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Abstract

We empirically document that serial uncertainty shocks are (1) common in
the data and (2) have an increasingly stronger impact on the macroeconomy.
In other words, a series of bad (positive) uncertainty shocks exacerbates the
economic decline significantly. From a theoretical perspective, these findings
are puzzling: existing benchmark models do not deliver the observed amplifica-
tion. We show analytically that a state dependent precautionary motive with
respect to uncertainty shocks is required. Our derivations suggest that the state
dependent precautionary motive only shows up at fourth order approximations
or higher. Fundamentally, in DSGE models solved with perturbations, agents
have always possessed a state dependent precautionary motive but typical solu-
tion methods were hiding this fact. Future studies need to consider solving the
model via fourth (or higher) order perturbation in order to avoid understating
the effect of uncertainty shocks that occur in succession.
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1 Introduction

Uncertainty shocks are often thought of as fleeting events. A one time increase or

decrease in stochastic volatility, for example, is a widely used tool that economists

employ to generate dynamic responses in theoretical models.1 However, a careful

analysis of previous economic crises should prompt us to rethink that paradigm.

For instance, the Euro-zone debt crisis lasted for years and sent uncertainty shocks

through the global economy as nations grappled with solvency and fiscal concerns.

Each ripple was frequently met with even greater uncertainty in the form of austere

policy responses that tended to exacerbate the dour economic outlook. More recently,

successive shocks to trade policy uncertainty unfolded in 2018 and 2019, as tariff

threats and retaliations ricocheted back and forth between the United States and

China. Finally, the recent downturn is also unlikely to be an isolated uncertainty

event. With no potential vaccine likely until 2021 at the earliest, the aftershocks

following the original infectious propagation are raising alarms for both researchers

and government officials alike. As uncertainty layers on top of existing uncertainty

with shocks occurring in rapid succession, many are left to wonder how this will

shape the economic recovery. With these historical episodes in mind, our goal in

this project is to document and shed light on the importance and ramifications of

successive shocks to uncertainty.

Economic uncertainty has shown to be a significant determinant of investment

dynamics (Bloom, Bond and van Reenen, 2007), a driver of firm production declines

and recoveries over time (Bloom, 2009), and a source of business cycle variations

(Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry, 2018) in general. Using

survey data, Bachmann, Elstner and Sims (2013) shows that both in the U.S. and in

Europe, ex ante forecast disagreements about business conditions is a strong predictor

of lower production. Moreover, Fernández-Villaverde, Guerrón-Quintana, Kuester

and Rubio-Ramı́rez (2015) show that, both empirically and theoretically, an increase

in fiscal policy uncertainty is associated with an adverse effect on economic activity.

As another example, Basu and Bundick (2017) demonstrate that demand uncertainty

is the primary cause of large declines in output and investment in the data.

Nevertheless, how these uncertainty shocks interact with each other sequentially is

1For the purpose of exposition, words like “uncertainty shocks” and “volatility shocks” are used
interchangeably. What we have in mind is second-moment innovations to the underlying state
process.
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not well known. It is reasonable to conjecture that in the midst of a downturn along

with its build-up, positive shocks to uncertainty can occur in succession, causing con-

secutive negative movements in economic aggregates. Whether these serial positive

uncertainty shocks have a diminishing effect, a neutral effect, or an amplifying effect

is unclear. In other words, if two positive uncertainty shocks arrive in back-to-back

periods, will the economic impact of the second shock be less powerful, the same, or

more powerful than the first realized shock?

In this paper, we study the effect of serial positive uncertainty shocks on variables

such as output, investment, inflation, and the stock market. Furthermore, we also

investigate the non-linear scaling effect of large versus small uncertainty shocks. We

empirically document that serial positive uncertainty shocks have a cascading effect

such that the later realizations are more powerful and longer lasting than the earlier

ones. In a dynamic general equilibrium model, the cascading impact of uncertainty

shocks can not be generated by a third order approximation. This phenomenon can

only be generated by a solution solved under fourth order perturbation or higher. To

our knowledge, this is the first study to document this finding.

We observe that serial uncertainty shocks are fairly common in the data. As an

illustrative example, Panel (a) of Figure 1, Figure 2, and Figure 3 plot the realized

market volatility, the financial uncertainty index proposed by Ludvigson, Ma and

Ng (2015), and the economic policy uncertainty (EPU) developed by Baker, Bloom

and Davis (2016), respectively. Panel (b) in these figures plots the time series of

the standardized shocks. Panel (c) and (d) highlight the events with two or three

consecutive positive shocks, respectively. We note several episodes characterized by

sequences of positive shocks. Focusing on Panel 2(c) and 2(d) we observe that these

events are not confined to the two largest financial uncertainty shock recorded in

1987:Q4 (Black Monday) and in 2008:Q3 during the financial crisis, and are indeed

spread out over the entire sample.

[Insert Figure 1, Figure 2, and Figure 3 about here]

Given the series of uncertainty shocks constructed from the data, we employ

smoothed local projection (SLP) popularized by Barnichon and Brownlees (2018)

to examine the conditional response of the economy produced by consecutive positive

shocks to uncertainty. The idea is straightforward: using an indicator variable to

denote whether a given positive shock is preceded by one or more positive shocks, we

2



regress economic aggregates on the shock itself as well as the interaction term between

the shock and the indicator variable. The coefficient loading on the interaction term,

or the state multiplier, is only valid if the indicator variable is turned to 1 and can be

interpreted as the additional reaction due to the fact that the shock is not the first

realization in a sequence of positive shocks.

Our baseline empirical specification employs monthly data of industrial produc-

tion, the nominal short rate, inflation, and the stock market valuation. The estimation

results are striking. For all uncertainty shock measures, the estimated state multi-

pliers are negative in general across prediction horizons. The resulting conditional

impulse responses show much larger declines in all four economic variables compared

with their unconditional responses in the data. To highlight the magnitude, industrial

production drops by between 1% to 2% as opposed to around 0.2% to 0.5% at the

maximum if a positive shock is the second shock in a row. For the nominal interest

rate, the contrast is roughly -1% vs. -0.2% within two years of the shock. Similar

implications can be found for inflation and stock market valuation.

Furthermore, the cascading effect of serial uncertainty shocks also prolongs the

negative economic impact in the data. The impulse responses show that the max-

imal drop in economic activity, as measured by industrial production, for a second

consecutive positive shock occurs at about 6 quarters post-realization. Whereas the

economy recovers to the steady state within 3 years after an unconditional positive

shock, the recovery following a second consecutive positive shock drags beyond that

horizon.

In the theoretical section, we show that - within a standard New-Keynesian frame-

work - demand uncertainty shocks have rather different implications on the economy

depending on what precedes them (history dependency) and magnitude (violation of

shape invariance). We focus on demand uncertainty because it has been shown to

generate a significant impact on economic aggregates in dynamic equilibrium models,

see Basu and Bundick (2017).2 In the model, a positive shock to demand uncer-

tainty lowers output, investment, inflation, and stock market valuation. A second

consecutive positive shock amplifies the declines in these endogenous variables and

causes them to fall further. The cascading effect is similar to what is documented

2Bretscher, Hsu and Tamoni (2020) show that productivity uncertainty in conjunction with time-
varying risk aversion can also produce similarly large effects on aggregate economic variables from
the supply side.
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empirically.

Importantly, one needs at least a fourth-order perturbation solution of the model

to study the non-linear effects (i.e., history and size dependency) of uncertainty

shocks. Indeed, our analytical derivation shows that households exhibit a state depen-

dent precautionary motive with respect to uncertainty at the fourth order approxima-

tion thanks to the nonzero loading on the quadratic stochastic volatility term in the

perturbation solution. This loading is not present at the third order approximation.

Intuitively, the greater precautionary motive that generates this amplification is hid-

den by the third order approximation, just as movements in risk premiums are hidden

by the second order approximation. The economic implications are straightforward:

Agents respond to additional increases in uncertainty with even larger declines in

demand, which translates into lower output along with each of its components in the

demand-driven New Keynesian model.

Our results have important and widespread implications for the analysis of the

macroeconomy. Since the seminal contribution of Sims (1980), researchers in macroe-

conomics often compute dynamic multipliers of interest, such as impulse responses and

forecast-error variance decomposition, by specifying a vector autoregression (VAR).

Impulse responses (and variance decomposition) are important statistics in their own

right: they provide the empirical regularities that substantiate theoretical models of

the economy and are therefore a natural empirical objective.

However, the impulse responses implied by linear models, such as VARs, are char-

acterized by a few (arguably restrictive) properties: (1) shape invariance, responses

to shocks of different magnitudes are scaled versions of one another; and (2) his-

tory independence, the shape of the responses is independent of the local conditional

history.3

Our results show that the macroeconomic responses implied by (suitably solved)

standard New Keynesian model indeed manifest violation of these properties typical

of a linear system, and call for a more flexible approach like that proposed by Jorda

(2005).

3VARs also impose symmetry, i.e., responses to positive and negative shocks are mirror images
of each other. We do not investigate (violations of) symmetry in this work.
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2 Literature review

Our work is related to the growing literature on uncertainty shocks, which started

with the seminal contribution by Bloom (2009). From an empirical perspective,

the literature has shown – using alternative measures – that a one-period rise in

uncertainty can cause a significant fall in economic activity (e.g., Baker et al., 2016;

Bloom, 2009; Jurado et al., 2015; Rossi and Sekhposyan, 2015; Caldara and Iacoviello,

2018). From a theoretical point of view, the literature has provided mixed evidence

on the quantitative relevance of uncertainty. With standard business cycle models,

the effects of uncertainty shocks tend to be economically insignificant (e.g., Born and

Pfeifer, 2013; Bachmann et al., 2013). However, an important strand of literature

has shown that uncertainty can be amplified in the presence of non-linearities such

as the zero lower bound (Fernández-Villaverde et al., 2015; Basu and Bundick, 2017),

of frictions in the financial sector (Christiano et al., 2014) and in the labour market

(Leduc and Liu (2016); see also denHaan et al. (2020) for a reappraisal of the role of

uncertainty shocks in search and matching models). We contribute to this literature

by showing (empirically and theoretically) the non-linear, amplifying effects induced

by a sequence of uncertainty shocks.

In a series of important contributions, Barnichon and Matthes (2018) and Barni-

chon and Matthes (2020) propose a novel methodology to investigate the asymmetric

and state dependent effects of macroeconomic shocks; their empirical focus is mostly

on how the effect of monetary and government spending shocks depends on their sign.

We contribute to this literature by showing that the effects of shock may also depend

on whether they happen to be isolated or multi-period (consecutive) shocks. We also

provide evidence that the size of the changes in uncertainty (large vs small shocks)

can be a potential source of non-linear dynamics.

To the best of our knowledge, our analysis of the (non-linear) effects of consecutive

shocks is in its infancy. The closest in spirit is the work by Borovicka and Hansen

(2014, Section 2.4) who builds upon Hansen and Scheinkman (2009) and proposes a

methodology to compute multi-period perturbation of cash flows and prices.

Recently, in response to the COVID-19, a literature is emerging on the effect of

large and/or multi-period shocks. Most notably, Ludvigson et al. (2020) uses lin-

ear VAR methods to investigate the compounding effect of prolonged shocks like the
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COVID-19,4 and Primiceri and Tambalotti (2020) propose a novel approach that

“synthesizes” a Coronavirus shock from typical disturbances that have historically

driven macroeconomic fluctuations, and that tilts its propagation to account for al-

ternative scenarios about the evolution of the pandemic. In line with these papers,

our hope is to contribute to an active debate about new reduced-form as well as

structural tools that could shed light on the effects and propagation of shocks, and

to inform about the appropriate policy response.

Similar to Ludvigson et al. (2020) we are interested in understanding the effect

of successive multi-period shocks, with particular emphasis on second-moment ones.

We view our analysis as complementary to that of Primiceri and Tambalotti (2020).

