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Abstract

We introduce a new dataset of real gross domestic product (GDP) growth and core
personal consumption expenditures (PCE) inflation forecasts produced by the staff
of the Board of Governors of the Federal Reserve System. In contrast to the eight
Greenbook forecasts a year the staff produces for Federal Open Market Committee
(FOMC) meetings, our dataset has roughly weekly forecasts. We use these new data
to study whether the staff forecasts efficiently and whether efficiency, or lack thereof, is
time-varying. Prespecified regressions of forecast errors on forecast revisions show that
the staff’s GDP forecast errors correlate with its GDP forecast revisions, particularly
for forecasts made more than two weeks from the start of a FOMC meeting, implying
GDP forecasts exhibit time-varying inefficiency between FOMC meetings. We find
some weaker evidence for inefficient inflation forecasts.
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pressed here are ours and are not necessarily those of the Board of Governors of the Federal Reserve System.
This paper makes use of forecasts by the Board’s staff other than those from the Greenbook/Tealbook.
These non-Greenbook /non-Tealbook forecasts provided updates to the staff forecast in-between the Green-
books/Tealbooks that incorporated information from data released subsequent to the most recent Green-
book/Tealbook. However, the staff typically, but not always, updated conditioning assumptions regarding
fiscal policy, monetary policy, financial conditions, or other economic forces that shape the trajectory of
the economy only for the Greenbook/Tealbook. The forecasts that played the most direct role in monetary
policymaking were the forecasts from the Greenbook/Tealbook.
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1 Introduction

The staff of the Board of Governors of the Federal Reserve System (the staff) prepare a
detailed set of forecasts, both of the U.S. and international economies, for each regularly
scheduled Federal Open Market Committee (FOMC) meeting. These forecasts are called
“Greenbook” forecasts[] However, Greenbook forecasts are only some of the analysis of the
economy by the staff for the Board of Governors. Since there is new information about
the economy every day, the staff provides new forecasts to the Board of Governors between
Greenbooks. However, these between-Greenbook forecasts have not previously been usable
for study by researchers.

We introduce these between-Greenbook forecasts and use a preanalysis plan to study
their statistical efficiency. Our paper expands on research that improves the availability
of real-time forecast data, such as Croushore & Van Norden (2018), and also expands on
literature that evaluates the real-time performance of professional forecasters, such as Arai
(2016).

We assemble a unique set of Federal Reserve documents to construct a new dataset
that contains these between-Greenbook forecasts, which we call our “high-frequency forecast
dataset.” Roughly speaking, we have weekly forecasts of annualized quarterly real gross
domestic product (GDP) growth and annualized quarterly core personal consumption ex-
penditures (PCE) inflation from 2001 to 2011 for one-quarter backcasts through two-quarter
ahead forecasts.

Although the staff monitors economic news every day, it does not have infinite forecasting
capacity. Forecasts that are made just before a FOMC meeting receive more attention from
the Board of Governors —particularly Greenbook forecasts —as they play the most direct
role in monetary policy. The staff often uses time just after a FOMC meeting for projects

that enhance its productivity and long-run relevance to the mandates of the Federal Reserve,

1Since 2010 these forecasts have been called “Tealbooks”. For simplicity we refer to Tealbooks as Green-
books.
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such as the following: developing models, economic research, investigating the usefulness of
new data for studying the economy, or upgrading infrastructure.

A natural hypothesis is that the staff allocates more resources to the forecasts that are
made just before a FOMC meeting and, therefore, that these forecasts are better. Due
to the high-frequency nature of our new data, we are able to test this hypothesis. Using
prespecified regressions of forecast errors on forecast revisions, we find that GDP forecasts
made in the two weeks before a FOMC meeting are efficient —forecast revisions do not
predict forecast errors. But GDP forecasts made more than two weeks from a meeting are
inefficient —the staff’s current-quarter GDP forecast revisions are positively correlated with
its forecast errors, which suggests that the staff underrevises these current-quarter GDP
forecasts. This underrevision is consistent with the staff following an anchoring heuristic
(Tversky & Kahneman (1974), Kahneman & Tversky (1977), Campbell & Sharpe (2009))
where the staff adheres too closely to its previous current-quarter GDP forecast after re-
ceiving new macroeconomic information. This underrevision could be due to information
rigidities, which Coibion & Gorodnichenko (2012) document for professional forecasters,
that take significant effort to overcome. That said, the staff’s two-quarter ahead forecast
revisions are negatively correlated with its forecast errors, which suggest that the staff over-
revises these two-quarter ahead GDP forecasts. For inflation, we find some evidence that
the staff forecasts also overrevise, but this evidence is less strong.

While forecast efficiency regressions can speak to the sub-optimality forecasts, they are
silent on what information could be processed better to make optimal forecasts. We examine
one fountain of information aggregation —financial markets —and investigate whether the
staff could use the reaction of financial markets to macroeconomic news to improve its
forecasts.

We prespecify one measure of how financial markets react to news: changes in S&P 500

futures returns following the release of macroeconomic news (for example, the employment
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report) weighted by the size of the newsﬂ Increases in S&P 500 futures returns following a
news release suggest that the news was better for the economy than the market expected.
We find that our return-weighted macroeconomic news measure predicts the staff’s GDP
forecast errors, implying that the staff may not efficiently account for information in asset
price changes to assess macroeconomic news which, again, could be due to information rigidi-
ties. This evidence also suggests that if FOMC announcements are influenced by the staff
forecasts, then market reactions to FOMC announcements are likely due to new information
about monetary policy, a view supported by Bernanke & Kuttner (2005), Woodford (2005),
and Bauer & Swanson (2020), and are less likely to be due to new information about the
economy, which is at odds with the inferences of Romer & Romer (2000), Campbell, Evans,

Fisher & Justiniano (2012), and Nakamura & Steinsson (2018).

2 A New High-Frequency Forecast Dataset

Greenbooks are comprehensive forecasts of the U.S. and global economies. Greenbooks
contain forecasts of: several U.S. macroeconomic indicators (for example: GDP, payroll gains,
unemployment rate, and inflation), U.S. financial market indicators (for example: the 10-year
treasury yield, equity prices, and corporate profits), non-U.S. aggregates, the output gap,
and the non-accelerating inflation rate of unemployment (NAIRU), among others. Typically,
Greenbook forecasts cover a horizon of at least five quarters, though the exact horizon has
varied over time.

The staff produce the Greenbooks for each regularly scheduled FOMC meeting, which,
in recent years, occur eight times per year. Given their importance to monetary policy, the

literature has closely evaluated the Greenbook forecasts ]

2We measure macroeconomic news as the standardized difference between a macroeconomic data release
and its median eve-of-release forecast from the panel of economists surveyed by Bloomberg (Bloomberg
Finance LP 2017). This type of macroeconomic news measurement is common in the literature. For example,
Scotti (2016) defines macroeconomic news similarly.

3Examples include the following: Joutz & Stekler (2000), Romer & Romer (2008), Tulip (2009), Erics-
son, Hood, Joutz, Sinclair & Stekler (2015), Messina, Sinclair & Stekler (2015), Chang & Hanson (2016),

4of



While Greenbook forecasts are relatively accurate, they are available only immediately
before the eight regularly scheduled FOMC meetings per yearEHﬂ But the macroeconomy
evolves continuously and new macroeconomic data are available daily. Therefore, the staff
communicates its understanding of economy and its interpretation of new macroeconomic
data to the Board of Governors much more frequently than eight times per year. The exact
timing and nature of these communications varies over time, reflecting both state of the
economy and the preferences of Board members. In recent years, typical forms of communi-
cation to the Board of Governors outside of the Greenbooks include written forecast update
memos (approximately weekly) and regularly scheduled (approximately semi-monthly) in-
person forecast update briefings. These non-Greenbook forums allow the staff to provide the
Board of Governors high-frequency updates on the staft’s view of the economy. These up-
dates are usually short-horizon forecasts that do not cover the same range of macroeconomic
data nor are vetted by the staff to the same degree as the Greenbooks.

We collected data from archived documents of the staff’s communications to the Board
of Governors, such as the forecast update memos and the in-person forecast updates, to
construct our high-frequency forecast dataset. The six types of archived documents that we

used were:

1. Briefing texts. When the staff conducts an in-person forecast update briefing for the

Board of Governors, a staff member first delivers a set of prepared remarks. The Board

of Governors follow this delivery with questions. Some of the texts contain forecasts.

2. Briefing tables and charts. For each in-person forecast update briefing, the staff creates

a set of tables and charts to accompany the prepared remarks. Some of these tables

and charts contain the staff forecasts.

Croushore & Van Norden (2018), Berge, Chang & Sinha (2019), Croushore & Van Norden (2019), Reif-
schneider & Tulip (2019).
40n Greenbook accuracy, see Joutz & Stekler (2000), Romer & Romer (2008), or Chang & Hanson (2016).
°In recent years, regularly scheduled FOMC meetings occur in the first and third month of each quarter,
although the staff produce forecasts for irregular meetings of the FOMC. Irregular meetings occur as a
reaction to extreme events.
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3. Eve-of-GDP-release database snapshots. The staff sometimes saves a snapshot of its

forecasts for real GDP growth and core PCE inflation on the eve-of-release of the
official Bureau of Economic Analysis (BEA) estimate for GDP. These snapshots are

called “killsheets” or “comparison sheets.”

4. Trregular database backups. We use archived automatic backups of databases that

contain the staff’s GDP and inflation forecasts, called “RUTH backups” or “weekly
RUTHs.” These database backups were irregular as they: (1) occurred at different fre-
quencies over time, (2) were not necessarily at times that the staff vetted its forecasts,

and (3) were not necessarily at times that the staff updated the Board of Governors.

5. Forecast update memos. In recent years the staff has delivered an approximately weekly

written forecast update memo that summarized its thinking. These memos sometimes
contained the numerical values of the staff’s GDP and inflation forecasts. The staff
also delivers memos to the Board of Governors around extreme events or when asked

for an update by a Board member.

6. Greenbooks.

We extracted forecasts of annualized quarterly real GDP growth and annualized quarterly
core PCE inflation from these six types of archived documents. See appendix [A]for additional
details.

