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Abstract

We show that in models with endogeneity, bunching at the lower or upper boundary
of the distribution of the treatment variable may be used to build a correction for endo-
geneity. We derive the asymptotic distribution of the parameters of the corrected model,
provide an estimator of the standard errors, and prove the consistency of the bootstrap.
An empirical application reveals that time spent watching television, corrected for endo-
geneity, has roughly no net effect on cognitive skills and a significant negative net effect
on non-cognitive skills in children. Codes: C2, C21, C24

1 Introduction

When the treatment variable is constrained to be above (or below) a certain threshold, we
often encounter bunching of observations at the threshold itself. In this paper, we show that
this situation can be leveraged to build a correction for endogeneity. In some models, ranging
from linear to some types of nonseparable, nonparametric structures, the correction consists of
estimating a nuisance parameter and adding it to the model. In the linear case, for example,
this translates to adding a generated control to the original regression. In the linear model
and on some of the generalizations, the entire approach can be implemented with off-the-shelf,
packaged software.

This type of bunching is often observed in variables constrained to be non-negative, as in
the case of demand or inputs to production. Examples include behavioral variables like the
consumption of vitamin supplements, cigarettes, alcohol, and coffee;1 financial variables such
as credit card debt, credit access, expenditure on ads, and bequests;2 variables quantifying
different uses of time such as exercising, working, doing homework, volunteering, and using
∗We thank seminar participants at various conferences and institutions. The analysis and conclusions set

forth here are those of the authors and do not indicate concurrence by other members of the research staff,
the Board of Governors, or the Federal Reserve System.

1Meta-analyses of studies estimating the effects of these variables on health outcomes include Shinton and
Beevers (1989); Fawzi et al. (1993); Corrao et al. (2000); Hernán et al. (2002); Reynolds et al. (2003); Noordzij
et al. (2005); Bischoff-Ferrari et al. (2005); Oken et al. (2008); Richardson et al. (2013).

2See, e.g., Joulfaian and Wilhelm (1994); Peek et al. (2003); Ekici and Dunn (2010); Bertrand et al. (2010);
Brown et al. (2010); Melzer (2011); Kim and Ruhm (2012); Carman (2013); Boserup et al. (2016); Erixson
(2017); Elinder et al. (2018).
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social media;3 and even count data such as the number of children, the frequency of doctor
visits, and the crime rate.4

More generally, one can apply the proposed method whenever Caetano (2015)’s test of
exogeneity can be applied at the boundary. It is a natural solution whenever exogeneity
is rejected by that test, or whenever the researcher wants to obtain point estimates that are
robust under a selection-on-unobservables assumption. This test has been applied in a variety
of settings in economics, political science, and finance.5

The approach of adding a generated covariate to account for endogeneity is well known,
starting with the ubiquitous use of control functions, which require instrumental variables.
Heckman (1979)’s correction is just as well known, and was developed for models with selection
in the dependent variable. In contrast, our correction approach does not require instrumental
variables, and there may not be a missing data problem.

This paper is related to the growing literature on the use of bunching points to infer causal
parameters. Saez (2010) first leveraged bunching points in the context of the estimation
of labor supply elasticities. Other seminal references in that field are Chetty et al. (2011)
and Kleven and Waseem (2013). Kleven (2016) surveys this large literature. Some recent
theoretical advancements include Blomquist et al. (2019) and Bertanha et al. (2020).

The asymptotic theory of our estimator uses the results in Chen et al. (2003) for extremum
estimators with possibly infinite dimensional nuisance parameters. Several forms of stochastic
equicontinuity conditions are required to establish that the objective functionals (squares of
residuals using the estimated regressor) belong to Donsker classes, and for this we also use
results in Pakes and Pollard (1989) and Andrews (1994).

The paper is laid out as follows. Section 2 proposes the correction strategy in the linear
model and then discusses generalizations into nonlinear, semiparametric, and some types of
nonparametric models. Section 3 establishes the asymptotic normality of the coefficients of
the corrected model in the linear case, provides an estimator of the asymptotic variance,
and proves the consistency of the bootstrap. Section 4 details several strategies for the
identification and estimation of the correction term. Section 5 uses the correction approach
to estimate the effect of time spent watching television (TV) on children’s cognitive and non-
cognitive skills. The application also showcases how the main identifying assumptions may
be tested or argued. Another application of our correction method can be seen in Caetano
et al. (2020). Section 6 concludes, and the proofs are gathered in the Appendix. An online

3See, e.g., Luoh and Herzog (2002); Baum II (2003); James-Burdumy (2005); Ruhm (2004, 2008); Eren
and Henderson (2011); Chatterji et al. (2013); Ermisch and Francesconi (2013); Bhutani et al. (2013); Holt
et al. (2013); Bettinger et al. (2014); Boulianne (2015).

4See, e.g., McDuffie et al. (1996); Black et al. (2005); Cohen (2008); Black et al. (2010).
5See, e.g., Rozenas et al. (2017), Erhardt (2017), Pang (2017), Bleemer (2018a), Bleemer (2018b), Ferreira

et al. (2018), Lavetti and Schmutte (2018), Caetano and Maheshri (2018), De Vito et al. (2019), Caetano
et al. (2019) and Caetano et al. (2020).
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appendix discusses a real-data Monte Carlo study and additional implementation strategies.6

2 Correction Approach

The main idea behind our correction approach can be understood intuitively in the figure
below. We are interested in estimating the effect of the treatment X on the outcome Y. Let
X be constrained to be non-negative, and let the unobservable variable η be correlated with
X conditional on controls Z. For concreteness, suppose that X represents a choice.

As depicted in the left panel of Figure 1, observations with similar, positive values of X
tend to have similar η. However, those at the threshold point X = 0 are particularly selected.
Because of the constraint on X, many chose the corner solution because they wanted to choose
a negative amount but could not (dashed part of the left panel). Therefore, the expected η
among those who chose X = 0 may be quite different from the expected η among those who
chose a small but positive X.

Figure 1: Discontinuity in the Outcome Reflects Variation in Unobservables at the Boundary

X0

E[η|X,Z]

E[η|X = 0, Z]

(a) Unobservables

X0

E[Y |X,Z]

E[Y |X = 0, Z]

(b) Outcome

If η influences Y, then we have a problem of endogeneity. This means that, even holding
Z constant, any variation in the outcome will reflect both changes in the treatment X and
changes in the confounder η at the same time, as in the right panel of Figure 1. However,
when we compare outcomes at X = 0 and X immediately above zero, the difference in X is
negligible but the expected difference in η is large. Therefore, exactly at this location, the
discontinuity in the outcome Y at X = 0 reflects changes in η without contamination from
changes in X.

Caetano (2015)’s test looks at the discontinuity E[Y |X = 0, Z]− limx↓0 E[Y |X = x, Z] to
determine whether η is included in the outcome equation, and thus whether there is endogene-
ity. If we impose some structure on the model (e.g. linearity, partial linearity or some types of

6The online appendix is available at https://bit.ly/3gCigdZ.
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nonseparable and nonparametric structures), this same discontinuity can be leveraged further
to reveal information about the treatment effects. Section 2.1 formalizes the approach in the
context of a linear model. Section 2.2 then discusses possible generalizations.

Technical note: in this paper, all equations and results involving random variables should
be read as holding almost surely. P denotes the probability, and details about implied proba-
bility spaces and conditional sigma-algebras should be self-evident and are thus omitted. The
expectation E is assumed to exist wherever written. The support of the distribution of any
random variable R is denoted supp(R). For brevity, we sometimes say “the support of R" to
mean the support of the distribution of R. To keep identification arguments simple we will
omit rank conditions when they are obvious.

2.1 Linear Model

Suppose that the structural equation is

Y = βX + Z ′γ + δη + ε, where E[ε|X,Z, η] = 0. (1)

X is a scalar variable and we are interested in its effect on Y, β. The vector of controls, Z, may
include a constant term. We observe Y, X and Z, and we do not observe η and ε. Suppose
that there exists a latent, unobservable variable X∗ which depends on both Z and η:

X∗ = Z ′π + η. (2)

The actual treatment, X, is equal to X∗ subject to the (binding) constraint

X = max{0, X∗}, with P(X∗ < 0) > 0. (3)

Note that this is not a censored model in the typical sense. The outcome Y is a function of
the actual treatment X, which is observed, not the latent variable X∗.

As suggested in the discussion of Figure 1, an intuitive framework in which this model
can be understood is that of choice and utility maximization. Suppose for example that
the utility is written as a function of X, Z and η, and that X is the choice which maximizes
utility conditional on the constraint (3). X∗ is the desired choice without this constraint. The
model’s key requirement is that some observations are at a “corner solution:” their desired
choice in the unconstrained optimization would have been different from their actual choice
in the constrained optimization. Note that this framework may help justify the model, but
it is not necessary. The specific motivation for the three equations above is irrelevant for the
validity of the approach.

Given equations (1), (2) and (3),

E[Y |X,Z] = (β + δ)X + Z ′(γ − πδ) + δE[X∗|X∗ ≤ 0, Z]1(X = 0). (4)
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If δ = 0, X is exogenous, and thus β is identifiable as in the standard linear model. If
δ 6= 0, X is endogenous. Then, whenever E[X∗|X∗ ≤ 0, Z] < 0 (which happens with positive
probability because of (3)), the outcome will be discontinuous at X = 0.

Let us rewrite equation (4) as

E[Y |X,Z] = βX + Z ′(γ − πδ) + δ(X + E[X∗|X∗ ≤ 0, Z]1(X = 0)). (5)

If we can identify E[X∗|X∗ ≤ 0, Z] for all z ∈ supp(Z|X = 0), then we can eliminate the
endogeneity bias and identify β by adding the term X + E[X∗|X∗ ≤ 0, Z]1(X = 0) to the
regression.

Correcting for endogeneity thus depends on the identification of E[X∗|X∗ ≤ 0, Z]. In
essence, our approach transforms the problem of endogeneity into a problem of out-of-sample
prediction. Because X∗ is observed whenever X∗ > 0, we can use the observed empirical dis-
tribution of X∗|Z for X∗ > 0 to predict this expectation. Although the out-of-sample nature
of this prediction creates a great deal of difficulty, the fact that it is a prediction problem,
rather than a causal identification problem, opens up a multitude of data-driven strategies
that can be tailored to the particular empirical application. To allow for such flexibility, in
Section 3, we provide the asymptotic distribution, variance estimator, and consistency of the
bootstrap for any estimator of E[X∗|X∗ ≤ 0, Z] satisfying higher-level conditions. In Section
4, we propose several options for the identification of E[X∗|X∗ ≤ 0, Z]. Finally, in Section 5
we provide guidance about how to test the linearity assumption as well as the assumptions
needed to identify the expectation.

Remark 2.1. Can a correction be built without bunching? Consider the simplest alternative
approach: specify X = Z ′π + η, thereby removing any bunching structure from the model. In
this case, E[Y |X,Z] = (β + δ)X + Z ′(γ − πδ). It is impossible to separate β and δ in this
equation. Even if we could somehow identify π (for example, by supposing the strong exclusion
restriction that E[η|Z] = 0), this would still be insufficient to identify δ, and thus β.

It is possible to separate δ if there exists some form of nonlinearity in the relationship
between X, Z and η. The simplest nonlinear specification is X = g(Z) + η. In this case,
E[Y |X,Z] = (β + δ)X + Z ′γ − δg(Z). In order to identify δ in this equation, g must be
nonlinear and identifiable. To identify g, we would need to suppose that E[η|Z] = 0, or that
there exists an instrument for Z in the first stage equation.

In our model, E[η|X,Z] = X − Z ′π + E[X∗|X∗ ≤ 0, Z]1(X = 0) is discontinuous, which
allows us to identify δ without identifying the parameters governing the relationship between
X and Z. Other sharp features such as bunching at interior points or kinks may also allow
the construction of similar corrections without the need for requirements of independence of η
and Z.
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Remark 2.2. The sign of δ is identified even if E[X∗|X∗ ≤ 0, Z] is not identified. To see
this, note that if equations (1), (2) and (3) hold

E[E[Y |X = 0, Z]− lim
x↓0

E[Y |X = x, Z]|X = 0] = δE[X∗|X∗ ≤ 0]. (6)

Since E[X∗|X∗ ≤ 0] < 0 (by (3)), the sign of δ is opposite to the sign of the expected disconti-
nuity. We show in Section 4 how knowing the sign of δ can be useful for partial identification.
Note that this result also provides the basis for a test of exogeneity in the spirit of Caetano
(2015), since δE[X∗|X∗ ≤ 0] = 0 if and only if δ = 0.

Implementation of this approach is simple, and we discuss it in Appendix A. In the online
appendix (Section 2.1), we estimate the sign of δ in our application using this method. In
particular, we strongly reject exogeneity.

Remark 2.3. (More than one bunching point) Additional bunching points may be used in
conjunction with our approach. This affords both a correction and a test of the underlying
assumptions of the correction method in the same regression. To do this, calculate the cor-
rection using the bunching point at one end of the support and then apply Caetano (2015)’s
exogeneity test on the other bunching point (or apply Caetano and Maheshri (2018)’s method
if there are multiple additional bunching points).

For example, consider the problem of estimating the effect of maternal labor supply on
children’s skills (e.g., James-Burdumy (2005)). Figure 2 shows the empirical c.d.f. of the
treatment X = average number of weeks per year in which the mother worked in the three
years following her child’s birth. There are clearly two bunching points, one at X = 0, and
another at X = 52.

Figure 2: Evidence of Bunching, Maternal Labor Supply
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Note: This figure shows the empirical c.d.f. for the average number of weeks per year in which the mother
worked in the three years following her child’s birth. Source: National Longitudinal Study of Youth, 1979
cohort, sample of mothers whose children were born from 1979 to 2002.

A simple implementation of this test consists of running a regression of Y on X, Z, X +

Ê[X∗|X∗ ≤ 0, Z]1(X = 0), and 1(X = 52). Then, the test of the exogeneity assumption
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after the correction is applied is equivalent to a t-test of whether the coefficient of 1(X = 52)

is equal to zero. The asymptotic variance of the estimator of the coefficient of 1(X = 52),

the variance estimator, and the consistency of the bootstrap critical values are established in
Section 3 (see footnote 8).

2.2 Extensions

Linearity is not a fundamental requirement for this type of correction. We discuss several
possible generalizations here, though the list of examples below is by no means exhaustive.
Readers who are not interested in these extensions can skip directly to Section 3 without
missing any notation or concept important to the understanding of the rest of the paper.

2.2.1 Linear Correlated Random Coefficients

Suppose that equations (1), (2) and (3) hold, but β = α0X+Z ′α. This is equivalent to Garen
(1984)’s model (see e.g. Chay and Greenstone (2005)), except that we do not exclude Z from
the structural equation, and we do not require that Z and η are independent. Then,

E[Y |X,Z] = α0X
2 +XZ ′α+ Z ′(γ − πδ) + δ(X + E[X∗|X∗ ≤ 0, Z]1(X = 0)).

