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Abstract

We examine the structural stability of Gaussian shadow rate term structure models
of Treasury yields over a sample that includes the period from 2008 onwards during
which the U.S. policy rate was at its effective lower bound. After a conceptual dis-
cussion of several potential sources of a structural break in the context of the shadow
rate model, we document various pieces of evidence for structural instability based on
predictive tests and Lagrange multiplier tests, as well as with separate estimations of
the pre-ELB and post-ELB subsamples. In order to overcome the difficulties associated
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1 Introduction

From 2008 to 2015, the U.S. policy rate was set at its effective lower bound (ELB).1 This
experience has provided an impetus for studying yield dynamics using term structure models
that respect the ELB constraint. Much of that effort has been through the use of shadow
rate term structure models, which have risen in popularity in recent years, e.g., Kim and
Singleton (2012), Krippner (2013), Bauer and Rudebusch (2016), Christensen and Rudebusch
(2014), Wu and Xia (2016). These models can capture, in a natural way, some of the key
qualitative features of the ELB yield dynamics, such as the shape of the yield curve near
the ELB and the compression of yield volatilities for short maturities. Another part of the
attraction of these models has been conceptual: It has a parallel with macroeconomic models
incorporating an ELB in which the policy rate is analogously described in a “censored form”
max{st, r}, where r is the ELB and st follows some variant of a Taylor rule.2

Intuitively, many properties of yields can be expected to change once the short rate is at
or near the ELB. For example, as further discussed later in the paper, principal component
analysis (PCA) of yields leads to substantially different results for the ELB period vs. the pre-
ELB period. This is obviously problematic for standard affine-Gaussian models, in particular
those that use observed principal components as state variables (e.g., Joslin, Priebsch, and
Singleton (2014)). However, one might still hope that the nonlinearity of the ELB regime that
gives rise to structural break patterns in affine-Gaussian models and PCA can be captured
with a structurally stable shadow rate term structure model. In this case, the same set
of shadow rate model parameters describes the yield dynamics in the non-ELB and ELB
periods, and therefore the parameters of the shadow rate model that have been estimated
with a pre-ELB sample can be used for analyzing the ELB sample. This is particularly
convenient, as the shadow rate model can be well approximated by a (more tractable) affine
model in the pre-ELB regime. In fact, to our knowledge, all existing studies with shadow rate
term structure models, including those mentioned above, have assumed structural stability
across non-ELB and ELB periods.3

However, there are several reasons to be concerned about potential structural instability
of shadow rate term structure models:

1. State variables in term structure models, even in latent-factor models where they are
not explicitly equated to macro variables, are thought to have macroeconomic un-
derpinnings. Economic intuition suggests that the dynamics of key variables such as
inflation and output gap may change once the economy enters the ELB regime.4

1The Federal Open Market Committee (FOMC) specified a target range for the federal funds rate of 0 to
0.25 percent. Our sample ends before the most recent ELB episode in response to the COVID-19 outbreak.

2See, for example, Reifschneider and Williams (2000), Eggertsson and Woodford (2003), Nakata and
Tanaka (2016), and Johannsen and Mertens (2016).

3In concurrent independent work, Andreasen, Jørgensen, and Meldrum (2019) document patterns in bond
excess return regression that are suggestive of structural instability of shadow rate models, and propose a
regime-switching shadow rate model.

4In Section 2, we provide a more detailed discussion referencing several macro models incorporating an
ELB.
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2. Even if the data-generating (P-measure) state vector dynamics were stable, their mar-
ket price of risk may not necessarily remain stable across the non-ELB/ELB regimes.
Indeed, as we shall discuss in detail below, certain mechanisms may imply a structural
change in the dynamics of the market price of risk.

3. While the Federal Reserve provided accommodation during the ELB years in the form
of unconventional monetary policy (specifically, forward guidance and asset purchases),
it is not clear that the effects of these unconventional tools are well captured by the
same dynamics of the shadow rate and market price of risks that described the pre-ELB
years.

4. Lastly, it is possible that the financial crisis which led to the ELB regime was so severe
that the structure of the economy has changed in a substantial way since the pre-ELB
years, with consequential implications for yield curve dynamics.

In this paper, we empirically examine the potential presence of a structural break in
shadow rate models of the U.S. Treasury yield curve. An investigation of structural breaks
in shadow rate models, and more generally latent-factor term structure models—including
Dai and Singleton (2000), Duffee (2002), and Ahn, Dittmar, and Gallant (2002)—, raises
new challenges that have not been encountered in the existing literature on structural break
tests. In these latent-factor models, the state variables do not have well-defined meaning,
because a given set of factors can be “rotated” to another set of factors, with corresponding
changes in the model parameters, in a way that keeps the model’s empirical content the
same.5 Therefore, investigating the change in a specific parameter of the model may not shed
much helpful light on the structural stability question. Furthermore, Wald-type tests (e.g.,
Andrews and Fair (1988)), in which the parameter vector θ1 estimated from one subsample
is compared to the parameter vector θ2 estimated from another subsample (i.e., a test of the
hypothesis θ1 = θ2) run into further difficulties, because, even with normalization restrictions
that are put in place to guarantee econometric identification, there are multiple vectors in
the parameter space (with the same empirical contents) linked by discrete transformations.

In testing for a structural break in shadow rate term structural models, we address the is-
sues arising from the latent nature of the factors with several approaches. One is to construct
rotation-invariant test statistics, i.e., test statistics that are unaffected by invariant trans-
formations. Another is to rotate the factors so that they can be given empirical meaning,
specifically, we can transform the factors such that the transformed factors have interpreta-
tion as principal components (level, slope, and curvature). We also extensively utilize GMM
techniques with likelihood scores based on the estimation with either the pre-break subsam-
ple (“predictive” tests) or the full sample (Lagrange multiplier tests). These tests do not run
into the problem of multiple equivalent parameter vectors, as they involve only local changes
in the parameter space surrounding an optimum. They also have the attraction of avoiding
the estimation of the post-break subsample, which is relatively short, and entails greater
estimation uncertainties. With these estimation difficulties as caveat, we do also perform

5Dai and Singleton (2000) contains an extensive discussion of such invariant transformations.
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an estimation with the post-break subsample, and further examine the consequences of a
potential structural break.

While the techniques outlined above have applicability to the study of structural breaks in
broader latent-factor term structure models, we also utilize a particular feature of the shadow
rate model we are analyzing (an affine-Gaussian shadow rate model), namely that, although
the true yields implied by the model follow nonlinear processes, the factors themselves follow
Gaussian processes, and the so-called “shadow yields” therefore follow Gaussian processes as
well. Therefore, under the assumption of no structural break, the factors and shadow yields
follow structurally stable VAR(1) processes, a hypothesis that we examine in multiple ways
in the paper.

To preview our results, we find extensive evidence pointing to structural instability, and
this instability does not appear to be confined to any readily identifiable subset of parame-
ters. For example, the innovation vectors for the ELB period implied by pre-ELB subsample
parameter estimates, which should be approximately i.i.d. under the null hypothesis of struc-
tural stability, display not only contemporaneous correlations but also serial correlations.
Likelihood score–based tests also soundly reject the hypothesis of structural stability. Our
empirical findings indicate a change not only in the P-dynamics of the model, but also in
the Q-dynamics and in risk pricing. This has important practical implications; for example,
ignoring the structural change (i.e., using a structurally stable shadow rate model) leads to
implied policy rate paths during the ELB years that are notably steeper than implied by the
model that allows for a structural break.

The remainder of this paper is organized as follows. Section 2 spells out the shadow
rate term structure model we are analyzing, and briefly describes the data and estimation
method. Section 3 provides a conceptual discussion of various potential channels of instability
in the shadow rate model. Section 4 discusses the techniques we use to address the problems
arising from the latent-factor nature of the model in testing for a structural break. Section
5 describes the evidence for structural instability based on predictive and LM approaches.
Section 6 provides further evidence from the comparison of pre-ELB subsample estimation
and post-break subsample estimation, and Section 7 concludes.

2 Model and Data

2.1 Shadow Rate Term Structure Model

We begin with the discussion of the shadow rate term structure model used in this paper. Let
W P
t be N -dimensional standard Brownian motion under the real-world probability measure

P. Assume there is a pricing measure Q, equivalent to P, and denote by WQ
t Brownian

motion under Q. Suppose N latent factors (state varibles) describing the term structure
dynamics follow the stationary multivariate Ornstein-Uhlenbeck process

dxt = (kµ0 +Kµ
1 xt)dt+ ΣdW µ

t (1)
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where µ ∈ {P,Q}. Let the shadow short rate be

st = ρ0 + ρ′1xt, (2)

and the observed short rate the shadow rate censored at the ELB r:

rt = max {st, r} . (3)

The arbitrage-free time t price of a zero-coupon bond with time to maturity τ is then given
by Q-measure expectation

Pt,τ = EQ
t

[
exp

(
−
∫ t+τ

t

rs ds

)]
, (4)

with associated zero-coupon bond yield

yt,τ = −1

τ
logPt,τ . (5)

The bond yields yt,τ in the model will, in general, be nonlinear functions of xt. We approxi-
mate this function using the second-order method proposed in Priebsch (2013).

Shadow bond prices and yields are defined analogously, with the shadow short rate st in
place of the observed short rate rt in (4). The shadow yields yst,τ correspond to the arbitrage-
free yields in the underlying Gaussian model not constrained by the ELB, and take the affine
form

yst,τ = a(τ) + b(τ)′xt, (6)

where a and b and given by the usual recursive formulas (Duffie and Kan (1996)).6 As the
lower bound becomes less binding, yields in the shadow rate model will converge to their
Gaussian counterpart.7 In this sense, away from the lower bound, the shadow rate model is
approximated by the underlying Gaussian model.

On the other hand, as the lower bound becomes more binding, yields and P-expectations
of average future short rates will both converge to r: If the short rate is currently constrained
by the lower bound and is expected with high probability to remain at the lower bound for
an extended period, there is little uncertainty about the path of the short rate going forward,
and therefore forward rates and P-expected future short rates will trivially be close to r. By
implication, term premiums—the difference between observed yields and P-expected average
future short rates—will be close to zero. In this way, the shadow rate model is able to capture
periods of forward guidance during which policymakers commit to keeping rates at the ELB
for an extended period. Conversely, in the Gaussian model, the term structure of uncertainty
about the future short rate is time-invariant (under both P and Q).

