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Abstract

This paper studies competitive market shutdowns due to adverse selection, where
sellers post nonexclusive menus of contracts. We first show that the presence of the
worst type of agents (moldy lemons) causes markets to fail only if their mass is suf-
ficiently large. We then show that a small mass of moldy lemons can lead to a large
cascade of exits when buyers possess outside options. Finally, we show that more pre-
cise information about agents’ types makes markets more prone to exit cascades. The
model is general and does not rely on institution details or structure, and thus can be
applied to many different markets and context.
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1 Introduction

How can a market that functions well in normal times suddenly collapse under stress?
Throughout history—from banking panics in the national banking era to the dry-up of asset-
backed securities markets (for example, see Figures 1 and 2) and freezing of interbank markets
in the Global Financial Crisis—one common answer is adverse selection (Calomiris and Gor-
ton, 1991; Mishkin, 1999; Ivashina and Scharfstein, 2010; Covitz et al., 2013; Foley-Fisher
et al., 2020). Although there have been many studies on market shutdowns with adverse
selection, theoretical models that generate shut downs due to small changes in underlying
conditions usually assume exclusive contracting between agents. However, in practice, most
markets are characterized by nonexclusive contracting where agents are generally free to
trade and contract simultaneously with multiple counterparties (for example, collateralized
debt and loan obligations (CDOs and CLOs), derivatives, over-the-counter, capital, and in-
surance markets). The inability to monitor a counterparty’s trades was certainly a major
factor behind the 2021 collapse of hedge fund Archaegos and the bail out of AIG in 2008
due to its credit derivatives positions. Therefore, the goal of this paper is to derive general
principles under which small changes in underlying fundamentals, which we coin the entry
of moldy lemons, cause markets subject to adverse selection with non-exclusive contracting
to fail.

Our main results can be stated as follows: The presence of the worst type of agent (a
moldy lemon) causes trade to unravel only if their mass is sufficiently large. By contrast,
when agents have outside options or reservation utilities, a small mass of moldy lemons
can lead to a large cascade of exits. Moreover, we show two additional conditions on the
susceptibility of markets to unraveling: (1) as the number of types in the economy increases
and (2) when shocks are isolated to market trades and do not affect outside options. These
results have policy implications for interventions in markets subject to adverse selection,
which we discuss later in the paper.

We derive these results in a general and flexible model of perfectly competitive trade
subject to adverse selection that allows for non-exclusive contracting between buyers and
sellers developed by Dubey and Geanakoplos (2019) and Attar et al. (2021). These non-
exclusive contracting models impose little structure on prices and quantities and abstract
away from complicated model structures or restrictions backed by institutional details (e.g.
information production in Dang et al. (2020) or dynamics of collateral and reputation in
Chari et al. (2014)) that are generally needed to generate market shutdowns through small
changes in underlying fundamentals; all we require is a standard single-crossing property
on preferences and a monotonicity condition on costs. Together, these conditions imply



that types more willing to trade larger amounts are more costly to serve. Hence, there is
weak-adverse selection.

Following Attar et al. (2021), we characterize a market shut down or unraveling of trade
when an active market becomes inactive and “entry-proof.” An inactive market is one for
which the no-trade point dominates trade in the market; markets are entry-proof when the
willingness of each agent to trade at the no-trade point does not exceed the cost to serve
all types that will enter the market. Finally, the cost to serve the market is given by the
upper-tail conditional expectation of unit cost of all agents who are expected to trade in the
market. We extend the environment of Attar et al. (2021) by considering an agent that is the
worst type among all possible types—e.g., probability of loss for this type is p = 1 in Hendren
(2013). We call this agent a “moldy lemon.” In an investment or trading environment, moldy
lemons are agents whose project or asset produces nothing with near certainty. Enlarging
the support of types to include moldy lemons can encompass an aggregate (macro) shock to
the economy for which the presence of moldy lemons affects every agent in the market. Our
main research question thus becomes: Does a shift in underlying fundamentals that create
a small mass of moldy lemons cause the market to shutdown?

Before turning to the impact of the entry of moldy lemons, it is useful to understand
how allocations in the general non-exclusive contracting economy of Attar et al. (2021) are
characterized. Allocations in this environment are recursive layers along a convex-market
tariff. Along the first layer, the market price is equal to the expected cost to serve all types
and the quantity traded equals the demand of the lowest (best in suppliers’ perspective)
type. Along the second layer, the lowest type does not trade, and the price is equal to the
expected cost of serving all types except the first type. Along this layer, the quantity each
agent—other than the lowest type—trades is the residual demand of the second type. This
structure continues until the final layer meets the residual demand of the highest type for
whom sellers break even to serve. Hence, all types except the lowest type generally combine
layers along the market tariff to arrive at an aggregate level of trade, which is prohibited by
assumption in exclusive contracting environments.

Our first result stated in Theorem 1 is that moldy lemons change the equilibrium quanti-
ties traded in a smooth fashion. This implies that markets shut down iff the mass of moldy
lemons is sufficiently large. The intuition comes from noticing that the first agent to exit
the market is the best type. When the best type does not trade, the level of trade among all
remaining types must fall and the price must rise. However, lower trade in equilibrium raises
the marginal utility of participation among all remaining agents. In other words, although
the exit of a good-type raises the market price because the average quality of the remain-
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Figure 1: Issuance of Collateralized Debt Obligations and Collateralized Loan Obligations

Source: Securities Industry and Financial Markets Association.
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Figure 2: U.S. leveraged loan default rate

Note: CDO and CLO issuance plummets in times of crises, but the default rate of the underlying securities–
leveraged loans–modestly increase.
Source: S&P Global Market Intelligence.

ing pool is worse, each agent’s marginal rate of substitution between quantity and price
increases. Therefore, all remaining agents’ incentives to trade actively in the market remain
at least as strong as they previously were. The only way to generate a large cascade of exits
beyond the best types is if the initial entry mass of moldy lemons is sufficiently large, a result
reminiscent of Akerlof (1970) and Azevedo and Gottlieb (2017) under exclusive contracts.

