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1 Introduction

One key use of structural macroeconomic models is the construction of policy counterfactuals.

How would the economy have behaved differently during some historical episode had some

specific monetary policy been adopted? How would the economy likely behave in the future

under such a policy?

The established procedure for constructing such counterfactuals in macroeconomics fol-

lows the logic of the state-space representation of a model. Given a model in state-space

form, one filters latent structural states and shocks from observable data; then one rewrites

the model to change the behavior of policy to the desired counterfactual; solves this new

model; and computes the counterfactual equilibrium path using the filtered initial states

and shocks obtained in the first step. One difficulty of this procedure is that it can quickly

become computationally challenging when the model has many state variables and when

non-linearities, such as a lower bound on interest rates, are present. Moreover, representing

the state of economy by structural states and shocks is somewhat distant from the reality

of policy analysis. Central banks and other policy institutions typically do not rely on any

one model to inform their view of the economy, and construct their projections from a large

amount of data, a variety of reduced-form and structural models, and judgment.

In this paper, we propose new algorithms for computing policy counterfactuals using the

sequence-space representation of a model. We believe that in many cases, our procedures

are computationally simpler and better adapted to the reality of policy analysis than state-

space analysis. We only require a minimal amount of information about the model that is

directly relevant to the problem at hand. Neither the structural or reduced-form equations

of the model, its state variables, nor its shock processes need to be known. All that is

required is a set of impulse responses of a few variables of interest (say, inflation, output,

and interest rates) to anticipated future shocks about the policy instruments. These sets of

impulse responses, also called sequence-space Jacobians, contain all the relevant information

about the model. Also, rather than filtering structural shocks from many observables, the

2



algorithms operate directly on forecasts of the few variables of interest, called projections.

These impulse responses and projections are all that is required to compute numerically

accurate counterfactual solutions.

We show how to compute solutions for instrument rules as well as optimal paths under

commitment and discretion. Importantly, we are able to compute counterfactuals not only at

one point in time but also over time as the economy is affected by shocks, even though these

shocks need not be known explicitly. The sequences of projections contain all the necessary

information about the shocks needed for the computation of policy counterfactuals. Our

optimal commitment solution honors past commitments as time moves forward, because we

establish the analogue of the Marcet and Marimon (2019) recursive form of the commitment

problem directly for the sequence-space representation. For optimal discretionary policy, we

compute subgame-perfect equilibria using a similar approach as the state-space algorithm in

Dennis (2007). One key advantage of the sequence-space approach is that we can easily add

occasionally binding constraints.

As an illustration, we discuss how the U.S. economy may have evolved after 2020 had

the Federal Reserve adopted a Taylor-type interest rate rule or an optimal policy under

commitment or discretion. We conduct this analysis using median projections of the econ-

omy made at that time by FOMC participants in the Survey of Economic Projections, and

impulse responses obtained from the FRB/US model (Brayton, 2018; Erceg, Hebden, Kiley,

Lopez-Salido, and Tetlow, 2018) and a modified version of the del Negro, Giannoni, and

Schorfheide (2015) model, which have both been used previously for policy analysis at the

Federal Reserve. We find that after the pandemic shock of 2020, optimal policy under com-

mitment would have made a strong promise to keep interest rates low, which would have

been honored even as inflation rose subsequently. The policy path would have been appeared

to be “behind the curve” relative to simple Taylor-type rules, and this appearance would have

reflected the time-inconsistency of the optimal policy.

We build on ideas from two strands in the literature. The first is the work by Svensson
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(2005) and Svensson and Tetlow (2005), who show how to compute optimal commitment

policies that accommodate a “judgmental” projection that originates outside of a particu-

lar model.1 In this paper, we also place emphasis on the use of judgmental projections

rather than filtering structural shocks, but go beyond these earlier contributions in several

ways. First, we incorporate occasionally binding constraints efficiently. Second, we do not

confine ourselves to optimal commitment policies, but also show how to solve for optimal

discretionary policy and simple rules. Third, we can compute commitment policies with

stochastic changes in the projections while honoring state-contingent commitments. Finally,

we have found our procedure to be considerably faster because it is based on precomputed

impulse responses and uses only a small subset of model variables.

The second strand of the literature relates to expessing models in sequence space. The

utility of the sequence space was recognized several years ago by Holden (2016, 2023), who

provided an efficient algorithm to compute solutions to forward-looking models with occa-

sionally binding constraints. Auclert, Bardóczy, Rognlie, and Straub (2021) have shown

how heterogenous-agent models with aggregate risk can be simulated very efficiently using

a sequence-space representation. Our paper was developed in parallel to de Groot, Mazelis,

Motto, and Ristiniemi (2021), Barnichon and Mesters (2023) and McKay and Wolf (2023).

Like us, these studies also compute optimal policy in sequence space, and formally show

that projections and impulse responses to anticipated policy shocks are sufficient statistics

for doing so. All studies place emphasis on different aspects of the sequence-space repre-

sentation. Our emphasis is on extending the capabilities of the algorithms. Our unique

contributions among these studies are to compute optimal policies under commitment that

handle stochastic shocks while keeping past promises, and to solve for subgame-perfect equi-

libria under discretion. Other algorithms cannot accommodate shocks under commitment

and only compute time-consistent equilibria under discretion, which are generally not unique

and different from what is commonly known as “discretion” in the literature.
1Algorithms that build on these contributions have been in continuous development at the Federal Reserve

and other central banks, see e.g. Bersson, Hürtgen, and Paustian (2019) and Harrison and Waldron (2021).
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Besides providing a simple way to compute policy counterfactuals, our procedure also

facilitates the comparison of the effects of economic policies across different models, and

can thus be used to address concerns of model uncertainty. All the information needed for

such a comparison is contained in the impulse responses to anticipated shocks to the policy

instruments. If these responses are identical for two models, then any choice of policy will

yield the same outcomes (for the variables considered) in either model, thus providing a

weaker form of the “principle of counterfactual equivalence” studied by Beraja (2021).

Lucas (1976) argued that one needs to understand fundamental economic relationships

to conduct credible policy experiments. A practical insight that emerges from our analysis

is that the entire model need not be correctly specified for such policy experiments to be

valid. Our procedure (and, for that matter, any other solution method) can yield valid

counterfactuals even when some aspects of a model are misspecified. What is crucial is

that the impulse responses to anticipated monetary policy shocks are correct, since they

completely summarize the ecomomy’s response to changes in policy.

The remainder of this paper is structured as follows. Section 2 describes how to convert a

model from state space to sequence space and introduces the notation used in the rest of the

paper. Section 3 shows how to solve for policy counterfactuals in completely linear models.

Section 4 describes how we approximate our solutions with finite computing horizons. In

Section 5, we add occasionally binding constraints, and in Section 6 we extend our results

to a tractable case of incomplete information that allows us to accommodate historical data

revisions. Section 7 contains our application to the U.S. economy following the pandemic

shock of 2020 and Section 8 concludes.

2 From state space to sequence space

In this section, we show how to move from state space to sequence space and introduce

relevant notation. We start with a general dynamic macroeconomic model in state space
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and then show how the two inputs into our procedure, baseline projections and impulse

responses, fit within the model. We then show that these two inputs are sufficient to compute

any feasible equilibrium under alternative policy regimes.

Let N denote the set of natural numbers and R the set of real-valued numbers. RN×n

denotes the space of sequences where each element is a real vector of length n. We consider

the class of forward-looking stochastic models that are linear except for occasionally binding

constraints that affect the conduct of policy. Time is discrete at t ∈ N, so the model has a

fixed initial period and an infinite horizon. The number of endogenous model variables is

n. There are two types of variables: A set of p policy instruments zt ∈ Rp, the values of

which are chosen by the policymaker, and a set of n − p endogenous variables ξt ∈ Rn−p.

The endogenous variables depend on k exogenous shocks ut ∈ Rk that are uncorrelated

across time and have mean zero. We group all variables save for the exogenous shocks

into one vector yt = (ξ′t, z
′
t)
′ ∈ Rn. Initial conditions y−1 are taken as given. To keep the

notation light, we simply denote with y the stochastic process (yt)
∞
t=0. We define F as the

natural filtration of the exogenous variables (y−1, u0, u1, . . . ); that is, F = (Ft)∞t=0 with Ft

the σ-algebra generated by y−1, u0,, . . . , ut.

The endogenous variables y evolve according to the system of structural model equations

in state space:

Φ−1yt−1 + Φ0yt + Φ1Etyt+1 + Φuut = 0 ∈ Rn−p. (1)

The matrices have size Φ−1,Φ0,Φ1 ∈ R(n−p)×n and Φu ∈ R(n−p)×k. The expectations used

throughout the paper will be defined under quasi-perfect foresight:

Etyt+s = E [yt+s | ut+s = 0, . . . , ut+1 = 0,Ft] . (2)

The imposition of quasi-perfect foresight is innocuous when z is linear in u, because in that

case certainty equivalence applies. But it becomes important when policy instruments are

subject to non-linearities such as an effective lower bound (ELB) on interest rates. Our
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algorithms could be extended to approximate non-perfect foresight expectations and non-

linear models using the techniques developed by Holden (2016).

The starting point for the analysis is a solution ȳ = (ȳt)
∞
t=0 called a baseline projection:

any stochastic process adapted to F that solves (1).2 Uniqueness of this solution is not

required. We will work with the perfect foresight expectations of ȳ, i.e. of Etȳt+s for s, t ≥ 0.

