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Abstract
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and dollar-yen currency pairs over a ten-year period on the EBS platform, a
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information share of market orders from algorithmic and high-frequency traders
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1 Introduction

The past few decades have seen a major transformation in many important financial

markets. Floor trading with dedicated market makers has given way to electronic limit

order markets, where any trader can act as both market maker and market taker. The

traditional classification of liquidity providers as “uninformed” and liquidity takers

as “informed” has become less relevant in these markets. Price discovery may be

driven by both liquidity makers and takers revealing information through their trading

actions as in the theoretical models of Parlour (1998) and Roşu (2016). In addition,

the advent of algorithmic and high-frequency trading has led to a setting where the

vast majority of trades are now conducted with a computer trader on at least one

side of the transaction. These changes have led to a need for research that helps

us understand how the changing nature of the trading process has affected the way

information is impounded into asset prices (see O’Hara, 2015, for a discussion).

In this study, we use a long time series of foreign exchange (FX) trading in the

euro-dollar and dollar-yen currency pairs on the Electronic Broking Services (EBS)

platform, with data spanning from 2008 to 2017. We use the standard empirical tool

for evaluating price discovery—the Vector Autoregression (VAR) framework intro-

duced by Hasbrouck (1991a,b)—but we extend it by studying the impact of several

types of market orders and by also estimating the information content of limit or-

ders. First, as the data allow us to observe trader types, we separate the contribution

to price discovery from market orders of three different types of traders: manual

traders (labeled as Manual), algorithmic traders in the employ of a bank (labeled as

Bank-AT), and algorithmic traders in the employ of “non-banks” (labeled as HFT).

Second, using both trade and quote data, we construct three types of limit order flow:

price-improving orders, price-matching orders, and price-worsening orders, and study

the contribution of these limit order flow variables to price discovery1. We then esti-

mate the price discovery models separately for each month of the sample and report

the evolution of the estimates over time. The long sample and our emphasis on the

time-varying nature of price discovery affords a novel perspective in this literature,

as previous studies rely on short samples that cannot reveal any long-terms trends.

Our main results for the euro-dollar currency pair can be summarized as follows

1Recent empirical work, including Hautsch and Huang (2012), Cont, Kukanov, and Stoikov
(2014), Fleming, Mizrach, and Nguyen (2017), and Brogaard, Hendershott, and Riordan (2018),
propose similar ways of extending the traditional empirical model to allow for limit orders.
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(the results for the dollar-yen are qualitatively the same but the quantitative estimates

differ). First, the importance of market orders in price discovery decreases sharply

over the sample period. In the beginning of the sample, in 2008, market orders

explain upwards of 50 percent of the variation in the efficient price.2 By the end of

the sample period, in 2017, this number has fallen to around 20 percent. Second, we

show that this steep drop in the importance of market orders can almost exclusively

be attributed to orders submitted by Manual traders, as opposed to algorithmic

and high-frequency traders (i.e., Bank-AT and HFT). In particular, the share of

price discovery attributable to Manual market orders drop from around 30 percent

to almost zero percent during the sample. Third, the price variation that can be

attributed to limit orders increases from about 25 percent to around 50 percent from

the beginning to the end of the sample. Finally, the overall speed of price discovery

increases during the sample period, such that the transition to the new equilibrium

price following an order event happens more quickly, consistent with the increased

presence of computer-driven trading.3 We evaluate the speed of price discovery by

introducing a new measure in this context, labeled the π-life of the price impact

function (Fanelli and Paruollo, 2010).4 The π-life measures how quickly the price

impact function converges to its long-run (permanent) value, and can thus be seen

as a measure of how quickly the price reaches its new equilibrium after an order

shock. More generally, the π-life can be viewed in this context as a proxy for market

efficiency, as it essentially reflects how quickly new information is impounded into

prices.

The empirical results strongly support the notion that in modern electronic mar-

kets both market orders and limit orders are used by informed traders, in the sense

2Formally, there are no pure “market”orders on EBS, as all orders contain a limit price. However,
some orders are immediately marketable (they result in an immediate trade), and we refer to these
as market orders.

3These results are generally in line with the literature that explicitly studies whether HFTs and
other algorithmic traders contribute to price efficiency, and which finds that HFTs seem to push
prices towards efficiency. See, for instance, Hendershott and Riordan (2013), Brogaard, Hendershott,
and Riordan (2014), Chaboud, Chiquoine, Hjalmarsson, and Vega (2014), and Benos, Brugler,
Hjalmarsson, and Zikes (2017).

4The π-life measure introduced by Fanelli and Paruollo (2010) can be viewed as a generalization
of the commonly used concept of half-life. The half-life of a shock to a stationary variable captures
how long it takes for half of the effect of that shock to die out. For non-stationary variables, such
as price processes, the effect of a shock need not die out over time and there may be a long-run
permanent effect; the π-life subsequently measures how long it takes before the effect of a shock gets
within some pre-specified range of this permanent response.
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that both types of orders contribute substantially to permanent price changes. This

conclusion is in line with the studies by Fleming, Mizrach, and Nguyen (2017) and

Brogaard, Hendershott, and Riordan (2018), who analyze price discovery in bond

and equity markets, respectively. However, the results presented here allow us to

study how the relative importance of market and limit orders in price discovery has

evolved over time, with the evidence pointing to an increasing use of limit orders for

informed trading over the period 2008 to 2017, while the importance of market or-

ders decreases. Importantly, this decrease seems to be associated almost exclusively

with market orders generated by only one type of trader, manual traders. These

orders become both relatively less common—as a proportion of all market orders,

they drop from about 65 percent to around 15 percent in the euro-dollar during the

sample—and less informative, as the permanent price impact of a given-sized Manual

trade decreases over the sample period. This evidence is consistent with the increas-

ing adoption of computer-based algorithms by banks to execute the large orders of

institutional investors.

Our study contributes to the growing empirical literature on price discovery in

limit order markets, highlighting the apparent ongoing shift from informed liquidity

taking to informed liquidity provision. The theoretical microstructure literature has

long recognized that the view of liquidity providers as uninformed is likely overly

simplistic, but the challenges to building models with strategic liquidity provision

have proven significant.5 In a recent theoretical study by Roşu (2016), it is shown

that informed traders prefer limit orders when their information advantage is small.

The increased speed of price discovery is consistent with improvements in market

efficiency during our sample period, possibly as a result of the increase in algorithmic

trading participation (see Footnote 3). This would suggest that private information,

broadly interpreted, has become more difficult to obtain, and one might therefore

expect an increased use of strategic liquidity provision.