6See Bauer and Rudebusch (2016) for an extensive analysis based on shadow yields.
7Formally, this follows from an application of the Monotone Convergence Theorem to (4), taking r ↓ −∞.
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2.2 Sample Period and Break Point

We use data from the beginning of 1990 to the middle of 2019. Where applicable, we assume
that the FOMC’s announcement on December 16, 2008, that it would establish a target range
for the federal funds rate of zero to a quarter percent represents an unanticipated structural
break point. We will somewhat loosely label the first period (observations from 1990 to mid-
December 2008) as “pre-ELB” and the second period (observations from mid-December 2008
to June 2019) as “post-ELB.” Below, we also discuss the possibility of other break points
(for example, around “liftoff” of the federal funds rate from the ELB in December 2015).
Our empirical designs in this paper focus on structural change with a single break point; the
case of multiple breaks would be even more challenging empirically, in part because of the
limited amount of post-liftoff data.

2.3 Treasury Yield Data

We use continuously compounded zero-coupon Treasury yield data for maturities of 3 months,
6 months, 1, 2, 4, 7, and 10 years, sampled weekly on Wednesdays (or the prior trading day
if Wednesday is a holiday), from January 3, 1990, to June 26, 2019. For the 3- and 6-month
maturities, we use (appropriately transformed) secondary market Treasury bill rates from
the Federal Reserve’s H.15 release. For maturities of 1 year and longer, we use the updated
zero coupon yields based on Gürkaynak, Sack, and Wright (2007).

2.4 Survey Data

To ameliorate small-sample problems associated with persistent series such as yields, we also
include forecasts for the 3-month Treasury bill rate from Blue Chip Financial Forecasts (see
Kim and Orphanides (2012)).8 The consensus forecasts are linearly interpolated to constant
horizons of 6 months, 12 months, and 5-to-10 years. Short-range forecasts are available
monthly and long-range forecasts are available semiannually. We line up survey data with
yield data using the strategy described in Appendix B of Kim and Orphanides (2012). For
weeks with no matched survey data, we treat surveys as missing observations.

2.5 Implementation of Shadow Rate Models

For estimation purposes, we express the model as a standard discrete-time state space model
with non-linear observation equation. In particular, assume that both observed yields (ỹt)
and survey forecasts (z̃t) are measured with error, giving rise to the observation equation(

ỹt
z̃t

)
= h(xt) +

(
ey,t
ez,t

)
. (7)

We set the number of factors (the dimension of xt) to N = 3. Measurement errors are
assumed to be mutually independent and independent across time. For yields, we assume

8Wolters Kluwer Legal and Regulatory Solutions U.S., Blue Chip Financial Forecasts.
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that the measurement error variance δ2y is the same for all maturities. For surveys, we allow
different measurement error variances δ2z,6m, δ2z,12m, and δ2z,5−10y for the different forecast
horizons. The measurement error variances are treated as estimated parameters. For the
5-to-10-year survey horizon, we impose a lower bound of 50 bps on δz,5−10y which is binding
in all our estimated models.9 The P-measure version of (1), sampled discretely at weekly
intervals (∆t = 7/365.25), is the transition equation

xt = m0 +M1xt−1 + εt, (8)

where εt ∼ i.i.d. N(0,Ω) and Ω,m0,M1 are known functions of the underlying (continuous-
time) parameters.10

When h(·) is linear, the standard linear Kalman filter can be used to filter state variables
and compute a likelihood value, for given parameters. Parameters can then be estimated by
maximum likelihood. In the shadow rate model, h(·) is non-linear, and we analogously use
the unscented Kalman filter and quasi–maximum likelihood for estimation.

When using survey expectations, we face the question what the appropriate model coun-
terpart is. In a Gaussian model, it is justifiable to match the model-implied P-expected
future rate with the survey consensus forecast.11 At or near the ELB, the distribution of
the future short rate is arguably skewed (in the shadow rate model, it is simply a censored
Gaussian distribution), so that its mean, median, and mode will not necessarily coincide.
Unless asked explicitly, a forecaster stating their point forecast may have any one (or none)
of those objects in mind, and different forecasters may have in mind different concepts of cen-
tral tendency. Matching the model-implied mean-expectation with the conventional survey
consensus forecast is thus less compelling. At the same time, in a new regime with limited
historical data and with the short end of the term structure constrained in its information
content, survey data are potentially particularly valuable to pin down the data-generating
dynamics of state variables. Mindful of this tradeoff, we proceed by treating the survey
consensus as a noisy observation of the model-implied modal expectation in the post-ELB
sample.

3 Potential Sources of Structural Instability

In this section, we provide a conceptual discussion of potential sources of structural instability
of the shadow rate term structure model.

9See Kim and Orphanides (2012) for a discussion of the rationale for imposing a conservative lower bound
on the error variance for long-term surveys.

10To first order, m0 ≈ k0∆t, M1 ≈ K1∆t+ IN , and Ω ≈ ΣΣ′∆t. We use the exact relationships; see, for
example, Priebsch (2013) Appendix A.

11The “consensus” is defined as the arithmetic mean of point forecast across survey respondents. If the
future short rate is normally distributed, and survey respondents receive i.i.d. noisy signals of its unknown
mean µr, the average of respondents’ signals is a sufficient statistic for µr.
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3.1 State Vector Dynamics

One potential source of instability in ELB term structure models is that the P-measure
dynamics of state variables could change once the economy enters the ELB regime. The
intuition is that conventional monetary policy, implemented by adjusting the target federal
funds rate, can no longer respond to macroeconomic developments and provide monetary
stimulus once the economy enters the ELB regime. In turn, this would affect the evolution
and interplay of macro variables. This idea is reflected in the stylized model of Reifschneider
and Williams (2000), in which the output gap gt, inflation πt and nominal short rate it are
given by

gt = δgt−1 + θ(it−1 − πt−1 − r∗) + εt, (9)

πt = πt−1 + φgt−1 + νt, (10)

it = max[0, r∗ + πt + α(πt − π∗) + βgt]. (11)

It can be seen that the dynamics of gt and πt are different between ELB and non-ELB periods,
since the θ(·) term in eq. (9) is −θ(πt−1 +r∗) in the former and θ(α(πt−1−π∗)+βgt−1) in the
latter. Later works have often modeled ELB dynamics within a new-Keynesian framework.
For example, from Eggertsson and Woodford’s (2003) study of monetary policy at the ELB
under commitment, it can be seen that the dynamics of inflation and output gap are described
by a VAR with time-dependent parameters, even when those variables are described by VAR
with constant parameters in the normal regime. Similarly, the new-Keynesian model of
Nakata and Tanaka (2016), in which variables such as inflation and output gap are driven
by a preference shock and a productivity shock, has the feature that those macro variables
behave differently in ELB vs. non-ELB periods.12 In addition, a DSGE model study of
Gust, Herbst, López-Salido, and Smith (2017) concludes that the effective lower bound had
a significant effect on macro variables.

These theoretical considerations raise the question whether it is reasonable to assume
stable state vector dynamics in shadow rate term structure models. One potentially allevi-
ating consideration is that in the ELB regime there can be more monetary accommodation
than is implied by eq. (9), as central banks could employ unconventional tools to provide
monetary accommodation. That said, as discussed more below, it is not clear whether that
would be sufficient to ensure structural stability across the ELB boundary.

In light of the above discussion, the structural stability issue could be especially concern-
ing for those shadow rate term structure models that have macro variables—such as inflation
and GDP gap—as part of the state vector.13 However, even latent-factor models, in which
all of the state variables are latent variables, may not be free from structural instability
concerns, as latent variables are typically thought to embody macroeconomic risks.

12See, for example, Nakata and Tanaka’s (2016) Figure 1.
13Ang and Piazzesi (2003) and Joslin et al. (2014) are examples of term structure models with macro

factors. ELB term structure models with macro factors include Bauer and Rudebusch (2016) and Wu and
Xia (2016).
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3.2 Market Price of Risk

A feature of the affine-Gaussian shadow rate models analyzed here is that λt, the vector of
market price of risk of xt, is affine in xt:

λt = λ0 + Λ1xt. (12)

The constant vector λ0 and the constant matrix Λ1 are related to the parameters describing
the P-measure and Q-measure dynamics as14

kQ0 = kP0 − Σλ0, (13)

KQ
1 = KP

1 − ΣΛ1. (14)

An implication of the structurally stable shadow rate model is that eq. (12) is also struc-
turally stable, and the relations (13) and (14) hold with the same set of kP0 , K

P
1 , k

Q
0 , K

Q
1 , λ0,

Λ1,Σ parameters in the pre-ELB and post-ELB periods.
For the sake of argument, one could still think of latent-factor ELB term structure models

as “statistical models” and posit that there exists a set of latent state variables whose (P-
measure) dynamics are stable across the ELB boundary. But is it reasonable to assume that
the structure of market price of risk would also remain stable across the ELB boundary?
Could it be that the nature of interest rate risk compensation changes once the economy
enters the ELB regime? Unfortunately, the micro foundations for modeling the market price
of risk are not sufficiently well developed to provide a lot of theoretical guidance in the
normal regime, let alone the ELB regime. Hördahl, Tristani, and Vestin (2006) try to get
around this problem in their new-Keynesian term structure model by specifying the market
price of risk as a flexible affine function of the variables that enter the structural VAR for
new-Keynesian dynamics. Recently, Sakurai (2016) estimated a new-Keynesian ELB term
structure model with essentially the same specification of market price of risk as in Hördahl
et al. (2006), thereby assuming that the structure of the market price of risk is stable across
the ELB boundary.

There is at least one known mechanism for the variation in the market price of risk that
implies a change in the dynamics of market price of risk at the ELB (from the perspective of
Gaussian shadow rate models): In King’s (2019) model of supply effects in an ELB regime,
the market price of risk vector is an affine function of Gaussian state variables in the normal
regime, but its dynamics become non-Gaussian in the ELB regime. More specifically, it can
be shown that in King’s model, the market price of risk of the state vector xt = [st, βt]

′, with
shadow rate st and supply factor βt following structurally stable Gaussian processes under
the P-measure (dx = (k +Kx)dt+ ΣdW P), is given by

λt = a

∫ T

0

du ζ
(u)
t Σ′

1

P (u)

∂P (u)

∂xt
(15)

where a is the risk aversion of arbitrageurs and ζ
(u)
t , the arbitrageurs’ position in bonds with

maturity u, is an affine function of the supply factor βt. Because the log bond price logP

14This follows from, for example, eq. (6) in Kim and Singleton (2012).
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is approximately an affine function of the state vector x away from the ELB (the normal
regime), the market price of risk simplifies to Greenwood and Vayanos’s (2014) affine form
(their equation (11)) in the normal regime. But in the ELB regime, logP is a non-affine
function of x, leading to a non-affine market price of risk and non-Gaussian Q-measure
dynamics of x.15

3.3 Unconventional Monetary Policy

Another complication is the change in monetary policy tools: As conventional monetary
policy is constrained at the ELB, monetary policymakers in the U.S. and abroad have em-
ployed unconventional monetary policy tools, namely large scale asset purchases (LSAPs)
and forward guidance.16 These unconventional tools may have helped to soften the blow of
the ELB constraint to the real economy, but to what extent they have done so is still an
actively debated topic.17 Furthermore, the way they work could be different from conven-
tional policy. In particular, LSAPs are believed to have a more direct effect on longer-term
yields (relative to conventional monetary policy) through the suppression of term premi-
ums. While forward guidance may be the more conventional tool of the two—and could be
viewed as having a precedent before the ELB period (in particular in 2003)—, the extent
of the guidance during the recent U.S. ELB period was unprecedented. It is thus not clear
whether the effect of these unconventional policy tools can be captured by some regions of
the state space within a structurally stable model, or whether it requires different dynamics
(a different model structure).

