
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

ivcrc: An Instrumental Variables Estimator for the Correlated
Random Coefficients Model

David Benson, Matthew A. Masten, Alexander Torgovitsky

2020-046

Please cite this paper as:
Benson, David, Matthew A. Masten, and Alexander Torgovitsky (2020). “ivcrc: An In-
strumental Variables Estimator for the Correlated Random Coefficients Model,” Finance
and Economics Discussion Series 2020-046. Washington: Board of Governors of the Federal
Reserve System, https://doi.org/10.17016/FEDS.2020.046.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



ivcrc: An Instrumental Variables Estimator for

the Correlated Random Coefficients Model

David Benson∗ Matthew A. Masten† Alexander Torgovitsky‡

June 10, 2020

Abstract

We present the ivcrc command, which implements an instrumental variables (IV) estimator for

the linear correlated random coefficients (CRC) model. This model is a natural generalization

of the standard linear IV model that allows for endogenous, multivalued treatments and unob-

served heterogeneity in treatment effects. The proposed estimator uses recent semiparametric

identification results that allow for flexible functional forms and permit instruments that may

be binary, discrete, or continuous. The command also allows for the estimation of varying co-

efficients regressions, which are closely related in structure to the proposed IV estimator. We

illustrate this IV estimator and the ivcrc command by estimating the returns to education in

the National Longitudinal Survey of Young Men.
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1 Introduction

In this paper, we describe the ivcrc module for Stata, which implements a linear instrumental

variables (IV) estimator that is easy to interpret in the presence of heterogeneous treatment effects.

The estimator is based on recent identification arguments for a correlated random coefficients

(CRC) model. These arguments are described in Masten and Torgovitsky (2016), while details on

computation, estimation, and some asymptotic theory for the estimator are developed in Masten

and Torgovitsky (2014).

The motivation for the module is causal inference, which is a frequent goal in empirical work.

Suppose that we want to estimate the causal effect of a treatment variable X on an outcome Y .

A common challenge with observational data is that it may be implausible to view X as if it

were randomly assigned, even after conditioning on other observable variables. This is especially

important in economic applications, where it is common for X to be a choice variable over which

an economic agent has some control. If there are common unobserved variables that affect both the

agent’s choice of X and their realization of Y , then the relationship between X and Y in the data

will reflect both the causal effect of X on Y and the confounding effects of these latent variables.

Economists often describe this situation by saying that X is endogenous.

For example, letX be a measure of educational attainment, such as years of completed schooling,

and Y a labor market outcome, such as wages. Suppose that we want to estimate the causal effect

of X on Y . The magnitude of this effect is one measure of the returns to human capital, which plays

a key role in many areas of economics. While X and Y tend to be strongly correlated, knowing

the extent to which this correlation reflects an actual causal effect is crucial both for understanding

the returns to human capital, and for evaluating the impact of policy counterfactuals, such as an

expansion of subsidized tuition loans.

There are several reasons to expect confounding factors that make the direct relationship be-

tween X and Y a poor indicator of the causal effect of X on Y . Many of these confounding factors,

like family background characteristics, can often be observed in data and controlled for. How-

ever, the fact that individuals have some choice over their attainment of education also suggests

important confounding factors that are inherently unobservable. Key among these is unobserved

heterogeneity in the private costs and benefits of schooling.

For example, suppose as a stylized exercise that the world consists of two types of individuals:

Those who are good at mental abstraction, and those who are good at working with their hands.

Individuals in the first group find school more enjoyable, and so are prone to obtain more education

than individuals in the second group. Suppose in addition that for a given level of education, the

labor market rewards to mental skills are greater than those for physical skills. Then individuals

who obtain higher levels of education will also be more likely to have better labor market outcomes,

even if education itself has no effect on these outcomes. The correlation between X and Y could be

positive in this scenario solely because the individuals who choose to obtain more schooling tend
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to have latent traits that would be more richly rewarded in the labor market anyway.

Instrumental variable (IV) strategies are commonly used to tackle this type of selection bias. The

idea of an IV strategy is to use variation in a third variable, Z (the instrument), that is exogenous

with respect to the confounding variables, but correlated with X. Instruments that have been

used to study the returns to schooling include compulsory schooling laws (Angrist and Krueger,

1991; Oreopoulos, 2006), the distance a teenager lives from a college (Card, 1993; Mountjoy, 2019),

and local labor market conditions (Cameron and Heckman, 1998).1 The argument underlying these

strategies is that the proposed instrument affects an individual’s educational attainment by shifting

the costs and/or benefits involved, but does not itself directly affect labor market outcomes and is

uncorrelated with any other factors that do.