From a practical perspective, our results have important implications for mea-

suring the degree of information asymmetry in the FX market and for applications

that rely on such measures. The standard approach in the literature has been to use

Kyle- and Amihud-type measures (Kyle, 1985, Amihud, 2002), which are designed

5Contributions to the modelling of limit order markets include, among others, Glosten (1994),
Chakravarty and Holden (1995), Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel
(2005), Goettler, Parlour, and Rajan (2005, 2009), Kaniel and Liu (2006), Roşu, (2009, 2016), and
Riccó, Rindi, and Seppi (2018).
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to capture the price impact of informed market order flow. Our results imply that

such measures likely have, over time, increasingly underestimated the degree of in-

formation asymmetry in the FX market, as informed traders have, over time, also

increasingly relied on limit rather than market orders to impound information into

exchange rates. Thus, the information content of both market and limit orders should

be considered to obtain a comprehensive picture of information asymmetry in the FX

market.

Moreover, our findings suggest that strategic liquidity provision might also be

challenging in practice, as it appears that market participants have only gradually

developed the skills necessary to implement the strategy. Previous studies have typ-

ically examined the response of market participants, and the resulting impact on

market quality, of various structural changes, such as technological upgrades and

trading protocols. While we also find that such changes have an immediate impact

on the price discovery process in the FX market, the nature of price discovery has

been gradually changing over the course of many years, even in the absence of such in-

terventions. This “non-stationarity” of the price discovery process needs to be kept in

mind when running various regression analyses, because it may easily lead to spurious

inference.

During our sample period, the fraction of computer-driven algorithmic and high-

frequency trading increased substantially, and manual traders became a minority on

the EBS platform. In addition, several changes to the market rules occurred on EBS,

including a minimum quote life (MQL) rule, a decimalization rule, a partial reversal

of this decimalization rule, and a latency floor.6 Although these changes to the

market rules do not explain the long-run patterns described above, some still affected

price discovery in important ways. In particular, changes in tick size had clear and

significant effects. The “decimalization” policy implemented in March 2011 decreased

the tick size by a factor of 10 and was subsequently partially reversed about a year

and a half later, when the tick size was increased by a factor of 5. Chaboud, Dao,

and Vega (2018) explicitly analyze the effects of these changes on various aspects

of HFT participation and trading activities. As they point out, the most directly

observable effect of decimalization was the increased relative taking by HFTs, whereas

6In accordance with EBS’s own nomenclature, as well as previous academic literature on this
topic, the term “decimalization” here refers to the reform on EBS whereby the tick size was decreased
by a factor of 10, not a switch from a “fractional” to a “decimal” system.
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the making activities of HFTs remained fairly constant around decimalization. Our

results provide an interesting complement to the findings in Chaboud, Dao, and Vega

(2018), as we show that decimalization also had a clear and significant impact on how

different types of limit orders contributed to price discovery.

The rest of the paper is organized as follows. In Section 2, we provide a brief

overview of the institutional features of the EBS platform. In Section 3, we describe

the data and introduce our methodology. In Section 4, we report our main analysis of

time-varying price discovery in the EBS market and in Section 5 we discuss the effects

of structural changes on the EBS platform on the price discovery process. Section 6

concludes.

2 The EBS platform

2.1 Brief overview

Trading activity in the foreign exchange market is spread across a large number

of trading venues using a variety of technologies. But two electronic trading plat-

forms, EBS Market and Thomson Reuters Matching, both central limit order books

(CLOBs), are at the core of the global interdealer spot market, with prices from

these two platforms widely viewed as the reference exchange rates at any moment of

the day. The euro-dollar and dollar-yen currency pairs, the two currency pairs with

the highest trading volume, trade primarily on EBS, and the price discovery process

for these exchange rates is therefore concentrated on EBS.7 In the analysis below,

we present and discuss results for the euro-dollar, by far the most actively traded

of all currency pairs. The corresponding results for the dollar-yen, the second-most

traded currency pair, which are all qualitatively similar, are presented in the Online

Appendix.

The EBS Market, as an “interdealer” system, is widely used by foreign exchange

dealing banks around the globe. Since 2004, however, it has also been accessible

to non-banks under prime-brokerage arrangements with some of the dealing banks.

Therefore, a number of HFTs as well as a few large hedge funds and commodity trad-

7BIS (2018) confirm the view that while the main interdealer platforms (EBS and Thomson
Reuters) are subject to strong competition, they remain central to price discovery in their respective
primary currencies.
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ing advisors (CTAs) also trade on the platform. Trading instructions can be entered

on EBS on a specialized keyboard (the “Manual” traders), or through a computer

interface. Importantly, the banks trading on EBS access the system both manually

and through a computer interface, while, with very few exceptions, non-bank trad-

ing occurs almost exclusively via computer interface. The manual/computer and the

bank/non-bank breakdown form the basis for the classification of EBS counterpar-

ties into the three types seen in our data: The manual traders, the bank algorithmic

traders, and the non-banks, with the vast majority of that group’s activity com-

ing from HFTs. Broadly speaking, these categories also represent the slow traders,

the faster traders, and the fastest traders. We refer to these three trader groups as

Manual, Bank-AT, and HFT.

2.2 Structural changes on EBS

Over our sample period, EBS implemented a number of important structural changes

on its main trading platform. Many of these changes were designed to address the

interaction between the different types of traders coexisting on EBS, in particular

the balance between manual traders and HFTs. We briefly highlight four of these

changes, as we will later discuss whether they affected the patterns of price discovery

that we observe.

On June 15, 2009, EBS implemented a “minimum quote life” (MQL), also known

as a minimum resting time. This prevented all traders from canceling limit orders

they had placed in the CLOB before 250 milliseconds had passed since the initial

submission of the order. The measure was reportedly introduced to address the

concerns of some manual traders who complained they were having difficulties hitting

some quotes before they disappeared from the order book (sometimes referred to as

the “flickering quote” problem).

On March 7, 2011, EBS added an extra decimal to the precision of the quotes

in its system, reducing the tick size by a factor of 10. For example, while the clos-

est bid and ask quotes for euro-dollar could previously be, say, 1.2345 and 1.2346,

respectively, after decimalization they could now be 1.23450 and 1.23451.8 At the

time, several other (smaller) foreign exchange trading platforms (mainly “bank-to-

8The last digit of the exchange rate before decimalization was known as a “pip.” After decimal-
ization, the last digit was called a “decimal pip.” Finally, the increase in tick size in 2012 introduced
the “half pip.”
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customer” electronic platforms) had added an additional decimal to the quoted price,

allowing for the possibility of smaller transaction costs. Before the decimalization

in 2011, the minimum tick size on EBS was often binding, with the bid-ask spread

at its minimum more than half of the time. After decimalization, the tick size was

essentially never binding (Chaboud, Dao, and Vega, 2018).

On September 24, 2012, 18 months after the reduction in tick size, EBS partially

reversed course and increased the tick size by a factor of 5. The last decimal remained,

but it could now only be 0 or 5.