Figure [l introduces our dataset. We show the forecasts of annualized quarterly real GDP
growth and core PCE inflation for: the previous calendar quarter (backcasts, top row), the
current calendar quarter (nowcasts, middle row), and one-quarter ahead forecasts (bottom
row). Because the staff’s forecasts are tied to the schedule of FOMC meetings, we indexed
forecast horizons in our high-frequency forecast dataset based on when the forecasts are

made as was relative at the next FOMC meeting[f] In the left panels of Figure [I} each black

6This timing convention implied that the forecast horizon for forecasts made just after a FOMC but
just before a calendar quarter changed could be lagged once. For example, if we observed a forecast of Q1
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dot is a between-Greenbook forecast of GDP, which are roughly weekly. Green triangles are
Greenbook forecasts; there are typically two of them per quarter. The right panels show the
same information for inflation. The first forecast in our data is on January 22, 2001, and
the final forecast is on December 23, 2011. National Bureau of Economic Research (NBER)
recessions are shaded.

Figure[l|shows that the staff frequently updates its forecasts of real GDP growth and core
PCE inflation between Greenbooks. For example, we have an average of 90 current-quarter
forecasts of GDP per year, only eight of which per year are Greenbooks. We observed the
most GDP forecasts in the mid-2000s, and somewhat fewer in the early and late years of
our sample. Our data are more sparse for the staff’s inflation projections, particularly for
further ahead forecasts, as seen in the right panels of Figure[l] Early in the sample, we do not
have inflation forecasts outside of Greenbooks. However, we see more between-Greenbook
forecasts later in our sample. For example, in 2011 we have 77 current-quarter forecasts of
inflation.

That the number of forecasts in our dataset differs across years and also differs between
GDP and inflation is because both the staff’s forecasting methods and recording standards
evolved over time.ﬂ For changing recording standards, we gathered all archived documents on
between-Greenbook forecasts that we are aware of. But because the staff was not intending
for these documents to be used as a real-time account of its forecasts, it is possible that the
staff was updating its between-Greenbook forecasts and did not record them in real time.
This lack of intention may also be what limits our dataset to GDP and inflation. And,
for database backups in particular, because the backups occurred at irregular intervals, the

forecasts recorded by the backups may not have been fully vetted by the staff.

in March after the March FOMC when the next FOMC was in April, then we counted this forecast as a
backcast.

"For example, starting with the February 17, 2000 Monetary Policy Report (Board of Governors of the
Federal Reserve System 2000), the FOMC started characterizing inflation forecasts in terms of core PCE
instead of the consumer price index (CPI). The shift in inflation metric, while before the beginning of our
high-frequency forecast dataset, may have also been accompanied with a gradual shift in the frequency that
the staff recorded its core PCE inflation forecasts.
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Table[] presents summary statistics of the forecast errors from our high-frequency forecast
dataset, defined as the BEA’s third release minus the forecast, at each forecast horizon
Figure 2| shows the current-quarter errors.

The staft’s forecasts are about unbiased, and the middle 70 percent of the current-quarter
error distribution is also approximately symmetric around zero for both GDP and inflation.
The exceptions to the unbiasedness are the two-quarter ahead forecasts. At two quarters
ahead, the staff’s GDP projections were too high and the inflation projections were too low.

The staft’s forecasts are also quite variable and exhibit large misses across time. The
range of current-quarter real GDP growth forecasts goes from a minimum of negative 7.1
percent (March 6, 2009) to a maximum of 5.5 percent (December 23, 2003). There is also
notable variation within a particular quarter or year as macroeconomic data are realized.
The forecasts of inflation also vary, albeit in a smaller range than GDP. Of course, our sample
is relatively short: 11 years (44 quarters) and includes the Great Recession. That the staff
made volatile forecasts and also made large errors in a recession is unsurprising, at least to
us.

What is more surprising to us —and perhaps surprising to you as well —is that both the
average GDP and inflation backcast and current-quarter errors were about zero during the
Great Recession. The average GDP current-quarter error during the Great Recession was
only 0.05 percentage points, whereas excluding the Great Recession it was 0.12 percentage
pointsﬂ In contrast, the standard deviation of real GDP growth was more than 2.5 percent-
age points. Similarly, the average inflation current-quarter error during the Great Recession
was only -0.12 percentage points whereas, excluding the Great Recession, it was less than

one basis pointm The standard deviation of inflation was 0.64 percentage pointsEH That

8The third release is available in the third month after the quarter ends, or about 25 weeks after the start
of the quarter. See Landefeld, Seskin & Fraumeni (2008) or Chang & Li (2018) for a description of the BEA’s
GDP revision process. Real-time data come from the real-time dataset for macroeconomists, documented
by Croushore & Stark (2001) and Croushore & Stark (2003).
9p = 0.78 using a two-sided t-test with unequal variances.
Op = 0.13 using a two-sided t-test with unequal variances.
1Standard deviations calculated using BEA third-release estimates from 2001 to 2011.
12These results are at odds with the “missing disinflation” of the Great Recession where, conditional on
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said, one-quarter ahead GDP forecasts were too high during the Great Recession, though
inflation forecasts were still about right.

The novelty of our dataset is that it records the staff’s forecasts approximately weekly,
whereas the staff makes Greenbook forecasts approximately every six weeks. However, our
dataset comes with three important limitations. First, our dataset only has forecasts of real
GDP growth and core PCE inflation, whereas the Greenbooks cover other macroeconomic
and financial series. Second, our dataset covers one-quarter backcasts through two-quarter
ahead forecasts and has a more limited sample further ahead, whereas Greenbooks consis-
tently forecast five quarters ahead (sometimes more). Third, our dataset only extends back
to 2001, whereas Greenbooks are available since 1967.

Nevertheless, our dataset can give us insight into how the staff incorporates real-time
information into its GDP and inflation projections that Greenbooks cannot. Figure [3| shows
the root mean squared error (RMSE) of the staff forecasts of GDP and inflation by week
to the start of the quarter. Week zero denotes the start of a quarter (for example, the first
week of January in Q1). Actual values are the BEA’s third estimates. The vertical dashed
line represents the approximate release date of the BEA’s first estimate for real GDP growth
and core PCE inflation, which occurs towards the end of the month after the quarter ends
(for example, the end of April for a Q1 estimate).

Figure |3 shows that the staff continuously improves its GDP and inflation projections.
And, while the staff’s RMSE steadily falls, the fall accelerates around the start of the quarter
—evidence that either current-quarter data are particularly useful for the staff or that the
staff devotes significant effort to continuously updating its nowcasts (or both). Furthermore,
the staff’s RMSE continues to fall even after the BEA’s first estimates of GDP and inflation
become available (approximately four weeks after the quarter ends), which indicates that

the staff is nowcasting a BEA estimate of GDP and inflation that is released after the BEA’s

GDP during the Great Recession, the historical relationship between GDP and inflation would have predicted
weaker inflation during the Great Recession than was the case. See Coibion & Gorodnichenko (2015) for
a more detailed description of “missing disinflation”. The staff did not seem to think, given GDP, that
disinflation was missing in real time once it started observing indicators of the current quarter.
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first estimate.

3 Evaluating High-Frequency Forecasts

We now evaluate whether the staff’s forecasts satisfy standard efficiency tests.

For the results in this section, we used a preanalysis plan for our modeling, estimation,
hypothesis testing, and data transformation choices. We used the plan to minimize our
potential biases, to maximize the validity of our analysis, to avoid specification searching,
and to avoid p-hacking. In particular, we thought that a preanalysis plan would particularly
useful for mitigating our potential biases as, at the time of our initial writing in June 2017,
we were involved in creating the Greenbook forecasts (although we were not involved in
creating the forecasts in our dataset)[]

We composed the initial draft and all revisions to our preanalysis plan after collecting the
raw forecast data and making data cleaning choices but before finalizing our data cleaning
programs and viewing the model estimation results in this section. The description in this
section differs from the final version of our registered preanalysis plan only in terms of

exposition —the models, estimators, data transformations, and so on are identical.[zf]

3.1 Average Efficiency —A Comparison with Previous Literature

Our first set of models provided a baseline comparison of our results of staff forecast bias
and revision tendencies using our new high-frequency forecast dataset to existing research
that only uses Greenbooks. These models were Mincer & Zarnowitz (1969) regressions of

the stafl’s forecast errors on its forecast revisions:

13Preanalysis plans in economics are uncommon. To our knowledge, Neumark (1999) and Neumark (2001)
were the first economics studies that used preanalysis plans. Subsequent papers that used preanalysis plans
include the following: Casey, Glennerster & Miguel (2012), Chang & Li (2017), Chang & Li (2018), Chang
& Li (Forthcoming).

14We registered our initial preanalysis plan on March 13, 2017 with the Open Science Framework, and
revised it three times on: April 19, 2017, May 5, 2017, and May 26, 2017. Our plan can be found at
https://osf.io/de3pe/.
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(Yistrh — Uigrnr) = Qi + BinAUiitn)r + €ipinfr (1)

In equation , the forecasted macroeconomic variable y; (annualized quarterly real GDP
growth or annualized quarterly core PCE inflation) for calendar quarter ¢ h quarters ahead
iS Yi14n, the forecast of y; .y, on day 7 is 9 4nr, A is the first difference operator, and
e is the model error. We estimated equation with ordinary least squares (OLS) for
each macroeconomic variable-forecast horizon, which implies that we evaluated the staff’s
forecasts using root mean squared error. Efficient forecasts imply that both a and [ are zero.
A positive estimated « indicates that the staff’s average forecast was too low (in percentage
points, not percent) and a positive estimated [ indicates that the staff, on average, should
have revised its forecast more than it actually did (by 8 x 100%, not percentage points).

We estimated equation from 2001 to 2011 separately using: (1) only Greenbooks, and
(2) using all forecasts in our high-frequency forecast dataset, which also included Greenbooks.
Although Greenbooks extend back to 1967, our high-frequency forecast dataset has between-
Greenbook observations only since 2001, and 2011 was the latest Greenbook that complied
with the FOMC information security situation as of June 1, 2017, which is approximately
when we registered our preanalysis plan and finished collecting our dataﬂ

Forecast horizons, h, were from one-quarter backcasts through two quarter ahead fore-
casts for GDP, and one-quarter backcasts through one-quarter ahead forecasts for inflation.
We chose these forecast horizons because they were the ones available in our high-frequency
dataset with reasonable sample sizes, though the one-quarter ahead inflation regressions still
have a somewhat small sample.

Because the staff’s forecasts are tied to FOMC meetings, in our high-frequency forecast
dataset we indexed forecast horizons based on when the forecasts were made as was relative
at the next regularly scheduled FOMC meeting. This timing convention implied that, around

the times that calendar quarters changed, Ag; ¢ 4 was a forecast of y;; made h calendar

15Greenbooks are publicly released with an approximately six-year lag.
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quarters ahead minus a forecast of y; ; made h+1 calendar quarters ahead. For example, if we
observed a current-quarter forecast of GDP in April (which would be a forecast of Q2) that
was before an April FOMC meeting, and the last observed forecast of Q2 was in March after a
March FOMC meeting, then Ag; 44|, for the current-quarter GDP specification (h = 0) was
the current-calendar-quarter forecast of GDP in April minus the one-calendar-quarter-ahead
forecast of GDP in March. This timing convention also implied that, because we needed
at least two forecasts to compute Ag; 4., for our high-frequency regressions we dropped
Greenbook forecasts of y; 1, where we did not observe at least one between-Greenbook
forecast of y; 1.