We then turn to understand the more relevant question: Under what circumstances
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can a normal functioning market collapse due to a small mass of moldy lemons entering.
We extend the model by endowing agents with an outside option to market participation.
These outside options may represent payoffs obtainable to agents outside of the market.1

Alternatively, they can represent fixed participation costs. For example, an agent may enjoy
a higher utility by staying out of the market, because entering the market may take time,
effort, and cost. Moreover, it could capture the time and effort required to search for a
counterparty or supplier, the effort and monetary cost of negotiating and verifying contract
terms, or paying other brokerage or settlement fees.2

The second result stated in Theorem 2 states that a small mass of moldy lemons can
generate a large cascade of exits and market shut downs when agents have outside options.
The intuition comes from the fact that outside options provide agents a level of utility
against which trade in the market is compared. Hence, the marginal utility characterization
of the baseline model is replaced by a total utility representation. In particular, the exit
of the best type of agent has negative spillover effects on the remaining agents, because
the lower quantity of trade reduces overall utility and the higher market price of remaining
contracts together makes the outside option more appealing despite higher marginal rates of
substitution. In this case, the exit of a single good type can cause the next best agent to exit
the market because the relative value of their outside option increases. Therefore, further
exits can happen, and the rest of the agents may suffer even more utility loss and so on.

Theorems 1 and 2 also suggest that some of the results in Hendren (2013, 2014) do
not necessarily apply to nonexclusive contracting economies. In particular, Hendren (2014)
shows that in the exclusive contracting settings of either Akerlof (1970) or Rothschild and
Stiglitz (1976), the presence of a type whose loss probability is equal to 1–a moldy lemon–
causes the market to break down either via Akerlof pricing or failure to find a competitive
equilibrium as in Rothschild and Stiglitz (1976). Theorem 1 in our paper shows that under
non-exclusive contracting, moldy lemons are not sufficient to generate a complete market
breakdown.

We show an important comparative static result that relates the degree of asymmetric
information to exit cascades. Economies with more uncertainty regarding the underlying
types of the agents are less vulnerable to exit cascades than economies that feature more
known types. More specifically, economies that feature what we call more coarse partitions
of types—weighted averages of types—can be interpreted as having more uncertainty about
the true type of each agent in the partition. Economies with more coarse partitions are

1For example, an outside option is an agent’s reservation value in search and matching models.
2This interpretation is similar to entry fees studied by Bisin and Gottardi (1999, 2003).
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less likely to feature exit cascades for a given mass of moldy lemons. The reason is that
relative weight of each partition is larger when multiple times comprise it than the weight
of each type alone. Thus, a mass of mold lemons sufficient to generate an exit cascade in
an economy with fully disaggregated types may be insufficient to generate the same amount
of exit with a more coarse partition. For example, the cost increase due to moldy lemons
that triggers a cascade in which agent 1 exiting causes agent 2 to exit may not be sufficient
to cause both agents 1 and 2 to exit as a group when agent 2 only exits only because of
the spillover effect associated with agent 1’s exit. Therefore, economies in which there is
more precise information or certainty about each agent’s type are more likely to feature
exit cascades. This result provides a theoretical underpinning to the information production
models of Gorton and Ordoñez (2019); Dang et al. (2020); Gorton and Ordoñez (2020) in
which market failure arise endogenously due to the incentives to produce private information.

A numerical example confirms the formal results of Theorems 1 and 2 and our compara-
tive static. The example also shows that markets are more prone to shut down as the number
of types in the economy grow large and each type is more similar. In particular, if the masses
of adjacent types are combined into a single type with the same average probability of a bad
state as the original partition, then the introduction of moldy lemons is less likely to cause a
cascade of exits. Therefore, markets are more vulnerable to shutdowns when there are many
different types, even when aggregate risk or uncertainty remain the same. The reason is due
to Theorem 2: the sufficient mass of new moldy lemons needed to trigger market shutdowns
increases as the relative mass of existing agents increases. In other words, if both the best
type and the second best type do not know whether they are the best type or not, the initial
trigger of cascade by the best type is less likely to occur.

The final result shows how aggregate shocks can impact the proclivity for moldy lemons
to induce market shut downs. For example, consider a uniform increase in the cost of serving
agents (i.e. probability of default) for all types. If outside options remain unchanged, then
markets are more prone to shutdowns due to moldy lemons. The reason is that higher
cost among all types raises the upper-tail conditional unit cost and leads to higher contract
prices in the market. High prices for trade in the market then raise the relative value of the
outside option, which generates a cascade of exits. By contrast, if the outside option is not
fixed and also varies with the aggregate shock, then moldy lemons are less likely to cause
market shutdowns. The reason is that the fall in the utility-level associated with the shock
to the outside option can dominate the fall in utility of the consumption bundle obtained via
market trades. This happens when the utility difference between the no-trade and market
consumption bundle rises as the marginal rate of substitution increases, which makes it less
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likely that an agent exits.
Overall, our results suggest a parsimonious yet realistic way of generating sudden market

shutdowns without imposing additional structure or institutional details on the model. Thus,
our model is widely applicable to many different markets and contexts, and provides simple
insights on the properties of market shutdowns.

The paper proceeds as follows: Section presents the non-exclusive contracting framework
of Attar et al. (2021), and introduces the critical concept of entry-proofness. Section 3
introduces moldy lemons and states Theorem 1. Section 4 introduces outside options and
states Theorem 2. Section 5 provides a numerical example and simulations to show the
impact of moldy lemons and outside options in the non-exclusive contracting environment.

Relation to the Literature. Our paper relates to the literature studying non-exclusive
contracting in economies with adverse selection pioneered by (e.g. Pauly, 1974; Jaynes, 1978;
Hellwig, 1988; Glosten, 1994). Allocations in these non-exclusive contracting environments
are recursive; agents trade in layers consisting of multiple contracts.3 More recent results
extend to generalized settings with divisible goods, general preferences, and multiple types
(e.g Attar et al., 2011, 2014, 2021; Dubey and Geanakoplos, 2019). Equilibrium always exists
and is unique, which may include the no-trade equilibrium. Among these, our paper builds
directly upon Attar et al. (2021) and Dubey and Geanakoplos (2019) but with a different
focus; we study the conditions under which small changes in the distribution of agents causes
markets to unravel.