Stata already has a built-in command called ivregress that can be used to estimate standard

linear IV models. However, the estimator computed by this command is generally difficult to

interpret unless one assumes that the causal effect of X on Y is unrelated to an individual’s choice

of X (Angrist and Imbens, 1995; Angrist, Graddy, and Imbens, 2000; Heckman and Vytlacil, 1998,

2005).2 Assuming away of this type of selection on the gain (a form of heterogeneous treatment

effects) is unattractive when X is a choice variable, because it means that an economic agent

chooses X without knowing or considering the effect that it will have on Y . In the education

example, this would require the unpalatable assumption that individuals decide on their schooling

without considering the effects it will have on their future earnings. The CRC model addresses this

criticism by allowing the causal effect of X on Y to be an unobservable random variable, one which

is potentially correlated with X itself.

In Section 2, we briefly describe the IV CRC model implemented by the ivcrc module, as well

as the identification results and estimation approach developed in Masten and Torgovitsky (2014,

2016). The structure of this IV estimator turns out to be quite similar to a common estimator for

the varying coefficient models (e.g., Fan and Zhang 2008; Park, Mammen, Lee, and Lee 2015). We

have written ivcrc to be able to treat a standard estimator for these models as a special case.3

We briefly describe varying coefficient models in Section 3. In Section 4, we discuss syntax and

options for the ivcrc module. In Section 5, we illustrate the module by estimating the return to

schooling with a widely used extract from the National Longitudinal Survey of Young Men. For

further usage examples, see Gollin and Udry (2020), who have used the ivcrc module to estimate

agricultural production functions, and Masten and Torgovitsky (2014), who used the procedure to

revisit Chay and Greenstone’s (2005) analysis of the effect of air pollution on housing prices.

1 See also Carneiro, Heckman, and Vytlacil (2011) for an IV strategy that uses multiple types of instruments.
2 A notable exception is the case where both X and Z are binary and any additional included covariates are

included in a fully saturated way. In this case, the estimator can be interpreted as estimating a weighted average
of covariate specific local average treatment effects as long as an additional monotonicity assumption is maintained
(Imbens and Angrist, 1994; Angrist and Imbens, 1995; Abadie, 2003). Models that are saturated in covariates quickly
succumb to the curse of dimensionality, and so are rarely used in practice.

3Also see Rios-Avila (2019).
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2 The Correlated Random Coefficients Model

2.1 Model and Motivation

The simplest form of the model estimated by ivcrc has the outcome equation

Y = B0 +B1X, (1)

where Y is an observed outcome, X is an observed explanatory variable, and both B0 and B1

are unobserved random variables. The model is described as a random coefficients model due to

the treatment of B1 as an unobserved random variable. Economists have long been interested in

such models (Wald, 1947; Hurwicz, 1950; Rubin, 1950; Becker and Chiswick, 1966). To allow for

endogeneity, X is permitted to be arbitrarily dependent with both B0 and B1. This feature makes

the model one of correlated random coefficients.4

It is helpful to compare (1) with the outcome equation for the textbook linear model:

Y = α+ βX + U, (2)

where α and β are fixed (deterministic) parameters, and U is an unobservable random variable

with mean zero. This model also allows for endogeneity by permitting X to be dependent with U .

The distinction between U in (2) and B0 in (1) is not important, since one can view B0 as being

equal to α + U . Rather, the important difference between (2) and (1) is that the coefficient on X

in (2), i.e. β, is deterministic, whereas the coefficient on X in (1), i.e. B1, is a random variable.

The interpretation is that in (2) the causal effect of X on Y is the same for all agents, whereas

in (1) it is a random variable that can be dependent with X. This important difference allows for

heterogeneous treatment effects and selection on the gain of the sort described in the introduction.

One can view (2) as a special case of (1) with a degenerate B1.

Textbook discussions of (2) show that β is identified if there exists an instrument Z such that

Cov(U,Z) = 0 and Cov(X,Z) 6= 0. The corresponding IV estimator can be implemented in Stata

with the ivregress command. However, if the data is in fact generated by (1), then this estimator

converges to

Cov(Y,Z)

Cov(X,Z)
= E

[
B1 ×

X(Z −E(Z))

E[X(Z −E(Z))]

]
. (3)

This quantity is difficult to interpret in general (Garen, 1984; Wooldridge, 1997; Heckman and

Vytlacil, 1998). It is a weighted average of the causal effect of X on Y ; that is, a weighted average

of B1. The weights, however, can be both positive and negative. It generally does not equal the

4 This terminology seems to have been first used by Heckman and Vytlacil (1998). In earlier work, some authors,
for example, Conway and Kniesner (1991), had used the adjective “correlated” to describe an unrestricted correlation
structure between the random coefficients on different explanatory variables. Our model also allows for this.
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unweighted average of B1 unless B1 is independent of (X,Z), which would rule out the type of

selection on the gain scenario discussed in the introduction.

A natural question is whether there are additional assumptions under which the IV estimator

provided by ivregress would consistently estimate a parameter that is easier to interpret. For

example, are there additional conditions under which this estimator converges to the average partial

effect, E[B1]? Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) show that there are

indeed such conditions, namely, the assumption that the causal effect of Z on X is homogenous.

