by 25-50 basis points. This bias indicates that it is im-

portant to use HF data to examine trading costs in recent years, and that the LF

trading costs used by Novy-Marx and Velikov (2016) overestimate expected costs

going forward.

[Figure 2 about here.]

Figure 3 illustrates how our combined effective spread measure have evolved

over time. Trading costs rise sharply in the early 1970s as NASDAQ stocks enter

the CRSP universe. Costs rise further in the late 1980’s, a phenomenon which is

seen in other papers (Corwin and Schultz 2012; Abdi and Ranaldo 2017). Trading

costs plummet in the 2000’s as electronic trading and decimalization have im-

proved liquidity. Overall, our combined effective spread is consistent with key

features of stock market history.

[Figure 3 about here.]

2.3. Portfolio Implementations

We examine three different implementations for each anomaly: (1) aca-

demic implementations, (2) constrained cost optimizations that allow for equal-

weighting, and (3) constrained cost optimizations that enforce value-weighting.
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Implementation is important because the more general notion of trading

costs includes not only the direct costs of trades (e.g. effective spreads), but also

the lost returns that come from avoiding the direct costs (Perold 1988). Thus, a

full accounting of trading costs requires the study of cost optimization. More-

over, the relevant implementation depends on the investor in question, so we

study two versions of our constrained optimized implementation.

2.3.1. Academic Implementations

Our academic implementations are simply equal-weighted long-short quin-

tiles. We sort stocks into quintiles based on the signal, equally-weight stocks, and

re-calculate portfolio weights when the signal updates.9

This implementation represents the modal approach in the literature. Almost

all anomaly papers report either equal-weighted portfolios or equal-weighted re-

gressions, but only a minority report value-weighted portfolios (Green, Hand,

and Zhang 2013). Similarly, though the decile and quintile sorts are both fre-

quently reported, many papers that study decile sorts also combine the 9th and

10th deciles in the long leg of their hedge portfolios, suggesting that the original

authors would similarly advocate the use of quintile sorts.

2.3.2. Constrained Optimized Implementations

Optimal implementation with many assets and proportional trading costs is

an extremely difficult problem. Theoretical solutions have been found only by

imposing stark approximations such as uncorrelated returns (Liu 2004) or an ex-

ogenous and constant target portfolio (Leland 2000). For tractability, empirical

studies often optimize within a restricted set of linear portfolio rules (Brandt,

Santa-Clara, and Valkanov 2009; DeMiguel et al. Forthcoming; Moallemi and

9For a detailed list of signal updating frequencies see Appendix A.1
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Saglam 2017), despite the fact that theory tends to imply non-linear policies.

We optimize within a set of simple non-linear rules that capture the intuition

from optimal theory. This set of rules is called the “buy/hold spread” (also known

as “banding”), and is best described with an example: a 20/40 buy/hold spread

goes long stocks with signals that are in the top 20th percentile, but only exits

stocks that have signals below the top 40th percentile (and similarly for the short

end). Between the 20th and 40th percentiles is an inaction region where no trad-

ing occurs.

Inaction regions are a key feature of optimal trading under trading costs

(Magill and Constantinides 1976). Intuitively, while frictionless trading implies

that one could always benefit from trading to improve the expected return, with

frictions there are states in which the cost of trading outweighs this benefit. Em-

pirical evidence supports this intuition. Novy-Marx and Velikov (2016, 2019)

show that the buy/hold spread outperforms other rules commonly used in in-

dustry.

Buy/hold spreads also have the advantage that they nest the standard aca-

demic implementation: a 20/20 buy/hold rule is equivalent to the standard quin-

tile sort. This feature makes it easy to interpret how our optimization improves

on the academic benchmark.

The buy/hold spread rules only prescribe which stocks to long or short—it

does not prescribe the weights of each position. For stocks that are prescribed to

go long or short, we consider both equal-weighting and value-weighting stocks

in our optimization. This choice allows our constrained optimal implementation

to tilt toward more larger and more liquid stocks if the lower cost of trading out-

weighs the gain in expected gross returns. One could consider a more complex

weighting function, but we consider only equal- and value- weighting to avoid

overfitting.
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Optimization proceeds in two steps. In the first step, choose the buy/hold

spread exit parameter to maximize the average in-sample net return of anoma-

lies within turnover quartiles. We apply this optimization twice: first assum-

ing equal-weighting and a buy/hold enter threshold of 20% using all stocks, and

second assuming value-weighting and a buy/hold enter threshold of 10% using

NYSE stocks only. In the second step, choose equal- or value-weighting to maxi-

mize in-sample net returns at the anomaly level. For further details see Appendix

A.4.

When we examine cost optimizations that enforce value-weighting, we sim-

ply enforce value-weighting in the second step of the optimization.

Our optimization is clearly constrained. We take as given a buy/hold deci-

sion rule, the enter thresholds of these rules, and only allow for equal or value

weighting. Optimizing over additional choices would, by construction, improve

performance in-sample, but would lead to more overfitting. Indeed, the fact that

our optimization dramatically improves net returns in-sample suggests that cost

of more overfitting outweighs benefits. These costs tend to be large in portfolio

choice (DeMiguel, Garlappi, and Uppal 2009, for example).

We optimize using only in-sample information for similar reasons. Our

main object of interest is the mean net return in samples that are both post-

publication and post-2005. Optimizing using only in-sample information en-

sures that our main object of interest is not affected by data-mining bias coming

from optimization.

3. Zeroing in on the Average Anomaly

Having described our methods, we can now zero in on expected returns. We

begin with academic implementations because they are widely understood and
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thus are helpful for understanding how the anomaly zoo interacts with trading

costs. We then present our first main result which examines cost-optimized im-

plementations (Section 3.2).

3.1. The Average Academic Implementation

Table 2 shows that academic implementations offer no expected returns at

all. Though the historical gross return (in-sample) was 66 bps per month, one

should expect closer to a net return of -3 bps going forward (net of costs and

post-publication). Notably, our large set of anomalies produces a standard error

on the post-publication net return of just 5 bps.

[Table 2 about here.]

Table 2 offers a few decompositions for understanding this lack of expected

returns. The post-publication row shows that roughly half of the in-sample gross

returns are eliminated by data-mining bias and changes in the investing envi-

ronment, consistent with McLean and Pontiff (2016). Though this decay is large,

post-publication data still imply a notable 30 bps per month of expected returns

(4% per year) before trading costs.

Trading costs wipe out the remaining expected returns, however. A second

decomposition shows that this return reduction (column d) is roughly equal to

the product of 2-sided turnover (column c) and the average spread paid (column

d). As the typical anomaly turns over 15% of its long portfolio and 15% of its short

portfolio each month, the total 2-sided turnover is 30%. Multiplying this turnover

by the average paid post-publication spread of 111 bps (column d) leads to the

return reduction of 32 bps.

The large impact of trading costs may be surprising, since decimalization im-

plies that the quoted spread on many stocks is just one penny. Dividing $0.01 by
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the typical share price of $20 leads to a tiny spread of 5 bps, far from the 111 bps

post-publication spread paid in Table 2.

Trading costs are extremely right-skewed, however, and anomaly strategies

require trading stocks from all over the liquidity spectrum. Thus, the typical

spread paid by an anomaly strategy is more similar to the mean spread, and

much larger than the modal spread one typically sees at a brokerage.

This skewness is seen in Figure 4, which compares distributions of spreads

in 2014. NYSE spreads (dotted line) display a mode at around 5 basis points,

consistent with the tiny spread implied by decimalization. The NYSE contains

many stocks with much larger spreads, however, as seen in the long right tail

of the distribution. Indeed, about 20% of NYSE stocks have effective spreads in

excess of 20 bps.

[Figure 4 about here.]

Anomaly portfolios load up on this right tail. The distribution of spreads paid

by academic implementations in 2014 (solid line) shares the same mode as the

NYSE distribution, but the peak is only half as tall, and the missing mass is shifted

into the right tail. As a result, the mean spread paid by anomaly strategies in 2014

is 67 bps, more than 4 times the average NYSE spread of 16 bps.

While academic portfolios tend to trade stocks that are more illiquid than

the NYSE, their trading costs are similar to that of the broad universe of stocks.

Indeed, the anomaly paid spread distribution (solid line) lines up closely with the

distribution for all stocks (dash-dotted line), and is significantly shifted to the left

compared with the distribution for the Russell 2000 (dashed line).

Returning to Table 2, the “in-sample” row shows that academic implementa-

tions are not even profitable in-sample. Compared to post-publication results,

turnover is about the same in-sample, but the average spread paid is more than
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twice as large, and thus the return reduction doubles to 61 bps per month. This

return reduction effectively wipes out the in-sample gross return.