On a related note, in Sakurai’s (2016) new-Keynesian shadow rate term structure model,
the output gap dynamics depend on the shadow rate rather than the nominal short rate
that is standard in the literature (as in eq. (9)). Besides the tractability issue, the economic
justification given by Sakurai is that at the ELB, monetary policy can still play a role by
affecting expectations about the policy rate path, and the level of the shadow rate (below
the ELB) can capture this effect. However, such a specification appears to be an exten-
sion of conventional monetary policy to the ELB regime, as opposed to being a model of
unconventional policy.18

15Because of the non-affine nature of the market price of risk in the ELB regime, King’s model cannot be
exactly matched by affine-Gaussian shadow rate models even with a structural break. But allowing for a
structural break in the affine-Gaussian shadow rate models may help approximate such nonlinear behavior
of market price of risk.

16For recent reviews, see Bernanke (2020) and Kuttner (2018).
17Chung, Laforte, Reifschneider, and Williams (2012), for example, find that the Federal Reserve’s asset

purchases, while materially improving macroeconomic conditions, did not prevent the ELB constraint from
having first-order adverse effects on real activity and inflation.

18LSAPs have greater effect on longer-term yields, which are less closely tied to the level of the shadow
rate than short-term yields. Furthermore, a low level of the shadow rate (below the ELB), as in Sakurai’s
(2016) model, by itself may not necessarily imply a substantially long period of policy rates at the ELB
(as under forward guidance), if the state variable responsible for the low level of the shadow rate is fast
mean-reverting.
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3.4 Structural Change at the End of the ELB Period?

Some of the potential mechanisms discussed above would also imply a potential structural
change at the end of the ELB period, i.e., when the Federal Reserve began to raise the
target federal funds rate in December 2015. However, the prospect for substantial structural
change around that time is likely weaker than around the beginning of the ELB period, for
the following reasons:

1. It is possible that the Financial Crisis had significant impact on the structure of the
economy, altering interest rate dynamics well beyond the ELB regime. For example,
mortgage lending conditions for households have been persistently tighter relative to
those prevailing before the Financial Crisis, and this and other “headwinds” have
often been mentioned as factors behind the relatively slow pace of federal funds rate
normalization in the tightening cycle that began in December 2015. In addition, many
macro models, including Holston, Laubach, and Williams (2017), indicate that the
neutral rate of real interest, often called “r-star,” declined noticeably around the time
of Financial Crisis, and has remained relatively low.

2. Furthermore, the effects of LSAPs—an unconventional policy first implemented around
the time of the onset of the ELB—may persist beyond the ELB period: Normalization
of the Fed’s balance sheet was not announced until September 2017 (well past liftoff
in December 2015), and the subsequent shrinking of the balance sheet proceeded at
a gradual pace. As of 2019, the balance sheet remains notably larger than before the
Financial Crisis, and is expected to grow again, with the policy implementation in the
“ample reserves” framework.

3. Market participants generally had not been pricing in ELB risk until close to the event
in 2008,19 but the Financial Crisis and the extended ELB period that followed may
have sensitized market participants to the ELB risk, and they may now be pricing in
significant ELB risk even in the “new normal” regime, analogous to downside jump
risk getting priced into equity options after the “Black Friday” stock market crash
in 1987.20 Data from the New York Fed’s surveys of primary dealers and market
participants provide some support for this. Since liftoff in December 2015, respondents
have consistently judged the probability of moving to the ELB at some point within
the next 2 to 3 years as substantial (with typical median responses in the 20 to 30
percent range).21

19Analogously, Chung et al. (2012) note that prior to the Financial Crisis, most economists probably did
not view the ELB as a major problem for central banks, and that previous research tended to understate
the ELB risk.

20See, for example, Bates (2000).
21The surveys are available at https://www.newyorkfed.org/markets/primarydealer_survey_

questions and https://www.newyorkfed.org/markets/survey_market_participants.
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4 Empirical Strategies

4.1 Challenges of Dealing with Latent Factor Models

We start this section with a discussion of the challenges posed by the latent nature of the
factors in the study of structural stability. Let us consider the possibility that a latent-
factor term structure model is described collectively by parameter vector θ1 in period 1
(t = 1, . . . , T1), and by another parameter vector θ2 in period 2 (t = T1+1, . . . , T1+T2(≡ T ));
for later use, define π = T1/T . The null hypothesis of structural stability is θ1 = θ2.

With the model given in eq. (1,2,3), note that the model retains exactly the same content
if the N -dimensional state vector xt is transformed to

x†t = l + Lxt (16)

where l is a constant N -vector and L is an invertible N ×N constant matrix, and the model
parameters θ = (KP

1 , K
Q
1 , k

P
0 , k

Q
0 ,Σ, ρ0, ρ1) are transformed to θ† = (KP†

1 , K
Q†
1 , kP†0 , k

Q†
0 ,Σ†,

ρ†0, ρ
†
1), where

Kµ†
1 = LKµ

1L
−1, kµ†0 = Lkµ0 − LK

µ
1L
−1l,

Σ† = (LΣΣ′L′)1/2, ρ†0 = ρ0 − ρ′1L−1l, ρ†1 = L−1
′
ρ1. (17)

Because the unrestricted model has an infinite number of equivalent parameters linked by
such invariant transformations, to estimate these models by maximizing a log likelihood
function (or some analogous GMM criterion) logL, a set of normalization restrictions are
imposed to ensure that the Hessian matrix ∂2 logL/∂θ∂θ′ is not singular. In the present
paper, the normalization restrictions we impose are

kP0 = 0, KP
1 = lower triangular matrix, Σ = cI (18)

where I is an identity matrix, and c = 0.01.
In a model with typical normalization (such as the one just mentioned), factors do not

have a clear empirical meaning; therefore, examining the change in a specific parameter, e.g.,
[KP

1 ]11, across subsamples may not be very meaningful. Nonetheless, one may still hope that
the Wald test22

λT = T (θ̂1 − θ̂2)′(π−1V̂1 + (1− π)−1V̂2)
−1(θ̂1 − θ̂2) (19)

(based on entire parameter vectors θ1 and θ2) provides a valid statistic for the test of struc-
tural stability. However, even after normalization restrictions that guarantee a nonsingular
Hessian of the likelihood function around an estimate (such as eq. (18)), discrete invari-
ant transformations still remain, which creates multiple equivalent parameter vectors. One
such transformation is permutation, an example being the transformation xt = [x1t, x2t, x3t]

′

→ x†t = [x2t, x1t, x3t]
′, in other words,

l = 0, L =

 0 1 0
1 0 0
0 0 1

 . (20)

22See, for example, Andrews and Fair (1988).
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For an N -factor model, there are N ! permutations. Another discrete transformation is
reflection, for example, xt = [x1t, x2t, x3t]

′ → x†t = [x1t,−x2t, x3t]′, in other words,

l = 0, L =

 1 0 0
0 −1 0
0 0 1

 . (21)

Discrete transformations can make it difficult to determine how close a parameter esti-
mate θ1 for one subsample is from a parameter estimate θ2 for the other subsample. For
example, even when the Euclidean distance θ2 − θ1 in eq. (19) is large, it could be that θ1
and θ2 have quite similar empirical contents, which would be the case if θ2 is close to one
of the permuted versions of θ1. One might consider eliminating discrete transformation de-
grees of freedom like permutation by imposing a specific ordering of certain parameters, e.g.,
[KP

1 ]11 > [KP
1 ]22 > [KP

1 ]33. However, there is no guarantee that such ordering is preserved in
a case of structural break. One could also entertain the idea of

λT = miniT (θ̂1 − θ̂(i)2 )′(π−1V̂1 + (1− π)−1V̂
(i)
2 )−1(θ̂1 − θ̂(i)2 ), (22)

where θ̂
(i)
2 denotes all possible discrete invariant transformations of θ̂2, and V̂

(i)
2 denotes the

corresponding covariance matrix, i.e., pick the θ̂
(i)
2 that produces the smallest test statistic.

However, besides being cumbersome both in implementation and statistical evaluation, such
a procedure can be unsatisfactory unless one of the θ

(i)
2 ’s stands out sufficiently low in terms

of the test statistic value.23

Below we consider various test statistics that overcome the problems associated with the
latent nature of the factors in the model.

4.2 Tests for Structural Change

Our structural break test problem is classical in the sense that we consider a single potential
break at a known time (around the onset of the ELB), rather than searching for break(s) at
unknown time(s). In this setting, the available tests for the kinds of nonlinear estimation
problems such as ours can be summarized as follows:

1. Predictive tests: These types of tests are based on the estimation of the pre-ELB
subsample, and examine the properties of objects in the post-ELB subsample implied
by the pre-ELB parameter estimates.

2. Lagrange multiplier (LM) tests: These types of tests are based on the estimation
of the full sample, and examine moment restrictions across the two subsamples.

23As an illustration, consider a 2-factor model whose Q-measure dynamics are given by r = ρ0+ρ′1[x1t, x2t]
′,

dxit = (kQ0i+kQi xit)dt+dW
Q
it (i = 1, 2). Suppose that (kQ11, k

Q
12) in the first subsample is estimated to be (0.1,

0.5), and (kQ11, k
Q
12) in the second subsample is estimated to be (0.45, 0.15). Then it would be reasonable

to view that the appropriate version of the second subsample estimate to compare is (0.15, 0.45), i.e., the
permuted version (x1t, x2t)→ (x2t, x1t). However, if we obtained (0.1, 0.5) for the first subsample and (0.3,
0.32) for the second subsample, it would be less clear. Note that we have not spelled out the estimates of
other parameters, which can lessen or increase the ambiguity.

13



3. Wald tests: These types of tests involve separate estimations with pre-ELB and post-
ELB subsamples, and analyze potential differences between the two estimates.