While convenient, this type of homogeneity assumption is uncomfortably asymmetric. It enables

the additional heterogeneity in equation (1) relative to equation (2) only by assuming away the

same type of heterogeneity in the analogous relationship between Z and X.5

2.2 Identification and Estimation by Conditional Linear Regression

Given these negative results, it is worthwhile considering estimators other than ivregress. The

ivcrc module provides such an estimator. This estimator is based on the following intuitive

control function argument, which is developed more formally in Masten and Torgovitsky (2016).6

Suppose that there exists an observable variable R such that X ⊥⊥ (B0, B1)|R. The variable R

is a “control function” (or sometimes, and more loosely, a “control variable”) because it controls

for the endogeneity in X. That is, while X is endogenous in the sense of being unconditionally

dependent with (B0, B1), it is exogenous after conditioning on the control function, R. In practice,

R is constructed from the instrument; we explain the derivation and construction of R in more

detail in Section 2.3.

Given the availability of a variable R with this property, it is straightforward to see that one

could consistently estimate the vector β(r) ≡ E[B|R = r] where B ≡ [B0, B1]
′ by a linear regression

of Y on X conditional on R = r. Letting W ≡ [1, X]′ so that Y = W ′B, one has

E[WW ′|R = r]−1 E[WY |R = r] = E[WW ′|R = r]−1 E[WW ′B|R = r] = β(r), (4)

where the second equality uses the assumption that B is independent of X (and hence W ), con-

ditional on R. In order for this argument to work, it must be the case that E[WW ′|R = r] is

invertible, which is the usual condition of no perfect multicollinearity, but now conditional on

R = r. Intuitively, there must still be some variation left in X after conditioning on R = r. As-

suming that this is the case for all r in the support of R, one can average up the linear regression

5 An influential literature started by Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist, Imbens, and
Rubin (1996), and Angrist et al. (2000) has provided conditions under which the IV estimator provided by ivregress

can be interpreted as a local average treatment effect (LATE) or a weighted average of various LATEs. While related,
these arguments are nonparametric, and in particular do not use the linearity in X of the CRC model.

6 This paper builds on a large literature on control functions, including Heckman (1979), Heckman and Robb
(1985), Smith and Blundell (1986), Blundell and Powell (2004), Florens, Heckman, Meghir, and Vytlacil (2008), and
Imbens and Newey (2009), among many others.
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estimands on the right-hand side of (4) to obtain E[B] ≡ E[β(R)], and hence the average partial

effect of X on Y , i.e. E[B1].

This identification argument suggests an estimator given by an average of conditional ordinary

least squares (OLS) estimators. The conditioning is incorporated by applying kernel weights to

each observation, where the weights reflect the distance of R from r. More concretely, given a

sample {Yi, Xi, Ri}ni=1, a conditional regression estimator of Y on W near R = r is given by

β̂(r) ≡

(
n∑

i=1

khi (r)WiW
′
i

)−1( n∑
i=1

khi (r)WiYi

)
, (5)

where khi (r) ≡ h−1K((Ri − r)/h) with K a second-order kernel function and h > 0 a bandwidth

parameter.

The conditional OLS estimator (5) displays the same type of bias-variance tradeoff that is

familiar from nonparametric kernel regression. As h → ∞, khi (r) → K(0) for all i, so that β̂(r)

is just the estimator from a usual linear regression of Y on W . We expect this estimator to be

biased for E[B] if X is endogenous. Given the control function assumption, this bias disappears

as h → 0, but at the cost of higher variance in using fewer effective observations in computing

β̂(r). Balancing these two concerns leads one to choose a value of h that leads β̂(r) to use fewer

than n effective observations, and as a consequence β̂(r) will have a slower-than-parametric rate of

convergence for β(r).

As a parameter of interest, β(r) has a clear interpretation as the average partial effect of X on

Y , conditional on R = r. Variation in this parameter as a function of r indicates treatment effect

heterogeneity. We can average β(R) for R in some known set R to obtain the average partial effect

for the subpopulation with R ∈ R. A natural estimator of this average is given by

β̂R =

∑n
i=1 β̂(Ri)1[Ri ∈ R]∑n

i=1 1[Ri ∈ R]
, (6)

where 1[·] is the indicator function that is 1 if · is true and 0 otherwise. At least in principle, β̂R

can be estimated at the parametric
√
n rate (see Masten and Torgovitsky, 2014, or, for a more

general discussion, Newey, 1994). In practice, however, such behavior likely requires R to land in

R with fairly high probability. If the local design matrix in (4) exists for (almost) every r in the

support of R, then R can be taken to be the entire support of R, so that (6) becomes an estimator

of the unconditional average of B.

