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Abstract
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1 Introduction

Liquidity is an important topic for regulators, academics and practitioners alike. Absence

of arbitrage, on the other hand, is at the hart of our modern understanding of financial

markets. Scholars recognize that trading frictions, like those associated with the presence

of positive bid-ask spread, are related to deviation from the no arbitrage benchmark.

Recent papers have found that arbitrage, in turn, affects market liquidity of stocks and

currencies (Roll, Schwartz and Subrahmanyam 2007, Foucalt, Kozhan and Tham 2016,

Rösch 2018). But the relationship between liquidity and arbitrage involving fixed income

securities remains largely unexplored. Our paper aims to fill this gap in the literature,

presenting new evidence about the relationship between arbitrage and liquidity from

a panel of Exchange Traded Funds (ETFs), spanning funds that invest in stocks and

corporate bonds.

Scholars are interested in understanding the relationship between arbitrage and liquid-

ity in fixed-income markets. In fact, in the seminal paper in this literature, Roll, Schwartz

and Subrahmanyam (2007) suggested this extension to the literature. Moreover, this ex-

tension of the literature is relevant for practitioners given the prominence of derivative

and structured products involving government bonds, corporate bonds, and mortgage-

backed securities, among others. Furthermore, the role of these structures in the financial

crisis of 2007-08 has renewed the attention of academics and policy makers about their

role in financial markets.

Furthermore, ETFs have attracted the interest of economists as they represent one of

the most important financial innovations in decades (Lettau and Madhavan 2018). In fact,

from the beginning of 2000 to the end of 2017, assets under management of domestic ETFs

have increased from $26 billions to $3.5 trillions, according to data from Morningstar.

ETFs offer a proportional share in a portfolio like mutual funds, but their shares trade in

exchanges, where their price and liquidity are determined. These institutional features

naturally give rise to the following questions: how well do ETFs track their underlying

portfolio?, what are the determinants of the liquidity of ETF shares?, does ETF arbitrage

links the liquidity of ETF shares and ETF constituents?

The structure of ETFs is particularly suitable for our analysis. First, ETFs invest in both

relatively liquid equity securities and relatively illiquid fixed income securities, allowing

us to compare these two asset classes under the same institutional setting. Second,

the ETF arbitrage mechanism allows arbitrageurs to do in-kind conversions between ETF
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shares and ETF portfolio constituents. As we describe in section 2, in-kind conversions

allow arbitrageurs to close their positions, attenuating the concern that our results are

confounded by omitted variables associated with the risks of maintaining open arbitrage

positions. Finally, ETFs issue and withdraw shares typically in response to arbitrage

activity, allowing us to empirically validate the use of ETF mispricing as a proxy for

arbitrage activity.

In this paper, we compile a unique database of equity and bond ETFs using big trade-

level data on both stocks and bonds. Liquidity of ETF shares and ETF constituents, at

daily frequency, is proxied with effective spreads. We calculate effective spreads for stocks

using Daily NYSE Trade and Quotes (DTAQ) and for bonds using FINRA Trade Reporting

and Compliance Engine (TRACE). In this way, we obtain effective spreads for ETF shares,

which trade as stocks in the U.S. In addition, we use ETF portfolio composition files from

Markit North America, Inc. to compute portfolio-level effective spreads from portfolio

constituents spreads calculated from DTAQ and TRACE. We supplement this information

with data on the ETF premium—the difference between the ETF price and its net-asset

value (NAV). Since arbitrageurs can profit from large ETF premia and discounts, we

consider the absolute value of the premium, which we refer to as ETF mispricing. Our

final sample contains over 400,000 observations from February 1, 2012 to December 28,

2017 for 584 domestic ETFs: 509 domestic equity ETFs and 75 domestic bond ETFs.

Using this information, we first examine the relationship between the liquidity of ETF

shares and ETF constituents and the efficacy of the ETF arbitrage mechanism, measured

by the speed of adjustment of mispricing. We find that ETF mispricing reverts to zero

relatively fast, with the average speed of mean-reversion implying a mispricing half-life

of 0.44 days. This result is consistent with previous work that argues for the efficacy

of the ETF arbitrage mechanism given the small and transient nature of ETF mispricing

(Engle and Sarkar 2006). Moreover, we document that the average speed of adjustment

of mispricing is slower for bond ETFs, relative to equity ETFs, with half-lives of 1.36 and

0.37 days, respectively. The fact that bond ETFs, which invest in more illiquid corporate

bonds, exhibit a slower speed of adjustment illustrates that constituents’ liquidity is an

important consideration for arbitrageurs whose trades extinguish the mispricing. In fact,

at the ETF level we find a strong negative correlation between the mispricing speed

of adjustment and average ETF portfolio spreads. The illiquidity of ETF shares also is

negatively correlated with the speed of adjustment when we consider only equity ETFs.

Together these results show that liquidity affects the efficacy of arbitrage.
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Next, we study the joint dynamics of ETF mispricing and liquidity in our sample

of 584 ETFs, relating these variables in panel vector autoregressions (PVARs) for equity

and bond ETFs separately. Our endogenous variables are ETF spreads, ETF portfolio

spreads, and ETF mispricing. To avoid the possibility of spurious results these series

are expunged of trends and calendar regularities. Our PVAR approach builds on Roll,

Schwartz and Subrahmanyam (2007), who used a VAR to relate the dynamics of arbitrage

and liquidity, using the NYSE composite index and future contracts on this index. By

contrast, we consider a panel of ETFs. As these authors, we consider mispricing as a

proxy for arbitrage activity and measure the illiquidity of the portfolio associated with

a derivative asset—ETF shares in our case—using bid-ask spreads. Relative to these

authors, we expand the analysis to also consider the liquidity of the derivative, allowing

us to analyze the joint dynamic of arbitrage and the liquidity of the derivative, in addition

to the liquidity of the associated portfolio as previously done. ETFs are a relatively new

product, so the time series dimension of our sample is relatively shorter, but the panel

dimension increases the power of the statistical analyses allowing us for the possibility of

reliable conclusions. Our analysis yields the following results.

First, liquidity and arbitrage display a statistically significant two-way relation, both in

the case of equity and bond ETFs. In fact, for both asset classes there is two-way Granger

causality between ETF mispricing and the effective spreads of both ETF shares and ETF

portfolios. Second, the effect of arbitrage on liquidity, and of liquidity on arbitrage, is larger

and more persistent in the case of bond ETFs. In fact, in the case of bond ETFs, a shock to

the ETF or portfolio spread predicts larger and more persistent responses of mispricing,

and similarly, a shock to mispricing predicts larger and more persistent responses of

spreads. Finally, liquidity spillovers are statistically significant in some cases, with shocks

to bond portfolio spreads predicting future spreads to bond ETF shares.

We contribute new evidence from a panel of ETFs to the literature that analyzes the

relationship between arbitrage and liquidity. The theoretical literature proposes different

mechanism through which arbitrage can affect liquidity. Holden (1995) presents a model

where arbitrageurs equate net order imbalances across markets, acting as cross-sectional

market makers. Kummar and Seppi (1994) present a model where trades by informed

cross-market arbitrageurs can have nonmonotone effects on liquidity. Foucalt, Kozhan

and Tham (2016) argue that arbitrage can be “toxic” as it can lead market makers to charge

higher bid-ask spread to compensate for the expected losses from trades with informed

arbitrageurs.
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Empirical studies have scrutinized the relationship between arbitrage and liquidity in

equity and currency markets. Our paper builds on Roll, Schwartz and Subrahmanyam

(2007), who study this relationship, using the NYSE composite index and future contracts

on this index. Deville and Riva (2007) study arbitrage and liquidity using data from

the French index options market. Rösch (2018) investigate the relationship between

arbitrage and liquidity using American Depositary Receipts of stocks traded in foreign

markets. Foucalt, Kozhan and Tham (2016) document the presence of toxic arbitrage

at intraday frequency in currency markets. Our paper present new evidence about the

relationship between arbitrage and liquidity for a panel of ETF spanning both equity and

bond securities.

The growth of ETFs led to important questions about their impact on financial markets.

The evidence on their impact on stock market liquidity is mixed. Hamm (2014) and Israeli,

Lee and Sridharan (2017) argue that they reduce the liquidity of stocks. On the other hand,

Sağlam, Tuzun and Wermers (2018) provide evidence for ETFs improving the liquidity of

stocks. There is also an important debate on the impact of ETFs on the informativeness

of stock prices. Israeli, Lee and Sridharan (2017) argue that ETFs reduce the sensitivity

of stocks to their earnings news. On the other hand, Glosten, Nallareddy and Zou (2016)

suggest that ETFs increase the informational efficiency of stocks with respect to systematic

component of their earnings news. Hasbrouck (2003) and Madhavan and Sobczyk (2016)

showed that ETFs play an important role in price discovery. In addition, many studies

(such as Da and Shive (2012) and Israeli, Lee and Sridharan (2017)) find evidence that

ETFs increase the correlation of returns between their underlying assets. Bhattacharya

and O’Hara (2017) argues that ETFs could distort the pricing efficiency of underlying

securities, because market makers in individual securities learn from ETF prices, which

include idiosyncratic information of other securities. In addition, ETFs can attract short-

horizon uninformed traders, which increases the non-fundamental price volatility of the

underlying stocks (Ben-David, Franzoni and Moussawi 2018). Danhauser (2017) finds that

ETFs lead to long-term positive valuations for their underlying corporate bonds. Finally,

Pan and Zeng (2017) show that the creation and redemption of ETF shares is affected by

bond-dealer inventories. The difference between these recent papers on ETFs and ours is

that we analyze the joint liquidity dynamics of ETFs and their portfolios.