Our focus on the unraveling of competitive equilibrium due to adverse selection dates
back to Akerlof (1970) and Rothschild and Stiglitz (1976), and is recently generalized by
Hendren (2013, 2014) and Azevedo and Gottlieb (2017). Unlike these papers, our model
features non-exclusive contracting. Like Akerlof (1970), markets unravel when the cost to
serve the market exceeds the marginal willingness of each agent to trade. With non-exclusive
contracting, active markets are robust to small changes in underlying fundamentals and this
sort of unraveling does not generally occur. Hendren (2014) shows that equilibrium in
insurance economies with exclusive contracting must unravel either via Akerlof-pricing or
failure to satisfy competitive-Nash equilibrium a la Rothschild-Stigliz when the distribution
of types either contains a continuous interval, or the type whose accident probability equals
1. We show that this result is partially sensitive to competitive contracting as in Azevedo
and Gottlieb (2017) and exclusive contracting environment. In general, entry of a type
with accident probability equal to 1 does not cause markets to unravel with non-exclusive

3Bisin and Gottardi (1999, 2003) show that some form of non-linear pricing is needed to make compatible
price taking behavior with asymmetric information.
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contracting.
Recent applications of non-exclusive contracting under adverse selection have been ap-

plied to security design (e.g. Asriyan and Vanasco, 2021), and asset markets with heteroge-
neously informed buyers (e.g. Kurlat, 2016). One common feature of non-exclusivity is that
neither security nor asset markets more broadly are fully separating; there is always some
form of cross-subsidization among markets. Our model inherits semi-pooling in equilibrium,
but our focus is on how small changes in underlying fundamentals cause markets to unravel.
Auster et al. (2021) study a form of non-exclusivity in search with adverse selection. Work-
ers can apply to as many jobs as possible, but ultimately sell their labor to a single firm.
Fully separating equilibria are precluded because high types always send some applications
to low-wage-offering firms to hedge against remaining unemployed.

Philippon and Skreta (2012) show that the failure of the price mechanism and market
unraveling justify public interventions during liquidity or credit freezes. A key insight in
their framework is that interventions impact the set of agents that choose to participate
in government programs, which in turn impacts trade in the market. In a nonexclusive
contracting framework, policies that increase entry cost prevent market unraveling only if
the policy can discriminate among types; otherwise, a uniform cost increase makes markets
more prone to unraveling because the best types exit first, which raises the cost of trade for
all remaining types.

2 Model

The model builds on the recent contributions of Attar et al. (2011, 2014, 2021) and Dubey
and Geanakoplos (2002, 2019). We briefly lay out the specifics of the environment and state
the relevant theorems in Attar et al. (2021) that aid in our analysis of the conditions under
which markets shut down as worse types enter the market—i.e., moldy lemons.4

The demand side of the market consists of privately informed agents with a finite number
of types–indexed by i ∈ I ≡ {1, .., n} with a strictly positive measure of each type, mi.
Utility for each type is given by ui (q, t) and assumed to be continuous, quasi-concave in
the arguments and strictly decreasing in t. Generically, q represents the quantity of a good
that is consumed and t is the transfer required to obtain the good. An important feature
of asymmetric information models is that privately informed types are ordered by a single-

4We refer the reader to their paper for detailed proofs.
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crossing property (Milgrom and Shannon, 1994), ∀i < j, q < q′, t, t′:

ui(q, t) ≤ ui(q
′, t′)⇒ uj(q, t) < uj(q

′, t′).

Single-crossing implies that a higher type is at least as willing as a lower type to trade
an additional unit of the good for an additional transfer.5 More generally, we can define a
marginal rate of substitution without assuming differentiable utility functions. Let τi(q, t) be
the supremum set of prices, p, such that utility increase by an (optimally chosen) additional
quantity q′ exceeds the associated fall in utility that corresponds to the higher transfer pq′,

τi(q, t) ≡ sup

{
p : ui(q, t) < max

q′≥0
ui(q + q′, t+ pq′)

}
.

Hence, τi(q, t) is the slope of the indifference curve at an additional quantity, q′ > q, and can
be considered as a (pseudo-)marginal rate of substitution for agent i at consumption bundle
(q, t). An important assumption for our analysis of “moldy lemons” to come is that, absent
a transfer, a strictly positive endowment of q lowers agents’ marginal rate of substitution:

Assumption 1 τi(q, 0) ≤ τi(0, 0), ∀i, q > 0.6

By way of concrete examples, the model translates into the insurance economy of Roth-
schild and Stiglitz (1976), where i indicates an agent’s risk of loss, q is the amount of insurance
purchased, and t is the insurance premium. In a credit economy, i indexes borrower default
probability, q is the loan quantity demanded, and t is the gross loan promise made to the
lender. We will later use this framework for our numerical analysis.

The supply of contracts in the economy is a linear technology provided at a unit cost,
ci > 0, for each type i. Assume ci is increasing in i. Adverse selection occurs if ci is increasing
in type. That is, higher types wish to trade more than low types, but the cost of servicing
these types is higher. For each type, define by c̄i the expected unit cost of serving all types
j ≥ i (the upper-tail conditional expected cost) given that higher types will be willing to

5Here we are using strict single-crossing condition rather than weak single-crossing, which allows for
equality. This is because we want to focus on the strict notion of market breakdown in light of Corollary 1
in Attar et al. (2021).

6The same assumption is also used in Attar et al. (2021) in their analysis.
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trade any contract offered to type i. Formally,

c̄i ≡ E[cj|j ≥ i] =

∑
j≥i
mjcj∑

j≥i
mj

(1)

Hence, for any j < i, cj < c̄i. A contract is defined by the pair (q, t) for q ≥ 0. Suppliers of
contracts are competitive risk-neutral, expected profit maximizers.

2.1 The Concept of Entry-proof, Inactive Markets

In this framework, Attar et al. (2021), first state the conditions under which any inactive
market, (q, t), is resilient to competitive entry, hence “entry-proof.” The key is to first
consider the no-trade contract, (0, 0), as any agent’s outside option. Then, a market is entry
proof iff, for any menu of contracts an entrant offers, the buyer’s best response earns the
entrant zero expected profit. That is, the entry-proof condition is given by

Condition EP: τi(0, 0) ≤ c̄i ∀i.

Condition EP simply says that there will be no trade in a market when the cost of
offering a contract for agent i, given that all other types higher than i must also be served,
exceeds type i’s marginal utility of not trading. Theorem 1 in Attar et al. (2021) states that
Condition EP is necessary and sufficient for markets to be inactive.