These authors study the propagation of a single (unprecedented in its type and scale)

shock and show that it can lead to a severe and prolonged recession. We put forward

the hypothesis that such severe and prolonged patterns may also emerge naturally as a

response to consecutive uncertainty shocks. Thus, whereas Primiceri and Tambalotti

(2020) work under the assumption of a single shock that hits in March 2020 and

then propagates, our analysis suggests to describe the unfolding of the pandemic as

a sequence of shocks.5

We also contribute to the literature on perturbation methods (Judd, 1998), and

their use to compute generalized impulse response function (Koop et al., 1996) to

uncertainty shocks.6 Schmitt-Grohe and Uribe (2004) show that in a second-order

expansion of the model solution the presence of uncertainty affects only the constant

term of the decision rules. Andreasen (2012) show that a third order perturbation

solution is needed for rare disasters and stochastic volatility to influence the level

of risk premia in DSGE models. Fernández-Villaverde et al. (2011) and Fernández-

Villaverde et al. (2015) show that one has to consider at least a third-order Taylor

expansion of the solution to study the dynamic implications of a volatility increase

4While Ludvigson et al. (2020) use linear VAR methods for the prolonged shocks, when it comes to
non-linearities induced by large shocks, they employ local projections, as we do. A similar approach
has been adopted by Foerster (2014). In contrast, our usage of local projections to investigate the
non-linearities induced by consecutive shocks is new.

5These two alternative approaches are acknowledged in footnote 2 of Primiceri and Tambalotti
(2020).

6Another important literature study the effect of risk aversion in models solved using perturbation
methods. E.g., Binsbergen et al. (2012) and Caldara et al. (2012) show that, when a second-order
expansion is employed to solve models with Epstein-Zin-Weil preferences, the parameter of relative
risk aversion only enters the solution through a constant term in the policy rule. This term can be
interpreted as the precautionary behavior toward risk.
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while keeping the level of the variable constant. Recently, de Groot (2019) shows that

a fourth order approximation is required for the standard deviation of the stochastic

volatility (a.k.a. vol. of vol.) to affect the stochastic steady state through the risk

correction or constant term. We contribute to this literature by showing that a

fourth-order Taylor expansion of the solution is also needed to study the non-linear

effects of a sequence of volatility shocks. Moreover, within a simplified model, we

show exactly which terms are crucial in the fourth order perturbation solution to

generate the cascading effect of serial uncertainty shocks. Specifically, we are the

first to document a non-zero term that loads on quadratic variation in the stochastic

volatility process, which generates amplification, state dependence, as well as non-

linearity with respect to the size of the shocks. Finally, we show that the third order

approximation only loads linearly on the stochastic volatility process in a simplified

model.

2.1 Previous episodes of cascading uncertainty

This section provides background on several historical episodes which exhibited suc-

cessive cascading shocks to uncertainty. As evidenced by the discussion below, shocks

to uncertainty will often invite additional shocks, whether it be uncertainty regard-

ing policy responses, uncertainty generated by other economic actors (e.g. ratings

agencies, labor unions, other countries), or uncertainty regarding the duration of the

initial shock to uncertainty. The examples discussed below represent just a fraction

of the episodes we observe in the data.

Gold Crisis of 1967 - 1968. A series of positive shocks to uncertainty unfolded

surrounding the Gold Crisis of 1967 and 1968 along with the Vietnam War.7 The

Gold Crisis was sparked by a surprise devaluation of the British Sterling, which

touched off a frenzy of volatility in global financial markets. This required a response

by the United States to uphold its commitment to the existing price of gold, which

could be achieved by shoring up its balance of payments position through reductions

in expenditures and increases in taxes (in effect generating heightened fiscal policy

uncertainty).

Likewise, the Tet Offensive in January 1968 increased the possibility of greater

7See Collins (1996) for more details.
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spending on the Vietnam War, amplifying uncertainty about future inflation and a

potential response by monetary policy while exacerbating the balance of payments.

This ended up weakening the dollar and amplifying the rush to gold, forcing the

United States to change its gold cover ratio, which set in motion the decline and

ultimate termination of the Bretton Woods system in the years ahead while sowing

the seeds of the recession that began the following year.

Recession of 1973. In addition to a basic supply shock, the Arab oil embargo of

1973 contributed a series of uncertainty shocks that lasted through 1974 in the midst

of a global stock market crash that began earlier in the year.8 The embargo generated

global uncertainty about oil supplies, with no hint of a potential end-date in sight, as

OPEC treated importing countries differently based on subjective favorability ratings.

The resulting shortfalls in gasoline and increased production costs helped to am-

plify uncertainty about future inflation in the United States, which generated higher

interest rates and increased uncertainty about how monetary policy would balance

the competing forces of higher unemployment and inflation. The United States gov-

ernment responded by instituting price controls and regulations, which exacerbated

the crisis by creating greater scarcity and more rationing. The end result was a reces-

sion that extended through 1975, with the oil embargo contributing a series of shocks

that lasted for multiple quarters.

1998 Asian and Russian Financial Crisis. A cascade of shocks to uncertainty

rained down in the build up to the Asian and Russian Financial Crisis. Thailand’s

devaluation of its currency in 1997 triggered a currency and financial crisis that spread

to Malaysia, Indonesia, the Philippines. Further shocks to uncertainty arrived in the

months that followed, as South Korea, Hong Kong, and China’s elevated exposure

to these countries set off dramatic declines in currency and financial markets, which

required intervention by the IMF. Part of the IMF’s terms for assistance included

massive budget cuts and tax increases which amplified uncertainty about the path of

fiscal policy in these countries.

The ongoing crisis spread to Russia in 1998, as the price of oil dramatically declined

along with demand. Massive selling of rubles by investors forced Russia to devalue its

currency and default on its debts, which amplified uncertainty about the soundness

8See https://history.state.gov/milestones/1969-1976/oil-embargo for more details.
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of the U.S. banking system, which had significant exposure. Brazil was also impacted

by the crisis as it was forced to cut spending and raise taxes to try to maintain the

value of its currency. The buildup of these events culminated with its spread to

the United States as Long-Term Capital Management required a bailout from the

Federal Reserve.9 In addition, monetary policy cut rates on multiple occasions to

head off increased volatility and uncertainty as U.S. markets declined close to 20%

while experiencing some of the largest single-day declines in history.

2010-12 Euro-zone debt crisis. The Euro-zone debt crisis propagated and sent

shockwaves of uncertainty through the global economy for several years. What started

as a Greek debt crisis in the aftermath of the Great Financial Crisis, spread to many

of its neighbors in the years that followed. This typically caused a series of policy

reactions that exacerbated uncertainty about the future path of the economy.

For instance, Italy’s sovereign bond yields were skyrocketing as investor confi-

dence waned on the country’s solvency, with the second highest debt-GDP ratio in

Europe. This sparked an effort by fiscal policy to introduce spending cuts and tax

increases to calm markets. Adding to the increased economic uncertainty, large union

strikes were organized to protest the fiscal policy and this virtually shut down the

country. An austerity package was eventually passed in the months that followed

but despite this, ratings agencies continued to further downgrade Italy’s credit rating

while characterizing the outlook as negative.10

Similar events unfolded in Spain, Portugal, Ireland and Cyprus, as fiscal policy

responses to the increased financial uncertainty were often met with further down-

grades in the country’s debt ratings, which only added to the uncertainty in the

economic environment. Overall, the unease about possible spillovers from fiscal and

financial strains in the euro area was cited over the course of numerous releases of the

FOMC minutes during this time period as concerns persistently weighed on the U.S.

economic outlook.

2018-19 Trade Policy Uncertainty. Successive shocks to trade policy uncer-

tainty were fully evident throughout 2018 and 2019. Tariffs were put in place by the

United States on China in early 2018, and threats of further tariffs and retaliations

9See https://www.federalreservehistory.org/essays/asian_financial_crisis for addi-
tional details.

10See https://www.bbc.com/news/business-13856580 for a full time-line of events.
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continued in the months that followed. For instance, the months of April, June, July,

August, September all had important tariff announcements and subsequent retalia-

tions that added considerable uncertainty to the U.S. economic outlook.11

After a brief truce, the back-and-forth continued in 2019 and further tariffs were

put in place by the United States that were met with more retaliations from China.

The escalation grew so much that financial markets started to price in serious down-

side risks. Additionally, uncertainty about the path of monetary policy grew and

culminated with several interest rate cuts in a bid to offset the risks associated with

the ongoing trade uncertainty. Overall, the trade war between the United States and

China contributed a series of successive shocks to uncertainty that had adverse effects

on economic activity.

3 Empirical Analysis

In this section we investigate the effects of consecutive uncertainty shocks on macroe-

conomic and financial outcomes. We are particularly interested in uncovering the

presence, if any, of non-linearities in the response associated with multi-period shocks.

We start describing our data; we then turn to the empirical methodology, and finally

describe the results.

3.1 Data

We use three types of uncertainty proxies which have been widely used in applied

research: the market realized volatility, the financial uncertainty index (UF ) con-

structed by Ludvigson, Ma and Ng (2015), and the economic policy uncertainty

(EPU) developed by Baker, Bloom and Davis (2016). Realized volatility is com-

puted as R̂V ≡ 100 ×
√

252
21 ∑

21
i=1 r

2
t,i with ri,t denoting the daily stock returns of the

S&P 500 index from the CRSP database.12 All these uncertainty series are available

at monthly frequency.

11See https://www.reuters.com/article/us-usa-trade-china-timeline/

timeline-key-dates-in-the-u-s-china-trade-war-idUSKBN1ZE1AA for a detailed account
of events.

12Essentially we estimate the diffusive term of the stock price process via the realized volatility
estimator. We agree with Berger et al. (2019) on the fact that realized equity volatility is not a
perfect measure of uncertainty. This is why we used the word “uncertainty proxies”. With this caveat
in mind, henceforth, we often refer to these series as uncertainties without further qualification.
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Ultimately, we want to compute impulse response functions for a set of variables

of interest conditional on the realization of n consecutive positive shocks to a given

uncertainty measure. To this end, we need to construct the shocks. Since our goal

here is not to come up with a new identification scheme, we rely on methods that

have been proposed in the literature to extract the shocks. Specifically, for realized

volatility we follow Berger et al. (2019) and obtain realized volatility shocks from a

linear predictive regression of next month (log) realized volatility on lagged (log) RV,

and option-implied volatility. Importantly, Berger et al. (2019) show that despite the

fact that other macro and financial time series (such as industrial production and the

default spread) on their own can help predict future volatility, their forecasting power

is subsumed by current realized and option-implied volatility. The sample period for

RV shocks is constrained by the availability of the option-implied volatility. We use

the S&P 500 implied volatility (VIX) extended to February 1983 and kindly provided

by Ian Dew-Becker.

For the financial uncertainty index, we employ the identification scheme proposed

by Ludvigson, Ma and Ng (2015) and extract shocks from a trivariate system that

includes an index of macro uncertainty, a measure of real economic activity, and

the financial uncertainty index.13 The financial uncertainty index is available for a

long time-span beginning in July 1960. We focus on financial uncertainty rather than

macroeconomic uncertainty or real economic uncertainty (all three are proposed in the

same paper) because financial market uncertainty is shown to be the most exogenous

of the three uncertainty measures in terms of driving business cycle variations.

For EPU, we employ a VAR model as in the original paper by Baker, Bloom and

Davis (2016). Specifically, we fit a VAR to monthly U.S. data from January 1985 to

December 2019. To recover orthogonal shocks, we use a Cholesky decomposition with

the following ordering: the EPU index, the log of the S&P500 index, the federal funds

rate, log employment, and log industrial production. Our baseline VAR specification

includes three lags of all variables as in the original specification by Baker, Bloom

and Davis (2016).