The rest of the paper is organized as follows. Section 2 presents some background on

the ETF arbitrage mechanism that are relevant for our analysis. Section 3 describes the

data and the calculations of our arbitrage and liquidity measures. Section 4 analyzes the
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relationship of liquidity and the speed of adjustment of mispricing. Section 5 presents

our PVAR analysis relating liquidity and arbitrage. Section 6 offer some conclusions.

Appendices provide additional detail about the calculation of our variables.

2 Background: ETF Arbitrage Mechanism

Exchange-traded funds (ETFs) are pooled investment vehicles, which offer a proportional

share in a portfolio like mutual funds.1 Similar to close-end funds, ETFs and their con-

stituents are listed on exchanges and trade at prices determined in markets. Market prices

for ETF shares and constituents determine the ETF premium: the difference between the

ETF share price and its net-asset value (NAV), i.e., the per share market value of the ETF

portfolio.

Although there are similarities with close-end funds, ETFs are different because they

allow shares to be created and redeemed through the ETF arbitrage mechanism.2 This

mechanism allows arbitrageurs to close their positions, facilitating the arbitrage of ETF

mispricings. In fact, Engle and Sarkar (2006) find that the arbitrage mechanism limits the

size and persistence of ETF premia, relative to close-end funds.

In a nutshell, the ETF arbitrage mechanism works as follows. Arbitrageurs create and

redeem ETF shares in exchange for pre-specified baskets of constituent securities. Each

ETF establishes contractual relationships with a set of trading firms, known as Authorized

Participants (APs), specifying the process for creating and redeeming ETF shares. But,

any interested arbitrageur, like broker/dealers or trading firms, can place creation and

redemption orders through APs, so in our analysis we consider that these creation and

redemption orders are placed by generic arbitrageurs, as opposed to solely by APs.

Some aspects of this process are common across ETFs. For instance, ETFs are required,

before each trading day, to make available a portfolio composition file that describes

the makeup of the creation and redemption baskets during the trading day. So, the

composition of the creation and redemption baskets is known in advance to arbitrageurs.3

By contrast, other aspects of the creation and redemption process are ETF specific. For

1Most domestic ETFs are registered as investment companies under the Investment Company Act of
1940 and regulated by the Securities Exchange Commission (SEC).

2For a more comprehensive description of the arbitrage mechanism see, for instance, Lettau and Mad-
havan (2018) and Antoniewicz and Heinrichs (2014).

3The portfolio composition file is transmitted the previous day, but revisions can take place until noon
of a given trading day (see Antoniewicz and Heinrichs 2014).
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example, when most constituent securities are eligible to settle through National Securities

Clearing Corporation (NSCC), creations and redemptions are settled through NSCC, who

acts as the central counterparty. Alternatively, creation and redemption orders can be

settled directly between APs and ETFs, in which case APs may be required to pledge

collateral while the order is being settled.

Our use of trade-level data to compute effective spreads for ETF constituents naturally

makes most of the constituents for the ETFs in our sample to be NSCC eligible, so we focus

on the rules that apply in this case. Several of these rules are relevant for our analysis.

First, APs can convert creation and redemption baskets for ETF shares as pre-specified

in the portfolio composition file.4 These conversions take place at the end of the trading ses-

sion in-kind allowing arbitrageurs to lock-in profits before the actual creation/redemption

takes place at the end of the trading day. To illustrate this, consider the case of the creation

order depicted in Figure 1. The figure shows that at 10:00 am ETF shares were valued at

100, while the ETF NAV was 98. At that point an arbitrageur buys the creation basket

for 98 and shorts the ETF shares at 100, earning the ETF premium of 2 per share. The

arbitrageur’s position is exposed to market risk, as its mark-to-market value fluctuates.

But, once the arbitrageur has bought the creation basket and shorted the ETF shares, the

arbitrageur can put a creation order that will allow her to exchange the creation basket in-

kind for the corresponding ETF shares. This closes the arbitrageur position as she transfers

her long ETF portfolio position and obtains the ETF shares to deliver on her short sale. If

the ETF premium was negative (ETF was trading at a discount), then the arbitrageur can

trade in the opposite direction, redeeming ETF shares. Therefore, the absolute value of

ETF premium—or ETF mispricing—should be a good proxy for arbitrage trades between

the ETF shares and the ETF constituents.

The ability to convert ETF shares to redemption baskets and to convert creation baskets

to ETF shares makes ETFs a good laboratory to study the relationship between arbitrage

and liquidity. In fact, previous and contemporary investigations of this relationship

consider similar settings. Rösch (2018) considers American Depositary Receipts, or ADRs,

which typically can be converted to shares in the home country, and vice versa. Roll,

Schwartz and Subrahmanyam (2007) study this relationship considering future contracts

on the NYSE composite index. In the case of future contracts, arbitrageurs can only

lock-in profits at the expiration of the future contract. By contrast, the ETF arbitrage

4APs have the option to accumulate creation and redemption orders during the day and can use opposing
orders to offset them.
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mechanism grant arbitrageurs the option to exchange ETF shares and ETF constituents at

any point after the arbitrage position is taken. Thus, for the same constituent portfolio the

ETF arbitrage is expected to carry lower costs and risks relative to index arbitrage, using

futures.

Second, transaction cost are bore by arbitrageurs affecting their profits and incentives.5

For example, Flannery, Nimalendran, Ray, and Yousefi (2017) use ETF premia to get a

measure of corporate bond liquidity. To illustrate the impact of trading costs consider

the previous example, but where arbitrageurs can trade at the prevailing bid and ask

quotes. Figure 2 depicts this case. If arbitrageurs were to purchase the ETF portfolio

at the prevailing ask quote, and short the ETF shares at the prevailing bid quote, then

their profits will be equal to the ETF portfolio ask quote minus the ETF share bid quote.

That is, ceteris paribus, transaction costs lower the profits earned from ETF arbitrage. In

practice, arbitrageurs can obtain more favorable prices but we will still expect that higher

trading costs would reduce arbitrage incentives, as trading costs may be related to the

price impact of trades, influencing the effective prices at which securities are traded, or

may be related to the difficulty of locating thinly traded securities.

It is worth noting that the arbitrage of ETF mispricing involves additional risks and

costs. Arbitrageurs are exposed to liquidity risk given uncertainty about their price

impacts, availability of securities for shorting, and adverse price movements before all

trades are completed. In addition, arbitrageurs may have to pay fees associated with the

creation/redemption process to the ETF manager or the AP.

Third, APs and arbitrageurs are not required to create or redeem shares, but they do

so when it is in their own interest. For example, an arbitrageur interested in profiting

from the discrepancy between the prices of an ETF and its constituents may place a cre-

ation/redemption order through an AP. Alternatively, APs may use the creation/redemption

mechanism to fulfill large orders for their institutional clients.

Finally, the creation and redemption basket need not be “equal” to the ETF portfolio.

That is, the creation or redemption baskets may not be proportional to the ETF portfolio,

or tracking basket.6 In choosing securities for creation and redemption baskets, ETF

managers have the flexibility to deviate from the ETF tracking basket. For instance,

5A consequence of the design of the arbitrage mechanism is that trading costs are externalized from the
ETF investors perspective. In fact, the creation and redemption of ETF shares are recorded by the ETF at
NAV (and take place in-kind).

6Tracking basket is not the same thing as the index tracked by the ETF. Tracking basket is the basket of
securities from which NAV is calculated to track the value of the ETF portfolio.
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managers might substitute illiquid or hard to find securities with more liquid alternatives

including cash in order to facilitate the creation and redemption process; or they might

want to use different baskets to rebalance their portfolio holdings.