Of these, Wald-type tests can be expected to have low power, as they involve an esti-
mation of the post-ELB subsample. A sample of about ten years (late 2008 to mid-2019)
may not be long enough to precisely estimate the parameters of the model, in view of the
well-known small-sample problems with term structure model estimations. Moreover, this
particular sample period contains only one tightening cycle (near the end of the period) and
limited variability in short rate movements. While Kim and Orphanides (2012) found that
the use of survey forecasts for Treasury bill yields helps ameliorate some of these concerns,
the near-horizon survey forecast data may be less informative in this subsample, as a sub-
stantial portion of this period had fairly flat forecasts due to the FOMC’s forward guidance;
furthermore, as discussed above, the asymmetric distribution of the short rate process for
horizons beyond the predicted liftoff date means that the measurement of survey forecasts
would arguably be less reliable than usual.

For evidence regarding structural instability, we therefore focus on predictive tests and
LM tests. Predictive tests are particularly attractive in our context, as we only need to
estimate a model based on pre-ELB data, where the shadow rate model is adequately ap-
proximated by the affine-Gaussian model. Under the null hypothesis that there is no struc-
tural break, the parameters thus estimated should produce a shadow rate model fitting the
post-ELB period adequately. That said, in Section 6 we also estimate a model based on the
post-ELB subsample, as the estimation may throw helpful light on how the model structure
might have changed.

4.3 Tests Based on Fitting Errors or Innovation Vectors

A well-known example of predictive tests for structural breaks in a classical regression is
the Chow (1960) test that examines the residuals from the second subsample computed
with regression coefficients from the first subsample. Though an exact analog of regression
residuals does not exist in our a latent-factor term structure model setup, we can consider
the following:

Fitting errors. While it may be tempting to regard yield fitting error (ey,t in equation
(7)) as an analog, yield fitting errors are generally not a sufficient diagnostic, especially in
the case of flexibly specified latent-factor models such as ours. Indeed, a small overall fitting
error may not necessarily indicate a well-specified model, as it could be a consequence of
the fact that a model with N latent factors can fit N yields exactly and that yield curves
tend to be smooth. Nonetheless, a meaningful change in the pattern of fitting errors could
be indicating a structural change in Q dynamics; we shall therefore examine fitting errors as
part of our structural break diagnostics.

Innovation vectors. As can be seen in eq. (8), if the shadow rate model is structurally
stable, the state variables will follow a standard VAR(1) process. One way to examine this is
to look at the innovation vector εt based on equation (8) implied by the θpre estimate, which
would be a closer yet still-imperfect analog of Chow’s regression residuals. A normalized
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innovation vector ηt ≡ Ω−1/2εt has the theoretical property

ηt ∼ N(0N , IN×N). (23)

Furthermore, these innovation vectors are serially uncorrelated, i.e.,

E(ηtη
′
t+j) = 0N×N , j 6= 0. (24)

The innovation vectors implied by the pre-ELB parameter estimate should satisfy these
conditions well in the post-ELB sample (provided, of course, that the model is reasonably
well specified). But if there is a structural change, they may not satisfy these conditions
in the post-ELB sample; therefore, they could provide another useful diagnostic check for
structural change.

Test statistics can therefore be constructed that examine these conditions. A complication
in our setting, discussed above in Section 4.1, is that state variables and their innovation
vectors in a generically normalized model (such as the normalization conditions in eq. (18))
do not have specific economic meaning, as they can be invariantly transformed so that the
model’s content remains the same. Therefore, departures from these conditions for individual
elements of the innovation vector, e.g., corr(η1t, η2t) 6= 0, are difficult to interpret. We address
this problem in two ways.

First, we construct aggregate test statistics whose values are unchanged if the model
is re-written with different (transformed) state vectors. In particular, in Appendix A, we
show that the objects ‖ T−1

∑
t ηtη

′
t−u ‖F and ‖ T−1

∑
t ηtη

′
t− I ‖F remain unchanged under

invariant transformations and have the following asymptotic distributions:24,25

T
1

2
‖ T−1

∑
t

ηtη
′
t − I ‖2F ∼ χ2

(N2+N)/2, (25)

T ‖ T−1
∑
t

ηtη
′
t−u ‖2F ∼ χ2

N2 , u 6= 0. (26)

While these statistics provide useful summary diagnostics regarding structural stability,
in the event they point to a structural change in the post-ELB period, additional statistics
that shed light on the nature of structural change would be useful. Therefore, we also examine
more detailed test statistics based on state vectors that have an intuitive interpretation. To
this end, we transform the state vectors in our original normalization to a new set of state
variables which can be viewed as level, slope, and curvature factors. More precisely, we
rotate the model to create the state vector x†t , with the property that the instantaneous

changes dx†t are mutually independent (i.e., dx†tdx
†′
t is a diagonal matrix), and correspond

24The notation ‖ A ‖F denotes the Frobenius norm of the matrix A.
25An example of a test statistic that is not unchanged under invariant transformations is 1

2 (T−1
∑

t η
2
1t−1)2

(which is made up of only the first element of the ηt vector). It can be shown that if η†t is the innovation vector

corresponding to an invariant transformation, in general we do not have 1
2 (T−1

∑
t η

2
1t−1)2 = 1

2 (T−1
∑

t η
†2
1t−

1)2.
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to instantaneous change in the level, slope, and curvature of the shadow yield curve.26 In
discrete time, the one-period innovation ε†t has variance-covariance matrix Ω† which is not
exactly diagonal but almost diagonal if a single period is sufficiently short, as in our case
(one period being one week). Therefore, the innovation vector η†t (≡ Ω†−1/2ε†t) can still
be well-interpreted as changes in level, slope, and curvature factors. We examine whether
the individual elements of η†t have the contemporaneous correlation and serial correlation
properties discussed in eqs. (23) and (24).

4.4 Tests Based on Likelihood Scores

We can also explore the parameter stability of the model directly by testing the moment
condition

E(∂ logL/∂θ) = 0 (27)

within a GMM framework, either with a predictive approach or with the LM approach. The
idea is that, if there is no change in parameters (θpre = θpost), the first-order condition eq.
(27) will hold in each subsample.

The predictive approach—testing condition (27) in the post-ELB sample using the pa-
rameter estimates from the pre-ELB sample—corresponds to the technique of Ghysels and
Hall (1990), who showed that, asymptotically,

1√
T2

T1+T2∑
t=T1+1

∂`t(θ̂1)

∂θ′
V̂ −12

1√
T2

T1+T2∑
t=T1+1

∂`t(θ̂1)

∂θ
∼ χ2

dim(θ) (28)

where V̂2 is a consistent estimate of limT→∞Var(
∑T1+T2

t=T1+1 ∂`t(θ
∗)/∂θ).27

The LM approach—testing condition (27) with parameter estimates θ̂ based on the full
sample—can be viewed as an analogue of likelihood score–based LM tests of Nyblom (1989),
Hansen (1990), and Hansen (1992). The relevant testing statistic is given by28

LM =
T

π(1− π)

1

T1

T1∑
t=1

∂`t(θ̂)

∂θ′
V̂ −1

1

T1

T1∑
t=1

∂`t(θ̂)

∂θ
(29)

where, similarly to the predictive test, V̂ is a consistent estimate of

lim
T→∞

Var(

T1∑
t=1

∂`t(θ
∗)/∂θ).

These likelihood score–based approaches do not face the problems discussed in in con-
nection with a Wald test of the hypothesis θ1 = θ2 (eq. (19)), as the score-based tests look
at only local changes around an optimum in the parameter space. This is analogous to
the presence of discrete invariant transformations not causing any difficulties in computing
standard errors of a parameter estimate.

26This procedure is described in greater detail in Sections 6.1 and 6.2.
27Ghysels and Hall (1990) discuss several easily computable candidates for the variance estimator.
28See Hansen (1990) and Andrews (1993).
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5 Empirical Evidence Regarding Structural Instability

5.1 Yield Fitting Errors and Innovation Vectors

Our first battery of tests uses a model whose parameters are those of an affine-Gaussian
model estimated on pre-ELB data, extended to the post-ELB period as a shadow rate
model.29 Because r is poorly identified by pre-ELB data, unless otherwise noted, we set
r to approximately 7.3 basis points in these predictive exercises. This is the estimate we
obtain when estimating a single-regime shadow rate model on the full sample. We find that
other sensible choices of r lead to broadly similar results.

5.1.1 Yield Fitting Errors

Figure 1 plots a time series of root-mean-squared yield fitting errors (the difference between
observed and model-implied yields, averaged across maturities on a given date). Fitting
errors vary somewhat over time and tend to spike during periods of financial stress, most
notably the Financial Crisis.30 However, in the later years of the ELB period, beginning
in early 2014, there is a level shift in fitting errors—the model appears to have more diffi-
culty fitting the yield curve based on pre-ELB risk-neutral parameters (which determine the
model-implied cross-sectional relationships between yields), even with state variables filtered
through the shadow rate model structure. This could be indicative of a structural change in
the Q parameters of the model.

5.1.2 Innovation Vectors

Using the same model as in the previous subsection, we can compute empirical implied
innovation vectors η̂t as defined in Section 4.3. Recall from the discussion there that these
vectors theoretically have a contemporaneous covariance matrix equal to the identity matrix,
and no autocorrelation. Table 1 shows the empirical covariance matrices, separately for the
pre-ELB and post-ELB subsample periods. While the covariance matrix for the pre-ELB
period shows moderate deviations from the identity matrix—most notably, diagonal entries
that are somewhat below 1 and some off-diagonal entries that modestly deviate from zero—,
the covariance matrix for the post-ELB period displays a number of more notable departures:
The diagonal entries for the second and third state variables are only about 0.5, and there
is substantial negative correlation between the first and third state variables.

The overall magnitude of the deviation from the identity matrix and the statistical sig-
nificance of any such deviation are hard to eyeball. Recall, moreover, that the innovation
covariance matrices depend on the chosen model rotation. The rotation-invariant χ2 statis-
tics introduced in Section 4.3 and more formally justified in Appendix A allow us to quantify

29We have confirmed that it makes little difference to the estimated parameters whether we estimate an
affine-Gaussian model or shadow rate model for the pre-ELB subsample, as long as the lower bound r is set
to a plausible value near zero.

30Hu, Pan, and Wang (2013) find that errors in fitting flexible functional forms to Treasury yields carry
meaningful information about liquidity conditions in the market.
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Figure 1: Time series of mean-root-squared yield fitting errors in the single-regime model
estimated on pre-ELB data (extended to the post-ELB subsample as a shadow rate model).
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Pre-ELB
0.86 0.14 0.03
0.14 0.79 −0.05
0.03 −0.05 0.91

Post-ELB
1.01 0.01 −0.36
0.01 0.47 −0.04
−0.36 −0.04 0.56

Table 1: Sample covariance matrix of implied innovation vectors η̂t.