We sketch the proof here since the arguments are useful in our extensions. The single-
crossing condition implies that an entrant offering an arbitrary menu of contracts will end
up trading (qi, ti) with type i and qj ≥ qi with all agents j ≥ i. The expected profit to the
entrant of this menu is

∑
imi [ti − ciqi]. Using summation by parts, the expected profit can

be written in terms of layers (qi−qi−1) and (ti−ti−1):
∑

i

(∑
j≥imj

)
[ti − ti−1 − ci(qi − qi−1)],

where (q0, t0) ≡ (0, 0). Moreover, it must be the case that agent i is willing to trade the
additional layer on top of the original set of contracts that yielded (qi−1, ti−1), if the entrant’s
offer is accepted. That is, the marginal rate of substitution of agent i at the original allocation
times the new layer must exceed its cost: τi(qi−1, ti−1)(qi− qi−1) > ti− ti−1. In addition, the
entrant cannot make a loss on each type given the expected cost, ci, to serve all types j > i

that will also accept the contract. Therefore, ti − ti−1 − ci(qi − qi−1) ≥ 0. Single-crossing
implies that qi ≥ qi−1, so combining the two previous inequalities, entry will be non-profitable
when τi(qi−1, ti−1) ≤ ci. Then, using the fact that type i−1 prefers their optimal trade to no
trade, we have τi−1(qi−1, ti−1) < τi−1(0, 0), and so does type i. Invoking the assumption that,
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absent transfers, agents’ marginal rate of substitution is weakly decreasing in quantities,
τi(qi, 0) ≤ τi(0, 0), where q

i
∈ [0, qi−1] is the quantity that makes agent i indifferent between

(qi−1, ti−1) and (q
i
, 0). Finally, by quasi-concavity of preferences, τi(qi−1, ti−1) ≤ τi(qi, 0), we

have the desired result τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci.
Under a weak single-crossing condition, a market breakdown in Attar et al. (2021) is

characterized by the situation for which a non-null set of contracts yields strictly negative
expected profits, so there exists a best response for the buyer such that entry on an inactive
market is unprofitable. This notion of market breakdown can be more strict as in many
papers in the literature such that a market breakdown is a situation in which any menu
of contracts that strictly attracts at least some agents yields a strictly negative expected
profit, even if the buyer’s best response is most favorable to the entrant. A Corollary to
Theorem 1 is that this notion of market breakdown occurs if and only if Condition EP is
satisfied when the preferences are strictly convex and strict single-crossing holds, and this is
the notion of the market shutdown that we will use in our analysis.

2.2 The Concept of Entry-proof, Active Markets

The main question we are after is, Under what conditions does the entry of worse type buyers
or a worsening of the buyer type distribution cause active markets to break down? In order
to answer this question, we first ask when active markets are entry-proof in the sense that
entry of a supplier is unprofitable. Armed with the answer to the latter question based on
Attar et al. (2021), we can answer the former.

Trade in the market is non-exclusive in the sense that no agent can be stricken from
trading with multiple firms or suppliers. Therefore, we must define the market tariff, or
the minimum aggregate transfer that is made across active markets to obtain aggregate
consumption, q. Define the market tariff by T (q). We will assume that T (q) is convex and
the domain is a compact interval with lower bound equal to 0. Then, all agents choose qi to
maximize ui(qi, T (qi)). An allocation, (qi, T (qi))i∈I is implemented by the market tariff, T ,
if qi = arg maxq ui(q, T (q)). This allocation is budget feasible if suppliers make non-negative
expected profits at the market tariff

∑
i

mi [T (qi)− ciqi] ≥ 0. (2)

The assumption that trade is non-exclusive means that for an active market to be entry
proof, no agent can combine any menu of potential new contracts in the market with trade
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along the existing market tariff, T , where the entrant makes positive expected profits. Exclu-
sive trading implies that the menu of contracts offered in a specific market yield at most zero
expected profits. Under non-exclusivity, the entrant must deal with the fact that agents can
combine the new offer with any existing offers in the market. Therefore, the entrant faces
types with indirect utility functions of trading a proposed new contract (q′, t′) in addition to
the existing allocation (qi, T (q)):

uTi (q′, t′) ≡ max {ui(q + q′, T (q) + t′ : q)} (3)

An agent’s individual rationality constraint from an entrant’s perspective is determined
by the indirect utility of not trading the proposed contract on top of the existing market tariff,
uTi (0, 0). We can define the marginal rate of substitution along the indirect utility functions
as above by τTi (q′, t′).7 As shown by Attar et al. (2021), the indirect utility functions will
also satisfy single-crossing because the primitives satisfying the same condition. In order
to apply Theorem 1 of Attar et al. (2021) to the indirect marginal rates of substitution,
one needs to assume that for all types, i, and all transfers, t, the indirect marginal rates of
substitution are nonincreasing in q, which is slightly stronger than Assumption 1.

Assumption 2 For all i and t, τi(q, t) is nonincreasing in q.

Intuitively, this assumption implies that a higher quantity always reduces each agent’s will-
ingness to pay for any additional quantity. For the given market tariff, T , and the allocation,
(qi, T (q)), we can define τTi (0, 0) as the supremum of the set of prices p for the indirect utility
function, uTi (0, 0)—that is,

ui(qi, T (qi)) = uTi (0, 0) < max
{
uTi (q′, pq′) : q′

}
= max {ui(q + q′, T (q) + pq′ : q, q′)} .

With this, we can invoke the necessity and sufficiency result of Condition EP to state
that a market tariff is entry-proof iff:

∀ i, τTi (0, 0) ≤ ci. (4)

This condition states that an active market is entry-proof if and only if the cost required
to enter the market exceeds the willingness of each agent to trade the contract on top of

7This is possible because: 1) the maximizers in (3) are continuous from Berge’s Maximization Theorem;
2) the market tariff, T , is convex; 3) the utility functions, ui(q, t), are weakly quasi-concave in (q, t) and
strictly decreasing in t; 4) and, hence, the indirect utility functions uT

i are weakly quasi-concave in (q, t) and
strictly decreasing in t.
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the allocation they may already obtain. For each agent, the utility they receive from their
market trades must be at least as large as trading the proposed new contract given the cost
required to serve the market:

for each i, ui(qi, T (qi)) ≥ max {ui(q + q′, T (q) + ciq
′ : q, q′)} . (5)

By convention of letting q0 ≡ 0, setting q′ = qi − q, and applying condition (5) for each
layer, q ∈ [qi−1, qi], we see that the implied market tariff necessary to induce entry must be
at least as large as the pre-entry tariff:

for each i and q ∈ [qi−1, qi], T (qi) ≤ T (q) + ci(qi − q). (6)

For a given q = qi−1, we have T (qi) ≤ T (qi−1) + ci(qi− qi−1). Using the budget-feasibility
condition from (2), and re-writing it in terms of layers, we have

∑
i

(∑
j≥i

mj

)
[T (qi)− T (qi−1)− ci(qi − qi−1)] ≥ 0. (7)

Therefore, it must be the case that the inequalities in T (qi) ≤ T (qi−1) + ci(qi− qi−1) hold as
equalities:

T (qi) = T (qi−1) + ci(qi − qi−1). (8)

It must also be true that the allocation, ui(qi, T (qi)), implied by the new layer, qi − qi−1

maximizes the utility of all the agents that choose it, given that the new market tariff must
rise to serve all agents. Hence, for each i,

ui(qi, T (qi)) = max {ui(qi−1 + q′, T (qi−1) + ciq
′ : q′)} . (9)

Finally, because the tariff is convex and satisfies (6) and (9), it must be affine with slope ci
over the interval [qi−1, qi].