This practice of using different baskets is more common in fixed income ETFs in our

data. Using Markit data (described in the next section), we compute for each ETF the

fraction of days where the creation, redemption, and tracking basket are equal. Consider-

ing the 527 domestic equity ETFs in the data we calculate the distribution of the fraction

of days that all three baskets are equal. Figure 3a shows that for 97 percent of domestic

equity ETFs these baskets are equal at least 9 out of 10 days, i.e., the fraction of days is at

least 0.9. In fact, for 57 percent of ETF these three baskets are equal, i.e., the fraction of

days is 1. By contrast, considering the 76 bond ETFs in the data we observe a different

pattern (Figure 3b). Only 54 percent of bond ETFs have all three baskets the same at least

9 out of 10 days, and there is a 25 percent of bond ETFs that have these baskets being

different at least on 1 out of 10 days. Figure 3 also depict in red the fraction of times within

each fraction-of-days bin when only the creation and redemption baskets are equal. For

domestic equity ETFs, the creation and redemption baskets are almost always the same,

so red bars are of the same height as the blue bars. By contrast, for bond ETFs, we see that

even in the cases that the three baskets are different most days, more than 30 percent of

times the creation and redemption baskets were the same. We will use this fact to motivate

our definition of the ETF portfolio effective spread, described in the next section.

3 Data Description

We combine information from four main sources for trading days between 02/01/2012

and 12/31/2017. First, we use data from Markit North America, Inc. for daily portfolio

composition files that are used to link portfolio constituents to ETFs. In addition, we

use two sources of transaction level data to compute security-level effective spreads.

For domestic stocks—including ETF shares—we use New York Stock Exchange, Daily

TAQ (DTAQ); and for domestic corporate bonds we use FINRA Trade Reporting and

Compliance Engine (TRACE). Finally, we use Morningstar to supplement our data with

fund level information.

We use Morningstar data to classify ETFs in two major asset classes: domestic equity

and domestic corporate bonds, see Appendix A for details.
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3.1 ETF Premium

From Morningstar, we obtain daily ETFs’ closing prices and net asset values (NAV). The

NAV corresponds to the per share value of the ETF tracking portfolio. Markit ETF data

allows us to compute NAV from constituent-level information. But this alternative is

less reliable compared to NAV information from Morningstar, which is reported by ETF

sponsors as a requirement to get exemption relief by the SEC.

For ETF i on day t, we denote by pit the log of the ETF closing price and nit the log of

the NAV computed using closing prices. We compute the ETF premium as the difference

between the ETF price and its NAV; and the ETF mispricing as the absolute value of this

difference. That is,

Premiumit = (pit − nit) × 104 and Mispricingit = |pit − nit| × 104 , (1)

where the factor 104 expresses the premium in basis points of the NAV.

Since arbitrageurs are incentivized by both large premia or discounts, i.e., negative

premia, in most of our analysis we consider the Mispricing, which is equal to the absolute

value of the ETF premium (equation (1)). Roll, Schwartz and Subrahmanyam (2007) in-

terpret mispricing as a proxy for arbitrage activity. By contrast, Rösch (2018) interprets

mispricing as a proxy for impediments to arbitrage. Both interpretations are testable in

the context of the ETF arbitrage mechanism, as arbitrage activity expands and contracts

the number of ETF shares outstanding. Under the former a large premium should predict

ETF share creations, whereas under the latter a large premium should not be associated

with ETF share creation. The same being true for ETF discounts and ETF share redemp-

tions. Unreported results show that the ETF premium predicts ETF share creation and

redemption activity, so we follow Roll, Schwartz and Subrahmanyam (2007) and interpret

mispricing as a proxy for arbitrage activity.7

In the case of international securities or securities that have not traded recently the cal-

culation of NAV may consider stale prices, or prices inferred from comparable securities,

so the premium will not reflect arbitrage incentives so accurately. This concern is largely

absent for domestic equities but could influence our premium measure for bond ETFs.

7Specifically, we relate the ETF premium and arbitrage activity in a panel vector-autoregression, with
arbitrage activity computed as the ratio of the value of the change in outstanding shares and the fund’s
lagged netassets. Both for equity and bond ETFs, Granger-causality tests reject that the ETF premium do
not Granger-cause arbitrage activity.
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3.2 ETF and Portfolio Effective spread

We calculate the effective spreads of ETFs and their stocks constituents from the DTAQ,

which covers the intraday transactions and quotes of U.S. stocks and U.S. ETFs. Similar to

Lee and Ready (1991), we classify each trade as buy or sell by comparing it to the prevailing

quotes. We compare each transaction price with the midpoint of one millisecond prior

best bid and ask quotes to determine whether a transaction is a buy or sell. The effective

spreads for ETFs and stock constituents are calculated as twice the difference between the

execution price and the midpoint of the best bid and ask as a fraction of the midpoint.

Daily effective spread corresponds to the volume-weighted average of effective spreads

in that day. On day t, we denote with ETF Spreadit the effective spread of ETF i and

with Constituent Spreadjt the effective spread of stock constituent j. (See Appendix C.1 for

details.)

For corporate bond constituents, we use TRACE data to compute the effective spread.

TRACE reports corporate bond transactions dealer-to-dealer and costumer-to-dealer. We

use only the customer-to-dealer trades, i.e., when the buyer or seller has been identified as

a customer.8 Effective spreads of corporate bonds are calculated as the difference between

the volume-weighted buy prices and the volume-weighted sell prices as a fraction of the

volume-weighted prices. We denote with Constituent Spreadjt the effective spread of bond

constituent j on day t. (See Appendix C.2 for details.)

Markit ETF contains cusips for ETF shares and ETF constituents. We use this data

to create daily links between ETF cusips and the cusips of its constituents. These links

are used to merge fund-level information with constituents’ information. We use the

constituent information to calculate the effective spread of a portfolio corresponding to a

single share of an ETF basket.

To describe the weights used to aggregate constituent spreads, it is useful to introduce

the following notation. Let b index the three ETF baskets, {C,R,T}, let Jibt be the set of

constituents of basket b of ETF i on day t, let pjt be the close price of constituent j on day

t, let uibjt be constituent j units in basket b of ETF i on day t, and xibt be the number of

ETF shares in basket b of ETF i on day t. The latter is sometimes referred to as the size of

the creation-redemption basket and typically equals 50,000 shares. The identity that NAV

8TRACE data is pre-filtered following the procedure developed in Dick-Nielsen (2012).
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equals the per share value of a portfolio motivates the following constituent weights

wibjt =
uibjt pj,t−1

xibt ni,t−1
. (2)

In fact, the NAV identity implies that nitxibt =
∑

j∈Jibt
pjtuibjt, that is the value of the con-

stituents of basket b of ETF i on date t equals the NAV of basket b. We use the one day lag of

constituent prices and NAV to avoid introducing spurious dependence between portfolio

spreads that will be computed with these weights and premia that depends negatively on

NAV.

We construct effective spread measure for each ETF basket portfolio as the weighted

sum of their constituents’ effective spreads. That is, for basket b of ETF i on day t,9

Portfolio Spreadibt =
∑

j∈Jibt

ωib jtConstituent Spreadjt . (3)

In practice, basket weights could be unavailable reflecting that constituent price in-

formation is unavailable from TAQ or TRACE (equation (2)). Thus, the calculation of

portfolio spreads for each basket assumes that the effective spread of constituents for

which the portfolio weights are missing equal the average effective spread for the con-

stituents with available weights. This assumption should bias our calculated basket-level

effective spreads down, if price information is less likely to be obtained for more illiquid

securities. This could be the case if, for instance, less liquid securities trade less frequently,

explaining the missing price information. This feature of the data should bias our results

towards not being able to elicit a relationship between (il)liquidity and mispricing, as we

are not be able to measure the illiquidity of securities that do not trade on a given day.

As described in section 2, for arbitrageurs the relevant portfolio spreads are for the

creation and redemption baskets when the ETF premium is positive and negative, re-

spectively. In order to account for this institutional aspects and based on the evidence

about the relationship of the creation and redemption portfolios presented in section 2,

we define the ETF portfolio effective spread as the average of the creation and redemption

basket spreads. That is,

Portfolio Spreadit =
Portfolio SpreadiCt + Portfolio SpreadiRt

2
. (4)

9In order to have reliable liquidity measures for ETF baskets we only consider basket-level effective
spreads when our basket weights ωib jt add up to at least 0.5 and to at most 1.25 (see Appendix B).
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An alternative to equation (4) would have been to define portfolio spread as the portfolio

spread of the creation basket when the premium is positive and as the portfolio spread of

the redemption basket when the premium is negative. But this alternative could introduce

a mechanical relationship between premium and portfolio spread.

We note that in light of the fact that within domestic equity the creation and redemption

baskets are identical on almost all days, our definition only affects portfolio spreads for

bond ETFs.

Our final sample filters observations according to data availability and to ensure accu-

racy of our portfolio spread measures (see Appendix B). Moreover, to reduce the influence

of outliers in our analysis we winsorize ETF mispricing, and ETF and portfolio effective

spreads at the 1st and 99th percentiles. Our final sample contains over 400,000 observations

for 584 domestic ETFs: 509 domestic equity ETFs and 75 domestic bond ETFs.