These results suggest academic strategies naively trade stocks that are too

illiquid. But simply avoiding illiquid stocks may not be wise, as predictability is

much stronger in the more illiquid stocks. Indeed, Novy-Marx and Velikov (2019)

find that simply avoiding illiquid stocks also naive, as the reduction in gross re-

turns is as large or larger than the improvement in trading costs.

3.2. The Average Cost-Optimized Anomaly

This section presents our first main result. Here we zero in on the expected

returns of cost-optimized implementations.

We begin by showing that our constrained optimization is very effective.

Panel B of Table 2 shows that, relative to the academic implementation, op-

timization improves in-sample net returns by 33 bps per month, leading to a

noteworthy 38 bps net return. This improvement comes from a 35% decrease

in turnover and a 38% decrease in the spreads paid, while the lost returns are just

7 bps (66 - 59 bps).

Post-publication, however, the mean net return is just 13 bps per month. This

negligible return comes from the fact that the gross return drops to just 20 bps

post-publication. Thus, even with a miniscule return reduction of 8 bps, the net

return is tiny.

Figure 5 provides a more graphic view of this decline in performance. This

figure shows the details of our estimates as an event study: we average net returns

across 120 anomalies within each month relative to publication (light line). The

extreme volatility of the light line is a reminder that anomalies portfolios are not

at all sure bets.

18



[Figure 5 about here.]

The dark line shows the trailing 5-year moving average net return, once again

averaging across 120 anomalies. This moving average shows a sharp decline in

performance dropping from about 40 bps before publication to around 12 bps

afterwards.

Returning to Table 2, the “Post-Pub & Post-2005” row further isolates ex-

pected returns by accounting for the change in trading technologies that hap-

pened during the early 2000s. This change saw an explosion in trading volume

and institutional activity, which implies that the data pre-2005 is unlikely to be

representative of the future (Chordia, Subrahmanyam, and Tong 2014). We ac-

count for this change by limiting the data to anomaly-months that are both post-

publication and post-2005.10 In this more refined isolation, the typical anomaly

is expected to return only 8 bps per month, with a standard error of just 4 bps.

Even this tiny 8 bps per month may be unachievable on larger scales, as panel

B allows for equal-weighting for ease of comparison with the broader anomalies

literature. Panel C limits our cost-optimized strategies to value-weighting. There

we find 4 bps per month of expected returns. Despite the small standard error of

3 bps per month, these expected returns are statistically indistinguishable from

zero.

4. Zeroing in the Strongest Anomalies

We’ve seen that the average anomaly’s expected return is effectively zero. But

what should we expect from the strongest anomalies? This section presents our

second main result: the strongest anomalies’ expected returns are only 10-20 bps

per month.

10Using only post-2003 or post-2004 data leads to very similar results.
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To come to this result, we need to account for data-mining bias. To under-

stand this, it helps to examine the heterogeneity in post-publication and post-

2005 (“post-pub05”) mean net returns, shown in Figure 6. Some anomalies have

notable net returns. Cash flow to price (CF2Price), tangibility (Tangibili), and

momentum for young firms (MomYoung) all produce net returns in excess of 80

bps per month in this recent sample.

[Figure 6 about here.]

A portion of these large net returns is due to data-mining bias, however. This

bias is clearly seen if we break down the mean post-pub05 net return of predictor

i into two components

r̄i =µi +εi (1)

where r̄i is the observed mean, µi is the true expected return, and εi is a zero

mean noise term due to sampling variability. And suppose we define large net

returns as those where r̄i is larger than the 80th percentile r̄80. Then the condi-

tional expectation for large net returns is

E(r̄i |r̄i > r̄80) = E(µi |r̄i > r̄80)+E(εi |r̄i > r̄80)︸ ︷︷ ︸
> 0

. (2)

The noise term E(εi |r̄i > r̄80) is positive because mining for large mean returns

also selects for large realizations of noise. As a result, the mean returns in the

right tail E(r̄i |r̄i > r̄80) are upward biased compared to their true returns E(µi |r̄i >
r̄80).

We examine two approaches to removing the bias E(εi |r̄i > r̄80). Section 4.1

uses an out-of-sample test, and Section 4.2 uses an empirical Bayesian adjust-

ment. Though the methods are very different, they lead to very similar results.
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4.1. Data-Mining Adjustments Using Out-of-Sample Tests

A simple way to remove the bias in Equation (2) is with an out-of-sample test.

Specifically, we sort anomalies based on in-sample predictors, and then measure

post-pub05 net returns within quantiles to measure conditional expectations.

This exercise ensures that the data used to select anomalies is not the same as

that used to evaluate them, thus eliminating data-mining bias.

Formally, suppose we use net returns as the in-sample predictor, and focus

on anomalies above the 80th percentile r̄IS,80. Then the conditional expectation

of the post-pub05 net return is

E(r̄i |r̄i > r̄IS,80) = E(µi |r̄i > r̄IS,80)+E(εi |r̄i > r̄IS,80) (3)

= E(µi |r̄i > r̄IS,80), (4)

where E(εi |r̄i > r̄IS,80) = 0 because monthly stock returns are nearly i.i.d. and thus

sampling error in the mean εi is uncorrelated across the two, non-overlapping

samples. The sample analogue of E(r̄i |r̄i > r̄IS,80), then, provides an unbiased

estimate of the true expected return E(µi |r̄i > r̄IS,80).

We consider the following in-sample predictors: the mean net return, net

Sharpe ratio, return reduction from trading costs, and turnover. In-sample net

returns would predict post-pub05 net returns if µi is persistent across samples,

and Sharpe ratios would predict for similar reasons. Trading costs should predict

because net returns are the difference between gross returns and trading costs,

and once again trading costs may be persistent. Turnover, finally, may predict as

it is one of the components of trading costs.

Table 3 shows the results. The table shows the mean post-pub05 net return

of anomalies grouped by predictor quartiles. Predictability is weak and fragile.
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In implementations that allow for equal-weighting (panel A), the best net re-

turns come from using the net Sharpe ratio, with the top quartile producing ex-

pected returns of 21.2 bps per month. But the net returns from this sort are not

monotonically increasing, and indeed, three out of four predictors fail to pro-

duce monotonicity. Moreover, the second strongest predictor (Turnover) pro-

duces only 14.3 bps per month in its top quartile.

[Table 3 about here]

Predictability is even essentially gone when using only value-weighting

(Panel B). The net Sharpe ratio sort is very fragile, with the second quartile per-

forming much better than the first and third, suggesting that the 11.4 bps in its

top quartile cannot be trusted. Indeed, only turnover seems to produce a reliable

improvement in mean returns, and it only leads to a statistically insignificant 9.7

bps per month in its top quartile.

Overall, post-pub05 mean net returns show little predictability in out-of-

sample tests. Taken together, these results lead us to conclude that the strongest

anomalies offer at most 10-20 bps per month, once data-mining bias is ac-

counted for.

4.2. Data-Mining Adjustments Using Empirical Bayes

As an alternative data-mining adjustment, we study an “empirical Bayesian”

estimator. This method can be motivated by Equation (2). Bias comes from

the noise term E(εi |r̄i > r̄80). Thus, one can remove bias by directly estimating

E(µi |r̄i > r̄80). In other words, what the econometrician really wishes to know is

µi for the strongest anomalies, and thus our goal is not the conditional sample

mean E(r̄i |r̄i > r̄80), but the conditional expectation of true returns E(µi |r̄i > r̄80).
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Given an estimated model, Bayes rule provides the logic for computing this ex-

pectation. And to generate an estimated model, we specify a DGP and fit it to

empirical data using frequentist methods. This combination of empirical fre-

quentist methods and Bayesian logic gives the name “empirical Bayes.” Empiri-

cal Bayes has been shown to effectively remove data-mining bias in a variety of

settings (Efron 2011; Azevedo et al. 2019; Liu, Moon, and Schorfheide 2020).

We first develop the adjustment and then examine adjusted expected returns.

Throughout this section, we refer to mean returns that are post-publication,

post-2005, and net of trading costs. For ease of reading, we drop all of the quali-

fiers in what follows (“Sharpe ratio” refers to the post-publication, post-2005, net

Sharpe ratio).