With this, Attar et al. (2021) state Theorem 2—An allocation (qi, T (qi))i∈I is budget-
feasible and implemented by an entry-proof convex market tariff, T , with domain [0, qn] if
and only if

1. (q0, T (q0)) ≡ (0, 0),
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2. qi − qi−1 ∈ arg max {ui(qi−1 + q′, T (qi−1) + ciq
′ : q′)} for each i,

3. qi−1 < qi ⇒ T is affine with slope ci over [qi, qi−1] for each i.

To sum up, an affine convex market tariff is entry proof as long as the upper-tail con-
ditional cost of entry exceeds the marginal willingness of all agents to trade the additional
layer on top of their pre-entry allocation. This market tariff consists of layers of trade with
unit prices ci that trace out a polygon with an upward kink at each q∗i+1 ≥ q∗i for each i ∈ I.

As discussed in Attar et al. (2021), uniqueness of an entry-proof convex market tariff also
follows if the solution to each agent’s maximization problem is unique. This is guaranteed
if the agents’ preferences are strictly convex, which we assume to be the case. The problem
of multiplicity arises only if the marginal rate of substitution of some type i equals c̄i over a
whole interval of quantities, which is not a generic phenomenon (Attar et al., 2021).

3 Moldy Lemons

We now ask what happens to trades in markets and the market tariff as increasingly worse
types of agents enter the market. What we have in mind are situations for which firms
anticipate a very high cost of serving some types of agents who may generate losses with
near certainty. For example, the COVID-19 pandemic led to a surge in defaults.

To fix ideas, assume that a new agent of type n+ 1 (a “moldy lemon”) enters the market
with mass mn+1. The cost to serve this agent is cn+1 > cn. Given that the unit cost of
serving agent n + 1 is strictly greater than the unit cost of serving any other agent, the
upper-tail conditional expected cost of serving all agents must also rise. Specifically, the new
upper-tail conditional expected cost for any agent i is given by

c̃i ≡
∑

j≥imjcj +mn+1cn+1∑
j≥imj +mn+1

, (10)

and c̃i > ci. Then, it is clear that any market that was inactive ex ante remains inactive ex
post agent n + 1 entering, because τi(0, 0) ≤ ci < c̃i. This is quite natural in the sense that
making the average quality of the pool worse will never lead to the opening of new markets.

What about active markets? Does the arrival of agent n + 1 lead any active markets
to shut down? Recall that an active-market is subject to entry if the marginal willingness
to trade for all agents is greater than the upper-tail conditional cost to serve them. Then,
if a market was active and τ T̃i (0, 0) > c̃i for some i, the market will remain active with a
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new equilibrium level of aggregate trade given by quantities (q̃i)i∈N∪{n+1}. Intuitively, active
markets must be characterized by terms of trade that do not make agents worse off compared
with not trading. If there is at least one type of agent that is lower than type-n+ 1 willing
to trade in a market given that the cost will rise, then the market will not close despite
the presence of type n + 1. More interestingly, type n + 1 causes the aggregate quantity of
trade to decrease for all types q̃i < qi, ∀i, and the slope of the market tariff to rise along all
segments of the polygon that trace out the new market tariff, T̃ (q̃). Finally, active markets
cease to remain active only when τ T̃i (0, 0) ≤ c̃i, ∀i. From (10), moldy lemons lead to market
breakdowns only when their mass, mn+1 is sufficiently large relative to the rest of the agents.

Formally, we have the following:

Theorem 1 (Moldy Lemons)

Suppose n+ 1 type (moldy lemons) with mass mn+1 and cn+1 > cn enters the market. Then,

1. if a market was inactive (market shutdown), then the market remains inactive under

the new equilibrium.

2. if a market was active and τ T̃i (0, 0) > ˜̄ci for some i, then the market remains active

under the new equilibrium with quantities (q̃i)i∈N∪{n+1} and the following statements

are true:

(i) ∀i, q̃i ≤ qi

(ii) ∀i, if q̃i−1 < q̃i, the new slope for affine tariff T̃ is steeper as ˜̄ci > c̄i over [q̃i−1, q̃i].

3. if a market was active and τi(0, 0) ≤ ˜̄ci for each i, then the market shuts down.

Proof. Statements 1 and 3 are almost trivial as explained in the discussion before the
theorem. We show that statement 2 holds by mathematical induction.

First, consider type 1. Suppose that agent 1 was trading a positive quantity q1 > 0,
without loss of generality.

Case 1. Suppose that type 1 agent exits the market after the entry of moldy lemons.
Then, the quantity demanded trivially decreases as q̃1 = 0 < q1, and the market tariff
increases as T̃ (q) ≥ ˜̄c2q > c̄2q > c̄1q for any q in [0, q1] and [q1, q2]. Since (q2, T (q2)) was the
type 2 agent’s best response, τ2(q2, T (q2)) ≤ c2 < ˜̄c2. Therefore, the new optimal quantity
for type 2, q̃2 should be less than q2 because τ2(q, t) is nonincreasing in q for all t.
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Case 2. Suppose that type 1 agent still trades a positive quantity in the market. The
market tariff trivially increases to T̃ (q) = ˜̄c1q for any q in [0, q̃1] as in the previous case. Since
(q1, T (q1)) was the type 1 agent’s best response, τ1(q1, T (q1)) ≤ c1 < ˜̄c1. Therefore, the new
optimal quantity for type 1, q̃1 should be less than q1 since τ1(q, t) is nonincreasing in q for
all t. Given that, type 2 agent will face a higher total tariff for the same quantity as

T̃ (q2) ≥ ˜̄c1q̃1 + ˜̄c2(q2 − q̃1) > T (q2) = c̄1q1 + c̄2(q2 − q1),

because ˜̄cj > c̄j for j = 1, 2 and q̃1 ≤ q1. Therefore, the new optimal quantity for type 2
becomes q̃2 that is less than q2 as in the previous case.

