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Abstract

We build a quantitatively relevant macroeconomic model with endogenous risk-taking. In

our model, deposit insurance and limited liability can lead banks to make risky loans that are

socially inefficient. This excessive risk-taking can be triggered by aggregate or sectoral shocks

that reduce the return on safer loans. Excessive risk-taking can be avoided by raising bank

capital requirements, but unnecessarily tight requirements lower welfare by limiting liquidity

producing bank deposits. Consequently, optimal capital requirements are dynamic (or state

contingent). We provide examples in which a Ramsey planner would raise capital require-

ments: (1) during a downturn caused by a TFP shock; (2) during an expansion caused by an

investment specific shock; and (3) during an increase in market volatility that has little effect

on the business cycle. In practice, the economy is driven by a constellation of shocks, and the

Ramsey policy is probably beyond the policymaker’s ken; so, we also consider implementable

policy rules. Some rules can mimic the optimal policy rather well but are not robust to all

the calibrations we consider. Basel III guidance calls for increasing capital requirements when

the credit to GDP ratio rises, and relaxing them when it falls; this rule does not perform well.

In fact, slightly elevated static capital requirements generally do about as well as any imple-

mentable rule.
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First, do no harm, Hippocrates (5th century BCE)

1 Introduction

A protracted period of low returns on safe assets followed in the wake of the global

financial crisis, and this trend is expected to continue for the foreseeable future. These low

returns have raised concerns that financial intermediaries will be tempted to reach for higher

yields by taking excessive (or socially inefficient) risks. We formalize these concerns by

developing a dynamic macroeconomic model in which limited liability and deposit insurance

provide incentives for excessive risk-taking: a sudden fall in the returns on safe assets – or

more precisely, a wider spread between expected returns on safe and risky assets – can trigger

an extended period of excessive risk-taking, with major consequences for consumption and

business investment. Prudential policy can curb these incentives by raising bank capital

requirements; indeed, dynamic (or state contingent) capital requirements can eliminate the

incentives entirely. But this may come at the expense of reducing bank deposits, which

provide liquidity services to households. We will explore this tradeoff, both theoretically and

quantitatively.

More specifically, we calculate optimal policies for dynamic capital requirements, and we

study the ability of simple policy rules to mimic them. We provide examples in which a

Ramsey Planner would raise capital requirements: (1) during a downturn caused by a TFP

shock; (2) during an expansion caused by an investment specific shock; and (3) during an

increase in market volatility that has little to do with the business cycle. But in a more

realistic setting, where the economy is bombarded by a full constellation of shocks, the

Ramsey policy would require too much information to be implementable. So, we study the

ability of simple policy rules to mimic the Ramsey policy. Of particular interest will be the

Basel III guidance.

Our DSGE model combines key elements of the literature on financial frictions and

macroeconomic stability. Following Van den Heuvel (2008), banks can lend to “safe” firms

or “risky” firms. Both kinds of firms are subject to aggregate TFP shocks, but a risky firm

is also exposed to an idiosyncratic shock with negative expected value; risky loans are there-

fore socially inefficient. The only reason a profit maximizing bank would fund a risky firm

is that limited liability shields it from downside risk; if the expected return on safe loans

is expected to fall, the bank may take a flier on a risky loan. Banks fund their lending by

issuing deposits and equity to households. Deposits are the cheaper source of funding since

they provide liquidity services, and in addition, government deposit insurance makes them

the safe asset. Capital requirements increase funding costs and make banks keep more skin
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in the game. This effect reduces their temptation to take excessive risks. Van den Heuvel’s

model does not allow for aggregate economic fluctuations or increases in market volatility.

In our model, macroeconomic shocks lead to business cycles, and they can trigger excessive

risk taking by decreasing the expected return on safe loans. Market volatility shocks can

also trigger excessive risk taking.

In practice of course, policy makers have to respond to the full stochastic structure of

the economy, which may prove daunting. So, we also consider simple policy rules that

try to mimic the Ramsey policy by responding to just one or two endogenous variables.

To this end, we use the simulated method of moments to calibrate our model’s dynamic

structure, which in turn allows us to calculate Ramsey dynamic capital requirements when

the model economy is driven by a full constellation of shocks. We generate model data in

that stochastic environment, and we regress the optimal capital requirements on candidate

sets of endogenous variables. Some simple rules capture the optimal capital requirements

rather well; that is, they have an R-square statistic close to 1, at least for some calibrations.

The Basel III accords advocated a cyclical capital buffer: during credit booms (or in-

creases in the credit-to-GDP ratio), capital requirements would be tightened; during con-

tractions they could be loosened. These prescriptions – which we will call the “Basel rule”

– sound sensible, and they should be implementable in practice. But in our model, the

Basel rule does not come close to mimicking the Ramsey policy; other simple rules, or even

static capital requirements, do better. In fact, slightly elevated static capital requirements

generally do about as well as any implementable policy rule.

Literature Review:

A number of contributions to the literature address the pro-cyclical bias of Basel II guide-

lines and the counter-cyclical buffers of Basel III.1 Referring to earlier arguments, Kashyap

and Stein (2004) argue that capital requirements should be lower when bank capital is scarce,

and they suggest this is more likely to be the case during recessions; thus, the pro-cyclical

bias of Basel II guidelines would seem undesirable. The normative models of the banking

literature, however, highlight frictions in bank funding and in lending relationships that can

affect the optimal cyclical behavior of capital requirements. Repullo and Suarez (2013) de-

velop a model in which optimal policy can imply cyclical variations very similar to those of

Basel II. In their model, the tightening of capital requirements during recessions does have

the drawbacks noted in earlier commentary on Basel II, but it can be nonetheless optimal

because it reduces the frequency of bank failures during recessions.

By contrast, Gersbach and Rochet (2017) present a model in which bank funding fric-

1The procyclical bias of Basel II guidelines is attributed to risk-based capital requirements, which effec-
tively tighten during recessions as the default risk on bank assets increases.
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tions lead to higher optimal capital requirements during economic expansions, and lower

requirements during recessions. In their model, funding frictions make bank lending too

low (compared to the efficient benchmark) during expansions, and even more so during con-

tractions. Optimal policy raises the capital requirement to curb lending during expansions

because this improves the funding capacity of banks during contractions (under complete

markets). Malherbe (2020) develops a quantitative model with the same policy implica-

tion. In his model, a pecuniary externality makes bank lending too high compared to the

efficient benchmark. A positive TFP shock increases bank capital (proportionally) more

than it increases the optimal level of lending. The capital requirement, which is binding in

equilibrium, must rise to curb bank lending during TFP-driven booms.

The above models of optimal cyclical variation focus on the effects of capital requirements

on the volume of bank credit. By contrast, our model focuses on the composition of bank

credit – we have in mind risk-taking decisions like the choice between prime and subprime

mortgages before the 2007-2009 financial crisis, or participation in syndicated loans to highly

leveraged firms more recently. Our focus, of course, is not intended to negate the importance

of risks associated with bank leverage (and the volume of bank credit). High leverage can,

for example, increase the risk of bank runs in environments like the models of Angeloni

and Faia (2013) or Gertler and Kiyotaki (2015). Our focus, we think, is complementary to

the emphasis on leverage and the volume of credit in much of the literature. It makes, for

example, a case for cutting capital requirements in a TFP-driven boom; policymakers may

have to weigh this consideration against, say, the risk of a run on the liabilities of shadow

banks.

Gomes, Grotteria, and Wachter (2018) share our emphasis on risks that arise from en-

dogenous changes in the composition of bank credit, but not our focus on what this implies

about optimal capital requirements. They construct a model that deliberately decouples

their macro economy from the financial side and banking-sector activities. In their model,

output (consumption) follows an exogenous stochastic process with an exogenous and time-

varying risk of a large drop in output. Banks can make risky loans to firms or hold less risky

government bonds, but their portfolio decisions have no macroeconomic consequences in the

(partial equilibrium) model. They show that although credit expansions have no causal

effect, they predict output declines in the model. The connection arises from the optimal

response of leverage and the composition of bank credit to anticipated macroeconomic risks.2

An econometrician working with data generated by this model would observe periods of rapid

2In the model, a higher risk of a future output decline increases the risk premium and also erodes the
franchise value of banks. The optimal response of bankers has an element of gambling for resurrection; they
increase leverage and tilt their asset portfolios towards risky loans.
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credit expansion followed by periods of higher default rates on bank loans, and declines in

output. More specifically, Gomes, Grotteria, and Wachter (2018) show that their model can

replicate the empirical evidence presented by Schularick and Taylor (2012), Jordà, Schular-

ick, and Taylor (2016), and Mian, Sufi, and Verner (2017). This type of evidence is often

cited in support of Basel-III style counter-cyclical regulation. The main point of Gomes,

Grotteria, and Wachter (2018) is to question the causal interpretation of this evidence.