The baseline projection is thus simply a sequence of forecasts of the economy.3 Although we

think of the baseline ȳ as having been generated by particular realizations of the shocks u

and under a particular policy regime, it is not necessary to know the structural determinants

of ȳ. In particular, the baseline can be entirely judgmental, in the terminology of Svensson

(2005), as long as there exist some shocks for which ȳ solves (1).

Next, we introduce a linear policy rule Ψyt = 0 ∈ Rp. The only purpose of Ψ is to

derive a sequence-space Jacobian for the model. The choice of Ψ is arbitrary and does

not have to coincide with the behavior of policy in the baseline projection or the desired

policy counterfactuals. The only requirement for Ψ is that the rule in combination with (1)

yields a unique, non-explosive solution of the model. A Taylor-type rule usually satisfies this

requirement. To this rule, we append a set of anticipated shocks:

Ψyt −
∞∑
s=0

εt−s,t = 0. (3)

For t, s ≥ 0, εt−s,t ∈ Rp is a zero-mean shock that is realized at time t but anticipated

s periods in advance, i.e. Eτ [εt−s,t] = 0 for τ < t − s and Eτ [εt−s,t] = εt−s,t for τ ≥ t − s.

By assumption, the linear system of Equations (1) and (3) yields a unique solution for any

realization of shocks. It is a standard computational exercise to find the impulse response

of yt+s to εt,t+τ for s, τ ≥ 0, which we denote Msτ ∈ Rn×p.4 These impulse responses are the

second input to our procedure. While computing Msτ does require solving the state-space
2A process ȳ is adapted to F if ȳt is a function of y−1, u0, . . . , ut. In particular, it does not depend on

other shocks such as sunspots and does not “see into the future”. See e.g. Klenke (2008) for a more precise
definition.

3This forecast may be conditional on some path for the policy instruments. Gali (2011) points out that
such conditional forecasts can suffer from an indeterminacy problem. Even then, our procedure remains
valid as long as the baseline projection is a valid solution of the model.

4Solvers like Gensys or Dynare can be used to compute these impulse responses.
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model and its structural equations, this needs to be done only once and under an arbitrary

policy regime. These impulse responses contain all the information about the model that is

needed to accurately compute policy counterfactuals. Visualizing these impulse responses,

as we do in our application later in the paper, can therefore be highly informative about

which model properties matter for policy.

Because of the linearity of (1)–(3), there exist realizations of ε that reproduce the baseline

projection ȳ. Taking expectations of (3), these baseline shocks5 ε̄ are computed as:

ε̄t,t+s = Ψ (Etȳt+s − Et−1ȳt+s) .

The baseline projection ȳ solves (1) and (3) given ε̄ and u and this solution is unique.

To define the above shocks for t = 0, we employ the convention E−1ȳs = 0 for all s ≥ 0.

Next, we introduce a new set of standardized policy instruments x. For any process

(xt)
∞
t=0 ∈ RN×p that is adapted to F, we define corresponding shocks:

εt,t+s = ε̄t,t+s + Etxt+s − Et−1xt+s (4)

with the convention that E−1xs = 0 for s ≥ 0. This implies xt = Ψ (yt − ȳt).

Denote with y(t) = (yt, Etyt+1, Etyt+2, . . . )
′ the expected path of model variables at time

t. Also, let F be the forward-shift operator, i.e. Fy(t) = (Etyt+1, Etyt+2, Etyt+3, . . . )
′. We

can then express revisions to the expected path of the economy between t− 1 and t as:

ŷ(t) = y(t) − Fy(t−1). (5)

We will use the convention that y(−1) = 0 so that ŷ(t) = y(0). The expected paths x(t) and

ȳ(t) and revisions x̂(t) and ˆ̄y(t) can be defined analogously. We can now make use of the

linearity of the model and express the solution to (1) and (3) in deviation from the baseline

projection ȳ. This is the sequence-space representation of the model:

ŷ(t) = ˆ̄y(t) +Mx̂(t) (6)
5These baseline shocks are called “add factors” in Svensson and Tetlow (2005).

8



where the linear map M : RN×p → RN×n stacks the impulse responses Msτ for s, τ ≥ 0. The

map M is called the sequence-space Jacobian. For x = 0 we get back the baseline projection

y = ȳ. By choosing an appropriate x, one can use (6) to obtain solutions to (1) under any

counterfactual policy regime.

Proposition 1. Consider the function F that maps stochastic processes (xt)
∞
t=0 ∈ RN×p to

stochastic processes (yt)
∞
t=0 ∈ RN×n through Equation (6). For every x adapted to F, F (x)

solves (1), and for every y that solves (1) and is adapted to F, there exists an x such that

y = F (x).

Proof. The first part of the proposition follows by construction of F . Let x be a stochastic

process adapted to F. Then we can construct shocks ε from x through (4), and then use (6)

to recover a solution to (1). For the second part, let y be a process adapted to F that solves

(1). Construct x as xt = Ψ (yt − ȳt). For this x, F (x) is a solution to (1). With this x and

the corresponding shock ε obtained from (4), y jointly solves (1) and (3). Because we have

assumed that (3) yields unique solutions for any combination of shocks, it has to be that

y = F (x).

The proposition, which is similar to the independently derived Proposition 1 in McKay

and Wolf (2023), implies that knowledge of the baseline projection ȳ and the sequence-space

Jacobian M is sufficient to compute any valid counterfactual model solution. It is neither

necessary to know the structural equations of the model, the original policy instruments z,

nor the exogenous shock processes and their realized values.

3 Linear policy rules and linear-quadratic optimal policy

problems

In this section, we show all the basic insights of the paper using policy problems that imply

completely linear solutions. All policy problems in this section reduce to finding a solution
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of the form Ωyŷ
(t) = 0 for a linear map Ωy : RN×n → RN×p. The solution is:

0 = Ωy

(
ˆ̄y(t) +Mx̂(t)

)
(7)

⇒ x̂(t) = − (ΩyM)−1 Ωy ˆ̄y(t)

ŷ(t) = ˆ̄y(t) −M (ΩyM)−1 Ωy ˆ̄y(t).

The map ΩyM : RN×p → RN×p has to be invertible to guarantee the existence of a solution.6

3.1 Linear policy rules

We start with linear policy rules of the form

Ayt = 0. (8)

where A ∈ Rp×n. As an example, suppose that there is only a single instrument (p = 1), the

nominal interest rate it, and that we impose a Taylor rule that relates the nominal interest

rate to inflation πt and the output gap ygapt through the equation it = φππt + φyygapt. We

can express this as it − φππt − φyygapt = 0.

We assume that agents know this condition to hold at all times in the future so that

AEtyt+s = 0 as well. By linearity of expectations, A (Etyt+s − Et−1yt+s) = 0 as well and we

can write: 
A 0 · · ·

0 A

... . . .

 ŷ(t) = (IN ⊗ A) ŷ(t) = 0. (9)

This problem has the form in (7) with Ωy = (IN ⊗ A).7

To find the counterfactual evolution of the economy under rule (9), it is not necessary

to know the baseline projection and sequence-space Jacobian for all model variables. It is

sufficient to know these objects for the variables that enter the rule. For the Taylor rule
6We do not provide criteria to check for existence and uniqueness of a solution in sequence space. In

ongoing work, Auclert, Rognlie, and Straub (2023) are making progress on this goal by building on the
seminal contribution of Onatski (2006).

7The operator ⊗ denotes the Kronecker product.
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above, only the baseline projection of, and impulse responses for inflation, the output gap

and the nominal interest rate have to be known in order to compute the counterfactual model

solution.

3.2 Optimal commitment policy

Next, we consider the problem of optimal policy under commitment. The objective of the

policymaker is to minimize a quadratic loss function of the form

min
(ŷ(t),x̂(t))

∞
t=0

1

2
E0

∞∑
t=0

βty′tWyt

where β ∈ (0, 1) and the weighting matrix W ∈ Rn×n is positive semi-definite. By Propo-

sition 1, all feasible solutions to (1) available to the policymakers are given by (6) for some

process for the standardized policy instruments x̂(t). Therefore, we can write the constraints

to the optimization problem as follows:

s.t. ŷ(t) = ˆ̄y(t) +Mx̂(t) (10)

Etx̂
(t+1) = 0. (11)

The second constraint is necessary to ensure that x̂(t) is indeed an unanticipated revision to

the policy stance, which will end up to be a function of unanticipated baseline revisions.

We aim to obtain a recursive formulation of the optimal commitment policy by applying

the Lagrangian method of Marcet and Marimon (2019) on the sequence-space form of the

problem. To do so, we express the quadratic objective using more convenient notation.

Let L be the lag or backward-shift operator, i.e. Ly(t) = (0, yt, Etyt+1, Etyt+2, . . . )
′, and

B = diag (1, β, β2, . . . ). Then we can express the Lagrangian as:

L =
1

2

(
∞∑
t=0

Ltŷ(t)

)′
(B ⊗W )

(
∞∑
t=0

Ltŷ(t)

)
+
∞∑
t=0

βt
[
λ(t)′

(
ˆ̄y(t) +Mx̂(t) − ŷ(t)

)
− µ(t−1)′x̂(t)

]
.

The resulting first-order conditions for ŷ(t) and x̂(t) are:(
Lt
)′

(B ⊗W )Lty(t) − βtλ(t) = 0

βtM ′λ(t) − βtµ(t−1) = 0
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with the convention that µ(−1) = 0 (we do not optimize from a timeless perspective).8

Combining these conditions yields:

M ′ (B ⊗W ) y(t) = µ(t−1).

Because µ(t−1) is t−1-measurable, we can subtract the time t−1-expectation of this equation

and get:

M ′ (B ⊗W ) ŷ(t) = 0. (12)

This now has the form in (7) with Ωy = M ′ (B ⊗W ).