Now consider an arbitrary type i > 2. Suppose that the inductive hypothesis holds up to
i− 1, so q̃j ≤ qj and the slope of the new market tariff T̃ became steeper as c̃j over [q̃j−1, q̃j]

for any j ≤ i− 1. Then,

T̃ (qi) ≥
∑
j<i

˜̄cj (q̃j − q̃j−1) + ˜̄ci(qi − q̃i−1)

>
∑
j<i

c̄j (qj − qj−1) + c̄i(qi − qi−1) = T (qi),

with the convention q̃0 ≡ 0. Again, since (qi, T (qi)) was the type i agent’s best response,
τi(qi, T (qi)) ≤ c̄i < ˜̄ci and the total tariff for the same quantity actually increases further.
Therefore, the new optimal quantity for type i, q̃i should be less than qi.

Thus, by mathematical induction, q̃i ≤ qi holds for any i and the new slope for the affine
market tariff T̃ becomes steeper in each and every interval of the new optimal quantity layers.

The observation that markets shut down with non-exclusive contracting only if there a is
sufficient mass of bad types is not terribly surprising. Azevedo and Gottlieb (2017) show a
similar result under an exclusive contracting environment. However, we are extending their
results to a formal result under the non-exclusive contracting environment.

The next set of questions we address are which layers are most susceptible to exit of
agents and under what conditions do exits become pervasive with multiple inactive layers?
The single-crossing condition implies that higher types have higher willingness to trade at
higher prices. Hence, as worse types enter the market and increase the market tariff along
each layer, the lowest types exit the market first. This is easiest to see for the case where the
first type i = 1 is just indifferent to trading given the upper-tail conditional cost of serving
all greater types j > 1 where τ T̃i (0, 0) = ci < c̃i, while other agents j > 1 could still have
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τ T̃j (0, 0) > ˜̄cj. In this case, type 1 is no longer willing to trade at the new market tariff, T̃ (q̃),
given the additional cost required to make the tariff budget-feasible while all types j > 1

remain active in the market. Hence, only the first layer of trade, q1, becomes inactive.

Proposition 1 For a fixed cn+1, only the first agents start exiting the market in the equi-

librium as mn+1 increases.

Proof.
First, the marginal rate of substitution, τi(q, t), is nonincreasing in q. Second, utility,

ui(q, t), is continuous and decreasing in t. Combining this with strict single-crossing, we have
ui−1(0, 0) ≤ ui−1(q̃i−1, T̃ (q̃i−1)) ⇒ ui(0, 0) < ui(q̃i−1, T̃ (q̃i−1)). By continuity, there exists
mi

n+1 such that T̃ makes ui−1(0, 0) > maxq ui−1(q, T̃ (q)) and ui(0, 0) < maxq ui(q, T̃ (q)). If
i− 1 exits, then any type j < i− 1 also exits.

We conclude that the arrival of moldy lemons (worse than worst types) has a negative,
but marginal effect on active markets. The reason is that when the first type drops out and
the first layer of trade, (q1, T̃ (q1)), is removed from the market, the marginal value of each
remaining layer for each agent goes up relative to the alternative of no trade at (0, 0). In
other words, τi(0, T̃ (0)) ≥ τi(q1, T̃ (q1)), and the spillovers from the exit of an agent would
only increase the incentives to enter the market rather than decreasing it. This force keeps
the remaining markets active. On the one hand, the EP condition is very robust in the sense
that a complete unraveling with non-exclusive contracting requires a tautological extremely
large mass of bad types. On the other hand, there is a gap between the model and the real
world phenomena that exhibit a sudden collapse of the markets after hitting the tipping
point of the severity of adverse selection (Calomiris and Gorton, 1991; Covitz et al., 2013;
Mishkin, 1999; Ivashina and Scharfstein, 2010; Foley-Fisher et al., 2020).

4 Outside Options and Market Shutdown

We now show that a natural contracting friction, outside options, can generate additional
market shut downs when a small mass of moldy lemons enters the market. An outside
option may be thought of as an alternative to entering the market, which requires either
a contractual barrier or a cost of entry. For example, signing a contract or searching for
the right supplier may require significant time and effort. Alternatively, it may represent an
external market into which agents can enter and secure a certain level of utility, or reservation
utility. What is important is that agents have some utility outside of trade in the market
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that is higher than the no-trade contract ui(0, 0) for each i. Denote the utility from the
outside options (and not entering the market) as γi for type i.

Type i now compares the set of market contracts to their outside option, γi > ui(0, 0),
rather than the null action, ui(0, 0). Thus, the individual rationality condition for i becomes

Vi(T ) = max

{
γi,max

q≥0
ui(q, T (q))

}
(11)

for a given market tariff T . We assume the following condition:

ui(q, t) ≥ γi ⇒ uj(q, t) > γj ∀i < j, ∀q > 0, ∀t. (12)

This condition implies that if agent i prefers a contract (q, t) with a positive quantity to the
outside option, then agent j also prefers the contract to the outside option, which is in line
with the idea of single-crossing property. We discuss the role and micro-foundation of this
assumption in subsection 4.2.

Also, agents who enter the market optimize their utility for the given market tariff just
as in the baseline model without outside options. Therefore, the arguments in Theorem 2
of Attar et al. (2021) for budget feasible, entry-proof market tariffs also hold with outside
options. In particular, the entry-proof convex market tariff is T with the slope of c̄i for each
layer [qi−1, qi] for each i with the convention of q0 = 0. Therefore, the same argument used
in Proposition 1 holds for the new setup.

Proposition 2 In any active market equilibrium, there is a cutoff θ ∈ N ∪ {0} such that

any agents with type less than or equal to θ exit the market and any agents with type greater

than θ remain in the market.

In other words, agent 1 will be the first to exit the market in any active market equilib-
rium. Further exits will be in the sequential order of agent type as 2, 3, and so on. This is
because the new equilibrium tariff after an agent’s exit makes the optimization problem of
the next lowest agent isomorphic to the optimization problem of the exiting agent.

4.1 Cascade of Exits

In this subsection, we present our main result that a market shutdown results from a cascade
of exits. The main mechanism for the market shutdown is based on the spillover effects of
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exits across agents when outside options are introduced. We show that the form of spillovers
needed to generate a market shutdown do not exist in the model without outside options.