The papers by Martinez-Miera and Suarez (2014), Collard et al. (2017) and Begenau

(2019) also examine capital requirements from a perspective similar to ours, but they don’t

share our focus on cyclical variation in optimal capital requirements. Martinez-Miera and

Suarez (2014) develop a model with systemic risk abstracting from aggregate shocks. Collard

et al. (2017) focus on interactions of optimal monetary and prudential policies, in a setting

that keeps bank failures off the equilibrium path. Begenau (2019) develops a quantitative

business-cycle model to determine the optimal level of a constant capital requirement.

Our work is also related to analyses that evaluate simple rules for capital requirements,

but which may not call for capital requirements in the long run; we shall see that limited

liability implies an ongoing need for capital requirements.

The rest of the paper proceeds as follows. Section 2 describes the model. Section 3

discusses the model’s calibration, including the choice of steady-state capital requirements.

Section 4 describes our numerical methods for the model solutions. Section 5 discusses the

Ramsey Policy we take as optimal. Section 6 presents the responses to different shocks

and discusses the Ramsey policy for capital requirements. Section 7 considers some simple

implementable rules. And Section 8 concludes.

2 The Model

Our model extends a standard RBC model to include banks that enjoy limited liability

and government deposit insurance. These are the main features that allow for excessive, or

socially inefficient, risk taking, and of course the RBC framework allows for macroeconomic

shocks that cause business cycles. Our model consists of households, banks, nonfinancial

firms, and a government whose sole purpose is to provide bank deposit insurance. Banks are

at the heart of our model, but the exposition is smoother if we begin with the less exciting

firms and households.

But first, a note on notation: There are a measure one continua of households, banks

and non-financial firms. In what follows, small letters denote individual households, banks

or firms; capital letters represent aggregate values. Safe firms (defined below) carry a super-

script s; risky firms carry a superscript r.
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2.1 Non-Financial Firms

Non-financial firms are competitive and earn zero profits. There are goods producing

firms and capital producing firms. We begin with the former.

2.1.1 Goods Producing Firms:

Firms live for just two periods. A firm born in period t, obtains a bank loan, lft , to buy

the capital, kt+1, that it will use for production in period t+ 1; so,

lft = Qtkt+1, (1)

where Qt is the price of capital (or the price of investment). The ex-post return on the loan

is Rt+1l
f
t = Rt+1Qtkt+1, where we shall soon see that Rt+1 is the rate of return on capital

ownership. So, these bank loans might be better described as equity positions.

There is a continuum of firms of measure 1. But the firms come in two types: “safe” firms

face only aggregate shocks, while “risky” firms face both aggregate shocks and idiosyncratic

shocks.

In period t+ 1, a safe firm hires labor, hst+1, to produce

yst+1 = At+1(k
s
t+1)

α(hst+1)
1−α, (2)

where At+1 is an aggregate TFP shock. When a safe firm takes the loan in period t, it knows

that the firm will hire the optimal hst+1 next period. So, the safe firm chooses lf,st and kst+1in

period t, and then hst+1 in period t+ 1,to

max
lf,st ,kst+1

Et

{
max
hst+1

[
yst+1 + (1− δ)Qt+1k

s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t

]}
(3)

where δ is the capital depreciation rate, and Wt+1 is the real wage rate. This maximization

is subject to (1) and (2). The first order conditions for this maximization problem imply

EtR
s
t+1 = αEt

{
At+1

Qt

(
hst+1

kst+1

)1−α

+ (1− δ)Qt+1

Qt

}
, (4)

where the first term within the brackets is the rental rate on a unit of capital, and the second

term is the capital gain on a non-depreciated unit of capital.

A risky firm employs the technology yrt+1 = At+1

(
krt+1

)
α
(
hrt+1

)1−α
+εt+1k

r
t+1, where εt+1

is an idiosyncratic shock that follows a Normal distribution G with a negative mean, − ξ,
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and standard deviation τ :3

PDF of εt+1, g(εt+1) =
1√

2πτ 2
e−

(εt+1+ξ)
2

2τ2 (5)

CDF of εt+1, G(εt+1) =
1

2

[
1 + erf

(
εt+1 + ξ

τ
√

2

)]
The risky firm chooses lf,rt and krt+1, and then hrt+1, to

max
lf,rt ,krt+1

Et

{
max
hrt+1

[
yrt+1 + (1− δ)Qt+1k

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t

]}
(6)

subject to the analogous constraints. The first order conditions for this maximization, the

zero profit condition for firms, and equation (8) below, imply

EtR
r
t+1=EtR

s
t+1 -

ξ

Qt

. (7)

So the idiosyncratic shock lowers the expected value, and increases the variance, of the return

on a loan to a risky firm. Risky loans are socially inefficient, or in our language, excessively

risky.

Note finally that the marginal product of labor for safe and risky firms is (1−α)A(kit+1/h
i
t+1)

α

where i denotes the type of firm (i ∈ {s, r}). Labor is mobile across firms, and both types

of firms face the same real wage rate. So, the first order conditions for labor in period t+ 1

imply the capital labor ratios equalize across sectors.

krt+1/h
r
t+1 = kst+1/h

s
t+1. (8)

The Appendix provides details on aggregation across firms; there we show that there is a

representative safe firm that produces

Y s
t+1 = At+1(K

s
t+1)

α(Hs
t+1)

1−α, (9)

and also a representative risky firm that produces

Y r
t+1 = At+1

(
Kr
t+1

)
α
(
Hr
t+1

)1−α − ξKr
t+1. (10)

3erf(x) = 1√
π

´ x
−x e

−v2dv = 2√
π

´ x
0
e−v

2

dv.
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2.1.2 Capital Producing Firms

At the end of period t, goods producing firms sell their capital to competitive capital

producing firms. Letting Igt denote gross investment, the evolution of capital follows

It = ηt

[
1− φ

2

(
Igt
Igt−1
− 1

)2
]
Igt , (11)

where ηt is an investment specific technology shock, and φ is a measure of the severity of

investment adjustment costs. The aggregate capital stock evolves according to

Ks
t+1 +Kr

t+1 = It + (1− δ) (Ks
t +Kr

t ) . (12)

The capital producing firms are owned by households, and solve the problem

max
Igt+i

Et

∞∑
i=0

ψt,t+i

{
Qt+iηt+i

[
1− φ

2

(
Igt+i
Igt+i−1

− 1

)2
]
Igt+i − I

g
t+i

}
, (13)

where ψt,t+i = β λct+i
λct

is the stochastic discount factor of the households, which are described

next.

2.2 Households

The representative household’s problem is

max
Ct,Dt,Est ,E

r
t

E
∞∑
t=0

βt

[
(Ct − κCt−1)1−ςc − 1

1− ςc
+ ς0

D1−ςd
t − 1

1− ςd

]
, (14)

subject to

Ct +Dt + Es
t + Er

t = Wt +Rd
t−1Dt−1 +Re,s

t E
s
t−1 +Re,r

t Er
t−1 − Tt, (15)

Es
t ≥ 0,

Er
t ≥ 0.

Households value consumption, Ct, and value the liquidity services of bank deposits, Dt. We

put deposits in the utility function in lieu of modeling a particular transactions technology.

And for simplicity, we assume that households supply labor inelastically and have normalized

the supply of labor to be one.4 Household assets include deposits, Dt, which pay a gross

4While the total supply of labor is fixed, its distribution across safe and risky firms is market determined.
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real rate Rd
t , and two types of bank equity: Es

t is equity in a “safe” bank, which lends to a

safe firm and pays Re,s
t+1 next period; Er

t is equity in a “risky” bank, which lends to a risky

firm and pays Re,r
t+1. The returns on equity are of course not known when the household

invests. By contrast, the return on deposits is known, and deposits are protected by deposit

insurance; deposits are the safe asset in our model. Finally, households pay lump sum taxes,

Tt, to fund the government’s deposit insurance program.

The household’s first order conditions include:

C : (Ct − κCt−1)−ςc − βκEt (Ct+1 − κCt)−ςc − λct = 0, (16)

D : ς0D
−ςd
t − λct + Etβλct+1R

d
t = 0, (17)

Es : −λct + Etβλct+1R
e,s
t+1 + ζst = 0, (18)

Er : −λct + Etβλct+1R
e,r
t+1 + ζrt = 0, (19)

where λct, ζ
s
t and ζrt are the Lagrangian multipliers for the budget constraint and the two

non-negativity constraints.

If households did not value deposits for their liquidity services (ς0 = 0), (17) would be the

standard RBC Euler equation, and Rd
t would be the standard CAPM rate. But households

do value deposits in our model, and Rd
t is below the CAPM rate. Equity is not a safe asset,

and it does not provide liquidity services. So, deposits will be the cheaper source of funding

for banks. This fact will play an important role in what follows.

2.3 Banks

Banks are at the heart of our model. First, we set the stage by describing their incentives

to take excessive risk. Second, we discuss the banking sector in some detail.

2.3.1 Incentives to Take Excessive Risk and Capital Requirements

We saw from the section on firms that EtR
r
t+1 < EtR

s
t+1. So, why would a profit maximiz-

ing bank ever invest in a risky firm? Limited liability and government deposit insurance are

the culprits here. Limited liability shields the bank from downside risk. Moreover, deposit

insurance actually subsidizes risk taking; it makes bank deposits the safe asset, lowering the

cost of issuing deposits, and allowing the bank to expand its portfolio of safe or risky loans.