Equation (12) constitutes a recursive formulation of the optimal commitment problem.

Remarkably, it is not necessary to carry Lagrange multipliers for this linear-quadratic prob-

lem (although we will need to do so once we introduce occasionally binding constraints later

on). Because of the linearity of the first-order conditions, the response of the optimal com-

mitment to shocks is the same regardless of when the commitment started and what promises

are being carried from the past.

We note again that in practice, only a small subset of model variables is required in these

computations. If, for example, the weighting matrix W is such that policymakers are only

concerned with deviations of an inflation and a measure of economic activity, as is commonly

assumed in the literature, then only the baseline projection and sequence-space Jacobians

for these two variables have to be known in order to be able to solve for the counterfactual

under optimal policy.

3.3 Optimal discretionary policy

We now discuss a problem of optimal policy under discretion. We compute time-consistent

optimal policy by assuming that at each point in time, a separate policymaker controls

the value of the policy instruments at that time. This policymaker is only concerned with
8The transpose operator is defined canonically such that M ′ : y 7→ x with xs =

∑∞
τ=0M

′
τsyτ .
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present and future losses, but not past losses, and takes the decisions of future policymakers

as given. Importantly, our solution yields a subgame-perfect equilibrium in the sequential

game played by the sequence of discretionary policymakers.9

For each policymaker at time h ≥ 0, we are looking for a set of equations that represent

the solution of her optimal policy problem. This set of equations takes the form

d(h)y(h) = 0, h ≥ 0. (13)

The maps d(h) : RN×n → Rp can be used to back out the innovations to the policy instruments

at time t through the basic relation (6).

Let’s place ourselves in the shoes of a policymaker at time t = h. The policymaker at

time h takes Equation (13) as given for t = h+1, h+2, . . . as she internalizes the behavior of

future policymakers. It is in this sense that the equilibrium we construct is subgame-perfect:

The policymaker takes into account the optimal response of future policymakers on every

attainable path, not only on the equilibrium path. Her optimization problem can be written

as follows:

min
(ŷ(t),x̂(t))

∞
t=h

1

2
Eh

∞∑
t=h

βty′tWyt

s.t. ŷ(t) = ˆ̄y(t) +Mx̂(t) (14)

Etx̂
(t+1) = 0, t ≥ h (15)

d(t)y(t) = 0, t ≥ h+ 1. (16)

This policymaker only cares about losses that accrue from period h onwards. In addition,

note that there are no constraints placed on the innovations x̂(h). This implies that the

discretionary policymaker takes the state of the economy at time t = h as given. She does

not internalize that her actions in equilibrium will influence past expectations.
9Our solutions can be understood as Markov-perfect equilibria in sequence space, where the relevant state

is the baseline projection ȳ(t).
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The Lagrangean of this problem is:

L =
1

2
Eh

(
Fy(h−1) +

∞∑
t=0

Ltŷ(h+t)

)′
(B ⊗W )

(
Fy(h−1) +

∞∑
t=0

Ltŷ(h+t)

)
+
∞∑
t=h

βt−h
[
λ(t)′

(
ˆ̄y(t) +Mx̂(t) − ŷ(t)

)
− µ(t)′x̂(t+1)

]
−

∞∑
t=h+1

βt−hη′td
(t)

(
F t−h+1y(h−1) +

t∑
s=h

F t−sŷ(s)

)
.

For t ≥ h+ 1, the first-order conditions with respect to ŷ(t) and x̂(t) are:

(
Lt−h

)′
(B ⊗W )Lt−hy(t) − βt−hλ(t) −

∞∑
s=t

βs−h
(
d(s)F s−t)′ ηs = 0 (17)

βt−hM ′λ(t) − βt−hµ(t−1) = 0. (18)

Defining η(t) = Et
(
η′t, η

′
t+1, . . .

)′ and the map D(t) : y(t) 7→
(
d(t)y(t), d(t+1)Fy(t), . . .

)
∈ RN×p,

we can combine the first-order conditions into

M ′ ((B ⊗W ) y(t) −D(t)′η(t)
)

= µ(t−1). (19)

This equation can in principle be used to solve for the multipliers η(t) for t ≥ h + 1 that

describe the shadow value of the constraints of future policymakers’ behavior on the current

policymaker. But we are only interested in solving for the optimal policy at time t = h. To

do so, we must derive the first-order conditions with respect to ŷ(h) and x̂(h). They are:

(B ⊗W ) y(h) − λ(h) − β
(
D(h+1)F

)′
Ehη

(h+1) = 0 (20)

M ′λ(h) = 0. (21)

We will now split the JacobianM asM = (M·0,M·−0) whereM·0 : y(h) 7→ (M00Ehyh,M10Ehyh, . . . )

is the first “column” of M and M·−0 stacks the remaining “columns.” We can then combine

the two first-order conditions to yield

(M·0)
′
(

(B ⊗W ) y(h) − β
(
D(h+1)F

)′
Ehη

(h+1)
)

= 0 (22)

(M·−0)
′
(

(B ⊗W ) y(h) − β
(
D(h+1)F

)′
Ehη

(h+1)
)

= 0. (23)
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The second equation (23) can be used to solve for Ehη(h+1):

Ehη
(h+1) =

[
β (M·−0)

′ (D(h+1)F
)′]−1

(M·−0)
′ (B ⊗W ) y(h).

Substituting into (22) and solving for y(h) gives an equation of the form (13) with

d(h) =
(
M·0 −M·−0

[
D(h+1)FM·−0

]−1
D(h+1)FM·0

)′
(B ⊗W ) = 0. (24)

This validates our guess that the optimal discretionary policy indeed takes the form in (13).

We can also recursively update the matrix D(h)as

D(h) =

 d(h)

βD(h+1)F

 . (25)

From this formula, we can see that

D(h)ŷt = D(h)y(t) −D(h)Fy(t−1) = 0.

When there is an infinite sequence of discretionary policymakers, the derivations above

suggest an iterative algorithm for determining the time-invariant policy d(h) = d∗. The

algorithm proceeds as follows:

1. Start with an initial guess for the matrix D (a good starting guess is the solution of

optimal policy under commitment D = M ′ (B ⊗W )).

2. Compute d from D using the relation (24).

3. Update the guess for D using the relation (25).

4. Iterate until convergence.

This algorithm can be seen as the sequence-space analogue to the Dennis (2007) algorithm.

The solution (d∗, D∗), which is the fixed point of (24) and (25), constitutes a problem of the

form (7) with Ωy = D.
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4 Finite-horizon approximation for computations

Due to the infinite horizon of the model, computing solutions requires manipulating infinite-

dimensional objects which is not feasible on a computer. But the computations are straight-

forward to adapt to an arbitrarily distant finite horizon, as in Svensson (2005).

With some abuse of notation, we will now define y(t) as the finite vector of the expected

path of the economy up to T periods ahead: y(t) =
(
y′t, Ety

′
t+1, . . . , Ety

′
t+T

)′ ∈ R(T+1)n. We

similarly define the vectors ŷ(t), ȳ(t), ˆ̄y(t) ∈ R(T+1)n and x(t), x̂(t) ∈ R(T−1)p. We can now

approximate (5) as

ŷ(t) ≈ y(t) − F̃ y(t−1) (26)

where we define the finite-length forward shift operator F̃ as the linear map satisfying

F̃ y
(t−1)
0:T =



Etỹt+1

...

Etỹt+T−1

Etỹt+T

Etỹt+T


.

The last available value is used twice.

Revisions in the expected model outcomes are related to the revisions in the standardized

instruments through an approximation of (6):

ŷ(t) ≈ ˆ̄y(t) + M̃x̂(t). (27)

The linear map M̃ : R(T+1)p → R(T+1)n is now a finite-dimensional map consisting of the

impulse responses of outcomes, and shocks that are anticipated to occur, up to T periods in

the future:

M̃ =


M00 · · · M0T

... . . . ...

MT0 · · · MTT

 .
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All the problems studied in this paper can be approximated from this point onward. For

example, linear simple rules of the form (IN ⊗ A) ŷ(t) = 0 studied in the previous section

can be approximated with (IT+1 ⊗ A) ŷ
(t)
0:T = 0, the optimal commitment problem with Ω =

M ′ (B ⊗W ) can be approximated with Ω = M̃ ′
(
B̃ ⊗W

)
where B̃ = diag

(
1, β, β2, . . . , βT

)
,

and so on.

5 Adding occasionally binding constraints

Occasionally binding constraints can be added to the problems in Section 3. Problems

involving simple rules and optimal policy under commitment are relatively straightforward

to handle because they can be expressed as linear complementarity problems (LCPs). As

shown by Holden (2016), these problems can be solved efficiently as mixed-integer linear

programming problems. We also document a heuristic to solve these problems, which not

only works well in our experience but can also be applied to optimal policy problems under

discretion with occasionally binding constraints, which cannot be expressed as LCPs. One

limitation of our solution approach is that we assume expectations are formed under quasi-

perfect foresight, i.e. as if all future shocks were zero. In the completely linear cases discussed

thus far, certainty equivalence justified this assumption, but in this section it implies that the

binding of constraints in the future can only be treated as an event of expected probability

zero or one.

5.1 Policy rules

The most frequently encountered occasionally binding constraint in the context of simple pol-

icy rules is an effective lower bound (ELB) constraint. Adding such a constraint transforms
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the problem (9) into a linear complementarity problem of the form

Ωyŷ
(t) = Ωuû

(t) (28)

u(t) ≥ 0 (29)

Θyy
(t) + Θuu

(t) ≥ 0 (30)〈
u(t),Θyy

(t) + Θuu
(t)
〉

= 0 (31)

where ut ∈ Rq is a set of auxiliary variables and 〈·, ·〉 is the element-wise product 〈x, y〉 =

(x1y1, x2y2, . . . )
′ that is used to describe complementary slackness conditions. The maps Ωy

and Ωu map into RN×n and the maps Θy and Θu map into RN×q.