First, consider the model without outside options (the model of Attar et al. (2021)). The
exit of low (cost) type agents has two effects: 1) it raises the average tariff for all remaining
types, and 2) it lowers the total quantity purchased in the market. For example, suppose
that agent 1 exits the market. Then, agent 2 has to pay a higher tariff to consume the same
quantity as before, c̄2q2 > c̄2(q2 − q1) + c̄1q1. However, agent 2’s indirect marginal rate of
substitution along the new market tariff becomes τTi (q, t) = τi(q, t) because agent 2 cannot
trade the contract (q1, T (q1)) that agent 1 was trading. Then, by Assumption 2, agent 2 is
even more likely to enter/remain in the market ceteris paribus. Although the exit of agent
1 will decrease the total utility of agent 2, it does not increase agent 2’s likelihood of exit.
Agents enter/remain in the market based on their marginal rate of substitution and not on
their total utility. Hence, one type’s exit weakly increases the incentive for all other types
to remain active in the market despite higher prices and lower quantities.

Outside options overturn the incentive to remain active in the market, and exits trigger
additional exits. The reason is that agents decide to enter/remain in the market based
on the total utility they achieve through market trades in addition to their marginal rate of
substitution. Put simply, agents opt out of the market when the maximum utility they obtain
through market trades falls below the utility they obtain through their outside option. Hence,
when good types exit, which raises market prices and lowers equilibrium trade quantities,
it can trigger additional exits among remaining higher types according to the same logic as
the original exit. Therefore, the existence of outside options can create a cascade of exits
and generate a larger decline of quantities traded compared with the baseline model without
outside options.

Suppose the moldy lemons, type n+ 1 with cn+1 > cn, enter the market. Without loss of
generality, we assume that all agents enter the market in the equilibrium before the moldy
lemons joined. As in the previous section, the new upper-tail conditional expected cost is
given by (10). Denote equilibrium quantities by q̃i for each i that enters the market where

q̃i − q̃i−1 ∈ arg max
q

{
ui

(
q̃i−1 + q, T̃ (q̃i−1) + ˜̄ciq

)
: q
}
,

and T̃ (q) is the equilibrium affine tariff with slope ˜̄ci over [q̃i−1, q̃i]. In addition, set q̃0 = q̃j = 0

for any j who exits the market. Suppose further, without loss of generality, that at least
agent 1 exits the market after the entry of moldy lemons, which occurs when Condition IT
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holds:

max
q≥0

u1(q, ˜̄c1q) ≤ γ1. (13)

Note that we do not need to check Condition EP, τ1(0, 0) ≤ ˜̄c1, because each agent prefers
the outside option over the no-trade contract as γ > ui(0, 0) for any i. We can extend this
intuitive condition to a condition that any agent with type j that is below i exits the market.
We denote such a condition, Condition ML(i)–Moldy Lemons, as:

max
q≥0

uj (q, ˜̄cjq) ≤ γj, ∀j < i, (14)

where agents up to type i exit the market. Condition ML(i) is less strict than Condition EP
because there is an additional case that prevents entry. Therefore, agents who did not exit
the market under Condition EP may exit under Condition ML(i). We formally show that
Condition ML(i) is necessary and sufficient to generate a cascade of exits up to agent i.

Theorem 2 (Cascade of Exits) Any agent j such that j < i exits the market in equilib-

rium if and only if Condition ML(i) is satisfied.

Proof. The proof of sufficiency is straightforward as Condition ML(i) prevents entry of
agents with type j < i for the entry-proof market tariffs.

Now consider the proof of necessity. By Proposition 2, we check the lowest agent’s entry
decision for each candidate equilibrium. Consider an equilibrium in which agent 1 also enters
the market. Then, the corresponding market tariff will be

T 0(q) ≡
∑
i∈N

˜̄ci(q − qi−1)1 {q ∈ [qi−1, qi]} ,

which is based on the same quantities {qi}i∈N as in the equilibrium before the moldy lemons
entered. Under Condition IT, type 1 agent exits the market and the updated market tariff
is

T 1(q) ≡
∑
i∈N

˜̄ci(q − q1i−1)1
{
q ∈ [q1i−1, q

1
i ]
}
,

where q1i − q1i−1 ∈ arg max
{
ui(q

1
i−1 + q, T 1(q1i−1) + ˜̄ciq : q

}
with q11 = 0. The exit of agent 1

lowers the utility of each agent because the first layer over the interval [0, q1] with the lowest
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tariff, ˜̄c1, disappears. Also, the same arguments in the proof of Theorem 1 hold as all the
remaining agents are participating in the market with the higher average cost of service due
to moldy lemons, so q1i ≤ qi for any i ∈ N\{1}. Thus, agents i > 2 trading the next available
lowest cost interval, [q1, q2], suffer further utility declines even without the exit of agent 2.
If the new market tariff T 1 induces agent 2 to exit, then it must be the case that

max
q≥0

u2
(
q, T 1(q)

)
= max

q≥0
u2 (q, ˜̄c2q) ≤ γ2,

and exiting the market gives higher utility to agent 2.
Now extend the argument recursively to finish the proof by mathematical induction. For

an arbitrary k < i, suppose that under any candidate equilibrium, agents up to k exit the
market. Then, the new market tariff becomes

T k(q) ≡
∑
i∈N

˜̄ci(q − qki−1)1
{
q ∈ [qki−1, q

k
i ]
}
,

where qki − qki−1 ∈ arg max
{
ui(q

k
i−1 + q, T k(qki−1) + ˜̄ciq : q

}
with q11 = q22 = · · · = qkk = 0. If

agent k + 1 exits the market under T k, then

max
q≥0

uk+1

(
q, T k(q)

)
= max

q≥0
uk+1 (q, ˜̄ck+1q) ≤ γk+1

should hold, because agent k+1 will still enter the market otherwise. If the above inequality
does not hold, then the equilibrium of active markets is determined starting from qk+1 > 0

and the initial assumption is violated. Therefore, Condition ML(i) is necessary.

Outside options have two roles. First, outside options generate discontinuous jumps in
market quantities, qi, after the entry of moldy lemons. A small mass of moldy lemons mn+1

will trigger type i agent to exit with strictly positive quantity qi when i’s utility is close to the
utility from the outside option as ui(qi, T (qi)) ≈ γi. In contrast, quantities always change in
a smooth fashion when outside options are absent. Second, outside options generate negative
spillovers resulting from exits that trigger additional exits, causing a discontinuous cascade
of exits.8 Unlike the marginal rate of substitution, which only increases as other agents exit,
total utility decreases when other agents exit. Therefore, the utility level from market trades

8This mechanism is similar to the worsening adverse selection after a price increase in Stiglitz and Weiss
(1981).
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can fall below the utility of outside options, γi.
A natural question to ask is the following: How sensitive are the exit-cascades to the

assumptions about the partition of types considered? Are exit cascades more or less likely
when there are large masses of fewer types of agents or smaller masses of more types of agents?
Let {I,m, u, c, γ} represent an economy where m = {mi}i∈I , u = {ui}i∈I , c = {ci}i∈I ,
and γ = {γi}i∈I . Consider another economy, {Î , m̂, û, ĉ, γ̂}, that is a coarser partition of
{I,m, u, c, γ} if the following holds:

1. Î ⊂ I.