4.2.1. Empirical Bayes Methodology

The Sharpe ratio for predictor i is normally distributed around the true

Sharpe ratio

r̄i

σi
∼ N

(
µi

σi
,SE(SRi )

)
, (5)

where σi is the volatility of net returns and SE(SRi ) is the standard error for

Sharpe ratio i . The normal distribution is justified by the central limit theorem

and the fact that the sample sizes are in the order of hundreds. We assume Sharpe

ratios are uncorrelated across predictors, consistent with the near-zero median

correlation in returns across anomalies (McLean and Pontiff 2016; Green, Hand,

and Zhang 2014; Chen and Zimmermann 2019).

Modeling Sharpe ratios rather than mean returns effectively rescales portfo-

lios to have the same volatility. We find that modeling mean returns leads to even

smaller expected returns, consistent with the strong performance of net Sharpe
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ratios as in Table 3.

We assumeσi is observed. This assumption can be justified by the small stan-

dard error in sample volatility for samples of 360 months.11 Under this assump-

tion and the standard assumption of zero autocorrelation in monthly returns,

SE(SRi ) = SE(r̄i )/σi = 1/
p

Ti .

True Sharpe ratios are location-scale t-distributed

µi

σi
∼ t

(
µSR,σSR,νSR,

)
(6)

where µSR is the location (mean), σSR is the scale (dispersion), νSR is the degrees

of freedom parameter. This bell-shaped distribution is consistent with the data

(Figure 6). Using a t-distribution allows for fat tails and thus the idea that there

may be a few predictors that are truly exceptional.

Equations (5) and (6) summarize the model. The model has just three param-

eters: µSR, σSR, and νSR. For simplicity, we fix νSR at different values to examine

how our results change.

Given νSR, method of moments implies a simple estimate (Xie, Kou, and

Brown 2012)12

µ̂SR ≡ 1

N

N∑
i=1

r̄i

σi
(8)

σ̂2
SR ≡ max

{(
νSR −2

νSR

)[
1

N

N∑
i=1

(
r̄i

σi
− µ̂SR

)2

− 1

N

N∑
i=1

1

Ti

]
,0

}
. (9)

11If the monthly return is normally distributed, then sample volatility is σ̂i = σip
T−1

χT−1. Then

the standard error of σ̂i = 0.037s for a sample size of 30 years.
12To see this, note

E
[
(r̄i /σi −µSR)2]= E

[
(µi /σi −µSR)2 + (µi /σi −µSR)δi +δ2

i

]
, (7)

where δi is a noise term. The cross term drops out, and then population moments are replaced
by sample moments to arrive at (7). Restricting the parameter set to positive σ2

SR results in the
max operation.
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Intuitively, the grand mean is estimated using the average of all Sharpe ra-

tios, and the scale parameter is estimated as the dispersion in Sharpe ratios

1
N

∑N
i=1

(
r̄i
σi

− µ̂SR

)2
that cannot be accounted for by noise 1

N

∑N
i=1

1
Ti

. Finally, the

factor
(
νSR−2
νSR

)
adjusts for the assumed fat tail parameter νSR.

Given estimated parameters, we calculate the bias-adjusted expected return

for predictor i with

µ̂i ≡ E

[
µ̂i

σi

∣∣∣r̄i ,σi , µ̂SR, σ̂SR,νSR

]
σi . (10)

That is, the bias adjusted return is the conditional expectation of the true Sharpe

ratio given all available information, rescaled by volatility. We rescale by volatility

for ease of comparison with our other results.

Equation (10) is free of data-mining bias, even for predictors with large r̄i .

This feature comes from the fact Equation (10) already conditions on all available

information. This property is sometimes considered a paradox (Dawid 1994),

but Senn (2008) demonstrates that it is entirely logical. Indeed, the removal of

data-mining bias using estimations analogous to Equation (10) has been demon-

strated in numerous settings (Efron 2011; Azevedo et al. 2019; Liu, Moon, and

Schorfheide 2020; Chen and Zimmermann 2019).

The mechanics of the adjustment can be seen in the special case νSR →∞. In

this case, normal-normal updating formulas imply

µ̂i = ŝi µ̂SRσi + (1− ŝi )r̄i (11)

where the “shrinkage” ŝi is given by

ŝi ≡ 1/Ti

σ̂2
SR +1/Ti

. (12)
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Intuitively, we shrink large r̄i toward the grand mean µ̂SRσi . Predictors with

smaller samples are shrunk more, as they are more vulnerable to data-mining

bias. The overall shrinkage is determined by σ̂SR, where in the extreme case that

there is no dispersion in true Sharpe ratios, shrinkage is 100%. Equation (11)

shows our estimator is closely related to the celebrated James and Stein (1961)

estimator. Thus, similar estimators can also be derived from quadratic loss argu-

ments, as well as Galtonian reverse regression (Stigler 1990).

4.2.2. Empirical Bayes Results

Table 4 describes the estimation results and bias adjusted returns. Panel A

shows our baseline cost optimizations, which allow for equal-weighting. There

we find that assuming that true Sharpe ratios are approximately normal, (νSR =
100), the standard deviation of true Sharpe ratios is 0.20 (annualized). Consid-

ering that the mean standard error on the observed net Sharpe ratio is 0.35, this

implies that the adjustment is very large (Equation (11)). Indeed, 80th and 90th

percentile adjusted net post-pub05 returns are only about 20 bps per month.

Assuming that true Sharpe ratios are fat tailed (νSR = 4) has almost no effect

on the results. These results are quantitatively very similar to those from our

predictability-based adjustment (Table 3).

[Table 4 about here.]

Bias adjustments for implementations that only use value-weighting (Panel

B) are even stronger. Indeed, our estimates imply that there is no dispersion

of true Sharpe ratios at all. This result comes from the fact that the dispersion

in observed Sharpe ratios is smaller than the average standard error, and thus

method of moments hits the positivity constraint on σSR. In other words, all

value-weighted anomalies have the same true Sharpe ratios, and the strongest
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expected returns come only from taking on more volatility. As a result, the 90th

percentile of adjusted net post-pub returns is just 6.4 bps per month. This result

is also consistent with our predictability results, where we saw that no in-sample

information is a reliable predictor of post-pub05 net returns.

The intuition for these results can be seen in Figure 6. Only 11 out of 120

anomalies produce t-stats > 2.0 in absolute value, not far from the 6 implied by

a model in which there is no predictability (σSR = µSR = 0). As a result, noise

can account for most of the heterogeneity in post-pub05 performance, Bayesian

logic implies that bias adjustments are large, leading to our finding that even the

strongest anomalies offer only 10-20 bps of expected returns.

4.3. Performance of Size, B/M, and Momentum

Objective statistics show that the strongest anomalies provide little expected

returns. But these results group famous anomalies like size, B/M, and momen-

tum with lesser known ones from the broader anomaly zoo. This section exam-

ines the performance of size, B/M, and momentum and compares our results

with the literature, which tends to focus on these well-known anomalies.

We find that size, B/M, and momentum have unremarkable performance, in-

line with the broader anomaly zoo in post-pub05 samples. This can be seen in

Figure 6, in which B/M is represented by “BM,” and momentum is represented

by “Mom12m.” These famous anomalies lie in the middle of the distribution,

centered around zero.

Table 5 takes a closer look at these anomalies. Our baseline results emphasize

the post-pub05 sample, in which size, B/M, and momentum net -26 bps, 33 bps,

and 16 bps, respectively. This sample corresponds to 2006-2016, as size, B/M,

and momentum are all published before our post-2005 period begins.
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This poor performance appears to conflict with those of other papers, which

often find that these select anomalies perform well net of costs. In particular,

Frazzini, Israel, and Moskowitz (2015) (FIM) conclude that “size, value, and mo-

mentum — are robust, implementable, and sizeable in the face of transactions

costs.”

[Table 5 about here.]

FIM’s conclusions, however, come from examining long historical samples

going back to 1926, and mean net returns are highly sensitive to the sample pe-

riod. Indeed, FIM’s results for the 1998-2013 sample show more of a mixed result.

We reprint these results in the “FIM (2015)” column of Table 5. There we see that

in the more recent data, size and B/M have notable net returns, but momentum

has a slightly negative net return.

This sensitivity is also seen in using our methodology. While size, B/M, and

momentum are unremarkable post 2006, they seem to have above-average per-

formance 1998-2013, as seen in the 3rd column of Table 5. Indeed, this earlier-

sample performance is as good or better than those reported by FIM for the same

sample period.

Consistent with these fragile results, Table 5 shows that individual anoma-

lies produce huge standard errors of 30-60 bps per month. This sampling noise

makes it impossible to tell if the any individual anomaly has strong performance

in the modern era trading technology. Indeed, our post-2005 net returns are not

statistically different than any of the other results shown in the table.