As an example, consider the Taylor rule it = φππt + φyygapt, but modified to respect an

ELB constraint it ≥ i. The rule is now it = max {i, φππt + φyygapt}. This can be rewritten

as φππt+φyygapt− it+ut = 0, ut ≥ 0, it− i ≥ 0, and a complementary slackness condition.10

There is just one occasionally binding constraint so q = 1. Expressing the rule as Ayt+ut = 0

and the constraint as Cyt ≥ 0, we can set Ωy = IN ⊗ A, Ωu = −IN and Θy = IN ⊗ C.

To solve a problem of the form (28)–(31), we use (6) to write x̂(t) as a function of û(t):

x̂(t) = (ΩyM)−1
(
Ωuû

(t) − Ωy ˆ̄y(t)
)
. (32)

Again, it is assumed that ΩyM is invertible. We use this to express y(t) as a function of u(t):

y(t) = Fy(t−1) + ŷ(t)

= Fy(t−1) + ˆ̄y(t) +M (ΩyM)−1
(
Ωu

(
u(t) − Fu(t−1)

)
− Ωy ˆ̄y(t)

)
. (33)

For the last line, we have used (6) and (32) and expressed û(t) = u(t)−Fu(t−1). The problem

(29)–(31) has now been brought into the form of a standard LCP in u(t) of the form u(t) ≥ 0,

m+Qu(t) ≥ 0,
〈
u(t),m+Qu(t)

〉
= 0 with m ∈ RN×q and Q : RN×q → RN×q. Given a solution

for u(t), one can back out x̂(t) from (32) and then ŷ(t) from (6).

The LCP can be solved using the mixed-integer linear programming methods developed

in Holden (2016). In practice, we have found that a simple heuristic can often find a solution
10The constant i can be defined as an additional variable.
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more quickly than a (standard-grade) MILP solver. Our heuristic iterates on guesses for

when the occasionally binding constraints will be binding. We denote these guesses with

Z(t) ∈ {0, 1}N×q.

1. Start with an initial guess for Z(t), e.g. Z(t) = 0.

2. Find the indices I0 =
{
i ∈ N× {1, . . . , q} | Z(t)

i = 0
}

for which the guess is that the

constraint is slack. Set u(t)I0 = 0.

3. Find the indices I1 =
{
i ∈ N× {1, . . . , q} | Z(t)

i = 1
}

for which the guess is that the

constraint is binding. In those indices, the guess implies mI1 +QI1,I1u
(t)
I1 = 0. Use this

system of equations to solve for u(t)I1 .

4. Now evaluate whether u(t) ≥ 0 and m + Qu(t) ≥ 0. If this is the case, u(t) is a valid

solution. Stop.

5. Otherwise, modify the guess for Z(t). Let Iy =
{
i ∈ N× {1, . . . , q} | mi +Qi·u

(t) < 0
}

be the indices where the constraint was guessed to be slack but it is violated. Unless

the set is empty, pick one element i∗1 ∈ Iy at random and set Z(t)
i∗1

= 1. Similarly, let

Iu =
{
i ∈ N× {1, . . . , q} | u(t)i < 0

}
be the indices where the constraint was guessed

to be binding but it is slack. Unless the set is empty, pick one element i∗2 ∈ Iu at

random and set Z(t)
i∗2

= 0.11

6. Iterate until a solution has been found.

More complex rules that involve non-linearities other than an ELB constraint can be accom-

modated in this way, including rules that respond only to negative output gaps. One example

is an asymmetric Taylor rule with an ELB constraint it = max {i, φππt + φy min {ygapt, 0}}.

We can introduce two auxiliary variables (q = 2) and write it − φππt + φyu2t + u1t = 0,

ut ≥ 0, it ≥ i, ygapt − u2t ≥ 0, as well as complementary slackness conditions, to express
11This step can be changed to modify several indices at once or to tweak the probability weights for

randomization to be proportional to the severity of the violation of the non-negativity constraints.
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it in the form (28)–(31). But there are other rules that can not readily be expressed in this

form. Prominent examples are the “threshold” rules in Bernanke, Kiley, and Roberts (2019),

where the policy rate is kept at the ELB until some condition is met, e.g. until the cumula-

tive shortfall of inflation since the ELB became binding is made up. These rules consist of

different regimes with switching conditions that depend on the endogenous model variables.

Such a rule takes the form A+yt = 0 if Cyt ≥ 0 and A−yt = 0 if Cyt < 0. However, these

kinds of problems can also be expressed as mixed-integer linear programming problems or

solved using variations of our heuristic algorithm where Z(t) acts as an index of the regimes.

5.2 Optimal policy under commitment

Let us consider the optimal commitment problem with inequality constraints:

min
(yt,x̂(t))

∞
t=0

1

2
E0

∞∑
t=0

βty′tWyt

s.t. ŷ(t) = ˆ̄y(t) +Mx̂(t)

Etx̂
(t+1) = 0

Cyt ≥ 0

with C ∈ Rq×n. The Lagrangian of this problem is

L =
1

2

(
∞∑
t=0

Ltŷ(t)

)′
(B ⊗W )

(
∞∑
t=0

Ltŷ(t)

)
+
∞∑
t=0

βtλ(t)′
(
ˆ̄y(t) +Mx̂(t) − ŷ(t)

)
−
∞∑
t=0

µ(t−1)′x̂(t) − η′ (B ⊗ C)
∞∑
t=0

Ltŷ(t).

The resulting first-order conditions for ŷ(t) and x̂(t) are

(B ⊗W ) y(t) − βtλ(t) − (B ⊗ C ′) η(t) = 0 (34)

βtM ′λ(t) − βtµ(t−1) = 0. (35)

After subtracting t− 1-expectations, we can combine these into:

M ′ (B ⊗W ) ŷ(t) −M ′ (B ⊗ C ′) η̂(t) = 0. (36)
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In addition, we need η(t) ≥ 0, (IT ⊗ C) y(t) ≥ 0 and
〈
η(t), (IT ⊗ C) y(t)

〉
to hold. We can

express this problem in the form (29)–(31) with Ωy = M ′ (B ⊗W ), Ωu = M ′ (B ⊗ C ′),

Θy = IN ⊗ C, and Θu = 0. The algorithms described previously for simple rules can

therefore also be used for the optimal commitment problem.

Simple inequality constraints like an ELB constraint can thus be added to the optimal

commitment problem. But more complex policy problems can also be accommodated. Con-

sider an asymmetric objective in which policy penalizes discounted deviations of inflation

πt from some target π∗t and of shortfalls of output from potential output so that the loss

function is E0

∑∞
t=0

1
2
βt
[
(πt − π∗t ) + (min {ygapt, 0})2

]
. This loss function is not quadratic,

but the problem can nevertheless be rewritten with a quadratic objective. To do so, intro-

duce an auxiliary variable auxt and assume that the policymaker can control this variable,

so that the number of policy instruments p is increased by one. The impulse responses of

anticipated shocks to the additional instrument are given by the identity for auxt and zero

for all other variables. Now write the loss function as E0

∑∞
t=0

1
2
βt
[
π2
t + (auxt)

2] and add the

additional inequality constraint ygapt− auxt ≥ 0. Suppose ygapt ≥ 0. Then it is possible to

set auxt = 0 and therefore minimize the term (auxt)
2 in the loss function. If ygap < 0, then

the term (auxt)
2 is minimized when auxt = ygapt. This new problem is therefore equivalent

to the original one.

5.3 Optimal policy under discretion

We now add constraints of the form Cyt ≥ 0 to the optimal discretionary policy problem.

Solving for an equilibrium in a sequential game with non-linear best responses is complex

and we restrict ourselves to a subset of solutions that we are able to characterize.

Each policymaker has to internalize the effect of her actions on the behavior of future

policymakers, but this behavior depends on which future constraints are binding. However,

which constraints are binding also depends on the future state of the economy in the future,

which is affected by the choices of the time-h policymaker. Solving this problem fully, even
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under the assumption of quasi-perfect foresight, is challenging. We simplify the problem by

assuming that each policymaker takes the set of constraints that are expected to be binding

in the future as given. Furthermore, we assume that all constraints are expected to be slack

after at most H periods.

At each point in time t, we want to compute the expected path y(t) of the economy,

assuming we have already computed the expected path y(t−1) in the previous period. We

start with a guess Z(t) ∈ {0, 1}N×q of the binding constraints based on information available

at time t. We then iterate backwards on the on the policymakers at time h = t+H, t+H −

1, . . . , t + 1, t. We set up a variant of the problem of the discretionary policymaker in the

unconstrained case that introduces the inequality constraints:

min
y(h),x̂(h)

1

2
y(h)′ (B ⊗W ) y(h)

s.t. y(h) = Fy(h−1) + ˆ̄y(h) +Mx̂(h) (37)

d(s,t)F s−hy(h) = 0, s > h (38)

Cyh ≥ 0 (39)

where d(s,t) describes the reaction function of the policymaker at time s that is expected

at time t. For s > t + H, this is the time-invariant unconstrained policy rule d(s,t) = d∗

computed in Section 3.3. For h < s ≤ t + H, d(s,t) has been computed in our backward

iteration. To derive the policy path expected at time t, we will first solve this sequence of

problems under the assumption that there are no further shocks to the baseline projection

after time t, so we set ŷ(h) = 0 and y(h) = F h−ty(t) for h > t. This way, we solve the

discretionary problem under quasi-perfect foresight.