Finally, on March 3, 2014 and February 17, 2014, for the euro-dollar and dollar-

yen, respectively, EBS introduced a “latency floor,” another measure likely designed

to address the impact of fast traders on the platform. The latency floor imposes a

small delay (randomly set at a few miliseconds) on incoming messages before they

are released and incorporated in the CLOB. Importantly, during each of these short

delays, the incoming messages are batched and, within each batch, their order is

randomized before they are released to the CLOB. EBS explained at the time that

the latency floor was designed to reduce the pure advantage of speed in the trading

process, lowering the risk of a wasteful technological arms race.9

3 Data and methodology

3.1 Data

We use quote and trade data, for the euro-dollar and dollar-yen exchange rates, from

EBS for the period spanning January, 2008, to December, 2017. The quote data

specify the best bid and ask prices, as well as the amounts or “depths” (in millions

of the base currency)10 available to trade at these prices. These are binding orders,

and the quotes thus represent the true bid and ask prices in the market at a given

9The EBS platform operates continuously from early Monday morning in Australia and New
Zealand through the end of the trading day on Friday afternoon in the United States. The platform
is closed over the weekend. The market-rule changes were all implemented on Monday mornings,
when the EBS system opens after its regular week-end closing. EBS customers were informed well
in advance and given full details of the new measures.

10The euro-dollar exchange rate is quoted in dollars per euro, and the euro is thus the “base”
currency. In contrast, the dollar-yen rate is expressed in yen per dollar, with the dollar as the base
currency. The minimum trade size on EBS is 1 million of the base currency, and any market or limit
order must be in multiples of millions of the base currency.
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time. From January 2008 through August 2009, these data are recorded at a 250

millisecond (ms) frequency, which corresponds to the fastest quote update frequency

available to market participants at the time. From August 2009 through the end of

our sample, the sampling and broadcast frequency increases to every 100ms, again

the highest price and order book update frequency available to market participants

over that period. Although EBS is a 24-hour market, we focus our analysis on the

most active hours between 3:00 am ET to 3:00 pm ET, Monday through Friday (as

in Chaboud, Dao, and Vega, 2018), which roughly correspond to the busiest trading

hours in London and New York and accounts for a large share of the daily trading

volume.

In addition, we also have data on all completed trades during the sample pe-

riod. For all executed trades, these data specify the transaction price and the traded

amount. Importantly, the trade record also specifies the type of maker and taker

in each trade (i.e., Manual, Bank-AT, or HFT), as well as whether the trade was

a buy or a sell of the base currency from the perspective of the taker. The trades

are time-stamped with millisecond precision throughout the sample period, where

the time stamp indicates the exact time at which the order hits the order book. In

terms of calculating the market and limit order flows, this time stamp convention is a

significant improvement over using the time of the trade confirmation. As the taker

and maker to a trade on EBS can be in different regions of the world, there could

be a substantial lag in confirming the trade, potentially up to 150 milliseconds.11

Such delays would particularly affect the correct calculation of limit order flows as it

depends on an exact matching of incoming markets orders and changes in the order

book, as seen below.

3.2 Participation of different trader groups

The identification of the maker and taker type in each trade leads to 9 possible

maker-taker combinations (i.e., Manual maker/Manual taker, Manual maker/Bank-

AT taker, and so forth). Figure 1 shows the relative participation rates of these 9

different combinations in euro-dollar trading, measured as the fraction of transacted

volume in a given month that can be attributed to a specific maker-taker combi-

11EBS operates interconnected matching engines in London, New York and Tokyo.
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nation.12 For instance, the line labeled Manual vs. Bank-AT (Panel B) shows the

relative volume attributable to trades with a Manual maker and a Bank-AT taker,

with the naming convention following the logic that the maker posts the quote before

the taker hits it. As is seen, the most dramatic change over time occurs for the pure

manual trades (Manual vs. Manual, Panel A), which drop in fraction from over 40

percent in 2008, to less than 5 percent in 2017. Thus, by the end of the sample,

an algorithmic trader (i.e., Bank-AT or HFT) is involved on at least one side of a

transaction in over 95 percent of the traded euro-dollar volume.

Panel A in Figure 2 shows the fraction of volume attributable to a given type of

taker. The Manual line in Figure 2, Panel A, thus represents the sum of the three

lines in Panel A in Figure 1 (and the Bank-AT and HFT lines represent the sums of

the three lines in Panels B and C of Figure 1, respectively). Manual taking decreases

dramatically, dropping from 65 to 15 percent during the sample. At the same time,

HFT taking increases from 15 to 50 percent, while Bank-AT taking increases some-

what less, from about 20 to 35 percent. Panel B in Figure 2 shows the analogue results

when grouping on the type of maker. For instance, the Manual line in Figure 2, Panel

B, represents the sum of the Manual vs. Manual, Manual vs. Bank-AT, and Manual

vs. HFT lines in Panels A, B, and C, respectively, in Figure 1. Manual making also

drops substantially, from around 70 percent at the beginning of the sample to around

25 percent at the end. The biggest increase in making is seen for Bank-AT, which

increase their making share from about 15 percent to almost 40 percent during the

sample period. HFT making increases in the first part of the sample, but then drops

somewhat until it starts to pick up again during the last two years of the sample.

3.3 Variable definitions

We use the above data to construct measures of returns and order flows. Let pbt and

pat be the top-of-the-book bid and ask prices at time t, respectively, and let qbt and

qat denote the associated depths available at these prices. We define the mid-quote

return as rt = log pmt −log pmt−1, where pmt is the mid-quote, i.e., the arithmetic average

of the best bid and ask prices. Let vbt and vst denote the buyer- and seller-initiated

volume during the time interval [t − 1, t], respectively, and let vt = vbt + vst denote

the total volume. We break down the volumes by trader type, and write vb,it and

12Trading in dollar-yen exhibit similar participation patterns, as seen in the Online Appendix.
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vs,it , i ∈ {Manual, Bank-AT, HFT} for buyer- and seller-initiated volume by Manual

traders, Bank-ATs, and HFTs. The market order flow generated by trader type i is

defined by mi
t = vb,it − v

s,i
t and the total market order flow is given by mt = vbt − vst .

The market order flow, as is standard, thus measures the net buy volume, as seen

from the perspective of the active (taking) side of the market.

As discussed previously, our data show the state of the limit order book every

100ms (250ms in 2008 and 2009). By combining the observed changes in the limit

order book, between each 100ms (250ms) interval, with the trade records for the

market orders, we infer measures of the actual limit order activity that occurred at

the top of the book during a given time period. We label these active changes in

the order book as the “limit order flow”. As shown by Brogaard, Hendershott, and

Riordan (2018), limit orders further out in the order book seem to have virtually no

impact on price discovery, and we restrict attention to orders at the best bid and ask

prices.

We follow a definition similar to that used in Cont, Kukanov, and Stoikov (2014),

and specify the top-of-the-book bid limit order flow, lbt as

lbt =


qbt if pbt > pbt−1,

qbt − qbt−1 + vst if pbt = pbt−1,

−
(
qbt−1 − vst

)
if pbt < pbt−1.

(1)

Here qbt is the quantity available to trade (i.e., depth) at the best bid price at the end

of period t. If pbt > pbt−1, such that the best bid price increases from period t − 1 to

t, the time t bid limit order flow is simply equal to the amount posted at that new

price. In this case the bid limit order is price improving, and it is natural to define

the top-of-book bid limit order flow as equal to the depth at the new best price.