Overall, Table 5 highlights the importance of studying a large set of anoma-

lies for making inference about expected returns. The performance of individual

anomalies is very noisy in the post-2005 period. It is only by aggregating infor-

mation over many anomalies that we can make precise measurements of what
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we should expect after excluding stale data.

5. Conclusion

We zero in on the expected returns of anomalies by accounting for trading

costs and the staleness of historical data. Net of these effects, the expected return

on even the best anomalies is effectively zero.

This conclusion comes from applying data-mining adjustments to data that

includes high-frequency trading costs and a large set of anomalies. High-

frequency data is necessary as low-frequency spreads are biased upward in re-

cent years. A large set of anomalies is required as individual anomaly returns are

very noisy after excluding stale data. Finally, data-mining adjustments are re-

quired to control for the bias the comes from selecting the best anomalies. Our

study is unique in combining these datasets and methods.

In combination with recent findings, our results provide a complete account-

ing for the average return on the anomaly zoo. Previous papers show that the

gross return is about 15% publication bias (McLean and Pontiff 2016; Chen and

Zimmermann 2019). We find that trading costs account for another 40%, and

that the remaining net returns (45%) are traded away over time, consistent with

the idea that mispricing is removed as information proliferates and technology

improves (Chordia, Subrahmanyam, and Tong 2014; McLean and Pontiff 2016).

This decomposition paints a picture of a dynamic equilibrium process, but

one more in line with Lo’s (2004) adaptive market hypothesis or “efficiently inef-

ficient” markets (Grossman and Stiglitz 1980; Gârleanu and Pedersen 2018) than

standard dynamic equilibrium models (Campbell and Cochrane 1999). Every

month, researchers find imperfections in the existing market equilibrium. As

information about predictability diffuses and trading technology improves, the
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net returns of these imperfections are traded away, leading to a new equilibrium.
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A. Appendix

A.1. Description of the Anomaly Dataset

Table A.1: List of Cross-Sectional Return Predictors Part 1/3

This table lists the anomalies in our dataset. For further details, please see the Appendix of Chen and Zimmermann (2019).

Freq lists the rebalancing frequencies we assume.

Acronym Description Freq Publication

AccrAbn Abnormal Accruals A Xie 2001 AR
AccrOper Percent Operating Accruals A Hafzalla et al 2011 AR
AccrPct Percent Total Accruals A Hafzalla et al 2011 AR
Accruals Accruals A Sloan 1996 AR
AdExpGr Growth in advertising expenses A Lou 2014 RFS
AnnounRet Earnings announcement return Q Chan et al 1996 JF
AssetCGr Change in current operating assets A Richardson et al 2005 JAE
InvestAG Asset Growth A Cooper et al 2008 JF
ATurn Asset Turnover A Soliman 2008 AR
BEgrowth Sustainable Growth A Lockwood Prombutr 2010 JFR
BetaSquared CAPM beta squred M Fama MacBeth 1973 JPE
BidAskSpread Bid-ask spread M Amihud Mendelsohn 1986 JFE
BM Book to market A Fama French 1992 JF
BMent Enterprise component of BM A Penman et al 2007 JAR
BMlev Leverage component of BM A Penman et al 2007 JAR
CAPXgr Change in capex (two years) A Anderson Garcia-Feijoo 2006 JF
Cash Cash to assets Q Palazzo 2012 JFE
CF2Price Cash flow to market A Lakonishok et al 1994 JF
CFOper2Price Operating Cash flows to price A Desai et al 2004 AR
DebtFinC Composite debt issuance A Lyandres Sun Zhang 2008 RFS
DeferRev Deferred Revenue A Prakash Sinha 2012 CAR
DepGr Change in depreciation to gross PPE A Holthausen Larcker 1992 JAE
EarnCons Earnings Consistency Q Alwathainani 2009 BAR
EarnSupBig Earnings surprise of big firms M Hou 2007 RFS
EarnSurp Earnings Surprise Q Foster et al 1984 AR
EffFrontier Efficient frontier index A Nguyen Swanson 2009 JFQA
EntMult Enterprise Multiple A Loughran Wellman 2011 JFQA
EP Earnings-to-Price Ratio A Basu 1977 JF
EPforecast Earnings Forecast M Elgers Lo Pfeiffer 2001 AR
EPSDisp EPS Forecast Dispersion M Diether et al 2002 JF
EPSForeLT Long-term EPS forecast M La Porta 1996 JF
EPSrevise Earnings forecast revisions M Chan et al 1996 JF
Eq2AGr Change in equity to assets A Richardson et al 2005 JAE
ExcludExp Excluded Expenses M Doyle et al 2003 RAS
ExtFinNet Net external financing A Bradshaw et al 2006 JAE
FailurePr Failure probability Q Campbell et al 2008 JF
FinLiabGr Change in financial liabilities A Richardson et al 2005 JAE
GIndex Governance Index A Gompers et al 2003 QJE
GM2SaleGr Gross Margin growth over sales growth A Abarbanell Bushee 1998 AR
Herf Industry concentration (Herfindahl) A Hou Robinson 2006 JF
High52 52 week high M George Hwang 2004 JF
IdioVol Idiosyncratic risk M Ang et al 2006 JF
Illiquid Amihud’s illiquidity M Amihud 2002 JFM
IndMom Industry Momentum M Grinblatt Moskowitz 1999 JFE
IndRetBig Industry return of big firms M Hou 2007 RFS
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Table A.2: List of Cross-Sectional Return Predictors Part 2/3

Acronym Description Freq Publication

InstOwnSI Inst own among high short interest Q Asquith Pathak Ritter 2005 JFE
IntanBM Intangible return using BM A Daniel Titman 2006 JF
IntanCFP Intangible return using CFtoP A Daniel Titman 2006 JF
IntanEP Intangible return using EP A Daniel Titman 2006 JF
IntanSP Intangible return using Sale2P A Daniel Titman 2006 JF
InvestGr Change in capital inv (ind adj) A Abarbanell Bushee 1998 AR
Invntory Inventory Growth A Thomas Zhang 2002 RAS
InvToRev Investment to revenue A Titman et al 2004 JFQA
KZ Kaplan Zingales index A Lamont et al 2001 RFS
LaborGr Employment growth A Bazdresch Belo Lin 2014 JPE
Leverage Market leverage A Bhandari 1988 JFE
LiabCGr Change in current operating liabilities A Richardson et al 2005 JAE
LTAssetGr Change in Noncurrent Operating Assets A Soliman 2008 AR
LTNOAgr Growth in Long term net operating assets A Fairfield et al 2003 AR
MaxRet Maximum return over month M Bali et al 2010 JF
Mom12m Momentum (12 month) M Jegadeesh Titman 1993 JF
Mom12to7 Intermediate Momentum M Novy-Marx 2012 JFE
Mom1813 Momentum-Reversal M De Bondt Thaler 1985 JF
Mom1m Short term reversal M Jegedeesh 1989 JF
Mom36m Long-run reversal A De Bondt Thaler 1985 JF
Mom6Jnk Junk Stock Momentum M Avramov et al 2007 JF
Mom6m Momentum (6 month) M Jegadeesh Titman 1993 JF
MomVol Momentum and Volume M Lee Swaminathan 2000 JF
MomYoung Firm Age - Momentum M Zhang 2004 JF
NDebtFin Net debt financing A Bradshaw et al 2006 JAE
NDebtPrice Net debt to price A Penman et al 2007 JAR
NEqFin Net equity financing A Bradshaw et al 2006 JAE
NOA Net Operating Assets A Hirshleifer et al 2004 JAE
NPayYield Net Payout Yield A Boudoukh et al 2007 JF
NWCgr Change in Net Working Capital A Soliman 2008 AR
OperLeverage Operating Leverage A Novy-Marx 2010 ROF
OptVol Option Volume to Stock Volume M Johnson So 2012 JFE
OptVolGr Option Volume relative to recent average M Johnson So 2012 JFE
OrderBacklog Order backlog A Rajgopal et al 2003 RAS
OrgCap Organizational Capital A Eisfeldt Papanikolaou 2013 JF
OScore O Score A Dichev 1998 JFE
PayYield Payout Yield A Boudoukh et al 2007 JF
PensionFunding Pension Funding Status A Franzoni Marin 2006 JF
PMGrowth Change in Profit Margin A Soliman 2008 AR
Price Price M Blume Husic 1972 JF
PriceDelay Price delay M Hou Moskowitz 2005 RFS
ProfCash Cash-based operating profitability A Ball et al 2016 JFE
ProfGross gross profits / total assets A Novy-Marx 2013 JFE
ProfitMargin Profit Margin A Soliman 2008 AR
ProfOper operating profits / book equity A Fama French 2006 JFE
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Table A.3: List of Cross-Sectional Return Predictors Part 3/3