For actual values of GDP and inflation, y; ;, we used the BEA’s third-release estimatesm
As there was a separate regression of equation for each macroeconomic variable-horizon-
dataset combination, there were fourteen regressions of equation H

For the regressions using only Greenbooks, we estimated an unweighted equation ({1).
For regressions using our high-frequency dataset, we weighted equation by the number
of calendar days between forecasts|™

We inter-temporally aggregated forecast observations so that the minimum absolute value
of the unweighted Ag;,4p- Was one basis point. This procedure dropped forecasts that were
equivalent to the previously observed forecasts, and it also dropped other forecasts where
the forecasts did not materially revise. This aggregation was to avoid potential downward

bias in (3, as the staff updates its forecasts in batch mode but our dataset may have recorded

6While the vintage of data used for actual values can affect inferences about the underlying forecasts
(Koenig, Dolmas & Piger (2003)) it was not obvious to us at the time we composed our preanalysis plan
(and is still not obvious to us) that one vintage of real-time data would be superior to others. See Croushore
(2011) for a review of the real-time data literature.

1"Two datasets (Greenbook-only and high-frequency) with four horizons for GDP (eight regressions) plus
the two datasets with three horizons for inflation (six regressions).

18We chose this weighting scheme for regressions that used our high-frequency dataset because our high-
frequency dataset is a mixed-frequency dataset that has a different number of forecasts between FOMC
meetings. The mixed-frequency nature of the data is due to both the staff’s changing forecast revision meth-
ods and changing recording standards. We wished to give forecast revisions made in response to when the
staff had accumulated relatively more information a higher weight and we proxied information accumulation
with the number of calendar days between forecasts. For Greenbook regressions, since Greenbooks are about
evenly spaced throughout a year, we thought that there was no need to weight.
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forecasts at a higher frequency than the frequency that the staff updatedH

Table [2| shows our results from estimating equation using real GDP growth forecasts.
Each column is a separate regression by forecast horizon, increasing in the horizon from left
to right. The top panel shows results from our high-frequency dataset and the bottom panel
shows results from using Greenbooks only.

Broadly speaking, the high-frequency regressions show similar results to the Greenbook-
only regressions. The tests for coefficient equality between high-frequency and Greenbook
regressions do not show statistically significant differences, as shown in the last two rows of
Table 2l

There is some evidence that, on average, the staff’s current-quarter GDP forecasts un-
derrevised. The coefficient of 0.52 in the current-quarter GDP regression using our high-
frequency dataset indicates that the optimal revision would have been for the staff to re-
vise their current-quarter GDP forecasts by 52 percent more than the staff actually did
(p= 0.08).@ For example, if the staff received better-than-expected news that led it to in-
crease its current-quarter GDP forecast, then our result suggests that the staff should have
increased its current-quarter GDP forecast by an additional 52 percent.

Table |3 shows equation results using core PCE inflation forecasts. Broadly speaking
the high-frequency and Greenbook-only regressions still show similar results. There is a bit
of evidence that the staff’s inflation backcasts overrevised (p = 0.04), and the one-quarter-
ahead regression shows inefficiencies. But because our sample of one-quarter-ahead inflation
forecasts is small, we do not want to push these inflation results too hard, and we believe

our inflation results show weaker evidence of inefficiency than our GDP results |

19This potential downward bias in 8 is analogous to computing abnormal returns from high-frequency
stock price data and running into “thin-trading” problems, where shares are not traded frequently enough
to cause changes in prices commensurate with shifts in demand or supply and, as such, causes bias towards
zero in the estimated 8 of a regression of a portfolio return on a market return. For a further description of
“thin-trading” see Sercu, Vandebroek & Vinaimont (2008).

20p-values in this section refer to two-sided hypothesis tests where the null is that the referenced coeffi-
cient(s) equal zero.

21'We also checked all of our results by re-running prespecified regressions without the largest 1 percent
of residuals in magnitude, rounded down, which did not materially affect the results. Regressions without

outliers are in appendix [B] Tables 12| and

13 of



3.2 Time-varying Efficiency —Main Specification

Our second set of regression results were augmented Mincer & Zarnowitz (1969) style regres-
sions that tested for time-varying forecast efficiency. In our preanalysis plan, we designated

these regressions as our main Speciﬁcationsg The regressions were of the form:

(Yistrn — Yigrnlr) = Qi + Bin AU s nr + Yind (T) + Nn L (T)AYs nir + €ipinir (2)

where I(7) is an indicator variable for when 7 is within 14 calendar days of the beginning
of a regularly scheduled FOMC meeting, including the first day of a regularly scheduled
FOMC meeting. Therefore, in equation , « is the mean forecast error when a forecast is
produced more than 2 weeks before a FOMC meeting, v is the difference in mean forecast
error between forecasts produced before and during the 2 week period before a FOMC
meeting (such that a+ - is the mean forecast error when the forecast is produced with fewer
than 2 weeks until a FOMC meeting), [ is the mean relationship between the staff’s forecast
revisions and its forecast errors for forecasts made at least 14 calendar days before a regularly
scheduled FOMC meeting, and the sum § + X is the mean relationship between the staff’s
forecast revisions and its forecast errors for forecasts made fewer than 14 calendar days prior
to a regularly scheduled FOMC meeting. The estimator, sample restrictions, weights, and
data transformations were the same as in subsection B.1l

Testing for time-varying biases and time-varying propensities for the staff to revise fore-
casts using a cutoff date of 14 days until a FOMC meeting through our dummy I(7) was
somewhat arbitrary, thought it was based on our understanding of the production schedule
for Greenbooks. That said, we could have defined I(7) as say, 15 calendar days to include
the second day of a regularly scheduled FOMC meeting, or to include up to three (instead of

two) weeks before a FOMC meeting, or any number of other cutoffs, and just reported the

22Designating a set of main specifications in the preanalysis plan follows the recommendation of Casey,
Glennerster & Miguel (2012).
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specification that gave us “better” (read: more publishable) results. But by defining I(7) in
our preanalysis plan, we can assure you that you are viewing the entirety of our results and
that we do not have pages and pages of unreported regressions tucked away in file drawers.

This paper is the first paper that is able to estimate equation because our high-
frequency dataset collects staff forecasts made more than two weeks from a FOMC meeting,
whereas the staff always creates Greenbooks within two weeks of a FOMC meeting.

Table 4| shows our results from equation for real GDP growth forecasts, which show
some evidence of time-varying forecast inefficiency.

Focusing first on the staft’s forecast revisions, there is some evidence that the staff sub-
optimally revises its real GDP growth forecasts when it is more than two weeks from a
regularly scheduled FOMC meeting. For example, in the second column the point estimate
of 0.63 on the staff’s forecast revision indicates that the staff’s current-quarter GDP forecasts
that were made more than two weeks from a FOMC meeting underrevised, and should have
revised by 63 percent more than they actually did (p = 0.09). Furthermore, in the fourth
column, the point estimate of -0.55 indicates that the staff’s two-quarter ahead real GDP
forecasts that are made more than two weeks from a FOMC meeting overrevised, and should
have revised 55 percent less than they actually did (p = 0.08). That said, we were unable to
reject the null hypothesis of efficient revisions for GDP forecasts made within two weeks of a
FOMC meeting for any forecast horizon, as shown by the fact that Revision+ Revision x I(T)
is not statistically significant (the last row of Table , minimum p = 0.40 for two-quarter
ahead forecasts).

Table [ has some stronger evidence of time-varying biases in the staff’s real GDP growth
forecasts, although the economic magnitude of the biases is small. Current-quarter GDP
forecasts made within 14 days of a FOMC meeting were too low by about a quarter percentage
point (p = 0.01), and two-quarter ahead forecasts were too high by about half a percentage
point (p = 0.01).

Table [5| shows our time-varying efficiency results for core PCE inflation, which show lim-
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ited evidence for inefficiency. The strongest evidence for inefficiency is for inflation backcasts
made within 14 days from the start of a regularly scheduled FOMC meeting, where the table
suggests that the staff overrevises by an average of 49 percent (Revision+ Revision X I(1) =
—0.49, p = 0.04). And while some of the point estimates on the one-quarter-ahead regres-
sions also suggest inefficiencies, the sample size of this regression is small, so we do not want

to overemphasize the one quarter ahead inflation results |

3.3 What Information Could the Staff Use to Improve its Fore-

casts?

So far we showed that (1) on average, forecasts from our high-frequency dataset have similar
properties to Greenbooks, (2) evidence that both our high-frequency dataset GDP forecasts
and Greenbook GDP forecasts have some inefficiencies, (3) some weaker evidence of inefficient
inflation forecasts, and (4) inefficiencies may be time-varying between FOMC meetings (as
opposed to say, across decades or pre/post Great Moderation)@ which is a new finding that
is only possible using our high-frequency forecast dataset.

We now examine whether the staff could have used high-frequency information from

financial markets to better construct its forecasts.

3.3.1 A High-frequency Measure of the Market’s Reaction to Macroeconomic

News

We begin by calculating a high-frequency measure of how the market interprets macroeco-
nomic news: the summation S&P 500 return-weighted standardized values for a sequence of

economic data releases that Bloomberg forecasts (Bloomberg Finance LP 2017):

0 I .
news, = Z Z (rw X w> (3)

s=0 i=1

23Removal of outliers did not materially affect these results. See the appendix [B| Tables |14 and
24For example, Tulip (2009) analyzes Greenbooks before and after the Great Moderation.
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where y; ; denotes the value of a macroeconomic data release for variable y; that is
released on calendar day 7, y;,—1 is the eve-of-release Bloomberg median forecast of y; -,
and r; . is the percent change of the S&P 500 futures index from 5 minutes before to 25
minutes after the release of yi,TE There may be multiple pieces of news on the same day, or
even at the same time. Furthermore, the news contained in release y; occurs on day 7, no
matter the reference date of the release. Since macroeconomic data are released with a lag,
the news on day 7 may pertain to economic activity from a previous month or quarter. The
rolling two-year standard deviation of median Bloomberg forecast errors for y;, denoted ; -,
standardizes the news content of each release y; - @ Lastly, we use the absolute value of the
Bloomberg forecast error, |y; » — §;.r—1|, so that it is the market reaction to y; ,, as contained
in 7; -, that determines whether an individual data release is positive or negative news.