Lag Pre-ELB Post d.f. 5% cuttoff 1% cutoff
0 56.66 164.80 6 12.59 16.81
1 110.62 136.50 9 16.92 21.67
2–12 294.60 594.59 99 123.23 134.64
13–52 572.97 1,352.01 360 405.24 425.35

Table 2: Rotation-invariant χ2 statistics of implied innovation vectors. Lag 0 corresponds
to eq. (25), and lags ≥ 1 correspond to eq. (26).

any misspecification more objectively. As shown in Table 2, these statistics indicate a degree
of misspecification in both periods, but much more dramatically in the post-ELB subsample.
In particular, over the post-ELB period, the χ2 statistics indicate a much more pronounced
degree of misspecification across the time-series dimension (i.e., autocorrelation of the inno-
vation vectors).

To gain a better intuitive understanding of the source of the misspecification in the post-
ELB period, we rotate the model as proposed by Duffee (2011) and discussed in detail Section
6.2, such that the factors can be interpreted as level, slope, and curvature of shadow yields.
Table 3 displays the contemporaneous empirical innovation covariance matrices after this
rotation. Figure 2 shows autocorrelograms up to lags of 52 weeks. In the pre-ELB period,
the contemporaneous misspecification appears to primarily manifest in low variance for the
implied innovations in curvature. In addition, the off-diagonal elements of the contempo-
raneous covariance matrix are small, and autocorrelations are generally insignificant or at
most marginally significant, with no clear pattern across lags. Conversely, in the post-ELB
subsample, all three elements of the innovation vector have contemporaneous variances no-
tably below 1. Moreover, off-diagonal elements of the covariance matrix are non-negligible,
with particularly pronounced positive association between level and slope (whose contempo-
raneous correlation evaluates to about 0.5). This would not be surprising if we tried to fit
an affine-Gaussian model to the post-ELB subsample: With the short end of the empirical
yield curve constrained at the ELB, any shocks to longer-term yields could only be captured
by that model with offsetting movements in level and curvature (contrary to their model-
implied co-movement), so as to keep the model-implied short rate unchanged.31 Our results

31More generally, in the affine-Gaussian model, the short rate is an affine function of the factors (rt =
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Pre-ELB
0.97 0.01 −0.01
0.01 0.90 −0.07
−0.01 −0.07 0.68

Post-ELB
0.77 0.35 0.22
0.35 0.64 0.20
0.22 0.20 0.62

Table 3: Empirical covariance matrix of implied innovation vectors (model rotated such that
state variables can be interpreted as principal components).

here suggest that simply imposing a shadow rate model structure does not fix this manifesta-
tion of model misspecification. Note furthermore from Figure 2 that the implied innovations
to the slope factor display significant and prolonged positive temporal dependency. In other
words, the model persistently mispredicts the slope factor.

5.1.3 Timing of Structural Break

It is worth noting that large values of these test statistics based on the entire post-ELB
subsample indicate a likely structural break somewhere in that period, but the break point
might not necessarily be located at its beginning. Indeed, regarding the U.S. experience,
some have suggested that the first calendar-based forward guidance announcement by the
FOMC in August 2011 may have had a more significant impact on yield curve dynamics than
the arrival at the ELB in late 2008.32 Therefore, in Table 4, we also examine the statistics
(25) and (26) based on segments of the post-ELB subsample, in particular December 2008
to mid-August 2011 (before date-based forward guidance), mid-August 2011 to May 2013
(before the “taper tantrum”), June 2013 to December 2015 (before liftoff), and January 2016
to June 2019.

This more granular analysis indicates that the evidence for a structural break, at least
according to this metric, is not limited to just one of the four subperiods. That said, different
subperiods reveal different facets of the misspecification of the structurally stable model. In
particular, in the December 2008 to August 2011 and January 2016 to June 2019 subperiods,
there are notable signs of misspecification in the contemporaneous covariance of innovation
vectors, while in the June 2013 to December 2015 period, the serial correlation of innovation
vectors shows prominent signs of misspecification.

5.2 Likelihood Score–Based Tests

In this section, we test variants of the moment restriction (27) based on both the pre-ELB
parameter estimate (the predictive framework) and the full-sample, single-regime estimate

ρ0 +ρ′1xt); therefore, the short rate being stuck at ELB would imply that a linear combination of innovation
vectors have to sum up to zero, i.e., the implied innovation vectors have to be contemporaneously correlated
during the ELB period.

32Swanson and Williams (2014), for example, note that one-year and two-year Treasury yields appeared
to be “unconstrained” from 2008 to 2010, and only became more constrained from late 2011 onward.
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Figure 2: Autocorrelations of level, slope, curvature innovations (lags are in weeks). The
blue lines represent approximate 95 percent confidence bounds under the hypothesis of no
autocorrelation.

Lag I II III IV d.f. 5% cuttoff 1% cutoff
0 107.38 46.71 23.76 117.43 6 12.59 16.81
1 49.03 23.14 155.87 14.02 9 16.92 21.67
2–12 184.02 49.21 1,159.70 82.10 99 123.23 134.64
13–52 526.08 176.00 3,051.97 205.96 360 405.24 425.35

Table 4: Rotation-invariant χ2 statistics of innovation vectors by post-ELB subperiod. Peri-
ods I, II, III, and IV denote 12/2008–8/2011, 8/2011–5/2013, 6/2013–12/2015, and 1/2016–
6/2019, respectively.
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r χ2

12.5 299.36
7.3 326.12
5.5 325.20

Subsample χ2

I 117.18
II 86.42

III 120.53
IV 179.58

Surveys χ2

Included 326.12
Excluded 331.28

Table 5: Ghysell-Hall statistics for null hypothesis of structural stability. In the middle table
(“Subsample”) and the rightmost table (“Surveys”), r is set to 7.3 basis points.

(the LM framework). For this purpose, in addition to the model introduced in Section 5.1,
we estimate a single-regime, full-sample shadow rate model.

Consider first the predictive framework. For a model estimated on pre-ELB data, the pre-
ELB-subsample average of empirical scores will be zero, as a first-order optimality condition
of estimation. Intuitively, if there is no structural break, the post-ELB-subsample aver-
age of empirical scores based on pre-ELB parameters should be close to zero, with known
asymptotic distribution (Ghysels and Hall (1990)). As discussed in Section 5.1, this exercise
requires an assumption on the level of the lower bound r, since this is not identified from
pre-ELB data. The left panel of Table 5 displays χ2 statistics for a joint test of all moment
restrictions, for different values of the lower bound r.33 The statistics have 25 degrees of
freedom—corresponding to the number of estimated model parameters—, with a 5 percent
cutoff of 37.65 and a 1 percent cutoff of 44.31. The null hypothesis of structural stability
is thus firmly rejected, with a p-value of virtually zero, and with only modest sensitivity to
the exact chosen value of r. For the remaining tests, we use r = 7.3. The middle panel of
the table shows statistics for the various segments of the post-ELB subsample separately.
Using the same four subdivisions as in Section 5.1.3, the null hypothesis that a model based
on pre-ELB parameters captures the behavior of post-ELB yields is solidly rejected for each
of the segments separately. Lastly, when computing the post-ELB scores, we can include
both yield and survey data, or yield data alone. Indeed, one natural question is whether
poor forecasting performance by the survey respondents drives the rejection of the null hy-
pothesis. This does not appear to be the case, as the rightmost panel of the table shows.
When we compute post-ELB scores using only yield data, the statistic changes little. We
thus conclude that the statistical behavior of post-ELB yield data is sufficient to reject the
null hypothesis of structural stability.

Next, we perform LM tests based on the full-sample, single-regime shadow rate model
parameter estimate. For such a model, the full-sample average of empirical scores will be
identically equal to zero as a first-order condition. Without a structural break, the pre- and
post-ELB-subsample averages of empirical scores based on full-sample parameters should

33A lower bound of 12.5 basis points corresponds to the mid-point of the federal funds target range during
the ELB years. Lower bounds of approximately 7.3 and 5.5 basis points are suggested by our estimations
below that include post-ELB data.
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Figure 3: Time series of Lagrange multiplier statistics. A large statistic rejects the hypothesis
that the full-sample GMM conditions are satisfied separately in the subsample before the
given date and the subsample after the given date.

individually be close to zero, again with known asymptotic distribution.34 Since this statistic
is based on a single-regime model estimated on the entire sample, it is computationally cheap
to evaluate the statistic for different structural break times. As shown in Figure 3, there is
strong evidence of a structural break for a wide range of break point times, suggesting that
our finding is not sensitive to the exact choice of break point date.

6 Shadow Rate Model with a Structural Break

The evidence for structural instability discussed in the previous section naturally raises the
question how the structure of the model has changed in the post-ELB period. While some of

34The pre- and post-ELB subsample averages are linked, as
∑Tpre

t=1 ∂`t(θ̂)/∂θ = −
∑T

t=Tpre+1 ∂`t(θ̂)/∂θ.
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the diagnostics already shed light on this issue, we further investigate by estimating a model
in which the yield dynamics in the pre-ELB and post-ELB periods are both described by the
shadow rate model, but with different parameters, θpre and θpost. Practically, this amounts
to separate estimations of the model with pre-ELB and post-ELB subsamples.

6.1 Comparison of PCs

We begin with a discussion of PCA decomposition. To motivate the discussion, the upper
panel of Table 6 shows the PCA loadings for the first three principal components of weekly
yield changes, for pre-ELB sample (left side) and post-ELB sample (right side). The pre-
ELB sample loadings show typical behaviors, consistent with the frequent “level,” “slope,”
and “curvature” designation of PC1, PC2, and PC3: For example, the PC1 loadings are
roughly similar (at least in the 1-year to 10-year range), while PC2 loadings monotonically
increase with maturity. In the post-ELB sample case, however, the loadings do not display
these typical patterns: the PC1 loadings increase with maturity for short and intermediate
maturities, while the PC2 loadings are no longer monotonically increasing in maturity. The
presence of the ELB likely explains much of this atypical behavior. In particular, the ELB
compresses the volatility of short-maturity yields, and the usual notions of “level” and “slope”
get intermingled, as any rise in the level of the yield curve during the ELB would likely also
be associated with an increase in the slope of the yield curve.

But is the ELB the whole story behind the qualitative difference between the pre-ELB
and post-ELB PCs? Structurally stable shadow rate models, including those that have been
estimated in the literature, would imply so, i.e., the PCA decomposition of the changes in
shadow yields (which are unaffected by the ELB) should be the same between the pre-ELB
and post-ELB periods.