In what follows, we will see that if the expected return on investment in a safe firm falls,

due say to a negative TFP shock, the bank may be tempted to take a flier on the risky firm.

As we will see, capital requirements are a potential remedy for excessive risk taking.

In what follows, we will consider a requirement that says equity finance cannot fall below

9



a fraction γt of the bank’s loans. A high γt requires the bank and its equity holders to

keep more skin in the game, and it shrinks the bank’s portfolio since equity finance is more

expensive than deposit finance.

2.3.2 The Banking Sector

A measure one continuum of perfectly competitive banks start operating each period, and

they live for two periods. In the first period, a bank issues equity and deposits to households,

and uses the proceeds to make loans to firms; in the second period, the bank receives the

return on its investments and liquidates its assets and liabilities.

More specifically, in period t, the bank creates a loan portfolio by directing a fraction

σt of its loans to a risky firm; the remainder of its loans go to a safe firm.5 Since Rr
t+1 =

Rs
t+1 + εt+1

Qt
, the ex-post return on the portfolio will be Rs

t+1 + σt
εt+1

Qt
. Note that nwt+1 ≡(

Rs
t+1 + σt

εt+1

Qt

)
lt−Rd

t dt is the bank’s net worth in period t+1, where lt is the total amount

of loans. If nwt+1 is positive, the bank pays its depositors and distributes the rest to its

equity holders. If it is negative, the bank declares bankruptcy; its depositors are protected

by deposit insurance, but its equity holders get nothing.

The bank’s objective is to maximize the expected return of its equity holders, whose

stochastic discount factor is β λct+1

λct
. Let ε∗t+1 be the realization of the idiosyncratic shock

below which the bank’s net worth is negative; that is,
(
Rs
t+1 + σt

ε∗t+1

Qt

)
lt − Rd

t dt= 0. Since

the distributions of aggregate and idiosyncratic shocks are independent of each other, we

can nest expectations with respect to the idiosyncratic shock within the expectation of the

aggregate and idiosyncratic shocks, and the representative bank’s maximization problem can

be written as:

max
lt,dt,et,σt

Et

βλct+1

λct

 ∞̂

ε∗t+1

nwt+1 dG(εt+1)


− et (20)

subject to

5Our assumption that a bank only deals with one safe and one risky firm comes at no loss of generality
because all the safe firms are identical, and diversification among the risky firms does not take full advantage
of the bank’s limited liability. See Collard et al (2017) for a more formal exposition of this result.
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lt = et + dt

et ≥ γtlt (21)

lt ≥ 0

σ ≤ σt ≤ σ̄

where et is equity issued to households. The first constraint is the bank’s balance sheet, and

the second is the bank’s capital requirement. The third constraint rules out short selling;

it’s role will be discussed in Section 4. The fourth imposes limits on the fraction of a bank’s

portfolio that can go to safe or risky loans. In our calibrations, σ̄ is set equal to 0.99 and σ

is set equal to 0.01; so, banks can get very close to totally safe or totally risky portfolios if

they so choose.6

The bank’s first-order conditions can be found in the Appendix. They are not particularly

elucidating. In the next subsection, we discuss the bank’s basic tradeoff when it decides how

risky to make its portfolio of loans.

2.3.3 The Bank’s Dividends, and Its Choice of σt.

In the Appendix, we derive the bank’s expected (discounted) dividend function,

Ω(σt; lt, dt, et) = Et

[
β
λct+1

λct
lt (ω1 + ω2)

]
, (22)

where

ω1 ≡
(
Rs
t+1 −Rd

t (1− γt)−
ξσt
Qt

)(
1−G(ε∗t+1)

)
(23)

ω2 ≡
(
σt
Qt

)
τ√
2π
e
−
(
ε∗t+1+ξ

τ
√
2

)2

(24)

and where 1−G(ε∗t+1) is the probability that the bank will not default.

The first component, ω1, is the return on a loan portfolio with a fraction σt going to

a risky firm; −ξ is the (negative) expected value of the idiosyncratic shock. The second

component, ω2, is a bonus attributable to the bank’s limited liability; the higher is the

standard deviation of the idiosyncratic shock, τ, the higher is the upside potential for a risky

loan, while the downside risk is protected by limited liability.

6These limits on σt are necessary for the numerical methods that follow.
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Increasing σt makes the portfolio more risky. More risk decreases the ex-post return on

the bank’s portfolio, but it increases the bonus from limited liability. This is the tradeoff

that a bank faces.

2.4 The Government

The government provides deposit insurance, and collects taxes to pay for it. Given the

Ricardian nature of the model, a lump sum tax, Tt, can balance the budget each period

without distorting private decision making. In the Appendix, we show the tax necessary to

support the insurance scheme is

Tt = σt−1Lt−1

Qt−1

τ√
2π
e
−
(
Rdt−1(1−γt−1)Qt−1−R

s
tQt−1+ξσt−1

σt−1
√
2τ

)2

− (25)

1
2

(
Rs
tLt−1 −

σt−1ξ
Qt−1

Lt−1 −Rd
t−1Dt−1

) [
1 + erf

(
Rdt−1(1−γt−1)Qt−1−RstQt−1+ξσt−1

σt−1

√
2τ

)]
,

where Lt is the aggregate amount of loans provided by the banking sector. As might be

expected, more risk taking (a higher σt−1) and/or a higher variance (τ) of the idiosyncratic

shock increases the taxes required to protect deposits.

2.5 Analytical Characterization of Equilibrium

We are able to derive some analytical results that enhance our understanding of the

model’s equilibrium, and how to calculate it. More generally, we will require numerical

methods.

2.5.1 Two Propositions and a Corollary

As discussed in the section on households, deposits are a cheaper source of bank funding

than equity. So, a bank will fund as much of its loans by issuing deposits as is allowed by

the capital requirements. We formalize this argument and prove the following proposition

in the Appendix.

Proposition 1. In equilibrium, capital requirements always bind; that is, et = γtlt.

The next proposition, and its corollary, show that we need only consider two values of the

bank’s portfolio risk parameter, σt, when we derive the model’s equilibrium. The proposition

is established in the Appendix.
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Proposition 2. The expected dividends function of banks, Ω(σt; lt, dt, et), is convex in σt.

This result holds for arbitrary (and not necessarily continuous) distributions of the idiosyn-

cratic shock.

Corollary. There are no equilibria with σ < σt < σ̄.

The intuition for this proposition and its corollary is as follows: If σt is high enough, the

bank will be bankrupt for low values of εt anyway, so it might as well take on as much risk

as possible to maximize the portfolio’s upside potential for high values of εt. If σt is low

enough, the bank will not be bankrupt even for low values of εt, and the value of limited

liability is negated; the bank might as well take on the minimum risk to raise the expected

value of its portfolio.

2.5.2 Equilibrium and Aggregation

We consider a competitive equilibrium in which each bank takes aggregate prices as

given. The Appendix lists all the equilibrium conditions of our model. In this subsection,

we only present the equilibrium conditions that are not already included in the preceding

subsections. We let µt denote the fraction of banks with risky portfolios (banks that choose

σt =σ̄) at date t; the remaining fraction 1− µt are safe banks (σt = σ).

The fraction µt is endogenously determined by equity positions of households: we have

µt =
Ert

Ert+E
s
t
. At any point in time, the economy may be in a safe equilibrium (with µt = 0),

a risky equilibrium (with µt = 1), or a mixed equilibrium (with 0 < µt < 1).

Each bank within a group (safe or risky) is alike and solves the same maximization

problem in which it chooses lit, d
i
t, e

i
t according to its type i ∈ {s, r}. The aggregate loans to

the (representative) safe firm come from two sources: 1) from all safe banks (of measure 1−µt)
that allocate 1− σ share of their loan portfolio to safe projects and 2) from all risky banks

(of measure µt) that allocate 1− σ̄ share of their loan portfolio to safe projects. Therefore,

the equilibrium restrictions linking our bank-level and firm-level variables representing loans

are

QtK
s
t+1 = (1− σ) (1− µt) lst + (1− σ̄)µtl

r
t . (26)

Similarly,

QtK
r
t+1 = σ (1− µt) lst + σ̄µtl

r
t . (27)

The aggregate bank loans are linked to the individual bank loans by: Lrt = µtl
r
t and Lst =

(1− µt)lst . Therefore, we can describe the latter two equations by using aggregate loans

QtK
s
t+1 = (1− σ)Lst + (1− σ̄)Lrt , (28)

QtK
r
t+1 = σLst + σ̄Lrt . (29)
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The equity positions taken by households, in turn, determine the equity positions of

individual banks: Er
t = µte

r
t and Es

t = (1− µt)est . The returns on the equity positions taken

by households at date t are linked to the dividends paid by banks at date t+ 1. We have:

Er
tR

e,r
t+1 = (ωr1 + ωr2)L

r
t , (30)

Es
tR

e,s
t+1 = (ωs1 + ωs2)L

s
t , (31)

where we use that max
[
nwrt+1, 0

]
is linear in loans; ω1 and ω2 were defined in equations (23)

and (24). Deposits held by households are issued by (safe and risky) banks: Dt = Ds
t + Dr

t

where Ds
t = Lst − Es

t and Dr
t = Lrt − Er

t .