Much like defining I(7), we had to make somewhat arbitrary choices to calculate a
single summary measure of how the market interprets macroeconomic news, though our
formulation is similar to that used by Scotti (2016). Certainly our measure is imperfect and
there are other means to measure the market’s interpretations. But at the time of writing
our preanalysis plan, we did have an alternative that strictly dominated news..

One omission from our preanalysis plan was which Bloomberg-forecasted series go into
news,. When we wrote our preanalysis plan, we thought that we were using all data from
Bloomberg —that turned out not to be the case. We found out after estimating and viewing
our models that we had access to only a subset of macroeconomic data from Bloomberg,
though we used everything that we had access to in June 2017 to create news,. The 62 series
that make up our news index are listed in appendix [B] tables [I§ and [I9] which cover most
important U.S. macro data. In keeping with our commitment to avoid p-hacking, we have
only used the calculated news, with our original data and have not attempted to manipulate

what data make up news,. Therefore, we hope that you continue to find assurance that,

%For example, for the employment report that is released at 8:30 AM eastern time, ; , is the percent
change of the S&P 500 futures index from 8:25 AM to 8:55 AM eastern time.
26We calculate &; , excluding the forecast miss on day 7.
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because we defined news, in our preanalysis plan before viewing our results and, at least,
have not changed what data compose news, after we viewed our model results, you are seeing
unbiased estimates of the predictive power of market’s interpretations of macroeconomic news
on the staft’s forecast errors.

Figure [4] plots news,. Our measure suggests that, on average and perhaps reassuringly,
the market is unsurprised by news as the mean of news. is about zero. However, the variance
of news, spikes during the Great Recession and remains elevated thereafter, indicating that
the market was more surprised by data —both positively and negatively —during and after
the Great Recession. Interestingly, news, rises at the beginning of the 2001 and 2008

recessions.

3.3.2 Predicting the Staff’s Forecast Errors Using the Market’s Reaction to

Macroeconomic News

We used our measure of the market’s reaction to macroeconomic news, news., to attempt
to predict the staff’s forecast errors using our high-frequency dataset. Our regressions that

used news, took the form:

Witth — Vigrnir) = Qin + BinAUiprnir + Vi L (7) + X I (T) AYs )+ n
nipnews, + 0; , 1 (T)news, + €; 11 n-

where, as in subsections[3.1|and [3.2] the forecasted macroeconomic variable y; for calendar
quarter ¢ h quarters ahead is y; 45, the staft forecast of y; 4, on day 7 is @;¢yn)-, A is the
first difference operator, I(7) is an indicator variable when 7 is within 14 calendar days from
the start of a regularly scheduled FOMC meeting, e is the model error, and news, is our
measure of the market’s reaction to macroeconomic news in equation . Sample selection,
data transformations, the estimator, and so on are the same as in subsections and [3.2]

In equation (4)), n is the average relationship between our measure of the market’s reaction

to macroeconomic news and the staff’s forecast errors for forecasts made at least 14 days
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from the start of a regularly scheduled FOMC meeting, and n + 6 is the same relationship
for forecasts that are fewer than 14 days from the start of a meeting.

Table@ shows our estimation results of equation (4)) using real GDP growth forecasts. The
staff’s GDP forecast errors for backcasts up to one-quarter-ahead forecasts are negatively
correlated with news,, which indicates that better-than-expected macroeconomic news is
correlated with more accurate staff forecasts (p < 0.01 for current-quarter forecasts). This
negative correlation holds for both GDP forecasts made more than two weeks from a FOMC
meeting and for GDP forecasts made within two weeks of a FOMC meeting for up through
one-quarter-ahead forecasts.

In terms of effect sizes, a one standard deviation increase in news, implies that the staff’s
GDP current-quarter errors are, on average, smaller by about 0.4 percentage pointSE] This
finding is not the same as finding that the staff is more accurate in expansions than in
recessions, as news, experiences local peaks and troughs both in and outside of recessions.

Table [7] shows the results for the correlations between news, and core PCE inflation fore-
cast errors. Unlike the results for GDP, news, does not predict the staff’s inflation forecast

errors, which gives some additional evidence that the staff forms its inflation projections

efficiently”]

4 Erroneous Interpretations Under “Cherry Picking”

Our econometric analysis was disciplined by a preanalysis plan. Preanalysis plans for ran-
domized control trials are prominent outside of economics, and within economics there is
some evidence that they are becoming more common. For example, the number of reg-
istered preanalysis plans on the American Economic Association’s registry for randomized

control trials has trended up since 2013 (Vilhuber, Turitto & Welch (2020), Figures 13

2"The standard deviation of news, is about 7, the coefficient on news, for GDP current-quarter forecasts
is -0.06, so 7 x —0.06 ~ —0.4.

Z8Removal of outliers, shown in appendix [B} Tables [L6] and do not change the conclusions for either
GDP or inflation.
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and 14). Casey, Glennerster & Miguel (2012) provide an excellent discussion of the value
of preanalysis plans for randomized control trials, with a focus on evaluating institutional
outcomes.

At the same time, preanalysis plans are useful for observational studies, including this
study. Data mining or “cherry picking” is a risk for observational studies because of the
infinite number of assumptions researchers can make when no dominant assumption exists@
This infinite number of potential assumptions implies an infinite number of potential models
and researchers cannot test every model. Typically a study will select a baseline model. The
study will then conduct a finite number of robustness checks as reasonable deviations from
the baseline model, usually by perturbing one assumption at a time, and then report a subset
of those robustness checks. The gap between the infinite number of potential models and
the finite number of reported models can lead to “cherry picking” and publication bias.m

We thought that a preanalysis plan for this study would be particularly useful as we
were both involved in creating the Greenbooks (though we were not involved with the par-
ticular forecasts in our high-frequency forecast dataset). Our involvement with creating the
Greenbooks meant that we are subject to certain biases, possibly in favor of finding that the
Greenbooks are efficient. In the absence of a preanalysis plan, these biases could have lead
us to, consciously or unconsciously, make ex post assumptions and selectively “cherry pick”
results. We used a preanalysis plan to stomp out these biases, to select assumptions ex ante,
and to report, to the extent possible, unbiased results.

To demonstrate the value of a preanalysis plan for disciplining observational research,
we p-hacked a set of results using GDP forecasts and our main specification, equation [2]
that give a different interpretation of the staff’s propensity to revise its forecasts than our

preanalysis plan results. We adjusted three assumptions —the weights, the threshold for

29Vivalt (2019) and Brodeur, Cook & Heyes (Forthcoming) find evidence “cherry picking” is a bigger
problem for observational studies than for randomized control trials.

30Evidence that publication bias exists includes: Brodeur, Lé, Sangnier & Zylberberg (2016), Chang & Li
(2018), Vivalt (2019), Blanco-Perez & Brodeur (2020), and Brodeur, Cook & Heyes (Forthcoming). Chen &
Zimmermann (2020) provide some potential limits on publication bias in the asset pricing literature.
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keeping a forecast revision, and the definition of I(7) —in ways we think are inferior to our
preanalysis plan assumptions and, at the same time, in ways that other researchers could
plausibly think have similar academic rigor to our preanalysis plan assumptions (or at least
are not vastly inferior to our preanalysis plan assumptions) ex post. To mimic the refereeing
process, we selected a baseline model and performed “cherry picked” robustness checks to
the baseline model by perturbing the adjusted assumptions, one at a time, in ways that
could also be justified by other researchers as reasonable (or at least not horrific) ex post.

Table |8 shows our “cherry picked” baseline where we estimate unweighted regressions,
increase the threshold for keeping a forecast revision to be at least 0.1 percentage points
in magnitude, and define I(7) as 28 daysﬂ While our main prespecified results in Table
show that the staff’s current-quarter forecasts underrevise, the “cherry picked” baseline in
Table [§] indicates the staff’s backcasts and one-quarter ahead forecasts overrevise, and there
is no evidence for the current-quarter forecasts underrevising.

Tables [9] - [11] show robustness checks to the “cherry picked” baseline. Sequentially, the
tables perturb the “cherry picked” baseline assumptions by: weighting by the number of
weeks between forecasts (rounded up), keeping all forecast revisions, and setting I(7) as 21
days. These “cherry picked” robustness tests largely confirm the “cherry picked” baseline
and are at odds with our prespecified results. Taken together, Tables [8|-[11| demonstrate the

importance of a preanalysis plan.

5 Conclusion

We created, using various archived documents, a new high-frequency dataset of the Federal
Reserve Board staft’s forecasts of real GDP growth and core PCE inflation. These data record
the staft’s forecasts roughly weekly and complement the existing data from Greenbooks,

which the staff produce eight times per year.

310ur preanalysis plan specified weighted regressions by the number of calendar days between forecasts,
to use forecast revisions of at least 1 basis point in magnitude, and set I(7) as 14 days.
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Using these new data and a preanalysis plan, we analyzed the efficiency of the staff’s
high-frequency forecasts. We found evidence of inefficiencies in the staff’s GDP forecasts
—current-quarter forecasts tended to underrevise. We found some weaker evidence for in-
efficiency of inflation forecasts. For GDP, we found between-FOMC-meeting inefficiencies.
Forecasts made at least two weeks from a FOMC meeting were less efficient.

In addition to analyzing time-varying efficiencies of the staff’s forecasts, we also found
some evidence that a summary measure of the market’s reaction to macroeconomic news
predicts the staff’s GDP forecast errors. This result suggests that the staff does not efficiently
incorporate news from financial markets in forecasting GDP, though the same summary
measure did not predict the staff’s inflation forecast errors.

Although we found time-varying inefficiencies between FOMC meetings in the staff’s
GDP forecasts, we cannot say for certain why such inefficiencies exist, though we speculate
on four possibilities.

First, though we prespecified a vintage for actual GDP and inflation (the BEA’s third
release) to avoid p-hacking our way results, it is possible that the third release is not what the
staff was forecasting. If the staff was targeting a different vintage of data AND the revisions
to data are predictable AND the predictability of revisions is tied to the FOMC meeting
schedule, then we could find time-varying forecast inefficiencies between FOMC meetings
when we should find none (or we could find no inefficiencies when we should find some).

Because all three of these conditions need to be satisfied in order to support our selection
of the BEA’s third release as the cause of our results, we view this explanation as very
unlikely. Though Figure [3] shows the staff was not targeting BEA’s first release, there is
no other information that we are aware of on what vintage of data the staff was targeting.
Furthermore, the literature on the predictability of U.S. macroeconomic data revisions is
inconclusive (Faust, Rogers & Wright (2005), Aruoba (2008)). We also know of no research
that ties the potential predictability of data revisions (or lack thereof) to the FOMC meeting

schedule but we cannot think of a good reason why such predictability would depend on the
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FOMC meeting schedule.