Acronym Description Freq Publication

RDirtSurp Real dirty surplus A Landsman et al 2011 AR
RealEstate Real estate holdings A Tuzel 2010 RFS
RetConglomerate Conglomerate return M Cohen Lou 2012 JFE
Rev2Price Sales-to-price A Barbee et al 1996 FAJ
RevG2InvG Sales growth over inventory growth A Abarbanell Bushee 1998 AR
RevG2OHG Sales growth over overhead growth A Abarbanell Bushee 1998 AR
RevGrowth Revenue Growth Rank A Lakonishok et al 1994 JF
RevSurprise Revenue Surprise Q Jegadeesh Livnat 2006 JFE
RoA earnings / assets Q Balakrishnan et al 2010 JAE
RoE net income / book equity A Haugen Baker 1996 JFE
Seasonality Return Seasonality M Heston Sadka 2008 JFE
ShareIs1 Share issuance (5 year) A Daniel Titman 2006 JF
ShareIs5 Share issuance (1 year) A Pontiff Woodgate 2008 JF
VolumeShare Share Volume Q Datar Naik Radcliffe 1998 JFM
ShortInterest Short Interest Q Dechow et al 2001 JFE
Size Size A Banz 1981 JFE
OSmirkNTM Volatility smirk near the money M Xing Zhang Zhao 2010 JFQA
OSmirkCP Put volatility minus call volatility M Yan 2011 JFE
Tangibility Tangibility A Hahn Lee 2009 JF
Tax2E Taxable income to income A Lev Nissim 2004 AR
TaxGr Change in Taxes Q Thomas Zhang 2011 JAR
ATurnGr Change in Asset Turnover A Soliman 2008 AR
TurnovVol Share turnover volatility M Chordia et al 2001 JFE
CF2Pvar Cash-flow to price variance A Haugen Baker 1996 JFE
Volume2Mkt Volume to market equity M Haugen Baker 1996 JFE
VolumeDol Past trading volume M Brennan et al 1998 JFE
VolumeSD Volume Variance M Chordia et al 2001 JFE
VolumeTrend Volume Trend M Haugen Baker 1996 JFE
ZeroTrade Days with zero trades M Liu 2006 JFE
ZScore Altman Z-Score A Dichev 1998 JFE
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A.2. Details of High Frequency Data

The HF effective spread for the kth trade of a given stock is

[Effective Spread]k = 2| log(Pk )− log(Mk )|, (13)

where Pk is the price of the kth trade and Mk is the midpoint of the matched

consolidated best bid and offer (BBO) quote.

We use Daily TAQ (DTAQ) data with its milli-nanosecond time-stamps when-

ever it is available (October 2003 to December 2016). Holden and Jacobsen (2014)

find that DTAQ leads to a more accurate and precise measurement of effective

spreads in the modern market environment relative to the Monthly TAQ (MTAQ)

data with its second-level time stamps.

DTAQ spreads use Holden and Jacobsen’s (2014) (HJ’s) HJ’s DTAQ code. ISSM

and MTAQ spreads use HJ’s monthly code. For pre-1999 data, we add a 2 second

delay to the HJ interpolation-matching algorithm. For data in 1999-2002 we use

the 1 millisecond delay following HJ’s MTAQ code.

In addition to the data screens used by HJ, we also discard any spreads > 40%

at the trade level (before averaging), following Abdi and Ranaldo (2017). We also

adapt the mode screens to ISSM data following Lou and Shu (2014).

The details of the data cleaning are described below.

A.2.1. ISSM Data Details

We adapt HJ’s MTAQ code to calculate ISSM spreads.

One of HJ’s screens deletes quotes in which the offer or bid size are ≤ 0 or

missing. These depth fields are missing or appear to have errors in some sub-

samples of the data, and we choose not to apply this screen on these subsamples.
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NASDAQ stocks in ISSM from 1987-1989 are all missing depth data. Roughly half

of the stocks in MTAQ from January 1, 1993 to April 5, 1993 (inclusive) are have

zero for all observations of depth, while close to 0% of stocks are have zeros be-

ginning April 6. HJ use the depth screen in order to avoid withdrawn quotes.

We choose to not use the depth screen on these subsamples, as the noise in

LF spreads is likely to be much larger than the errors introduced by withdrawn

quotes.

Quotes are excluded if any of the following hold:

• Time is before 9:00 am or after 4:00 pm

• if mode in (C, D, F, G, I, L, N, P, S, V, X, Z)

• BID>OFR and BID>0 and OFR>0

• BID>0 and OFR=0

• OFR-BID>5 and BID>0 and OFR>0

• OFR ≤ 0 or missing

• BID ≤ 0 or missing

• ofrsize ≤ 0 or missing

• bidsize ≤ 0 or missing.

NASDAQ listed stocks from 1987-1989 and NYSE listed stocks in 1986 are not

subject to the size filters as they are all missing ofrsize and bidsize.

Trades are kept if all of the following hold

• Time is after 9:30 am and before 4:00 pm

• Price > 0

• Type = T

• Cond not in (C, L, N, R, O, Z) and Size > 0

• From TAQ and correction field is zero

We add a 2-second interpolated delay using Holden and Jacobsen’s (2014)

interpolation code.
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A.2.2. MTAQ Data Details

We follow HJ’s MTAQ code to calculate MTAQ spreads. MTAQ data spans Jan

1, 1993 to Dec 31, 2014 with trades and quotes timestamped to the second.

Quotes are excluded if any of the following hold:

• Time is before 9:00 am or after 4:00 pm

• if mode in (4,7,9,11,13,14,15,19,20,27,28)

• BID>OFR and BID>0 and OFR>0

• BID>0 and OFR=0

• OFR-BID>5 and BID>0 and OFR>0

• OFR ≤ 0 or missing

• BID ≤ 0 or missing

• ofrsiz ≤ 0 or missing

• bidsiz ≤ 0 or missing.

Data from January 1, 1993 to April 5, 1993 are not subject to the size filters be-

cause about 50% of stocks have zero for all observations of ofrsize and bidsize

during this period. In contrast, close to 0% have zeros beginning April 6, 1993,

suggesting there are errors for bid and offer sizes at the beginning of the MTAQ

data.

Trades are kept if all of the following hold

• Time is after 9:30 am and before 4:00 pm

• Price > 0

• Type = T

• Corr = 0

Following Holden and Jacobsen (2014), we delay quotes as follows:

• Add 2 second interpolated delay pre-1999

• Add 1 millisecond interpolated delay based on HJ for 1999-2002
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A.2.3. DTAQ data details

We exactly follow HJ’s DTAQ code to calculate DTAQ spreads. DTAQ spans

Sep 10, 2003 to the present with trades, quotes, and NBBOs originally times-

tamped to the millisecond. On Aug 25, 2015 the Daily TAQ timestamps were

switched to the microsecond and on Oct 24, 2016 the Daily TAQ timestamps

were switched to the nanosecond. Our DTAQ code uses nanosecond timestamps

throughout even though some of the trailing digits will be zeros during the mil-

lisecond and microsecond eras.

Observations in the DATQ NBBO and quote file are excluded if any of the

following hold:

• Qu_Cond not in (A, B, H, O, R, W)

• Ask ≤ 0 or missing

• Ask size ≤ 0 or missing

• Bid ≤ 0 or missing

• Bid size ≤ 0 or missing

Observations in the DTAQ NBBO are also excluded if Qu_Cancel = B. Observa-

tions in the quote file are also excluded if Bid > Ask or Bid - Ask > 5.

We also keep only quotes that meet the following additional restrictions:

• (Qu_Source = C and NatBBO_Ind=1) or (Qu_Source = N and
NatBBO_Ind=4)

• sym_suffix = ”

• Time is between 9:00 am and 4:00 pm

Trades are kept if the all of the following hold:

• Tr_Corr = 00

• price > 0

• sym_suffix = ”

• Time is between 9:30 am and 4:00 pm
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Following Holden and Jacobsen (2014), we delay quotes as follows:

• Add 1 nanosecond (one-billionth of a second) delay post Oct 24, 2016

• Add 1 microsecond (one-millionth of a second) delay post Jul 24, 2015

• Add 1 millisecond (one-thousand of a second) delay post Sep 9, 2003

Explicitly, the Holden and Jacobsen (2014) DTAQ code adds a nanosecond de-

lay, but due to the data variable data availability in DTAQ the delays are as listed

above.