The lower panel of Table 6 shows the loadings for the first three components of changes
in shadow yields, implied by the first subsample estimate θ̂pre and by the second subsample

estimate θ̂post. Although shadow yields are unobserved, the PC loadings based on instanta-
neous changes in shadow yields implied by the model parameters can be tractably evaluated.
Recall from eq. (6) that shadow yields are affine in the state vector. Denoting the vector
of shadow yields at time t for a given set of m maturities (τ1, τ2, ..., τm) as yst , we have,
schematically,

yst = a+Bxt, (30)

where a is an m-dimensional vector, and B is an m×N matrix. This, together with eq. (1),
gives

(dystdy
s′

t )/dt = BΣΣ′B′. (31)

Therefore, the singular value decomposition of this matrix

BΣΣ′B′ = PΨP ′, (32)

where Ψ is a diagonal matrix, gives the PC1, PC2, PC3 loadings implied by the estimated
model parameters (the first three columns of the P matrix). The lower panel of Table 6 also
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pre-ELB post-ELB
τ PC1 PC2 PC3 PC1 PC2 PC3

0.25 0.2578 -0.7150 0.5128 0.0224 0.1032 0.6425
0.5 0.2829 -0.4273 -0.1066 0.0538 0.2031 0.5739

1 0.3601 -0.1749 -0.4435 0.1318 0.4302 0.2891
2 0.4338 0.0093 -0.4428 0.2900 0.5748 -0.1426
4 0.4599 0.1930 -0.1212 0.4819 0.3552 -0.3192
7 0.4244 0.3167 0.2841 0.5756 -0.1872 -0.0318

10 0.3795 0.3715 0.4873 0.5759 -0.5210 0.2261
pre-ELB post-ELB

τ PC1 PC2 PC3 PC1 PC2 PC3
0.25 0.22(0.03) -0.62(0.02) 0.49(0.03) 0.11(0.04) -0.58(0.02) 0.35(0.04)
0.5 0.28(0.02) -0.48(0.01) 0.10(0.03) 0.14(0.04) -0.53(0.01) 0.19(0.04)

1 0.37(0.01) -0.28(0.03) -0.34(0.02) 0.18(0.04) -0.44(0.02) -0.08(0.05)
2 0.44(0.01) -0.03(0.04) -0.52(0.01) 0.27(0.04) -0.27(0.06) -0.43(0.04)
4 0.46(0.01) 0.21(0.03) -0.19(0.01) 0.42(0.02) -0.01(0.08) -0.57(0.02)
7 0.43(0.01) 0.34(0.02) 0.27(0.02) 0.56(0.02) 0.21(0.05) -0.08(0.06)

10 0.39(0.02) 0.38(0.02) 0.50(0.02) 0.61(0.04) 0.29(0.03) 0.57(0.02)

Table 6: The upper panel shows the PC1, PC2, PC3 loadings for the PC decomposition of weekly

changes in yields in the pre-ELB period (left hand side) and in the post-ELB period (right hand

side). The lower panel shows the loadings for the PC decomposition of instantaneous changes in

shadow yields implied by the pre-ELB subsample estimate θ̂pre (left hand side) and by the post-

ELB subsample estimate θ̂post (right hand side). These PCs are based on maturities (τ) of 0.25,

0.5, 1, 2, 4, 7, 10 years. Standard errors are shown in parentheses.

provides standard errors based on the delta method formula. As Duffee (2011) notes, this
decomposition depends only on the parameters determining the risk-neutral dynamics of the
model (KQ

1 , k
Q
0 ,Σ, ρ0, ρ1), which are generally more precisely estimated than the P-measure

parameters. Therefore, even in the second subsample where the estimates are more uncertain
than the first subsample, the standard errors associated with these loadings are of modest
sizes.

Not surprisingly, the pre-ELB period PC decompositions based on θ̂pre, shown on the left
side of the lower panel of Table 6, are quite similar to those on the left side of the upper
panel, as θ̂pre fits the pre-ELB period data reasonably well. On the other hand, the post-ELB

period shadow yield PCs based on θ̂post do show differences compared to the the loadings
on the right hand side of the upper panel; notably, the PC2 loadings are now monotonic
in maturities. However, the post-ELB period shadow yield PCs still do not match the pre-
ELB period shadow yield PCs well. In particular, the post-ELB period shadow yield PC1
loadings have notable slope, i.e., increase with maturities. In other words, PC1 in the post-
ELB periods does not look like a standard “level shock.” Qualitative difference between
shadow yield PCs in the pre-ELB and post-ELB periods, like this one, adds to our evidence
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that yield curve dynamics have changed materially.

6.2 PC-Rotated Parameters

As discussed in Section 4.1, the examination of how much θ̂2 differs from θ̂1 is complicated
by the fact that there are multiple images of θ̂2 with identical empirical content (discrete
invariant transformations). Rotating the state variables based on the PCA decomposition of
shadow yield changes discussed above provides a natural means to surmount this problem,
as shocks to the transformed the state vector x†t now have a specific meaning as “level,”
“slope,” and “curvature” shocks, thus allowing for an “apples-to-apples” comparison.

Specifically, we perform the transformation in eq. (16), with L given by35

L = P ′B, (33)

with the P and B matrices in eq. (32). The transformed parameters (θ† in eq. (17)) from the
first subsample estimation and from the second subsample estimation (i.e., θ̂†pre and θ̂†post) can
then be compared on an equal footing. One caveat is that the PCs are defined only up to their
sign. For example, if the x†2t is a slope factor, −x†2t is also a slope factor. To eliminate this
ambiguity, we define the factors such that the “level factor” loadings are generally positive
(as opposed to generally negative), the “slope factor” loadings increase with maturity (as
opposed to decreasing with maturity), and the “curvature factor” loadings are a U-shaped
function of maturity (instead of an inverted U-shape). Implicitly, this imposes an ordering
based on principal components, and assumes that the ordering is preserved in a structural
change, e.g., the level factor in the first subsample does not become the slope factor in the
second subsample. We argue this is a weaker assumption than imposing a more artificial
ordering (based on parameters that are less intuitive).

Table 7 shows the PCA-rotated parameters, θ̂†pre for the pre-ELB sample and θ̂†post for
post-ELB sample, which were originally estimated based on a generic normalization (eq.
(18)); the standard errors are computed with the delta method.36 Note that the table shows
more parameters than are necessary to estimate the model, as some of these are linked to
each other; for example, knowing two of KP

1 , KQ
1 , and Λ1 determines the third; recall eq.

(14).
It can be seen that pre-ELB period parameters are often more precisely estimated than

the post-ELB period parameters, i.e., θ†pre tends to have smaller standard errors than θ†post. In
addition, the Q-measure parameters tend to be estimated with smaller standard errors than
the P-measure counterparts, reflecting the fact that Q-measure parameters are determined in
large part from cross-sectional information. Indeed, the standard errors for most elements of
the KQ†

1 matrices for both θ̂pre and θ̂post are small enough to indicate statistically significant
changes in Q-measure dynamics. This adds to the indication from the fitting errors (Section
5.1.1) that the Q-measure dynamics have changed.

35Here, we follow Duffee (2011), who considered the PCs of instantaneous changes in yields in affine-
Gaussian models.

36The original parameter estimates are given in Appendix B.
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θ̂†pre θ̂†post θ̂†pre θ̂†post
[KP†

1 ]11 -0.3245(0.0992) -0.1039(0.1176) ρ†0 0.0450(0.0023) 0.0374(0.0097)

[KP†
1 ]21 -0.5771(0.1076) -0.3488(0.0839) [ρ†1]1 0.1372(0.0415) 0.0892(0.0426)

[KP†
1 ]31 0.0703(0.0327) 0.0317(0.0623) [ρ†1]2 -0.7881(0.0552) -0.6272(0.0420)

[KP†
1 ]12 0.1105(0.1725) 0.5613(0.3275) [ρ†1]3 1.0756(0.0469) 0.5382(0.0320)

[KP†
1 ]22 -1.2233(0.3176) -0.8334(0.3421) [Σ†]11 0.0209(0.0007) 0.0370(0.0119)

[KP†
1 ]32 0.0094(0.0266) 0.0372(0.0844) [Σ†]22 0.0086(0.0007) 0.0060(0.0007)

[KP†
1 ]13 2.5916(0.8509) 0.9523(1.0423) [Σ†]33 0.0032(0.0002) 0.0030(0.0004)

[KP†
1 ]23 5.6326(0.4849) 3.5576(0.6313) [λ†0]1 -0.2102(0.1844) -0.3395(0.4170)

[KP†
1 ]33 -0.7590(0.2928) -0.4871(0.3646) [λ†0]2 0.4708(0.3557) 1.2801(1.2667)

[KQ†
1 ]11 0.5469(0.0523) 0.2749(0.0122) [λ†0]3 -0.9817(0.1722) 0.8064(1.3404)

[KQ†
1 ]21 -0.7085(0.1127) -0.2958(0.0515) [Λ†1]11 -41.7789(6.8946) -10.2476(4.3675)

[KQ†
1 ]31 0.1410(0.0555) -0.0508(0.0174) [Λ†1]21 15.2818(8.5456) -8.9001(9.0878)

[KQ†
1 ]12 1.4295(0.2204) 0.5185(0.1330) [Λ†1]31 -22.0198(11.4565) 27.3390(17.6313)

[KQ†
1 ]22 -1.4008(0.2523) -0.6274(0.1834) [Λ†1]12 -63.2374(15.2839) 1.1569(10.2985)

[KQ†
1 ]32 0.2006(0.0207) -0.0539(0.0345) [Λ†1]22 20.6275(15.0579) -34.6007(27.7273)

[KQ†
1 ]13 -2.9793(0.2268) -0.6228(0.2122) [Λ†1]32 -59.5334(8.9792) 30.2072(24.7968)

[KQ†
1 ]23 4.7374(0.1870) 2.2668(0.0781) [Λ†1]13 267.0819(36.9095) 42.6123(30.4754)

[KQ†
1 ]33 -1.3247(0.2714) -0.1417(0.1303) [Λ†1]23 104.0556(59.7746) 216.8494(86.7756)

[kQ†0 ]1 0.0044(0.0038) 0.0126(0.0146) [Λ†1]33 176.1143(63.0105) -114.5137(85.4108)

[kQ†0 ]2 -0.0041(0.0031) -0.0076(0.0078)

[kQ†0 ]3 0.0032(0.0004) -0.0024(0.0040)

Table 7: PC-rotation (θ†pre, θ
†
post) of the estimated parameters for the pre-ELB subsample

and post-ELB subsample. Standard errors are shown in parentheses. The parameter vector
kP0 is zero by normalization.

The P-measure parameter estimates KP†
1 also indicate substantial change between the

pre-ELB and post-ELB periods. The standard errors are quite sizable, especially for the
post-ELB period estimate, but some of the elements of KP†

1 still show statistically significant
change. Similarly, the matrix Λ†1 shows substantial changes, with some of the elements
even flipping signs (although the standard errors here are also fairly large). This suggests
significant changes in the structure of market price of risk, in addition to the changes in P
and Q dynamics. Below, we examine how these changes in market price of risk translate to
different implications for expectations hypothesis regressions.