Table 1 presents descriptive statistics for Mispricing, ETF Spread, and Portfolio Spread

computed according to the aforementioned conventions over our final sample. Consider-

ing all ETFs, average portfolio spreads are 16 basis points, whereas average ETF spreads

are 12 basis points, and average mispricing is 11 basis points.

Both portfolio spreads and mispricing are higher on average for bond relative to equity

ETFs. Considering only domestic equity ETFs, we observe tighter portfolio spreads with

an average of 11 basis points. In contrast, for domestic bond ETFs, portfolio spreads are

almost 60 basis points, reflecting the illiquidity of corporate bonds. Average mispricing

displays a similar pattern with an average of 8 and 31 for equity and bond ETFs, respec-

tively. Higher mispricing of bond ETFs may not be surprising if high portfolio spreads

impede arbitrage. However, it is interesting to note that despite these facts, average ETF

spreads for both equity and bond ETFs are similar taking values of 12 and 14 basis points,

respectively.

Figures 4 and 5 presents the median, 25th and 75th percentiles of the distribution of

daily values for ETF mispricing, and ETF and portfolio spreads in our sample of equity

and bond ETFs, respectively. We see that over our sample these series exhibit mild trends

and some deterministic patterns, something that we further investigate below.

4 Liquidity and the Speed of Adjustment of Mispricing

We begin our analysis inspecting the relationship between the speed of adjustment of

mispricing and the market liquidity of both ETF shares and ETF constituents. Our null

13



hypothesis is that the speed of adjustment is independent of market liquidity. This

could be the case, because either mispricing does not incentivize arbitrage, so the speed of

adjustment is independent of the mispricing. Or this could be the case, because liquidity is

not an important consideration for arbitrageurs, so the speed of adjustment is independent

of liquidity.

Our alternative hypothesis is that the speed of adjustment depends on market liquidity.

This could be the case if ETF mispricing gives arbitrageurs an incentive to take offsetting

positions in ETF shares and ETF constituents to earn the price differential. As arbitrageurs

take these positions, ETF mispricing should shrink. And given that market liquidity

facilitates arbitrageurs’ trades, the speed of adjustment of ETF mispricing should depend

on market liquidity.

In order to measure how fast ETF mispricing mean revert, we calculate a measure of

the speed of adjustment of ETF mispricing by running the following regression for each

of the 584 ETFs in our sample, separately:

ΔMispricingit = αi + μi Mispricingi,t−1 + εit , (5)

where Mispricingit is the absolute value of the log difference between the ETF i’s price and

its NAV, αi and μi are coefficients to be estimated, and εit are zero mean disturbances. The

coefficientμi characterizes the speed of mean-reversion of ETF mispricing. In fact, ignoring

the constant, it is easy to show that the half-life of mispricing is given by − ln(2)/ ln(1+μi).

Panel A of Table 2 reports the average and standard deviation of the estimates for μi

across our sample of 584 ETFs. For the entire sample of ETFs, the average mean-reversion

coefficient is -0.79, or a half-life of 0.44 days. Once we separate the equity and bond ETFs,

a clear distinction appears. The mean-reversion coefficient for domestic equity ETFs is

-0.85 whereas it is -0.40 for bond ETFs, i.e., a half-life of 0.37 and 1.36 days, respectively.

The larger absolute value of the mean-reversion coefficient indicates that the mispricing of

equity ETFs disappears faster, likely reflecting a more effective ETF arbitrage activity. By

contrast, the mispricing of bond ETFs disappears slower. The fact that bond ETFs, which

invest in more illiquid corporate bonds, exhibit a slower speed of adjustment suggests

that constituents’ liquidity is an important consideration for arbitrageurs whose trades

extinguish the mispricing.

We further investigate the role of ETF shares’ or ETF constituents’ liquidity play in the

effectiveness of arbitrage by computing the correlation of the speed of adjustment and

liquidity at the ETF level. Panel B of table 2 report the correlation of our estimates for
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μi with ETF and portfolio spreads across ETFs. Considering all ETFs, these correlation

coefficients are both positive and statistically significant, rejecting our null hypothesis in

favor of our alternative hypothesis. The fact that the correlation is larger for ETF portfolio

spreads is consistent with the view that liquid ETF constituents enable more effective

arbitrage and a faster speed of adjustment of ETF mispricing. The fact that the correlation

is positive and statistically significant for the spread of ETF shares, indicates that ETF

liquidity also enables arbitrage. But the small correlation suggests a lesser role for ETF

shares’ liquidity in explaining the cross sectional variation in arbitrage effectiveness, likely

reflecting the smaller dispersion of ETF spreads in our data.

The correlation coefficients when we consider only equity and bond ETFs are differ-

ent. Considering equity ETFs, the correlation coefficient with the ETF spread is positive

whereas the correlation coefficient with portfolio spread is not statistically significant.

In contrast, for bond ETFs, the correlation coefficient with portfolio spread is positive,

whereas it is not statistically significant for ETF spread. These findings suggest that with

respect to the effectiveness of arbitrage, there are important differences between equity

and bond ETFs. For equity ETFs, the effectiveness of arbitrage is linked to the liquidity of

ETFs whereas for bond ETFs, it is related to the portfolio liquidity.

Together these results show that liquidity affects the efficacy of arbitrage. Yet, it is

important to point out that arbitrage may also feedback into market liquidity. In the next

section, we analyze the joint dynamics of liquidity and arbitrage activity in our panel of

ETFs.

5 Joint Dynamics of Arbitrage and Liquidity

We continue our analysis studying the joint dynamics of mispricing and the liquidity

of ETF shares and ETF constituents. Before analyzing this joint dynamics, we expunge

our variables of common regularities and trends to minimize the possibility of spurious

conclusions. Then, we related the adjusted variables in a panel vector autoregression

(PVAR) analysis.

5.1 Adjustment Regressions

Before we estimate the PVAR, we aim to remove the common regularities and trends

from the variables to avoid the possibility of spurious results. We follow Roll, Schwartz
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and Subrahmanyam (2007) and use adjustment regressions to remove the deterministic

components in ETF spread, portfolio spread and mispricing. We run these regressions

separately for equity and bond ETFs to account for possible differences between these

asset classes. The rationale for removing deterministic components in these series comes

from previous research that have found that spreads exhibit time trends and calendar

regularities (see Chordia, Roll and Subrahmanyam 2001). This, in turn, suggests that

mispricing might also exhibit these deterministic components. In fact, Roll, Schwartz

and Subrahmanyam (2007) find time trends and calendar regularities for the futures-cash

basis, i.e., the difference between the NYSE composite index and the price for this index

implied by futures contract associated with it. Since trends and calendar regularities of

ETF premia and spreads have largely been unexplored, our analysis is of independent

interest.

We regress the raw spreads for ETF shares and ETF portfolios on the following vari-

ables: (i) time trend and square of the time trend; (ii) day-of-the-week dummies; (iii)

pre-holiday dummy which indicates a day before a holiday;10 (iv) monthly dummies; and

(v) ETF fixed effects. We regress the raw ETF mispricing on the same set of variables,

but consider only a Friday dummy, instead of the day-of-the-week dummies. The Friday

dummy is expected to account for the increased cost of holding arbitrage inventory over

the weekend.

Table 3 presents the results of these adjustment regressions for equity ETFs. Large ma-

jority of the estimated coefficients are statistically significant, confirming the deterministic

variation in ETF spread, portfolio spread, and mispricing. For the ETF spread, the esti-

mated coefficients for trend and trend2 are negative and imply a decreasing trajectory for

the spread over our sample period. This could reflect a secular decline in ETF spreads due

to survivorship bias—only ETFs that attract more investors interest are likely to remain

in business. In the case of portfolio spread, the estimated coefficients for trend and trend2

are positive and statistically significant. Together they imply a non-monotone trend over

our sample period, with average portfolio spreads decreasing mildly in the first quarter

of our sample and increasing thereafter. For the mispricing regression, trend and trend2

coefficients are statistically significant and imply a decreasing trend for mispricing over

our sample.

Monthly dummies, which omit January, are negative. That is, ETF spreads are gener-

10We consider holidays that did not fall on a Monday from the list maintained by SIFMA, https:
//www.sifma.org/resources/general/us-holiday-archive/.
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ally higher in January. Similarly, mispricing and portfolio spreads also display a January

effect, but on average they are higher in December. The presence of a January effect

for spreads is largely consistent with the evidence of Roll, Schwartz and Subrahmanyam

(2007), who consider the weighted average quoted and effective spread for the constituents

of the NYSE composite index.

For all of the three regressions, the pre-holiday dummy is positive and significant,

suggesting that ETFs and their constituents are less liquid, and mispricing is higher, prior

to a holiday. Friday dummy is positive and significant for the ETF mispricing. This is

consistent with the idea that arbitrageurs may require additional compensation if they

will have to hold their positions over the weekend. Portfolio spreads tend to be highest on

Fridays, which could be related to the previous finding. However, ETF spreads tend to be

highest on Mondays, as implied by the negative coefficients on the day-of-week dummies

in this case.