Panels (a) and (b) in Figures 1, 2, and 3 show the uncertainty series and the

time series of its (standardized) shocks for the three proxies at hand. For all proxies

we generally see that uncertainty tends to be countercyclical, rising during NBER

13Identification is achieved by combining “synthetic external variables” with restrictions based on
economic reasoning.
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recessions, and that these increases are associated with positive shocks and, thus,

unexpected.14 We also observe some differences, particularly when comparing RV

and UF to EPU. Indeed, we observe a period of high EPU uncertainty toward the

end of our sample, that is paired with low (by historical standard) financial volatility

(whether proxied by RV or UF ). This phenomenon has been called the “volatility-

uncertainty disconnect” and it has been thoroughly investigated by Ait-Sahalia et al.

(2020). In our analysis we indeed acknowledge that the three proxies capture poten-

tially different facets of uncertainty. However, our hope is to establish the effect of

consecutive shocks as a general phenomenon that is not tided to the specific type of

uncertainty, being it political or financial.

Next we focus on Panel (c) and (d). These panels display the episodes with two

and three consecutive shocks. As a general remark we observe several episodes with

two consecutive shocks (specifically, we obtain 43, 81, and 40 events for RV, UF , and

EPU; these numbers correspond to a frequency of about 10% independently of the

proxy considered). We also observe that the second shock can be larger or smaller

than the previous one. In our analysis we do not distinguish whether the consecutive

positive shocks are increasing or decreasing. Importantly, the discussion of previous

episodes provided in section 2.1 matches well with the extracted series of shocks,

particularly for EPU. Finally, we also observe occurences of multi-period and large

shocks. For example, for RV (as in panel (c) in Figure 1) we see four instances of

consecutive shocks where one of the shock is larger than 2 standard deviations (the

large shocks occurred in May 2010, August 2015, February 2018, and October 2018).

Since we do not want to confound the effect of multi-period shocks with the effect of

large ones, we remove from the analysis those events where the previous shock was

larger than two standard deviations. For RV this happens in two occasions, which

leaves us with 41 events comprising two consecutive positive shocks (and the previous

shock is not large).

After the occurrence of two consecutive positive shocks, it is still possible to ob-

serve another positive shock which generates a sequence of three consecutive shocks.

In other words events with two consecutive shocks are a subset of periods with three

14RV and UF also spike frequently outside of recessions, the most notable being the 1987 stock
market crash. Furthermore, UF is a broad-based measure of time varying financial uncertainty using
data from the bond market, stock market portfolio returns, and commodity markets. Hence, it is
smoother than RV.
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shocks.15 These three consecutive shocks events are shown in Panel (d). We count

30 events for realized volatility, 49 events for the financial uncertainty index, and 13

events for EPU. Adjusting for the length of the sample period, these numbers corre-

spond to a frequency of 7% for RV and UF and 3% for EPU. Thus, measures related

to financial volatility or uncertainty are more susceptible to longer stream of positive

shocks relative to measure of economic policy uncertainty. This is contrary to the

similar behavior in terms of frequency for the case of two consecutive shocks.

Overall these figures make clear that consecutive volatility and uncertainty shocks

are abundant in the data.

3.2 Response to Serial Uncertainty Shocks

To estimate the response to consecutive shocks, we rely on the smoothed version of

Jorda (2005) local projections developed by Barnichon and Brownlees (2018). The

Smooth Local Projections (SLP) strikes a balance between the efficiency of Vector

Autoregressions (VAR) and the robustness (to model misspecification) of the Local

Projections (LP) approach. In practice, SLP consists in estimating LP under the

assumption that the impulse response is a smooth function of the forecast horizon.

Specifically, we estimate an h-step ahead predictive regressions,

yt+h = αh + (β0,h + β1,hI{εunc,t−L>0&...&εunc,t−1>0}) εunc,t +
p

∑
i=1

γi,hwt−i + ut+h (1)

where h ranges from 0 to H and p is the number of lags used for the control variables,

wt. yt+h is the h period ahead realization of the macroeconomic or financial variable

of interest. I{εunc,t−L>0&...&εunc,t−1>0} denotes an indicator that takes value of one if

each one of the previous L shocks, {εunc,t−L, . . . , εunc,t−1}, has been positive. This

indicator allows us to compute the response of yt+h to a positive shock at t, εunc,t,

conditional on having L previous consecutive positive shocks. Overall, to capture

state dependence, the response of yt+h to uncertainty at time t is a function, β0,h +
β1,hI{εunc,t−L>0&...&εunc,t−1>0}, of the previous occurrence of a positive shock. In what

follows, the β1,h coefficient capturing the amplification due to a cascade of shocks

15Consider three periods, t = 1,2,3. If we observe positive shocks at t = 1 and t = 2, we categorize
this as an event with two-period shocks: [1,1, ⋅]. If in the third period we do not observe a positive
shock then we have a pure event comprised of two consecutive shocks: [1,1,0]. If instead we observe
a positive shock in the third period, we categorize [1,1,1] as a two-period shocks event from the
perspective of t = 2, and a three-period shocks event from the perspective of t = 3.
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is called the state multiplier. We are interested in knowing whether an uncertainty

shock has a larger effect on, e.g., output if the previous shock was positive too.

Interestingly, a linear system like an AR(1) delivers β1,h = 0 since conditioning on the

previous realization of shocks does not alter the response function.

Before turning to the empirical analysis, two remarks are in order. First, we

impose the constraint that the shock at εunc,t−L−1 ≤ 0 so that we effectively consider

the response to L + 1 consecutive, positive shocks (for L = 1, the run {εunc,t−2 =
0, εunc,t−1 = 1, εunc,t = 1} is a valid one; {εunc,t−2 = 1, εunc,t−1 = 1, εunc,t = 1} is not).

Second, we eliminate a run (i.e., set the indicator to zero) if the run of L positive

shocks preceding the one at time t contains a large (≥ 2 standard deviations) shock.

Hence our analysis is not contaminated by the effect of rare and large events.16

For our empirical application, we employ industrial production, the short-rate,

inflation as proxied by the personal consumption expenditures (PCE) chain-weighted

price indices, and the Standard & Poor’s 500 Stock Price Index as dependent vari-

ables.17 The control vector includes eight lags of the dependent variable, along with

eight lags of the short rate to proxy for the monetary policy stance and the state of

the economy.

To start, we focus on the case of two consecutive positive shock (L = 1 in eq. (1)).

The top row in Figure 4 shows the SLP estimates for the case of market realized

volatility. Each subplot depicts the impulse response of a specific dependent variable

to two consecutive positive shocks (I{εunc,t−1>0} = 1; line with circles), contrasted with

the unconditional response (labelled average; dashed line) where we do not condi-

tion on previous shocks being positive (I{εunc,t−1>0} = 0). The bottom row shows the

estimates of the state multipliers β1,h over horizon h (c.f., equation (1)) along with

the 90% confidence interval. The state multiplier estimates are negative for all four

dependent variables. This means that the negative effect of a realized uncertainty

shock is more pronounced conditional on the shock being the second in a sequence of

two positive ones.

In line with this observation, the responses of industrial production and the short

16In general, we find that our results strengthen if we keep the large shocks in our empirical
analysis.

17Being a chain-weighted index, the PCE is subject to less substitution bias than the consumer
price index (CPI). The inflation data are seasonally adjusted. The macro data are available from
the Federal Reserve Economic Database (FRED) and have FRED mnemonics INDPRO, PCECTPI,
FEDFUNDS, respectively. The SP500 is available at Yahoo Finance (GSPC ticker).
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rate are substantially more negative after a sequence of consecutive shocks has oc-

curred. For example, industrial production has dropped by as much as 2% at an

horizon of 18 months relative to 0.5% for the average case.18 Not only the magnitude

of the response is larger, but also the recovery is slower after multi-period shocks have

occurred. The response of industrial production to two consecutive shocks is still in a

negative territory even after 3 years; on the other hand, the average response would

suggest the shock has been completely absorbed with industrial production returning

to its average level. Turning to inflation we observe a larger drop on impact after two

consecutive shocks. The gap between the (average and conditional) responses closes

at about 24 months. Finally, we also see an amplification effect in the response of the

stock market following two consecutive shocks; similar to inflation, the conditional

and unconditional response difference is large and significant up to 18 months, after

which the gap closes as the horizon lengthens.

Figure 5 shows the responses of market realized volatility to a sequence of three

consecutive positive shocks (L = 2 in equation (1); I{εunc,t−1>0,εunc,t−2>0} = 1). In general

the pattern of responses and state multipliers is similar to that reported in Figure 4

for the case of two consecutive shocks. Specifically, the state multipliers are negative

and the conditional impulse responses of the dependent variables are orders of magni-

tude larger compared to their average responses. For example, industrial production

in subplot (a) decreases by about 2% 18 months after the realization of a third con-

secutive positive uncertainty shock, whereas the unconditional decline in output due

to a positive uncertainty shock is about 0.5% at the same horizon. The most notable

difference between two and three consecutive shocks is a more persistent drop in the

stock market. Perhaps not surprisingly, this is accompanied by more statistical un-

certainty on the state multiplier since the inference is now relying on a lower number

of events. In the interest of space we do not report responses to three consecutive

shocks for alternative measures.19

[Insert Figures 4 and 5 about here]

Next we discuss the response to two consecutive shocks for the financial uncer-

tainty index and EPU, see Figures 6 and 7 respectively. The responses to the financial

18For industrial production in subplot (e), the β1,h estimate of around −1.5 at 18 months corre-
sponds to the additional decline in output relative to the unconditional response of about −0.5.

19The limited number of events - 3% of the total sample size - would prevent in any case the
estimation of three-period consecuive shocks for EPU.
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uncertainty index are overall quite similar to those reported for market volatility. Af-

ter two consecutive shocks, the drop in industrial production is quite large at 2%

and more persistent than in the unconditional case. Short rate, inflation, and stock

market valuation dynamics are also in line with each other across market volatility

and financial uncertainty shocks. However, comparing the responses of EPU to those

of market volatility and the financial uncertainty index, we observe few differences.

First, although we continue to observe a larger drop for industrial production, the

short rate, and inflation in the case of consecutive shocks, the gap between condi-

tional and unconditional responses disappears after 3 years. Second, we observe a

more muted response for the stock market in the case of EPU.

[Insert Figures 6 and 7 about here]

Finally, we study the behavior of variables that are available at quarterly fre-

quency, such as output and investment. The shock at quarterly frequency is obtained

as the sum of the shocks occurring within the quarter. The aggregation process re-

duces greatly the number of events that are available. For example, in the case of

EPU, at monthly frequency we have 40 events characterized as two consecutive posi-

tive shocks. On the other hand, at quarterly frequency we have only 14 of those. To

increase power, we splice EPU with its historical series to obtain a final time series

that spans January 1961 to December 2019, which gives rise to 24 events. For similar

reasons, we focus on the financial uncertainty index rather than realized volatility,

since the former is available over a longer time span and gives rise to more events

(furthermore, the responses to RV in Figure 4 and to UF in Figure 6 were similar).

Figure 8 display the results. The two leftmost (rightmost) columns report results for

the financial uncertainty index (EPU).

SLP results for output largely confirm the analysis of industrial production: eco-

nomic activity drops substantially and the recovery is slower than in the unconditional

case. For financial uncertainty, we see that output and investment steadily drop until

they reach their maximal decline (around 8 quarters) of 1.2% in (a), and 2.5% in

(b), respectively. In the case of EPU, the decrease in investment in subplot (d) is

more immediate: 1.0% on impact, and the difference between the conditional and

unconditional responses shrinking monotonically with the horizon.

[Insert Figure 8 about here]
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Taking stock of the analysis across different measures of volatility and uncer-

tainty, different frequencies and dependent variables, we conclude that the disparities

between the conditional response and the average response in these IRF plots are easy

to see. Sequential positive shocks to second moment exacerbate economic declines

substantially. To the best of our knowledge, this is the first documentation of the

cascading effect of uncertainty shocks in the data.

3.3 Contrasting impacts over some historical episodes

In this section, we compare the SLP approach to the standard linear framework in

terms of the overall effects of uncertainty shocks on macroeconomic aggregates. We

focus on two episodes that were discussed in detail in section 2.1.