If the best bid price remains unchanged from period t − 1 to t, the bid limit

order flow is defined as the additional amount posted at that price, controlling for

the changes in depth that occurred because of sell market orders.13

Finally, if the best bid price decreases from t − 1 to t, the bid limit order flow

13For example, suppose the best bid price remains the same from period t− 1 to t, the depth at
the best bid price is 5 million euro at time t− 1 and 4 million euro at time t, and that a market sell
order of 2 million euro is executed between t − 1 and t. In this case, a bid limit order of 1 million
euro must also have been posted at the best price in this period, since otherwise the depth would
have been only 3 million euro at time t. The 1 million euro limit order thus constitute the active
change in the order book, after controlling for changes induced by market orders.
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is defined as the negative of the depth available at time t − 1 (at price pbt−1 > pbt),

after controlling for the amount of any market sell orders between t− 1 and t. This

definition stems from the fact that we try to measure the active limit orders at the

best available bid price during the period, which in this case is equal to pbt−1. Since

the best bid price decreases to pbt < pbt−1 by the end of period t, there must have been

either an active withdrawal of the limit orders available at the old best price, and/or

these limit orders must have been matched to incoming market sell orders during the

period.14,15

The bid limit order flow can thus be seen as having three parts, the price-improving

part, lb,1t := qbt1{pbt > pbt−1}, the price-matching (quantity-changing only) part, lb,2t :=

(qbt − qbt−1 + vst )1{pbt = pbt−1}, and the price-worsening part, lb,3t := −(qbt−1 − vst )1{pbt <
pbt−1}. We define analogous quantities for the ask side of the book and then define

the net price-improving, price-matching, and price-worsening limit order flows by

ljt = lb,jt − l
a,j
t , j = 1, 2, 3, respectively. An overall bid limit order flow can be defined

as lbt = lb,1t +lb,2t +lb,3t , and analogously, an overall ask limit order flow can be defined as

lat = la,1t + la,2t + la,3t . The total limit order flow is then defined by lt = lbt− lat . However,

given the rather different nature of the three components of the limit order flow, along

with previous empirical results (e.g., Brogaard, Hendershott, and Riordan, 2018), we

keep the three parts of the limit order flow separate in the empirical analysis.

3.4 Empirical methodology

The main econometric tool for empirically examining price discovery has long been

the VAR framework introduced by Hasbrouck (1991a,b). In the standard price dis-

covery VAR, prices are driven by trades (market orders) and the only two variables

entering the VAR are returns and market order flow. The standard VAR model can

be understood in the context of a designated market maker, who adjusts his quotes

to reflect the expected information content of a given trade, along the lines of Kyle

(1985). Such a setting is quite removed from modern limit order markets, where all

14To illustrate, suppose the depth at the best bid price pbt−1 at time t − 1 is equal to 3 million
euro, and there is a market sell order for 1 million euro between time t − 1 and t. At time t, the
best bid price has decreased by 1 pip. Between time t− 1 and t, there must therefore have been an
active withdrawal of 2 million euro from the order book at the price pbt−1, and the price-worsening
limit order flow is equal to −

(
qbt−1 − vst

)
= − (3− 1) = −2 million euro.

15The calculation of the price-worsening limit order flow does not explicitly ensure against positive
outcomes and in the cases when it does end up positive, we cap the value at zero.
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types of traders are free to use any kind of order and limit orders might very well be

informed. Recent work by Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hen-

dershott, and Riordan (2018) extend this framework to also allow for a price impact

of limit orders (earlier works by, for instance, Hautsch and Huang, 2012, and Cont,

Kukanov, and Stoikov, 2014, reflect similar ideas). We follow this line of thought

and extend the standard price discovery VAR introduced by Hasbrouck (1991a,b) to

incorporate limit orders as well as market orders.

In particular, throughout the paper, we will be working in a standard structural

VAR framework,

Ayt =

p∑
i=1

Biyt−i + D1/2εt, εt ∼ iid(0, I), (2)

where yt = (rt,xt)
′ is the vector of endogenous variables, A is a matrix of structural

parameters, Bi, i = 1, ..., p are unrestricted lag coefficient matrices, and D is a

diagonal variance-covariance matrix. In the standard traditional price discovery VAR,

xt is simply a scalar representing some measure of market order flow. In the current

framework, xt is in general a vector that also includes measures of limit order activity.

Our specification of the structural A matrix in the general case follows the same

scheme as in Brogaard, Hendershott, and Riordan (2018), and is detailed in the

context of each model in Section 4.

The structural VAR in (2) is used to capture several different aspects of price

discovery. Specifically, the information content of the market and limit order flow

variables is measured by the so-called permanent price impact and information shares.

The former captures the ultimate price impact of a given order book event, whereas

the latter reflects the contributions of the various order flows to the variance of the

permanent component of the price process. In addition, we also measure how quickly

the information in market and limit orders is impounded into the price, using the

long-run π-life introduced by Fanelli and Paruollo (2010). These three price discovery

measures are defined in detail below.

Provided the process in (2) is stationary, it admits an infinite-order vector moving-

average (MA) representation,

yt = C0εt + C1εt−1 + C2εt−3 + · · · . (3)
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The MA terms C0,C1, ..., are k × k matrices, where k is the dimension of yt. Below,

we denote the individual elements of matrices in non-bold lowercase letters, such that

cl,ij denotes the elements of Cl. By the BN decomposition (Beveridge and Nelson,

1981), equation (3) can be re-stated as

yt = C̃ (1) εt + ηt, (4)

where C̃ (1) ≡
∑∞

l=0Cl is the so-called long-run MA matrix. For the return equation,

C̃ (1) εt represents the part of returns coming from the permanent random walk com-

ponent of the price process (the “efficient” price), and ηt represents the part coming

from transient “noise” in the price. Since εt ∼ iid(0, I), the variance of the permanent

part of yt, also referred to as the long-run variance, is given by

Ω = C̃ (1) C̃ (1)′ . (5)

The efficient return variance—that is, the variance in the returns coming from the

permanent random walk component, excluding any variance coming from the noise

component ηt—is given by the first diagonal element of Ω :

ω11 = c̃11 (1)2 + ...+ c̃1k (1)2 . (6)

The information share of variable i is now defined as the relative contribution of

variable i to the long-run variance of the returns,

ISi =
c̃1i (1)2∑k
j=1 c̃1j(1)2

=
c̃1i (1)2

ω11

. (7)

That is, the information share for variable i captures the fraction of the long-run vari-

ance of the return process that can be explained by variations in variable i. The long-

run variance represents the variations due to fluctuations that are not of a transient

nature, and thus captures the variations coming from the unobserved random-walk

efficient price process.16

16The information share is related but not identical to the variance decomposition of the returns.
The latter decomposes the total variation of returns into parts that can be attributed to the other
variables in the VAR. The information share decomposes the variations in returns that comes from
the random-walk part of the price process.
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Similarly, the permanent price impact captures the total change in the efficient

price, following a trade event. The permanent price impact of shock i is simply

defined as the long-run cumulative impulse response function for returns, given a

shock to equation i. The long-run cumulative impulse response to the return equation,

following a standard deviation shock to equation i, is equal to

IRF1,i (∞) =
∞∑
l=0

cl,1i = c̃1i (1) . (8)

If the shock is instead fixed to unity, the permanent price impact is equal to

IRF unit
1,i (∞) = c̃1i (1)D

−1/2
jj ≡ c̃unit1i (1) . (9)

Thus, IRF1,i (∞) reflects the impact of a typical-sized trade, whereas IRF unit
1,i (∞)

reflects the price impact of a 1-million base currency trade, which is the minimum

but also the most common trade size on the EBS system. In the empirical section,

we focus on the impact of a 1-million base currency trade shock, since keeping the

size of the shock identical across different sample periods and different types of orders

makes comparison of price impacts more straightforward.