Table 4 summarizes the results of the adjustment regressions for bond ETFs. Similar

to equity ETFs, for ETF spread trend and trend2 coefficients are negative and statistically

significant. However, in this case, the estimated coefficients imply an inverted U-shape

trend: mildly increasing in the first quarter of the sample and decreasing thereafter. Both

in the case of portfolio spread and mispricing the coefficients are statistically significant

and their values imply a decreasing and convex trend over our sample period. Unlike

equity ETFs, spreads of bond ETFs do not seem to display a January effect. The monthly

dummies do not lend themselves to a clear interpretation: on average, bond-ETF spreads

are highest in July, portfolio spreads are highest in December, and misprincings are highest

in February.

In the case of bond ETFs, spreads for both ETF shares and ETF constituents are higher

in the days preceding a holiday, but for mispricing the positive estimated pre-holiday

effect can not be rejected to be different than zero. Also, Friday dummy in the mispricing

regression is positive, but not significant, which suggests that the forced holding of bond

positions over the weekend is not a major consideration for bond arbitrageurs. As with

equity ETFs, for bond ETFs the spread of ETF shares appears higher on Monday. By

contrast, for portfolio spreads we see a different pattern between equity and bond ETFs.

For bond ETFs portfolio spreads are lower in the later days of the week, whereas for equity

ETFs portfolio spreads were highest on Friday.

Before turning to our PVAR analysis we analyze the stationarity and correlation of our

adjusted series, i.e., the residuals from the regressions presented in Tables 3 and 4. We
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denote the adjusted series by ETF Spread∗, Portfolio Spread∗, and Mispricing∗.

To assess the stationarity of the residuals from the adjustment regressions, we perform

a panel unit root test based on Phillip-Perron for these adjusted series. These tests strongly

reject the existence of unit root for all three panel time series at p-values less than 0.001.

Table 5 report the cross correlations of our adjusted series. All pairwise correlations

are statistically significant at the 1 percent level. For both asset classes the correlation

between ETF spreads and mispricing is the highest with values above 0.4. This correlation

is followed in magnitude by the correlation of ETF and portfolio spreads for equity ETFs,

with a value of 0.22, and portfolio spread and mispricing for bond ETFs, with a value

of 0.28. Finally, the lowest correlation for equity ETFs is between portfolio spread and

mispricing, with a value of 0.16, whereas for bond ETFs it is between ETF spread and

portfolio spread, with a value of 0.11. These correlations and their statistical significance

suggest the presence of multivariate causality among mispricing and the liquidity of both

ETF shares and ETF portfolio constituents.

5.2 PVAR Analysis

We examine the joint dynamics of ETF mispricing and liquidity in our sample of 584 ETFs,

relating these variables in separate PVARs for equity and bond ETFs respectively. Our in-

put variables are the residuals from the adjustment regressions: Mispricing∗it,ETF Spread∗it,

and Portfolio Spread∗it. Our use of a PVAR approach is motivated by the multivariate causal-

ity among these variables suggested by the statistically significant cross-correlations re-

ported in Table 5. Intuitively, when financial markets are illiquid, it could be harder to

arbitrage mispricings away. Conversely, arbitrage may create imbalances in order flows

and market makers’ inventories increasing illiquidity in both the market for ETF shares

and ETF constituents. This feedback loop between ETF shares’ and ETF constituents’

liquidity, or the participation of the same investors or market-markers in the markets for

ETF shares and ETF constituents, can introduce bivariate causality among these securities’

liquidity.

Our PVAR approach builds on Roll, Schwartz and Subrahmanyam (2007), who used

a VAR to relate the dynamics of arbitrage and liquidity, using the NYSE composite index

and future contracts on this index. By contrast, we consider a panel of ETFs. As these

authors, we consider mispricing as a proxy for arbitrage activity and the spread of the

portfolio associated with a derivative asset. But, we expand the analysis to also consider
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the liquidity of the derivative—ETF shares in our case. This allows us to analyze the join

dynamic of arbitrage and the liquidity of the derivative, in addition to the liquidity of the

associated portfolio as previously done. ETFs are a relatively new product, so the time

series dimension of our sample is relatively short, but the panel dimension increases the

power of the statistical analyses allowing us for the possibility of reliable conclusions.

We examine the joint dynamics of our variables of interest, stacking them in the vector

Yit = (Mispricing∗it,ETF Spread∗it,Portfolio Spread∗it), where i index the different ETFs and

t ∈ Ti index trading days where ETF i is observed in our unbalanced panel.

More specifically, we model this relationship as:

Yit = Yit−1A1 + . . . + Yit−pAp + eit , (6)

where {Aj}
p
j=1 are 3-by-3-coefficient matrices to be estimated and eit are 3-dimensional

vectors with zero mean. The PVAR is specified with 5 autoregressive terms.

Table 6 reports the results of the PVAR for equity ETFs. The estimated coefficients

of all variables on their own lags are positive, statistically significant, and decay over

time almost monotonically. The latter confirms the absence of unit roots, as indicated

by the Phillip-Perron tests reported in subsection 5.1, and it suggests some persistence

of these variables. The cross-effects between these variables are generally positive and

statistically significant, suggesting that all variables are interrelated. That is, there are

liquidity spillovers from ETF shares to portfolio constituents, and vice versa; and there is

a bivariate causality between mispricing, representing arbitrage activity, and the liquidity

of both ETF shares and ETF portfolios. Moreover, the relative magnitude of the estimated

coefficients and t-statistics suggests a stronger relationship between mispricing and ETF

shares’ spread. These results are in line with the values for the cross-correlations reported

in the previous subsection.

Table 7 reports the PVAR results for bond ETFs. Similar to equity ETFs, for all variables

the estimated coefficients on their own lags are positive, statistically significant, and decay

over time. In this case, the cross-effects are generally positive but most are not statistically

significant. Lagged ETF spreads do not seem to affect current portfolio spreads, but

the statistical significance of the cross-effects for the other pairs of variables suggest

the presence of liquidity spillovers from bond portfolios into bond ETF spreads, and a

bivariate causality between mispricing and both liquidity measures.

Table 8 reports the correlations of innovations, i.e., residuals, from the three PVAR
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equations for our two asset classes. As it was the case for the adjusted series, the correlation

for the innovations is highest between the mispricing and ETF spread for both equity and

bond ETFs, with values of 0.08 and 0.09, respectively. Also in line with the previous

evidence, for equity ETFs, the second largest correlation is between both spreads, with a

value of 0.03, followed by the correlation of portfolio spread and mispricing, with a value

of 0.01. For bond ETFs, the correlation of portfolio spread with both mispricing and ETF

spread is 0.01. This contrast with the evidence for the adjusted series, where portfolio

spreads and mispricing exhibited a higher correlation.

Next, we perform Granger-causality tests for the separately estimated PVARs for equity

and bond ETFs. Panel A of Table 9 reports the chi-square statistics and p-values for equity

ETFs and Panel B reports the same statistics for bond ETFs. The null hypothesis is that

the variables listed in the rows do not Granger-cause the variables listed in the columns.

For equity ETFs, all three variables Granger-cause one another. In all cases the test that

row variables do not Granger-cause column variables is rejected at the 1 percent level.

This is consistent with liquidity influencing arbitrage and arbitrage, in turn, influencing

liquidity for both ETF shares and ETF constituents. The Granger-causality relationship

between ETF spread and mispricing appears to be the strongest, in line with the evidence

from the correlations of adjusted series and PVAR innovations presented above. This

finding is interesting as the previous study by Roll, Schwartz and Subrahmanyam (2007)

did not provide evidence on the relationship of arbitrage and the liquidity of the derivative.

In our case, the ETF share corresponds to the the derivative, and it exhibits the strongest

relation with arbitrage.

For bond ETFs, mispricing and ETF spread are Granger-caused by the other two

variables in our system. However, in the case of portfolio spread, only mispricing Granger-

causes it. In other words, the mispricing provides information about the future portfolio

spreads, but the test cannot reject that the ETF spread does not Granger-cause the portfolio

spread. The latter suggests that there are no direct liquidity spillovers from bond ETF

shares into bond ETF constituents. But it does not rule out that ETF spreads can indirectly

affect the spreads of bond ETF constituents, as ETF spreads influence mispricing which in

turn influences portfolio spreads.

To analyze the impact of a shock to one variable on the other variables in the system,

we compute the impulse response functions (IRF) implied by our PVAR. The IRFs account

for both the direct and indirect effects from the shock to an individual variable. In order

to isolate the effect of a shock to a single variable, we orthogonalize the residuals from
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the PVAR using the inverse of the Cholesky decomposition of the residual covariance

matrix. Unlike the PVAR estimated coefficients and, thus, the Granger-casuality test, the

IRFs depend on the ordering of the endogenous variables used for the Cholesky decom-

position. We report the results when the variable ordering is: Mispricing∗, ETF Spread∗ and

Portfolio Spread∗.11 Our conclusions are largely robust to the ordering of these variables.