Second, it is possible that our prespecified evaluation criterion for forecast efficiency
—minimizing root mean squared error —isn’t exactly what the staff was trying to do.

Root mean squared error evaluates forecasts as unconditional. And although Figure
shows the staff revises its forecasts in a way that is consistent with minimizing root mean
squared error, the staff’s forecasts are conditional on an assumed path for the federal funds
rate[]] Evidence from Berge, Chang & Sinha (2019) shows that Greenbook forecasts of
macroeconomic variables appropriately condition on the path for the federal funds rate.

The forecast errors of conditional forecasts contain two components —the unconditional
forecast error and the forecast error of the conditioning variable. It is possible that the
staff’s forecast errors for the conditioning variable (the federal funds rate) are what causes
our results. But for short-horizon forecasts the difference between the forecasted conditioning
variable and the actual conditioning variable is small. In the extreme cases, for backcasts
there is no difference and for current-quarter forecasts the conditioning variable is set for
part of the quarter —so for these cases forecast errors of the conditioning variable are very
unlikely to be the source our results

Third, it is possible that the information set of the staff varies along the same timetable
as FOMC meetings and time-varying information causes our results, though we also view
this explanation as unlikely.

The dates of FOMC meetings tend to be selected to coincide with when major tradi-
tional macroeconomic data (which are often monthly data) become available. As such, the
information the staff has may be correlated with the timing of FOMC meetings. But to the
extent that the staff can extract the same signals about the economy from non-traditional
high-frequency data as the staff can from traditional data (for example, Automatic Data

Processing payroll information instead of the employment report), the likelihood that the

32The staff assumes a path for the federal funds rate to avoid confounding its forecasts with the opinions
of the Board of Governors.

33Furthermore, if this explanation were correct then the staff’s forecast errors for the conditioning variable
would be the ones exhibiting time-varying inefficiency between FOMC meetings.
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staff’s information is a function of the timing to the next FOMC meeting is lessened.

Furthermore, within a year FOMC meetings occur on different days of the month and
traditional macroeconomic data are released around the same time each month. For example,
the employment report is on the first Friday of each month. Because our results are averages
across all FOMC meetings, the likelihood that the time-varying information is the cause of
our results is lessened further.

Fourth —and in our view the most likely possibility —the staff could forecast differently
in relation to the schedule of FOMC meetings. The primary purpose of the staff is to serve
the American public by being an asset for the Board of Governors. To that end, the few weeks
before a FOMC meeting are when the staff focuses on creating the Greenbooks, which are
the forecasts that receive the most scrutiny from the staff and from the Board of Governors,
as Greenbooks have the most direct role in monetary policy-making. Although the staff
continues to monitor the economy away from FOMC meetings, the staff puts a larger focus
on longer-run productivity-improving projects, such as infrastructure maintenance, away
from meetings. It may be optimal for the staff to be less attentive to between-Greenbook

forecasts in order to maximize its long-run usefulness for the Board of Governors.
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Figure 1: Near-term Board Staff Forecasts of Real GDP Growth and Core PCE Inflation.
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Description: High-frequency staff forecasts of quarterly annualized real GDP growth (left)
and core PCE inflation (right). Black dots denote between-Greenbook forecasts. Green
triangles denote Greenbook forecasts. NBER recessions shaded. Year marks at January 1
of each year.

Interpretation: The staff updates its forecasts of GDP and inflation frequently between
Greenbooks. Our high-frequency forecast dataset contains an average of about 80 forecasts
of GDP for each horizon per year but has fewer forecasts for inflation.
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Figure 2: Board Staff Current-Quarter Errors of Real GDP Growth and Core PCE Inflation.
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Description: High-frequency forecast errors of the current-quarter (nowcasts) for quarterly
annualized real GDP growth (top) and core PCE inflation (bottom). Black dots denote

between-Greenbook current-quarter errors.

Green triangles denote Greenbook errors.

NBER recessions shaded. Year marks at January 1 of each year. Error is the BEA’s third

release minus the forecast.

Interpretation: The current-quarter errors for both GDP and inflation are about unbiased,

even during the Great Recession, and the middle 70 percent of errors is symmetric around

zero. But the staff exhibit large errors even outside of the 2001 and 2008 recessions.
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Figure 3: High-frequency Performance of Board Staff Forecasts of Real GDP Growth and
Core PCE Inflation.
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Description: Figure shows the root mean squared forecast errors of staff projections of
annualized quarterly real GDP growth (top) and core PCE inflation (bottom) by the week
to the start of the quarter. Actual data are the BEA’s third-release estimates. Week zero
denotes the start of the quarter forecasted —for example, the first week of January when
the quarter forecasted is Q1. Approximately, negative weeks are forecasts, weeks 0-12 are
current-quarter forecasts (nowcasts, shaded gray), and weeks greater than 12 are backcasts
in calendar time. Vertical dashed line indicates the approximate release of the BEA’s
first-release estimate.

Interpretation: The staff continuously updates and improves its forecasts of GDP and
inflation between Greenbooks. The staff’s root mean squared error falls considerably when
current-quarter data become available and continues to fall even after the BEA releases its
first estimate of GDP and inflation.
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Figure 4: An Index of the Market’s Reaction to Macroeconomic News
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Description: The index is calculated as a rolling sum of S&P 500 futures returns weighted
by the size of normalized forecast errors from Bloomberg Finance LP (2017). NBER
recessions shaded. Year marks at January 1 of each year. Higher values of this index
indicate that the market interpreted incoming macroeconomic news as better than expected,
relative to its eve-of-release expectations. See text in sub-subsection for further details.

Interpretation: Our measure of news is mean stationary, though the variance spikes dur-
ing the Great Recession and remains elevated thereafter, indicating that the market was
more surprised by data during and after the Great Recession, relative to the period before.
Interestingly, the measure rises at the beginning of the 2001 and 2008 recessions.
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Table 1: Summary Statistics of High-frequency Forecast Errors.

Forecast Horizon -1 0 1 2
GDP

Mean .08 A1 =29 -.63
Std. Dev. 79 162 201 2.1
Min. -2.34 -7.34 -749 -7.29
Max. 3.8 49 6.3 5.45
N. Obs. 1028 992 812 755
Inflation

Mean 0 -.03 A7 3
Std. Dev. .29 49 .62 .62
Min. -1.44 -1.68 -1.68 -1.64
Max. .68 1 1.34 1.36
N. Obs. 336 398 183 154

Description: Table shows summary statistics for forecast errors of the staff projections
of annualized quarterly real GDP growth and annualized quarterly core PCE inflation by
forecast horizon. Error defined as the BEA’s third release less the forecast.

Interpretation: The staff made sizable forecast errors for both GDP and inflation. The
staff’s forecasts are about unbiased for backcasts and current-quarter forecasts. There is
some evidence of bias for further ahead forecasts, though the sample size for further ahead
forecasts is smaller.
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Table 2: Real GDP Efficiency Regressions Suggest Some Forecast Inefficiencies

Forecast Horizon -1 0 1 2
High-frequency
Revision -0.10 0.52 -0.32 -0.12
(0.11) (0.30) (0.35) (0.25)

Constant  0.04 0.17 -0.37 -0.71
(0.04) (0.09) (0.14) (0.14)

N 616 579 495 381
adj. R* 0.00 0.01 0.00 -0.00
Greenbook Only
Revision 0.03  0.39 -0.29 -0.33
(0.07) (0.19) (0.33) (0.40)

Constant  0.04 0.35 -0.22 -0.72
(0.07) (0.18) (0.26) (0.24)

N 86 87 87 87
adj. R -0.01 0.04 -0.00 -0.00
p-values:
Hy : High-Frequency Revision =  0.35 0.73 0.96 0.67
Greenbook Revision
Hy : High-Frequency Constant =  0.97 0.35 0.61 0.96
Greenbook Constant

Description: Table shows estimated coefficients from the regression i in — Uitynlr =
in + BinAbitinr + €irqpnr for Federal Reserve Board staff projections of annualized
quarterly real GDP growth by forecast horizon. The top panel uses our high-frequency
forecast dataset and the bottom panel uses Greenbooks only. For Greenbook regressions,
OLS standard errors in parentheses. We weight the high-frequency regressions by number
of days between forecast revisions in Ag; 44|, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: The regressions from both our high-frequency forecast dataset and the
Greenbooks suggest, on average, some forecast inefficiencies. The current-quarter staff GDP
forecasts tend to underrevise, and there is also some evidence of bias.
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Table 3: Inflation Efficiency Regressions Suggest Limited Inflation Forecast Inefficiencies

Forecast Horizon -1 0 1
High-frequency
Revision -0.45 0.23 -1.82
(0.21) (0.25) (0.82)

Constant -0.02  -0.00 0.26
(0.03) (0.04) (0.10)

N 166 206 48
adj. R 0.08 000 0.12
Greenbook Only
Revision -0.14 -0.18  0.13
(0.11)  (0.14) (0.38)

Constant  0.01 -0.05 -0.05
(0.03) (0.05) (0.06)

N 84 87 87
adj. B2 0.01 0.01  -0.01
p-values:
Hy : High-Frequency Revision = 0.18 0.14 0.03
Greenbook Revision
Hy : High-Frequency Constant =  0.46 0.51 0.01
Greenbook Constant

Description: Table shows estimated coefficients from the regression i in — Uitynlr =
in + BinAbitinr + €irqpnr for Federal Reserve Board staff projections of annualized
quarterly core PCE inflation by forecast horizon. The top panel uses our high-frequency
forecast dataset and the bottom panel uses Greenbooks only. For Greenbook regressions,
OLS standard errors in parentheses. We weight the high-frequency regressions by number
of days between forecast revisions in Ag; 44|, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: The high-frequency regressions indicate some tendency, on average, for
one-quarter backcasts of inflation to overrevise, but otherwise we find little evidence of
inefficient inflation forecasts. The one-quarter-ahead regressions have a small sample size,
so we do not want to overemphasize their results.
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Table 4: Time-Varying Real GDP Efficiency Regressions Also Suggest Some Forecast Ineffi-
ciencies

Forecast Horizon -1 0 1 2
I(t) -0.05 0.18 0.45 0.39
(0.08) (0.16) (0.36) (0.27)

Revision -0.15 0.63 -0.22 -0.55
(0.14) (0.38) (0.45) (0.31)

I(t)xRevision 0.16 -0.30 -0.13  0.84
(0.26) (0.61) (0.68) (0.47)

Constant  0.06 0.10 -0.51 -0.87
(0.06) (0.12) (0.14) (0.19)

N 616 579 495 381
adj. R -0.00 0.01 0.01 0.00
p-values:
Hy : Constant + I(1) =0 0.88 0.01 0.86 0.01
Hy : Revision + I(7)xRevision =0 099 049 049  0.40

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon, where I(7) is an
indicator for a forecast made within 14 calendar days from the start of a regularly-scheduled
FOMC meeting. We weight these regressions by number of days between forecast revisions
in Ay ¢4hr, with Huber-White (White 1980) standard errors in parentheses. Hypothesis
tests are two sided. Statistical significance asterisks omitted.