The Lagrangean of the above problem is

Lh =
1

2
Ehy

(h)′ (B ⊗W ) y(h)+λ(h)′
(
Fy(h−1) + ˆ̄y(h) +Mx̂(h) − y(h)

)
−η(h)′D(h+1,t)Fy(h)−µ′hC̃y(h)

where C̃ : RN⊗n → Rq is the mapping that encodes the constraint Cyh = 0. The first-order
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conditions with respect to y(h) and x̂(h) can be combined to eliminate λ(h):

M ′ (B ⊗W ) y(h) = M ′ (D(h+1,t)F
)′
η(h) +M ′C̃ ′µh. (40)

Analogously to the derivations in the unconstrained case, we can eliminate the multiplier

η(h) to arrive at

(
M·0 −M·−0

[
D(h+1,t)FM·−0

]−1
D(h+1,t)FM·0

)′ [
(B ⊗W ) y(h) − C̃ ′µh

]
= 0. (41)

If we have guessed that all constraints in period h are slack (Z(0)
h = 0), then the multipliers

on the constraints should all be zero, µh = 0, and Equation (41) constitutes the condition

d(h,t)y(h) = 0 that characterizes the behavior of the timeh policymaker under the guess Z(t).

But if we have guessed that some constraints are binding, we have to solve for the optimality

condition and the value of the multiplier µh. For the constraints for which Z
(t)
h,i = 1, we

impose the condition C̃i·y(h) = 0, whereas for those constraints with Z(t)
h,i = 1, we impose the

condition µhi = 0. The resulting ensemble of q equations together with (41) forms a system

of equations of the form

Ωyy
(h) + Ωµµh = 0 ∈ Rp+q.

This system can be transformed into the form

d(h,0)y(h) = 0

µh = g(h,0)y(h)

with d(h,0) : RN×n → Rp and g(h,0) : RN×n → Rq.12

We can now lay out the recursion from the policymaker at time h = t + H through

to h = t. For h = t + H, the subsequent policymakers are unconstrained and we set

D(t+H+1,t) = D∗. We also initialize a map G(t+H+1,t) : RN×n → RN×q to G(t+H+1,t) = 0. For

12For finite-dimensional Ωy and Ωµ, a LU decomposition of yields (Ωy,Ωµ) = L

(
Uµµ Uµy

0 Uyy

)
with L

invertible, so that Ωyy
(h) + Ωµµh = 0 is equivalent to Uµµµh +Uµyy

(h) = 0 and Uyyy(h) = 0. From there we
can see that d(h,0) = Uyy and g(h,0) = −UµµUµy.
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each h = t+H, t+H − 1, . . . , t+ 1, t, we compute d(h,t) and g(h,t) as just described and set

D(h,0) =

 d(h,t)

βD(h+1,t)F

 , G(h,t) =

 g(h,t)

βG(h+1,t)F

 . (42)

At the end of this backward recursion, we end up with a set of conditions D(t,t)y(t) = 0 which

we can use to solve for x̂(t) and therefore y(t). We can then check whether our guess Z(t) of

the constraints that are expected to be binding at time t = 0 is valid. The guess is valid

if all inequality constraints are satisfied and all Lagrange multipliers on the constraints are

non-negative, which is equivalent to

(B ⊗ C) y(t) ≥ 0 and G(t,t)y(t) ≥ 0.

If the guess is valid, we can move on to solve for the expected trajectory at time t = 1 in

the same way.

We now describe a heuristic similar to the one outlined earlier that is able to find solutions

to the optimal policy problem under discretion. At each point in time t = 0, 1, 2, . . . , run

the following iterative algorithm:

1. Start with an initial guess for Z(t).13

2. For h = t+H, t+H − 1, . . . , t+ 1, t, compute
(
D(h,t), G(h,t)

)
from

(
D(h+1,t), G(h+1,t)

)
as

described above, starting from D(t+H+1,t) = D∗ and G(t+H+1,t) = 0.

3. Compute y(t) from D(t,t)y(t) = 0 and y(t) = Fy(t−1) + ˆ̄y(t) +Mx(t).

4. Now evaluate whether (B ⊗ C) y(h) ≥ 0 and G(0,0)y(h) ≥ 0. If this is the case, y(t) is a

valid solution. Stop.

5. Otherwise, modify the guess for Z(t). Let IC =
{
i ∈ N× {1, . . . , q} | (B ⊗ C)i· y

(h) < 0
}

be the indices where the constraint was guessed to be slack but it is violated. Unless

the set is empty, pick one element i∗1 ∈ IC at random and set Z(t)
i∗1

= 1. Similarly,

13For t = 0, one can set Z(0) = 0. For t > 0, Z(t) = FZ(t−1) is a natural starting guess.
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let Iµ =
{
i ∈ N× {1, . . . , q} | G(0,0)

i· y(t) < 0
}

be the indices where the constraint was

guessed to be binding but the corresponding multiplier is negative. Unless the set is

empty, pick one element i∗2 ∈ Iµ at random and set Z(t)
i∗2

= 0.14

6. Iterate until a solution has been found.

If this algorithm finds a solution, it is a valid equilibrium path under optimal discretionary

policy with quasi-perfect foresight. But there are certain types of solutions that we cannot

discover this way. We have assumed that each policymaker takes the set of future constraints

that are binding, encoded in Z(t), as given. Locally, this is true if the solution is an “inte-

rior point” in the sense that a marginal change in outcomes will not lead to any binding

constraints becoming slack or slack constraints becoming binding. There can be, however,

solutions which sit at a “corner” in the sense that at least one policymaker is exactly at the

point where their constraint is binding, but the corresponding Lagrange multiplier is exactly

zero. At this point, a marginal change in outcomes can flip constraints from binding to slack

or vice-versa, leading to non-differentiability at the equilibrium point. Finding such corner

solutions is beyond the scope of our algorithm.

6 Historic revisions and measurement error

So far, we have assumed that the current state of the economy yt is perfectly observable

to the policymaker. In practice, however, policymakers face a large amount of uncertainty

about how to interpret current data and even how to interpret the past. Notably, economic

data are subject to revisions that rewrite the path of history, which policymakers need to

take into account.

In this section, we extend our procedure to a tractable case of imperfect information that

accommodates historic revisions of the baseline projection. The economy continues to be
14This step can be changed to modify several indices at once or to tweak the probability weights for

randomization to be proportional to the severity of the violation of the non-negativity constraints.

25



described by the model in (1), and solutions to the model continue to be adapted to the

filtration F describing the information of the private sector whose behavior is described by

the model. The policymaker, however, possesses more limited knowledge about the economy.

Its information is described by a more restricted filtration F∗ = (F∗t )∞t=0 for which F∗t ⊆ Ft.

Policymakers have to choose the instruments zt such that they are adapted to F∗. The

policymaker’s expectation is related to the full information expectation through the relation

E∗t ys = Etys + et,s, t, s ≥ 0. (43)

The above equation is just an identity that defines et,s as a residual, but the term et,s

can be thought of as the measurement error of the policymaker. We will assume that error

e is independent of policy: It is the same for every choice of the policy variables z. This

assumption guarantees that the separation principle continues to apply (see Svensson and

Woodford, 2004, for a detailed discussion). We also impose that there can be no uncertainty

about current or past values of the policy instruments themselves: E∗t zt−s = zt−s for all

t, s ≥ 0.

Analogously to Section (2), we define y∗(t)s = E∗t yt+s and collect current and future states

of the economy in y∗(t) =
(
y
∗(t)′
0 , y

∗(t)′
1 , y

∗(t)′
2 , . . .

)′
. Because we now need to keep track of

changes in history as well, we also introduce y∗(t)− =
(
y
∗(t)′
0 , . . . y

∗(t)′
t−1

)′
to denote the history

of model outcomes at time t. As before, hats denote revisions and bars denote the baseline

projection. With this notation, the evolution of the economy under the policymaker’s and

the private sector expectation is given by the following modification of (6):

ŷ∗(t) = ˆ̄y∗(t) +Mx̂∗(t) (44)

ŷ
∗(t)
− = ˆ̄y

∗(t)
− (45)

ŷ(t) = ˆ̄y(t) +Mx̂∗(t). (46)

To see this, note first that E∗t ys−E∗t ȳs = Etys−Etȳs because of our assumption that e is inde-

pendent of policy, so that it is the same under the baseline projection ȳ and any counterfactual

y. Thus, we have that E∗t ys − E∗t ȳs = Etys − Etȳs. Also, because E∗t xs = ΨE∗t (ys − ȳs), we
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have that E∗t xs = Etxs. The private sector expectation and the policymaker expectation of

the standardized policy instruments are identical.

The computations for simple policy rules and optimal policy problems are preserved under

this particular information structure. Consider, for example, the computation of outcomes

under a simple policy rule with an occasionally binding constraint, as in Section (5.1). Under

imperfect information, this requires

AE∗t yt ≥ 0

CE∗t yt ≥ 0

〈AE∗t yt, CE∗t yt〉 = 0.

Consider again the Taylor rule it = max {φππt + φπygapt, i}. The incomplete information

version is it = max {φπE∗t πt + φπE
∗
t ygapt, i}, but modified to respect an ELB constraint

it ≥ i. This can be expressed equivalently as E∗t [it − i] ≥ 0, E∗t [it − φππt − φπygapt] ≥ 0

and E∗t [it − i]E∗t [it − φππt − φπygapt] = 0. Taking expectations over the current interest

rate is possible because under E∗t , there is no uncertainty over current or past instruments.