Figure 6 plots the impulse response functions for equity ETFs with 95 percent confi-

dence bands using 1,000 Monte Carlo replications. All of the three variables display some

persistence, so a shock to a given variable provide information about the future value of

the same variable, especially over the next few trading days.

Next, we inspect the interrelation between portfolio spread and mispricing, which

we can compare to the evidence presented in Roll, Schwartz and Subrahmanyam (2007).

As these authors we find that shocks to the mispricing help to predict portfolio spreads

over the next couple of days. That is, the ETF arbitrage affects the liquidity of the ETF

portfolio constituents. Roll, Schwartz and Subrahmanyam (2007) find weak predictability,

in the reverse direction, from the average spread of NYSE composite index constituents

to mispricing. By contrast, we find that shocks to the ETF portfolio spread seem to

have explanatory power on ETF mispricing over the next two weeks, with the effect of

portfolio spread on mispricing manifesting after a couple of days. We note that the two

set of results are not expected to coincide. First, the two studies use different constituent

samples. Roll, Schwartz and Subrahmanyam (2007) consider the constituents of the NYSE

composite index from 1988 to 2002, whereas we consider the portfolio constituents of 509

domestic equity ETFs from 2012 to 2017. Second, our study includes the liquidity of the

derivative security in the PVAR system, so the predictability of mispricing from shocks to

portfolio spreads could reflect the indirect effects through the ETF spread. We continue

the inspection of the IRFs by looking at the effect of ETF spread shocks on mispricing and

vice versa. Studying this relationship is interesting because, for one, little is known about

the effect of arbitrage on derivates’ liquidity. For another, this relationship appeared

empirically relevant based on the inference from the correlations of adjusted variables

and PVAR innovations and the Granger-causality tests. The IRFs confirm the empirical

relevance of the relation between ETF spread and mispricing. Mispricing shocks have a

relatively large and persistent effect on the ETF spread (bottom left panel), and the same is

true in the reverse direction (top right panel). These results suggest that illiquidity shocks

11We order mispricing first to facilitate comparisons with the reported results in Roll, Schwartz and
Subrahmanyam (2007).
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especially in ETF shares reduce arbitrage incentives in equity ETFs. Hence, ETF spreads

are important for the law of one price.

The aforementioned results are insensitive to the relative ordering of spreads and

mispricing, but the relative ordering of ETF spread and portfolio spread affects the IRF

from ETF spread shocks on portfolio spreads, and vice versa. The reported IRFs exhibit a a

significant albeit short-lived effect from ETF spreads shocks on portfolio spreads, whereas

the effect of portfolio spread shocks appears statistically insignificant on ETF shares. These

IRFs, together with the correlation analysis and Granger-causality tests, suggests that ETF

and portfolio spreads are jointly determined for equity ETFs.

Little is known about the relationship between arbitrage and liquidity for fixed income

securities, so the IRFs for bond ETFs are of special interest. Figure 7 plots the IRFs for

bond ETFs with 95 percent confidence bands using 1,000 Monte Carlo replications. It

should be noted that these IRFs are plotted over a much larger time range, considering

100 trading days, instead of 20 as for equity ETFs. This fact underscores the richer and

more persistent dynamics among our variables of interest for bonds ETFs. As with equity

ETFs, shocks to a bond ETF variable are informative in predicting the future values of

the same variable, with shocks to bond portfolio spreads and mispricing being relatively

more persistent. The latter is consistent with the results of section 4 that showed that for

bond ETFs mispricing is more persistent.

We proceed to inspect these IRFs in the same order as for equity ETFs, beginning with

the relationship between portfolio spread and mispricing. We find a positive, significant,

and very persistent effect of shocks to mispricing on bond portfolio spreads, and we find

the same properties in the response of mispricing to portfolio spread shocks. These results

are striking compared to the previous evidence for equity ETFs, where these IRFs reflected

smaller and shorter lived responses. In the case of bond ETFs, the effect of a shock to

portfolio spread or mispricing helps predict the value of the other variable even after 100

trading days after the shock! These more persistent dynamics suggests the presence of

a reinforcing feedback between portfolio spreads and mispricing. As portfolio spreads

widen arbitrage incentives decrease making mispricing more persistent, as suggested by

the analysis of section 4. Larger mispricing appears to feed back into wider portfolio

spreads. This feedback likely reflect the action of dealers, who make markets for the bond

constituents. Based on our evidence, we can only speculate over the economic incentives

driving the response of dealers. One explanation could be that dealers set larger bid-ask

spreads in response to order imbalances caused by arbitrage activity incentivized by a
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wider mispricing. But this explanation seems at odds with the fact that arbitrage for

bond ETFs appeared less effective (section 4), if the effectiveness of arbitrage is related

to the number of arbitrage trades. Another explanation is simply that dealers have

market power and are able to extract arbitrage rents by widening bond bid-ask spreads.

Additional research should further scrutinize dealers’ economic incentives in the context

of ETF arbitrage for bond ETFs.

We continue inspecting IRFs for bond ETFs, looking at the effect of ETF spread shocks

on mispricing and vice versa. Inference from Granger-causality tests and correlations

reported in Tables 5 and 8 make us expect a strong relationship between these variables.

In fact, mispricing shocks have a significant and persistent effect on the ETF spread (bottom

left panel), the same being true in the reverse direction (top right panel). These results, in

line with the results for equity ETFs, suggest that ETF shares’ liquidity is important for

arbitrage incentives in bond ETFs. We conclude that ETF spreads (in both asset classes)

are important for the efficacy of the ETF arbitrage mechanism.

Finally we inspect the relationship between the liquidity of bond ETFs and their

constituents. Inference from previous results suggested the absence of a direct effect of

ETF spreads on bond-ETF portfolio constituents. The IRF in the top middle panel of Figure

7 supports the absence of both a direct and an indirect effect of shocks to ETF spreads on

the spread bond constituents. That is, we do not find liquidity spillovers from bond ETFs

into their constituent bonds. By contrast, liquidity shocks to bond ETF portfolios do affect

the subsequent liquidity of bond ETF shares (left middle panel). In the case of bond ETFs

all results are insensitive to the ordering of variables assumed to compute the IRFs.

Differences in our results for equity and bond ETFs are interesting, as they shed light

on the role of the liquidity of the portfolio constituents on the dynamic relation between

arbitrage and liquidity. Figure 8 compares the IRFs for both equity and bond ETFs,

considering 25-basis-point shocks to our three endogenous variables. This comparison

shows that, generally, the response of our endogenous variables for the same shock is

larger and more persistent for bond ETFs. The discrepancy is stark when we consider the

relationship between portfolio spread and arbitrage, with the IRFs for bond ETFs being

larger and more persistent. When we consider the relationship between mispricing and

ETF spread, we see also larger and more persistent effects for shocks to ETF spread on

mispricing; however, for shocks of mispricing on ETF spread the effects upon impact is

larger for equity ETFs, with the effect still being more persistent for bond ETFs. Together

the evidence lead us to conclude that the more illiquidity the constituents the stronger and
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more persistent is the relationship between arbitrage and liquidity. Finally, we compare

the IRFs that capture the liquidity spillovers between ETF shares and ETF constituents.

As discussed above, for equity ETFs the direction for liquidity spillovers was sensitive to

the assumed ordering of the variables in the PVAR. By contrast, for bond ETFs the IRFs

suggested that there are liquidity spillovers from bond portfolios to bond ETF shares, but

not the other way around. These results suggests that liquidity spillovers from ETF shares

to ETF constituents are weaker when constituents are less liquid.

6 Conclusions

In this paper, we present new evidence about the relationship between arbitrage and

liquidity using a panel of ETFs, spanning both domestic equities and bonds. To study

the relationship between arbitrage and liquidity, we compile a unique ETF dataset from

big trade-level data. To the best of our knowledge, our paper is the first to dynamically

relate mispricing to endogenous liquidity measures, such as effective spreads, when fixed-

income securities are involved.

Our results indicate that the liquidity of ETF shares and ETF constituents promotes

the efficacy of the ETF arbitrage mechanism. For equity ETFs, the average speed of

adjustment implies an ETF mispricing half-life of 0.37 days. The fast speed of reversion

to zero suggests an effective ETF arbitrage mechanism (Engle and Sarkar 2006). For bond

ETFs, the average speed of convergence implies an ETF mispricing half-life of 1.36 days.

The less effective arbitrage of bond ETF mispricing is associated to the lower liquidity,

on average, of bond ETF constituents. Liquidity of ETF shares is also associated to the

efficacy of arbitrage, but only within equity ETFs.

Our analysis finds weak liquidity spillovers between ETF shares and ETF constituents.

In most cases, Granger-causality tests indicate that one effective spread have predictive

power over the other spread. But, only shocks to bond portfolio spreads have predictive

power over future bond ETF spreads.