Finally, note that the estimate of the long-run mean of the shadow rate (ρ†0) is somewhat
lower in θ†post than in θ†pre, adding further credence to the view that r-star has declined since
Financial Crisis (recall the discussion in Section 3.4), albeit with large estimation uncertainty.
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6.3 EH Regressions for Shadow Yields

Additional insights on how the model has changed can be gleaned from model-implied ex-
pectations hypothesis (EH) regression coefficients.37

Campbell-Shiller

n β(θ̂pre) β(θ̂post)
2 -0.2181 (0.1386) 1.0367 (0.6128)
3 -0.2527 (0.1322) 0.9087 (0.6903)
6 -0.3469 (0.1150) 0.5429 (0.9432)

12 -0.4933 (0.0903) -0.0865 (1.2645)
24 -0.6543 (0.0755) -0.9392 (1.0551)
36 -0.7203 (0.0918) -1.4068 (0.4604)
48 -0.7527 (0.1198) -1.6552 (0.6097)
60 -0.7777 (0.1518) -1.7798 (1.2152)
84 -0.8393 (0.2200) -1.8352 (2.2844)

120 -0.9813 (0.3225) -1.6951 (3.5157)
Fama

n β(θ̂pre) β(θ̂post)
6 0.3173 (0.0668) 0.6428 (0.5004)

12 0.2582 (0.0662) 0.3518 (0.5240)
18 0.2269 (0.0676) 0.1815 (0.4152)
24 0.2120 (0.0699) 0.0820 (0.2855)
30 0.2051 (0.0722) 0.0226 (0.1761)
36 0.2019 (0.0744) -0.0141 (0.0983)

Table 8: Model-implied expectations hypothesis regression coefficients. The upper panel
shows the Campbell-Shiller regression coefficients implied by the pre-ELB and post-ELB
subsample parameter estimates, θ̂pre and θ̂post. The lower panel shows the implied Fama
regression coefficients. Standard errors are shown in parentheses.

We consider two such regressions, namely the Campbell and Shiller (1991) regression

yst+1,n−1 − yst,n = α + β
1

n− 1
(yst,n − yst,1) + et+1,n, (34)

and the Fama (1984) regression,

yst+n,1 − yst,1 = α + β(f st,n − yst,1) + et+n,n, (35)

37Studies like Backus, Foresi, Mozumdar, and Wu (2001) and Dai and Singleton (2002) have examined
term structure model–implied beta coefficients in EH regressions as a part of model evaluation, while our
interest with these model-implied coefficients is in characterizing the change between the two sample periods
(pre-ELB and post-ELB).
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where yst,n is the n-period shadow yield at time t, and f st,n is n-period ahead shadow forward
rate at time t, i.e., f st,n = log(P s

t,n/P
s
t,n+1). We are defining these regressions in terms of

shadow yields/forward rates, rather than true yields and forward rates, to facilitate the
investigation of potential differences between the pre-ELB and post-ELB periods: Because
shadow yields/forward rates are unaffected by the ELB if the model is structurally stable,
the β’s from the pre-ELB period should equal the β’s from the post-ELB period in these
regressions.

It can be shown that for n = 2, the two regressions contain the same information, as the
two regression coefficients are related by the formula38

βCS = 2βF − 1. (36)

However, for n > 2, the two regressions probe somewhat different aspects of the depar-
tures from the expectations hypothesis. The Campbell-Shiller regression is closely linked to
the excess bond return predictability regression

erst+1,n = α + βer(yst,n − yst,1) + et+1,n (37)

where the shadow bond excess return erst+1,n is given by erst+1,n = log(P s
t+1,n−1/P

s
t,n) − yst,1.

It is straightforward to show that
βCS = 1− βer. (38)

The Fama regression probes the departure from the forward rate expectations hypothesis,
hence the forward term premium ft,n−Et[yt+n,1]. Note that in both Campbell-Shiller regres-
sions and Fama regressions, the expectations hypothesis holding means that β = 1, while
in the excess return predictability regressions, the expectations hypothesis corresponds to
βer = 0.

Table 8 shows model-implied EH regression coefficients along with their standard errors
(calculated with the delta method) for both the pre-ELB sample and post-ELB sample.39

The existing literature on expectations hypothesis tests has found that the Campbell-Shiller
regression coefficient is often negative, while the Fama regression coefficient is typically
less than 1 but larger than 0. The implied regression coefficients for the pre-ELB sample
are consistent with these patterns. Meanwhile, the implied coefficients in the post-ELB
period display interesting qualitative differences from the pre-ELB sample. In particular,
both with βCSn and with βFn , for low n, the coefficients are close to 1; in other words, shadow
yield/forward rate dynamics are close to the EH for short maturities in the post-ELB sample.
But as n gets larger, the departures from EH based on the post-ELB sample estimation get
even more pronounced than those based on the pre-ELB sample estimation, with βCSn and

38Backus et al. (2001) have shown that what they call “forward rate regression” (their eq. (4)) has identical
content to the the Campbell-Shiller regression (eq. (34) here) for n = 2.

39The model-implied regression coefficients are straightforward to compute. For example, in the case of
the Campbell-Shiller coefficient, it is given by βCS

n = (n−1)Cov(yst+1,n−1−yst,n, yst,n−yst,1)/Var(yst,n−yst,1) =

(n−1)
(b′n−1e

(1/12)KP
1−bn)Vx(bn−b1)

(b′n−b′1)Vx(bn−b1) for n measured in months, where Vx is the unconditional variance-covariance

matrix of the state variables (implied by the model parameters).
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βFn for the post-ELB sample taking lower values than those for the pre-ELB sample. The
Campbell-Shiller beta for larger n’s (such as n = 120 months) taking a more negative value
in the post-ELB period than in the pre-ELB period is reminiscent of Andreasen et al. (2019),
who obtain similar results with actual yields40

Somewhat not surprisingly, with limited amount of post-ELB period data, the standard
errors for that period are fairly large. While these results therefore might not constitute
a sufficient body of evidence by themselves, they are suggestive of a change in the pricing
of interest rate risk, and further add to the finding in the previous section (Section 6.2)
that the parameters that describe the market price of risk (Λ† parameters) have changed
meaningfully between the two periods.

6.4 Expectations and Term Premiums

Here we compare some of the predictive outputs from our various models to illustrate the
differences concretely in terms of quantities of economic interest.

We start with implied time series of the shadow rate st. The shadow rate is not a quantity
of economic interest per se. It is an unobserved variable, and its value does not have a simple
relationship with quantities of economic interest such as actual bond yields, interest rate
expectations, and term premiums. Moreover, its value can depend materially on the model
specification: For example, Kim and Singleton (2012) find that in the case of Japanese data,
the quadratic-Gaussian specification of the shadow rate leads to a different behavior of the
shadow rate than the affine-Gaussian specification of the shadow rate. Meanwhile, studies
including Krippner (2013) and Wu and Xia (2016) with U.S. data indicate that the shadow
rate estimate varies significantly with the number of factors in the model. Nonetheless, as a
central ingredient in the model, closer examination of the shadow rate might shed at least
some light on the structural change in the model.

Figure 4 shows the estimates of the shadow rate over the post-ELB period based on
the pre-ELB sample parameter estimate (structural stability assumption) as well as post-
ELB sample parameter estimate (structural break assumption). Interestingly, the shadow
rate assuming structural break is generally less negative than the shadow rate assuming
structural stability. However, a specific ordering of shadow rates on a given date does not
imply the same ordering for expected future shadow rates. Figure 4 illustrates this, with
model-implied expected shadow rate paths (the dashed lines) as of December 17, 2008 (the
first date in the post-ELB subsample), March 11, 2015 (the sample date on which the
difference between the two shadow rate estimates is largest), and June 26, 2019 (the end
of the sample). The first and last dates illustrate that a similar shadow rate estimate can
imply substantially different expected paths; at the end of the sample, these paths even
point in different directions. The paths for March 11, 2015, show that, even though the
two models initially imply dramatically different shadow rates, the expected path from the
model assuming structural stability catches up quickly with the expected path based on the

40They consider the excess return regression (eq. (37) with actual yields instead of shadow yields). Recall
this is related to the Campbell-Shiller regressions we examine by eq. (38).
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Figure 4: Time series of estimated shadow rates (solid lines) from the structurally stable
model based on pre-ELB parameter estimates (and subsequently extended to the post-ELB
period as a shadow rate model), and the structurally broken shadow rate model. Dashed lines
show model-implied expected shadow rate paths out to two-year horizons for the following
three dates: 12/17/2008, 03/11/2015, and 06/26/2019.
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structural break assumption; the two paths are virtually on top of each other for a period,
only for the path from the structurally stable model to flatten out faster than the path from
the structurally broken model.

Turning to the expected path of the short rate (EP
t (rt+τ )), we find that the model with

structural stability assumption generally (although not universally) implies a steeper path
of the short rate during the post-ELB period, i.e., faster normalization of the policy rate
(compared to the model with structural break). Figure 5 illustrates this for a couple of dates
(after the introduction of date-based forward guidance in August 2011, and after liftoff in
December 2015). This feature seems to be related to our earlier finding in Section 5.1.2 that
the model estimated with pre-ELB sample data produces slope innovation vectors that have
substantial serial correlation in the post-ELB sample. Another notable feature in Figure 5 is
that the Treasury forward rate curves are generally lower than the model-implied expected
paths of the short rate, implying that term premiums are negative. Indeed, as shown in the
top panel of Figure 6, the time series of 2-year yield term premiums implied by both models
are generally negative (the chart also shows the term premium implied by the structurally
stable, full-sample shadow rate model). For most of the post-ELB period, the 2-year term
premium implied by the model with structure break is less negative than the models with
structural stability assumption, consistent with the latter model generating steeper paths of
the expected short rate, as discussed above. The fact that the model with structural break
generates near-term term premiums that are closer to 0 in the post-ELB period also seems
to be consistent with the finding in Section 6.3 that the implied Fama regression coefficients
based on θ̂post are closer to 1 (as would be implied by the EH) for short horizons, relative

to θ̂pre. On the other hand, as shown in the bottom panel of Figure 6, the 10-year term
premiums based on the models with and without structural break are qualitatively more
similar to each other. The 10-year term premium based on the model with structural break
is somewhat lower than that from the structurally stable model in the 2011–2016 period and
somewhat higher in the period since 2018.

To better understand the different orderings of 2- and 10-year term premiums implied by
the different models, we compare the model-implied longer-horizon short rate expectations
in Figure 7. The figure shows times series of 5-to-10-year-ahead expected average short rates
implied by models with and without structural break. The 5-to-10-year Blue Chip survey
expectations are also shown. The model-implied expectations show a fair amount of variation
over time, and roughly track the contour of survey expectations. However, the longer-horizon
expectations based on the models do display some interesting differences. While both the
structurally stable full-sample model and the model with structural break use the surveys as
estimation inputs, the model with structural break tracks them much more closely, suggesting
that structurally stable models have greater difficulty reconciling short rate expectations over
the entire sample. From mid-2011 to 2016, the structurally stable model based on pre-ELB
data implies substantially lower long-run expectations than the model with structural break
and surveys. This more than offsets the the steeper expected path for near-term horizons
relative to the model with structural break, leading to the somewhat less negative 10-year
term premium for the structurally stable model in this period, as we saw in Figure 6. From
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2018 onward, the expectations implied by the model with structural break are notably below
those implied by the other two models.