The first episode we focus on is related to the uncertainty shocks that hit in the

middle of 1998. As discussed in section 2.1, the Asian and Russian Financial Crisis

resulted in a series of shocks to uncertainty that culminated with an intervention by

the Federal Reserve. For the approach based on EPU, the maximum effect on indus-

trial production is about -0.5% based on the linear approach that does not condition

on previous positive shocks. In contrast, for the SLP approach, the maximum impact

of uncertainty on industrial production is close to -2.5%. Likewise, for the approach

based on realized variance, the linear approach implies a 1.5% decline in industrial

production after 12 months whereas our approach suggests a 3.25% decline over a

similar time frame.

Another example includes the series of trade policy uncertainty shocks that un-

folded near the end of 2018. For the approach based on EPU, the maximum effect

after 12 months is close to 4.5%, whereas the linear setup would suggest about a

1% decline. Likewise, the realized variance approach that does not condition on

previous positive shocks to uncertainty suggests about a 2.75% decline in industrial

production after 12 months, whereas the SLP approach implies a 4.5% decline over a

similar period of time. Summing it up, the real-world examples in this section suggest

that successive shocks to uncertainty can have relatively larger impacts that are both

statistically and economically significant.
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3.4 Response to Large Shocks

We provide evidence that non-linear dynamics in macroeconomic outcomes emerge

also as a response to large, positive uncertainty shocks. We highlight that the analysis

in this subsection is similar to, and confirms to a large extent, the one reported in

Foerster (2014) who documents that large increases in VIX tend to decrease activity

by a larger degree than small changes.20 Differently from Foerster (2014) who uses

changes in VIX to proxy for uncertainty shocks, we compute shocks to various proxies

for uncertainty as described in Section 3.1.

The empirical model is

yt+h = αh + (β0,h + β1,hI{εunc,t>2}) εunc,t +
p

∑
i=1

γi,hwt−i + ut+h (2)

where the indicator variable takes the value of one in correspondence of large shocks.

The cutoff value determining an increase as large is 2 standard deviation.21 Thus,

the effect of a small uncertainty shock is β0,h; the effect of increases in uncertainty

by more than 2 standard deviation is β0,h + β1,h. If the estimation implies that β1,h

equals zero, then large increases in uncertainty affect activity in the same manner as

small ones, as in linear models. Among the controls wt−i we add the level of the stock

market to the list of variables in considered in (1).

Figure 9 displays the effects of large changes in uncertainty on economic activity.

Each column refers to an uncertainty proxy. To make the comparison with consecutive

shocks easy, the scale of y-axis is the same as in Figure 4, 6, and 7.

Focusing on realized market volatility and the financial uncertainty index (columns

1 and 2) we observe that big shocks induce a larger decrease in economic activity. The

state multiplier tends to be large and significant for about six months, after which it

returns to zero. In general the response is smaller in magnitude, and less persistent

relative to the effect induced by consecutive shocks. This is particularly the case of

EPU (column 3).

20Foerster (2014) also show that large decreases have no statistically significant effect. Therefore
we focus only on large increases.

21Foerster (2014) uses 1 standard deviations.
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4 The Model

In this section, we present our baseline model. We focus on demand side uncertainty

rather than supply side uncertainty. It is well known that supply side (productiv-

ity) uncertainty can have a weaker impact on macroeconomic dynamics in general

equilibrium models. The reason is that capital becomes a hedge when productivity

uncertainty is high. Higher productivity uncertainty means higher expected produc-

tivity in the future for any convex function. This fact combined with the hedging

motive typically entails an increase in investment upon the realization of a shock

to uncertainty. Basu and Bundick (2017) show that demand side uncertainty, on the

other hand, can easily generate declines in investment and economic activity when un-

certainty is high. For this reason, we focus on a model with demand side uncertainty

to illustrate the cascading effect of uncertainty we observe in the data.22

4.1 Households

The representative household exhibits Epstein-Zin recursive utility. As in Basu and

Bundick (2017), there is a preference shock with stochastic volatility which affects

the consumption dynamics. Let Xt denote the preference shock, Ct is aggregate

consumption, Nt is aggregate labor supply, and At is the permanent component of

labor productivity. The value function the representative household is seeking to

maximize is:

Vt = [Xt (Ctω(1 −Nt)1−ωA1−ω
t )1−ψ + βEt [V 1−γ

t+1 ]
1−ψ
1−γ ]

1
1−ψ

, (3)

while been subjected to the budget constraint:

Ct +QtBt(t + 1) + P
E
t

Pt
St+1 =WtNt +Bt−1(t) + (P

E
t

Pt
+ D

E
t

Pt
)St.

where β is the time discount factor, γ is relative risk aversion, ω is consumption share

in the utility function, and ψ is the inverse of intertemporal elasticity of substitution

(IES). Bt(t + 1) denotes the quantity of a one-period to maturity zero coupon bond

issued at time t and maturing at time t+1, and Qt is the price of the bond at issuance.

22To be clear, the amplification that we show for demand side uncertainty also occurs with supply
side uncertainty.
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St is the amount of equity held at time t, and PE
t is its price while DE

t is the dividend

paid on the asset. Wt is wage income per unit of labor supply. Lastly, Pt is the price

level of the final consumption good at time t.

4.2 Intermediate Goods Producers

There is a continuum of intermediate good producers in the economy. Each firm

employs labor Nt,j from households and rent capital Kt−1,j to produce good Yt,j. The

optimization problem from firm j is:

max Et
∞
∑
n=0

Mt,t+n (
Dt+n,j
Pt+n

) ,

where Mt,t+1 is the stochastic discount factor calculated from the representative house-

hold’s optimization problem in Eq. (3).

Firm j follows a Cobb-Douglas production function of the following form:

Yt,j = (Atut,jKt−1,j)κ(ZtNt,j)1−κ,

where κ is the capital share, and ut,j is the capacity utilization rate. At and Zt

are permanent and transitory components of productivity, respectively. The main

difference from Basu and Bundick (2017) is that we add growth, generated by the

presence of At, to our model.

The capital accumulation equation with quadratic adjustment cost is standard:

Kt,j =
⎡⎢⎢⎢⎢⎣
1 − δ(ut,j) −

φK
2

( It,j
Kt−1,j

− δ)
2⎤⎥⎥⎥⎥⎦
Kt−1,j + It,j,

in which depreciation as a function of utilization can be expressed as:

δ(ut,j) = δ + δ1(ut,j − 1) + (δ2

2
) (ut,j − 1)2.

The steady state capacity utilization is set to 1.

Finally, firm j’s dividend, can be computed as revenue subtract labor cost subtract

20



investment minus price adjustment cost. In real terms:

Dt,j

Pt
= Pt,j
Pt

Yt,j −
Wt

Pt
Nt,j − It,j −

φP
2

( Pt,j
ΠPt−1,j

− 1)
2

Yt.

Notice Pt,j is the price firm j charges per unit of output Yt,j, whereas Pt is the

prevailing price level in the economy. φP is the price adjustment cost parameter. Π

is the steady state of aggregate inflation in the economy. Yt is aggregate demand,

which is defined in the section below.

4.3 Final Goods Producers

There is a representative final goods producers which aggregates intermediate goods

into the final good using a constant elasticity of substitution (CES) technology. The

aggregator can be expressed as:

Yt = [∫
1

0
Y
(θ−1)/θ
t,j dj]

θ/(θ−1)
,

where θ is the elasticity across intermediate goods.

Given the profit maximization problem of the final goods producer, we can derive

the demand function for intermediate goods produced by firm j, which is standard

for New-Keynesian models.

Yt,j = [Pt,j
Pt

]
−θ
Yt,

Assuming the market for final goods is perfectly competitive, this implies the final

goods firm earns zero profit in equilibrium. As a result, the aggregate price index is

then

Pt = [∫
1

0
P 1−θ
t,j dj]

1/(1−θ)
.

4.4 Monetary Policy

There is a central bank conducting monetary policy according to the Taylor rule. In

particular, the central bank adjusts the nominal short term interest rate according to

deviations of inflation from its steady state and output growth. Furthermore, there

is interest rate smoothing in the Taylor rule such that today’s nominal short rate

depends on its level in the last period.
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The Taylor rule can be written as:

rt = rss + ρr(rt−1 − rss) + (1 − ρr)[ρπ(πt − πss) + ρy(yt − yt−1)],

where rt = log(Rt), πt = log(Πt), and yt = log(Yt). Subscript ss denotes the steady

state of a given variable. Rt is the one-period risk-free interest rate. Πt is inflation

defined as Pt
Pt−1

. In terms of parameters, ρr is the degree of interest rate smoothing, ρπ

is the Taylor coefficient, and ρy governs the central bank’s response to output growth.

4.5 Equilibrium Characteristics

The model admits a symmetric equilibrium. This means the intermediate goods

producers can be thought of as a representative firm since they make the same choices

on inputs and prices. Therefore, Nt,j = Nt, Kt,j =Kt, ut,j = ut, and Pt,j = Pt.

4.6 Defining the Shocks

There are four exogenous processes driving the model: preference (Xt), transitory

technology (Zt), permanent technology (At), and cost-push shocks. Transitory and

permanent technology, respectively, evolve according to the processes below:

zt+1 = ρzzt + eσz,t+1εz,t+1

σz,t+1 = (1 − ρσz)θσz + ρσzσz,t + σσzεσz ,t+1,

and

∆at+1 = (1 − ρ∆a)θ∆a + ρ∆a∆at + eσ∆aε∆a,t+1

where zt = log(Zt) and ∆at = log(At/At−1). σz is the conditional volatility of the

transitory technology processes. Notice the conditional volatility enters the state

variables through an exponential function to ensure they are always positive.

Similarly, the demand shock, Xt, is driven by a first order autoregressive process
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with stochastic volatility:

Xt+1 = (1 − ρX)θX + ρXXt + eσX,t+1εX,t+1

σX,t+1 = (1 − ρσX)θσX + ρσXσX,t + σσXεσX ,t+1.

The cost-push shock enters as a shock to the price-markup for intermediate goods

producers:

log(θ∗t ) = log(θ) + σθεθt

where θ represents the elasticity across goods parameter and σθ = 0.15. Price markup

shocks tend to be an important source of fluctuations for the variance decomposition

with respect to inflation, as demonstrated by Smets and Wouters (2007). Indeed, the

inclusion of this shock modestly increases the inflation volatility for the purposes of

our calibration. Importantly, however, cost-push shocks play no role with respect to

the amplifying impact of successive shocks to uncertainty.

Next, we discuss the solution method and calibration of the baseline model.

5 Solution Method and Impulse Response Func-

tions

5.1 Solution with Simplified Model

We make use of higher-order perturbation techniques to solve the model.23 In partic-

ular, we solve the model to fourth order to illustrate the cascading effect. Here, we use

a simple model to demonstrate why fourth order perturbation matters in the context

of serial uncertainty shocks. Suppose the representative agent has CRRA utilities.

Also, under market clearing conditions there is one unit of stock outstanding and

consumption (Ct) equals the dividend payout of the stock; thus, we can write down

23Caldara, Fernández-Villaverde, Rubio-Ramı́rez and Yao (2012) show that perturbation methods
for DSGE models with stochastic volatility and recursive preferences are comparable, in terms of
accuracy, to global solution methods such as Chebyshev polynomials and value function iteration,
while being computationally more efficient.
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an equilibrium model of the price-consumption ratio with the following equations:

Mt,t+1 = β (Ct+1

Ct
)
−γ
,

Pt
Ct

= Et [Mt,t+1 (
Pt+1 +Ct+1

Ct
)] ,

zt = v(xt−1)εz,t,
xt = (1 − ρx)x + ρxxt−1 + ωεx,t,

where Mt,t+1 is the stochastic discount factor, Pt
Ct

is the price-consumption ratio or

Yt, zt is log consumption growth (log ( Ct
Ct−1

)), and xt is stocastic volatility of the log

consumption growth process. ω is the volatility-of-volatility of the log consumption

growth process. For ease of exposition, we assume consumption growth is zero in

steady state and there is no persistence.