The equilibrium restrictions linking our aggregate and individual firm-specific variables

are straightforward, but cumbersome in terms of notation. We state the restrictions in the

Appendix. The market-clearing conditions for labor, capital, and goods are

Hs
t +Hr

t = 1, (32)

Ks
t +Kr

t = Kt, (33)

and

Y s
t + Y r

t = Ct + Igt . (34)

3 Calibration and Steady-State Capital Requirements

Our calibrated parameters are reported in Table 1. We use standard values for the

discount factor β, the capital share α, the intertemporal elasticity of substitution %c, and

the depreciation rate δ.

We consider loans to be risky if they are made to firms with a debt-to-EBITDA ratio

above 6 in the leveraged loan market.7 We choose τ, the standard deviation of the risky

firm’s idiosyncratic shock, to match the variance of returns on a risky project in our model

to the variance of returns from lending to a firm with a debt-to-EBITDA ratio of 6. In each

case, we focus on variances conditional on starting from the non-stochastic steady state of

our model. The Appendix provides the details of our procedure. Given τ , we fix the value

of ξ, the average penalty from financing risky projects, so that a 10% steady state capital

requirement prevents lending to risky firms. We note that our choice of 10% is consistent

with the static values of capital requirements proposed by Basel III; it also lies within a span

of values usually considered in the literature on optimal capital regulation.

7EBITDA is earnings before interest, taxes, depreciation, and amortization.
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Why do we not try to calculate an optimal steady state capital requirement? We show in

the Appendix that alternative choices of τ and ξ would support a wide range of steady state

capital requirements. This suggests that a model like ours is not suitable for any attempt to

pin down the optimal steady state value.

To match the data on interest rate spreads, we introduce costs of banking in our quanti-

tative model. We assume that these costs are linked to the provision of loans. In particular,

each period the bank incurs an additional cost, flt, that is paid out of its current profits.8

And when a bank defaults, the household has to pay a higher tax to the deposit insurance

fund to cover this cost of banking. The Appendix provides further details on the implications

of this cost for the lump sum tax, Tt, and on the first order conditions for the optimization

problem of banks. We choose f to make the average spread between the safe loan rate and

the deposit rate equal to 2.26 percent per annum; we take this value from Collard et al.

(2017). The parameter ς0 measures the utility of deposits in the steady state. We set the

value of ς0 to make the interest rate on bank deposits equal to 0.86% per quarter, a value we

borrow from an estimate in Begenau (2019). Finally, our setup for investment adjustment

costs mimics the one used by Altig et al. (2011). We pick the value of φ consistent with the

broad range from their analysis and related literature.

4 Numerical Methods

Since our model involves occasionally binding nonnegativity constraints on bank loans,

we need to rely on nonlinear solution methods. We apply the Occbin toolkit developed in

Guerrieri and Iacoviello (2015). This solution algorithm modifies a first-order perturbation

method and employs a guess-and-verify approach to obtain a piecewise linear solution.9 The

solution reflects the endogenous transition between safe and risky regimes, depending on

the size of a shock and the state vector, and thus it is highly nonlinear. The algorithm has

advantages over nonlinear projection methods because it is computationally fast and can be

applied to nonlinear models with a large number of state variables, such as ours.

So why did we complicate matters by imposing nonnegativity constraints on loans? We

needed to rule out the short-selling of assets (or negative loans). To see why, suppose banks

are in the safe equilibrium; in this case, risky loans are overpriced compared to safe loans

(because expected returns on risky loans are relatively lower in the safe equilibrium); absent

short-selling restrictions, each bank would want to short risky loans. Similar reasoning

8Allowing for these banking costs serves to calibrate the steady-state equilibrium of our model; but it has
no effect on the equilibrium dynamics we discuss in subsequent sections, because labor supply is inelastic in
our model. For this reason, we have suppressed this factor in the equations above.

9See Guerrieri and Iacoviello (2015) for a discussion of the accuracy of this type of solution method.
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applies to the risky equilibrium, in which the banks in our model would short safe loans. In

either of these cases, arbitrageurs would force the expected returns on safe and risky loans

to equality. And this would result in the mixed equilibrium (described in Section 2.5.2) in

which 0 < µt < 1.

5 The Ramsey Policy and Its Numerical Derivation

To compute optimal capital requirements, we focus on the Ramsey problem, conditional

on the restrictions of the decentralized equilibrium. The Ramsey program selects the path

of capital requirements that maximizes the conditional expectation of the household’s utility

as of time zero. More precisely, following a dual approach, the Ramsey planner chooses the

sequence of capital requirements {γ∗t }
∞
t=0 to maximize the household utility function, (14),

subject to the equilibrium conditions implied by the optimality conditions of households,

firms and banks, and the market clearing conditions. The non-negativity and short-selling

restrictions that we noted above complicate this Ramsey problem. We proceed by proposing

a natural candidate for the solution and then verifying that the proposed solution does indeed

maximize the objective function, (14).

Our proposed solution is to consider the sequence of capital requirements {γ∗t }
∞
t=0 that is

set at the lowest level necessary to prevent risk taking – given the realizations of the shocks

– at any date t. This sequence dominates any alternative path
{
γAt
}∞
t=0

in which γAt = γ∗t

for t 6= tk and γAt = γ∗t + ∆ for t = tk and some ∆ 6= 0. When ∆ > 0,
{
γAt
}∞
t=0

is welfare

dominated by {γ∗t }
∞
t=0 because a higher capital requirement in period tk leads to welfare

losses from the reduced amount of liquidity services without altering risk-taking incentives.

This holds for any tk and does not depend on the size of ∆ > 0. When ∆ < 0, banks

switch to funding socially inefficient risky projects in period tk under
{
γAt
}∞
t=0

. The decrease

in the capital requirement involves an output loss of ξK from making risky loans, but it

may increase the liquidity services that enter into household utility. The trade-off between

these two considerations determines the impact on welfare. For a small decrease in capital

requirements (i.e. negative values of ∆ close to zero), the former consideration is more

important. Why? Since banks jump to the risky equilibrium, the lower capital requirement

entails a discrete drop in welfare, arising from the drop in output. By contrast, the welfare

gain (or loss) associated with liquidity provision is a second-order change.

Our reasoning above establishes that the Ramsey planner’s objective function has a local

maximum along the path {γ∗t }
∞
t=0. To show that this is indeed a global maximum, we must

check the welfare effect of a large decrease in capital requirements; in this case, liquidity

considerations will not be of second order. To see how liquidity considerations compare to
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the welfare loss associated with inefficient risk taking, we compare (numerically) the welfare

measure under our candidate for optimal policy to welfare under an alternative policy that

maximizes the benefit of liquidity provision under the risk-taking regime. All the equilibria

under the risk-taking regime have the same level of expected output; so, we only need to

consider the policy that maximizes liquidity provision. The gains from liquidity services are

maximized when γAtk = 0. Therefore, we need to compare conditional welfare under {γ∗t }
∞
t=0

to the alternatives that let the capital requirement go down to zero, in some periods.

To check quantitatively if setting capital requirements to zero becomes optimal in re-

sponse to shocks, we use a variant of the OccBin algorithm. We consider a horizon K and

construct all possible combinations of periods from 1 to K in which capital requirements are

hardwired to go to zero whenever a switch to the risk-taking regime is made, but are set

at {γ∗t }
∞
t=0 otherwise. Then, for each combination, we calculate the conditional welfare and

compare it against the conditional welfare of keeping capital requirements at {γ∗t }
∞
t=0. We

verify that the proposed path of {γ∗t }
∞
t=0 that makes capital requirements just large enough to

prevent excessive risk-taking incentives is, in fact, globally optimal in our parameterization.

We did verify that we could make the optimal capital requirement be 0 if the weight

on deposits in the utility function is high enough. The tipping point, given the rest of our

calibration, is a weight of about 0.09, implying the deposit rate is about 2.75 percentage

points below the risk-free rate, as opposed to our baseline 0.5 percentage point. An interest

rate spread of 2.75 percentage points seems unreasonable to us.

6 Optimal Dynamic Capital Requirements

In this section, we show how a Ramsey Planner would set capital requirement ratios,

γt, in response to various shocks that can cause excessive risk-taking. All of the shocks we

consider in this section follow exogenously set AR(1) processes; in Section 7, we let the data

and the model determine the size and persistence of these shocks using a SMM procedure.

We take two steps in preparation for our discussion here. First, we ask what might trigger

a risk-taking episode in the first place. And second, we show how exogenous shocks to the

Planner’s policy instrument – capital requirements – would affect financing decisions and

real allocations.10

10For the purposes of this section, we have set the steady state capital requirement at 10.1 percent, 0.1
percent higher than is necessary to avoid excessive risk-taking in the steady state. This facilitates our
numerical solution methods.
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6.1 What Triggers an Excessive Risk-Taking Episode?