The ex-ante variance of the long-run impulse response for a shock εt,i to equation

i, is given by

V ar (IRF1,i (∞)) = V ar

((
∞∑
l=0

cl,1i

)
εt,i

)
=

(
∞∑
l=0

cl,1i

)2

= c̃1i (1)2 , (10)

which equals the long-run variance contribution of variable i to returns. The informa-

tion share can thus be seen as the relative contribution to the variance of the efficient

(random walk) price, as measured by the ultimate (long-run) price impacts of trades.

17The notion of information shares is also used in the related literature on price discovery in many
markets (Hasbrouck, 1995), where information shares are derived in a cointegrated model of different
prices for the same asset or cash flow. Similar to here, these information shares also reflect relative
contributions to the efficient price. However, in studies of cointegrated prices across markets the
information shares are usually reported as a min-max range, rather than as a spot estimate. This
convention reflects the problem of fully identifying the cointegrated VAR system underlying the
information shares. Such indeterminacy is less of a problem in the current setting. The price impact
and information share are both functions of the structural matrix A. The assumptions imposed on
A specify that the direction of causality is from orders to prices, rather than vice versa, and the
issue of identification is therefore much less problematic than in the cointegrated many-prices/one-
asset setting. The specification of A is defined explicitly for each model in Section 4.
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That is, the price impact measures the effect of a given trade, conditional on that

trade actually occurring. The information share, on the other hand, measures the

total effect of all trades that actually do occur. Alternatively put, the information

shares reflect the relative ex-ante variances of the impulse response functions, a point

originally made by Hasbrouck (1991b).17

Finally, we also define the long-run π-life of Fanelli and Paruollo (2010), which

measures the number of periods it takes for the cumulative impulse-response function

to enter a band

[
c̃unit1i (1)− π|c̃unit1i (1) |, c̃unit1i (1) + π|c̃unit1i (1) |

]
. (11)

The (long-run) π-life measures the speed of price discovery, and can be viewed as a

generalization of the common concept of half-life. In a stationary system, where the

impact of a shock must die out after some time, the half-life measures the number

of periods it takes before the impact of a shock is reduced by one half. The price

discovery VAR in (2) is assumed stationary but we are interested in the cumulative

price impact of orders, which measures the total impact of an order on the (log) price,

a non-stationary variable. The π-life thus measures the number of periods it takes

for the cumulative impulse response to get within a ± (100× π) % interval of the

ultimate long-run response, as illustrated in Figure 3. While it might be tempting

to set π very small, such that one measures speed of convergence to the almost final

price, specifying too small a π has the negative effect of introducing a lot of noise in

the results. In particular, for small π, the π-life measure starts picking up on small

deviations rather than the broad trend in the cumulative impulse response function.

The usual half-life definition corresponds to setting π = 0.5. In the empirical analysis

here, we set the value of π equal to 0.25, which appears to be a good trade-off between

the noise effect and the aim to measure how long it takes for convergence to the new

equilibrium price.

Although our data are regularly spaced (100ms or 250ms), we estimate the model

in “quasi-event” time, where an event occurs if ∆pbt 6= 0, ∆pat 6= 0, ∆qbt 6= 0, ∆qat 6= 0,

or vt 6= 0. Thus, we discard all 100ms (250ms) periods where no trades or no changes

at the top of the book occur. We estimate the model month-by-month and use p = 50

lags.18

18Diagnostic analysis (on a subset of the data) suggests that the results are not sensitive to this
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Figure 4 shows the month-by-month average duration time between events in the

euro-dollar. As is seen, it is mostly in the range between 500ms and 700ms, with

the exception of a temporary rise in 2013 and 2014, during which the duration time

roughly doubles for a short period. Thus, apart from this short episode, the duration

time between events is fairly similar across the sample, and comparisons in event time

across different sample months are broadly similar to comparisons in calendar time.

In particular, the estimates of the π-life will be presented in event time units.

4 Price discovery results

In the following sub-sections, we present the empirical price discovery results based

on the structural VAR specification formulated in equation (2), estimated using data

between 2008 and 2017 for euro-dollar trading on EBS. As mentioned previously, the

dollar-yen results are qualitatively similar to those for the euro-dollar, and for ease

of exposition we focus exclusively on the euro-dollar results in the main text of the

paper. The dollar-yen results are found in the Online Appendix.

Results for three different models are presented. The first two models use only

market order flow and returns, with the second model decomposing the market order

flow into components coming from Manual traders, Bank-ATs and HFTs. The final

model allows for not only market order flows to impact prices, but also limit order

flows.19

The empirical analysis thus starts with the simplest possible price discovery VAR,

and then adds either limit orders or a finer classification of market orders. The results

are presented in graphical form and shown in Figures 5-7. The graphs show the

month-by-month estimates of the three price discovery measures introduced above,

and thus illustrate the changes in the price discovery process in the euro-dollar that

occurs over the 10-year long sample.

particular choice of lags, and similar results appear to be obtained if one increases the number of
lags to 100 or even 200. However, significantly decreasing the number of lags (e.g., to 10) does
appear to substantially affect the results. Since inclusion of too few lags in a VAR can result in
biased estimates, whereas inclusion of too many lags simply results in lack of efficiency, the current
lag choice of p = 50 seems reasonable.

19The data do not allow us to break the limit order flow into components stemming from the three
different trader groups.
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4.1 The standard market order model

We begin with the simplest specification, given by the standard Hasbrouck SVAR. In

this model, the variable vector yt and the structural coefficient matrix A in equation

(2) are given by,

yt =

(
rt

mt

)
, A =

(
1 −am
0 1

)
. (M1)

Here rt denotes returns (log price changes) and mt denotes the market order flow.

Figure 5 reports the monthly estimates of the permanent price impact, information

share, and π-life, as defined in Section 3.4. As is seen in Panel A of figure 5, the

average permanent price impact of a 1-million base-currency market order is around

0.1 basis points. The price impact exhibits a substantial peak towards the end of 2008

and beginning of 2009, coinciding with the global financial crisis. Such an increased

price reaction in times of market stress is consistent with previous evidence that

documents time-variation in the price impact of order flow and argues that it relates

to both investor behavior and sentiment (Berger, Chaboud, and Hjalmarsson, 2009).