Our findings support the presence of a robust interrelationship between liquidity and

arbitrage, when the securities involved are either equities or bonds. These findings, on

the one hand, provide additional supporting evidence for this interrelationship when

equities are involved (Roll, Schwartz and Subrahmanyam 2007, Rösch 2018). On the other

hand, these findings suggests that the effect of arbitrage on liquidity, and of liquidity on

arbitrage, is larger and more persistent when less liquid bond securities are involved.
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Our results also give insights about some important aspects of synthetic securities

derived from illiquid assets. The liquidity of these synthetic securities seems sensitive

to the liquidity shocks to their underlying investments. Hence, the liquidity of synthetic

securities are not independent of their illiquid investments. If the liquidity of their in-

vestments becomes more illiquid, the liquidity of the synthetic security may also dry up.

On the other hand, we cannot find evidence suggesting that the liquidity of underlying

illiquid investments dries up when the synthetic security becomes more illiquid.
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Sağlam, Mehmet, Tugkan Tuzun, and Russ Wermers. 2018. “Do ETFs Increase Liquid-

ity?”

27



Appendix

A ETF Categories

This appendix describes the definition of our 2 ETF asset classes using Morningstar information.
Funds classified in domestic equities correspond to equity funds that are not international funds.

Equity funds correspond to funds where variable ‘global broad category group’ equals ‘Equity’ or
where variable ‘morningstar category’ equals ‘Preferred Stock’. We consider equity funds to invest
internationally if ‘group US category’ equal ‘International Equity’, or if ‘category morningstar’
contains any of the following strings: ‘US Fund China’, ‘US Fund Diversified Emerging Markets’,
or if ‘category morningstar institutional’ contains any of the following strings: ‘Emerging Europe’,
‘Latin America’, ‘Pacific/Asia’, ‘India’, ‘Diversified Emerging Markets,’ ‘World’, ‘Foreign’.

Domestic bond funds are comprised of investment grade and high yield bond funds. The former
we identify with the funds where variable ‘category Morningstar’ contains any of the following
strings: ‘US Fund Short-Term Bond’, ‘US Fund Ultrashort Bond’, ‘US Fund Intermediate-Term
Bond’, ‘US Fund Long-Term Bond’, ‘US Fund Corporate Bond’. The latter corresponds to funds
with ‘category Morningstar’ equal to ‘US Fund High Yield Bond’.

B Calculation of Basket-level Effective Spreads

We use Markit ETF data to link portfolio constituents and ETFs. From Markit ETF we obtain daily
portfolio composition files that, for each ETF, list the units of each security in basket b = T,C,R.
Considering he notation introduced in the paper we introduce the following filters to ensure that
effective spreads for each basket and ultimately our ETF portfolio measure are good proxies of
the actual effective spreads that prevailed on a given day. Let Ωibt =

∑
j∈Jibt

ωib jt, i.e., the sum of
portfolio weights defined in equation (2). Missing weights are ignored or treated as zeroes. Missing
weights may reflect that constituent price information is unavailable from TAQ or TRACE, or that
we can not compute NAV as the ratio of assets under management and shares outstanding using
Markit ETF information. Our first filter is that we drop basket-level effective spreads if Ωibt < 0.5
or Ωibt > 1.25. In addition, let Ωit = (ΩiCt +ΩiRt)/2, i.e., the average sum of weights for the creation
and redemption baskets. Then, our second filter is that we drop observations were this average
sum of weights Ωit < 0.75 or Ωit > 1.25.

In addition, we filter ETFs with less than 35 days in our sample after filtering on Ωit and
requiring that information is available for the ETF premium, the ETF effective spread, and the ETF
portfolio spread.

C Calculation of Securities’ Effective Spreads

This appendix provides additional details about how effective spreads are calculated for individual
securities: ETF shares and ETF constituents.
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C.1 Effective Spread of ETFs and Stock Constituents

We treat both ETF and stock constituents as stocks to compute their effective spreads. Information
on secondary market stock transactions is from DTAQ. First, we sign each trade aggressive and
passive based on the Lee and Ready (1991) algorithm by choosing contemporaneous best bid and
best ask prices one millisecond prior. Second, we compute the effective half spread as the difference
between the transaction price and the mid-point of the best bid and ask prices as a ratio of the
mid-point of the best bid and ask prices:

BuySideHal f Spread =
TransactionPrice −MidPointPrice

MidpointPrice
(C.7)

SellSideHal f Spread =
MidPointPrice − TransactionPrice

MidpointPrice
(C.8)

Our stock effective spread measure is twice the daily volume-weighted average of these effec-
tive half spreads.

E f f ectiveSpreadStock = 2 ∗

∑n
i Sizei ×Hal f Spreadi

Volume
(C.9)

where Sizei is the size of the transaction i and volume is the sum of all daily transaction volume.

C.2 Effective Spread of Bond Constituents

Information of corporate bond transactions is from the Enhanced TRACE. After we clean the
Enhanced Trace following Dick-Nielsen (2012), we select the customers-to-dealer and dealer-to-
dealer trades. First, we compute the dollar effective spreads as daily volume-weighted prices of
customer buy and customer sell transactions. Second, we compute the inter-dealer transaction
prices as daily average price of dealer-to-dealer transactions. Our corporate bond effective spread
measure is the ratio of dollar effective spreads to the inter-dealer transaction prices.

E f f ectiveSpreadBond =
CustomerBuyPrice − CustomerSellPrice

InterDealerTransactionPrice
(C.10)
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Tables and Figures

Table 1: Summary Statistics

Mean Std Min Max ETFs Obs

ALL

Portfolio Spread 15.57 18.84 1.41 165.38 584 408,960
ETF Spread 12.28 13.26 1.08 111.11 584 408,960
Mispricing 10.84 14.96 0.00 141.08 584 408,960

Domestic Equity

Portfolio Spread 10.72 7.46 2.86 43.98 509 366,069
ETF Spread 12.07 12.83 1.22 89.17 509 366,069
Mispricing 8.44 10.47 0.00 58.34 509 366,069

Bond ETFs

Portfolio Spread 56.96 31.55 1.41 165.38 75 42,891
ETF Spread 14.04 16.37 1.08 111.11 75 42,891
Mispricing 31.26 27.05 0.00 141.08 75 42,891

The table reports the summary statistics of ETF spread, portfolio spread and
mispricing for U.S. ETFs. As defined in equation 2, portfolio spread is the
weighted effective spreads of ETF constituents. For bond constituents, FINRA
TRACE is used to calculate the effective spreads. Effective spread of bonds are
simple the volume-weighted difference of customer buy and sell transactions
as a percent of inter-dealer transaction prices. For stocks constituents and ETF
Spreads, NYSE DTAQ is used to calculate the effective spreads by following
Lee-Ready algorithm. ETF mispricing is the absolute value of the difference
between ETF market price and ETF netasset value from Morningstar Direct.
All variables are in basis points.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 2: Mean-reversion of ETF Mispricing

Panel A: Basic Statistics

μi

All ETFs Equity ETFs Bond ETFs

Mean -0.79 -0.85 -0.40
Std 0.19 0.11 0.19

ETFs 584 509 75

Panel B: Correlation of μi with Illiquidity

All ETFs Equity ETFs Bond ETFs

ETF Spread 0.08 0.13 -0.09
(0.07) (0.00) (0.45)

Portfolio Spread 0.63 -0.03 0.22
(0.00) (0.48) (0.05)

We estimate the mean-reversion coefficient, μi, of ETF Mispricing from the
below regression for each ETF:

ΔMispricingit = αi + μi Mispricingi,t−1 + εit

where Mispricingit is the absolute value of the log difference between price and
NAV of ETF i. Number in parenthesis report the significance level of each
correlation coefficient.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 3: Pre-Filtering Regressions: Equity ETFs

ETF Spread Portfolio Spread Mispricing

Coeff. t-statistic Coeff. t-statistic Coeff. t-statistic

Trend -0.71 -23.62 0.05 3.60 -2.32 -83.96
Trend2 -0.20 -5.44 0.05 2.92 0.34 9.94

Pre-holiday Dummy 1.11 8.56 1.60 25.65 0.65 5.45

Tuesday -0.85 -17.01 0.10 4.17
Wednesday -0.71 -14.32 0.15 6.09
Thursday -0.77 -15.37 0.12 4.91

Friday -0.55 -10.97 1.97 81.87 0.15 4.31

February -0.28 -3.27 -0.77 -18.88 -0.38 -4.83
March -0.72 -9.00 -0.90 -23.48 -0.55 -7.40
April -0.61 -7.23 -0.74 -18.47 -0.36 -4.68
May -0.80 -9.74 -0.70 -17.81 -0.31 -4.12
June -0.43 -5.18 -0.71 -17.99 0.49 6.46
July -0.61 -7.43 -0.63 -16.06 -0.78 -10.36