A more general version of (1) is

Y = B0 +

dx∑
j=1

BjXj +

d1∑
j=1

Bdx+jZ1j ≡W ′B, (7)
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where X is now a dx–dimensional vector of potentially endogenous explanatory variables and Z1 ∈
Rd1 is a vector of exogenous explanatory variables. For notation, we combine these variables and

their coefficients together with the constant term as W ≡ [1, X ′, Z ′1]
′ and B. We rename the

excluded exogenous variable as Z2, and combine the exogenous variables (included and excluded

instruments) together into a vector Z = [Z ′1, Z
′
2]
′. The required condition on the control function

is now that W ⊥⊥ B|R, so that both X and Z1 are exogenous after conditioning on R. Given this

condition, the identification argument (4) and the estimators (5) and (6) follow exactly as before.

2.3 Estimation of the Control Function

We have shown how a control function, R, can be used to estimate interesting parameters in a

CRC model, but we have not yet explained how one can find or construct such a control function.

The most common approach is to assume that for each j = 1, . . . , dx, there exists a function hj and

unobservables V ≡ [V1, . . . , Vdx ]′ ∈ Rdx such that

Xj = hj(Z, Vj) for each j, (8)

where hj(z, ·) is strictly increasing for each z. As shown by Imbens and Newey (2009) and Masten

and Torgovitsky (2016), if (B, V ) ⊥⊥ Z, then R ≡ [R1, . . . , Rdx ]′ is a valid control function, where

Rj ≡ FXj |Z(Xj |Z) and FXj |Z(xj |z) ≡ P[Xj ≤ xj |Z = z] is the population conditional distribution

function of Xj , given Z. The components Rj of this control function can be interpreted as providing

the conditional rank (relative position) of Xj given Z. The ivcrc module is written primarily with

this choice of control function in mind, although the user can provide a different choice if desired.

In such cases, the estimator can be viewed as estimating the varying coefficient model discussed in

the next section.

We refer to Masten and Torgovitsky (2016) for more theoretical details on the interpretation

and restrictiveness of maintaining (8); see also Chernozhukov and Hansen (2005) and Torgovitsky

(2015). Here we focus on the implications for implementing (4) and (5) with R as the resulting

conditional ranks. The first implication is that it may be useful to make a distinction between

different components of the endogenous variables, X. For example, if X2 is just some deterministic

transformation of X1, say X2 = X2
1 , then X2 is also fully determined by R1. As a result, there is

no need to separately estimate and condition on R2. In the terminology of Masten and Torgovitsky

(2016), X1 is a basic endogenous variable, and X2 = X2
1 is a derived endogenous variable.

Derived endogenous variables require special treatment, since they appear as part of the vector

of explanatory variables W , but are not included as part of the conditioning variables Z in the

definition of Rj ≡ FXj |Z(Xj |Z). More formally, a component Xj of X is a derived endogenous

variable if it can be written as Xj = gj(X−j , Z) for some known function gj . Interaction terms and

other nonlinear functions form the primary examples of derived endogenous variables. The ivcrc
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module handles derived endogenous variables using the dendog option discussed in Section 4. The

empirical illustration in Section 5 provides an example of its use.

A second issue raised by this choice of R is that it is not directly observed in the data. Instead,

we need to estimate Rji = FXj |Z(Xji|Zi) in a first step for each basic endogenous variable Xj and

each observation i. The ivcrc module approaches this problem by estimating conditional quantile

functions and then inverting them using the pre-rearrangement operator studied by Chernozhukov,

Fernandez-Val, and Galichon (2010). This operator translates an estimator of a conditional quan-

tile function, say Q̂Xj |Z(·|z), into an estimator of a conditional distribution function through the

relationship

F̂Xj |Z(xj |z) =

∫ 1

0
1
[
Q̂Xj |Z(s|z) ≤ xj

]
ds. (9)

For estimating Q̂Xj |Z(s|z), the ivcrc module uses linear quantile regression (see e.g. Koenker,

2005) as implemented by Stata’s built-in qreg command. The generated regressors {R̂ji}ni=1 are

then constructed by substituting (Xji, Zi) into (9) for every i.

An expression for the asymptotic variance of β̂R needs to account for the statistical error

involved in this first step estimation of the control function R. Masten and Torgovitsky (2014)

report this calculation, but the form of the asymptotic variance is complicated and does not facilitate

direct estimation. Fortunately, β̂R is a relatively well-behaved estimator, so the bootstrap should

be valid for approximating standard errors and confidence intervals (see e.g. Chen, Linton, and van

Keilegom, 2003). The ivcrc module uses Stata’s built-in bootstrap routine for these purposes.