Interpretation: There is some evidence that Federal Reserve Board staff GDP forecasts
exhibit time-varying efficiency. Forecasts made at least 14 days from the start of a regularly
scheduled FOMC meeting revise inefficiently, whereas we find efficient revisions for those
forecasts made within 14 days from the start of a meeting. There is some stronger evidence
of bias.
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Table 5: Time-Varying Inflation Efficiency Regressions Also Indicate Limited Evidence for
Inefficiency

Forecast Horizon -1 0 1
I(t) 0.03 -0.01 -0.07
(0.06) (0.08) (0.18)

Revision -0.18 0.09 2.32
(0.41) (0.26) (1.55)

I(t)xRevision -0.31  0.38  -4.82
(0.47) (0.54) (1.62)

Constant -0.05 0.00 0.32
(0.05) (0.05) (0.15)

N 166 206 48
adj. B2 0.08 000 0.25
p-values:
Hy : Constant + I(7) =0 0.67 0.85  0.02
Hy : Revision + I(7)xRevision =0 0.04 0.32  0.00

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly core PCE inflation by forecast horizon, where I(7) is
an indicator for a forecast made within 14 days from the start from a regularly-scheduled
FOMC meeting. We weight these regressions by number of days between forecast revisions
in Ay ¢4hr, with Huber-White (White 1980) standard errors in parentheses. Hypothesis
tests are two sided. Statistical significance asterisks omitted.

Interpretation: There is some evidence that Federal Reserve Board staff inflation backcasts
made within 14 days from the start of a regularly scheduled FOMC meeting overrevised.
Otherwise, there is not much evidence of inefficient inflation forecasts. The sample size of
one-quarter-ahead inflation regressions is small, so we do not place too much weight on these
results.
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Table 6: Better-than-Expected Macroeconomic News Predicts Federal Reserve Staff Real
GDP Forecast Errors

Forecast Horizon -1 0 1 2
I(t) -0.05 0.26 0.51 0.31
(0.08) (0.16) (0.34) (0.28)

Revision -0.16 043 -0.35 -0.66
(0.13)  (0.39) (0.42) (0.30)

I(T)xRevision 0.13 -0.42 -0.48 0.97
(0.26) (0.53) (0.65) (0.46)

news, -0.02 -0.06 -0.05 -0.04
(0.01) (0.02) (0.03) (0.03)

I(7) x news, 0.01  0.00 -0.02 0.06
(0.01) (0.03) (0.05) (0.04)

Constant  0.07 0.14 -047 -0.81
(0.05) (0.11) (0.13) (0.19)

N 616 579 495 381
adj. B> 0.01 0.07 0.05 0.01
p-values:
Hy : Constant + I(7) =0  0.64 0.00 0.90 0.02
Hy : Revision + I(7)xRevision=0 0.89 097 0.10 0.37
Hy : news, + I(17) x news, =0 0.13  0.00 0.05 0.62

Description: Table shows estimated coefficients from the regression y;4n — Uitinr =
Qih + BinAbigenyr + Vipd (T) + Nipd (T) Afip)r + minnews: + 0; ,1(T)news, + €;44p)r for
Federal Reserve Board staff projections of annualized quarterly real GDP growth by forecast
horizon, where I(7) is an indicator for a forecast made within 14 days from the start of
a regularly-scheduled FOMC meeting, and news, is our measure of the market’s reaction
to macroeconomic news using data from Bloomberg Finance LP (2017). We weight these
regressions by number of days between forecast revisions in Ag; i p|,, with Huber-White
(White 1980) standard errors in parentheses. Hypothesis tests are two sided. Statistical
significance asterisks omitted.

Interpretation: We find evidence that the market’s reaction to macroeconomic news pre-
dicts Federal Reserve Board staff real GDP forecast errors, which suggests that the staff is
not efficiently using information from financial markets to inform its forecasts of GDP. When
economic news is better than expected, the forecasts of GDP are more accurate.
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Table 7: Better-than-Expected Macroeconomic News Does Not Predict Federal Reserve Staff
Inflation Forecast Errors

Forecast Horizon -1 0 1
I(t) 0.04 0.01 -0.19
(0.06) (0.08) (0.17)

Revision -0.17 0.07 1.43
(0.40) (0.26) (1.51)

I(T)xRevision -0.32  0.36  -3.90
(0.47) (0.55) (1.62)

news, -0.00 -0.00 -0.04
(0.01) (0.01) (0.01)

I(7) x news, -0.00 -0.01 0.03
(0.01) (0.01) (0.01)

Constant -0.05 0.01 0.50
(0.05) (0.05) (0.13)

N 166 206 48
adj. B2 008 001  0.40
p-values:
Hy : Constant + I(7) =0 0.84 0.80 0.01
Hy : Revision + I(7)xRevision =0 0.03  0.38  0.00
Hy : news, + I(1) x news, =0 0.43  0.20  0.00

Description: Table shows estimated coefficients from the regression y;4n — Uitinr =
Qih + BinAbigenyr + Vipd (T) + Nipd (T) Afip)r + minnews: + 0; ,1(T)news, + €;44p)r for
Federal Reserve Board staff projections of annualized quarterly core PCE inflation by
forecast horizon, where I(7) is an indicator for a forecast made within 14 days from the start
of a regularly-scheduled FOMC meeting, and news, is our measure of the market’s reaction
to macroeconomic news using data from Bloomberg Finance LP (2017). We weight these
regressions by number of days between forecast revisions in Ag; i p|,, with Huber-White
(White 1980) standard errors in parentheses. Hypothesis tests are two sided. Statistical
significance asterisks omitted.

Interpretation: We do not find evidence that market’s reaction to macroeconomic news
predicts the Federal Reserve Board staff inflation forecast errors, suggesting that the staff
forms its inflation forecasts efficiently.
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Table 8: Main GDP Specifications Under a “Cherry Picked” Baseline Can Show Erroneous
Results

Forecast Horizon -1 0 1 2
I(t) -0.05 0.40 0.08 -0.31
(0.09) (0.21) (0.27) (0.42)

Revision -0.31 0.25 -1.24 -1.07
(0.12) (0.45) (0.65) (1.06)

I(T)xRevision 0.17 -0.11 1.01  0.98
(0.17) (0.51) (0.71) (1.09)

Constant  0.15 -0.17 -0.11 -0.05
(0.07) (0.19) (0.22) (0.40)

N 379 351 278 198
adj. R 001 001 001 -0.01
p-values:
Hy : Constant + I(1) =0 0.07 0.02 085 0.01
Hy : Revision + I(7)xRevision =0 0.27  0.58 046  0.74

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon under “cherry
picked” assumptions. From our prespecified baseline we instead: estimate unweighted
regressions, increase the threshold for dropping revisions to Ag; 44 to 0.1 p.p., and set I(7)
as 28 days until the start of a regularly-scheduled FOMC meeting. Statistical significance
asterisks omitted.

Interpretation: Under some “cherry picked” assumptions the models show the staff’s GDP
forecasts overrevise, which is the opposite conclusion of our prespecified models.
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Table 9: “Robustness Check” that Changes the Weights of the “Cherry Picked” Baseline
Still Shows Erroneous Results

Forecast Horizon -1 0 1 2
I(t) -0.08 0.37 0.20 -0.29
(0.10) (0.23) (0.30) (0.42)

Revision -0.33 0.37 -1.24 -1.07
(0.12) (0.50) (0.65) (1.06)

I(t)xRevision 026 -0.17 1.10  1.02
(0.18) (0.58) (0.72) (1.09)

Constant 0.16 -0.10 -0.11  -0.05
(0.07) (0.20) (0.22) (0.40)

N 379 351 278 198
adj. R* 001 0.01 0.01 -0.01
p-values:
Hy : Constant + I(t) =0 0.18 0.0l 0.65 0.01
Hy : Revision + I(7)xRevision =0 0.62 049 0.66  0.86

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon under “cherry
picked” assumptions. From our prespecified baseline we instead: estimate weighted
regressions by the number of weeks between forecasts (rounded up), increase the threshold
for dropping revisions to Ay, ;45 to 0.1 p.p., and set I(7) as 28 days until the start of a
regularly-scheduled FOMC meeting. Statistical significance asterisks omitted.

Interpretation: Under some “cherry picked” assumptions, including a new assumption for
the weights that is different from our preanalysis plan and the “cherry picked” baseline, the
models show the staff’s GDP forecasts overrevise, which is the opposite conclusion of our
prespecified models.
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Table 10: “Robustness Check” that Changes the Minimum Revision Threshold of the
“Cherry Picked” Baseline Still Shows Erroneous Results

Forecast Horizon -1 0 1 2
I(r) -0.01 0.23 0.14 0.13
(0.06) (0.12) (0.16) (0.17)

Revision -0.30 020 -1.02 -0.38
(0.12) (0.43) (0.65) (1.00)

I(r)xRevision 0.15  -0.07 072  0.17
(0.17)  (0.49) (0.72) (1.04)

Constant 0.09 -0.06 -0.38 -0.70
(0.06) (0.10) (0.14) (0.14)

N 941 903 723 666
adj. R* 0.00 0.00 0.00 -0.00
p-values:
Hy : Constant + I(t) =0 0.01 0.00 0.00 0.00
Hy : Revision + I(7)xRevision =0 0.21  0.58 0.33  0.44

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon under “cherry
picked” assumptions. From our prespecified baseline we instead: estimate unweighted
regressions, use all revisions in Ag;,ip-, and set I(7) as 28 days until the start of a
regularly-scheduled FOMC meeting. Statistical significance asterisks omitted.