If E[X∗|X∗ ≤ 0, Z] is identified, α0 and α are identified, and thus we can identify the treatment
effects. Our estimation results also cover this model (see footnote 8 in Section 3).

Other models β = g1(X,Z;α1), where the function g1 is known up to the finite parameter
vector α1, may be identified analogously. If E[Y |X,Z] is linear in parameters, estimation is
covered by the results in Section 3. Otherwise, this is a special case of the next model.

2.2.2 Nonlinear Correlated Random Effects

Suppose that the model is

Y = g1(X,Z;α1)X + g2(Z;α2)η + ε, E[ε|X,Z, η] = 0,

X∗ = h1(Z;κ1) + h2(Z;κ2)η,

and equation (3), where g1, g2, h1 and h2 are functions which are known up to the finite
parameter vectors α1, α2, κ1 and κ2, and h2(Z;κ2) 6= 0. We are interested in identifying g1.
Then,

E[Y |X,Z]=g1(X,Z;α1)X−
g2(Z;α2)h1(Z;κ1)

h2(Z;κ2)
+
g2(Z;α2)

h2(Z;κ2)
(X+E[X∗|X∗ ≤ 0, Z]1(X = 0)) .

This expression can usually be simplified a great deal when the functions are specified in an
application. Identification in this model can be established with the method of moments.
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All the combinations of parameters necessary for the identification of the treatment effects
of X on Y are identified (see an explicit identification argument for a more general model
in Section 2.2.4.) In fact, depending on the specific functional form of g1, some (or all) of
the elements of α1 may be identified. Estimation can be done with nonlinear regression or
generalized method of moments.

2.2.3 Partially Linear Model

The previous case requires that all the functions be specified. We now show that it is possible
to build a correction in semiparametric models. Suppose that the model is

Y = βX + g(Z) + δη + ε, E[ε|X,Z, η] = 0,

X∗ = h(Z) + η,

and equation (3), where g and h are not known. Then,

E[Y |X,Z] = (β + δ)X + (g(Z)− δh(Z)) + δE[X∗|X∗ ≤ 0, Z]1(X = 0).

We can follow Robinson (1988)’s strategy for partially linear models:

Y − E[Y |Z] = β(X − E[X|Z])

+ δ (X − E[X|Z] + E[X∗|X∗ ≤ 0, Z][1(X = 0)− P(X = 0|Z)]) + ε.

If the terms X − E[X|Z] and E[X∗|X∗ ≤ 0, Z][1(X = 0) − P(X = 0|Z)] are linearly inde-
pendent, β and δ are identifiable. There are alternative identification methods for β in the
equation above – see Härdle et al. (2000) for a detailed treatment of partially linear models.
Estimation follows any of the methods available for partially linear models but substituting
E[X∗|X∗ ≤ 0, Z] for its estimate.

2.2.4 A Nonparametric Nonseparable Model

The following case gives an example of a nonparametric, nonseparable structure in which a
correction can be built. Suppose that

Y = g1(X,Z, ε) + g2(Z, ε)η, ε ⊥⊥ X,Z, η

X∗ = h(Z) + η

and equation (3), where g1, g2 and h are unknown functions. In this model, we are interested
in the identification of the expected partial effect of X on Y everywhere, E

[
∂g1(X,Z,ε)

∂X

∣∣∣X,Z] .
It may be possible to weaken the structure further if the desired quantity is less ambitious,
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such as the average treatment effect E
[
∂g1(X,Z,ε)

∂X

]
or the average structural function a(x) =

E[g1(x, Z, ε)]. Given the model,

E[Y |X,Z] = E[g1(X,Z, ε)] + E[g2(Z, ε)]X + E[g2(Z, ε)]E[X∗|X∗ ≤ 0, Z]1(X = 0).

Assuming the regularity conditions that guarantee the interchangeability of the order of
the derivatives, expectations, and limits, then for X > 0,

∂

∂X
E[Y |X,Z] = E

[
∂

∂X
g1(X,Z, ε)

∣∣∣X,Z]+ E[g2(Z, ε)]. (7)

At the same time, note that

E[Y |X = 0, Z]− lim
x↓0

E[Y |X = x, Z] = E[g2(Z, ε)]E[X∗|X∗ ≤ 0, Z]. (8)

If E[X∗|X∗ ≤ 0, Z = z] is identifiable and strictly negative (that is, if P(X∗ < 0|Z = z) > 0),
we can identify E[g2(z, ε)] from equation (8), and thus we can identify the partial derivatives
E
[
∂
∂X g1(X, z, ε)

∣∣∣X,Z = z
]
from equation (7).

Estimation in this example is much more involved than in the previous cases, requiring
the nonparametric estimation of E[Y |X = 0, Z], the limit limx↓0 E[Y |X = x, Z] as well as the
first derivatives of E[Y |X,Z] with respect to X.

2.2.5 Probit Model with Endogeneity

All of the previous cases admit simple correction strategies which are based on the separation
of η and X in the structural equation. Building a correction without this separability is much
harder, and will usually require the identification of other moments of X∗|Z or perhaps of the
entire distribution. We now give an example of how this may be done in a probit model with
endogeneity.

Let the model be

Y = 1(βX + Z ′γ + δη + ε ≥ 0), with ε|X,Z, η ∼ N (0, σ),

where equations (2) and (3) hold. Let Φ be the c.d.f. of the standard normal distribution.
Then for X > 0,

P(Y = 1|X,Z) = 1− Φ
(
−X(β + δ)/σ − Z ′(γ − πδ)/σ

)
,

which allows us to identify and estimate (β + δ)/σ and (γ − πδ)/σ by maximum likelihood
using only observations with X > 0. At the same time, for X = 0,

P(Y = 1|X = 0, Z) = 1− 1

P(X = 0|Z)

∫ 0

−∞
Φ
(
−Z ′(γ − πδ)/σ − xδ/σ

)
P(X∗ ≤ dx|Z).
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If P(X∗ ≤ x|Z) is identified for all x ≤ 0, the integral above may be calculated.7 This allows
us to identify (γ − πδ)/σ and δ/σ by maximum likelihood using only observations such that
X = 0. Subtracting δ/σ from the previously identified (β + δ)/σ then allows us to identify
β/σ.

Remark 2.4. It is not possible to correct for endogeneity in all types of nonseparable models.
Our approach allows us a glimpse of how η affects Y separately from the effect of X only at
the bunching point. It is only at that location that we can guarantee that the treatment will not
vary while the unobservables will. Consider the following nonparametric nonseparable model:

Y = g(X, η) + ε, E[ε|X, η] = 0,

where g is not known. Here, no matter how restrictive is the equation that generates X∗, the
bunching only allows us to learn something about ∂g(0, η)/∂η. This is not sufficient informa-
tion to allow us to learn anything about g(X, η) for X > 0. Some form of regularity, be it
some type of separability between η and X or a semiparametric structure, will be necessary
for the identification of the treatment effects.

3 Asymptotic Theory for Estimation of the Corrected Model

We provide estimation results in the linear model.8 Estimation follows equation (5) and con-
sists of an OLS regression of Y onto X, Z and the estimated correction term, X+ Ê[X∗|X∗ ≤
0, Z]1(X = 0). The coefficient of X is β̂, and the coefficient of the correction term is δ̂.

We provide general asymptotic results that can be adapted to different estimators of
E[X∗|X∗ ≤ 0, Z], including estimators not discussed in this paper, provided they are uniformly
consistent at a minimum n1/4 rate. Moreover, there is no impediment to using different
identification and estimation methods to obtain Ê[X∗|X∗ ≤ 0, Z] for different values of Z.

Assumption 1. Denote ψ0 = E[X∗|X∗ ≤ 0, Z = ·], ψ̂ = Ê[X∗|X∗ ≤ 0, Z = ·], and dim(Z)

equal to the number of elements in Z. Suppose that

(i) The observations {(Yi, Xi, Z
′
i)
′}ni=1 are independent.

(ii) Denote W = (X,Z ′, X + ψ0(Z)1(X = 0))′, where Wi is an observation of this vec-
tor and Wij is the j-th element of Wi. There exist constants α > 0 and ∆ < ∞ such

7This may have to be done numerically. However, if X∗|Z belongs to a very simple distributional family,
such as uniform, or if instead of probit we have a more tractable model such as a logit, a closed form expression
may be obtained.

8Results for some extensions are proven identically. For the case with more than one bunching point
(Remark 2.3 in Section 2.1), just substitute the first coordinate in W in all assumptions and proofs by
(X,1(X = x̄))′, where x̄ is the second bunching point, and β by (β, αx̄)′, where αx̄ is the coefficient of
1(X = x̄). For the linear correlated random coefficients model (Section 2.2.1), simply substitute the first
coordinate in W in all assumptions and proofs by (X2, XZ′)′, and β by (α0, α

′)′.
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that (a) E[|ε2i |1+α] < ∆, E[|η2i |1+α] < ∆, E[|WijWik|1+α] < ∆, E[|η2iWijWik|1+α] < ∆

and E[|W 2
ijWikWil|1+α] < ∆ for all i = 1, . . . , n and j, k, l = 1, . . . ,dim(Z) + 2; (b)

1
n

∑n
i=1 E[WiW

′
i ],

1
n

∑n
i=1 E[ε2iWiW

′
i ], and

1
n

∑n
i=1 E[V ar(η|X = 0, Zi)WiW

′
i ] are non-

singular for n sufficiently large, with determinants bounded away from zero. More-
over, for each pair j, s = 1, . . . ,dim(Z) + 2, either WijWis is constant for all i, or
1
n

∑n
i=1 V ar(WijWis) ≥ α for n sufficiently large.

(iii) Let Θ be a compact subset of Rdim(Z)+2, and θ0 := (β, (γ − πδ)′, δ)′ ∈ int(Θ).

(iv) ψ̂, ψ0 ∈ H, a normed linear space with
∫∞
0

√
logN[ ](ε,H, || · ||H)dε < ∞ (this implies

that H is a P-Donsker class).

(v) Let Z = supp(Z), then supz∈Z

∣∣∣ψ̂(z)− ψ0(z)]
∣∣∣ = op(n

−1/4).

(vi)
√
nE[(ψ̂(Zi)− ψ0(Zi))1(Xi=0, Xj =0)WiW

′
j ]→d N (0,Ω).

Theorem 3.1. If equations (1), (2) and (3), and Assumption 1 hold, then

√
n(θ̂ − θ0)→d N

(
0,Σ + δ2E[WW ′]−1ΩE[WW ′]−1

]
,

where Σ is the asymptotic covariance of a regression of Y onto X, Z, and X + E[X∗|X∗ ≤
0, Z]1(X = 0) (i.e., it is the asymptotic covariance if the true rather than the estimated
expectation had been used in the regression).

The proof of this theorem is in Appendix B.1. It applies Theorem 2 in Chen et al.
(2003). Assumption 1(iv) requires that the uniform entropy integral (as defined in Van der
Vaart and Wellner (1996), Chapter 2.1) is finite. This is used to establish the stochastic
equicontinuity condition 2.5’ in Chen et al. (2003) using Lemma 2.17 in Pakes and Pollard
(1989). The same condition is also an indirect requirement of Assumption 2.6 in Chen et al.
(2003) when we are allowing for an arbitrary estimator ψ̂(z). When a specific estimator is
defined, Assumption 1(iv) often holds under more standard primitive conditions. In practice,
this condition requires that the expectation and its estimator are well behaved functions.
Many of the function classes adopted in economics satisfy this condition. For example, if
the expectation assumes a parametric form, or if it is Lipschitz-continuous on the parameter
vector, or smooth, or belongs to the Sobolev class, or is of bounded variation, the condition
is satisfied.

Assumption 1(vi) is used to verify Assumption 2.6 in Chen et al. (2003). Note that the
expectation is taken with respect to Zi and Xi, conditional on the data that generated ψ̂.

Given Assumptions 1 (iv) and (v), Assumption 1(vi) may be substituted by 1√
n

∑n
i=1(ψ̂(Zi)−

ψ0(Zi))1(Xi=0, Xj =0)WiW
′
j →d N (0,Ω) (this follows from Lemma 19.24 in Van der Vaart
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(1998)). When the expectation estimator converges weakly at the
√
n rate, Assumption 1(vi)

does not need to be verified because it always holds (see Remark 3.1).

Next, we present an estimator of the asymptotic variance. Let ŵ be the matrix of regres-
sors, with rows equal to Ŵi := (Xi, Z

′
i, Xi+ ψ̂(Zi)1(Xi = 0))′. Let D̂ = Diag{(Yi−Ŵ ′i θ̂)2}ni=1

be the diagonal matrix of the square of the residuals. Finally, let V̂ be a matrix with row i

equal to (Ĉi11(X1 = 0, Xi = 0), . . . , Ĉin1(Xn = 0, Xi = 0))′, where the Ĉij = Ĉ(Zi, Zj) are
defined in Assumption 2 below. Then, an estimator of the asymptotic variance of θ̂ is

V̂θ =

(
ŵ′ŵ
n

)−1(ŵ′D̂ŵ
n

)(
ŵ′ŵ
n

)−1
+ δ̂2

(
ŵ′ŵ
n

)−1(ŵ′V̂ŵ
n2

)(
ŵ′ŵ
n

)−1
.

Note that the first term is simply the Eicker-White covariance estimator in a regression of Y
onto X, Z and X + ψ̂(Z)1(X = 0). The second term is the penalty resulting from the fact
that we are using an estimate instead of the true value ψ0(Z).

Assumption 2. Suppose that

(i) Ω = E[Cij1(Xi=0, Xj =0)WiW
′
j ], for some variables Cij = C(Zi, Zj),

(ii) E[||CijWiW
′
j ||], E[||CijWi||] and E[|Cij |] are bounded,

(iii) supz,z̃∈Z

∣∣∣Ĉ(z, z̃)− C(z, z̃)
∣∣∣ = op(1).

Theorem 3.2. If equations (1), (2), and (3), and Assumptions 1 and 2 hold, then

V̂θ →p Σ + δ2E[WW ′]−1ΩE[WW ′]−1.

The proof of this theorem is in Appendix B.2. It uses a specific Strong Law of Large
numbers for U-Statistics when the data is independent but not identically distributed. Letting
V̂β be the first element in the matrix V̂θ, the standard error of β̂ is

√
V̂β/n. The first term

in V̂β can be obtained directly from packaged software as the square of the Eicker-White
standard errors of β̂ on a regression of Y onto X, Z and X+ ψ̂(Z)1(X = 0). The second term
in V̂β is the first element in the second matrix in V̂θ divided by n.