After rearranging terms and expressing all variables in logs (small caps.), the Euler

equation and the price-consumption ratio can be rewritten as:

mt,t+1 = log(β) − γzt+1,

eyt = Et [emt,t+1 (eyt+1+zt+1 + ezt+1)] .

The equilibrium solution to the optimization problem is of the following form:

yt = Etf(zt+1),

and after substitutions:

yt = Etf(v((1 − ρx)x + ρxxt−1 + ωΛεx,t)Λεz,t+1),

where functions f(●) and v(●) are continuous and at least four times differentiable.

Λ is the perturbation parameter, which is evaluated at 0 in the steady state following

the Taylor expansion of the policy function f . In particular, (xt−1,Λ) are evaluated

at (x,0) respectively.

To find the terms in the Taylor series, we start by taking derivatives of yt with

respect to the state variables. For ease of exposition, we will only focus on the third

and fourth order terms in the main text. The full derivation with respect to all terms

can be found in the Appendix A. For stochastic volatility to matter in the policy

24



function, the coefficient loading associated with xt−1 has to be non-zero. The only

term that survives at the third order is:

∂3yt
∂Λ2∂xt−1

∣
0,x,0

= Et[2f ′′(0)v(x)v′(x)ρxε2z + 2f ′(0)v′′(x)ρxωεxεz],

= 2f ′′(0)v(x)v′(x)ρx,

where derivatives of f(●) are denoted by f ′(●) and the second equality uses the fact

that Et[ε2z] = 1, Et[εx] = 0, Et[εz] = 0, as well as corr(εx, εz) = 0. Interestingly, note

that the above term loads linearly on (xt−1 − x). Furthermore, ∂3yt
∂Λ∂x2

t−1
turns out to

be zero. This is a well known result from Fernández-Villaverde and Rubio-Ramı́rez

(2010).

At the fourth order, in addition to the term above, we have another non-zero term:

∂4yt
∂Λ2∂x2

t−1

∣
0,x,0

= Et[2f ′′(0)v′(x)2ρ2
xε

2
z + 2f ′′(0)v(x)v′′(x)ρ2

xε
2
z],

= 2f ′′(0)ρ2
x[v′(x)2 + v(x)v′′(x)].

This is the only fourth-order term associated with stochastic volatility that survives

as ∂4yt
∂Λ∂x3

t−1
and ∂4yt

∂Λ3∂xt−1
are proven to be zeros when evaluated at the steady state

(0, x,0). It is therefore the crucial term that helps explain why the fourth order

approximation has a non-linear relationship with xt. To see this allow us to write yt

in its fourth order perturbation form below

yt = yss +

risk correction¬
∂4yt
∂Λ4

+

linear term
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∂3yt

∂Λ2∂xt−1

⋅ (xt−1 − x)+

quadratic term
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∂4yt

∂Λ2∂x2
t−1

⋅ (xt−1 − x)(xt−1 − x)

where the first term is the risk correction (discussed more below), the second term

is linearly related to xt−1, and the latter term loads on quadratic variation in xt−1.

The latter term explains why the fourth order approximation has amplification with

respect to uncertainty shocks. The third order approximation only loads on the

second term and therefore has a purely linear relationship with respect to xt−1 i.e. no

state-dependence or amplification with respect to uncertainty.

To the best of our knowledge, this study is the first to identify this fourth-order

term and show its importance with respect to successive shocks to uncertainty. Note
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that the volatility-of-volatility, ω, enters via the xt−1 as defined above. The larger the

ω, the more xt−1 deviates from its steady state value and the greater the non-linearities

with respect to uncertainty shocks.

Moreover, as shown by de Groot (2019), the volatility-of-volatility ω term also

shows up in the risk-adjustment term (associated with Λ) at the fourth order in the

Taylor expansion.

∂4yt
∂Λ4

∣
0,x,0

= Et[f ′′′′(0)v(x)4ε4z + 12f ′′(0)v′(x)2ω2ε2xε
2
z + 12f ′′(0)v(x)v′′(x)ω2ε2xε

2
z],

= f ′′′′(0)v(x)4 + 12ω2[f ′′(0)v′(x)2 + f ′′(0)v(x)v′′(x)],

whereas ∂3yt
∂Λ3 = 0 when evaluated at the steady state. The presence of this term at the

fourth order can potentially generate additional non-linearities in the perturbation

solution, especially with respect to uncertainty shocks. This will typically be the case

when there are endogenous state variables such as capital, as is the case with our

baseline model. Effectively, the model is solved further away from the non-stochastic

steady state when fourth order perturbation is applied due to the distortion provided

by this term containing ω. This will act to further amplify non-linearities with respect

to uncertainty shocks because the quadratic term (kt − kss)(kt − kss) will be further

from zero thanks to the risk correction.

5.2 Impulse Response Functions

To compute the dynamic response of the model to uncertainty shocks, we follow

Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez and Uribe (2011) and de-

fine the Impulse Response Functions (IRFs) at time t + n after a shock ut as

IRFn(ut,Ωt−1) = E [Yt+n ∣ ut,Ωt−1 = {. . . ,0} ,Ωfut
t+1 = {0, . . .}]

−E [Yt+n ∣ 0,Ωt−1 = {. . . ,0} ,Ωfut
t+1 = {0, . . .}] , (4)

where Ωt−1 is the past history of shocks, and Ωfut
t+1 denote the future realization of

shocks. In words, we condition on future shocks by setting them to 0 when generating

their IRFs and start the IRFs at the ergodic mean in the absence of shocks (EMAS).24

24An alternative is to compute the Generalized Impulse Response Functions (GIRFs) at the ergodic
mean as suggested by Koop, Pesaran and Potter (1996). For robustness, we have also constructed
responses based on this procedure and our results do not change.
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Our interest lies in studying the responses of the economic model after sequences of

shocks. To this end, we also compute the response of the economy after two and three

consecutive positive shocks, namely

IRFn(ut+1, ut,Ωt−1) = E [Yt+n ∣ ut+1, ut,Ωt−1 = {. . . ,0} ,Ωfut
t+2 = {0, . . .}]

−E [Yt+n ∣ 0,Ωt−1 = {. . . ,0} ,Ωfut
t+1 = {0, . . .}] ,

IRFn(ut+2, ut+1, ut,Ωt−1) = E [Yt+n ∣ ut+2, ut+1, ut,Ωt−1 = {. . . ,0} ,Ωfut
t+3 = {0, . . .}]

−E [Yt+n ∣ 0,Ωt−1 = {. . . ,0} ,Ωfut
t+1 = {0, . . .}] ,

Our approach compares the difference in paths depending on how many previous

uncertainty shocks there are. Practically, we compute and display

� IRFn(ut,Ωt−1),

� IRFn(ut+1, ut,Ωt−1) − IRFn(ut,Ωt−1) (the incremental contribution of two con-

secutive positive shocks relative to one shock),

� IRFn(ut+2, ut+1, ut,Ωt−1) − IRFn(ut+1, ut,Ωt−1) (the incremental contribution of

three consecutive positive shocks relative to two shocks).

Appendix B presents the pseudo-code used to construct these responses to serial

shocks. Under linearity, one should observe (delayed) replica of the response to a

single-period shock (history independence).

Finally we study the response to large shocks. In this case we compute IRFn(1×
ut,Ωt−1), IRFn(2 × ut,Ωt−1), and IRFn(3 × ut,Ωt−1). We then compare these paths

by dividing by the magnitude of the shock e.g. IRFn(1 × ut,Ωt−1) vs IRFn(2×ut,Ωt−1)
2

vs IRFn(3×ut,Ωt−1)
3 . If the responses are linear, the paths will perfectly overlap (shape

invariance).

5.3 Model Calibration

We calibrate the model to capture key quarterly U.S. macroeconomic moments over

the past 50 years. The key moments are associated with output, consumption, in-

vestment, wages, and labor. For the preference parameters, we set the effective risk

aversion to 10, which is often cited as the upper bound for levels of risk aversion. We

set the intertemporal elasticity of substitution close to but less than one at 0.995,
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consistent with the findings in the meta-study of Havránek (2015). The subjective

discount factor is set to match a real-risk free rate of around 3%. The consumption

share parameter is set so the agent is working a third of the time. The depreciation

rate and capital utilization rates are set to match the values from Christiano et al.

(2005). We choose the price adjustment cost parameter to be consistent with prices

resetting on average about every three quarters and the price elasticity parameter

across intermediate goods is set to 13. The leverage parameter is set to ensure a

volatile equity return, as in the data. The monetary policy parameters are relatively

standard with weights of 1.5 on inflation, 0.5 on output growth, and 0.5 on the inertia

coefficient.

[Insert Table 1 about here]

The remaining parameters are used to match the moments of interest. The cap-

ital adjustment cost parameter helps pin down the volatility of investment. The

persistence of the transitory technology shock and preference shock are set to en-

sure autocorrelations as in the data while also being consistent with the correlations

with respect to output. Both the preference shock parameters and technology shock

parameters are set to be consistent with a one-standard deviation increase in uncer-

tainty being associated with a 10-20 basis point initial decline in output, as in the

data. These moments are key to pin down for our simulations as we determine the

magnitude of responses to consecutive and different-sized shocks.

We also note that the fourth order approximation requires a relatively modest

effective risk aversion of about 10 in order to generate an equity premium of around

4.5%. An identical parameterization solved at the third order approximation gener-

ates an equity risk premium that is closer to 1%. This difference in the risk premium

is consistent with findings from de Groot (2019). For the purposes of our comparisons

that follow, we use identical parameterizations to contrast the third and fourth order

approximated impulse response functions. However, in untabulated results, we find

that re-calibrating the third order approximation to be consistent with the data mo-

ments does not in any way change our conclusions that the third order approximation

yields no amplification or nonlinearities with respect to uncertainty shocks.

[Insert Table 2 about here]
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6 Analysis of Uncertainty Shocks in General Equi-

librium

In this section, we study the impact of serial uncertainty shocks as well as large uncer-

tainty shocks in the benchmark model. To be specific, we define uncertainty shock in

the model as the innovation εσX ,t, which perturbs the conditional volatility of house-

hold preference (demand). As shown by Basu and Bundick (2017), demand uncertain

generates large and effective drops in economic aggregates under price stickiness.

6.1 Cascade of Uncertainty Shocks

Figure 10 displays the responses of output, investment, hours worked, inflation, and

the short rate following 1, 2 and 3 consecutive one standard deviation positive shocks

to uncertainty in the model. We employ the fourth order perturbation method to solve

the model and construct the IRFs discussed in Section 5. Subplot 10(f) displays the

sequence of uncertainty shocks that drive model dynamics. Higher uncertainty leads

to declines in macroeconomic variables across the board, consistent with what one

would expect in the literature. More importantly, we find that consecutive positive

shocks to uncertainty exacerbates the drop in macroeconomic variables as evidenced

by the difference between the solid-blue lines and the dashed-green lines in Figure 10.

Using output in subplot 10(a) for example, a single one standard deviation positive

shock to uncertainty lowers output by roughly 0.15% (solid-blue). On the other hand,

the third one standard deviation positive shock to uncertainty following two previous

consecutive shocks lowers output, in addition to the existing decline, by more than

0.3% (dashed-green).

[Insert Figures 10 and 11 about here]

Recall that the IRFs in Figure 10 are calculated following the pseudo-code in Ap-

pendix B in order to demonstrate the incremental impact of consecutive uncertainty

shocks to the macroeconomy. What we observe in the model under fourth order per-

turbation is that consecutive positive uncertainty shocks build on top of each other

and amplify the endogenous responses of the economy. Relatively speaking, the sec-

ond consecutive positive uncertainty shock drives the economic decline to a greater

extent than the first positive uncertainty shock, and the third consecutive positive

shock has more impact than the second one, etc.
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The implication produced by the model reflects what we see in the data. Recall

that in Figure 8 (quarterly frequency, consistent with the model), we show that the

second positive shock to uncertainty following an initial positive shock causes output,

investment, and inflation to fall dramatically. Relative to the decline due to the initial

positive shock, the magnitude of the maximal drop is typically greater by a factor of

at least 2. Figure 10 shows the model solved by fourth order perturbation can capture

the power of consecutive positive uncertainty shocks by comparing the blue line (first

shock) and the red dotted line (second shock). On the other hand, the model seems to

fall short on picking up the prolonged response of endogenous variables to the second

or third consecutive positive shock as it is in the data. Again, in Figure 8, we find

that it takes anywhere around six to fifteen quarters for output and investment to

reach the maximal decline due to a second consecutive shock. In the model, however,

the maximal decline is reached as soon as the positive shock is realized. Furthermore,

the magnitude of declines in the model fall short relative to declines documented in

the data. This is a potential point for future investigation.