The answer to this question is rather complex because the banker’s maximization problem

has so many moving parts. We give a detailed answer in the Appendix; here we offer a simpler

explanation that focuses on the main forces at work.

Consider the expected dividends for safe and risky firms, Ωs
t ≡ Ω(σ; lt, dt, et) and Ωr

t ≡
Ω(σ̄; lt, dt, et) respectively. Anything that would make Ωr

t − Ωs
t go positive will trigger a

risk-taking episode. Equation (22) specifies Ω(σt; lt, dt, et) for all values of σt, where it will

be recalled that

ε∗t+1 = −Qt

σt

[
Rs
t+1 −Rd

t (1− γt)
]

(35)

is the realization of a bank’s idiosyncratic shock below which its net worth is negative, and

G(ε∗t+1) is the probability that the bank will fail. Implicit in the formulation of the banker’s

problem, (20), is the fact that G ′(ε∗t+1) > 0 and G(ε∗t+1)→ 0 as ε∗t+1 → −∞.

For purely expositional purposes, we will in this subsection suppose that σ = 0 and

σ̄ = 1. With these simplifications, (22) implies

Ωs
t = Et

[
ψt,t+i lt

(
Rs
t+1 −Rd

t (1− γt)
)]

and (36)

Ωr
t = Et

[
ψt,t+i lt

((
Rs
t+1 −Rd

t (1− γt)−
ξ

Qt

)(
1−G(ε∗t+1)

)
+

(
1

Qt

)
τ√
2π
e
−
(
ε∗t+1+ξ

τ
√
2

)2)]
,

(37)

where ψt,t+i≡ β λct+1

λct
is the household’s stochastic discount factor, and where it will be recalled

that

Rs
t+1 = α

{
At+1

Qt

(
Hs
t+1

Ks
t+1

)1−α

+ (1− δ)Qt+1

Qt

}
. (38)

What might turn Ωr
t−Ωs

t positive, triggering a risk-taking episode? The obvious culprit is

the interest rate spread Rs
t+1−Rd

t (1− γt) . An expected narrowing of this spread will decrease

Ωs
t more than Ωr

t since 1 − G(ε∗t+1) is less than one in the risk-taking regime. Moreover, a

narrowing of the spread has a secondary effect on Ωr
t that is a little more subtle: (35) implies

that ε∗t+1 will rise. The presence of ε∗t+1 (instead of −∞) in the bank’s expected profits, (20),

represents the value of limited liability to banks. Idiosyncratic shocks below this cut-off point

cannot lower the bank’s profits. An increase in ε∗t+1 would enhance the value of the shield
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of limited liability and increase Ωr
t .
11 Note finally that if a risk taking episode is triggered,

there will be a jump in σ, and therefore a further jump in ε∗t+1 .

So, what might narrow the interest rate spread and provoke a risk-taking episode? There

are a number of possibilities. Perhaps the most obvious would be a fall in the expected return

on safe assets; for example, an expected fall in TFP could trigger a risk-taking episode. Two

parameters in (37) are also of interest. An increase in the standard deviation of the idiosyn-

cratic shock, τ , will raise Ωr
t since it increases the upside potential of the risky asset (while

the downside potential is unchanged because of limited liability). The second parameter is

the expected value of the risky firm’s idiosyncratic shock is −ξ; ξ is the average penalty for

investing in the risky asset. A fall in this parameter would also raise Ωr
t .

Note also that a loosening of the capital requirement, γt, would decrease the interest rate

spread and could trigger a risk-taking episode. A loosening of the capital requirement allows

the bank to fund more of its loans with deposits; this reduces the cost of banking and allows

the bank to keep less skin in the game. The bank expands its lending and switches to risky

loans. And note finally that a dynamic capital requirement could hold Ωr
t − Ωs

t constant at

it’s steady state value; banks would never leave the safe equilibrium. As seen in Section 5,

this option is the Ramsey Planner’s policy.

The intuitive exposition just given relied upon two simplifying assumptions – one made

explicit, and the other implicit – that must now be undone. The explicit assumption was

that σ = 0 and σ̄ = 1. In the numerical analysis that follows, σ is set equal to 0.01 and

σ̄ is set equal to 0.99; in equilibrium, there must be both safe and risky loans (and firms).

The implicit assumption was that a bank could observe both Ωr
t and Ωs

t , and then choose

its loan portfolio accordingly. But, we cannot have both Ωr
t and Ωs

t in equilibrium. If we are

in a safe equilibrium, we have Ωs
t , and Ωr

t is an off-equilibrium object; during a risk taking

episode, we have Ωr
t , and Ωs

t is an off-equilibrium object.

However, there is an equilibrium interest rate spread – whose evolution is closely related

to Ωr
t − Ωs

t – that we can track:

St ≡ Et
[
Re,r
t+1 −R

e,s
t+1

]
. (39)

St is the expected spread between the returns on risky and safe equity. Because of our

minimum scale assumptions, a small amount of risky loans will be extended in the safe

regime, and conversely, a small amount safe loans will be extended in the risky regime; so,

the returns on equity are equilibrium objects. In a risk-taking episode, St turns positive.

11It is hard to see these results in (37) without investigating a number of special cases, some involving the
absolute value of ε∗t+1 + ξ. These special cases are relegated to the Appendix.
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Once the episode is over, the spread turns negative.12

6.2 Capital Requirement Shocks

The next two sections illustrate the transmission mechanism for capital requirement

policy. And in particular, we show that increases and decreases in capital requirements have

asymmetric effects on bank decision making and economic outcomes.

6.2.1 An Increase in Capital Requirements

Figure 1 shows the effects of a one percent increase in the capital requirement ratio, γt;

this shock has a persistence parameter of 0.9. An increase in the capital requirement forces a

bank to shift its funding mix from deposits to equity; this shift increases the cost of funding

a given amount of loans since deposits have liquidity value, and they will be held by the

households at a lower rate of return. On the other hand, the shock does make the bank safer

by requiring it to keep more skin in the game.

Note that the Modigliani-Miller Theorem does not hold in our model, since once again

deposits are valued for their transactions services. So, even though the economy stays in a

safe equilibrium, tighter capital requirements can have real effects on the macroeconomy.

More precisely, an increase in the capital requirement acts like a tax hike on banks.

Households, who own the banks, are effectively poorer. They cut back on consumption, and

since labor is inelastically supplied, their savings increase correspondingly. But under our

calibration, the movements in consumption, investment and output are tiny, as can be seen

in Figure 1. The real side of the economy is hardly affected.

There are first order effects in the financial sector, and they can affect household utility.

First and foremost, the increase in equity funding reduces the bank’s demand for deposits,

and the deposit rate falls. Moreover, the increase in household savings pushes up the supply

of deposits, which reinforces the decrease in the deposit rate. Deposits make up close to

90 percent of bank funding in our calibration. Somewhat paradoxically, the increase in

12There is a simple relationship between St and Ωrt − Ωst when computing Ωrt and Ωst conditional on,
respectively, the risky and safe loans actually extended (rather than the desired amount of loans). In that

case, St ≡ Et
[
Re,rt+1 −R

e,s
t+1

]
= Et

Ωr
t+1

Er
t
− Et

Ωs
t+1

Es
t

. The thought experiment by which a banker compares

the expected dividends for a desired level of loans is intuitive, but we solve the model by referring to the
Lagrange multipliers on the non-negativity constraints for safe and risky loans. When extending safe loans
leads to higher expected dividends, a banker would want to short-sell risky loans, turning the corresponding
Lagrange multiplier positive; analogously, when extending risky loans leads to higher expected dividends, a
banker would want to short-sell safe loans. These two conditions allow us to determine which regime applies

in any period more easily than attempting to construct Et
Ωr

t+1

Er
t

and Et
Ωs

t+1

Es
t

, whose computation requires

taking a stand on the entire path of future actions.
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capital requirements, and the subsequent fall in the deposit rate, end up reducing the cost

of banking.13 However, the large drop in deposits, coupled with the (almost imperceptible)

fall in consumption, decreases household utility, as can be seen in the last panel in Figure

1.14

Over time, these movements reverse themselves. The capital requirement falls, and de-

posits recover. The capital stock falls, increasing the marginal product of capital and Rs,

which pushes Ωs up relative to Ωr. The economy reverts to its steady state.

6.2.2 A Decrease in Capital Requirements:

The dashed lines in Figure 2 show the response to a 1 percent decrease in the capital

requirement, with an auto-regressive coefficient of 0.9. Deposits rise and bank equity falls,

as the lower capital requirement allows banks to switch to the cheaper source of funding. As

explained in Section 6.1, a loosening of the capital requirement immediately triggers a risk-

taking episode. On average, risky firms produce less output since a risky firm’s idiosyncratic

shock has a negative expected value; so, output and income fall substantially.15 Consumption

and investment also fall. In subsequent periods, the demand for capital falls, as does its price,

Qt. The fall in Qt, coupled with the jump in σt, increases the cut-off point ε∗t+1 discussed in

Section 6.1, making risky loans more attractive; Ωr
t and Re,r

t+1 rise. The spread St immediately

goes positive. These events are pictured in Panels 5 and 7.