August -0.75 -9.03 -0.70 -17.55 -0.57 -7.45
September -0.90 -11.01 -0.94 -24.01 -0.12 -1.54

October -0.51 -6.23 -0.58 -14.66 -0.07 -0.94
November -0.30 -3.49 -0.01 -0.27 -0.26 -3.33
December -0.25 -3.05 0.26 6.67 0.31 4.09

ETF Fixed Effects Yes Yes Yes
# of ETFs 509 509 509
# of obs 366,069 366,069 366,069

Adj R-squared 0.46 0.63 0.31

The table reports the regression results of the filtering regressions on the vari-
ables for equity ETFs. Trend is a time-trend variable going from -1 at the
beginning of the sample to 1 at the end of the sample and quadratic time trend
variable is equal to (Trend2 − 1)/2. Pre-holiday is a dummy variable, taking
a value of 1 if it is one business day before a holiday. Tuesday, Wednesday,
Thursday, Friday, February, March, April, May, June, July, August, September,
October, November, December are day and month dummy variables.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 4: Pre-Filtering Regressions: Bond ETFs

ETF Spread Portfolio Spread Mispricing

Coeff. t-statistic Coeff. t-statistic Coeff. t-statistic

Trend -3.57 -29.04 -16.98 -96.15 -12.76 -51.99
Trend2 -3.38 -25.07 5.94 30.67 3.09 11.46

Pre-holiday Dummy 1.22 2.75 2.19 3.44 0.89 1.01

Tuesday -0.54 -3.12 0.42 1.70
Wednesday -0.29 -1.69 -1.09 -4.41
Thursday -0.21 -1.20 -1.63 -6.57

Friday 0.03 0.16 -1.46 -5.88 0.18 0.66

February 0.98 3.14 2.89 6.43 2.44 3.92
March 0.11 0.39 1.96 4.66 2.13 3.65
April -0.63 -2.08 -0.68 -1.56 -0.41 -0.67
May -0.41 -1.40 -0.42 -1.01 -1.97 -3.39
June 1.60 5.44 3.36 7.92 0.60 1.02
July 1.82 6.20 2.50 5.91 1.52 2.59

August 0.43 1.47 3.42 8.07 0.30 0.52
September 0.77 2.57 0.82 1.90 0.42 0.70

October 0.77 2.57 1.00 2.31 -0.43 -0.71
November 0.54 1.70 1.49 3.27 -1.63 -2.59
December 1.59 5.20 4.12 9.39 -0.28 -0.46

ETF Fixed Effects Yes Yes Yes
# of ETFs 75 75 75
# of obs 42,891 42,891 42,891

Adj R-squared 0.54 0.74 0.32

The table reports the regression results of the filtering regressions on the vari-
ables for bond ETFs. Trend is a time-trend variable going from -1 at the
beginning of the sample to 1 at the end of the sample and quadratic time trend
variable is equal to (Trend2 − 1)/2. Pre-holiday is a dummy variable, taking
a value of 1 if it is one business day before a holiday. Tuesday, Wednesday,
Thursday, Friday, February, March, April, May, June, July, August, September,
October, November, December are day and month dummy variables.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 5: Correlation Coefficients of Adjusted Variables

Equity ETFs

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Mispricing∗ 1.00
Portfolio Spread∗ 0.16 1.00
ETF Spread∗ 0.45 0.22 1.00

Bond ETFs

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Mispricing∗ 1.00
Portfolio Spread∗ 0.28 1.00
ETF Spread∗ 0.41 0.11 1.00

The table reports the correlation coefficients of the ETF variables after the
filtering regressions.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 6: PVAR: Domestic Equity ETFs

Domestic Equity

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Coeff. t-stat Coeff. t-stat Coeff. t-stat

Mispricing∗

L1. 0.10 32.66 0.00 2.24 0.04 14.81
L2. 0.08 25.80 0.00 1.28 0.03 9.17
L3. 0.07 23.17 0.00 1.09 0.02 8.32
L4. 0.07 23.93 0.00 -3.31 0.02 6.05
L5. 0.07 22.37 0.00 -3.18 0.02 6.90

Portfolio Spread∗

L1. 0.00 0.25 0.27 79.59 0.01 1.53
L2. 0.00 0.23 0.18 57.06 0.00 0.59
L3. 0.01 2.18 0.15 51.56 0.00 -0.37
L4. 0.00 0.89 0.14 50.71 -0.02 -3.33
L5. 0.01 2.23 0.10 33.92 -0.01 -1.06

ETF Spread∗

L1. 0.03 11.94 0.00 1.15 0.12 34.33
L2. 0.03 12.89 0.00 2.06 0.10 30.65
L3. 0.03 11.42 0.00 -3.13 0.09 25.41
L4. 0.02 8.50 0.00 -3.49 0.08 24.30
L5. 0.03 10.17 0.00 0.39 0.08 25.04

# obs 366,069
ETFs 509

Average # of days for an ETF 719.19

The table reports the estimation results for equity ETFs from the PVAR analysis
described in equation 6.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 7: PVAR: Bond ETFs

Bond ETFs

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Coeff. t-stat Coeff. t-stat Coeff. t-stat

Mispricing∗

L1. 0.36 43.08 0.02 3.62 0.02 3.97
L2. 0.20 24.27 0.00 0.92 0.01 1.16
L3. 0.13 15.70 0.00 0.41 0.01 1.31
L4. 0.08 9.96 0.00 0.06 0.00 0.41
L5. 0.09 11.47 0.01 1.96 0.00 -0.25

Portfolio Spread∗

L1. 0.02 2.86 0.28 33.65 0.01 2.07
L2. 0.00 -0.58 0.19 24.70 0.00 1.02
L3. 0.00 0.48 0.16 20.48 0.00 0.67
L4. 0.01 1.24 0.13 17.52 0.00 -0.50
L5. 0.01 1.94 0.17 22.06 0.00 0.93

ETF Spread∗

L1. 0.05 3.78 0.01 1.01 0.25 21.97
L2. 0.01 0.82 -0.01 -0.79 0.15 13.32
L3. 0.03 2.02 0.00 -0.72 0.11 10.78
L4. 0.00 0.27 0.01 1.12 0.09 9.12
L5. 0.00 0.08 -0.01 -1.57 0.09 8.59

# obs 42,891
ETFs 75

Average # of days for an ETF 571.88

The table reports the estimation results for bond ETFs from the PVAR analysis
described in equation 6.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Table 8: Correlation Coefficients of Innovations from PVAR

Equity ETFs

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Mispricing∗ 1.00
Portfolio Spread∗ 0.01 1.00
ETF Spread∗ 0.08 0.03 1.00

Bond ETFs

Mispricing∗ Portfolio Spread∗ ETF Spread∗

Mispricing∗ 1.00
Portfolio Spread∗ 0.01 1.00
ETF Spread∗ 0.09 0.01 1.00

The table reports the correlation coefficients for the orthogonalized innovations
from the PVAR analysis described in equation 6.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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Figure 1: ETF Arbitrage without Transaction Costs.
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Figure 2: ETF Arbitrage with Transaction Costs.
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Figure 3: Distribution of Fraction of Days with Equal Baskets

(a) Equity ETFs
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(b) Bond ETFs
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Blue bars denote the distribution of the fraction of days the creation (C), re-
demption (R), and tracking (T) baskets are all equal. Red bars represent the
fraction of these observations where the C and R baskets are equal.
Source: Own elaboration based on Markit North America, Inc.
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Figure 4: Domestic Equity: Distribution of ETF Premium, and ETF and Portfolio Spreads

(a) ETF Mispricing

(b) ETF Spread

(c) Portfolio Spread

Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar. 41



Figure 5: Domestic Bonds: Distribution of ETF Premium, and ETF and Portfolio Spreads

(a) ETF Mispricing

(b) ETF Spread

(c) Portfolio Spread

Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar. 42



Figure 6: Equity ETFs: Impulse Response Functions
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The figure reports the orthogonalized impulse-response functions for equity
ETFs from the PVAR analysis described in equation 6. Shaded areas represent
the 95 percent confidence bands using 1,000 Monte Carlo replications.
Source: Own elaboration based on IHS Markit ETF, TAQ, TRACE, and Morn-
ingstar.
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Figure 7: Bond ETFs: Impulse Response Functions
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The figure reports the orthogonalized impulse-response functions for bond
ETFs from the PVAR analysis described in equation 6. The shaded areas
represent the 95 percent confidence bands using 1,000 Monte Carlo replications.
Source: Own elaboration based on IHS Markit ETF, TAQ, TRACE, and Morn-
ingstar.
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Figure 8: IRF: Comparison of Equity and Bond ETFs
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The figure reports the orthogonalized impulse-response functions for equity
(blue) and bond (red) ETFs from the PVAR analysis described in equation 6.
Source: Own elaboration based on Markit North America, Inc., DTAQ, TRACE,
and Morningstar.
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