Interpretation: Under some “cherry picked” assumptions, including a new assumption
for the sample restriction on Ag; ;. p|, that was different from our preanalysis plan and the
“cherry picked” baseline, the models show the staff’s GDP forecasts overrevise, which is the
opposite conclusion of our prespecified models.
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Table 11: “Robustness Check” that Changes the Definition of I(7) of the “Cherry Picked”
Baseline Still Shows Erroneous Results

Forecast Horizon -1 0 1 2
I(t) -0.06 0.45 0.20 -0.03
(0.09) (0.18) (0.25) (0.29)

Revision -0.22 0.17 -1.01 -0.64
(0.12) (0.36) (0.41) (0.53)

I(T)xRevision 0.05 -0.03 097  0.59
(0.18) (0.45) (0.54) (0.60)

Constant 0.14 -0.15 -0.16 -0.30
(0.06) (0.14) (0.17) (0.24)

N 379 351 278 198
adj. R 001 0.01 0.02 -0.01
p-values:
Hy: Constant + I(7) =0 0.14 0.0l 0.84 0.04
Hy : Revision + I(7)xRevision =0 0.19 0.59 090 0.85

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon under “cherry
picked” assumptions. From our prespecified baseline we instead: estimate unweighted
regressions, increase the threshold for dropping revisions to Ag; 44 to 0.1 p.p., and set I(7)
as 21 days until the start of a regularly-scheduled FOMC meeting. Statistical significance
asterisks omitted.

Interpretation: Under some “cherry picked” assumptions, including a new assumption
for I(7) that was different from our preanalysis plan and the “cherry picked” baseline, the
models show the staff’s GDP forecasts overrevise, which is the opposite conclusion of our
prespecified models.
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A Appendix: High-frequency Forecast Source Data Doc-
umentation

This appendix provides a few additional details on the archived documents that we used to
create our high-frequency forecast dataset.

The forecasts from the archived documents differ in their precision level, depending on
the document type. Briefing tables and charts usually report GDP and inflation at the
nearest Y10 percentage point. The eve-of-GDP-release database snapshots usually have the
same precision as Greenbooks: GDP at the nearest Y10 percentage point and inflation at the
nearest Y100 percentage point. Irregular database backups have forecasts to several decimals,
but we rounded these to match the Greenbook’s precision.

The precision of forecasts from briefing texts and forecast update memos varies consid-
erably, but often GDP forecasts from briefing texts and forecast update memos are reported
at the nearest % percentage point and inflation forecasts are reported at either the nearest
Yio or Y4 percentage point. These forecasts tend to be paired with a qualifier adjective. For
example, consider the briefing text from October 10, 2006 (emphasis ours): “To sum up, the
average rate of GDP growth in the second half of the year looks to be about the same as
in the September Greenbook, with the third quarter rate —at 1% percent —a little slower
than we had in the Greenbook, and the fourth quarter pace —at just over 2 percent —a
little faster.”

In cases where there was a qualifier adjective that indicated “more than”, we applied
it to the numerical value in the text and adjusted the forecast in our dataset upward to
the nearest Yio percentage point. For example, “just over 2 percent” is 2.1 percent in our
dataset. We recorded adjectives that mean “less than” analogously, by adjusting downward
to the nearest Y10 point. When we observed adjectives synonymous with “about,” we did
not adjust the forecast.

Occasionally, briefing texts and forecast update memos contain range forecasts. For
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example, in the prepared remarks from September 24, 2001 (emphasis ours): “For the fourth
quarter, we are likely to project a decline in real GDP of between one-half and one
percent.” In these cases, we recorded the midpoint of the range as the forecast. We then
rounded to match the Greenbook’s precision.

The materials the staff use to brief the Board of Governors —briefing tables and charts
that accompany the briefing text —may or may not contain the numerical values of the
staff forecasts[¥] But when both the tables or charts and the briefing text report the same
forecast, they may also do so at different precision levels. When both the briefing tables and
charts and the briefing text contain the same forecast but report at different precision levels,
we used the more precise value from the tables and charts.

The eve-of-GDP-release database snapshots have a “previous value” of the staft’s forecast
indicated, but the previous value can either be the last Greenbook forecast or the staff’s
updated (non-Greenbook) forecast as of the eve-of-GDP-release. There are no metadata
that allow us to differentiate between these two possibilities. Furthermore, eve-of-GDP-
release database snapshots typically, but not always, report forecasts at the Greenbook’s
precision level.

To use eve-of-GDP-release database snapshots we assumed that if the values from the eve-
of-GDP-release database snapshot —rounded to the Greenbook’s precision —matched the
forecasted values from the last Greenbook, then the eve-of-GDP-release database snapshot
reported the Greenbook forecasts. Otherwise we assumed the eve-of-GDP-release database
snapshot reflected the staft’s eve-of-GDP-release forecast.

Irregular database backups occur at automatic, time-varying intervals. Because the back-
ups occur at points where the staff may not have vetted the forecasts, sometimes the irregular
database backup saves what, in our estimation, is a nonsensical value of the staff’s forecast.
We removed these nonsensical values. Though we did not have a hard rule for doing so,

typically if the implied revision to the staff’s forecast from an irregular database backup was

34Briefing tables and charts tend to contain values of new data releases, such as the unemployment rate
from the last employment report.
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on the order of tens of percentage points for GDP or percentage points for inflation, then
we removed those values.

Though the unit of time for our high-frequency dataset is daily, the archived documents
that we used to create the dataset are mixed-frequency. Typically we only have one staff
forecast for a day. But on occasion we observed more than one staff forecast on a given day.
In instances where we have more than one forecast on a given day, we adopted the following
priority system, from highest to lowest: (1) Greenbooks, (2) forecast update memos, (3)
briefing tables/charts/text, (4) eve-of-GDP-release database snapshots, and (5) automatic
database backups.

Greenbooks are the official staff forecast and undergo the most thorough vetting, so we
gave them the highest priority. Forecast update memos, briefing tables, charts, and text also
contain vetted forecasts because they are direct communications to the Board of Governors,
but the staff usually disclaims that the forecasts are still in flux and the reported fore-
casts could change —only the Greenbooks are the official staff forecast. Eve-of-GDP-release
database snapshots also undergo some vetting in preparation for the BEA’s release, though
our suspicion is that the forecasts are less vetted than memos or briefing tables/charts/text
because the eve-of-GDP-release database snapshots are not official communications to the

Board of Governors.
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B Appendix: Outlier Check and Bloomberg Data Ta-

bles

Table 12: Removing Outliers Still Suggest Some GDP Forecast Inefficiencies

Forecast Horizon -1 0 1 2
Revision -0.11 0.48 -0.18 -0.14
(0.11) (0.29) (0.33) (0.23)

Constant  0.02 0.22 -0.27 -0.60
(0.04) (0.08) (0.13) (0.13)

N 610 o974 491 378
adj. R* 0.00 0.01 -0.00 -0.00

Description: Table shows estimated coefficients from the regression v;;in — Uinlr =
i b+ Bi n AU t+-h)r +€i44-n|- for Federal Reserve Board staff projections of annualized quarterly
real GDP growth by forecast horizon, removing 1 percent of outliers. We weight by number
of days between forecast revisions in Ag; 44|, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: The regressions without outliers still suggest, on average, some forecast
inefficiencies. The current-quarter GDP forecasts tend to underrevise, and there is also some

evidence of bias.
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Table 13: Removing Outliers Still Suggest Limited Inflation Forecast Inefficiencies

Forecast Horizon -1 0 1
Revision -0.45 0.23 -1.82
(0.21) (0.25) (0.82)

Constant -0.01 0.00 0.26
(0.03) (0.04) (0.10)

N 165 204 48
adi. B2 0.10  0.00 0.12

Description: Table shows estimated coefficients from the regression v;in — ¥itynlr =
i h+ Bi n AU ¢+l + €440 for Federal Reserve Board staff projections of annualized quarterly
core PCE inflation by forecast horizon, removing 1 percent of outliers. We weight by number
of days between forecast revisions in Ag; 44|, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: The regressions without outliers still suggest, on average, one-quarter back-
casts tend to overrevise but otherwise there is limited evidence of inefficiencies. The one-
quarter-ahead regressions have a small sample size, so we do not want to overemphasize their
results.
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Table 14: Time-Varying Real GDP Efficiency Regressions without Outliers Also Suggest
Some Forecast Inefficiencies

Forecast Horizon -1 0 1 2
I(t) -0.02 0.15 0.57 0.56
(0.08) (0.15) (0.34) (0.25)

Revision -0.16 053 -0.10 -0.55
(0.13) (0.37) (0.43) (0.31)

I(t)xRevision 017 -0.71 -0.16  0.82
(0.26) (0.48) (0.65) (0.45)

Constant  0.03 0.18 -048 -0.87
(0.05) (0.11) (0.14) (0.19)

N 610 574 491 378
adj. R 0.00 0.01 0.01 0.01
p-values:
Hy : Constant + I(t) =0 0.88 0.00 0.76  0.05
Hy : Revision + I(7)xRevision =0 099 056 059  0.40

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly real GDP growth by forecast horizon, where I(7) is an
indicator for a forecast made within 14 calendar days from the start of a regularly-scheduled
FOMC meeting, removing 1 percent of outliers. We weight these regressions by number of
days between forecast revisions in Ag; ;i p|r, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: Excluding outliers, there is still some evidence that Federal Reserve Board
staff GDP forecasts made at least 14 days from the start of a regularly scheduled FOMC
meeting underrevise and two-quarter-ahead forecasts overrevise, though the standard errors
are somewhat large. There is some stronger evidence of bias.
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Table 15: Time-Varying Inflation Efficiency Regressions Without Outliers Also Indicate
Limited Forecast Inefficiencies

Forecast Horizon -1 0 1
I(r) -0.00 -0.01 -0.07
(0.05) (0.08) (0.18)

Revision -0.24 0.07 2.32
(0.39) (0.26) (1.55)

I(t)xRevision -0.24 041  -4.82
(0.45) (0.54) (1.62)

Constant -0.01 0.01 0.32
(0.04) (0.05) (0.15)

N 165 204 48
adj. B2 0.09 000 0.25
p-values:
Hy : Constant + I(7) =0 0.67 0.98  0.02
Hy : Revision + I(7)xRevision =0 0.04 031  0.00

Description: Table shows estimated coefficients from the regression v;,in — ¥itynlr =
Qin + BinAUisinir + Yipd(T) + Nind (T)AGirgnir + €ip4n)- for Federal Reserve Board staff
projections of annualized quarterly core PCE inflation by forecast horizon, where I(7) is
an indicator for a forecast made within 14 days from the start of a regularly-scheduled
FOMC meeting, removing 1 percent of outliers. We weight these regressions by number of
days between forecast revisions in Ag; ;i p|r, with Huber-White (White 1980) standard er-
rors in parentheses. Hypothesis tests are two sided. Statistical significance asterisks omitted.