Over time, the capital requirement rises and the process described above reverses itself.

When St falls to zero, σt jumps back to its lower bound, and the economy jumps back to

a safe equilibrium. Capital is more productive in a safe equilibrium, since lending to the

inefficient risky firms is almost eliminated. This creates a jump in the price of capital, Qt,and

a jump in the return on safe loans, as can be seen in (38); the expected return on safe equity

spikes. Gradually, the economy returns to its steady state.

Takeaways:

Positive and negative shocks to the capital requirement have asymmetric effects on the

economy, and they are not the mirror images found in linear models. Loosening capital

requirements triggers an excessive risk-taking episode, and consumption and output fall.

For comparison, the solid lines in Figure 2, repeat the responses shown in Figure 1; the

responses of consumption and output are so small as to be imperceptible with the re-scaling

13Begenau (2019) also finds that an increase in capital requirements can reduce the cost of bank funding
and increase lending.

14Welfare is calculated as the present discounted value of utility at a given point in time; is moves as the
state variable change.

15Put another way, some of the risky loans fail, destroying bank equity and increasing the taxes necessary
to insure deposits. So, output and income fall.
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of the axes. Loosening capital requirements produces a major disruption on the real side of

the economy; for a tightening of capital requirements, what happens in the financial sector

stays in the financial sector.

6.3 TFP Shock

TFP shocks have played a major role in RBC modeling. Figure 3 illustrates the effects

of a contractionary TFP shock; At falls by 1.5 percent (or one standard deviation), and has

a persistence parameter of 0.95. In each panel, the dashed line shows what would happen if

γt were to be held constant at its steady state value; the solid line shows what would happen

if the Ramsey Planner set the path of γt.

We begin with the case of fixed capital requirements. Since the shock is auto-correlated,

today’s TFP shock lowers the expected marginal productivity of capital for the next period,

and thus the expected return on safe assets. As explained in Section 6.1, this triggers a risk-

taking episode. Re,s
t+1 falls and the spread St jumps positive. Risky firms produce less output

on average; so, output and income fall substantially, as does consumption. As output and the

marginal productivity of capital fall, the demand for capital falls, lowering the investment

price, Qt. For use in Section 7 below, we also track the credit-to-GDP ratio. It falls, as

under our calibration, bank loans decrease more quickly than GDP.

Over time, the TFP shock dissipates and the process described above reverses itself.

Among other things, the falling capital stock raises the marginal productivity of capital and

the return on safe assets, and also the price of investment. St falls, and jumps negative

after σt drops to its lower bound, and the economy jumps back to a safe equilibrium. The

credit-to-GDP ratio rises, and then midway starts to fall.

Next, we turn to the Ramsey Planner’s solution, shown by the solid lines in Figure 3. The

Planner’s policy is to set capital requirements just tight enough to keep safe loans attractive;

as we have seen, any higher would unnecessarily deprive households of the deposits that

they value. γt jumps on impact, and falls back to its steady state value as the TFP shock

dissipates.

While the Planner’s policy avoids risk-taking episodes, it cannot undo the damage done

by the TFP shock itself. The shock lowers the household’s net worth, and they respond

by decreasing consumption and increasing savings/investment. All this is familiar from the

RBC literature. Indeed, absent the possibility of excessive risk taking, our model has no

banking frictions; in essence, it reduces to the standard RBC model in which there is no role

for macroeconomic policy. It may be interesting to note that the gap between the paths of

consumption in the third panel is largely determined by the size ξ, the expected loss on risky
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loans; ξ is a measure of the economic inefficiency in our model.

Takeaways: A one standard deviation shock to TFP causes a 1.5 percent decrease

in output. However, the optimal capital requirement needs only a modest adjustment, an

increase from 10 percent to 10.15 percent. Note also that after a few quarters, the path of the

investment price, Qt, in the inefficient solution (inversely) tracks the path in the Planner’s

solution rather closely. After its initial fall, the credit-to-GDP ratio rises and then falls

midway through the cycle; optimal capital requirements do not follow the prescription laid

out by the Bases III accords.

6.4 An Expansionary Investment Technology Shock.

Here we study a positive ηt shock in the equation for net investment, (11). The shock

has a persistence parameter of 0.8, and we calibrate the size of the shock to increase output

by 1% at its peak, roughly on a par with the TFP shock described previously. Figure 4

illustrates the effects of this shock. Once again, the dashed lines show what would happen

if the capital requirement were kept at its steady state value, while the solid lines represent

the Ramsey solution.

This shock was not considered in Section 6.1, but its effects are readily translatable to the

discussion there. A positive shock to investment in period t increases the supply of capital

next period, Kt+1, lowering the expected marginal product of capital and the expected return

on the safe asset. The expected return on safe equity falls, and a risk-taking episode is begun,

even though the shock itself is expansionary.

Note that the expected return on safe equity only drops for one period. To see why, note

that the decrease in the marginal product of capital causes the price of capital, Qt+1, to fall,

and this raises the return on safe loans in period t+2. However, the damage is already done;

the risk-taking episode has already been triggered, as documented by the jump in St. The

risky firms produce less output on average, and output and consumption fall. From here

on, the story is much the same as before. The investment shock decays over time and the

process gradually reverses itself. Note that there is an upward spike in the expected return

on safe loans when the economy jumps back to a safe equilibrium.

The solid lines illustrate what would happen if the Ramsey Planner set the path of γt.

The Planner raises the capital requirement just enough to offset the switch to excessive risk

taking. Consumption and investment rise more in this case since there are no bankruptcies

and equity losses to lower household income.

Takeaways: In this example, the Planner raises capital requirements as the economy

goes into a boom period, which may be thought to be in line with Basel III’s cyclical buffers;
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however the capital-to-GDP ratio falls initially. Once again, this ratio subsequently rises,

and then falls midway through the cycle. The optimal adjustment in the capital requirement

is again small; γt only rises from 10% to a little over 10.2%. But the distance between the

solid and dashed lines is substantial. Note that the path followed by the investment price,

Qt, in the inefficient solution (inversely) tracks the Planner’s solution, but rather loosely.

6.5 A Volatility Shock

In the steady state, the standard deviation of the idiosyncratic shock, τ, affecting risky

firms is 5.5%. Our volatility shock increases the standard deviation by 15 basis points,

after which it follows an AR(1) process (with persistence parameter 0.8) back to 5.5%. As

explained in Section 6.1, an increase in volatility raises the expected return on risky loans,

since it enhances the upside potential of risky loans while the downside risk is protected by

limited liability.

Figure 5 illustrates the economic consequences of this volatility shock. As before, the

dashed lines show what would happen if γt were to be held constant. The shock is big

enough to entice banks to switch to risky loans, some of which will fail, increasing taxes

and destroying bank equity. The story that follows is by now familiar. Consumption and

savings/investment fall. Eventually, the shock dissipates and the falling capital stock raises

Rs enough to make safe loans attractive again. As the solid lines illustrate, the Ramsey

Planner would increase capital requirements just enough to eliminate the excessive risk

taking. Under the Ramsey policy, there is no change in the expected return on safe equity

or on St; the shock has absolutely no effect outside of financial markets, and only the capital

requirement moves inside financial markets.

Takeaways: With no change in capital requirements, the effect of this shock on consump-

tion and output is rather small; however, the shock itself was not large. Note that the path

followed by the debt-to-GDP ratio and the investment price, Qt, in the inefficient solution

are not good indicators for the direction of optimal policy.

6.6 Sensitivity Analysis

The size of the optimal adjustments in capital requirements is strongly influenced by

two parameters: the variance of the idiosyncratic shocks, τ , and the average penalty for

taking a flier on a risky loan, ξ. In Figure 6, we focus on the TFP shock. The circles in

these diagrams represent the baseline calibrations. The maximum adjustment in the optimal

capital requirements is especially sensitive to increases in τ . At the outer range of the values

of τ that we consider, we can boost the change in capital requirements to a more substantive
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0.75 percent in response to a TFP shock that, at its peak, still reduces output by 1.5 percent,

just as in Figure 3.

7 Implementable Buffer Rules

The three Ramsey policies derived in Section 6 were in response to three different shocks,

each of which was considered in isolation. In practice policymakers face a much more difficult

challenge: the economy is actually driven by a multiplicity of shocks, all occurring at the

same time; policymakers have to respond to the full stochastic structure of the economy. In

our model, we can derive the Ramsey policy when the economy is hit by a full constellation

of shocks, but it is implausible to think that policymakers would be able to implement it.

So, in this section, we consider simple policy rules in which the capital requirement responds

to one or two observable endogenous variables, and we ask which, if any, of these rules can

closely mimic the actual Ramsey policy. Of particular interest will be Basel III’s capital

buffer rule in which capital requirements respond positively to the credit to GDP ratio.