A third point that arises when using this choice of R is that (6) can be simplified when there is

only one basic endogenous variable. This is because R ≡ FX|Z(X|Z) is uniformly distributed when

X is continuous. As a result, the probability that R lands in any region R is known a priori and

does not need to be estimated. The population average of β(R), conditional on R ∈ R in this case

reduces to

βR = λ(R)−1
∫
R
β(r) dr, (10)

where λ(R) is the Lebesgue measure of the set R. When equation (10) holds, ivcrc estimates it

by substituting the (known) value of λ(R) and numerically approximating the integral
∫
R β̂(r) dr

that replaces β(r) with β̂(r).

A fourth point that is worth reemphasizing is that in order for (4) to exist, the design matrix

E[WW ′|R = r] must be invertible. That is, there must not be perfect multicollinearity among the

regressors after conditioning on R = r. When using the conditional rank for R, conditioning on

R = r still leaves variation in the basic endogenous variables as long as the excluded instrument,

Z2, is appropriately dependent with X near its rth quantile. See Masten and Torgovitsky (2014,

2016) for a more detailed discussion of this point. A consequence for implementation is that it is
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necessary to exclude from R regions over which this instrument relevance condition fails.

3 Varying Coefficient Models

The CRC model can be viewed as a special case of a larger class of models called varying coefficient

models. A simple example of this model is

Y = β0(S) + β1(S)X + U, (11)

where Y is an observed outcome, S are observed covariates (sometimes called “effect modifiers”),

X is our primary observed covariate of interest, and U is an unobserved variable. Both β0(·) and

β1(·) are unknown, nonparametrically specified functions. Conditional on S, this is a parametric

model in X. But conditional on X, it is a nonparametric model in S. While it is unclear who first

proposed such models (e.g., see O’Hagan and Kingman, 1978, for an early citation), their in-depth

study began with Cleveland, Grosse, and Shyu (1991) and Hastie and Tibshirani (1993). Fan and

Zhang (2008) and Park et al. (2015) provide recent reviews of this literature.

Given a sample {Yi, Xi, Si}ni=1, the local regression estimator (5) with Ri = Si is precisely the

Nadaraya-Watson (local constant) varying coefficient estimator; e.g., equation (2.1) of Park et al.

(2015). Cleveland et al. (1991) proposed a local linear estimator. Fan and Zhang (1999) study these

and other alternative estimators in detail. The asymptotic theory in Masten and Torgovitsky (2014)

extends that of the varying coefficient literature in two directions: (a) by allowing for S to be a

generated regressor and (b) by considering the asymptotic distribution of average coefficients, such

as E[β1(S)]. While the literature on varying coefficient models focuses on the functions β0(·) and

β1(·) themselves, the econometric models we consider motivate interest in these average coefficients

as well.

The ivcrc command can estimate varying coefficient models like (11) via the varcoef option.

See section 4 for details. This estimator allows all components of S to enter all coefficients. Park

et al. (2015) discuss estimators which allow one to impose the assumption that some components

of S enter some coefficients, but not others.

We conclude this section by briefly showing how the linear CRC model can be seen as a varying

coefficient model. For simplicity, we only consider the simple model (1). Write

Y = B0 +B1X

= E(B0 | R) + E(B1 | R)X + [(B0 −E(B0 | R)) + (B1 −E(B1 | R))X]

≡ β0(R) + β1(R)X + U.

By X ⊥⊥ (B0, B1) | R and the definition of U , E(U | R,X) = 0. Thus the linear CRC model is a

varying coefficient model with effect modifier R.
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4 The ivcrc Module

The ivcrc module is available on the Statistical Software Components (SSC) archive and can

be installed directly in Stata with the command ssc install ivcrc. Alternatively, the latest

version of the module can be downloaded from the GitHub repository https://github.com/

a-torgovitsky/ivcrc. The code (ivcrc.ado) and the help file (ivcrc.sthlp) can be down-

loaded from the repository and placed in the personal ado directory, as described in the Stata FAQ:

https://www.stata.com/support/faqs/programming/personal-ado-directory/.

The syntax for the ivcrc module is

ivcrc depvar [varlist 1] (varlist edg = varlist 2) [if] [in] [, options]

In terms of the IV model discussed in Section 2, depvar is Y , varlist1 consists of the components in

Z1, varlistedg are the basic endogenous variable components of X, and varlist2 are the components in

Z2. The required components of the syntax are depvar, varlist2, and varlistedg, while the remaining

terms in brackets are optional.

The module allows for the options shown in Table 1. The dendog option allows the user

to specify a list of endogenous variables that should be treated as derived (rather than basic),

with the implications for implementation discussed in Section 2. The bootstrap option controls

the calculation of standard errors and confidence intervals. Note that ivcrc does not compute

these by default, because the bootstrap procedure can be computationally intensive. The kernel

and bandwidth options allow the user to change the kernel function K and bandwidth h used to

compute the weights in (5). If the input for bandwidth is a list of numbers (separated by commas),

then ivcrc will compute different estimates for each bandwidth. The computational efficiency

of specifying several bandwidths at once is especially useful when calling bootstrap for standard

errors and confidence intervals. The ranks option controls the degree of accuracy for approximating

the integral in (9).