Interpretation: Excluding outliers, there is still some evidence that Federal Reserve Board
staff inflation backcasts made within 14 days from the start of a regularly scheduled FOMC
meeting overrevised. Otherwise, there is not much evidence of inefficient inflation forecasts.
The sample size of one-quarter ahead inflation regressions is small, so we do not place too
much weight on these results.
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Table 16: Excluding Outliers Better-than-Expected Macroeconomic News Still Predicts Staff
GDP Forecast Errors

Forecast Horizon -1 0 1 2
I(r) -0.01 0.23 0.47 0.27
(0.08) (0.15) (0.33) (0.26)

Revision -0.16 053 -0.36 -0.75
(0.13) (0.37) (0.41) (0.30)

I(t)xRevision 013 -052 -0.49  1.09
(0.26) (0.52) (0.65) (0.45)

news, -0.02 -0.03 -0.06 -0.06
(0.01) (0.01) (0.03) (0.03)

I(7) x news, 0.01 -0.03 -0.02 0.07
(0.01) (0.02) (0.05) (0.04)

Constant  0.04 0.16 -0.40 -0.70
(0.05) (0.10) (0.12) (0.18)

N 610 574 491 378
adj. B> 0.02 0.04 0.07  0.03
p-values:
Hy : Constant + I(7) =0  0.64 0.00 0.82 0.03
Hy : Revision + I(7)xRevision=0 0.89 097 0.09 0.31
Hy : news, + I(1T) x news, =0 0.13  0.00 0.04 0.64

Description: Table shows estimated coefficients from the regression y;4n — Uitinr =
Qih + BinAbigenyr + Vipd (T) + Nipd (T) Afip)r + minnews: + 0; ,1(T)news, + €;44p)r for
Federal Reserve Board staff projections of annualized quarterly real GDP growth by forecast
horizon, where I(7) is an indicator for a forecast made within 14 days from the start of
a regularly-scheduled FOMC meeting, and news, is our measure of the market’s reaction
to macroeconomic news using data from Bloomberg Finance LP (2017). We weight these
regressions by number of days between forecast revisions in Ag; i p|,, with Huber-White
(White 1980) standard errors in parentheses. Hypothesis tests are two sided. Statistical
significance asterisks omitted.

Interpretation: Excluding outliers, we still find evidence that the market’s reaction to
macroeconomic news predicts Federal Reserve Board staff real GDP forecast errors, suggest-
ing that the staff does not use information in asset price changes efficiently to inform its
GDP forecasts. When economic news is better than expected, the staff forecasts of GDP are
more accurate.
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Table 17: Excluding Outliers Better-than-Expected Macroeconomic News Still Does Not
Predict Staff Inflation Forecast Errors

Forecast Horizon -1 0 1
I(t) 0.05 -0.00 -0.19
(0.06) (0.08) (0.17)

Revision -0.17 0.09 1.43
(0.40) (0.25) (1.51)

I(T)xRevision -0.34  0.34 -3.90
(0.47) (0.54) (1.62)

news, -0.00 -0.00 -0.04
(0.01) (0.01) (0.01)

I(1) x news, -0.01 -0.01 0.03
(0.01) (0.01) (0.01)

Constant -0.05 0.02 0.50
(0.05) (0.05) (0.13)

N 165 204 48
adj. B2 009 001  0.40
p-values:
Hy : Constant + I(7) =0 0.95 0.80 0.01
Hy : Revision + I(7)xRevision =0 0.03  0.38  0.00
Hy : news, + I(1) x news, =0 0.27  0.20  0.00

Description: Table shows estimated coefficients from the regression y;4n — Uitinr =
Qih + BinAbigenyr + Vipd (T) + Nipd (T) Afip)r + minnews: + 0; ,1(T)news, + €;44p)r for
Federal Reserve Board staff projections of annualized quarterly core PCE inflation by
forecast horizon, where I(7) is an indicator for a forecast made within 14 days from the start
of a regularly-scheduled FOMC meeting, and news, is our measure of the market’s reaction
to macroeconomic news using data from Bloomberg Finance LP (2017). We weight these
regressions by number of days between forecast revisions in Ag; i p|,, with Huber-White
(White 1980) standard errors in parentheses. Hypothesis tests are two sided. Statistical
significance asterisks omitted.

Interpretation Excluding outliers, we still do not find evidence that the market’s reaction
to macroeconomic news predicts Federal Reserve Board staff inflation forecast errors.
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Table 18: Bloomberg Series in News Index, news, (Table 1 of 2)

Bloomberg Mnemonic

|

Data Description

ADP_CHNG_INDEX

ADV_GDP_CQOQ_INDEX
ADV_GDP_PIQQ_INDEX

AHE MOMY%_INDEX

CHPMINDX_INDEX
CICRTOT_INDEX
CNSTTMOM_INDEX
CONCCONF_INDEX
CONSSENT_INDEX

COSTNFR%_INDEX

CPI_.CHNG_INDEX
CPIXYOY_INDEX
CPLYOY_INDEX
CPTICHNG._INDEX
CPUPXCHG_INDEX
DGNOCHNG_INDEX
ECI_.SA%_INDEX

EMPRGBCILINDEX

ETSLMOM_INDEX
FDDSSD_INDEX

FDTR_INDEX
FRNTTOTL_INDEX
GDPCPCEC_INDEX

GDPCTOT%_INDEX

GDP_CQOQ_INDEX
GDP_PIQQ.INDEX
HPIMMOMY% _INDEX
IMP1CHNG_INDEX
INJCJC_INDEX
INJCSP_INDEX
IP_CHNG_INDEX
LEI CHNG_INDEX

ADP National Employment Report, SA,

Private Nonfarm Level Change

US GDP First Release, Chained, QoQ, SAAR

US GDP Price Index First Release, QoQ, SAAR

US Average Hourly Earnings All Employees,

Total Private Monthly Percentage Change

MNTI Chicago Business Barometer SA

Federal Reserve G19 Consumer Credit Total Net Change SA
Census Bureau US Construction Spending MoM SA
Conference Board Consumer Confidence SA

University of Michigan,

Survey of Consumer Confidence Sentiment (Final)

US Unit Labor Costs Nonfarm Business Sector

QoQ % SAAR

US CPI Urban Consumers MoM SA

US CPI Urban Consumers Less Food & Energy YoY NSA
US CPI Urban Consumers YoY NSA

US Capacity Utilization % of Total Capacity SA

US CPI Urban Consumers Less Food & Energy MoM SA
US Durable Goods New Orders Industries MoM SA
Bureau of Labor Statistics,

Employment Cost Civilian Workers QoQ SA

Empire State Manufacturing Survey,

General Business Conditions SA

US Existing Homes Sales MoM SA

US Treasury Federal Budget Debt Summary,

Deficit Or Surplus NSA

Federal Funds Target Rate Upper Bound, p.p.

US Foreign Net Transactions

US GDP Personal Consumption Core Price Index,

QoQ % SAAR

GDP US Personal Consumption Chained,

% Change from Previous Period SAAR

US GDP Third Release, Chained, QoQ, SAAR

US GDP Price Index Third Release, QoQ, SAAR
FHFA US House Price Index Purchase Only MoM% SA
US Import Price Index by End Use All MoM NSA

US Initial Jobless Claims SA

US Continuing Jobless Claims SA

Industrial Production, Change from Previous Period, SA
Conference Board US Leading Index MoM

Notes: MoM = month over month, QoQ = quarter over quarter, SA = seasonally adjusted,
SAAR = seasonally adjusted at an annual rate, YoY = year over year. Source: Bloomberg
Finance LP (2017).
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Table 19: Bloomberg Series in News Index, news, (Table 2 of 2)

Bloomberg Mnemonic

|

Data Description

|

MWINCHNG_INDEX
NAPMNMI_INDEX
NAPMPMI_INDEX
NFP_PCH_INDEX

NFP_TCH_INDEX

NHSLTOT_INDEX
NHSPSTOT_INDEX
OUTFGAF_INDEX

PCE_CMOM_INDEX
PCE_CRCH_INDEX
PCE_CYOY_INDEX
PCE_DEFY_INDEX

PITLCHNG_INDEX
PPI_CHNG_INDEX
PRE_CONSSENT_INDEX

PRODNFR%_INDEX
PXFECHNG_INDEX
RSTAMOM_INDEX

RSTAXMOM_INDEX
SAARDTOT_INDEX
SBOITOTL_INDEX
SEC_GDP_CQOQ_INDEX
SEC_GDP_PIQQ_INDEX
SPCS20Y%_INDEX

TMNOCHNG_INDEX
USCABAL_INDEX
USMMMNCH_INDEX

USPHTMOM_INDEX
USTBTOT_INDEX
USURTOT_INDEX

Merchant Wholesalers Inventories Total Monthly % Change
ISM Non-Manufacturing NMI Composite

ISM Manufacturing PMI SA

US Employees on Nonfarm Payrolls,

Total Private MoM Net Change SA

US Employees on Nonfarm Payrolls,

Total MoM Net Change SA

US New One Family Houses Sold Annual Total SAAR
Housing Starts, SAAR

Philadelphia Fed Business Outlook Survey,

Diffusion Index General Conditions

US Personal Consumption Expenditures,

Core Price Index MoM SA

US Personal Consumption Expenditures,

Nominal Dollars MoM SA

US Personal Consumption Expenditures,

Core Price Index YoY SA

US Personal Consumption Expenditures,

Chain Type Price Index YoY SA

US Personal Income MoM SA

US PPI Finished Goods SA MoM %

University of Michigan,

Survey of Consumer Confidence Sentiment (Preliminary)
US Output Per Hour Nonfarm Business Sector QoQ SA
US PPI Finished Goods Less Foods & Energy SA MoM%
Adjusted Retail & Food Services Sales,

SA Total Monthly % Change

Adjusted Retail Sales Less Autos SA Monthly % Change
US Auto Sales Domestic Vehicles Annualized SA

NFIB Small Business Optimism Index

US GDP Second Release, Chained, QoQ, SAAR

US GDP Price Index Second Release, QoQ, SAAR
S&P /Case-Shiller Composite-20 City

Home Price Index YoY

US Manufacturers New Orders Total MoM SA

US Nominal Account Balance In Billions of USD

US Employees on Nonfarm Payrolls,

Manufacturing Industry Monthly Net Change SA

US Pending Home Sales Index MoM SA

US Trade Balance Of Payments SA

U-3 US Unemployment Rate SA

Notes: MoM = month over month, QoQ = quarter over quarter, SA = seasonally adjusted,

SAAR = seasonally adjusted at an annual rate, YoY = year over year. Source: Bloomberg

Finance LP (2017).
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