7 Conclusion

In this paper, we examined the structural stability of shadow rate term structure models
as applied to U.S. Treasury yield data. We found various pieces of evidence pointing to
structural instability, including diagnostics based on innovation vectors and likelihood score–
based tests. We further elaborated on the changes in yield dynamics with estimation of a
shadow rate model in which the pre-ELB and post-ELB periods are described by different
sets of parameters. Overall, the results presented in this paper point to extensive changes
in the shadow yield dynamics since around the Financial Crisis. The structural change does
not appear to be confined to a single aspect of the model (say, only the P-dynamics), but
instead spans many facets of the model, including the principal components (of shadow
yields), P-dynamics, Q-dynamics, and risk pricing. The results also indicate that ignoring
structural change can lead to notable differences in quantities of practical interest, e.g.,
ignoring structural change implies generally steeper expected paths of the short rate and
generally more negative near-term term premiums in the post-ELB period.

In sum, we find that the yield dynamics in the post-ELB regime, at least in the case
of U.S. data, is not as simple as suggested by structurally stable shadow rate models, and
that more material changes in the dynamics of Treasury yields took place after the federal
funds rate hit the ELB in 2008. Our paper has examined this issue from the perspective
of a shadow rate model with a structural break, but the empirical results herein may be
also be consistent with broader misspecification of shadow rate models. It could be that a
fundamentally different model would yield a more satisfying description and richer insights
into the dynamics of yields near the ELB.
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Figure 5: Model-implied expected short rate paths after introduction of date-based forward
guidance in August 2011 (top panel) and after liftoff in December 2015 (bottom panel).
The figures also plot the instantaneous Treasury forward rates on those dates (based on the
Svensson curve as in Gürkaynak et al. (2007)), starting at the one-year horizon.
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Figure 6: Two- (top panel) and ten-year (bottom panel) yield term premiums implied by
our different models, shown for the post-ELB subsample.
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Figure 7: Five-to-ten-year expected average short rates as implied by our models during the
post-ELB subsample, as well as Blue Chip survey expectations (Wolters Kluwer Legal and
Regulatory Solutions U.S., Blue Chip Financial Forecasts).
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A Innovation Statistics

This appendix proves invariance to model rotation and asymptotic distribution of the inno-
vation-based statistics discussed in Sections 4.3 and 5.1.2.

Consider a general first-order Gaussian VAR. That is, suppose the N -dimensional state
vector xt follows the transition equation xt = m0+M1xt−1+εt, where the εt are i.i.d. N(0,Ω),
with Ω > 0. Choose any matrix decomposition such that SS ′ = Ω (for example, the Cholesky
decomposition) and let ηt = S−1εt = S−1(xt −m0 −M1xt−1). Then by construction, the ηt
are i.i.d. N(0, I). Next, take an arbitrary invariant transformation, that is, an N -vector l
and invertible N × N -matrix L, and let x̃t = l + Lxt. Then x̃t = m̃0 + M̃1x̃t−1 + ε̃t, where
the ε̃t are i.i.d. N(0, Ω̃), with m̃0 = (I − LM1L

−1)l + Lm0, M̃1 = LM1L
−1, and Ω̃ = LΩL′.

If we choose any S̃ such that S̃S̃ ′ = Ω̃ and let η̃t = S̃−1ε̃t = S̃−1(x̃t − m̃0 − M̃1x̃t−1), then,
denoting the Frobenius matrix norm by || · ||F , for u = 1, 2, . . .,

||T−1
∑

tη̃tη̃
′
t−u||2F = ||T−1

∑
tS̃
−1ε̃tε̃

′
t−uS̃

−1′||2F
= T−2tr(S̃−1

∑
tε̃t−uε̃

′
tS̃
−′
S̃−1

∑
tε̃tε̃

′
t−uS̃

−1′)

= T−2tr(S̃−1L
∑

tεt−uε
′
tL
′(S̃S̃ ′)−1L

∑
tεtε

′
t−uL

′(S̃−1
′
)

= T−2tr(Ω−1
∑

tεt−uε
′
tΩ
−1∑

tεtε
′
t−u)

= T−2tr(S−1
∑

tεt−uε
′
tS
−1′S−1

∑
tεtε

′
t−uS

−1′)

= ||T−1
∑

tηtη
′
t−u||2F .

The statistic ||T−1
∑

t ηtη
′
t−u||2F is thus invariant both to the original choice of S (say, whether

the Cholesky decomposition or a symmetric matrix square root is used), and to obser-
vationally equivalent model rotations. By an analogous argument, the same is true for
||T−1

∑
t ηtη

′
t − I||2F .

Moreover, since the elements of ηt are independent both contemporaneously and across
time, E(ηt,iηt−u,j) is equal to 1 if u = 0 and i = j, and is equal to 0 otherwise. Similarly,
Cov(ηt,iηt−u,j, ηt,pηt−v,q) is 2 if u = v = 0 and i = j = p = q; is equal to 1 if u = v = 0 and
either i = p 6= j = q or i = q 6= j = p, or if u = v > 0 and either i = p, j = q or i = q, j = p;
and, is equal to 0 otherwise. Thus, by the Law of Large Numbers for random vectors,

√
T


vech

[
(T−1

∑
tηtη

′
t − I)⊗ (I + J)◦−1/2

]
vec
(
T−1

∑
tηtη

′
t−1
)

...
vec
(
T−1

∑
tηtη

′
t−u
)

 d→ N(0, I)

as T →∞. Note ηtη
′
t−u is symmetric only when u = 0, which is why we use half-vectorization

in that case; furthermore, the diagonal elements in that matrix have variance 2, which is
accounted for by the Hadamard operation ⊗(I+J)◦−1/2 which divides the diagonal elements
by
√

2. Using this convergence result, the Continuous Mapping Theorem implies that

1
2
T ||T−1

∑
tηtη

′
t − I||2F

d→ χ2
(N2+N)/2

T ||T−1
∑

tηtη
′
t−u||2F

d→ χ2
N2 u = 1, 2, . . .
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as T →∞. Furthermore, as the individual statistics are independent under their asymptotic
distribution, they can be added to obtain a joint statistic with asymptotic χ2 distribution
and degrees of freedom equal to the sum of the individual degrees of freedom.

B Parameter Estimates

This appendix provides the parameter estimates, in original normalization (eq. (18)), based
on the pre-ELB sample (θ̂pre), post-ELB sample (θ̂post), and full sample (θ̂full). The PC-

rotated parameter estimates θ̂†pre and θ̂†post in Section 6.2 are invariant transformations of θ̂pre

and post-ELB sample θ̂post, respectively.
Recall that, to achieve econometric identification, we impose the normalization restric-

tions kP0 = 03×1, Σ = 0.01I, [KP
1 ]i,j(i<j) = 0.

A few properties of our estimates are of note: In θ̂pre, the estimate of [KP
1 ]33 does not

have a standard error because the estimate is at the boundary ([KP
1 ]33 = [KP

1 ]22); that is, the
matrix has a repeated eigenvalue. In θ̂post, the estimate of δy does not have a standard error as
it is at the minimum bound (4 bps) that we imposed. If this parameter is left unconstrained
in the post-ELB sample estimation, the estimated Q parameters display strong signs of
overfitting.

In all three models, we impose a lower bound of 50 bps on the measurement error estimate
for the 5-to-10-year survey expectation.
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θ̂pre θ̂post θ̂full
ρ0 0.0450 (0.0023) 0.0374 (0.0097) 0.0465 (0.0028)
[ρ1]1 0.4051 (0.1051) 0.2541 (0.0824) 0.3512 (0.0315)
[ρ1]2 -0.1366 (0.0803) 0.1596 (0.0600) 0.0449 (0.0485)
[ρ1]3 0.6915 (0.0711) 0.4295 (0.0615) 0.7472 (0.0533)
[KP

1 ]11 -0.0637 (0.0192) -0.1109 (0.4311) -0.0917 (0.0167)
[KP

1 ]21 0.0584 (0.1125) 0.1390 (0.3667) 0.1235 (0.0603)
[KP

1 ]31 -0.0744 (0.2951) -0.2366 (0.7887) -0.0151 (0.0582)
[KP

1 ]22 -1.1215 (0.0538) -0.6351 (0.0956) -0.8391 (0.2096)
[KP

1 ]32 2.5296 (0.3192) 2.8466 (0.9364) 1.8229 (0.2069)
[KP

1 ]33 -1.1215 -0.6784 (0.0576) -0.9855 (0.0375)

[kQ0 ]1 0.0073 (0.0015) -0.0069 (0.0098) 0.0049 (0.0002)

[kQ0 ]2 -0.0068 (0.0016) 0.0063 (0.0086) -0.0022 (0.0014)

[kQ0 ]3 0.0048 (0.0038) 0.0124 (0.0127) 0.0045 (0.0012)

[KQ
1 ]11 0.1194 (0.1783) -0.3428 (0.1242) 0.0138 (0.0066)

[KQ
1 ]21 0.1212 (0.1129) 0.3423 (0.1345) 0.1212 (0.0089)

[KQ
1 ]31 0.3998 (0.3284) 0.0872 (0.4703) 0.1682 (0.0074)

[KQ
1 ]12 1.4357 (0.2536) -0.5689 (0.3800) 0.6421 (0.0099)

[KQ
1 ]22 -0.9906 (0.1593) 0.3044 (0.2306) -0.4941 (0.0166)

[KQ
1 ]32 2.5270 (0.3326) 2.1732 (0.6383) 1.7591 (0.0097)

[KQ
1 ]13 -0.6656 (0.0794) 0.0465 (0.0371) -0.2775 (0.0072)

[KQ
1 ]23 0.1049 (0.0692) -0.0081 (0.0272) -0.0464 (0.0081)

[KQ
1 ]33 -1.3073 (0.1178) -0.4557 (0.0813) -0.8964 (0.0097)

δy 0.0006 (0.0000) 0.0004 0.0006 (0.0000)
δz,6m 0.0017 (0.0001) 0.0011 (0.0001) 0.0018 (0.0001)
δz,12m 0.0023 (0.0001) 0.0017 (0.0001) 0.0025 (0.0007)
δz,5−10y 0.0050 0.0050 0.0050
r 0.0006 (0.0000) 0.0007 (0.0000)

Table 9: Parameter estimates for the three models used in the paper.
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