The average option determines the set R over which the local estimates β̂(r) are averaged and

controls how this averaging is implemented. For example, average(.1(0).3) sets R = [.1, .3] and

uses the empirical mean to evaluate the integral in (10). The module interprets a grid step of 0 as

a request for computing β̂R using the sample averaging formula (6) that does not use knowledge of

the distribution of R. Alternatively, specifying average(.1(.01).3) sets R = [.1, .3] and uses grid

steps of .01 to numerically evaluate the integral. Multiple non-overlapping sets can be specified

by adding commas. If the report suboption is given, then estimates on each set will be reported

separately together with the overall estimate. For example, average(.1(0).3, .5(0).8, report)

would report the estimate of βR just discussed, along with another empirical average estimate for

R = [.5, .8]. The grid method supports the report suboption as well.

There are two situations in which the module will always use (6) instead of attempting to
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Table 1: Options for ivcrc

Option Description

dendog(varlist ) Specify derived endogenous variables.

bootstrap() Bootstrap confidence intervals and standard errors;
default setting is no standard errors. Specify typical
bootstrap options in (), e.g. reps(#) or
cluster(varlist ). Access additional bootstrap
statistics via estat bootstrap.

kernel(string ) Choose alternative kernel functions; default is the
Epanechnikov kernel. Other options: uniform, triangle,
biweight, triweight, cosine, or gaussian.

bandwidth(numlist ) Bandwidth of kernel; default is 0.05. If multiple
(comma separated) values are specified, estimates for
each bandwidth are reported. Sub-option: together
with varcoef, specify the bandwidth for a varying
coefficients model.

ranks(integer ) Use ( 1
integer , ..., 1−

1
integer ) evenly spaced quantiles for

computing the conditional rank statistic; default is 50.

average(numlist [, report]) Options for numerical integration, with number list
syntax: lb(g)ub. Specify average(lb(0)ub) to use the
sample average method; default is average(0(0)1).
Specify non-zero values of g to use the grid method,
e.g. average(.01(.01).99) to numerically integrate
over the grid (.01, .02, ..., .99). The space of integration
may be comprised of non-overlapping ascending subsets
by specifying comma separated lists. Sub-option:
specifying average(lb1(g1)ub1,..., lbN(gN)ubN,

report) returns estimates for each subset as well as
estimates over their union. Sub-option: together with
varcoef, specify the support for kernel weights in a
varying coefficients model.

generate(varname [, replace]) Save the conditional rank estimates to varname in the
working dataset; this option is ignored when
bootstrapping.

userank(varname ) Use varname as the conditional rank statistic,
bypassing rank estimation.

savecoef(filename ) Creates a comma delimited (csv) dataset of the local
rank-specific coefficient estimates, saved to filename.

varcoef(varlist ) Estimate a varying coefficients model, in which
coefficients are conditioned on covariates specified in
varlist as an alternative to conditioning on the ranks of
the basic endogenous variables varlistedg. Options
average and bandwidth are required with varcoef

noconstant Suppress the constant term of the model.
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numerically integrate (10). The first is when there is more than one basic endogenous variable, in

which case R is a vector with a joint distribution that is not known a priori and (10) is not valid. If

a user specifies a list of subsets average(lb1(g1)ub1,..., lbN(gN)ubN) when there are multiple

basic endogenous variables, the module interprets each subset lbn(gn)ubn as belonging to the

nth endogenous variable in order of appearance in varlistedg. Due to the difficulty of specifying

sets in higher dimensions, more general multidimensional subset estimates may be obtained either

by permuting this syntax, or by storing the local estimates β̂(r) using the savecoef option and

subsequently computing any desired subset average. This is not essential to the method, but

allowing for more general specifications would complicate the syntax significantly without providing

much in the way of useful flexibility.

The second case in which ivcrc only uses the empirical average (6) is when the varcoef option

is called. Passing varcoef(varlist ) skips the estimation of R̂i and uses the variables in varlist in

its place. Since the density of these variables is generally not known a priori, (10) may not be true,

so (6) is used. The average in (6) can still be taken over some specified subset R, and such a set is

still specified using the average(lb(0)ub) syntax. Note that using both the (varlistedg = varlist2)

syntax and passing varcoef as an option will generate an error.

5 Using ivcrc to Estimate the Returns to Schooling

In this section, we apply the ivcrc module to the problem discussed in the introduction of esti-

mating the returns to schooling. Our discussion builds off of Card (1994, 2001) and Heckman and

Vytlacil (1998), who note that a simple model of optimal schooling decisions (such as Becker, 1975)

would generate a CRC model like (1) or (7). Our analysis uses the same data as Card (1993) and

Kling (2001), which is available as part of Cameron and Trivedi’s (2009) textbook on Stata for

Microeconometrics. The data is an extract from the National Longitudinal Survey of Young Men

(NLSYM) that consists of 3,010 men who were aged 24–34 in 1966. The extract contains variables

from both 1966 and a follow-up survey in 1976. The data, as well as the code for the following

analysis, is available at https://github.com/a-torgovitsky/ivcrc.