A.3. Details of Low Frequency Spreads

Three of our four proxies build off of Roll’s (1984) classic microstructure

model. The Roll model assumes that the true value of a stock follows a random

walk, and that the observed trade prices deviate from the true value by the ef-

fective spread. The fourth proxy uses a completely different framework: the Kyle

and Obizhaeva (2016) microstructure invariance hypothesis. All 4 proxies have

been shown to be highly correlated with HF spreads.

The LF proxies we use are as follows:

1. Hasbrouck’s (2009) Gibbs sampler estimate of the Roll model (Gibbs)

Hasbrouck (2009) estimates the Roll model using Bayesian methods (Gibbs

sampler) and daily closing prices. Identification comes from the "bid-ask

bounce"— the phenomenon in which buyer initiated trades tend to occur

at higher prices than seller initiated trades. Bid-ask bounce induces a neg-

ative serial correlation in transaction prices, that is stronger for stocks that

are more expensive to trade. The Bayesian approach ensures that the mea-

sured serial correlation is negative, and thus the estimated spread is well
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defined. Our Gibbs proxy is estimated using annual samples, following the

approach recommended in Hasbrouck (2009).

Gibbs forms the basis for transaction costs in several other studies of port-

folio returns, including Brandt, Santa-Clara, and Valkanov (2009); Hand

and Green (2011); Novy-Marx and Velikov (2016); and DeMiguel et al.

(Forthcoming).

2. Corwin and Schultz’s (2012) High-Low Spread (HL).

Corwin and Schultz (2012) estimate the Roll model from daily high and low

prices (hence, HL) that are available in CRSP. Identification comes from the

fact that the daily high-low ratio reflects both spreads and return volatility,

but these two components decay at different rates. Thus, the comparison

of 1-day and 2-day price ranges provides information about the effective

spread.

HL is used in many studies including Karnaukh, Ranaldo, and Soderlind

(2015); McLean and Pontiff (2016); Koch, Ruenzi, and Starks (2016); and

Chen and Zimmermann (2019).

3. Abdi and Ranaldo’s (2017) Close-High-Low (CHL)

Abdi and Ranaldo’s (2017) CHL proxy estimates the Roll model using daily

closing prices as well as the daily high and low (hence, CHL). Abdi and

Ranaldo’s identification builds off the insight that the average of the daily

high and low prices (the midpoint) contains important information about

the true price. Abdi and Ranaldo (2017) show that CHL outperforms both

Gibbs and HL using a number of empirical tests.

4. Volume-over-Volatility (VoV), based on Kyle and Obizhaeva’s (2016) mi-

crostructure invariance hypothesis.
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Our last LF proxy takes a rather different approach. Rather than build off

of Roll (1984), VoV is based on the Kyle and Obizhaeva’s (2016) microstruc-

ture invariance hypothesis. In particular, we use Fong, Holden, and Tobek’s

(2017) (FHT’s) implementation:

[VoV]i ,t =
8.0

[
Std Dev of Daily Returns

] 2
3

[Mean Real Daily Dollar Volume]
1
3

(14)

where [VoV]i ,t is the proxy for effective spread for stock i in month t , the 2
3

and 1
3 exponents are predictions of Kyle and Obizhaeva’s (2016) invariance

hypothesis, and the 8.0 coefficient was chosen by FHT to fit the average

monthly TAQ effective spread in their U.S. sample. Nominal dollar volume

is converted to real dollar volume using the CPI.

The invariance hypothesis is that the distribution of transaction costs is

the same across assets and time periods when expressed in terms of “busi-

ness time,” that is, the speed with which “bets” arrive at the market. This

hypothesis leads to the prediction that the constant term in trading costs

(alternatively, the bid-ask spread) is proportional to the RHS of Equation

(14). Fong, Holden, and Tobek (2017) find that VoV is the best perform-

ing LF proxy among many proxies in terms of correlations and RMSE with

respect to TAQ spreads.

HL and CHL both use daily high and low prices. For days in which stocks do

not trade, we use the most recent observation of high and low prices. As noted in

Abdi and Ranaldo (2017) and Corwin and Schultz (2012), on days in which stocks

do not trade CRSP provides closing quoted spreads, and closing quoted spreads

are very highly correlated with effective HF spreads in the recent sample. In these

cases, we do not use the closing quoted spread in order to make interpretation of

our LF proxy average simple.
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The LF proxies require multiple firm-day observations to compute a spread

for a given firm-month. We follow the original papers and do not compute the

proxy if the data is insufficient. Specifically, HL requires 12 daily observations,

CHL requires 12 eligible days following the definition in Abdi and Ranaldo (2017),

VoV requires 5 positive volume and 11 non-zero return observations, and Gibbs

requires the sampler to converge.

We compute a LF average if we have at least one LF proxy with data. In 12.24%

of observations, all LF and HF spreads are missing data. These missing observa-

tions have little effect on our main results, however, as only 0.27% of post-1993

observations are missing, and 90% of our anomalies are published after 1993. If

ISSM, TAQ, and the LF spreads are all missing, we match the firm to the nearest

firm with available data in terms of Euclidean distance of market equity rank and

idiosyncratic volatility rank. If idiosyncratic volatility is missing, we use just the

market equity rank. This data filling procedure follows Novy-Marx and Velikov

(2016).

A.4. Details of Cost Optimization

Table A.4 illustrates the first step of our optimization. Panel A shows the

net returns of equal-weighted quintile strategies within turnover quantiles, af-

ter implementing a variety of buy-hold spreads. The panel shows that buy/hold

spreads improve the net returns of high turnover anomalies, but do not help

much among anomalies with low turnover. Anomalies in the 3rd turnover quar-

tile perform best on average using a 20/35 buy-hold spread—that is, long po-

sitions should only be exited when they drop below the top 35th percentile of

the anomaly signal. 4th turnover quartile anomalies benefit significantly from a

20/50 buy/hold spread, but they do not produce positive net returns on average.
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Panel B shows that buy/hold spreads are reliably effective for value-weighted

NYSE decile strategies. As with equal-weighted quintiles, buy/hold spreads

do not significantly improve the net returns of anomalies with below-median

turnover. Buy/hold spreads produce significantly positive net returns for 3rd

turnover quartile anomalies and even the 4th turnover quartile anomalies, how-

ever. These results are consistent with Novy-Marx and Velikov (2016), who also

find that the trading costs for low turnover anomalies are too small to justify im-

plementing a buy/hold spread.

Bold numbers indicate the best-performing buy/hold spreads for each stock

weighting and turnover quartile combination. In the last step of our cost mitiga-

tion, we choose the stock weighting and breakpoint choice that maximizes the

net return in-sample, given the bold buy/hold spreads in Table A.4. This last step

of the optimization is done at the anomaly level, and is not shown in the table.

Figures A.2 and A.3 show that our cost mitigation is effective in-sample. The

figures show the distribution of in-sample net returns before (Figure A.2) and af-

ter (A.3) cost mitigation. Rather than use bars to indicate the histogram counts,

we list acronyms, with each acronym identifying a different anomaly. Full refer-

ences for each acronym are found in Appendix A.1.

Figure A.2 shows that net returns before cost mitigation feature a long left

tail. While most anomalies have positive net returns ranging between 0 and 60

bps per month, many anomalies have very negative net returns of -50 to -300 bps.

Averaging across all anomalies leads to the tiny net return of 6 bps per month in

Table 2.

Anomalies with above-median turnover are shown in bold. These high

turnover anomalies occupy the vast majority of the left tail of net returns. These

high turnover anomalies include many momentum anomalies like 12-month
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momentum (Mom12m) and momentum among junk-rated firms (Mom6Jnk),

but also includes a variety of unrelated anomalies like idiosyncratic volatility

(IdioVol), earnings forecast dispersion (EPSDisp), and detrended trading volume

(VolumeTre). Persistent anomaly signals like B/M (BM) and size (Size) are little

affected by bid-ask spreads and occupy the right tail of this distribution.

Cost-mitigation should be very helpful with this left tail of net returns. As

seen in Table A.4, value-weighting combined with a buy/hold spread produces

positive net returns even among anomalies in the highest turnover quartile.

Indeed, Figure A.3 shows that our cost-mitigation is quite effective in-sample.

The long left tail of net returns from Figure A.2 is gone. As a result, the average

anomaly net return increases to a notable 38 bps per month.

Cost mitigation techniques used on each anomaly are also shown in Figure

A.3. Anomalies that use value-weighting are shown in italics. Strategies that use

buy/hold spreads larger than 5 percentage points are underlined. We do not un-

derline equal-weighted 20/25 buy/hold spreads as the improvement in net re-

turns is very small (Table A.4).