This exercise is neither easy nor straightforward. The first step is to decide which shocks

drive the macroeconomy, and we will see that this decision is not innocent: a different choice

of shocks can alter results dramatically. Here, we will consider two calibrations which fit

the U.S. data rather well. In Calibration 1, we use the two macroeconomic shocks – TFP

and ISP (investment specific) – that were considered in the last section; in Calibration 2, we

expand the set of shocks to include the volatility shock. The statistics we choose to match in

the data are selected moments of chained real GDP, chained real private investment, and the

implicit price deflator for chained investment (divided by price deflator for consumption).

The next step is to calibrate the shocks to make model moments match moments in the

U.S. data. We allow each shock to follow an auto-regressive process of order 1, and we need to

size the persistence parameters and the standard deviations of the innovations. We also want

to size the investment adjustment cost parameter, φ, and the habits parameter, κ. To do this,

we use a SMM (simulated method of moments) procedure. For these calibrations, we are

focusing on variances, covariances, and auto-covariances of all the observed variables, with

the estimation sample starting in 1980. We experiment with the SMM optimal weighting

matrix, and we match observed moments from bandpass-filtered data (selecting standard

business cycle frequencies) against analogous moments simulated from a sample of 2000

model observations (also bandpass filtered).

Finally, it should be noted that we are also calculating and imposing the Ramsey policy

for capital requirements in our model simulations. So, the model output gives us data for the

optimal dynamic capital requirements, and model data are generated under the assumption
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that the optimal capital requirements are in place.

7.1 Matching Moments, Shock Processes and Variance Decom-

postions

Tables 4 and 7 show that both calibrations are good. Their performances in terms of

the moments are virtually indistinguishable. Moreover, the values of the distance functions

reported at the bottom of Tables 2 and 5 are very close. So, both calibrations are worth

considering.

Tables 2 and 3 show the calibrated shock processes and the variance decompositions

associated with Calibration 1; Tables 5 and 6 report the analogous results for calibration

2. It may be interesting to note that the persistence parameter for the TFP shock in

both calibrations is 0.79, which is somewhat lower than what is normally assumed in the

RBC literature.16 In Calibration 1, both shocks are very persistent. But in the variance

decompositions, the TFP shock does all of the work for GDP and investment; the ISP shock

only matters for the investment price. Note also that the ISP shock explains all the variation

in the Ramsey policy setting, γ. In Calibration 2, all of the shocks are highly persistent. In

the variance decompositions the TFP shock once again explains all of the variations in GDP

and investment, while now the volatility shock explains the variation in the Ramsey policy

settings.

7.2 Implementable Capital Buffer Rules

The Ramsey policy requires full knowledge of all the shocks, making its implementation

virtually impossible in practice. Here, we focus on simple rules that may be able to mimic

the optimal policy; these rules are based on one or two observable variables, and they are

clearly implementable. The Basel III cyclical buffer, which runs off of the credit-to-GDP

ratio, will be of particular interest. We will also compare these simple rules to more complex

rules that are probably not implementable.

To derive the policy rules, we use data generated by our simulations. That is, we regress

the Ramsey policy settings on one or more of the endogenous variables (and a constant).

Then, we use a variety of measures to rank the alternative rules. The first, and perhaps the

most obvious, measure is the R-square of the regression; the higher the R-square, the more

closely the rule tracks the Ramsey settings. But there are other measures – performance

measures – that focus on what the rule actually achieves. A good rule should minimize the

16In most of the RBC literature, the persistence parameter is estimated by a simple auto-regression on
TFP data.
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frequency of excessive risk-taking episodes; the Ramsey policy eliminates them altogether.

But recall that there is a tradeoff here. The frequency of episodes can also be minimized,

or even eliminated, by simply setting the static capital requirement at a very high level.

This cannot be the only performance measure that we consider since a very high capital

requirement forces banks to limit the deposits they issue, and deposits are valued for their

transactions services. So, the second performance measure is the average level of deposits

that it achieves – the higher, the better.

Simple Rules Under Calibration 1

Table 8 reports our results for various policy rules under Calibration 1. The first column

lists the variables in the rule; the second column gives the R-square for the rule’s regression;

the third and fourth columns show the regression coefficients; the fifth and sixth columns

report the rule’s performance measures: the average number of risk-taking quarters per 100

years and the average level of deposits when the static capital buffer is 10 basis points (that

is, when the steady state capital requirement is raised from 10 percent to 10.1 percent); and

finally, the seventh and eighth columns report the performance measures when the static

capital buffer is 30 basis points (or the steady state capital requirement is raised to 10.3

percent).

The Ramsey Policy allows no risk-taking episodes, and the average level of deposits is

16.25. These performance measures – 0 and 16.25 – are the gold standard, the standard to

which the implementable rules can only hope to aspire.

The best implementable rule for Calibration 1 has capital requirements responding to

the investment price. The R-square is 0.96, so it tracks the Ramsey policy quite well. And

this simple rule comes close to meeting the Ramsey performance standards – no risk-taking

episodes, and an average level of deposits of 16.23 (with a static buffer of just 10 basis points).

It is easy to see why this rule does so well. Figures 3 and 4 show that for both of the shocks

that drive the economy, the investment price falls while the Ramsey capital requirement rises.

Moreover, in Table 3, the ISP shock explains all the variation in the Ramsey requirement,

and 92 percent of the variation in the investment price. So the investment price is a very

good signal for what should be done with the capital requirement.

By contrast, the Basel rule does very poorly. The Basel III prescription is to tighten

capital requirements when the credit-to-GDP ratio is rising and relax them when the ratio

is falling. In Table 8, the R-square for this rule is only 0.25. Moreover, the number of risk-

taking quarters per 100 years is very high when the steady state capital requirement is 10.1

percent, and the average level of deposits is very low. Note also that the sign of the regression
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coefficient is wrong, at least from the perspective of the Basel III recommendations. In the

next row, we impose a positive coefficient, and the results are even worse, as might have

been expected.

Raising the steady state capital requirement to 10.3% brings a huge improvement in the

Basel rule. But, the higher steady state capital requirement is doing all of the work here: the

number of risk-taking quarters falls dramatically, and the level of deposits rises dramatically.

The latter result may seem counter intuitive, since higher capital requirements force banks

to decrease the proportion of loans that are funded by bank deposits. The answer to this

puzzle is that the level of output and loans is lower during risk-taking episodes. Limiting

the number of risk-taking episodes increases the average amount of credit that is extended,

and this can raise the level of deposits even when deposits account for a lower fraction of

the bank’s funding.

So why does the Basel rule itself do so badly? Figures 3 and 4 show that for both of the

shocks that drive the economy, the credit-to-GDP path reverses direction midway through,

while the paths of the Ramsey capital requirement are monotonic. And from the variance

decompositions reported in Table 3, the ISP shock drives the Ramsey capital requirements,

while it only explains 41 percent of the variation in the credit-to-GDP ratio.

Some (incorrectly) interpret the Basel rule as saying that capital requirements should

move pro-cyclically – increasing in booms and decreasing in recessions. But Table 8 shows

that the GDP rule fares no better than the actual Basel rule. The R-square is virtually zero;

so it is not tracking the Ramsey policy. And the performance measures are also bad.

The remaining rules are probably not implementable because of their informational re-

quirements. The simplest is a rule that responds to the expected spread between the safe

return and the deposit rate. This rule sounds sensible, given the discussion in Section 6.1,

and indeed it has an R–square of 0.88; it tracks the Ramsey policy fairly well. However, its

performance measures (when we can calculate them) are rather poor compared to even the

Basel rule.

The last two rules implausibly assume that the policymaker can also observe all sorts of

things. Armed with all this information, the R-squares are 1.0. However, neither of these

rules do any better than the simple investment price rule on the performance measures.

Simple Rules Under Calibration 2

Calibration 2 adds the volatility shock. Table 9 shows that the addition changes our re-

sults dramatically. Neither the investment price rule nor the Basel rule works well; they have

low R-squares and poor performance measures unless the steady state reserve requirement is
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raised from 10 percent to 11 percent. Here again, the work is being done by the static capital

buffer, and not the rules themselves. The reason for the poor performance of these rules can

be seen in the variance decompositions of Table 6. The volatility shock explains 97 percent

of the variation in the capital requirement, but 0 percent of variation in the investment price

and only 1 percent of the variation in the capital-to-GDP ratio.

The rule based upon the spread between the expected return on safe loans and the deposit

rate does a better job of tracking the Ramsey settings with an R-square of 0.85, but once

again the steady state capital requirement has to be increased to 11% before the rule does

well by the performance measures. The same is true with the rules based upon much more

information. Most of the work seems to be done by the higher static buffers.

The Efficiency of Static Capital Buffers

The results reported above seem to indicate that the steady state capital requirement is

an important instrument in the regulator’s tool kit. Table 10 bears that out. Here, there are

no rules, just static capital buffers. The last row gives the performance measures achieved

by the Ramsey Planner. The first row with numbers reports the performance measures

if the static capital requirement is raised from the 10 percent benchmark to 10.1 percent;

they are not good. However, if the requirement is raised to 10.4 percent for Calibration 1,

or 11.5 percent for Calibration 2, the results are almost as good as those achieved by the

Ramsey Planner. This suggests that the regulator need not bother with dynamic capital

requirements. If the static capital requirement is raised to 11.5 percent, the performance

measures for both calibrations are very close to the optimal ones. Note, however, that the

optimal level of the buffers depends on the calibration we are using.