There is also some suggestion that the price impact is on a downward trend over the

sample period, although this pattern is not very strong.

In contrast, the information share for market orders fell markedly over the sample

period (Panel B). The information share can be viewed as a measure of how much of

permanent price moves (or moves in the “efficient” price) that can be explained by

market orders. In the beginning of the sample in 2008, between 40 and 50 percent

of the (permanent) movements in the euro-dollar exchange rate could be explained

by market orders. At the end of the sample in 2017, only about 20 percent could

be explained in the same way. The overall contribution of market orders to price

movements thus drops substantially during the sample period. In a pure limit order

market, both limit orders and market orders likely contribute to price discovery and

the results in Panel B thus suggest that limit orders might have become increasingly

important for price discovery during recent years. We verify this hypothesis when

considering the model with limit orders in the next sub-section.

The remaining Panel C in Figure 5 shows the π-life of the cumulative impulse

response function, which measures how quickly the price converges to the new equi-

librium following a market order. The π-life is measured in event time, and a π-life of,

say, 5 periods, thus indicate that it takes about 5 “events” (trades or quote updates)
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before the new equilibrium price is reached. There is a clear downward trend in the

π-life during the first three years or so of the sample. The drop is quite substantial

in relative terms, going from a π-life of around 5 event periods to 1 period. Given

the natural limit at zero for the π-life, it is perhaps not surprising that the π-life

remains reasonably constant after the initial large drop. The market thus seems to

have become somewhat quicker in incorporating new information from trades; Figure

4 shows that the calendar length of events is reasonably stable over the sample period,

such that the trend in the π-life measured in event time is representative of the trend

in calendar time.

Before moving on to the model with limit order flows, we first separate the market

order flow into the parts coming from the different trader types: Manual (M), Bank-

AT (B), and HFT (H). Equation (2) is subsequently estimated with

yt =


rt

mM
t

mB
t

mH
t

 , A =


1 −aMm −aBm −aHm
0 1 0 0

0 0 1 0

0 0 0 1

 . (M2)

The structural matrix A allows for all three order flows to impact returns contempo-

raneously, but we rule out any contemporaneous interactions between the three order

flows. Such a specification of the contemporaneous interaction of the variables is

analogous to the specification scheme in Brogaard, Hendershott, and Riordan (2018),

who also rule out all contemporaneous effects except those on returns.

The results are reported in Figure 6, which is organized in the same way as

Figure 5 but with each panel containing separate results for the three order flows.

The permanent price impacts (Panel A) of all three order flows evolve somewhat

similarly over time; recall that in all cases, the price impacts reflect the permanent

price changes following a 1-million base currency trade. However, whereas the price

impact coefficients for trades from Bank-ATs and HFTs track each other very closely,

the price impact for the Manual trades does exhibit a somewhat distinct pattern.

The price impact for the Manual trades starts considerably higher than for the other

two types of trades at the beginning of the sample, around the time of the Global

Financial Crisis, but then decreases across almost the whole sample period and ends

up lower than for the other trade types at the end of the sample.
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The information shares (Panel B) show an even clearer pattern for the decreasing

importance of Manual trades, with the information share for Manual order flow drop-

ping drastically over the sample period, from over 30 percent in 2008 to near zero

percent in 2017. In contrast, the Bank-AT and HFT shares do not change much on

average from beginning to end of sample. The π-lives (Panel C) for all three order

types exhibit similar trends to those seen for the total order flow model.

The results from the models M1 and M2 both show that the overall contribution

of market orders to price variation has decreased substantially in recent years, as seen

from the drop in the overall information share displayed in Panel B in Figure 5. The

corresponding panel in Figure 6 further shows that this drop is in fact mostly due to a

decreasing importance of Manual trades in the price discovery process. The informa-

tion share is a summary measure of how much of the (permanent) variation in prices

that can be attributed to or explained by movements in another variable. Roughly

speaking, a drop in the information share due to a given variable can therefore be

related to either a decreasing impact of each movement in that variable, and/or a

decreasing overall activity in that variable. The price impact coefficients indicate the

importance of a given trade when it actually occurs, and Panel A in Figure 2 indicate

the relative frequency of the three different types of market orders. As is seen, both

the price impact of a given-sized Manual market order as well as the relative partic-

ipation of Manual market takers have decreased over the sample, and both of these

aspects likely contribute to the large drop in the information share of Manual market

orders. This is consistent with the fact that, over the years of our study, large dealers

increasingly came to rely on automated execution algorithms when bringing to the

foreign exchange market the large trades of institutional investors. This moved a large

share of that order flow, widely viewed as informed, to the Bank-AT category, leaving

mainly less-informed flow, such as trades arising from routine corporate transactions,

to manual execution (Menhkhoff, Sarno, Schmeling, and Schrimpf, 2016).

4.2 Limit orders

We now proceed to allow for limit orders to affect price discovery. Specifically, the

three components of the limit order flow enter the VAR model separately, and the
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variable vector yt and the structural parameter matrix are specified as,

yt =


rt

l1t

l2t

l3t

mt

 , A =


1 −a1l 0 −a3l −am
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 . (M3)

Recall that l1t are price-improving limit orders, l2t are price-matching (quantity-changing

only) limit orders at the current best bid or ask, and l3t are price-worsening limit or-

ders, as defined in equation (1). By construction, the price-matching limit orders

(l2t ) are associated with zero contemporaneous price changes, and the corresponding

structural parameter is set equal to zero. Otherwise, we follow the same identifying

assumption as before, and restrict the structural matrix A such that the only con-

temporaneous effects in the model are from the different types of orders to returns.

A price-changing limit order will by definition impact the mid-quote price (i.e.,

a change in rt). However, unless the limit order is in some sense informed, such

a price impact should not be permanent and therefore subsequently be reversed.

By considering the permanent price impact and the information share of the efficient

price process the VAR framework allows for the identification of these long-run effects,

which should equal zero if the effect of limit orders is merely mechanical rather than

information driven.

In addition to the three models described above (M1, M2, and M3), we also

estimated a model where the separate limit orders (l1t , l
2
t , l

3
t ) as well as the separate

market orders
(
mM

t ,m
B
t ,m

H
t

)
were included. However, the results from this model

essentially told the same story as that obtained from models M2 and M3 together.

For brevity, we therefore omit the results from that model.

The results for model M3 are reported in Figure 7. Somewhat surprisingly per-

haps, there is no clear ranking between the price impacts of the differing types of

orders (Panel A). The impact of a market order is often somewhat larger than those

for the different limit orders, but this difference is often small and seemingly de-

20Kozhan, Moore, and Payne (2014) extends the Evans and Lyons (2002) model of order-flow
driven exchange-rate determination to also incorporate limit orders. In an empirical illustration,
using daily or hourly samples from Reuter’s FX interdealer platform, they find that limit orders
have a smaller price impact than market orders, but the quantitative differences are quite small and
similar to those found here.
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creasing over the sample period. This result is in contrast to Hautsch and Huang

(2012), who find that market orders have substantially greater price impacts than

limit orders, but it is closer to the findings of Kozhan, Moore, and Payne (2014).20

The most interesting results are perhaps those for the information shares (Panel B).