We begin by estimating a linear regression of log wages on schooling, potential work experience,

and demographic control variables. This type of regression is often referred to as a Mincer (1958,

1974) equation; see Heckman, Lochner, and Todd (2006) for an in-depth discussion. The estimates

indicate that an additional year of schooling is associated with approximately a 7.25 percent increase

in 1976 wages:

. reg wage76 grade76 exp76 expsq76 ‘ControlVars’, robust

Linear regression Number of obs = 3,010

F(27, 2982) = 52.45
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Prob > F = 0.0000

R-squared = 0.3040

Root MSE = .37191

------------------------------------------------------------------------------

| Robust

wage76 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0725423 .0038685 18.75 0.000 .0649572 .0801275

...

In this regression and throughout the subsequent analysis, we include a set of sociodemographic

controls for race (black), parent’s education (daded, momed, famed1-8), family structure at age 14

(momdad14, sinmom14), and geographic region (smsa66, smsa76, reg1-reg8).7 While not essential

to demonstrating the usage of the ivcrc module, the inclusion of these controls shows that the

semiparametric estimator implemented by this model does not suffer from the curse of dimension-

ality. Also, note that potential work experience, exp76 is defined as exp76 = grade76− age76− 6,

following the standard convention for Mincer equations.

As discussed in the introduction, education is a choice variable that is likely correlated with

latent factors that affect wages, even after controlling for sociodemographic characteristics. Card

(1993) used an indicator for living (at age 14) in a county with a four-year college as an instrument

for education. Proximity to a four-year college is associated with about a third of a grade higher

educational attainment:

. reg grade76 col4 ‘ControlVars’, robust

Linear regression Number of obs = 3,010

F(25, 2984) = 53.50

Prob > F = 0.0000

R-squared = 0.2937

Root MSE = 2.2591

------------------------------------------------------------------------------

| Robust

grade76 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

col4 | .3669905 .1023706 3.58 0.000 .1662663 .5677147

7 For readability, we collect these into a local variable ControlVars in the do file for this exercise. The local
variable TableOptions contains a list of formatting and display options for estout.
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...

In order for college proximity to be a valid instrument, it should, after accounting for control

variables, have no direct effect on wages in 1976 and also be uncorrelated with other factors that

are correlated with wages or schooling decisions. There are several reasons to be suspect of this

requirement; see for example Kling (2001), or Mountjoy (2019) for a modern discussion with richer

geographic data. Here, we simply compare estimators and take the validity of the college proximity

instrument for granted.

The textbook linear IV estimator suggests that an additional year of schooling causes about a

13.33 percent increase in 1976 wages:

. ivregress 2sls wage76 (grade76 exp76 expsq76 = col4 age76 agesq76) ///

> ‘ControlVars’, perfect

Instrumental variables (2SLS) regression Number of obs = 3,010

Wald chi2(27) = 1007.25

Prob > chi2 = 0.0000

R-squared = 0.2030

Root MSE = .39614

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .1333034 .0493359 2.70 0.007 .0366068 .2300001

...

This interpretation presumes that the causal effect of schooling on wages is constant. It yields

the potentially puzzling conclusion that the raw association between education and wages actually

substantially understates the causal effect of education on wages. As Card (2001) documents, this

conclusion about the returns to schooling is actually fairly common across diverse studies that use

a variety of IV strategies and data sources. One explanation proposed by Card (2001) is that this

arises from a failure to account for heterogeneity in the causal effect of schooling on wages.

We can use the ivcrc module to assess this explanation. The syntax is similar to that for the

IV estimator:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76)

(default settings do not compute standard errors, see bootstrap() option)

(estimating the conditional rank of grade76)

(estimating beta(r) at each r[i] rank in the sample)
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IVCRC Number of obs = 3,010

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0807563 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .05

We treat potential experience, exp76, as a derived endogenous variable here because it is defined as

a deterministic function of grade76 and age76. Whereas the coefficient on grade76 reported by the

standard linear regression estimator implemented by ivregress will estimate a difficult-to-interpret

quantity like (3), the coefficient on grade76 produces an estimator of the average causal effect of

a one year increase in grade76. The causal effect estimated here of 8.08 percent is significantly

lower than the linear IV estimate of 13.33 percent. This supports Card’s (2001) reasoning if, as

he argues, the usual linear IV estimator places more weight on individuals with higher returns to

schooling. The ivcrc estimate is also similar to the linear regression coefficient 0.0725.