When the expectation estimator converges weakly at the
√
n rate, Assumption 2(i) does

not need to be verified because it always holds (see Remark 3.1). Assumption 2(iii) requires
consistent estimators of the Cij , which are usually asymptotic covariances of the ψ̂(Zi) for
two different values of Zi. Note that if the ψ̂(Zi) are independent, then Cij = 0 for all i 6= j,

and thus the asymptotic variance is not affected by the fact that the expectation is estimated.
The following remarks discuss simplifications of the previous theorems for two important

special cases.
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Remark 3.1. (
√
n-rate of convergence) Suppose that ψ̂ converges at the parametric rate

to a Brownian Bridge, so that for all z ∈ Z, there exists a normal random variable χz

such that
√
n(ψ̂(z) − ψ0(z)) →d χz. Then, Assumptions 1(vi) and 2(i) always hold, and

Cij = Cov(χZi , χZj ). The proof of this statement follows from the Functional Delta Method
(Theorem 3.9.5 in Van der Vaart and Wellner (1996)) and is presented in Appendix B.3.

Remark 3.2. (Z with finite support) If supp(Z) = {z1, . . . , zL}, and if ψ̂(zl) uses only obser-
vations such that Zi = zl, then the assumptions of Theorems 3.1 and 3.2 may be simplified.
Specifically, replace Assumptions 1 (iii)-(vi) with

(iii’) Define p0,l = P(X = 0, Z = zl). Then p0,l > 0 for at least one l = 1, . . . , L.

(iv’)
√
n(ψ̂(zl)− ψ0(zl))→d N (0, Vzl) for all l = 1, . . . , L such that p0,l > 0.

Define W0,zl = (0, z′l, ψ0(zl))
′. The asymptotic variance can be written as

Σ + δ2E[WW ′]−1

(
L∑
l=1

p20,lVzlW0,zlW
′
0,zl

)
E[WW ′]−1.

The term Σ can be estimated as in the general case, and the second term can be estimated
by replacing δ with δ̂, Vzl with an estimator V̂zl and the other terms with sample equivalents.
To establish the consistency of this variance estimator, Assumption 2 may be replaced with
V̂zl →p Vzl for all l such that p0,l > 0.

Now we establish that the ordinary nonparametric bootstrap can consistently estimate
the distribution of

√
n(θ − θ0) for an i.i.d. sample for a wide class of estimators ψ̂(Z).

Assumption 3. Suppose that

(i) The observations {(Yi, Xi, Z
′
i)
′}ni=1 are i.i.d.

(ii) H has a bounded envelope function.

(iii) n1/4 supz∈Z

∣∣∣ψ̂(z)− ψ0(z)
∣∣∣ = oa.s.(1)

(iv) 1√
n

∑n
i=1(ψ̂(Zi) − ψ0(Zi))

r1(Xi = 0)Ri = oa.s.(1), for r = 1 and Ri = εi, ηi, and Wi;

and for r = 2 and Ri = 1.9

(v) Denote the bootstrap sample quantities with a “b,” let ψ̂b = Êb[X∗|X∗ ≤ 0, Z = ·], and
let opb(·) and Opb(·) denote the op(·) and Op(·) notation for the Pb-probability. Then,

(a) n1/4 supz∈Z

∣∣∣ψ̂b(z)− ψ̂(z)
∣∣∣ = opb(1).
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(b) 1√
n

∑n
i=1(ψ̂

b(Zi) − ψ̂(Zi))
r1(Xi = 0)Ri = opb(1), for r = 1 and Ri = εi, ηi, and

Wi; and for r = 2 and Ri = 1.9

(c)
√
nE
[
[(ψ̂b(Z) − ψ̂(Z)) − (ψ̂(Z) − ψ0(Z))]1(X = 0)R

]
= opb(1), for R = Z and

R = ψ0(Z).

Theorem 3.3. If equations (1), (2) and (3), and Assumptions 1 and 3 hold, then

√
n(θ̂b − θ̂)→d N (0,Σ + δ2E[WW ′]−1ΩE[WW ′]−1) in Pb-probability.

The proof of this theorem is in Appendix B.4, and follows from Theorems 3 and B in
Chen et al. (2003). Theorem B makes a requirement of almost sure stochastic equicontinuity
(Assumption 2.5’ a.s. in that paper). Its direct translation to our context is expressed in
footnote 9, which is a difficult condition to establish.10 Instead, we bypass the need for
almost sure stochastic equicontinuity and prove that, in our context and given the other
assumptions of Theorem 3.3, it may be substituted by two weaker conditions, Assumptions 3
(iv) and (vb).

4 Identifying E[X∗|X∗ ≤ 0, Z]

The identification of E[X∗|X∗ ≤ 0, Z] is a prediction exercise. In this sense it is a simpler
problem than causal identification. The difficulty is that the prediction is out-of-sample, as
we only observe the distribution of X∗ for X∗ > 0 and the bunching at X = 0. Nevertheless,
there is a lot of information which, together with assumptions of varying degrees of generality,
can be leveraged into partial or point identification of E[X∗|X∗ ≤ 0, Z], and therefore of β.

In this section, we focus on providing guidance to practitioners and exposing the reader
to many options that are available. We formalize much of the analysis below, but a compre-
hensive treatment of the material in this section is beyond the scope of this paper.

The following sections discuss three avenues of investigation into the identification of the
expectation. In Section 4.1, we examine opportunities for partial identification. In Section 4.2,
we discuss identification inside of parametric classes of distributions, where the parameters

9Assumptions 3 (iv) and (vb) may be substituted by the almost sure stochastic equicontinuity condition:
for all positive sequences τn = o(1) (it’s sufficient to prove this for decreasing sequences δn = o(n1/2−α) for
some α > 0),

sup
||ψ−ψ0||H≤τn

∣∣∣∣∣ 1√
n

n∑
i=1

[(ψ(Zi)− ψ0(Zi))Vi − E[(ψ(Zi)− ψ0(Zi))Vi]]

∣∣∣∣∣ = oa.s.(1).

10Pötscher and Prucha (1994) and Jenish and Prucha (2009) discuss almost sure stochastic equicontinuity
for establishing Uniform Laws of Large Numbers. The primitives explored in those papers are not sufficient to
establish almost sure stochastic equicontinuity with a

√
n denominator as required by Chen et al. (2003). We

did not find other references of primitives of almost sure stochastic equicontinuity, and a general treatment of
this condition in the lines of Pakes and Pollard (1989) is an open question.
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may be specified parametrically or nonparametrically. Finally, in Section 4.3, we discuss how
to discretize Z and how to leverage the resulting discretized controls to improve both the
identification and the estimation of the expectation.

Note that to predict E[X∗|X∗ ≤ 0, Z], we only need data on X and Z. A researcher may
wish to predict the expectation using an entirely different dataset. There is no impediment
to doing so, as the theorems in Section 3 do not make any restrictions on the data used to
estimate the expectation.11

For simplicity, we use the notation FR|Z(r) to denote P(R ≤ r|Z), for R = X,X∗ and η.
F−1R|Z(q) denotes the quantile q of FR|Z . When they exist, fR|Z is the density of FR|Z , and
f ′R|Z is the derivative of fR|Z .

4.1 Partial Identification

Consider Figure 3, which shows the distribution of the treatment variable X in our application
(hours per week watching TV) for two different values of the controls. We leave details about
the data to Section 5. For now, we focus on the shape of the distribution. The main pieces
of information we have are the amount of bunching at zero and the height and slope of the
density as it reaches zero from the positive side.

Figure 3: Conditional Empirical Distributions of X
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Note: Each panel restricts the sample to a different value of the controls. The kernel density plot and histogram
of X in the positive side are shown. The darker bar represents the proportion of observations at X = 0. Both
the kernel bandwidth and the histogram bin width are equal to 2.

We begin by establishing an upper bound on E[X∗|X∗ ≤ 0, Z] that is fairly agnostic about
the shape of the distribution of X∗|Z below zero.

11In fact, in some applications, other datasets may allow the observation of the entire distribution of X∗, thus
enabling the direct identification of E[X∗|X∗ ≤ 0, Z]. For example, minimum schooling laws, minimum wages,
and minimum working age change over time and by state, and 401K minimum contributions are mandatory
in some jobs and not in others, which may provide an opportunity to identify E[X∗|X∗ ≤ 0, Z] from similar
observations that are unconstrained.
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Proposition 4.1. Suppose that the right derivative of FX|Z(x) at zero exists, and denote it
fX|Z(0)+. Suppose also that in (−∞, 0), fX∗|Z(x) exists and fX∗|Z(x) ≤ fX|Z(0)+. Then,

E[X∗|X∗ ≤ 0, Z] ≤ −FX|Z(0)2/fX|Z(0)+. (9)

This proposition states that, if the density forX∗ < 0 is no higher than the density atX∗ =

0, then the uniform density which integrates to FX|Z(0) in the negative side, fX|Z(0)+1(x ≥
−FX|Z(0)/fX|Z(0)+) in (−∞, 0], yields the highest possible value of the expectation. The
proposition allows fX∗|Z(x) to be discontinuous anywhere, including at zero, and to not be
monotonic. Its proof is a trivial application of the lemma in Appendix B.5.

Substituting an estimate of the upper bound in equation (9) on the main regression (equa-
tion (5)) yields an estimator of an asymptotic upper bound for β if δ > 0 and of an asymptotic
lower bound for β if δ < 0. Since the sign of δ can be identified (Remark 2.2), this bound may
be used strategically to obtain conservative conclusions.

Figure 3 reveals a clear bell shape on the positive side. Note that in the left panel of
Figure 3, where bunching is smaller, there is even some evidence of an inflection point in the
left tail of the empirical distribution of X∗|Z. In order to obtain more precise information
about β, the temptation is to assume a normal, logistic, or at the very least a symmetric
structure. The concern with such an approach is that there may be a steep descent to zero
on the side we do not observe, as in the case of a beta or a gamma distribution.

A visual inspection of Figure 3 suggests that the probability of bunching is large enough to
rule out a steep descent in both cases. The following proposition offers a condition which allows
us to test the concavity of the density on the negative side, which is a common manifestation
in distributions with steep descent.

Proposition 4.2. Suppose that fX∗|Z(x) exists in (−∞, 0], and is differentiable at x = 0.

Denote by f ′X|Z(0)+ the right derivative of fX|Z(x) at zero. Then f ′X∗|Z(0) = f ′X|Z(0)+ is
identifiable. Moreover, if f ′X∗|Z(0) > 0 and fX∗|Z(x) is concave in supp(X∗|X∗ < 0, Z), then

fX|Z(0)2+ − 2f ′X|Z(0)+ · FX|Z(0) ≥ 0. (10)

This proposition is a corollary of Proposition 4.3. The rationale behind equation (10) can
be understood in the left panel in Figure 4. The dotted red line is fX|Z(0)+ + f ′X|Z(0)+ · x.
If fX∗|Z(x) is concave in (−∞, 0], the area below the dotted line must not be smaller than
FX|Z(0). Confirming the visual inspection, our estimation of the quantities above rules out
concavity in both panels of Figure 3.
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Figure 4: Concave Distribution of X∗|Z below zero

X,X∗

FX|Z(0)

−fX|Z(0)+
f ′
X|Z(0)+

fX|Z(0)+

(a) Testing Concavity

E(Z)E(Z) X,X∗

(b) Bounds Under Concavity

Note: The left panel shows the distribution of X∗|Z. On the positive side, it is equal to the distribution of
X|Z. The right panel shows a zoomed-in version around the negative side of the distribution of X∗|Z.

Under concavity, it is possible to derive upper and lower bounds of the expectation.

Proposition 4.3. Suppose that fX∗|Z(x) exists in (−∞, 0], and is differentiable at x = 0,

fX∗|Z(0) > 0 and f ′X|Z(0)+ is defined as in Proposition 4.2. If, moreover, fX∗|Z(x) is concave
in supp(X∗|X∗ < 0, Z), then

E(Z) ≤ E[X∗|X∗ ≤ 0, Z] ≤ E(Z), where

E(Z) = −2a/3 and E(Z) =

{
−a/2, if f ′X|Z(0)+ = 0

−a/3(b(3− b) + b1/2(b− 2)3/2), if f ′X|Z(0)+ 6= 0,

where a =
FX|Z(0)

fX|Z(0)+
and b =

fX|Z(0)2+
FX|Z(0)f ′X|Z(0)+

.

The bounds can be seen in the right panel of Figure 4. Under concavity, the most negative
value of the expectation, E(Z), is the one obtained under the linear density which integrates
to FX|Z(0), illustrated by the dashed blue line.12 The least negative value of the expectation,
E(Z), is obtained under the density with derivative f ′X|Z(0)+ which integrates to FX|Z(0),

illustrated by the red dotted line.13 Note that the bounds also hold when f ′X|Z(0)+ < 0. The
proof of this proposition follows from the lemma in Appendix B.5, since the density’s concavity
and continuity at 0 implies the necessary stochastic dominance relationships between those
distributions.

12This density is equal to [fX|Z(0)+ + (fX|Z(0)2
+/2FX|Z(0)) · x]1(x ≥ −2a) in (−∞, 0].

13If f ′X|Z(0)+ = 0, this density is equal to fX|Z(0)+1(x ≥ −a). Otherwise, this density is

[fX|Z(0)+ + f ′X|Z(0)+ · x]1(x ≥ −a(b−
√
b(b− 2))) in (−∞, 0].
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Substituting an estimate of the upper bound in equation (9) on the main regression (equa-
tion (5)), and then repeating the process using the lower bound instead yields estimates of
the implied bounds on β.

Similar arguments allow us to determine that if fX∗|Z(x) is convex in supp(X∗|X∗ <
0, Z), then: (a) if f ′X|Z(0)+ > 0, then E(Z) is an upper bound of E[X∗|X∗ ≤ 0, Z]. Thus,
substituting an estimator of E(Z) in the regression yields a β̂ estimator which is an asymptotic
lower bound of β if δ > 0, and an asymptotic upper bound on β if δ < 0. (b) If f ′X|Z(0)+ ≤ 0,

then E(Z) is a lower bound of E[X∗|X∗ ≤ 0, Z]. Thus, substituting an estimator of E(Z) in
the regression yields the opposite conclusions as (a).

We discuss how the bounds in this section may be estimated in Appendix A.

4.2 Identification Through Families of Distributions

To point-identify E[X∗|X∗ ≤ 0, Z], a natural approach is to suppose that X∗ belongs to some
parametric family of distributions. It is possible to do this in varying degrees of flexibility, as
we show below. To help clarify how the assumptions made to identify E[X∗|X∗ ≤ 0, Z] impact
the original model, all assumptions henceforth are written with respect to η. Importantly, these
assumptions are testable (see Remark 4.1).

4.2.1 Parametric Methods

Model 4.2.1. (Tobit) η|Z ∼ N (Z ′µ, σ2). In this case,

E[X∗|X∗ ≤ 0, Z] = Z ′(π + µ)− σλ(−Z ′(π + µ)/σ),

where λ(·) is the inverse Mill’s ratio. Note that X∗|Z ∼ N (Z ′(π + µ), σ2) together with
equation (3) satisfy the conditions of the Tobit model. Thus, both π+µ and σ can be identified
as in Tobin (1958), and therefore the expectation is also identified. We never identify π and
µ separately, nor is doing so necessary.