This problem corresponds to the form

Ωyŷ
∗(t) = Ωuû

(t)

u(t) ≥ 0

Θyy
∗(t) + Θuu

(t) ≥ 0〈
u(t),Θyy

∗(t) + Θuu
(t)
〉

= 0

with Ωy = IN ⊗ A, Ωu = IN ⊗ Ip, Θy = IN ⊗ C and Θu = 0. Using (44), the problem can be

solved the same way as in the full information case. The only difference is that the baseline

projection ȳ∗ can now change in history, as well. Under the simple rule, revisions in history

are the same as under the baseline projection, and are given by (45). That is, historic

revisions under a counterfactual policy regime move in lockstep with the corresponding

revisions to the baseline projection.

Next, consider the problem of computing optimal commitment policies as in Section 3.2,
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but under incomplete information:

min
(ŷ(t),x̂∗(t))

∞
t=0

E∗0

∞∑
t=0

1

2
βty′tWyt

s.t. ŷ(t) = ˆ̄y(t) +Mx̂∗(t)

Etx̂
∗(t+1) = 0.

We have only replaced the policymaker expectations in the objective function. The first-order

conditions for ŷ(t) and x̂(t) are nevertheless

(
Lt
)′

(B ⊗W )LtE∗t y
(t) − βtλ(t) = 0

βtM ′λ(t) − βtµ(t−1) = 0.

Subtracting the expectation under F∗t−1 of these equations and combining them yields Con-

dition (12) with ŷ(t) replaced by ŷ∗(t). The fact that there is uncertainty about the past

does not enter the considerations of the optimizing policymaker. The reason is that, when

history gets revised, the policymaker cannot affect the paths of history and the associated

losses, and all the effects of the revision on current and future outcomes are contained in

the forward-looking part of the baseline projection. Again, the policymaker’s perception of

the counterfactual equilibrium path under optimal policy can now change in history, but the

revisions move in lockstep with the revisions to the baseline projection according to (45).

7 Application

We now present a practical application of our solution methods. We compute counterfactuals

for the path of the U.S. economy between 2020 and 2023 under the assumption that monetary

policy followed either a simple interest rate rule or optimal commitment or discretionary

policy. Our simulations are carried out using either a linear version of the FRB/US model

(Brayton, 2018) or a modified version of the del Negro, Giannoni, and Schorfheide (2015)

model. Both models have been used previously for policy analysis at the Federal Reserve. For
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the baseline projections, we use the projections made in real time by members of the Federal

Open Market Committee (FOMC) in their Summary of Economic Projections (SEP). Thus,

our counterfactuals are conditioned on the information available to policymakers at that

time rather than on ex-post realized and revised data. We achieve this without the need to

filter structural shocks in either model, as the projections contain all the information about

the economy that is relevant for the construction of valid counterfactuals.

The period between 2020 and 2023 spans the Covid-19 pandemic and the following rise

of inflation. There are several reasons why this is an interesting episode for U.S. monetary

policy. First, the FOMC had just adopted a new framework for its monetary policy strategy15

which stipulated that “following periods when inflation has been running persistently below

2 percent, appropriate monetary policy will likely aim to achieve inflation moderately above

2 percent for some time” and that “policy decisions must be informed by assessments of the

shortfalls of employment from its maximum level.” Then, the pandemic shock of 2020 led to

unprecedented disruptions in economic activity and a drop in inflation that prompted the

FOMC to lower interest rates to the ELB. That was followed by a rise in inflation that was

larger and more persistent than initially expected. The FOMC raised the federal funds rate

to above five percent at a quick pace, but some outside observers argued that, based for

example on the prescriptions of the Taylor rule, interest rates should have risen earlier. Our

simulations will show how following such a rule, or following optimal policy with or without

commitment, would have altered the federal funds rate path and economic conditions through

the lens of structural macroeconomic models. Our main finding from these simulations is

that optimal policy under commitment would have made a strong promise to keep interest

rates low in 2020, which would have been honored even as inflation rose subsequently. The

policy path would have been appeared to be “behind the curve” relative to simple Taylor-type

rules, and this appearance would have reflected the time-inconsistency of the optimal policy.
15See the Statement on Longer-Run Goals and Monetary Policy Strategy, available at https://www.

federalreserve.gov/monetarypolicy/files/FOMC_LongerRunGoals.pdf.
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7.1 Baseline projections

We use 15 quarterly vintages of projections ȳ(t) for our simulation exercises, starting in

2020:Q2 and ending in 2023:Q4. Each baseline projection is based on the median SEP fore-

cast released in that quarter.16 In the SEP, participants provide yearly projections for the

current and next two or three calendar years as well as for the “longer-run”. These projections

include real GDP growth, the unemployment rate, and headline and core PCE inflation pro-

jections, as well as participants’ individual assumptions of the projected appropriate federal

funds rate. The Federal Reserve’s staff uses a model-guided interpolation and extrapolation

procedure as well as current economic data to build quarterly series of these (and other)

variables.17 In particular, the paths of those variables available in the SEP are assumed

to gradually converge to the median of the SEP longer-run projections. We will use these

quarterly series as our baseline projections.18

Figure 1 shows the projected paths of the quarterly average of the federal funds rate, the

four-quarter change in the (headline) PCE price index, the quarterly average of the civilian

unemployment rate, as well as an unemployment gap measure, as projected at different

points in time. The paths for the first three of these variables converge to the respective

median longer-run SEP projections. The unemployment gap is constructed as the difference

of the unemployment rate and an estimate of the natural rate of unemployment based on

current and past median longer-run SEP projections of the unemployment rate; in particular,

it converges to zero by construction.

Since the start of the pandemic, FOMC participants revised their projections of the U.S.

economy significantly. The top left panel shows that in the second quarter of 2020, the
16Economic projections are collected from each member of the Board of Governors and each Federal Reserve

Bank president four times a year, in connection with the FOMC meetings in March, June, September, and
December.

17The staff regularly publishes these time series along with further documentation as part of its FRB/US
model package, available at https://www.federalreserve.gov/econres/us-models-package.htm.

18The resulting projections need not represent the economic projections of the Committee or of any
Committee participant.
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Figure 1: Baseline Projections.
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federal funds rate was expected to stay at the ELB at least through 2022.19 But the path

of the federal funds rate was subsequently revised up considerably and the first rise in the

policy rate in that rate cycle happened in March 2022. Subsequently, the projected funds

rate path continuted to be revised up as the actual federal funds rate was raised above five

percent. These revisions were accompanied by increasingly large revisions to the inflation

projections, shown in the upper right panel, as the rise in realized inflation was stronger and

more persistent than the SEP median projections. At the same time, the unemployment rate

projections also changed over this time. In the second quarter of 2020, unemployment was

expected to be persistently high for several years.20 But by the next year, this projection

was already considerably revised as the labor market recovered more quickly than had been

anticipated. At the end of 2022, unemployment was expected to increase again the following

year, but this rise also did not materialize, as the strong labor market remained a defining

feature of the post-pandemic economy.

7.2 Models

We use two different models for our simulations. The first is a linear version of the Fed-

eral Reserve’s FRB/US model, a large-scale estimated general equilibrium model of the U.S.

economy that has been in use at the Federal Reserve Board since 1996 and has been re-

peatedly adapted to the evolving the structure of the economy. A linearized version of that

model was recently made publicly available and documented by Brayton and Reifschneider

(2022).21 For the purpose of our simulations, we only simulate three of these variables,

namely the federal funds rate it, the four-quarter change in the headline PCE price index
19These projections do not capture the precise liftoff dates that were expected by FOMC participants

because only year-end projections for a few years are provided. In particular, in 2020:Q2 and 2021:Q2 the
SEP only elicited year-end projections through 2022 and 2023, respectively.

20Because SEP participants only project year-end values and the staff smoothly interpolates these values
to create a baseline path, the unemployment projection of 2020:Q2 does not show a spike as in the realized
data.

21The FRB/US model incorporates several alternative assumptions for expectation formation. We use
model-consistent (i.e. rational) expectations for financial market participants and wage-price setters and
VAR-based expectations for other sectors of the economy.
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π4t, and the unemployment gap ugapt, which are natively defined in the model. Thus, we

only need to compute impulse responses for these three variables.

The second model we use is the DGS-FHP model, a modified version of the dynamic

general equilibrium model developed by del Negro, Giannoni, and Schorfheide (2015) that

attenuates the forward-guidance puzzle through the introduction of finite-horizon planning

for households. This model has previously been used in policy analysis at the Federal Reserve

and is documented in Arias, Bodenstein, Chung, Drautzburg, and Raffo (2020). It features

greater, yet empirically plausible, sensitivity of the economy with respect to interest rates

than the FRB/US model. We make the following translations of our data series to this model:

We equate the federal funds rate with the annualized quarterly nominal interest rate (that is,

our it equals 4rt in the model) and the four-quarter change in the headline PCE index with

the sum of the current and last three quarters of the quarterly inflation rate (our π4t equals∑3
s=0 πt−s in the model). Because the DGS-FHP model does not feature unemployment, we

approximate the unemployment gap with the model’s output gap through a simple Okun’s

law and set Ut−U∗t = 0.5 (yt − y∗t ), where yt and y∗t are the log-levels of output in the model

under sticky and flexible prices, respectively.

For both models, we compute impulse responses to anticipated shocks to the federal

funds rate using Dynare. The choice of the equation that determines policy at this stage is

irrelevant as long as it yields a unique solution. We use an unemployment gap version of the

Taylor (1993) rule:

it = r∗t + π4t + 0.5 (π4t − 2)− (Ut − U∗t ) . (47)

In addition to the three variables we simulate, the long-run level of the natural real interest

rate r∗t and the natural rate of unemployment U∗t also appear in the rule. These two addi-

tional variables are independent of policy; thus, the impulse responses of these variables to

anticipated policy shocks are zero everywhere.