In line with the results in Figure 5, the information share for market orders drop

from about 50 to 20 percent from the beginning to the end of the sample. At the

same time, the importance of price-improving limit orders (l1t ) increases, and their

information share increases from around 15 to 25 percent. The information shares

due to price-worsening orders (l3t ) and price-matching limit orders (l2t ) increase a bit

during the last few years in the sample, but these trends appear less strong than that

for price-improving limit orders. There is also a sharp drop in the information share

for price-matching limit orders coinciding with the decimalization reform on the EBS

platform, and we discuss this result in more detail in Section 5 below.

Panel C indicates that prices typically reach a new equilibrium faster after a price-

changing limit order than after a market order or a price-matching limit order. In

fact, the π-life is in many periods equal to zero for these types of orders, suggesting

that the new equilibrium price is reached almost instantaneously. While such an

immediate effect of a price-changing limit order is of a fairly mechanical nature—the

best bid or ask price is changed when the limit order is posted, which automatically

induces a price impact—it is important to note that unless that price change was

information-driven, it should subsequently be reversed. The π-life indicates speed

of convergence to the permanent price impact, and therefore strongly indicates that

such a reversal does not occur.

4.3 Information shares over time

As a comparison of the three different VAR specifications analyzed above, it is useful

to further consider the information shares from these models. Of the three different

price discovery measures that we consider, the information share is arguably the most

central, as it reveals how much of the permanent variation in prices can be explained

by different aspects of the trading process. Figure 8 sums up the information share

results for the three different models. In Panel A, the information share for the market

order flow in the standard price discovery VAR, M1, is plotted together with the total

information share for the three different types of market orders in model M2. Panel
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B shows the total information share due to the three different limit order flows in

model M3, along with the information share for the market order flow in this model.

Panel C plots the total information share for all orders in model M3. In both Panels

B and C, the information share for the market orders in the simplest model, M1, is

plotted as a comparison to the more elaborate models.

Panel A in Figure 8 shows that a disaggregation of the market order flow into

trades due to different types of traders does not alter the overall fraction of exchange

rate variance that can be explained by market orders. That is, while separating

trades into different categories reveal interesting patterns, such as the sharp drop in

the importance of Manual trades, it does not appear to help much in terms of the

overall explanatory power of the price discovery model. Panel B clearly illustrates the

declining importance of market orders and the increasing importance of limit orders

in the price discovery process. Panel C highlights that these effects mostly cancel out

over time, and the overall information share of market and limit orders have remained

fairly constant across time.21

5 Price discovery and market-rule changes

In the previous section, we showed how various facets of the price discovery process

evolved over the period 2008 to 2017. It is possible that these changes were, at least

in part, related to market-rule changes on the EBS platform. Recall that during

our sample period, four key alterations were made to the rules governing the trading

process on EBS: (i) Minimum quote life (MQL, June 15, 2009); (ii) Decimalization

(March 7, 2011); (iii) “Half-pip” (September 24, 2012); (iv) Latency floor (March

3, 2014).22 Each of these are described in Section 2. In this section, we formally

test for structural breaks in our measures of price discovery around these events.

We again present results only for the euro-dollar currency pair here and relegate the

corresponding results for the dollar-yen, which are qualitatively similar, to the Online

21The overall fraction of price variation than can be attributed to the trading process in this
empirical framework is therefore around 75 percent. If the estimated VAR provided a complete
characterization of the quote-revision process, the total information share for all orders and trades
should equal 100 percent; in a limit order market, all price changes must be the result of posted
orders. Like all econometric models, however, the VAR provides only a simplified approximation,
and the unexplained part of return movements thus reflect aspects of the price discovery process,
such as non-linearities, that are not accounted for in the VAR model.

22The latency floor was introduced on February 17, 2014, for the dollar-yen.
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Appendix.

Specifically, our break analysis proceeds as follows. For every event, we estimate

the SVAR separately for the 10 trading days before and after the event and test the

null hypothesis that the price discovery measure implied by the SVAR estimates are

identical in the before and after periods. Statistical inference is based on a bootstrap

procedure, where we first estimate the SVAR using the full 20 days in the event

window, thereby imposing the null hypothesis. The residuals from this SVAR are

saved. We then draw bootstrap samples using the full-sample parameter estimates

and residuals, fit the SVAR separately to the 10 days before and after the event,

and calculate the associated price discovery measures. This procedure is repeated

500 times and p-values are calculated for the null hypothesis of no change, using the

bootstrapped distribution of the difference in the before and after measures; using the

bootstrapped standard error together with the assumption of asymptotic normality of

the difference produces very similar results. The rule changes typically do not occur

at the exact beginning of a month, and the month-by-month estimates presented in

Figures 5-7 therefore tend to mix observations from both before and after a given rule

change. In contrast, the estimates and tests presented in Tables 1 and 2 offer a clean

before and after view.

The decimalization policy on EBS reduced the tick size by a factor of 10, enabling

changes in the quoted bid and ask prices that were of an order of magnitude smaller

than before and thus giving market makers considerably greater freedom to “fine-

tune” their posted prices. In addition, prior to decimalization, the inside spread in

the euro-dollar was at its minimum about 70 percent of the time (Chaboud, Dao,

and Vega, 2018), and the minimum tick size was thus likely binding a great deal of

the time. The considerably finer pricing grid, along with a previously binding tick

size, makes it quite plausible that decimalization might have changed the way limit

orders are strategically posted, and as a consequence changed their contribution to

price discovery.

Chaboud, Dao, and Vega (2018) document that the most clearly noticeable effect

of decimalization is a sharp increase in relative HFT taking, while there is seemingly

little effect on relative making of the three trader groups, as also seen here in Figure

2. Interestingly, this shift in relative taking behavior does not seem to have any clear

effect on the information share of market orders due to HFTs (Panel B in Figure

6). The effects of decimalization are instead most clearly evident in Figure 7, which
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shows the results for the model with limit orders (M3). Following decimalization,

the information shares for price-matching limit orders (l2t ) decrease dramatically in

importance, with the information share dropping from 11 to 1 percent. There is

also some indication that the information share for price-improving limit orders (l1t )

increase, whereas that for price-worsening limit orders (l3t ) remains mosly constant,

suggesting that the finer quote grid is primarily used to slightly under-cut other

traders on price. The π-life for price-matching orders increase, such that it takes a

little longer for prices to adjust to the new equilibrium.

Following decimalization, there is thus a clear substitution away from simply alter-

ing the amount posted at the current best bid or ask, to posting orders that improve

upon the best price. Consequently, the information share for price-matching orders

drops, whereas the information share for price-improving orders seems to increase.