Appendix A shows how this model may be estimated. The Tobit model assumes ho-
moskedasticity. Turning to the application in Section 5, the dashed blue line in Figure 5
demonstrates the homoskedastic normal fit for two different values of the controls. These
panels demonstrate that homoskedasticity is clearly not a good assumption in this applica-
tion. The variance of the treatment variable X (TV time) for the left panel is clearly higher
than the corresponding variance for the right panel, yet the fitted normal distribution (dashed
blue curve) does not reflect this.

In the online appendix, we show how to identify E[X∗|X∗ ≤ 0, Z] in the logistic, exponen-
tial and uniform distribution families by maximum likelihood. Other distribution families can
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Figure 5: Homoskedastic Tobit Fit
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Note: This figure adds to Figure 3 the fitted distribution from the homoskedastic Tobit model (Model 4.2.1),
shown as the dashed blue curve.

be identified similarly. The homoskedasticity in Model 4.2.1 can also be relaxed by assuming
that σ(Z) has a parametric functional form.

4.2.2 Semiparametric Methods

The parameters in the previous models may be nonparametrically identified.

Model 4.2.2. (Semiparametric Tobit) η|Z ∼ N (µ(Z), σ2(Z)). In this case,

E[X∗|X∗ ≤ 0, Z] = σ(Z)

(
Z ′π + µ(Z)

σ(Z)
− λ

(
−Z

′π + µ(Z)

σ(Z)

))
,

where λ(·) is the inverse Mill’s ratio. We can identify (Z ′π + µ(Z))/σ(Z) = −Φ−1(FX|Z(0)),

where Φ is the c.d.f. of the standard normal distribution. We can also identify σ(Z) =

−E[X|X > 0]/(Φ−1(FX|Z(0))− λ(−Φ−1(FX|Z(0))). Therefore,

E[X∗|X∗ ≤ 0, Z] = −E[X|X > 0, Z]

(
Φ−1(FX|Z(0)) + λ(Φ−1(FX|Z(0))

−Φ−1(FX|Z(0)) + λ(−Φ−1(FX|Z(0)))

)
.

The complicated expression above is just a function of FX|Z(0) and E[X|X > 0, Z], which
are both identifiable. In Appendix A, we show how these quantities may be estimated.

In the online appendix, we study identification in the cases in which η|Z has a logistic,
exponential or uniform distribution, while allowing all the parameters of those distributions to
be fully nonparametric functions of Z. In all these cases, we derive the formula of E[X∗|X∗ ≤
0, Z] as a function of FX|Z(0) and E[X|X > 0, Z]. Identification using other distribution
families can be achieved analogously.
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4.3 Discrete/Discretized Z

In Section 4.3.1 we showcase the advantages that a finite support Z affords in our context,
both in the identification and in the estimation of E[X∗|X∗ ≤ 0, Z]. Unfortunately, it is rare
that Z has a finite support in practice. In Section 4.3.2, we show how Z may be discretized
to leverage the advantages of finite support in cases with arbitrary Z.

4.3.1 Methods for Z with Finite Support

In this section, suppose that for all z ∈ supp(Z), P(Z = z) > 0.

Semiparametric Models with Finite Support Z

We begin by showing that if supp(Z) is a finite set, then the identification in the semi-
parametric models of Section 4.2.2 may be achieved by simpler methods which yield better
estimators. Consider first the semiparametric Tobit model.

Model 4.3.1. (Semiparametric Tobit, discrete case) Suppose that Model 4.2.2 holds. Let
αz = z′π + µ(z) and σz = σ(z). This implies that X∗|Z = z ∼ N (αz, σ

2
z), where both the

mean and variance depend arbitrarily on the value z. For a given z, this is a simple Tobit
model with constant mean and variance. This means that we can identify αz and σz as in
(Tobin (1958)).

We show how this model is estimated in Appendix A. Note that this approach also has
computational advantages. We only need to estimate a 2-dimensional Tobit model for each
value of Z in supp(Z). This is generally faster than estimating a (dim(Z) + 1)-dimensional
Tobit model, as in the homoskedastic Tobit case (Model 4.2.1).

Figure 6 is identical to Figure 5, but it shows the semiparametric Tobit fit with the esti-
mation method implied by Model 4.3.1. The fit in Figure 6 is better than the homoskedastic
Tobit fit in Figure 5. However, the upper tails of the distributions of X|Z appear to be
too heavy for a normal fit. In each panel, in an effort to match the heavier tail, the fitted
distribution ends up missing the location and height of the peak observed in the raw data. If
the upper tails are any indication of what is happening in the lower tails, this suggests that
this approach may underestimate the magnitude of E[X∗|X∗ ≤ 0, Z], thus overestimating the
magnitude of δ. This is consistent with what we find in our empirical results in Section 5
(compare column (iv) to our preferred results in column (v) of Table 1).

Depending on the application, other distribution families may be more appropriate. In
the online appendix, we provide the likelihood functions for the semiparametric logistic, ex-
ponential and uniform cases when Z has finite support.
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Figure 6: Semiparametric Tobit Fit
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Note: This figure adds to Figure 3 the fitted distribution from the semiparametric Tobit model (Model 4.3.1),
shown as the dashed blue curve.

Nonparametric Methods: Symmetry

A finite-support Z makes it possible to gain more than semiparametric simplicity. If
P(X = 0|Z = z) ≤ 0.5, we can drop the assumption that η|Z belongs to a known distribution
family. Instead, we can use pieces of the distribution of X|Z = z reflected to the negative
side.

Model 4.3.2. (Conditional Tail Symmetry) Suppose that FX|Z=z(0) ≤ 0.5. Assume that
the tails of Fη|Z=z below −z′π and above the corresponding location on the positive side are
symmetric, so the dashed areas on each of the plots in Figure 7 perfectly mirror each other.
Specifically, if a ≤ −z′π, we suppose that

Fη|Z=z(a) = 1− Fη|Z=z(F−1η|Z=z(1− Fη|Z=z(−z
′π))− a− z′π).

Note that, as is clear from the figure, we do not assume symmetry in the “middle” of the

Figure 7: Symmetric Density in the Tails

a −z′π F−1
η|Z=z

(1− Fη|Z=z(−z′π))

−z′π − a

dFη|Z=z

x 0 F−1
X∗|Z=z

(1− FX∗|Z=z(0))

−x

dFX∗|Z=z

distribution (between −z′π and z′π). Also, the mean and variance of η|Z = z can assume any
value.
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For all x < 0 it follows that FX∗|Z=z(x) = 1− FX∗|Z=z(F−1X∗|Z=z(1− FX∗|Z=z(0))− x) =

1 − FX|Z=z(F−1X|Z=z(1 − FX|Z=z(0)) − x). Therefore, if we calculate the expectation, we can
identify the conditional expectation via a change of variables as

E[X∗|X∗ ≤ 0, Z = z] = F−1X|Z=z(1− FX|Z=z(0))− E[X|X ≥ F−1X|Z=z(1− FX|Z=z(0)), Z = z].

We show how this model is estimated in Appendix A.

Figure 8 is identical to Figures 5 and 6 but for the tail symmetry fit. Note that the fitted
plots under tail symmetry imply a heavier tail than the fitted plots under normality in those
figures.

Figure 8: Conditional Tail Symmetry Fit
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Note: This figure adds to Figure 3 the fitted distribution from the conditional tail symmetry model (Model
4.3.2), shown as the dashed blue curve.

In the online appendix we discuss identification and estimation under full symmetry. Full
symmetry is easy to test, and it implies tail symmetry. The next remark discusses how the
model may be tested.

Remark 4.1. (Testing the Distributional Assumption) The distribution of X∗|Z is observed
when X∗ > 0. Therefore, one may test the model assumptions by comparing the empirical
distribution of X|Z and the estimated distribution implied by the model for X > 0. The
well known two-sample Kolmogorov-Smirnov test is an option, but there are more powerful
alternatives, such as the test developed by Goldman and Kaplan (2018).14

In our application, we test whether the distribution of X∗|Z is symmetric by comparing the
empirical distribution of X|Z in (0,med(X|Z)) and the mirror of the empirical distribution
of X|Z in (med(X|Z), F−1X|Z(1−FX|Z(0))) using both Kolmogorov-Smirnov and Goldman and
Kaplan (2018) tests. We also test the null hypothesis that the mean of X|Z in (0,med(X|Z))

14This test is designed to have better power to detect deviations from the null at the extremities of dis-
tributions. This may be a concern in our setting when including the upper tail in the comparison of the
distributions.
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is the same as the mean of X|Z in the mirror image of (med(X|Z), F−1X|Z(1 − FX|Z(0))).

For each of these three tests, we fail to reject the null hypothesis for all clusters even at the
10% level of significance, using the Bonferroni critical values to avoid concerns about multiple
testing.

4.3.2 Discretizing Z: Hierarchical Clustering

When Z does not have a finite support, it may be “discretized” using a dimensionality reduc-
tion technique. Here we focus on clustering techniques because, in order to use the methods in
the previous section, our goal is to reduce the size of the support, not necessarily the number
of elements in Z. For a given number of elements in the support, clustering methods aim to
minimize the loss of information.

Let {Ĉ1, . . . , ĈK} be a finite partition of supp(Z) into sets, which we call clusters, and
let ĈK = (1(Z ∈ Ĉ1), . . . ,1(Z ∈ ĈK))′ be the cluster indicators. In the estimation of the
expectation, we propose substituting Z with ĈK , which has finite support. The estimator
Ê[X∗|X∗ ≤ 0, Z] = Ê[X∗|X∗ ≤ 0, ĈK ] is thus a two-step procedure in which first Z is
discretized and then one of the methods in the previous section is applied.

In general, if E[X∗|X∗ ≤ 0, Z] is continuous, the ability of this estimator to approximate
the expectation depends on how much information about Z is given by the cluster indicator
vector ĈK . Thus, it is desirable to choose a clustering method that minimizes the within-
cluster variation in the values of Z. All unsupervised clustering methods in the statistical
learning literature could in principle be used (e.g. k-means, k-medoids, self-organizing maps,
and spectral – see Hastie et al. (2009)).15 Below, we show results using hierarchical clustering
for its simplicity, but similar results were also obtained with other unsupervised clustering
methods.16

Figure 9 shows how the estimates of β in our application change as we increase the number
of clusters K. As K increases, the role of the discretization assumption diminishes. If our
results were an artifact of the discretization, we should expect β estimates to change as K
increases. Thus, if the estimates of β remain close to constant as the number of clusters
increases, as we find in Figure 9, this raises our confidence in the assumption that the clusters
adequately capture differences in the conditional distributions η|Z.

There is a growing literature in economics using clustering techniques in panel settings (e.g.
Bonhomme and Manresa (2015); Bonhomme et al. (2017)). In this paper, clusters are used
only to improve the estimation of the expectation, not to control for unobserved heterogeneity.
Clusters may in principle be used in two ways, both to improve the identification of the

15We can also envision supervised methods which leverage different values of Z for which there is less
bunching to “train" predictions of E[X∗|X∗ ≤ 0, Z] for Z’s with more bunching.

16Hierarchical clustering requires the choice of a dissimilarity measure and a linkage method. The reported
results use the Gower measure and Ward’s linkage, but we also obtained similar results with other choices.
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Figure 9: Uncorrected and Corrected Cognitive and Non-cognitive β Estimates
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Note: Shaded areas depict 90% confidence intervals for the corrected estimates using the tail symmetry
method (model 4.3.2) and different total numbers of clusters K. All standard errors are bootstrapped using
1,000 iterations.

expectation and to control for remaining confounders that may be present in spite of the
correction. For instance, Caetano et al. (2020) provides a robustness check where cluster
fixed effects are also included in the corrected regression in order to allow control variables to
enter the outcome equation more flexibly.

5 Application: The Effect of TV on Children’s Skills

In this section, we apply our method to estimate the effect of time spent watching TV on
children’s skills17 using the 1997, 2002 and 2007 Waves of the Child Development Supplement
from the Panel Study of Income Dynamics (CDS-PSID). A second application estimating the
effect of enrichment activities on children’s skills can be found in Caetano et al. (2020). As
both applications use the same sample, we refer the reader to that paper for details about the
data, specification of controls, and definition of skills.

Our analysis sample has a total of 4,330 observations. We would like to estimate β in
equation (1), where Y is either the cognitive or non-cognitive skills of the child, X is the
number of hours the child spent watching TV in a typical week, and Z is a vector of controls
which includes a constant as well as characteristics of the child, family, and environment.

Figure 10 shows the unconditional c.d.f (left panel) and the empirical distribution (right
panel) of X. About 5% of the sample is bunched at X = 0. Examples of conditional versions
of the right panel are shown in Figure 3.

17See for instance Zavodny (2006), Gentzkow and Shapiro (2008) and Munasib and Bhattacharya (2010)
for recent empirical papers in this literature.
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Figure 10: Unconditional Distribution of X
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Note: The left panel shows the cumulative distribution function of X. The right panel shows the kernel density
estimate along with the histogram for X > 0 (bandwidth equals to 2). The darker bar is the proportion of
observations with X = 0.

5.1 Main Results

Table 1 presents the main results of the estimation of β in equation (1) both with and without
our endogeneity correction. Column (i) shows the raw associations between TV time and skills
without controls. Time spent watching TV is negatively correlated with both cognitive and
non-cognitive skills. Column (ii) adds controls but does not use the endogeneity correction.
After controlling for observables, the estimates of β are closer to zero, but the cognitive
estimate is still negative and highly significant.

In columns (iii)-(v), we show estimates of the corrected regression (equation (5)), where
E[X∗|X∗ ≤ 0, Z] is estimated using different models. Column (iii) shows the results under the
homoskedastic Tobit assumption (Model 4.2.1). The β estimates are positive and insignificant
for cognitive skills, but negative and significant for non-cognitive skills. In column (iv), we
relax the assumption of homoskedasticity while keeping the assumption of normality (Model
4.3.1) and find estimates that are very close to the homoskedastic case. Finally, we relax the
assumption of normality in column (v) and assume only that the conditional η distributions
are symmetric in the tails (Model 4.3.2). This assumption yields estimates that are a bit
closer to zero, yet the non-cognitive estimate remains significant at 5%. Statistically, all three
corrections yield similar results. Table 1 also displays the estimates of δ for all correction
methods. All the estimates are significant at 5% and are negative for cognitive skills and
positive for non-cognitive skills.