We now demonstrate some of the options for ivcrc by evaluating the statistical significance and

robustness of this estimate. First, we compute standard errors, which tends to be time-consuming

due to the necessity of using the bootstrap. The syntax and results are:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020))

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0807563 .0188294 4.29 0.000 .0438514 .1176612

...

------------------------------------------------------------------------------
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Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .05

The confidence interval here is a bit wider than for the linear regression estimator, although sub-

stantially narrower than for the usual linear IV estimator. The textbook IV estimator and the

ivcrc estimates are constructed under non-nested assumptions, so this by itself is not unexpected.

However, since the bandwidth controls a bias-variance trade-off in the ivcrc estimator, it does

suggest that we may want to explore decreasing the bandwidth in order to guard against potential

bias due to oversmoothing. So next we evaluate the point estimates at several bandwidths:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bandwidth(.025, .05, .075)

(default settings do not compute standard errors, see bootstrap() option)

(estimating the conditional rank of grade76)

(estimating beta(r) at each r[i] rank in the sample)

IVCRC Number of obs = 3,010

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0869784 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0807563 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .05

------------------------------------------------------------------------------

grade76 | .0779116 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .075

The estimate is relatively stable over different bandwidths, but does decline somewhat as the local

estimates β̂(r) are computed using larger neighborhoods of r. Obtaining standard errors and

confidence intervals using the smallest bandwidth in this list,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025)

16



(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0869784 .029612 2.94 0.003 .0289401 .1450168

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find a larger standard error and a wider confidence interval, as anticipated. Though more

comparable to the standard error and confidence interval from the linear IV model, the ivcrc

standard error remains roughly 1.5 times smaller at this smaller bandwidth.

The number of quantiles used to approximate the integral in (9) and the functional form of the

kernel weights K could in principle also impact the ivcrc estimates. Quadrupling the number of

quantiles from its default of 50 while carrying forward the smaller bandwidth from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
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grade76 | .078291 .0320301 2.44 0.015 .0155132 .1410688

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find that the results are not very sensitive to how finely the integral in (8) is approximated.

Swapping a uniform kernel for the (default) Epanechnikov kernel, while carrying forward a smaller

bandwidth and more accurate rank estimation from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) kernel(uniform)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0780691 .0302534 2.58 0.010 .0187736 .1373647

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find that the results are also not sensitive to the functional form of the kernel, in concordance

with the usual folklore for nonparametric kernel regression.

One interesting way to explore both the robustness and potential explanations for our finding

is to change the set R over which the average is being taken. By default, ivcrc averages over all

estimated conditional ranks (R̂i) directly as in (6). Alternatively, if we are concerned about results

being driven by outliers in the education distribution, we can specify R to be [.05, .95]. Trimming

the education distribution in this way, while maintaining the smaller bandwidth and more accurate

rank estimation from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///
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> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(.05(0).95)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0735619 .0345887 2.13 0.033 .0057692 .1413546

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025

we obtain slightly lower estimated returns to education and a slightly larger standard error, but

overall similar results to the estimates which used the full observed distribution of education.

When there is a single basic endogenous variable, as in the present application, another check on

the estimates is to use numerical integration based on (10). Specifying an equally spaced grid with

steps of .01 over the outlier-trimmed region [.05, .95] from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(.05(.01).95)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------

grade76 | .0730978 .0341266 2.14 0.032 .0062108 .1399847

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025

we obtain estimates that are nearly identical to those obtained using the default sample average

method, (6).

We can also consider smaller sets of R to explore heterogeneity in the return to schooling. For

example, an estimate for individuals in the lower half of the education distribution is:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(0(0).5)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .1038839 .053131 1.96 0.051 -.000251 .2080187

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,.5] rank subset; Bandwidth = .025

This suggests that individuals with lower schooling have higher returns to schooling. Specifying a

set for each quartile of the education distribution reveals a pattern that supports this explanation,

while indicating potentially more nuance,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(0(0).25, .2501(0).5, .5001(0).75, .7501(0)1, report)

(running _ivcrc_estimator on estimation sample)
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Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .078291 .0320301 2.44 0.015 .0155132 .1410688

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0651947 .0616853 1.06 0.291 -.0557062 .1860957

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,.25] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .1418537 .1006071 1.41 0.159 -.0553327 .33904

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.2501,.5] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0264401 .066345 0.40 0.690 -.1035938 .1564739

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.5001,.75] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0787306 .0512649 1.54 0.125 -.0217468 .1792081

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.7501,1] rank subset; Bandwidth = .025

The module first displays the estimate taken over the union of the given sets, in this case the overall

sample average. Then ivcrc reports the estimates over each subset. We find that the estimates of
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the returns to schooling vary across the education distribution, with second quartile exhibiting large

returns that are comparable to the linear IV estimate. However, the estimates are less precisely

estimated than the average return using the entire sample, which reflects the fact that each subset

only uses approximately one fourth of the number of effective observations.
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