Figure 11 presents the same impulse responses of the endogenous variables when

the model is solved under third order perturbation. Comparing it to Figure 10 it is

clear that no amplification effect is at work when the model is solved at third order.

The impact of each of the shocks in a sequence of consecutive positive shocks is ex-

actly the same: there is no path-dependency. As shown in our analytical derivation

in Section 5.1 for the simplified model, households exhibit a state dependent precau-

tionary motive with respect to uncertainty at the fourth order approximation thanks

to the nonzero loading on the quadratic stochastic volatility term in the perturbation

solution. Furthermore, the coefficient loading on this interaction at the fourth order

is nontrivial such that it generates a noticeably larger response in the endogenous

variables. The implication of this finding is that models solved with perturbation

under first to third order can potentially understate the impact of sequential positive

uncertainty shocks, which we have shown are fairly common in the data.

Intuitively, the greater precautionary motive that generates this amplification is

hidden by the third order approximation, just as movements in risk premiums are hid-

den by the second order approximation. The economic implications are straightfor-

ward: Agents respond to additional increases in uncertainty with even larger declines

in demand, which translates into lower output along with each of its components in

the demand-driven New Keynesian model.
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6.2 Large Shocks

The final theoretical finding we document is on the effect of large uncertainty shocks.

Specifically, we examine the impulse responses of macroeconomic aggregates follow-

ing 1 and 2 standard deviations positive shocks to uncertainty. Typically, in DSGE

models featuring stochastic volatility, third order perturbation is a common solution

method which results in linearly scalable impulse responses to volatility shocks. This

implies, for example, the model-implied decline in the variables of interest (e.g, out-

put, investment, etc.) following a two standard deviation positive uncertainty shocks

is simply twice the decline following a one standard deviation positive shock. We

show here that this linear scalability of model-implied impulse responses disappears

under fourth order perturbation.

Figure 12 displays the responses of output, investment, hours worked, inflation,

and the (nominal) short rate after a single positive 1 standard deviation volatility

shock and a single (not serial) positive 2 standard deviation shock (bottom right

panel) when the model is solved at fourth order. We then rescale the 2 standard

deviation responses by dividing them by 2 before plotting for comparison purposes.

The difference between the baseline case of a small shock (solid blue line) and the case

of a rescaled large shock (solid red line) is large. Doubling the size of the positive

uncertainty shock actually more than doubles the reaction within the model. For

instance, output growth in subplot 12(a) decreases by about 0.1% following a single

1 standard deviation shock, which is less than half of the drop in output growth

observed when a 2 standard deviation shock is applied. At the same time, the rebound

in output growth two periods after the realization of the large positive shock is also

more robust relative to the small shock scenario in subplot (a). This phenomenon

holds in all endogenous variables we examine.

[Insert Figures 12 and 13 about here]

Similar to the main result discussed in Section 6.1 for serial positive uncertainty

shocks, we see that large shocks intensify the macroeconomic response in a nonlinear

fashion when fourth order perturbation is employed to solve the model. Not surpris-

ingly, the scalability reverts back to linear when third order perturbation is used.

Figure 13 plots the impulse responses under that scenario, and the rescaled IRFs fol-

lowing a 2 standard deviation positive shock align exactly with those in the baseline

case.
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6.3 SLP with Simulated Data

Figure 14 displays impulse response functions from model simulated data. Specif-

ically, we (1) solve the model to the fourth-order; (2) simulate 200 observations of

output, investment, consumption, short-term rate, inflation and stock market prices

(this is a length comparable to our quarterly sample in Figure 8); (3) run the re-

gression specified in equation (1); (4) repeat this experiment 1000 times and report

median and 90% confidence intervals. Figure 14 shows that our regression model

is able to pick up the non-linearity in the model-simulated data. Indeed, we see

that, in response to the second consecutive positive uncertainty shocks (circle-dash

lines), output, investment, consumption, and the short-rate drop more relative to the

unconditional case (dash lines). On impact, the decline in output, investment, and

consumption roughly doubles for the second consecutive positive shock relative to the

average positive shock. The difference in impulse responses is large up to 4 quarters

after the shock hits. This is consistent with subplots (d)-(f) and (j), which show state

multipliers that are negative and significant up to the four-quarter horizon (the sole

exception being investment). For inflation, the drop is small on impact; however the

effect of consecutive shocks builds up with time, with the two responses that differ by

more than four times at about four quarters out. Interestingly, the responses depicted

in Figure 14 align quite well with the theoretical ones obtained from the model. We

view this as evidence that our simple procedure based on local projection is able to

pick up the non-linearities induced by multi-period shocks.

[Insert Figure 14 about here]

Although a model solved to the fourth order generates non-linear effects in re-

sponse to consecutive shocks, we guard against the fact that to proper mirror the

dynamics in the data a richer model economy is required. E.g., in the data, the

difference between conditional and unconditional response is generally the largest at

about four quarters – see the response in figure 8(a) and 8(b). In the model, the dif-

ference is instead the largest on impact. Also, the recovery in the data is often slower

than what observed in the model. This paper has documented that multi-period

shocks matter in the data and that a perturbation solution of at least fourth order is

required to study the cascading effect of shocks quantitatively. Future research should

investigate which features in the model can help producing a better alignment be-

32



tween empirical and theoretical IRFs, by generating responses to consecutive shocks

that build over time and slowly recover as in the data.

6.4 Alternative Parameterizations and Shocks

In this section, we briefly note that the amplification discussed above is not contin-

gent on a specific parameterization. Any parameterization that generates meaningful

economic responses to uncertainty at the third order will also have amplifying effects

at the fourth order. For instance, reducing the risk aversion to become the inverse

of the elasticity of intertemporal (IES) substitution (or reducing the IES to be the

inverse of the risk aversion parameter) will not only kill the amplification that we

observe at fourth order, but also kill the responses to uncertainty in general (results

not shown). Likewise, in other results not shown, moving to a flexible price frame-

work by reducing price adjustment costs to zero continues to exhibit amplification

and non-linearities at the fourth order, but investment moves in the wrong direction

compared to the data.

Upon careful checking of each of the parameters in the model, we were unable

to find a parameter space that keeps the responses to uncertainty at the third or-

der approximation but removes the amplification effects at the fourth order. This

suggests to us that our findings for amplification are not necessarily model-specific

or parameter-specific, but instead represent a general implication of not solving the

model at a higher order of approximation.25 At a more fundamental level, agents

in the standard framework have always had a state dependent precautionary motive

with respect to uncertainty, but the existing solution methods were hiding this fact.

In addition, the same patterns can be found for the shocks to uncertainty with

respect to the transitory productivity process. The main difference is that investment

moves in the wrong direction compared to what we observe in the data i.e. investment

goes up. This can be seen in Appendix Figure C.1, which shows the fourth order

responses to successive shocks to uncertainty and compares them to the responses at

the third order approximation. Likewise, the non-linearity with respect to the size of

the shocks also goes through, as shown in Appendix Figure C.2.

25We’ve also confirmed that our results do not change when moving to the fifth order approxima-
tion.
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7 Conclusion

We document the existence and impact of serial uncertainty shocks in the post-war

data. Given that positive uncertainty shocks lead to a drop in economic activity, we

find that consecutive positive uncertainty shocks greatly exacerbates the decline. In

particular, we show that the second uncertainty shock in a series of positive shocks

generates an output decline that is at least twice as large and three times longer,

compared with the decline caused by the initial positive shock. Similar outcomes are

observed for investment, inflation, and stock market valuation.

Using a standard DSGE model, we investigate the impact of serial uncertainty

shocks to macroeconomic aggregates. We find that consecutive positive shocks to

demand uncertainty generates steep declines in endogenous economic variables under

fourth order perturbation. The cascading effect of serial shocks is such that the second

positive shock is more impactful than the first one, and the third positive shock is

more impactful than the second one, and so on. Moreover, we also find large positive

uncertainty shocks intensify the economic declines in a non-linear fashion when fourth

order perturbation is employed.

Our findings are generally robust to the source of uncertainty: they are preserved

when uncertainty is switched from demand shocks to transitory productivity shocks.

Finally, fourth order perturbation is crucial to our results as the findings outlined

above disappear when third order perturbation is used.

Overall, our results suggest that the existing paradigm is understating the true

effects of uncertainty. Uncertainty shocks that happen in succession may have a much

larger impact. Our theoretical models, when appropriately solved, concur with this

empirical evidence. With the ability to now solve with the fourth order approximation

in the newest version of Dynare, we view the exploration of the non-linear and state-

dependent effects of uncertainty as an area of great interest for future research.

34



References

Ait-Sahalia, Yacine, Felix H. A. Matthys, Emilio Osambela, and Ronnie Sircar (2020)

“Volatility and Uncertainty Disconnected: Implications for Asset Prices and Op-

timal Portfolio Policies,” Princeton Working Papers 21803, National Bureau of

Economic Research, Inc.

Andreasen, Martin (2012) “On the Effects of Rare Disasters and Uncertainty Shocks

for Risk Premia in Non-Linear DSGE Models,” Review of Economic Dynamics,

Vol. 15, No. 3, pp. 295–316.

Bachmann, Rudiger, Steffen Elstner, and Eric R. Sims (2013) “Uncertainty and Eco-

nomic Activity: Evidence from Business Survey Data.,” American Economic Jour-

nal: Macroeconomics, Vol. 5, No. 2, pp. 217–249.

Baker, Scott R., Nicholas Bloom, and Steven J. Davis (2016) “Measuring Economic

Policy Uncertainty.,” Quarterly Journal of Economics, Vol. 131, No. 4, pp. 1593–

1636.

Barnichon, Regis and Christian Brownlees (2018) “Impulse Response Estimation By

Smooth Local Projections,” The Review of Economics and Statistics, Vol. 0, No. -,

pp. –.

Barnichon, Regis and Christian Matthes (2018) “Functional Approximation of Im-

pulse Responses,” Journal of Monetary Economics, Vol. 99, No. C, pp. 41–55.

(2020) “Understanding the Size of the Government Spending Multiplier: It’s

in the Sign,” CEPR Discussion Papers 11373, C.E.P.R. Discussion Papers.

Basu, Susanto and Brent Bundick (2017) “Uncertainty Shocks in a Model of Effective

Demand.,” Econometrica, Vol. 85, No. 3, pp. 937–958.

Berger, David, Ian Dew-Becker, and Stefano Giglio (2019) “Uncertainty Shocks as

Second-Moment News Shocks,” The Review of Economic Studies, Vol. 87, No. 1,

pp. 40–76, 04.

Bloom, Nicholas (2009) “The Impact Of Uncertainty Shocks.,” Econometrica, Vol.

77, No. 3, pp. 623–685.

35



Bloom, Nicholas, Stephen Bond, and John van Reenen (2007) “Uncertainty and In-

vestment Dynamics.,” Review of Economic Studies, Vol. 74, pp. 391–415.

Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J.

Terry (2018) “Really Uncertain Business Cycles.,” Econometrica, Vol. 86, No. 3,

pp. 1031–1065.

Born, Benjamin and Johannes Pfeifer (2013) “Policy Risk and the Business Cy-

cle,”Technical report.

Borovicka, Jaroslav and Lars Peter Hansen (2014) “Examining macroeconomic models

through the lens of asset pricing,” Journal of Econometrics, Vol. 183, No. 1, pp. 67

– 90. Internally Consistent Modeling, Aggregation, Inference and Policy.