Note that the bootstrapped standard errors of β̂ in the corrected models (columns (iii)-(v)
in Table 1) are much larger than the corresponding standard errors in the uncorrected model
(column (ii) in Table 1). The Eicker-White standard errors of the corrected model (Σ, see
Theorem 3.1) gravitate around 95% of the bootstrapped standard errors for all specifications,
so the penalty due to the estimation of the expectation turns out to not be important in
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Table 1: Main Empirical Results

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Homosk.
Tobit

Semipar.
Tobit

Tail
Symmetry

β -0.57** -0.44** 1.54 1.52 0.94
Cognitive (0.13) (0.10) (0.98) (0.98) (0.68)

δ -1.92** -1.90** -1.31**
(0.93) (0.93) (0.63)

β -0.28* -0.10 -3.05** -3.07** -2.11**
Non- (0.14) (0.14) (1.44) (1.42) (1.00)

Cognitive δ 2.85** 2.87** 1.91**
(1.40) (1.38) (0.95)

Note: N=4,330. Results are reported in terms of percentage points of the standard deviation of the outcome
variable. For example, the results in the last column suggest that an increase of one hour per week watching TV
leads to a reduction in non-cognitive skills of 2.11 percentage points of one standard deviation. Bootstrapped
standard errors in parentheses (1,000 bootstrap samples). Columns (iii), (iv) and (v) show results for Models
4.2.1, 4.3.1 and 4.3.2, respectively. The corrected specifications use 10 clusters. See Figure 9 for a reproduction
of the results in column (v) for different numbers of clusters. ** p<0.05, * p<0.1.

explaining the larger standard errors. Rather, the standard errors are larger because much
of the raw variation in X is contaminated by variation from confounders, and thus in the
uncorrected models X is predicting a large part of the error.

5.2 Supporting Evidence for Main Identifying Assumptions

This section provides a road map of the types of sensitivity analyses that we discussed through-
out the paper to validate the correction approach. To keep it brief, we organize the discussion
as a list of checks for each identifying assumption, and simply refer the reader to the relevant
discussion in the text for details.

5.2.1 Linearity Assumption in Equations (1) and (2)

• Relax this assumption using a more flexible model specification, such as the models
discussed in Section 2.2.

• Check the predicted residuals of the regression of Y on X and Z for X > 0. If equa-
tions (1) and (2) hold, the non-parametric fit of these residuals should be close to zero
everywhere for X > 0, which is what we find in the application (see Section 2.1 in the
online appendix).
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• Estimate β for truncated samples (X ≤ x̄), then plot β̂ for many values of x̄. Results
should be stable, which is what we find in the application (see Section 2.2 in the online
appendix).

• If there is more than one bunching point in the support of X, implement the exogeneity
test in Remark 2.3.

5.2.2 Assumption for Identification of E[X∗|X∗ ≤ 0, Z]

• Report results under different assumptions, as in Table 1.

• Run Monte Carlo simulations using the application data comparing the results of dif-
ferent methods under different distributional assumptions (see Section 3 in the online
appendix).

• Apply the tests and calculate bounds in Propositions 4.1, 4.2, and 4.3.

• Visual checks can be done by value of Z, if possible, or by groups of values of Z otherwise.
See Figures 5, 6 and 8, which show the fit for two of the clusters used for the main results
(Table 1).

• Test whether the empirical distribution and the fitted distribution are the same for
X∗ > 0 (see Remark 4.1).

• Knowing the sign of δ without any assumption about the expectation (Remark 2.2)
allows one to choose identification strategies for E[X∗|X∗ ≤ 0, Z] that are conservative
in the context of the application. For example, if δ > 0 and we want to make the
point that β < 0, it is preferable to err towards an overestimation of the magnitude of
E[X∗|X∗ ≤ 0, Z] so that the remaining bias after correction is positive. In this case,
if β̂ is still negative, we could be confident in the conclusion that β is negative even if
the correction is imperfect. This is in part why we report as our main results the tail
symmetry estimates (column (v) of Table 1).

• If using clusters, examine how results change with the number of clusters used in the
estimation of the expectation (Figure 9 in Section 4.3.2).

Of course, some of these checks can detect violations from both assumptions jointly (e.g.,
the last item from each section).

6 Concluding Remarks

This paper shows how to leverage bunching at the lower (or upper) extremum of the distri-
bution of the treatment variable to transform a problem of endogeneity into a problem of
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out-of-sample prediction. We examine several models in which this type of correction can be
built. In a linear model, the correction consists of a generated regressor which is added to
the original regression. We study the asymptotic behavior of the estimated coefficients of the
corrected regression. We consider several ways in which the out-of sample prediction might
be done. Finally, we apply our correction to an empirical problem and showcase how the
underlying assumptions of the method may be tested or argued.

The method developed in this paper opens up several paths for new research. Here we
highlight a few: (1) Throughout the paper, we proposed several tests of the underlying as-
sumptions. Although all are based on existing tests, the consequences of the use of estimated
nuisance parameters should be studied. (2) The correction strategy for the probit with endo-
geneity (Section 2.2.5) indicates that this type of approach may be developed for some widely
used models in the structural literature, such as discrete choice models. (3) Discretizing Z
before estimating the expectation proved to be a useful approach in this application and in
Caetano et al. (2020). The advantages/drawbacks of the use of clusters in this context need
to be investigated further. (4) The interaction of the correction with existing methods is
promising. We mentioned the potential combination of this method with Caetano (2015)’s
test in Remark 2.3. The interaction of this approach with instrumental variables methods
may also prove valuable. Our preliminary analyses indicate that the validity requirements of
an IV may be substantially weakened when the correction term is added to the regression.

A Estimators

• Remark 2.2: This can be implemented in two steps. (1) Regress Y onX and Z using only
observations with X > 0. Record the estimate of the coefficient of Z, α̂Z . (2) Calculate
the average of the residuals at X = 0, (

∑n
i=1 1(Xi = 0))−1

∑n
i=1(Yi − Z ′iα̂Z)1(Xi = 0).

This is an estimator of δE[X∗|X∗ ≤ 0].

• Bounds from Section 4.1 for discrete/discretized Z: for each value Z assumes, say
z, restrict the sample only to observations such that Z = z. Then, (1) calculate
F̂X|Z=z(0) = (

∑n
i=1 1(Zi = z))−1

∑n
i=1 1(Xi = 0, Zi = z), and (2) apply the method

in Cattaneo et al. (2019) to estimate both the density and the derivative terms.

• Model 4.2.1: Estimation can be done with a Tobit regression of X onto Z with censoring
below zero.

• Model 4.2.2: Note that E[1(X = 0)|Z = z] = FX|Z=z(0) and can be estimated as
a nonparametric regression of 1(X = 0) onto Z at z, and E[X|X > 0, Z = z] =

(1 − FX|Z=z(0))−1E[X|Z = z], and E[X|Z = z] can be estimated as a nonparametric
regression of X onto Z at z. A standard Nadaraya-Watson kernel regression could be
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used, for example. Let K(u) be a kernel function (
∫∞
−∞K(u) = 1, and suppose if

convenient that K(u) ≥ 0 and K(u)1(|u| > 1) = 0). Let kn(Zi − z) = K((Zi −
z)/hn)/

∑n
i=1K((Zi − z)/hn), for some sequence hn → 0, nhn →∞. Then

F̂X|Z=z(0) =

n∑
i=1

1(Xi = 0)kn(Zi − z)

and

Ê[X|X > 0, Z = z] = (1− F̂X|Z=z(0))−1
n∑
i=1

Xikn(Zi − z).

Conditions for uniform convergence of such estimators can be verified in the existing
literature. See, for example, Andrews (1995) and Hansen (2008). One could use different
estimators, for example local polynomials, see e.g. Masry (1996) or series estimators,
see e.g. Song (2008).

• Model 4.3.1: For each value Z assumes, say z, run a Tobit regression of X onto a
constant with censoring below zero using only observations such that Z = z.

• Model 4.3.2: Substitute quantities in the expectation formula by sample equivalents.

B Proofs

B.1 Proof of Theorem 3.1

For any function ψ ∈ H, and parameter θ ∈ Θ, define M(θ, ψ) = E[W (Y −W ′ψθ)], where
Wψ = (X,Z ′, ψ(Z)1(X = 0))′, and note that M(θ0, ψ0) = 0. Since it will be used several
times, note that Wψ −W = (0, 0′, (ψ(Z)− ψ0(Z))1(X = 0))′ = (ψ(Z)− ψ0(Z))1(X = 0)eδ,

where eδ = (0, . . . , 0, 1)′ is the last (dim(Z) + 2) × 1 canonical vector. Define Mn(θ, ψ) =
1
n

∑n
i=1Wiψ(Yi − W ′iψθ). Since this is a just-identified problem, θ̂ is chosen exactly as the

solution to minθ ||Mn(θ, ψ̂)||. Denote θ = (θX , θ
′
Z , θE)′. Define ε = Y −E[Y |X,Z] = ε+ δ(η−

E[η|X,Z])1(X = 0). Finally, Chen et al. (2003) also define a matrix W, which in our case
should be understood as the identity matrix (i.e. whenever W appears in Chen et al. (2003),
substitute it for the identity matrix).

We show the asymptotic normality, using Theorem 2 in Chen et al. (2003).

• θ̂ − θ0 = op(1) : We prove this directly.

θ̂ − θ0 =

(
1

n

n∑
i=1

Wiψ̂W
′
iψ̂

)−1
1

n

n∑
i=1

Wiψ̂(εi − (Wiψ̂ −Wi)
′θ0)
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=

(
1

n

n∑
i=1

Wiψ̂W
′
iψ̂

)−1 [
1

n

n∑
i=1

Wiεi +
1

n

n∑
i=1

(Wiψ̂ −Wi)εi −
1

n

n∑
i=1

Wi(Wiψ̂ −Wi)
′θ0 +

− 1

n

n∑
i=1

(Wiψ̂ −Wi)(Wiψ̂ −Wi)
′θ0

]

The term 1
n

∑n
i=1Wiεi = oa.s.(1) by Assumption 1(ii) and Brunk-Chung’s Law of Large Num-

bers (Chow and Teicher (1997), Theorem 10.1.3 for r = 1).
The term

∣∣∣ 1n∑n
i=1(Wiψ̂ −Wi)εi

∣∣∣ ≤ ||ψ̂ − ψ0|| 1n
∑n

i=1 |εi|. By Assumption 1(v), the first
term is op(1). The second term is Oa.s.(1) by Assumption 1(ii) and Brunk-Chung’s Law of
Large Numbers.

Remaining terms are shown to be op(1) analogously. For the last term, in Appendix B.2
we show that 1

n

∑n
i=1Wiψ̂W

′
iψ̂

= 1
n

∑n
i=1WiW

′
i plus a matrix with terms that can be seen

there. The terms inside the matrix are all similar to the terms above, in that they combine
(ψ̂(Zi) − ψ0(Zi)) or the square of it, and other independent variables, and thus it can be
shown that they are all op(1) analogously to what we just did. In Appendix B.2 we also show
that 1

n

∑n
i=1WiW

′
i →a.s. E[WW ′], which is full rank by Assumption 1(ii), which completes

the proof.
• Assumption 2.1 is trivially satisfied.
• Assumption 2.2: Γ1(θ, ψ0) = E[WW ′] by Assumption 1(ii) and the Dominated Convergence
Theorem, and is constant in θ. The requirements are thus satisfied by Assumption 1(ii).
• Assumption 2.3: First, we calculate the derivative Γ2(θ, ψ0)[ψ−ψ0]. Let ψt = ψ+t(ψ−ψ0).

By Assumption 1(ii) and the Dominated Convergence Theorem,

Γ2(θ, ψ0)[ψ − ψ0] = E
[

lim
t→0

1

t

(
−W (Wψt −W )′θ + (Wψt −W )(Y −W ′ψtθ)

)]
= E

[
(ψ(Z)− ψ0(Z))1(X = 0)(0,−θEZ ′,−W ′(θ − θ0)− θEψ0(Z))′

]
,

which exists in all directions [ψ − ψ0] ∈ H. Next,

||M(θ, ψ)−M(θ, ψ0)− Γ2(θ, ψ0)[ψ − ψ0]|| =
∣∣∣∣E [−θE(ψ(Z)− ψ0(Z))21(X = 0)eδ

]∣∣∣∣
≤ |θE | · ||ψ − ψ0||2H

and for τn = o(1), and ||θ − θ0|| ≤ τn, and ||ψ − ψ0|| ≤ τn,

||Γ2(θ, ψ0)[ψ − ψ0]− Γ2(θ0, ψ0)[ψ − ψ0]|| =∣∣∣∣E [−(ψ(Z)− ψ0(Z))1(X = 0)(0, (θE − δ)Z ′,W ′(θ − θ0) + (θE − δ)ψ0(Z))′
]∣∣∣∣

≤ sup
||ψ−ψ0||≤τn

||ψ − ψ0||E[||W ||] (|θE − δ|+ ||θ − θ0||) ≤ 2∆ · τ2n,
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where the first inequality uses the triangle and Cauchy-Schwarz’s inequalities, and the second
inequality is true by Assumption 1(ii).
• Assumption 2.4 is true by Assumption 1(v).
• Assumption 2.5 (we prove the stronger condition 2.5’): unfortunately, we cannot take
advantage of Theorem 3 in Chen et al. (2003) because we would like to allow the data to
be independent but not identically distributed. We cannot apply the result they mention on
Remark 3(iii) either, because the last element of our function m is not monotonic in ψ. We
must therefore prove the stochastic equicontinuity condition directly.

Let ||ψ − ψ0|| ≤ τn and ||θ − θ0|| ≤ τn, with τn = o(1). Then,

√
n||Mn(θ, ψ)−M(θ, ψ)−Mn(θ0, ψ0)||

≤

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

(WiW
′
i − E[WiW

′
i ])(θ − θ0)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣ 1√
n

n∑
i=1

(ψ(Zi)− ψ0(Zi))1(Xi = 0)εi

∣∣∣∣∣
+(τn + θE)

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

[
(ψ(Zi)− ψ0(Zi))1(Xi = 0)W ′i − E[(ψ(Zi)− ψ0(Zi))1(Xi = 0)W ′i ]

]∣∣∣∣∣
∣∣∣∣∣

+θE

∣∣∣∣∣ 1√
n

n∑
i=1

[
(ψ(Zi)− ψ0(Zi))

21(Xi = 0)− E[(ψ(Zi)− ψ0(Zi))
21(Xi = 0)]

]∣∣∣∣∣
The convergence of the sup||θ−θ0||≤δn of the first term is established in Andrews (1994),

equation (2.4), and for that we need only to show that 1√
n

∑n
i=1(WiW

′
i −E[WiW

′
i ]) = Op(1).

Some of the terms
∑n

i=1WijWis are constant, for exampleWi1Wi,dim(Z)+2 = Xiψ0(Zi)1(Xi =

0) = 0. For the terms that are not constant, we show that Liapounov’s condition is satisfied.
By Assumption 1(ii),∑n

i=1 E
[
|WijWis − E[WijWis]|2+α

]
(
∑n

i=1 V ar(WijWis))
1+α

2

≤
∑n

i=1 E
[
|WijWis|2+α

]
(nα)1+

α
2

≤ ∆

n
α
2 α1+α

2

= o(1).