The price impact of price-matching orders also decreases quite substantially, indicat-

ing that not only did this type of order become less frequent, but also less informative

when actually used.23

The “half-pip” rule, implemented on September 24, 2012, represents a partial

reversal of the decimalization event, increasing the tick size from 0.1 to 0.5 pips. One

might therefore expect the effects seen from the decimalization to be partially reversed

when the half-pip policy is put in place. This conjecture is somewhat supported by the

empirical results. The strongest results are again seen for the information share of the

price-matching limit orders (l2t ), which is indeed partially reversed with an increase

from 2 to 8 percent. There is also some suggestion that the information share for

the price-worsening limit orders (l3t ) might increase (from about 5 to 7 percent), but

this is less visibly obvious. However, the information share for the price-improving

(l1t ) orders does not exhibit a clear shift. The not-so-strong reversal effects might be

due to the fact that the half-pip tick size is in most cases not binding. According to

Chaboud, Dao, and Vega (2018), during the decimalization period, the inside spread

in the euro-dollar is less than 1 pip about 70 percent of the time, but less than 0.5

pip only about 20 percent of the time. Thus, the 0.5 pip size might in most times not

be a binding constraint, and the effects of going from 0.1 to 0.5 pips might therefore

be limited.

The last two structural changes on the EBS platfrom—the MQL rule and the

23Riccó, Rindi, and Seppi (2018) show in a theoretical model how the tick size can have an effect
on strategic limit order placement.
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latency floor—appear to have had little or no discernible effect, and we do not discuss

these further.

6 Conclusion

We document the changing nature of price discovery in an important electronic limit

order market, using a long sample of data in the euro-dollar and dollar-yen currency

pairs on the EBS platform that allows us to observe the trading activity of several

groups of traders: Manual traders, bank algorithmic traders, and non-bank algorith-

mic traders (HFTs). The data span ten years, from 2008 to 2017, a period which

saw a large increase in participation by automated computer trading. Our study thus

provides a history of the recent changes in the price discovery process and discusses

some of the mechanisms behind these changes.

We show that manual liquidity-taking trading has steadily decreased in impor-

tance across the entire sample period, from being a primary source of price discovery

in 2008 to near irrelevance in 2017. Our results also strongly illustrate that, in mod-

ern limit order markets, price discovery occurs not only through market orders, but

also through limit orders. These results are in line with recent works analyzing bond

and stock markets (Fleming, Mizrach, and Nguyen, 2017, and Brogaard, Hender-

shott, and Riordan, 2018). Unlike previous studies, we are able to illustrate how the

relative importance of market and limit orders has changed over an extended period

of time, with market orders playing an ever smaller role in price discovery. At the

beginning of the sample, in 2008, market orders contributed about twice as much

to price discovery as limit orders, whereas at the end of the sample in 2017, this

relationship was almost reversed. Our analysis therefore highlights that while it is

reasonable to assume that “informed” traders will use limit orders strategically, the

relative importance of market and limit orders in terms of moving the efficient price

is far from fixed and given.

Roşu (2016) shows in a theoretical model how informed traders use limit orders

rather than market orders when their information advantage is small. As markets

become more efficient and “private” information, in a broad sense, becomes more

difficult to obtain, theory would then suggest that informed traders should gradually

switch from market orders to limit orders. As the increases in the speed of price

discovery, which we document over our sample period, are consistent with the market
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becoming increasingly more efficient, our main results therefore provide support for

the theory associating market efficiency with an increased use of limit orders for

informed trading.
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Figure 1: Detailed maker-taker shares for euro-dollar trading. The graphs show the
relative contribution, to the overall trading volume, of the nine possible maker-taker
pairs. The figure plots monthly averages.
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Figure 2: Aggregated maker-taker shares for euro-dollar trading. The graphs show
the relative contribution, to the overall trading volume, of the three different types
of makers and takers: Manual, Bank-AT, and HFT. In Panel A, the relative contri-
butions for each type of maker are shown, and in Panel B, the relative contributions
for each type of taker are shown. The figure plots monthly averages.
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Figure 3: Illustration of the π-life measure. The graph illustrates the speed-of-
adjustment measure, π-life, as a function of the shape of the cumulative impulse re-
sponse function. The solid line represents an illustrative cumulative impulse-response
function, plotted as a function of time-since-the-shock. The dashed line represents
the permanent (long-run) impact, and the dotted lines indicate an interval of width
2π (π = 0.25), centered around the long-run impact. The π-life is defined as the num-
ber of periods it takes before the cumulative impulse-response function permanently
enters this interval.

35



2009 2011 2013 2015 2017
0

250

500

750

1000

1250

1500
MQL Decim. Half-pip Latency

E
ve

nt
 d

ur
at

io
n 

(m
s)

Figure 4: Event duration for euro-dollar trading. The graph shows the average time,
in milliseconds, between the occurrence of two trade events (trades or changes at the
top of the order book). The figure plots averages calculated for each month in the
sample.
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Figure 5: Results for model M1 with euro-dollar trading. The graphs show the
month-by-month estimates from model M1. Panel A plots the estimates of the price
impact, measured in basis points, following a 1-million Euro order. Panel B plots
the estimates of the information share for the market orders, and Panel C plots the
estimates of the π-life for the market orders (in event time).
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Figure 6: Results for model M2 with euro-dollar trading. The graphs show the month-
by-month estimates from model M2. Panel A plots the estimates of the price impact,
measured in basis points, following a 1-million Euro order. Panel B plots the estimates
of the information share for the market orders, and Panel C plots the estimates of
the π-life for the market orders (in event time). The solid lines correspond to Manual
market orders, the dotted lines correspond to Bank-AT market orders, and the dashed
lines correspond to HFT market orders.
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Figure 7: Results for model M3 with euro-dollar trading. The graphs show the
month-by-month estimates from model M3. Panel A plots estimates of the price
impact, measured in basis points, following a 1-million Euro order. Panel B plots
the estimates of the information shares for the market and limit orders, and Panel
C plots the estimates of the π-life for the market and limit orders (in event time).
The solid-diamond lines correspond to price-improving limit orders (l1t ), the dotted
lines correspond to price-matching limit orders (l2t ), the dashed lines correspond to
price-worsening limit orders (l3t ), and the solid lines correspond to market orders (mt).
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Figure 8: Information shares for euro-dollar trading. The graphs show the month-
by-month estimates of different information shares implied by models M1, M2, and
M3. Panel A shows the information share for market orders in model M1 (solid line),
along with the total information share for all market orders in model M2 (dotted
line). Thus, the dotted line represents the sum of the information shares for the
Manual, Bank-AT, and HFT market orders in model M2. Panel B shows the total
information share for the limit orders in model M3 (dashed line), the information
share for the market orders in model M3 (dotted line), and the information share for
market orders in model M1 (solid line). Thus, the dashed line represents the sum of
the information shares for the price-improving, price-matching, and price-worsening
limit orders in M3. Panel C shows the total information share for all orders in model
M3 (dotted line), along with the information share for market orders in model M1
(solid line). Thus, the dotted line represents the sum of the information shares for
the price-improving, price-matching and price-worsening limit orders, as well as the
market orders, in model M3.