Figure 2 plots these impulse responses for both models. The upper panels show that in

the FRB/US model, inflation increases and unemployment decreases at all lags and leads
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Figure 2: Impulse Responses to Anticipated Monetary Policy Shocks.

(a) FRB/US Model.
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(b) DGS-FHP Model.
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Note: Each panel plots impulse responses Mτs, 0 ≤ τ, s ≤ 80, of a variable in period s (horizontal axis) to
a shock occurring in period τ (vertical axis) and fully anticipated in period 0, when the federal funds rate
is set according to the Taylor (1993) rule. Variable definitions as noted in the text. Shocks are normalized
such that at time τ , the federal funds rate decreases by one percentage point.
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following accommodative policy shocks. Inflation is very forward-looking: Inflation responds

even to policy shocks that are expected to occur very far in the future. At the same time,

the magnitude of the inflation response is modest due to a relatively flat Phillips curve.

Unemployment, by contrast, responds more inertially to policy shocks, with the forward-

looking effects before the realization of the shock (above the 45-degree line) less pronounced

than the backward-looking effects after (below the 45-degree line).

The dynamics of the DGS-FHP model are noticeably different. Inflation responds even

less strongly to policy, implying an even flatter Phillips curve, but the response is also more

forward-looking with less lagged effects. The magnitude of the response of the unemployment

gap to monetary policy is stronger and more forward-looking than in the FRB/US model,

pointing to a higher sensitivity of real activity to changes in interest rates.

7.3 Interest rate rules

In our first set of simulations, we compute counterfactuals under the assumption that the

federal funds rate is set according to one of two rules:

it = max {i, r∗t + π4t + 0.5 (π4t − 2)− (Ut − U∗t )} (48)

it = max {i, 0.85it−1 + 0.15 (r∗t + π4t + 0.5 (π4t − 2)− 2 max {Ut − U∗t , 0})} (49)

The first rule is the Taylor (1993) rule. The second rule is an asymmetric Taylor-type rule

with inertia that responds only to shortfalls of employment. In both rules, the ELB is

modeled as a lower bound i of 12.5 basis points.

The upper three panels of Figure 3 show rules-based counterfactuals computed using

the linearized FRB/US model. The economy is assumed to follow the baseline projection

up to 2020:Q2. At that date, the respective rule starts to be followed; the path of the

economy as it would have been projected in that quarter is represented by dashed lines. We

then run the simulation using the sequence of baseline projections described above. Each
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Figure 3: Rules-Based Counterfactuals.

(a) FRB/US Model.
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(b) DGS-FHP Model.
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quarter, the projected path of the counterfactual changes in response to the changes in the

baseline projection. We show the final counterfactual projection as of 2023:Q4 with solid

lines, omitting the projections in between.

The upper panels of Figure 3 show that, if the economy had evolved as projected by

FOMC participants in 2020 following the initial pandemic shock, the Taylor (1993) rule (48)

(blue lines) would have held the federal funds rate at the ELB through 2022 and subsequently

lifted it to just below two percent in 2025. However, due to the subsequent upward surprises

to inflation in the baseline projections and, to a lesser extent, downward surprises in the

unemployment rate, the rule would have lifted the policy rate off the ELB by the first

quarter of 2021 and would have quickly raised it to about eight percent. After inflation

peaked in the middle of 2022, the rule would then have lowered the policy rate to below five

percent by the end of 2023. Relative to the realized policy rate path, this counterfactual

would therefore have had earlier and stronger tightening followed by quicker easing. Because
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this counterfactual tightening of policy is not very persistent, the Phillips curve in the model

is quite flat, and long-run inflation expectations are implicitly anchored at 2 percent, the

effects on inflation are modest, reducing it by less than 0.2 percentage point relative to the

baseline. The effects on unemployment are more pronounced, with the unemployment rate

up to one percentage point higher than in the baseline. The asymmetric inertial Taylor

(1999) rule (49) (yellow lines) would have prescribed a slower pace of increases of the federal

funds rate in 2021 and 2022, but also a slower pace of reductions thereafter. In the model,

the net effect on the economy is similar to that of the non-inertial Taylor (1993) rule.

The lower three panels of Figure 3 repeat these simulations using the DGS-FHP model.

All that is required for this change is to switch out the impulse responses M in the compu-

tations. Qualitatively, the counterfactuals retain the features discussed in the context of the

FRB/US model above. The policy rate paths under the two rules shown are similar to those

in the FRB/US model. The paths for inflation are also virtually the same as in the upper

panels: Owing to the flat and forward-looking Phillips curve in both models, and anchored

long-run inflation expectations, large changes to the policy rate have only small effects on

inflation unless they persist for many years. However, the paths for the unemployment gap

are noticably different because in the DGS-FHP model, unemployment reacts more strongly

to contemporaneous changes in interest rates than in the FRB/US model. Under the Taylor

(1993) rule, unemployment rises almost two percentage points above the baseline as a result

of the additional policy tightening prescribed by that rule. Under the lower policy path pre-

scribed by the asymmetric inertial Taylor (1999) rule, unemployment rises rises only about

one percentage point above the baseline.

7.4 Optimal policy

We now turn to counterfactuals when the federal funds rate is set to minimize an intertem-

poral quadratic loss function under full discretion and full commitment. We start with an
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“equal-weights” loss function:

E0

∞∑
t=0

βt
[
(π4t − 2)2 + (Ut − U∗t )2 + (it − it−1)2

]
. (50)

This loss function places equal weights on deviations of inflation from a target of 2 percent

and deviations of the unemployment rate from the natural rate of unemployment. It also

penalizes changes in the federal funds rate, which captures the desirability of gradualism

(Woodford, 1999).

In addition, we also consider an asymmetric version of this loss function:

E0

∞∑
t=0

βt
[
(π4t − 2)2 + (max {Ut − U∗t , 0})

2 + (it − it−1)2
]
. (51)

This loss function differs from the first in that it only penalizes unemployment rate outcomes

that are higher than the natural rate of unemployment. As in the simple rules simulations,

we impose a lower bound on the nominal interest rate of 12.5 basis points.

Figure 4 shows optimal policy counterfactuals computed using the FRB/US model. As

before, we start the counterfactuals at the 2020:Q2 baseline projection and let the respective

policy regime stay in place through 2023:Q4. In particular, the commitment solution keeps

honoring contingent promises as subsequent surprises to the baseline projection materialize

each quarter.

The upper panels show optimal policy counterfactuals under the symmetric loss function

(50). For the initial baseline projection in 2020:Q2, optimal policy would have kept the

policy rate at the ELB through 2023 under discretion, and even longer under commitment,

in order to counter a shortfall in projected inflation and an increase in projected unemploy-

ment (dashed lines). As these predictions failed to materialize and inflation instead rose

substantially, the federal funds rate would have lifted off the ELB some time in 2021 under

discretion and in 2022 under commitment. Interest rates would have been susbtantially lower

under commitment than under discretion over the period shown, resulting in lower unem-

ployment. This difference reflects the value of commitment: In 2020, the commitment policy

embedded a promise to keep interest rates low in order to counter the expected shortfall in
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Figure 4: Optimal Policy Counterfactuals in the FRB/US Model.
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aggregate demand. In the simulation, this promise is honored even as the subsequent rise

in inflation makes it appear as though this policy were “behind the curve”: There would be

an incentive to reoptimize and abandon the promises made during the pandemic. Finally,

it is worth noting that the optimal policy path in the FRB/US model is shallower than the

realized path. This result is somewhat sensitive to the amount of gradualism in the loss

function (the weight on interest rate changes in (50)) but also reflects the fact that in this

very forward-looking model, large immediate changes in the policy rate are less effective than

gradual but more persistent anticipated changes.

The lower panels repeat the simulations under the asymmetric loss function (51). Under

this loss function, policymakers do not see negative unemployment gaps as costly. As a

result, they are willing to implement policies that lead to very low levels of unemployment

if these policies also raise inflation from below 2 percent. Under discretion, this difference in

preferences makes little difference in our simulation, as the unemployment rate barely falls
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Figure 5: Optimal Policy Counterfactuals in the DGS-FHP Model.
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below the longer-run natural rate of unemployment. But under commitment, the difference

is sizable. For the 2022:Q2 projection, the asymmetric commitment policy promises a policy

path that manages to raise inflation by almost half a percentage point over several years

and also narrows the projected unemployment gap (dashed lines). This strong promise of

accommodative policy is honored even as the projections change over the next few years. As

a result, the federal funds rate under this policy would have remained at the ELB during

the entire rise in inflation and well into 2023.

Next, we repeat these simulations using the DGS-FHP model. The resulting counter-

factual paths are displayed in Figure 5. The policy paths under under the symmetric loss

function (50) are shown in the top panels. The projected paths for the initial baseline pro-

jection (dashed lines) are similar to those in the FRB/US model, but those in the final

projection (solid lines) are noticeably steeper. The reason is that changes in interest rates

have stronger contemporaneous effects in the DGS-FHP model so that optimal policy in
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Figure 6: Honoring Past Commitments.
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Note: Optimal policy simulations under commitment and the symmetric loss function (50). Each line
represents past, current and future values of a variable as projected in 2022:Q1.

this model has stronger incentives to move rates quickly in response to changes in economic

conditions. Under discretion, the policy path ends up quite similar to the realized path,

lifting off the ELB in the first quarter of 2022. Under commitment, however, this lift-off is

delayed until the last quarter of 2022, when inflation is already almost at its peak. Again,

the reason is the initial promise made during the pandemic to keep policy accommodative

that is being honored. This pattern is even more pronounced under the asymmetric loss

function (51) as shown in the lower panels. With this loss function, the benefits of promising

a lower-for-longer policy path are not tempered by costs arising from the unemployment rate

falling below the longer-run natural rate. For the initial projection of 2022:Q2, the commit-

ment solution anticipates keeping the policy rate at the ELB well beyond the period shown,

resulting in an expected reduction in inflation of over half a percentage point despite the flat

Phillips curve in the model. Even in the final projection of 2023:Q4, the commitment solu-

tion still anticipates staying at the ELB until 2026 as it still honors this past promise to some

extent, resulting in lower inflation and much lower unemployment than under discretion.