Bretscher, Lorenzo, Alex Hsu, and Andrea Tamoni (2020) “The Real Response to

Uncertainty Shocks: the Risk Premium Channel,” Working Paper Series 17-13,

Georgia Institute of Technology Scheller College of Business.

Caldara, Dario and Matteo Iacoviello (2018) “Measuring Geopolitical Risk,” Interna-

tional Finance Discussion Papers 1222, Board of Governors of the Federal Reserve

System (U.S.).

Caldara, D., J. Fernández-Villaverde, J. Rubio-Ramı́rez, and W. Yao (2012) “Com-

puting DSGE Models with Recursive Preferences and Stochastic Volatility.,” Re-

view of Economic Dynamics, Vol. 15, pp. 188–206.

Christiano, Lawrence J, Martin Eichenbaum, and Charles L Evans (2005) “Nominal

rigidities and the dynamic effects of a shock to monetary policy,” Journal of political

Economy, Vol. 113, No. 1, pp. 1–45.

Christiano, Lawrence J., Roberto Motto, and Massimo Rostagno (2014) “Risk

Shocks,” American Economic Review, Vol. 104, No. 1, pp. 27–65, January.

Collins, Robert M (1996) “The economic crisis of 1968 and the waning of the “Amer-

ican Century”,” The American historical review, Vol. 101, No. 2, pp. 396–422.

de Groot, Oliver (2019) “What Order? Perturbation Methods for Stochastic Volatil-

ity Asset Pricing and Business Cycle Models.,” school of economics and finance

discussion paper, University of St. Andrews School of Economics and Finance.

36



denHaan, Wouter J., Lukas B. Freund, and Pontus Rendahl (2020) “Volatile Hiring:

Uncertainty in Search and Matching Models,” CEPR Working Papers 240, LSE.

Fernández-Villaverde, Jesus and Juan Rubio-Ramı́rez (2010) “Macroeconomics and

Volatility: Data, Models, and Estimation.,” NBER Working Papers 16618, Na-

tional Bureau of Economic Research, Inc.

Fernández-Villaverde, Jesus, Pablo Guerrón-Quintana, and Juan F. Rubio-Ramı́rez

(2015) “Estimating dynamic equilibrium models with stochastic volatility,” Journal

of Econometrics, Vol. 185, No. 1, pp. 216–229.

Fernández-Villaverde, Jesus, Pablo Guerrón-Quintana, Keith Kuester, and Juan

Rubio-Ramı́rez (2015) “Fiscal Volatility Shocks and Economic Activity,” Amer-

ican Economic Review, Vol. 105, No. 11, pp. 3352–84, November.

Fernández-Villaverde, Jesus, Pablo Guerrón-Quintana, Juan F. Rubio-Ramı́rez, and

Martin Uribe (2011) “Risk Matters: The Real Effects of Volatility Shocks,” Amer-

ican Economic Review, Vol. 101, No. 6, pp. 2530–61, October.

Foerster, Andrew T. (2014) “The asymmetric effects of uncertainty,” Economic Re-

view, No. Q III, pp. 5–26.

Hansen, Lars Peter and Jose A. Scheinkman (2009) “Long-Term Risk: An Operator

Approach,” Econometrica, Vol. 77, No. 1, pp. 177–234.
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Stock market volatility and estimated uncertainty shocks.
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Figure 1: Panel (a) plots the time series of the log of realized volatility (computed as the square root
of market realized variance). Panel (b) shows the time series of shocks (in standardized units). The shocks
are obtained from a regression of future realized volatility on current realized and option-implied volatility
as in Berger, Dew-Becker and Giglio (2019). Panels (c) and (d) display the time series of, respectively, two
and three consecutive shocks.
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Figure 2: Panel (a) plots the time series of financial uncertainty (expressed in standardized units) from
Ludvigson, Ma and Ng (2015). Panel (b) shows the time series of shocks from a SVAR System with three
variables, namely industrial production, macro and financial uncertainties using the identification scheme
described in Ludvigson, Ma and Ng (2015). Panels (c) and (d) display the time series of, respectively, two
and four consecutive shocks.
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Economic policy uncertainty and estimated uncertainty shocks.
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Figure 3: Panel (a) plots the time series of the economic policy uncertainty (EPU) from Baker, Bloom
and Davis (2016). Panel (b) shows the time series of shocks (in standardized units) from an AR(1) fitted on
the EPU series. Panels (c) and (d) display the time series of, respectively, two and three consecutive shocks.

42



0 6 12 18 24 30 36
-2.5

-2

-1.5

-1

-0.5

0

0.5

P
er

ce
nt

Previous shock>0
Average

(a) Industrial Production.

0 6 12 18 24 30 36
-0.8

-0.6

-0.4

-0.2

0

0.2

P
er

ce
nt

Previous shock>0
Average

(b) Short rate.

0 6 12 18 24 30 36
-0.15

-0.1

-0.05

0

0.05

0.1

P
er

ce
nt

Previous shock>0
Average

(c) Inflation.

0 6 12 18 24 30 36
-2.5

-2

-1.5

-1

-0.5

0

P
er

ce
nt

Previous shock>0
Average

(d) Stock Market.

0 6 12 18 24 30 36

-2.5

-2

-1.5

-1

-0.5

0

(e) State Multiplier.

0 6 12 18 24 30 36
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(f) State Multiplier.

0 6 12 18 24 30 36
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(g) State Multiplier.

0 6 12 18 24 30 36
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

(h) State Multiplier.

Figure 4: Impulse Response Function to Two Consecutive Positive Uncertainty Shocks: First
row plots the empirical state-dependent impulse responses (estimated using SLP) to an uncertainty shock for
two consecutive positive shocks for output, short rate, inflation and the stock market. Second row plots the
associated state multipliers with 90% confidence intervals (shaded areas). We measure uncertainty shocks
using log market realized variance from Berger, Dew-Becker and Giglio (2019). We have 43 runs with two
consecutive positive shocks, and we eliminate two runs due to large shocks.
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Figure 5: Impulse Response Function to Three Consecutive Positive Uncertainty Shocks:
First row plots the empirical state-dependent impulse responses (estimated using SLP) to an uncertainty
shock for two consecutive positive shocks for output, short rate, inflation and the stock market. Second row
plots the associated state multipliers with 90% confidence intervals (shaded areas). We measure uncertainty
shocks using log market realized variance from Berger, Dew-Becker and Giglio (2019). We have 30 runs with
three consecutive positive shocks, and we eliminate four runs due to large shocks.
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Figure 6: Impulse Response Function to Two Consecutive Positive Uncertainty Shocks: First
row plots the empirical state-dependent impulse responses (estimated using SLP) to an uncertainty shock for
two consecutive positive shocks for output, investment, inflation and the stock market. Second row plots the
associated state multipliers with 90% confidence intervals (shaded areas). We measure uncertainty shocks as
in Ludvigson, Ma and Ng (2015). We have 81 runs with two consecutive positive shocks, and we eliminate
one run due to large shocks.
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Figure 7: Impulse Response Function to Two Consecutive Positive Uncertainty Shocks: First
row plots the empirical state-dependent impulse responses (estimated using SLP) to an uncertainty shock for
two consecutive positive shocks for output, investment, inflation and the stock market. Second row plots the
associated state multipliers with 90% confidence intervals (shaded areas). We measure uncertainty shocks
using EPU from Baker, Bloom and Davis (2016). We have 40 runs with two consecutive positive shocks,
and we eliminate four runs due to large shocks.
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Figure 8: State-dependent IR to Two Consecutive Uncertainty Shocks (Quarterly Data):
Row 1 plots the empirical state-dependent impulse responses for output and investment. Row 2 plots the
associated state multipliers with 90% confidence intervals (shaded areas). In the two leftmost panels, (a) -
(b), we measure uncertainty using the financial uncertainty series by Ludvigson et al. (2015). In this case
we have 31 runs with two consecutive positive shocks, and we eliminate five runs due to large shocks. In the
following (rightmost) panels, (c) - (d), we measure uncertainty shocks using EPU from Baker, Bloom and
Davis (2016). In this case we have 27 runs with two consecutive positive shocks, and we eliminate three runs
due to large shocks.
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Figure 9: State-dependent IR to Large (i.e., > 2 Std. Deviation) Uncertainty Shocks: Columns
1, 2, 3 plot the empirical state-dependent impulse responses for (uncertainty shocks using) log market realized
variance from Berger, Dew-Becker and Giglio (2019), the financial uncertainty series by Ludvigson et al.
(2015), and the EPU series from Baker, Bloom and Davis (2016). Row 1 plots the impulse responses for
output. Row 2 plots the associated state multipliers with 90% confidence intervals (shaded areas). We have
15 large positive shocks in column 1, 11 in column 2 and 20 in column 3.
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Figure 10: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model
4th-order: This figure plots the impulse responses for consecutive, positive shocks to demand uncertainty.
Impulse responses are for one standard deviation shocks when the model is approximated to the fourth order.
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Figure 11: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model
3rd-order: This figure plots the impulse responses for consecutive, positive shocks to demand uncertainty.
Impulse responses are for one standard deviation shocks when the model is approximated to the third order.
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Figure 12: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model
4th-order: This figure plots the impulse responses for a one standard deviation positive shock, a two-
standard deviation positive shock (divided by two), and a three standard deviation positive shock (divided
by three) to demand uncertainty. The model solution is approximated to the fourth order.
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Figure 13: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model
3th-order: This figure plots the impulse responses for a one standard deviation positive shock, a two-
standard deviation positive shock (divided by two), and a three standard deviation positive shock (divided
by three) to demand uncertainty. The model solution is approximated to the third order.
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Figure 14: Model-implied Impulse Response Function to Two Consecutive Positive Uncer-
tainty Shocks: First and third rows plots the empirical state-dependent impulse responses (estimated using
SLP) to an uncertainty shock for two consecutive positive shocks for output, investment, consumption, short
rate, inflation and the stock market. The second and fourth rows plots the associated state multipliers with
68% confidence intervals (shaded areas).
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Tables

Table 1: Model Parameters: This table reports the calibrated parameters for the base-
line model. The parameters are organized in 4 subgroups that relate them to preferences,
monetary policy, firms or shocks.

Preferences: Firms:

β time discount parameter 0.992 κ capital share 0.333

γ ⋅ η effective risk aversion 10 δ capital discount rate 0.025

ψ inverse of IES 0.995 δ1 capital discount rate 0.031

ω consumption share 0.35 δ2 capital discount rate 0.0003

Shocks: ΦK capital adjustment cost parameter 4.3

ρz AR(1) transitory technology 0.995 ΦP price rigidity parameter 60

log(σ̄z) steady-state vol. transitory tech. -6.502 θ elasticity across goods 13

ρσz AR(1) vol. of vol. transitory tech. 0.75 νu leverage ratio 0.91

σσz steady-state vol. of vol. transitory tech. 0.91 Monetary Policy:

ρa AR(1) vol. preference 0.935 Π steady-state inflation 1.01

log(σ̄a) steady-state vol. preference -6.724 ρr AR(1) short rate 0.50

ρσa AR(1) vol. of vol. preference 0.70 ρπ TR coefficient inflation gap 1.500

σσa steady-state vol. of vol. preference 0.80 ρy TR coefficient output growth 0.500

σ∆a steady-state vol. permanent tech 0.0043

ρσ∆a AR(1) permanent tech. 0.5

µ∆a growth rate of permanent tech. 0.005

σθµ steady-state vol. cost-push shock 0.15
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Table 2: Empirical and Model-Based Unconditional Moments. This table reports the mean,
standard deviations, and correlations for observable variables in the baseline model. The sample period for
the data is 1970Q1 to 2016Q4. All data, except inflation, are in logs, HP-filtered, and multiplied by 100 to
express them in percentage deviation from trend. Model moments calculations are based on 100 simulations
over 250 periods with a burn-in of 50 periods.