60% of anomalies perform best using value-weighting once trading costs are

accounted for. A large fraction of these anomalies work best with a combination

of value-weighting and a buy/hold spread. Indeed, most of the anomalies with

negative net returns before optimization (bold) become profitable once both of

these techniques are applied.

The anomalies that are rescued by cost-mitigation include the momentum

anomalies (Mom6m, Mom12m, Mom6Jnk, etc). Indeed, momentum anoma-

lies move from among the worst performers using the academic strategies to

among the best performers once value-weighting and buy/hold spreads are ap-

plied. Other anomalies that have significantly improved by cost mitigation in-

clude idiosyncratic volatility (IdioVol), the distress anomaly (FailurePr), and the
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forecasted earnings-price ratio (EPforecas).

Still, there are a few anomalies that cost mitigation cannot resuscitate. Many

of these are related to information diffusion, such as price delay (PriceDela) or

the earnings surprise of matched large firms (EarnSupBig). Intuitively, profiting

on slow information diffusion may require trading neglected and illiquid stocks,

as well as frequent trading.

The net returns in Figure A.3 are largely not available to the public, however.

Many readers may not be able to trade on the anomalies until after they are pub-

lished. Even the academics who developed the original strategies in Figure A.3

likely cannot earn the in-sample profits, as the strategies were developed toward

the end of the in-sample period.
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Table A.4: Optimizing Buy-Hold Spreads: Mean Net Returns In-Sample by
Turnover Quartile

The table shows mean net returns in-sample for various buy/hold spread trading rules

within turnover quartiles. Bold numbers indicate the best-performing buy/hold spread

for each turnover quartile. Turnover quartiles are calculated using the EW quintile

benchmark (panel A) and the VW NYSE deciles (panel B). For buy/hold spreads in panel

A, we enter a long position for stocks that enter the top 20th percentile of the anomaly

signal, but only exit the long position when the stock drops below the percentile indi-

cated by the buy/hold lower bound in the table. Similarly, we enter short positions when

stocks enter the bottom 20th percentile, but only exit when stocks rise above the indi-

cated buy/hold lower bound. Panel B enters long positions when stocks enter the 10th

NYSE percentile and exits when the stock drops below the NYSE percentile indicated by

the buy/hold lower bound.

Panel A: EW Quintiles

Buy/Hold Lower Bound
20 25 30 35 40 45 50

Q1 0.39 0.39 0.38 0.37 0.36 0.34 0.33
Turnover Q2 0.31 0.32 0.31 0.31 0.30 0.29 0.28
Quartile Q3 0.12 0.16 0.17 0.18 0.17 0.17 0.17

Q4 -0.65 -0.51 -0.41 -0.34 -0.29 -0.24 -0.21

Panel B: VW NYSE Deciles

Buy/Hold Lower Bound
10 20 30 40 50

Q1 0.33 0.28 0.26 0.24 0.23
Turnover Q2 0.34 0.32 0.30 0.26 0.22
Quartile Q3 0.16 0.23 0.22 0.19 0.19

Q4 0.07 0.23 0.28 0.31 0.32
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Figure A.2: Distribution of Net Returns: In-Sample, Before Cost Optimization We adjust anomaly returns for effective bid-ask
spreads (Figure 3). All portfolios use equal-weighted quintile sorts, following the modal approach in the literature. Anomalies
with above median turnover (15% per month, two-sided) are shown in bold. Hash marks indicate larger bins. Published anomaly
strategies have a long left tail in net returns, and produce an average net return of only 5 bps per month.
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Figure A.3: Cost Optimization Results: Distribution of Net Returns: In-Sample. We mitigate transaction costs by applying value-
weighting and/or buy/hold spreads to 120 anomaly portfolios. Buy/hold spreads are chosen to maximize net returns in-sample
following Table A.4. Stock weighting is chosen to maximize the in-sample net return given the optimized buy/hold spread. Italicized
anomalies benefit from value-weighting. Underlined anomalies benefit from buy/hold spreads. Bold indicates anomalies with
negative net returns before cost mitigation. Hash marks indicate larger bins. Cost mitigation leads to positive net returns for the vast
majority of anomalies, and raise the average net return to 38 bps per month.
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A.5. Additional Results

Figure A.4: Distribution of Publication Years.
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Figure A.5: Distribution of Post-Publication Sample Lengths.
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Table A.5: Returns Gross and Net of Trading Costs: Post-Pub and Post-2005

This table shows the same calculations as Table 2 but uses post-2005 data only.

(a) (b) (c) (d) ≈ (b) × (c) (e) = (a) - (d)
Gross Turnover Ave Spread Return Net

Return (2-sided) Paid Reduction Return

Panel A: Equal-Weighted Long-Short Quintiles

Post-Pub & Post-2005 0.30 0.30 1.11 0.32 -0.03
(0.10) (0.10) (0.10) (0.10) (0.10)

Panel B: Cost-Mitigated using Value-Weighting and Buy/Hold Spreads

Post-Pub & Post-2005 0.20 0.20 0.60 0.08 0.13
(0.10) (0.10) (0.10) (0.10) (0.10)

Panel C: Cost-Mitigated using Buy/Hold Spreads, Value-Weighted only

Post-Pub & Post-2005 0.12 0.19 0.31 0.05 0.07
(0.10) (0.10) (0.10) (0.10) (0.10)
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Table 1: Correlations Between Low-Frequency Proxies and High-Frequency Ef-
fective Bid-Ask Spreads

Correlations are pooled. We examine four low frequency proxies for spreads:

Gibbs is Hasbrouck’s (2009) Gibbs estimate of the Roll model, HL is Corwin and

Schultz’s (2012) high-low spread, CHL is Abdi and Ranaldo’s (2017) close-high-low,

and VoV (volume-over-volatility) is Fong, Holden, and Tobek’s (2017) implementa-

tion of Kyle and Obizhaeva (2016) microstructure invariance hypothesis. LF_ave

is the equal weighted average of the four low frequency proxies. TAQ and ISSM

are computed from high-frequency data. The low frequency measures are imper-

fectly correlated, suggesting that they contain distinct information. LF_ave has the

highest correlation with high-frequency spreads. LF spread data are available at

http://sites.google.com/site/chenandrewy/code-and-data/.

Panel A: LF spread correlations (1926-2017; 2,114,436 obs.)

Gibbs HL CHL VoV
Gibbs 1.00
HL 0.68 1.00
CHL 0.76 0.88 1.00
VoV 0.75 0.59 0.74 1.00

Panel B: Correlations with TAQ (1993-2014; 1,183,068 obs.)

TAQ Gibbs HL CHL VoV LF_Ave
TAQ 1.00
Gibbs 0.84 1.00
HL 0.71 0.67 1.00
CHL 0.80 0.74 0.88 1.00
VoV 0.84 0.73 0.60 0.75 1.00
LF_Ave 0.90 0.90 0.86 0.93 0.87 1.00

Panel C: Correlations with ISSM (1983-1992; 262,381 obs.)

ISSM Gibbs HL CHL VoV LF_Ave
ISSM 1.00
Gibbs 0.88 1.00
HL 0.84 0.79 1.00
CHL 0.90 0.84 0.92 1.00
VoV 0.86 0.82 0.66 0.78 1.00
LF_Ave 0.94 0.95 0.90 0.95 0.88 1.00
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Table 2: Zeroing in on the Average Anomaly’s Expected Return

We estimate the average net return (e) of 120 anomaly long-short portfolios after ac-

counting for effective bid-ask spreads and stale data. All figures are in bps per month

except for turnover, which is a ratio per month. Figures average across months and then

across anomalies, with standard errors in parentheses. Panel A examines the typical aca-

demic implementation (Section 2.3.1). Panels B and C examine cost-optimized imple-

mentations (Section 2.3.2). Columns (a)-(d) report an approximate net return decompo-

sition. Anomalies are drawn from McLean and Pontiff (2016), Green, Hand, and Zhang

(2017), and Hou, Xue, and Zhang (2017) (Section 2.1, Tables A.1-A.3). After accounting

for trading costs and stale data, the expected return is approximately zero. Source: Cen-

ter for Research in Security Prices, New York Stock Exchange, and Institute for the Study

of Security Markets.