For the remaining three terms, we note that Lemma 2.17 in Pakes and Pollard (1989) can
be directly extended from their case f(·, θ) to our case f(·, ψ), and can be proven in the same
way as theirs, as pointed out by Chen et al. (2003) in the proof of their Lemma 1.

Next, we show that f(Xi, Zi, εi, ψ) = (ψ(Zi)− ψ0(Zi))1(Xi = 0)εi satisfies the conditions
of Lemma 2.17 in Pakes and Pollard (1989). To see this, note that

|f(Xi, Zi, εi, ψ1)− f(Xi, Zi, εi, ψ2)| ≤ b(Xi, Zi, εi)||ψ1 − ψ2||,

where b(Xi, Zi, εi) = 1(Xi = 0)εi, and thus f is Lipschitz continuous in ψ. Assumption 1(ii)
guarantees that E[b(Xi, Zi, εi)

2+α] ≤ ∆ for some α > 0. Therefore, f is L2(P )-continuous
in ψ. Finally, an identical argument to Chen et al. (2003)’s proof of Theorem 3, item (i)
establishes that Hölder continuity of f in ψ combined with the finite uniform entropy of ψ
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(Assumption 1(iv)) imply that f belongs to an Euclidean class. A direct application of Lemma
2.17 concludes that sup||ψ−ψ0||≤δn

∣∣∣ 1√
n

∑n
i=1(ψ(Zi)− ψ0(Zi))1(Xi = 0)εi

∣∣∣ = op(1).

For the last two terms, we can show the local uniform continuity in probability analogously.
Note that the last term is not Lipschitz, but instead Hölder continuous with constant equal
to 2, which is treated identically.
• Assumption 2.6:
√
n(Mn(θ0, ψ0) + Γ2(θ0, ψ0)[ψ̂ − ψ0] =

1√
n

n∑
i=1

Wiεi − δ
√
nE[(ψ̂(Zi)− ψ0(Zi))1(Xi = 0)Wi],

Both terms are uncorrelated (because εi is mean independent of all Xj and Zj). White (1980)
establishes (by Assumption 1(ii)) that the first term converges to a normally distributed
random variable with zero mean and variance equal to the middle term in Eicker-White’s
covariance matrix. The second term converges to N (0,Ω) by Assumption 1(vi). �

B.2 Proof of Theorem 3.2

We use the notation defined in the beginning of the previous section. The convergence in
probability of the first term of V̂θ to Σ is a consequence of Assumption 1(ii) and is established
in White (1980). For the second term, δ̂ →p δ proceeds from Theorem 3.1.

Next, we establish that
(

ŵ′ŵ
n

)−1
→p E[WW ′]−1. We can decompose(

ŵ′ŵ
n

)
=

(
w′w
n

)
+

(
(ŵ−w)′w

n

)
+

(
w′(ŵ−w)

n

)
+

(
(ŵ−w)′(ŵ−w)

n

)
=

(
w′w
n

)

+

 0 0 0
0 0 1

n

∑n
i=1 Zi(ψ̂(Zi)− ψ0(Zi))1(Xi = 0)

0 1
n

∑n
i=1(ψ̂(Zi)− ψ0(Zi))Z

′
i1(Xi = 0) 3

n

∑n
i=1(ψ̂(Zi)− ψ0(Zi))

21(Xi = 0)

 .

By Markov’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi(ψ̂(Zi)− ψ0(Zi))1(Xi = 0)

∣∣∣∣∣ > τ

)
≤ sup
Z
|ψ̂(z)− ψ0(z)|

1

τn

n∑
i=1

E[||Zi||]. (11)

By Assumption 1(v), the first term in (11) is op(1). By Assumption 1(ii), the second term in
(11) is bounded. The other terms in the matrix are shown to be op(1) analogously.

The term w′w
n →a.s. E[WW ′] by Assumption 1(ii) and Brunk-Chung’s Strong Law of

Large Numbers (see Chow and Teicher (1997), Theorem 10.1.3, for r = 1).
Next, we decompose

ŵ′V̂ŵ
n2

− 1

n2

n∑
i=1

n∑
j=1

CijWiW
′
j1(Xi = 0, Xj = 0) =

32



=
1

n2

n∑
i=1

n∑
j=1

(Ĉij − Cij)(Ŵi −Wi)(Ŵj −Wj)
′1(Xi = 0, Xj = 0)

+
1

n2

n∑
i=1

n∑
j=1

Cij(Ŵi −Wi)(Ŵj −Wj)
′1(Xi = 0, Xj = 0)

+
2

n2

n∑
i=1

n∑
j=1

(Ĉij − Cij)(Ŵi −Wi)W
′
j1(Xi = 0, Xj = 0)

+
2

n2

n∑
i=1

n∑
j=1

Cij(Ŵi −Wi)W
′
j1(Xi = 0, Xj = 0)

+
1

n2

n∑
i=1

n∑
j=1

(Ĉij − Cij)WiW
′
j1(Xi = 0, Xj = 0)

Note that the sums 1
n2

∑n
i=1

∑n
j=1 |Cij |1(Xi = 0, Xj = 0), 1

n

∑n
i=1 ||Wj ||1(Xi = 0, Xj =

0), 1
n2

∑n
i=1

∑n
j=1 ||CijWj ||1(Xi = 0, Xj = 0) and 1

n2

∑n
i=1

∑n
j=1 ||WiW

′
j ||1(Xi = 0, Xj = 0)

are all von Mises statistics, corresponding to U-statistics with kernel h((Xi, Z
′
i)
′, (Xj , Z

′
j)
′) =

|Cij |1(Xi = 0, Xj = 0) in the first case, and analogously for the others. By Assumption 2(ii)
and Assumption 1(ii), the U-statistic converges a.s. to the kernel mean (see Theorem 3.1.1
in Korolyuk and Borovskich (2013).) Since the U-statistic converges a.s. to a finite constant,
the von Mises statistic also converges a.s. to that constant.

The decomposition is therefore op(1) by the triangle inequality and Assumption 2(iii) and
because supi=1,...,n ||Ŵi − Wi|| ≤ supi=1,...,n |ψ̂(Zi) − ψ0(Zi)| = op(1) as a consequence of
Assumption 1(v).

Finally, we show that 1
n2

∑n
i=1

∑n
j=1CijWiW

′
j1(Xi = 0, Xj = 0) →a.s. Ω. This is a von

Mises statistic corresponding to the U-statistic with kernel function h((Xi, Z
′
i)
′, (Xj , Z

′
j)
′) =

CijWiW
′
j1(Xi = 0, Xj = 0). By Assumption 2(ii), the U-statistic converges a.s. to its mean,

Ω (Theorem 3.1.1 in Korolyuk and Borovskich (2013) again). Since the U-statistic converges
a.s. to a finite constant, the von Mises statistic does as well. �

B.3 Proof of Remark 3.1

We show that when
√
n(ψ̂−ψ0) converges in distribution to a Brownian Bridge, Assumption

1(vi) holds, and Ω = E[Cij1(Xi=0, Xj =0)WiW
′
j ], for Cij = Cov(χZi , χZj ).

Define
ϕ(Tn) =

∫
Tn(z)1(x = 0)(x, z′, ψ0(z)1(x = 0))′P(dx, dz),

then,
√
nE[(ψ̂(Zi)− ψ0(Zi))1(Xi = 0)Wi] =

√
n(ϕ(ψ̂)− ϕ(ψ0)). The Hadamard derivative of

ϕ at ψ0 is

ϕ′ψ0
(h) =

∫
h(z)1(x = 0)(x, z′, ψ0(z)1(x = 0))′P(dx, dz)
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Therefore, by Assumption 1(iv) and the Functional Delta Method,

√
n(ϕ(ψ̂)− ϕ(ψ0))→d

∫
χz1(x = 0)(x, z′, ψ0(z)1(x = 0))′P(dx, dz).

Denote the limit random variable as A, and w(x, z) = (x, z′, ψ0(z)1(x = 0))′, then

A ∼ N
(

0,

∫∫
C(z, z̃)1(x = 0, x̃ = 0)w(x, z)w̃(x̃, z̃)′P(dx, dz)P(dx̃, dz̃)

)
.

(See e.g. Van der Vaart (1998) Example 22.11 for a similar calculation). �

B.4 Proof of Theorem 3.3

We show that the assumptions in Theorem B in Chen et al. (2003) hold. We use the notation
defined in the beginning of Section B.1. Note that, in our case, m(Yi, Xi, Zi, θ, ψ(Zi)) =

Wiψ(Yi −W ′iψθ).
• First, we show that θ̂− θ0 = oa.s.(n

−1/4). We prove this directly. The decomposition is the
same as in the first item in Appendix B.1:

θ̂ − θ0 =

(
1

n

n∑
i=1

Wiψ̂W
′
iψ̂

)−1[
1

n

n∑
i=1

Wiεi +
1

n

n∑
i=1

(Wiψ̂ −Wi)εi −
1

n

n∑
i=1

Wi(Wiψ̂ −Wi)
′θ0 +

− 1

n

n∑
i=1

(Wiψ̂ −Wi)(Wiψ̂ −Wi)
′θ0

]
.

The term 1
n

∑n
i=1Wiεi = oa.s.(n

−1/2+α) for some α > 0 by Assumption 1(ii) and Marcinkiewicz-
Zygmund Strong Law of Large Numbers (Chow and Teicher (1997) Theorem 5.3.2).

The term
∣∣∣ 1n∑n

i=1(Wiψ̂ −Wi)εi

∣∣∣ ≤ ||ψ̂ − ψ0|| 1n
∑n

i=1 |εi|. By Assumption 3(iii), the first

term is oa.s.(n−1/4). The second term is Oa.s.(1) by the Strong Law of Large Numbers.
The remaining two terms inside the brackets are shown to be oa.s.(n−1/4) analogously. For

the last term, in Section B.2 we showed that 1
n

∑n
i=1Wiψ̂W

′
iψ̂

= 1
n

∑n
i=1WiW

′
i plus a matrix

with terms which can be seen there. The terms inside the matrix are all similar to the terms
above, in that they combine (ψ̂(Zi) − ψ0(Zi)), or the square of it, and other i.i.d. variables,
and thus it can be shown that they are all oa.s.(n−1/4) analogously to what we just did. In
the previous section, we also showed that 1

n

∑n
i=1WiW

′
i →a.s. E[WW ′], which is full rank by

Assumption 1(ii) and completes the proof.
• Assumption 2.1 holds a.s. trivially.
• Assumption 2.4 holds a.s. by Assumption 3(v).
• Assumption 2.5’ holds a.s.: this assumption is used to show that ||νn(θ̂∗, ĥ∗)− νn(θ̂, ĥ)|| =
op∗(1). Instead of using the almost sure stochastic equicontinuity, we establish this result
directly.
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By the triangle inequality, the term is bounded above by ||νn(θ̂∗, ĥ∗) − νn(θ0, h0)|| +

||νn(θ̂, ĥ)−νn(θ0, h0)||, and in our case, each of those terms is bounded above by four quantities
identical to the bounds in the proof of Assumption 2.5 in Section B.1, except that ψ and θ
are substituted by ψ̂b and θ̂b, and ψ̂ and θ̂ respectively.

The first quantity is bounded above by
∣∣∣∣∣∣ 1
n1/2+c

∑n
i=1WiW

′
i − E[WiW

′
i ]
∣∣∣∣∣∣nc||θ − θ0|| for

some 0 < c ≤ 1/4 and θ = θ̂b or θ = θ̂, respectively. By Assumption 1(ii) and Marcinkiewicz-
Zygmund Law of Large Numbers (Chow and Teicher (1997) Theorem 5.3.2), the first term
is oa.s.(1). We also proved (first point in this Section) that ||θ̂ − θ0|| = oa.s.(n

−1/4). Given
Assumptions 3 (va) and (vc), all the assumptions of Theorem 3.1 hold with ψb in place of ψ̂
and ψ̂ in place of ψ0, and changing the probability measure from P to Pb. Therefore, by the
proof of Theorem 2 in Chen et al. (2003) (as mentioned in the proof of their Theorem B),
||θ̂b − θ̂|| = Opb(n

−1/2). Therefore ||θ̂b − θ0|| = Opb(n
−1/2), which completes the proof.

The result for the remaining quantities is implied directly by Assumptions 3 (iv) and (vb).
• Assumption 2.6 does not have “in probability" in its statement and thus holds by the proof
in Section B.1.
• Assumption 2.2 with ψ0 replaced by ψ ∈ Hτ : The derivative Γ1(θ0, ψ) = E[WψW

′
ψ] exists,

is continuous everywhere in θ (it does not depend on θ), and is of full rank for τ sufficiently
small by Assumption 1(ii).

Note also that Γ1(θ0, ψ) is continuous in ψ at θ = θ0 and ψ = ψ0, since

||Γ1(θ0, ψ)− Γ1(θ0, ψ0)|| ≤ E[||(Wψ −W )W ′ψ +W (Wψ −W )′||]

≤ ||ψ − ψ0||E[||Wψ||+ ||W ||] ≤ (2∆ + τ)||ψ − ψ0||.

• Assumption 2.3 with ψ0 replaced by ψ ∈ Hτn :

Γ2(θ, ψ)[ψ̃ − ψ] = E
[
(ψ̃(Z)− ψ(Z))1(X = 0)(0,−θEZ ′,−W ′(θ − θ0)− θEψ(Z))′

]
exists in all directions [ψ̃ − ψ] ∈ H. Moreover,∣∣∣∣∣∣M(θ, ψ̃)−M(θ, ψ)− Γ2(θ, ψ)[ψ̃ − ψ]

∣∣∣∣∣∣ =
∣∣∣∣∣∣E [−θE(ψ̃(Z)− ψ(Z))21(X = 0)eδ

]∣∣∣∣∣∣
≤ |θE | · ||ψ̃ − ψ||2H,

and for τn = o(1), and ||θ − θ0|| ≤ τn, and ||ψ̃ − ψ|| ≤ τn∣∣∣∣∣∣Γ2(θ, ψ)[ψ̃ − ψ]− Γ2(θ0, ψ)[ψ̃ − ψ]
∣∣∣∣∣∣ =∣∣∣∣∣∣E [−(ψ̃(Z)− ψ(Z))1(X = 0)(0, (θE − δ)Z ′,W ′(θ − θ0) + (θE − δ)ψ(Z))′

]∣∣∣∣∣∣
≤ sup
||ψ̃−ψ||≤τn

||ψ̃ − ψ||E[||Wψ||] (|θE − δ|+ ||θ − θ0||) ≤ 2(∆ + τn)τ2n,

where the first inequality uses the triangle and Cauchy-Schwarz’s inequalities, and the second
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inequality uses the triangle inequality again and Assumption 1(ii).
• Assumption 2.4B holds by Assumption 3(va).
• We show Assumption 2.5’B by applying Theorem 3 in Chen et al. (2003). In our case,
l = dim(Z) + 2 and m(Y,X,Z, θ, ψ) = mc(Y,X,Z, θ, ψ), and mlc(Y,X,Z, θ, ψ) = 0, which
automatically satisfies condition 3.2. Condition 3.3 is satisfied by Assumptions 1 (iii) and
(iv). We show condition 3.1:

|mc(Y,X,Z, θ1, ψ1)−mc(Y,X,Z, θ2, ψ2)| =

= |(Wψ1 −Wψ2)Y − (Wψ1Wψ1 −Wψ2Wψ2)θ2 −Wψ1W
′
ψ1

(θ1 − θ2)|

≤ |ψ1(Z)− ψ2(Z)|(|Y |+ ||θ1||(2||Z||+ |ψ1(Z)|+ |ψ2(Z)|))

+||θ1 − θ2||(X2 + 2|X| · ||Z||+ ||Z||2 + 2||Z|| · |ψ1(Z)|+ ψ1(Z)2).