Takeaways: Calibrations 1 and 2 show that changing the shock structure that drives the

economy can radically alter the ability of simple rules to perform well. Simple rules, like

the Basel rule, do not perform well for either calibration. However, eschewing policy rules

and increasing the static capital requirement by as little as 1 percent nearly achieves the

performance standards set by the Ramsey policy.

8 Conclusion

In our model, bank risk-taking is endogenous, and the temptation to take excessive (or

socially inefficient) risk is enabled by limited liability and government deposit insurance,

which protect banks and depositors from the more extreme losses. Both macroeconomic

shocks and market volatility shocks can trigger bouts of excessive risk-taking by lowering the

29



expected return on safer investments. Capital requirements can eliminate that temptation

by making banks keep more skin in the game, but this may come at the cost of limiting

liquidity-producing deposits.

We provide examples in which a Ramsey Planner would raise capital requirements in

response to either cyclical booms or busts (depending upon the underlying shocks), and

raise capital requirements in response to an increase in market volatility that has little

consequence for the business cycle.

In practice, the policymaker’s problem is more difficult than responding to a single well-

identified shock. The policymaker has to respond to the full constellation of shocks that drive

the economy. Accordingly, the informational requirements for a regulator are daunting, even

in our stylized model where we only have two projects that banks can finance. In practice

regulators would have to keep track of expected relative returns for a myriad possible projects.

We find it implausible to think that a policymaker could implement the optimal Ramsey

policy in practice. In this environment, it is tempting to look for market indicators that might

point the way to appropriate changes in the capital requirement. However, we showed that

popular candidates – such as growth in the credit-to-GDP ratio – are unlikely to be a reliable

indicators. To this end, we employed an SMM procedure to calibrate the shock processes that

drive our model economy, calculate the Ramsey policy in that environment, and evaluate

implementable policy rules against that optimal policy. We found that a static buffer over

the optimal steady-state capital requirement outperformed simple and implementable rules;

indeed this static buffer implied about the same loss of liquidity services (due to the reduction

of deposits) as did the optimal Ramsey policy, while at the same time reducing the frequency

of risk-taking episodes dramatically. Some finely tuned policy rules – such as the Basel III

prescriptions – sound like they make sense, but they do more harm than good in our model.

Fine tuning capital requirements seems exceedingly risky; the Hippocratic Oath – First, do

no harm – may be an appropriate guide for regulators.
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Table 1: Parameters

Value Description

Conventional

β 0.99 Discount rate

α 0.3 Capital share in production

%c 1.1 Elasticity of substitution for consumption

δ 0.025 Depreciation rate

ςd 1.1 Interest rate elasticity of supply of deposits

Specific Target/Explanation

τ 0.05521 Standard deviation of idiosyncratic shock Debt
EBITDA = 6

ξ 0.00076 Minus mean of idiosyncratic shock Cap. requirement= 10%

ς0 0.015 Relative weight on liquidity in the utility function Quarterly rate on bank debt= 0.86%

f 0.0055 Linear Cost of Banking Rs −Rd = 2.26%

φ 100 Investment adjustment costs VAR evidence

σ 0.01 Minimum risk that banks can take needed for numerical solution method

σ̄ 0.99 Maximum risk that banks can take needed for numerical solution method

31



Table 2: Calibration 1, Shock Processes

AR(1) param. Innov. St. Dev.
TFP 0.79 0.0093
ISP 0.95 0.0052

Distance Function 0.0020334

Table 3: Calibration 1, Variance Decomposition

var(GDP) var(invest.) var(invest. p.) var(gamma) var(credit/GDP)
TFP 100 99 8 0 59
ISP 0 1 92 100 41

Table 4: Calibration 1, Matching Moments

Data Model
Var(GDP) 0.92 0.97
Corr(GDP,Investment) 0.96 1.00
Corr(GDP,Investment Price) 0.08 0.08
Var(Investment) 27.68 27.68
Corr(Investment,Investment Price) 0.02 0.06
Var(Investment Price) 0.40 0.37
Autocorr(GDP) 0.93 0.88
Autocorr(Investment) 0.93 0.88
Autocorr(Investment Price) 0.87 0.88
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Table 5: Calibration 2: Shock Processes

AR(1) param. Innov. St. Dev.
TFP 0.79 0.0093
ISP 0.95 0.0052
Volatility∗ 0.80 0.0015

Distance Function 0.0020332

Table 6: Calibration 2, Variance Decomposition

var(GDP) var(invest.) var(invest. p.) var(gamma) var(credit/GDP)
TFP 98 98 8 0 63
ISP 0 0 92 3 36
Volatility 2 2 0 97 1

Table 7: Calibration 2, Matching Moments

Data Model
Var(GDP) 0.92 0.97
Corr(GDP,Investment) 0.96 1.00
Corr(GDP,Investment Price) 0.08 0.08
Var(Investment) 27.68 27.68
Corr(Investment,Investment Price) 0.02 0.06
Var(Investment Price) 0.40 0.37
Autocorr(GDP) 0.93 0.88
Autocorr(Investment) 0.93 0.88
Autocorr(Investment Price) 0.87 0.88
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Table 8: Simple Rules with Calibration 1

Simple rule R square First 
variable

Second 
variable

Number quarters 
with excessive risk-

taking (per 100 years)

Average deposit 
under simple rule

Number quarters 
with excessive risk-

taking (per 100 years)

Average deposit 
under simple rule

Invest. p. (best state variable) 0.960 -0.087 0 16.23 0 16.20
Expected banking spread 0.881 0.842 148.8 10.26 10.4 15.80
GDP 0.002 -0.001 149.6 10.21 10.4 15.79
Credit/GDP 0.250 -0.005 149.2 10.18 4.4 16.02
Credit/GDP wih positive coef 0.005 158.8 9.87 38 14.68
Expected safe return and 
deposit rate

0.826 594.284 -594.312 20.4 15.83

All shock processes, 
innovations, expected safe 
return and deposit rate

1.000 0 16.23 0 16.20

All shock processes, 
innovations, and lagged 
capital requirement

1.000 21.2 15.35 0 16.17Too many to show

Non convergence problems

Static buffer = 10 basis points Static buffer = 30 basis pointsRegression coefficients

Too many to show
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Table 9: Simple Rules with Calibration 2

R Square First 
variable

Second 
variable

Number quarters 
with excessive risk-

taking (per 100 
years)

Average 
deposit under 

simple rule

Number quarters 
with excessive risk-

taking (per 100 
years)

Average 
deposit under 

simple rule

Number quarters 
with excessive 
risk-taking (per 

100 years)

Average 
deposit under 

simple rule

Invest. p. (best state variable) 0.002 -0.031 205.6 7.892 74.8 13.092 6.0 15.833
Expected banking spread 0.847 0.908 214.0 7.547 78.4 12.965 6.8 15.799
GDP 0.035 -0.022 204.0 7.909 83.2 12.765 8 15.756
Credit/GDP 0.002 -0.003 210.0 7.679 77.2 13.019 7.2 15.787
Credit/GDP wih positive coef 0.003 80.0 12.892 7.2 15.788
expected safe return and 
deposit rate

0.826 607.668 -607.648 7.6 15.858

All shock processes, 
innovations, expected safe 
return and deposit rate

1.000 145.6 10.271 0.0 16.158 0 16.068

All shock processes, 
innovations, and lagged 
capital requirement

1.000 147.2 10.297 3.2 16.025 0 16.066

Static buffer = 100 basis pointsRegression coeffiecients

Too many to show

Too many to show

Non convergence problems

Non convergence problems Non convergence problems

Static buffer = 10 basis points Static buffer = 50 basis points
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Table 10: The Efficiency of Static Buffers

Static Buffer

Number of 
quarters with 
excessive risk-

taking                    
(per 100 years)

Average 
deposit 

  Number of 
quarters with 
excessive risk-

taking             
(per 100 years)

Average 
deposit 

10 bp 149.2 10.269 211.2 7.678
20 bp 66.8 13.526 172.0 9.216
30 bp 10.4 15.800 140.8 10.479
40 bp 0 16.189 108.8 11.784
50 bp 0 16.171 79.2 12.920
100 bp 0 16.081 6.8 15.805
150 bp 0 15.991 0 15.991
Optimal Rule 0 16.251 0 16.241

Calibration 1                 
(excludes volatility shocks)

Calibration 2                 
(includes volatility shocks)
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Figure 1: Higher Capital Requirement Shock
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Figure 2: Capital Requirement Shocks
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Figure 3: Negative TFP Shock
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Figure 4: Positive Investment Shock
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Figure 5: Volatility Shock
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Figure 6: Sensitivity Analysis, TFP Shock
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