(a) (b) (c) (d) ≈ (b) × (c) (e) = (a) - (d)
Gross Turnover Ave Spread Return Net

Return (2-sided) Paid Reduction Return

Panel A: Equal-Weighted Long-Short Quintiles

In-Sample 66 0.31 219 61 5
(4) (0.04) (6) (7) (6)

Post-Publication 30 0.30 111 32 -3
(4) (0.04) (6) (5) (5)

Panel B: Cost-Optimized

In-Sample 59 0.20 136 21 38
(4) (0.02) (7) (2) (3)

Post-Publication 20 0.20 60 8 13
(4) (0.02) (6) (1) (4)

Post-Pub & Post-2005 14 0.20 46 6 8
(4) (0.02) (4) (1) (4)

Panel C: Cost-Optimized, Value-Weighted only

In-Sample 46 0.20 86 16 30
(4) (0.02) (5) (2) (3)

Post-Publication 12 0.19 31 5 7
(3) (0.02) (5) (1) (3)

Post-Pub & Post-2005 7 0.19 21 3 4
(3) (0.02) (3) (0) (3)

62



Table 3: The Best Expected Returns Using Out-of-Sample Tests

To avoid data-mining bias, we sort anomaly portfolios based on in-sample data and av-

erage net returns post-publication and post-2005. Quartiles are numbered from worst

expected net return a priori—for example, quartile 1 has the highest turnover, and quar-

tile 4 has the lowest turnover. All portfolio implementations use cost-optimization fol-

lowing Section 2.3.2. Panel B restricts implementations to value-weighting. Even the

strongest anomalies have expected returns of only 10-20 bps per month. Source: Center

for Research in Security Prices, New York Stock Exchange, and Institute for the Study of

Security Markets.

Panel A: Including Equal-Weighting

Post-Pub Post-05 Net Return (bps monthly)
In-Sample Predictor Quartile
Predictor 1 (Worst) 2 3 4 (Best)

Net Return 4.8 6.0 12.5 10.6
(5.8) (6.2) (6.8) (7.4)

Net Sharpe 4.9 3.5 3.9 21.2
(6.9) (7.0) (6.4) (6.2)

Return Reduction 14.0 7.0 8.5 4.3
(7.1) (6.4) (5.7) (7.1)

Turnover 1.4 7.2 11.0 14.3
(8.1) (6.2) (5.5) (6.5)

Panel B: Value-Weighted Only

Post-Pub Post-05 Net Return (bps monthly)
In-Sample Predictor Quartile
Predictor 1 (Worst) 2 3 4 (Best)

Net Return 1.4 9.3 -4.6 10.6
(6.6) (7.8) (7.4) (8.3)

Net Sharpe -0.7 10.2 -4.2 11.4
(7.0) (8.7) (7.7) (7.0)

Return Reduction 4.1 1.9 9.3 0.2
(8.4) (7.1) (7.4) (7.2)

Turnover 2.4 -0.5 4.3 9.7
(8.1) (7.0) (7.2) (7.9)
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Table 4: Empirical Bayes Estimates of the Best Expected Returns

We adjust large mean net returns in post-publication and post-2005 (post-pub05) sam-

ples for data-mining using empirical Bayes. Bootstrapped standard errors are in paren-

theses. Adjustments assume Sharpe ratios are the sum of the true Sharpe ratio and an

error term, and true Sharpe ratios are t-distributed with d.o.f. νSR, scale σSR, and mean

µSR. Given νSR, we estimate σSR and µSRby method of moments (Equation (7)). Adjusted

expected returns are computed from the conditional expectation of true Sharpe ratios

(Equation (10)). Value-weighted implementations imply that method of moments hits a

positivity constraint, and thus σ̂SR = 0. Even the strongest anomalies have expected re-

turns of only 5-20 bps per month, consistent with Table 3. Source: Center for Research in

Security Prices, New York Stock Exchange, and Institute for the Study of Security Markets.

Panel A: Including Equal-Weighting

Parameters (annualized) Post-Pub05 Net Return (bps monthly)

Assumed Estimated Percentile
νSR σ̂SR µ̂SR 50 70 80 90

100 0.20 0.11 10.2 14.3 18.9 21.3
(0.06) (0.03) (3.2) (4.1) (4.2) (5.0)

4 0.15 0.11 10.0 14.3 18.1 20.2
(0.05) (0.03) (3.1) (3.8) (4.0) (4.3)

Panel B: Value-Weighted Only

Parameters (annualized) Post-Pub05 Net Return (bps monthly)

Assumed Estimated Percentile
νSR σ̂SR µ̂SR 50 70 80 90

100 0.00 0.04 4.1 4.9 5.6 6.4
(0.06) (0.03) (3.5) (4.4) (4.7) (5.3)

4 0.00 0.04 4.1 4.9 5.6 6.4
(0.04) (0.03) (3.6) (4.3) (4.6) (5.2)

64



Table 5: Performance of Size, B/M, and Momentum

Returns are in bps per month. Post-Pub05 is our baseline post-publication and post-

2005 sample, and is equivalent to 2006-2016 for these three anomalies. FIM (2015) is

taken from Table IV of Frazzini, Israel, and Moskowitz (2015). Size, B/M, and momen-

tum perform well in earlier data, consistent with FIM. The performance of individual

anomalies is highly sensitive to the sample period, and thus we need many anomalies

to estimate expected returns post-2005. Source: Center for Research in Security Prices,

New York Stock Exchange, and Institute for the Study of Security Markets.

Panel A: Size

Post-Pub05 FIM (2015)
Return 2006-2016 1998-2013 1998-2013

Gross -25.8 60.0 66.5
(33.9) (39.2) (22.1)

Net -33.1 48.5 54.3
(33.8) (39.2) (21.9)

Panel B: B/M

Post-Pub05 FIM (2015)
Return 2006-2016 1998-2013 1998-2013

Gross 32.9 79.9 40.5
(28.7) (31.3) (36.2)

Net 24.5 66.4 29.3
(29.1) (31.8) (36.6)

Panel C: Momentum

Post-Pub05 FIM (2015)
Return 2006-2016 1998-2013 1998-2013

Gross 16.4 36.2 18.8
(60.6) (59.9) (47.1)

Net 12.6 28.8 -6.4
(60.5) (59.9) (45.8)
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Figure 2: The Bias in Low-Frequency Effective Spread Proxies. We take the dif-
ference between low-frequency proxies and TAQ spreads at the firm-month level,
and then take the median across firms to calculate an error in each month. Low-
frequency spreads are from Hasbrouck (2009) (Gibbs), Corwin and Schultz (2012)
(HL), Abdi and Ranaldo (2017) (CHL), and Kyle and Obizhaeva (2016) (VoV).
Post-decimalization, low-frequency proxies are biased upward by roughly 25-50
bps.
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Figure 3: Combined Effective Spreads Over Time. Spreads combine high-
frequency and low-frequency data. We use high-frequency Daily TAQ (DTAQ),
Monthly TAQ (MTAQ), and ISSM when available. Otherwise, we use the average
of four low frequency proxies: Gibbs (Hasbrouck 2009), HL (Corwin and Schultz
2012), CHL (Abdi and Ranaldo 2017), and VoV (Kyle and Obizhaeva 2016). The
combined spread tracks well-known structural changes like the entry of NASDAQ
(early 1970s) and decimalization (early 2000s). LF spread data are available at
http://sites.google.com/site/chenandrewy/code-and-data/. Source: Center for
Research in Security Prices, New York Stock Exchange, and Institute for the Study
of Security Markets.
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Figure 4: Distribution of Spreads Paid by Academic Implementations in 2014.
We compare the effective spreads paid by academic implementations with those
of all stocks, NYSE stocks, and Russell 2000 stocks. “Paid by anomaly portfolios”
pools across all trades implied by 120 academic implementations in 2014. Other
distributions are pooled across all stock-months in 2014. Academic implementa-
tions trade stocks across the entire liquidity spectrum, resulting in large trading
costs despite the near-zero modal spreads of recent years. Source: Center for Re-
search in Security Prices, New York Stock Exchange, and Institute for the Study of
Security Markets.
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Figure 5: Event-Time Net Returns for Cost-Optimized Implementations. For a
given month relative to publication, light lines plot the mean net return across all
anomalies. Dark lines show the trailing 5-year moving average of mean returns,
and dashed lines show 2 standard error confidence bounds. Cost optimization
is effective before publication, but net returns become tiny afterwards. Source:
Center for Research in Security Prices, New York Stock Exchange, and Institute
for the Study of Security Markets.
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Figure 6: Heterogeneity in Cost-Optimized Mean Net Returns Post-Publication and Post-2005. Many anomalies have notable net
returns, but the distribution closely resembles the null of no predictability, consistent with the idea notable net returns are largely
due to luck. Source: Center for Research in Security Prices, New York Stock Exchange, and Institute for the Study of Security Markets.
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