There exists ∆ > 0 such that by Assumption 1(iii), ||θ1|| ≤ ∆ and by Assumption 3(ii),
|ψ1(Z)| ≤ ∆. Therefore, b(Y,X,Z) = max{|Y | + 2∆||Z|| + 2∆2, X2 + 2(|X| + ∆) · ||Z|| +
||Z2|| + ∆2}. By Assumption 1(ii), E[b(Y,X,Z)] < ∞. Therefore, the condition holds with
s1j = sj = 1.

• Assumption 2.6B: let M b
n(θ̂, ψ̂) be equal to Mn(θ̂, ψ̂) as defined in Section B.1, except

that it is calculated with the bootstrap sample. As stated in Chen et al. (2003) (p. 1596),
from Giné and Zinn (1990) we know that the Pb-distribution of

√
n(M b

n(θ̂, ψ̂) −Mn(θ̂, ψ̂))

approximates the distribution of
√
n(Mn(θ̂, ψ̂)−M(θ̂, ψ̂)), which is approximately the same

as the distribution of
√
nMn(θ0, ψ0) by condition 2.5’ shown in Section B.1.

Next, we show that the the Pb-distribution of
√
nΓ2(θ̂, ψ̂)[ψ̂b − ψ̂] approximates the dis-

tribution of
√
nΓ2(θ0, ψ0)[ψ̂ − ψ0]. Specifically,

√
n(Γ2(θ̂, ψ̂)[ψ̂b − ψ̂] − Γ2(θ0, ψ0)[ψ̂ − ψ0]) =

(0, An, Bn), where

An =− δ
√
nE[[(ψ̂b(Z)− ψ̂(Z))− (ψ̂(Z)− ψ0(Z))]1(X = 0)Z ′]

−
√
nE[(θ̂E − δ)(ψ̂b(Z)− ψ̂(Z))1(X = 0)Z ′]

Bn =− δ
√
nE[[(ψ̂b(Z)− ψ̂(Z))− (ψ̂(Z)− ψ0(Z))]1(X = 0)ψ0(Z)]

−
√
nE[(θ̂E − δ)(ψ̂b(Z)− ψ̂(Z))1(X = 0)ψ0(Z)]

−
√
nE[θ̂E(ψ̂b(Z)− ψ̂(Z))(ψ̂(Z)− ψ0(Z))1(X = 0)].

By Assumption 3(vc), the first terms in An and Bn are opb(1). Now we discuss the second
term in An. By Cauchy-Schwartz, its absolute value is bounded above by

E[n(θ̂E − δ)4]1/4E[||Z||4]1/4n1/4E[(ψ̂b(Z)− ψ̂(Z))2]1/2. (12)

By the first point in this Section, n1/4||θ̂ − θ0|| = oa.s.(1), and by Assumption 1(iii) and the
Dominated Convergence Theorem, the first term in (12) converges to zero. The second term

36



is bounded by Assumption 1(ii). Assumption 3(va) implies that the third term is opb(1).

Therefore, the second term in An is opb(1). The second and third terms in Bn are also opb(1),

and the proof is analogous, except that to bind the second term on Bn we use Assumption
3(ii), and to bind the third term on Bn we use Assumption 3(iii), the Continuous Mapping
Theorem, and the Dominated Convergence Theorem.

Thus,
√
n(M b

n(θ̂, ψ̂)−Mn(θ̂, ψ̂)+Γ2(θ̂, ψ̂)[ψ̂b−ψ̂]) and
√
n(Mn(θ0, ψ0)+Γ2(θ0, ψ0)[ψ̂−ψ0])

have the same asymptotic distribution. By the proof of Assumption 2.6 in Section B.1, this
is the desired limit. �

B.5 Lemma: Establishing Stochastic Dominance in an Interval.

Let 0 < a ≤ b <∞, and suppose that (i) f and g are two non-negative functions; (ii) g(x) ≥
f(x) for all x ∈ [0, a]; and (iii)

∫ a
0 g(x)dx =

∫ b
0 f(x)dx = Λ(b) < ∞. Then

∫ b
0 xf(x)dx ≥∫ a

0 xg(x)dx.

Proof. Let
∫ x
0 f(u)du = Λ(x), and

∫ x
0 g(u)du = G(x). By Leibniz rule, item (iii), and the

Mean Value Theorem for integrals,∫ b

0
xf(x)dx−

∫ a

0
g(x)dx = (b− a)(Λ(b)− Λ(c)) +

∫ a

0
(G(x)− Λ(x))dx,

where c ∈ [a, b]. By item (i), Λ(b) ≥ Λ(c), and by item (ii), the second term is non-negative.
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This appendix supplements the paper by offering further analyses. In Section 1, we discuss
alternative approaches for the identification of E[X∗|X∗ ≤ 0, Z] that were mentioned but not
shown in the paper. In Section 2, we present two empirical checks of the linearity assumptions
in equations (1) and (2) in the paper which proved useful in the application in Section 5, as
well as in Caetano et al. (2020). Finally, in Section 3, we present the results from a real-data
Monte Carlo simulation.

1 Identifying E[X∗|X∗ ≤ 0, Z]

1.1 Parametric Methods

We discuss how E[X∗|X∗ ≤ 0, Z] may be obtained in parametric models under some well-
known distribution families. This section supplements the discussion in Section 4.2.1 in the
paper.

Model 4.2.3 (Logistic) η|Z ∼ Logistic(Z ′κ, σ) almost surely. In this case,

E[X∗|X∗ ≤ 0, Z] = Z ′(π + κ)− σ log(1 + exp(Z ′(π + κ)/σ)).

The log-likelihood function is

L(π + κ, σ) = −
n∑
i=1

1(Xi = 0) log(1 + exp(Z ′i(π + κ)/σ)) + 1(Xi > 0)(Xi − Z ′i(π + κ))/σ

+ 1(Xi > 0) log σ + 2 · 1(Xi > 0) log(1 + exp(−Xi + Z ′i(π + κ))/σ).

Note that, similarly to the Tobit case, we only identify the sum π + κ instead of π and κ
separately, and this is sufficient to identify the expectation. Indeed, whenever η can be written
as Z ′κ+ ζ, where ζ is a distribution with fixed location, we will only identify π + κ, but this
will be sufficient. This is true in the Tobit case, where ζ ∼ N (0, σ), and in the Logistic case,
where ζ ∼ Logistic(0, σ). These are both symmetric distributions where the location is equal
to the mean.
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The uniform distribution is an example of a symmetric distribution with location deter-
mined by the extremum.

Model 4.2.4 (Uniform) η|Z ∼ U [Z ′κ, Z ′µ] almost surely. In this case,

E[X∗|X∗ ≤ 0, Z] =
1

2
Z ′(π + κ).

The log-likelihood function is

L(π + κ, µ− κ) =

n∑
i=1

1(Xi = 0) log(−Z ′i(π + κ))− log(Z ′i(µ− κ)).

The last example is of an asymmetric distribution where the location is set by the lower
limit of the support. The model implies that the distribution of X∗ has support [Z ′(π+κ),∞)

with the higher concentration towards the lower values of X∗.

Model 4.2.5 (Exponential) η = Z ′κ + ζ, where ζ|Z ∼ Exp((Z ′µ)−1) almost surely. In this
case,

E[X∗|X∗ ≤ 0, Z] = Z ′µ+ Z ′(π + κ)
(1 + exp(Z ′(π + κ)/Z ′µ))

(1− exp(Z ′(π + κ)/Z ′µ))
.

The log-likelihood function is

L(π+κ, σ) =
n∑
i=1

1(Xi = 0) log(1−exp(Z ′i(π+κ)/Z ′iµ))−1(Xi > 0)(logZ ′iµ+(Xi−Z ′i(π+κ))/Z ′iµ).

1.2 Semiparametric Methods

We discuss how E[X∗|X∗ ≤ 0, Z] may be obtained in semiparametric models in which the
distribution family is known, but the parameters are identified nonparametrically. This section
supplements the discussion in Section 4.2.2 in the paper.

Model 4.2.6 (Semiparametric Logistic) η|Z ∼ Logistic(κ(Z), σ(Z)) almost surely. In this
case,

E[X∗|X∗ ≤ 0, Z] = σ(Z)

(
Z ′π + κ(Z)

σ(Z)
− log

(
1 + exp

(
Z ′π + κ(Z)

σ(Z)

)))
.

We can identify 1+exp((Z ′π+κ(Z))/σ(Z)) = (FX|Z(0))−1, and σ(Z) = −E[X|X > 0, Z](1−
FX|Z(0))/ log(FX|Z(0)), and thus

E[X∗|X∗ ≤ 0, Z] = −E[X|X > 0, Z]

(
(1− FX|Z(0)) log(1− FX|Z(0))

FX|Z(0) logFX|Z(0)

)

2



Model 4.2.7 (Semiparametric Uniform) η|Z ∼ U [κ(Z), µ(Z)] almost surely. In this case,

E[X∗|X∗ ≤ 0, Z] =
1

2
(Z ′π + κ(Z)).

We can identify Z ′π + κ(Z)/(µ(Z) − κ(Z)) = −FX|Z(0), Z ′π + µ(Z)/(µ(Z) − κ(Z)) = 1 −
FX|Z(0), and E[X|X > 0, Z] = 1/2(Z ′π + µ(Z)), thus

E[X∗|X∗ ≤ 0, Z] = −E[X|X > 0, Z]
FX|Z(0)

1− FX|Z(0)
.

Model 4.2.8 (Semiparametric Exponential) η = κ(Z)+ζ, where ζ|Z ∼ Exp(µ(Z)−1) almost
surely. In this case,

E[X∗|X∗ ≤ 0, Z] = µ(Z)

(
1 +

(Z ′π + κ(Z))/µ(Z)

1− exp((Z ′π + κ(Z))/µ(Z))

)
.

We can identify (Z ′π + κ(Z))/µ(Z) = log(1− FX|Z(0)) and µ(Z) = E[X|X > 0, Z]. Thus,

E[X∗|X∗ ≤ 0, Z] = −E[X|X > 0, Z]

(− log(1− FX|Z(0))

FX|Z(0)
− 1

)
.

1.3 Semi- and Nonparametric Methods for Discrete/Discretized Z

We discuss how E[X∗|X∗ ≤ 0, Z] may be obtained in the semiparametric models of the
previous section when Z is discrete or has been discretized. This section supplements the
discussion in Section 4.3.1 in the paper. Throughout this section, assume that supp(Z) is a
finite set.

Model 4.3.3 (Semiparametric Logistic, discrete case) Suppose that Model 4.2.6 holds. Let
αz = z′π + µ(z) and σz = σ(z). This implies that X∗|Z = z ∼ Logistic(αz, σz). In this case,
the two parameters αz and σz can be identified and estimated with the log-likelihood function

L(αz, σz) = −
n∑
i=1

1(Xi = 0, Zi = z) log(1 + exp(αz/σz)) + 1(Xi > 0, Zi = z)(Xi − αz)/σz

+ 1(Xi > 0, Zi = z) log σz + 2 · 1(Xi > 0) log(1 + exp(−(Xi − αz)/σz).

Model 4.3.4 (Semiparametric Uniform, discrete case) Suppose that Model 4.2.7 holds. Let
αz = z′π + κ(z) and νz = µ(z) − κ(z). This implies that X∗|Z = z ∼ U [αz, αz + νz]. In
this case, the two parameters αz and νz can be identified and estimated with the log-likelihood
function

L(αz, νz) =

n∑
i=1

1(Xi = 0, Zi = z) log(−αz)− 1(Zi = z) log νz.
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Model 4.3.5 (Semiparametric Exponential, discrete case) Suppose that Model 4.2.8 holds.
Let αz = z′π + κ(z) and µz = µ(z). This implies that X∗ = αZ + ζ almost surely, where
ζ|Z = z ∼ Exp(µ−1z ). In this case, the two parameters αz and µz can be identified and
estimated with the log-likelihood function

L(αz, µz) =

n∑
i=1

1(Xi = 0, Zi = z) log(1−exp(αz/µz))−1(Xi > 0, Zi = z)(logµz+(Xi−αz)/µz).

Model 4.3.6 (Conditional Symmetry) Suppose that FX|Z=z(0) ≤ 0.5. Assume that the distri-
bution of η|Z = z is symmetric around its mean, so that letting E[η|Z = z] = µz, Fη|Z=z(a) =

1−Fη|Z=z(2µz − a). This implies that the distribution of X∗|Z = z is also symmetric around
its mean/median z′π+µz. Thus, for all x < 0, FX∗|Z=z(x) = 1−FX∗|Z=z(2(z′π+µz)−x) =

1 − FX|Z=z(2(z′π + µz) − x). Because FX|Z=z(0) ≤ 0.5, z′π + µz = med(X∗|Z = z) =

med(X|Z = z) is identifiable, and thus so is FX∗|Z=z(x) = 1− FX|Z=z(2med(X|Z = z)− x)

for all x. Therefore, if we calculate the expectation, we can identify the conditional expectation
via change of variables as

E[X∗|X∗ ≤ 0, Z = z] = 2med(X|Z = z)− E[X|X ≥ 2med(X|Z = z), Z = z]. (1)

To estimate this quantity, simply substitute the sample equivalents. Note that full symme-
try is testable. The distribution of X∗|Z = z is observed in (0, 2med(X|Z = z)]. Therefore,
the equality between the functions FX|Z=z(x) and 1 − FX|Z=z(2med(X|Z = z) − x) for
x ∈ [0,med(X|Z = z)] can be tested, as discussed in Remark 4.1 in the paper.

2 Two Empirical Checks of the Linearity Assumption

We suggest two checks of whether the main conclusions of our application would change under
violations of the linearity assumption in equations (1) and (2). These checks proved to be of
practical value both in this application and in Caetano et al. (2020).