We close this discussion by illustrating the ability of our sequence-space algorithm to

honor past promises of optimal policy under commitment. Figure 6 shows the 2022:Q1

baseline projection (solid black lines) along with two different optimal policy simulations

under commitment using the DGS-FHP model and the symmetric loss function.

In the first simulation (solid lines), policymakers start optimizing with commitment in

2020:Q2, and where we let policy respond to new information while keeping past promises.
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It is the same simulation as that shown in Figure 5 (symmetric commitment, blue lines),

but shown at a different point in time. Here, we show the projected counterfactual path

in 2022:Q1, when four-quarter headline PCE inflation is at its peak of about seven percent.

Because the commitment policy carries the past promise of keeping interest rates low, the

projected policy path still implies keeping the policy rate at the ELB and incurring a sig-

nificant undershoot of unemployment below the natural rate. Reneging on this promise is

beneficial, which can be seen from the second simulation (dash-dotted lines). Here, we start

with the same optimization with commitment in 2020:Q2, but in 2022:Q1 we restart the

optimization at the current path.22 When past promises are abandoned, it becomes optimal

to immediately raise the federal funds rate and follow a path very similar to the baseline

projected path. As a result of this less accommodative policy path, the unemployment

gap is now projected to be closed and inflation falls further (if only slightly). The devia-

tion between the two simulations illustrates the degree of time-inconsistenty of the initial

commitment policy, which in the model is particularly strong around 2022.

8 Conclusion

In this paper, we have proposed a computational procedure to solve for policy counterfactu-

als in linear models with occasionally binding constraints in sequence space. The procedure

requires only minimal knowledge of the structural model. The only two inputs are a projec-

tion, or sequences of projections, of the variables entering the policy problem; and impulse

response functions of these variables to the monetary policy instruments under an arbitrary

policy. We have shown how to compute solutions for instrument rules and optimal discre-

tionary and commitment policies, as well as various extensions of practical relevance. A

practical application to counterfactual paths of the U.S. economy after 2020 revealed that

ex-ante optimal commitment policies to counter the pandemic shock would have appeared
22To keep the simulations comparable, we assume that policymakers drop their initial commitment unex-

pectedly and without suffering a loss of credibility.
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to fall “behind the curve” as inflation rose because of the time-inconsistency of the lower-for-

longer promises embedded in these strategies.

There are several directions in which our findings could be extended in future work. First,

we are currently restricted to models that are linear up to occasionally binding constraints

and quasi-perfect foresight expectations, but one can apply the methods described by Holden

(2016) to extend our method to higher-order perturbation approximations of non-linear

models and even incorporate genuine uncertainty about occasionally binding constraints.

Second, we restrict ourselves to counterfactual policy regimes that yield unique equilibria,

but the sequence space computations could also be used to find sunspot solutions. Finally,

future research may address the use of the sequence-space approach to parameter or model

uncertainty.
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A Appendix

A.1 MILP representation

Many problems with occasionally binding constraints can be written as linear complemen-

tarity problems of form u(t) ≥ 0, m(t) +Qu(t) ≥ 0,
〈
u(t),m(t) +Qu(t)

〉
= 0 with m(t) ∈ RN×q

and Q : RN×q → RN×q. The finite-dimensional approximation of this problem with up to

T periods can be solved using mixed-integer linear programming (MILP) methods (Holden,

2016, 2023). There are several ways to express the LCP problem in a MILP representation.

We choose the following representation:

min

u
(t)
0:T ∈ RTq

Z ∈ {0, 1}Tq

T∑
t=0

u
(t)
t

s.t. u(t) ≥ 0

Qu(t) +m(t) ≥ 0

u(t) ≤ ωZ

Qu(t) +m(t) ≤ ω (1− Z) .

The constant ω has to be chosen large enough for the problem at hand. If there are multiple

solutions to the LCP problem, this representation will choose the one for which the sum

of the absolute values of u(t)0:T is minimal. When the constraint is the ELB, this roughly

represents the solution for which deviations from the unconstrained case are smallest.

A.2 Combining equality and inequality constraints

Some policy counterfactuals of interest may involve a mix of equality and inequality con-

straints. Such a situation can arise, for example, when there are multiple policy instruments

and only a subset is subject to inequality constraints such as a lower bound constraint;

when auxiliary variables need to be defined in order to express the policy problem; or when
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the optimal policy problem is subject to equality constraints, for example because one is

interested in optimal interest rate policy subject to a simple rule for balance sheet policy.

Here, we discuss a couple of cases that illustrate how to extend the computation of policy

counterfactuals to such cases.

First, suppose we want to compute simple rules, where only some of them are subject to

inequality constraints. We want to impose Ayt ≥ 0, Cyt ≥ 0, 〈Ayt, Cyt〉 = 0, and Dyt = 0.

The matrices are D ∈ Rn×q1 and A,C ∈ Rn×q2 with q1+q2 = p. Let u1t = Dyt and u2t = Ayt.

Then we can express the problem in the form:

Ωyŷt = Ωuût (52)

u
(t)
1 ≥ 0 (53)

Θy1y
(t) + Θu1u

(t) ≥ 0 (54)〈
u
(t)
1 ,Θy1y

(t) + Θu1u
(t)
〉

= 0 (55)

Θy2y
(t) + Θu2u

(t) = 0 (56)

where Ωy = IN⊗

 A

D

, Ωu = IN⊗Ip, Θy1 = IN⊗C, Θu1 = 0, Θy2 = 0, and Θu2 = IN⊗Iq2 .

To solve this problem, let S1 and S2 be the canonical mappings for which û(t) = S1û
(t)
1 +S2û

(t)
2 .

Assume again that ΩyM is invertible and write R = M (ΩyM)−1. We make use of (32) to

write

ŷ(t) = (I −RΩy) ˆ̄y(t) +RΩu

(
S1û

(t)
1 + S2û

(t)
2

)
. (57)

We now let Πij = (ΘyiRΩu + Θui)Sj for i = 1, 2. We can substitute (57) into (56) and

obtain:

0 = Θy2 (I −RΩy) ˆ̄y(t) + Π21û
(t)
1 + Π22û

(t)
2 .

This can be used to solve for û(t)2 :

û
(t)
2 = −Π−122

(
Θy2 (I −RΩy) ˆ̄y(t) + Π21û

(t)
1

)
.
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Substituting this expression back into (57), we obtain:

ŷ(t) =
(
I −RΩuS2Π

−1
22 Θy2

)
(I −RΩy) ˆ̄y(t)

+RΩu

(
S1 − S2Π

−1
22 Π21

)
û
(t)
1 . (58)

Using the above expressions for û(t)2 and ŷ(t), we can express the inequality (54) in the form

Qu
(t)
1 + m ≥ 0 so that (53)–(55) form a standard LCP problem in u(t)1 . The parameters Q

and m are given by:

Q = Π11 − Π12Π
−1
22 Π21 (59)

m = Θy1Fy
(t−1) + Θu1S2Fu

(t−1)
2

+
(
Θy1 − Π12Π

−1
22 Θy2

)
(I −RΩy) ˆ̄y(t)

−
(
Θy1RΩuS1 − Π12Π

−1
2 Π21

)
Fu

(t−1)
1 . (60)

Second, consider an optimal policy problem under commitment with inequality and equal-

ity constraints:

min
(yt,x̂(t))

∞
t=0

E0

∞∑
t=0

1

2
βty′tWyt

s.t. ŷ(t) = ˆ̄y(t) +Mx̂(t)

Etx̂
(t+1) = 0

Cyt ≥ 0

Dyt = 0.

The Lagrangian of this problem is:

L =
1

2

(
∞∑
t=0

Ltŷ(t)

)′
(B ⊗W )

(
∞∑
t=0

Ltŷ(t)

)
+
∞∑
t=0

βtλ(t)′
(
ˆ̄y(t) +Mx̂(t) − ŷ(t)

)
−
∞∑
t=0

µ(t−1)′x̂(t)

− η′ (B ⊗ C)
∞∑
t=0

Ltŷ(t) − φ′ (B ⊗D)
∞∑
t=0

Ltŷ(t).

After eliminating λ and µ in the usual way, the first-order conditions are:

M ′ (B ⊗W ) ŷ(t) = M ′ (B ⊗ C ′) η̂(t) +M ′ (B ⊗D′) φ̂(t).
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In addition, a solution has to satisfy (IT ⊗ C) y(t) ≥ 0, (IT ⊗D) y(t) = 0, η(t) ≥ 0 and〈
η(t), (IT ⊗ C) y(t)

〉
. Now we let u(t)1 = η(t) and u(t)2 = φ(t). This has the form in (56)–(55)

with

Ωy = M ′ (B ⊗W ) ,Ωu = M ′
(
B ⊗

(
C ′ D′

))
Θ1 = IT ⊗ C

Θ2 = IT ⊗D.
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