Macro Variables

Model Data

SD AR(1) Cor(.,yt) SD AR(1) Cor(.,yt)
Targeted:

Output 1.85 0.71 1.00 1.54 0.87 1.00

Consumption 1.24 0.70 0.63 1.27 0.89 0.88

Investment 7.00 0.62 0.81 7.07 0.85 0.92

Inflation 0.54 0.23 0.04 0.61 0.89 0.11

Non-Targeted:

Wages 1.37 0.69 0.88 1.13 0.78 -0.29

Hours 1.22 0.55 0.67 1.94 0.93 0.87
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FOR ONLINE PUBLICATION ONLY

A Analytical Fourth Order Perturbation Derivation

The following is the symbolic differentiation that we use to show which terms are non-zero
with respect to the stochastic volatility process, x. The stochastic volatility enters the model
through an exponential function, which for ease of exposition will be denoted as v in the
derivations below. Also note that since v is of the exponential form, we will denote v and
its derivatives as equivalent.

Additionally, recall that the term y represents the price-consumption ratio, lambda re-
flects the perturbation parameter, ez is the level shock to consumption growth, ex is the
shock to stochastic volatility, w is the volatility-of-volatility, and F represents the function
such that yt = Etf(zt+1) and

yt = Etf (v ((1 − ρx)xss + ρxxt−1 + ωΛεx,t)Λεz,t+1)

Note that Et[ε2z] = 1, Et[εx] = 0, Et[εz] = 0, as well as corr(εx, εz) = 0 and Λ = 0 in steady state.
Below, terms denoted in red are equal to zero, while terms denoted in blue are non-zero.

dy_dlambda =

F’(0)*(v*ez + v*ex*w*lambda*ez)

dy_dx =

ez*lambda*v*rho*F’(0)

dy^2_dx^2 =

F’’(0)*ez^2*lambda^2*v^2*rho^2 +

F’(0)*ez*lambda*v*rho^2

dy^2 _dxdlambda =

ez*v*rho*F’(0) +

ez*lambda*v*rho*F’’(0)*(ez*v + ex*ez*lambda*v*w) +

ex*ez*lambda*v*rho*w*F’(0)

dy^2 _dlambda ^2 =

F’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

F’’(0)*(ez^2*v^2) +

F’’(0)*(2*ex*ez^2*lambda*v^2*w) +

F’’(0)*(ex^2*ez^2*lambda^2*v^2*w^2)
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dy^3_dx^3 =

3*ez^2*lambda^2*v^2*rho^3*F’’(0) +

ez^3*lambda^3*v^3*rho^3*F’’’(0) +

ez*lambda*v*rho^3*F’(0)

dy^3_dx^2 dlambda =

ez*v*rho^2*F’(0) +

2*ez^2*lambda*v^2*rho^2*F’’(0) +

ez*lambda*v*rho^2*F’’(0)*(ez*v + ex*ez*lambda*v*w) +

ez^2*lambda^2*v^2*rho^2*F’’’(0)*(ez*v + ex*ez*lambda*v*w) +

2*ex*ez^2*lambda^2*v^2*rho^2*w*F’’(0) +

ex*ez*lambda*v*rho^2*w*F’(0)

dy^3 _dxdlambda ^2 =

2*ez*v*rho*F’’(0)*(ez*v) +

2*ez*v*rho*F’’(0)*(ex*ez*lambda*v*w) +

ez*lambda*v*rho*F’’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

ez*lambda*v*rho*F’’’(0)*(ez*v + ex*ez*lambda*v*w)^2 +

2*ex*ez*v*rho*w*F’(0) +

ex^2*ez*lambda*v*rho*w^2*F’(0) +

2*ex*ez*lambda*v*rho*w*F’’(0)*(ez*v + ex*ez*lambda*v*w)

dy^3 _dlambda ^3 =

F’(0)*(ez*lambda*v*ex^3*w^3 + 3*ez*v*ex^2*w^2) +

F’’’(0)*(ez*v + ex*ez*lambda*v*w)^3 +

3*F’’(0)*(ez*v + ex*ez*lambda*v*w)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w)

dy^4_dx\string ^4 =

7*ez^2*lambda^2*v^2*rho^4*F’’(0) +

6*ez^3*lambda^3*v^3*rho^4*F’’’(0) +

ez^4*lambda^4*v^4*rho^4*F’’’’(0) +

ez*lambda*v*rho^4*F’(0)

dy^4_dx^3 dlambda =

ez*v*rho^3*F’(0) +

3*ez^3*lambda^2*v^3*rho^3*F’’’(0) +

6*ez^2*lambda*v^2*rho^3*F’’(0) +

ez*lambda*v*rho^3*F’’(0)*(ez*v + ex*ez*lambda*v*w) +
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3*ez^2*lambda^2*v^2*rho^3*F’’’(0)*(ez*v + ex*ez*lambda*v*w) +

ez^3*lambda^3*v^3*rho^3*F’’’’(0)*(ez*v + ex*ez*lambda*v*w) +

6*ex*ez^2*lambda^2*v^2*rho^3*w*F’’(0) +

3*ex*ez^3*lambda^3*v^3*rho^3*w*F’’’(0) +

ex*ez*lambda*v*rho^3*w*F’(0)

dy^4_dx^2 dlambda ^2 =

2*ez^2*v^2*rho^2*F’’(0) +

2*ez*v*rho^2*F’’(0)*(ez*v + ex*ez*lambda*v*w) +

ez^2*lambda^2*v^2*rho^2*F’’’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

4*ez^2*lambda*v^2*rho^2*F’’’(0)*(ez*v + ex*ez*lambda*v*w) +

ez^2*lambda^2*v^2*rho^2*F’’’’(0)*(ez*v + ex*ez*lambda*v*w)^2 +

2*ex*ez*v*rho^2*w*F’(0) +

ez*lambda*v*rho^2*F’’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

ez*lambda*v*rho^2*F’’’(0)*(ez*v + ex*ez*lambda*v*w)^2 +

ex^2*ez*lambda*v*rho^2*w^2*F’(0) +

8*ex*ez^2*lambda*v^2*rho^2*w*F’’(0) +

4*ex^2*ez^2*lambda^2*v^2*rho^2*w^2*F’’(0) +

4*ex*ez^2*lambda^2*v^2*rho^2*w*F’’’(0)*(ez*v + ex*ez*lambda*v*w) +

2*ex*ez*lambda*v*rho^2*w*F’’(0)*(ez*v + ex*ez*lambda*v*w)

dy^4 _dxdlambda ^3 =

3*ez*v*rho*F’’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

3*ez*v*rho*F’’’(0)*(ez*v + ex*ez*lambda*v*w)^2 +

ez*lambda*v*rho*F’’(0)*(ez*lambda*v*ex^3*w^3 + 3*ez*v*ex^2*w^2) +

3*ex^2*ez*v*rho*w^2*F’(0) +

ez*lambda*v*rho*F’’’’(0)*(ez*v + ex*ez*lambda*v*w)^3 +

ex^3*ez*lambda*v*rho*w^3*F’(0) +

6*ex*ez*v*rho*w*F’’(0)*(ez*v + ex*ez*lambda*v*w) +

3*ez*lambda*v*rho*F’’’(0)*(ez*v + ex*ez*lambda*v*w)*(ez*lambda*v*ex^2*w^2 +

2*ez*v*ex*w) +

3*ex*ez*lambda*v*rho*w*F’’(0)*(ez*lambda*v*ex^2*w^2 + 2*ez*v*ex*w) +

3*ex*ez*lambda*v*rho*w*F’’’(0)*(ez*v + ex*ez*lambda*v*w)^2 +

3*ex^2*ez*lambda*v*rho*w^2*F’’(0)*(ez*v + ex*ez*lambda*v*w)

dy^4 _dlambda ^4 =

ez^4*m^4*F’’’’(0) +

4*ex^3*ez*m*w^3*F’(0) +
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24*ex^2*ez^2*m^2*w^2*F’’(0) +

12*ex*ez^3*m^3*w*F’’’(0) +

24*ex^3*ez^3*lambda^2*m^3*w^3*F’’’(0) +

6*ex^4*ez^3*lambda^3*m^3*w^4*F’’’(0) +

4*ex*ez^4*lambda*m^4*w*F’’’’(0) +

6*ex^2*ez^4*lambda^2*m^4*w^2*F’’’’(0) +

4*ex^3*ez^4*lambda^3*m^4*w^3*F’’’’(0) +

ex^4*ez^4*lambda^4*m^4*w^4*F’’’’(0) +

ex^4*ez*lambda*m*w^4*F’(0) +

28*ex^3*ez^2*lambda*m^2*w^3*F’’(0) +

30*ex^2*ez^3*lambda*m^3*w^2*F’’’(0) +

7*ex^4*ez^2*lambda^2*m^2*w^4*F’’(0)

This confirms the analysis in the main text, which shows that the only terms that survive

at the third and fourth order are in ∂3yt
∂Λ2∂xt−1

, ∂4yt
∂Λ2∂x2

t−1
, and ∂4yt

∂Λ4 .

B Relative Contribution of IRFs to Consecutive Shocks

To obtain the impulse response to one shock (these are the solid blue lines in Figures 10 and
11 we proceed as follows.

1. We compute the EMAS as the fixed point of the approximated policy functions in the
absence of shocks. To this end, we perform a (baseline) simulation (call it #0) for
variables Y with all shocks in the system set to 0 for all time periods, starting at the
deterministic steady state. We denote the EMAS Y 0. The simulation must be long
enough to attain convergence (in practice we use 100 periods).

2. Starting at the EMAS, we add one standard deviation to the simulated series for shock
i in period 101, ei,101; we then perform a simulation, call it #1, for variables Y s. Call
the result Y 1.

The effect of a 1 standard deviation shock is given by:

Y 1 − Y 0 .

To obtain the (incremental) contribution of two consecutive shocks relative to one shock
(these are the solid red lines with circles in Figures 10 and 11 we proceed as follows.

1. Starting at the EMAS, we add two consecutive (one standard deviation) shocks to the
simulated series for shock i, in period 101 and in period 102, ei,101 and ei,102; we then
perform a simulation, call it #2, for variables Y s. Call the result Y 2.

The incremental contribution of two consecutive positive shocks relative to one shock is given
by:

Y 2 − Y 1 .
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We proceed in an analogous way for three consecutive shocks, and compute Y 3 − Y 2
where Y 3 is the outcome of simulation #3 with three consecutive (one standard deviation)
shocks.

A similar procedure delivers the incremental contribution of consecutive negative shocks.
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C Response to Uncertainty in Productivity
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Figure C.1: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model:
This figure plots the impulse responses for consecutive, positive shocks to transitory productivity uncertainty.
Impulse responses are for one standard deviation shocks when the model is approximated to the fourth and
third order, respectively.
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Figure C.2: Impulse Response Function to Positive Shocks in Uncertainty – NK-EZ Model:
This figure plots the impulse responses for a one standard deviation positive shock to transitory productivity
uncertainty, a two-standard deviation positive shock (divided by two), and a three standard deviation positive
shock (divided by three) to demand uncertainty. The model solution is approximated to the fourth and third
order, respectively.

62


	Introduction
	Literature review
	Previous episodes of cascading uncertainty

	Empirical Analysis
	Data
	Response to Serial Uncertainty Shocks
	Contrasting impacts over some historical episodes
	Response to Large Shocks

	The Model
	Households
	Intermediate Goods Producers
	Final Goods Producers
	Monetary Policy
	Equilibrium Characteristics
	Defining the Shocks

	Solution Method and Impulse Response Functions
	Solution with Simplified Model
	Impulse Response Functions
	Model Calibration

	Analysis of Uncertainty Shocks in General Equilibrium
	Cascade of Uncertainty Shocks
	Large Shocks
	SLP with Simulated Data
	Alternative Parameterizations and Shocks

	Conclusion
	Analytical Fourth Order Perturbation Derivation
	Relative Contribution of IRFs to Consecutive Shocks
	Response to Uncertainty in Productivity