2.1 Plotting Residuals from the Uncorrected Regression for X > 0

By equation (4) in the paper, when X > 0, E[Y |X,Z] = X ′(β+δ)+Z ′(π−γδ). The expected
value of the residuals of a regression of Y on X and Z for observations with X > 0 should thus
be equal to zero for each positive value ofX. Figure 1 shows the local linear fit of the estimated
residuals for cognitive (left panel) and non-cognitive (right panel) skills in our application,
which are always close to zero in the positive side.

The points at zero in Figure 1 represent the average of the residuals of the same regression
among observations with X = 0. This corresponds exactly to an estimator of δE[X∗|X∗ ≤ 0],

as discussed in Remark 2.1 in the paper. The positive and strongly significant result in the left
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Figure 1: Evidence that Uncorrected Estimates Are Biased
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Note: Each panel shows a plot of the local linear estimator (bandwidth equals to 10) of the residuals from a
regression of Y onto X and Z, estimated using only observations with X > 0, where X represents the hours
spent watching TV in a typical week. We also present the average of the residuals for X = 0 and show 90%
confidence intervals everywhere. The caption shows the p-value of a test for whether the average residual at
X = 0 is equal to zero. P-value is calculated using 1,000 bootstrapped samples.

panel shows that δ < 0 for cognitive skills. Analogously, the right panel shows that δ > 0 for
non-cognitive skills. Incidentally, this implies a rejection of exogeneity in both cases (p-value
shown in the caption of each panel).

2.2 Sequenced Sample Truncation

To fix ideas, consider two scenarios. In scenario 1, we restrict our sample to observations
with X ∈ [0, 1], and in scenario 2, we restrict our sample to observations with X ∈ [0, 50]. We
exploit the idea that, under violations of the linearity assumption, the effect of the confounders
at X = 0 is likely to be more similar to the effect of the confounders at X = 1 than at X = 50.

Similarly, the effect of an additional hour of TV at X = 0 is more likely to be similar to the
effect of an additional hour at X = 1 than at X = 50.

We build on this idea by first restricting the sample to reflect the first scenario and then
progressively expanding the sample until it reaches the second scenario. In Figure 2, we
show how our main estimate β̂ for cognitive (left panel) and non-cognitive skills (right panel)
changes for different truncations of our sample, ranging from Xmax = 5 to Xmax = 50).1 Since
over 99% of our sample spends less than 50 hours per week watching TV, the estimates in the
far right of each panel are almost identical to the corresponding estimates reported in Table
1 of the paper. This approach also allows us to assess the robustness of our conclusions to

1We do not include the cases Xmax = 1, 2, 3, 4 in the plot because the confidence intervals are too large,
which makes it hard to visualize what is happening in the rest of the plot. Nevertheless, the unreported results
for these cases are consistent with the conclusions we draw from Figure 2. To keep everything else constant
irrespective of Xmax, we keep Ê[X∗|X∗ ≤ 0, Z] fixed across the different truncations using our preferred tail
symmetry approach. Note that the identification of E[X∗|X∗ ≤ 0, Z] does not depend on the assumptions
about equations (1) and (2) of the paper, which is what we are trying to test here.
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the elimination of television time outliers from our sample.

Figure 2: Estimates for Different Sub-Samples of Data
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Note: Each panel shows the estimates of β for cognitive (left panel) or non-cognitive (right panel) skills
restricting the sample to only children who watch at most Xmax hours of TV per week, for Xmax = 5, . . . , 50,
with the Xmax = 50 restriction including over 99% of the sample. The 90% bootstrapped confidence intervals
are also shown.

For lower values of Xmax, the sample is smaller and the confidence intervals are larger,
suggesting small-sample variability. Nevertheless, for both types of skills, the qualitative
conclusions are stable for all values of Xmax. For cognitive skills, the point estimates are stable
for Xmax ≥ 15, while for non-cognitive skills, the point estimates are stable for Xmax ≥ 8.

3 Monte Carlo

We assess the performance of our method with an empirical Monte Carlo based on the data
and application introduced in Section 5 of the paper. Section 3.1 explains how we calibrate the
parameters of the data generating process, Section 3.2 describes how we use these calibrated
parameters to draw random samples with different distributions of η|Z, and Section 3.3 reports
and discusses the Monte Carlo results.

3.1 Parameter Calibration

To estimate the parameters, we fit the semiparametric Tobit model (Model 4.3.1 in the paper.)
All of the steps enumerated below are carried out on the sample used in Section 5 in the paper
with 10 clusters defined as in the application.

1. For each cluster k = 1, . . . 10 we run a Tobit regression of X on a constant. Denote by
α̂k the estimated constant and by σ̂2η,k the estimated variance from this Tobit regression.
Let ek = (0, . . . , 0, 1, 0, . . . , 0)′ be the k−th 10 × 1 canonical vector, then we estimate
Ê[X∗|X∗ ≤ 0, Ĉ10 = ek] = α̂k − σ̂η,kλ

(
− α̂k
σ̂η,k

)
.
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2. We run an OLS regression of Y on X, Z, and X + Ê[X∗|X∗ ≤ 0, Ĉ10 = ek]1(X = 0),

and denote by β̂, â and δ̂ the respective estimated coefficients. We denote by σ̂2ε,k the
variance (conditional on Ĉ10 = ek) of the residuals from this regression.

3. For each k, we estimate F̂X|Ĉ10=ek
(0) by calculating the proportion of observations with

Xi = 0 among all observations with Ĉ10i = ek (i.e., all observations in cluster k). We
also estimate p̂k = P̂(Ĉ10 = ek).

4. We estimate the vector γ̂ = â+ α̂δ̂, where α = (α1, . . . , α10)
′.

5. We estimate σ̂2η,H = 1∑10
k=1 p̂

2
k

∑10
k=1 p̂

2
kσ̂

2
η,k, and σ

2
η,k,Mix = σ̂2η,k − 49.

6. We calculate

σ̂2ε,k = σ̂2ε,k − δ̂2σ̂2η,k
(

1 +
α̂k
σ̂η,k

λ

(
− α̂k
σ̂η,k

)
− λ2

(
− α̂k
σ̂η,k

))
.

3.2 Drawing the Monte Carlo Samples

With the parameters estimated in the previous section in hand, we next produce the Monte
Carlo samples using the general scheme: for observation j ∈ {1, 2, . . . , N}:

1. Zj is a random draw from the entire sample of Zi’s in the data set used in Section 5 of
the paper. Suppose that Zj belongs to the cluster k in the original analysis sample.

2. εj is a random draw from a N (0, σ̂2ε,k) distribution.

3. ηj is a random draw from one of the distributions below, depending on the simulation:2

• Homoskedastic Normal: Draw ηj from a N (0, σ̂2η,H) distribution.

• Heteroskedastic Normal: Draw ηj from a N (0, σ̂2η,k) distribution.

• Heteroskedastic Logistic: Draw ηj from a Logistic(0,
√

3σ̂η,k/π) where π is the
mathematical constant pi.
• Heteroskedastic Triangular: Let uj be a draw from the Uniform[0,1] distribution.

Then

ηj = 3σ̂η,k

(
2
√
uj −

√
2
)
, if uj < 0.5

= 3σ̂η,k

(√
2− 2

√
1− uj

)
, if uj ≥ 0.5

• Heteroskedastic Uniform: Draw ηj from a uniform distribution in the interval[
−
√

3σ̂η,k,
√

3σ̂η,k
]
.

2Note that although we are drawing ηj from distributions with zero means, we are not operating under
a zero mean assumption on the confounder. The mean of the confounder may be different from zero and is
incorporated implicitly through the α̂k in step 4.
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• Heteroskedastic Symmetric Mixture Normal: let uj be a draw from a uniform[0,1]
distribution. Then, η̃(1)j is a draw from N (7, σ2η,k,Mix) and η̃

(2)
j be a draw from

N (−7, σ2η,k,Mix). Then, we obtain ηj as follows:

ηj = η̃
(1)
j if uj < 0.5

= η̃
(2)
j if uj ≥ 0.5

4. We calculate Xj = max{0, α̂k + ηj}.

5. We calculate Yj = β̂Xj + Z ′j γ̂ + δ̂ηj + εj

6. We keep (Yj , Xj , Z
′
j , Ĉ

′
10j). This is one observation.

7. For each of the M Monte Carlo samples of size N, indexed by r, we estimate β̂r(s)
separately for each identification strategy s ∈ {uncorrected with controls, Tobit, semi-
parametric Tobit, and tail symmetry}. We then calculate the bias for each strategy
as

Bias(s) = M−1
∑
r

(β̂r(s)− β̂).

where β̂ is the true value of the parameter in this Monte Carlo, obtained in step 2 of
the previous section (this is equivalent to β̂ in column (iv) in Table 1 of the paper). We
calculate the standard deviation as

SD(s) =

√
(M − 1)−1

∑
r

(β̂r(s)− ¯̂
β(s))2,

where ¯̂
β(s) = M−1

∑
r β̂r(s). We set M = 10,000 and consider three sample sizes:

N = 500, N = 1, 000, and N = 5, 000.

3.3 Monte Carlo Results

Table 1 presents the Monte Carlo results for non-cognitive skills. The results for cognitive
skills yield similar conclusions and are therefore omitted for brevity. We report both the
average bias and the standard deviation of the Monte Carlo estimates in percentage points
of the standard deviation of the outcome variable, the same units as in Table 1 of the paper
(Section 5).

Irrespective of the sample size N, and irrespective of the distribution of η|Z, the bias of
the uncorrected approach with controls (column (ii)) is very large. In all rows we strongly
reject a t-test that the bias is equal to zero.

In the next columns of the table, we show the results using the correction strategies
proposed in the paper under different distributional assumptions on η|Z. It is immediate
that all of the correction strategies yield much smaller biases than the uncorrected strategy
irrespective of the sample size and the true distribution of η|Z.

8



Table 1: Monte Carlo Results, Non-Cognitive Skills

(ii) (iii) (iv) (v)
Uncorrected Homoskedastic Semiparametric Conditional
w/ Controls Tobit Tobit Tail Symmetry

N=500 Bias SD Bias SD Bias SD Bias SD

Hom. Normal 3.10** 0.45 0.08 3.50 0.24 3.37 0.42 3.43
Het. Normal 3.10** 0.46 0.03 3.56 0.21 3.39 0.38 3.47
Het. Logistic 3.12** 0.47 -0.85 3.86 -0.59 3.69 0.20 3.15
Het. Triangular 3.41** 0.30 0.16 1.45 0.27 1.42 0.33 1.45
Het. Uniform 3.00** 0.43 1.49 3.01 1.55 2.84 0.84 4.63
Het. Mixt. Norm. 3.07** 0.45 0.44 3.48 0.56 3.32 0.45 3.71

N=1,000 Bias SD Bias SD Bias SD Bias SD

Hom. Normal 3.09** 0.31 -0.00 2.42 0.08 2.37 0.17 2.38
Het. Normal 3.09** 0.31 -0.02 2.47 0.08 2.40 0.15 2.42
Het. Logistic 3.11** 0.32 -0.78 2.67 -0.64 2.61 0.12 2.18
Het. Triangular 3.40** 0.21 0.16 1.00 0.19 1.00 0.18 1.03
Het. Uniform 2.99** 0.30 1.55 2.08 1.57 2.01 0.60 3.57
Het. Mixt. Norm. 3.06** 0.31 0.36 2.35 0.42 2.30 0.19 2.59

N=5,000 Bias SD Bias SD Bias SD Bias SD

Hom. Normal 3.09** 0.14 0.02 1.07 0.03 1.06 0.05 1.07
Het. Normal 3.09** 0.14 -0.00 1.09 0.03 1.09 0.05 1.09
Het. Logistic 3.12** 0.14 -0.79 1.17 -0.74 1.16 0.01 0.95
Het. Triangular 3.40** 0.09 0.16 0.44 0.13 0.44 0.03 0.46
Het. Uniform 3.00** 0.13 1.54* 0.91 1.53* 0.89 0.12 1.73
Het. Mixt. Norm. 3.07** 0.13 0.38 1.05 0.38 1.04 0.05 1.18

Note: The values are reported in percentage points of the standard deviation of the outcome variable, as in
Table 1 of the paper. Columns (iii), (iv) and (v) show results for corrections using Models 4.2.1, 4.3.1 and
4.3.2 in the paper, respectively. Simulations are based on 10,000 drawn samples of size N using 10 clusters.
For each panel representing a different sample size N, each row represents the results from a Monte Carlo
assuming a different distribution of η|Z. **: significant at the 5% level. *: significant at the 10% level.

Although all three correction strategies perform substantially better than the uncorrected
strategy, a comparison among them reveals interesting patterns. First, the biases of the three
correction methods are almost never significantly different from zero, including all instances in
which the distribution assumption is wrong. The only exception is when the true distribution
is the uniform and the correction strategies assume normality instead (columns (iii) and (iv)).
Second, irrespective of the distribution of η|Z, the tail symmetry assumption yields biases
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that decline in magnitude as N grows. Third, both Tobit strategies perform better than the
tail symmetry strategy under normality (two first rows in each panel), though the difference
diminishes substantially when the sample increases.

Finally, note that the standard errors reported by the uncorrected approach are much
smaller than the standard errors reported by any of the corrected approaches. This mirrors
what we find in the paper (Table 1 in Section 5).

References

Caetano, C., Caetano, G., and Nielsen, E. (2020). Should children do more enrichment
activities? Leveraging bunching to correct for endogeneity. FEDS Working Paper No.
2020-036.

10


	CCN_Econometrics
	Introduction
	Correction Approach
	Linear Model
	Extensions
	Linear Correlated Random Coefficients
	Nonlinear Correlated Random Effects
	Partially Linear Model
	A Nonparametric Nonseparable Model
	Probit Model with Endogeneity


	Asymptotic Theory for Estimation of the Corrected Model
	Identifying E[X*|X*<=0,Z]
	Partial Identification
	Identification Through Families of Distributions
	Parametric Methods
	Semiparametric Methods

	Discrete/Discretized Z
	Methods for Z with Finite Support
	Discretizing Z: Hierarchical Clustering


	Application: The Effect of TV on Children's Skills
	Main Results
	Supporting Evidence for Main Identifying Assumptions
	Linearity Assumption in Equations (1) and (2)
	Assumption for Identification of E[X*|X*<=0,Z]


	Concluding Remarks
	Estimators
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Remark 3.1
	Proof of Theorem 3.3
	Lemma: Establishing Stochastic Dominance in an Interval.


	CCN_Econometrics_Online_Appendix
	Identifying E[X*|X*<=0,Z]
	Parametric Methods
	Semiparametric Methods
	Semi- and Nonparametric Methods for Discrete/Discretized Z

	Two Empirical Checks of the Linearity Assumption
	Plotting Residuals from the Uncorrected Regression for X>0
	Sequenced Sample Truncation

	Monte Carlo
	Parameter Calibration
	Drawing the Monte Carlo Samples
	Monte Carlo Results