2. If i ∈ Î and i+ 1 ∈ Î, then m̂i = mi, ûi = ui, and ĉi = ci.

3. If i ∈ Î and i + 1, . . . , i + k /∈ Î, while i + k + 1 ∈ Î, where k ≥ 1, then agent i ∈ Î

includes agents i, i + 1, . . . , i + k and m̂i =
∑k

l=0mi+l, ûi(q, t) =

∑k
l=0mi+lui+l(q, t)∑k

l=0mi+l

,

ĉi =

∑k
l=0mi+lci+l∑k

l=0mi+l

, and γ̂i =

∑k
l=0mi+lγi+l∑k

l=0mi+l

.

The above definition implies that a coarser partition of an economy groups adjacent types of
agents into one type of agent. The mass of the new type of agent is equal to the sum of all
masses for each type in the group, and the servicing cost and outside option values are the
weighted average cost and outside option values, respectively. The utility of this new agent
is the weighted average utility across different types. For example, for I = {1, 2, 3, 4, 5} and
Î = {1, 2, 4}, {Î , m̂, û, ĉ, γ̂} is a coarser partition of {I,m, u, c, γ}, if

m̂ = {m1,m2 +m3,m4 +m5}

û =

{
u1,

m2u2 +m3u3
m2 +m3

,
m4u4 +m5u5
m4 +m5

}
ĉ =

{
c1,

m2c2 +m3c3
m2 +m3

,
m4c4 +m5c5
m4 +m5

}
γ̂ =

{
γ1,

m2γ2 +m3γ3
m2 +m3

,
m4γ4 +m5γ5
m4 +m5

}
.

Note that the upper-tail conditional expected cost remains the same.

Proposition 3 Let {Î , m̂, û, ĉ, γ̂} be a coarser partition of {I,m, u, c, γ} with i ∈ Î and

i + 1 /∈ Î. Then, there exists a moldy lemon mass, mn+1, such that i does not exit in

{Î , m̂, û, ĉ, γ̂}, while i exits in {I,m, u, c, γ}.
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Proof. First, we show that if the entry of a mass of moldy lemons mn+1 causes the new
type i ∈ Î to exit in the coarser partition {Î , m̂, û, ĉ, γ̂}, then agent i exits in the original
economy {I,m, u, c, γ}. Suppose that i ∈ Î, i + 1, . . . , i + k /∈ Î, and i + k + 1 ∈ Î, i exits
the market in the economy {Î , m̂, û, ĉ, γ̂}. Thus,

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≤ γ̂ =

miγi + · · ·+mi+kγi+k

mi + · · ·+mi+k

holds. Suppose the contrary that i does not exit the market in the economy {I,m, u, c, γ}.
Then,

max
q≥0

ui(q, ˜̄ciq) = ui(qi, ˜̄ciqi) > γi.

Thus, for each l, ui+l(qi, ˜̄ciqi) > γi+l holds by (12), where 1 ≤ l ≤ k. However, this implies
the weighted average of utilities would exceed the weighted average of outside options. In
other words,

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≥ miui(qi, ˜̄ciqi) + · · ·+mi+kui+k(qi, ˜̄ciqi)

mi + · · ·+mi+k

> γ̂,

which is a contradiction.
Now we show the converse that agent i, who exits the market in the economy {I,m, u, c, γ}

due to the entry of moldy lemons with mass mn+1, may not exit in the coarser partition
{Î , m̂, û, ĉ, γ̂} with the same mass of moldy lemons entering the market. Suppose that i ∈ Î,
i+ 1, i+ 2, . . . , i+ k /∈ Î, and i+ k + 1 ∈ Î. Agent i exits the market, if

max
q≥0

ui(q, ˜̄ciq) ≤ γi. (15)

By continuity of the utility function, maximand (by Berge’s maximum theorem), and upper-
tail conditional expected cost, the left-hand side of (15) is continuously decreasing in the
moldy lemon mass mn+1. Then, there exists m such that when mn+1 = m,

max
q≥0

ui(q, ˜̄ciq) = ui(qi, ˜̄ciqi) = γi.

For each l, ui+l(qi, ˜̄ciqi) > γi+l holds by (12), where l ≥ 1. Again, the utility of i ∈ Î, the
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weighted average of utilities, become

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≥ miui(qi, ˜̄ciqi) + · · ·+mi+kui+k(qi, ˜̄ciqi)

mi + · · ·+mi+k

> γ̂ =
miγi + · · ·+mi+kγi+k

mi + · · ·+mi+k

,

and type i ∈ Î agent does not exit. Hence, there exists a moldy lemon mass mn+1 = m,
which makes i to exit in {I,m, u, c, γ} but not in {Î , m̂, û, ĉ, γ̂}.

This result shows that markets are less vulnerable to freezes and exit cascades when the
partition of types in the economy shrinks. At the other extreme, exit cascades are more likely
when the distribution of types is close to a continuum. The reason is that the sufficient mass
of new moldy lemons needed to trigger market shutdowns increases as the relative mass of
exiting agents increases.

A corollary of Proposition 3 is that markets can be more vulnerable to exits as the
number of types in the economy grows large despite no change in underlying aggregate risk
or uncertainty. The result emphasizes why having multiple types in the model is important
for generating large swings in trade with a small mass of moldy lemons. Thus, a model with
only two types, while tractable and perhaps sufficient to highlight certain forces, does not
correctly capture the vulnerability of the market to exit cascades more generally.

4.2 Discussion of Outside Options

Though sufficient, the condition (12) is not necessary for exits to generate additional exits
due to negative spillovers. The only additional complexity if the condition does not hold is
that the pattern of exits could become more complicated as there might be no cutoff type,
θ, that partitions agents into those who exit and remain. In particular, some intermediate
valued agent may remain in the market if the agent’s outside option utility is very low.

We introduce two different interpretations of outside options to justify our assumption.
The first interpretation is a fixed entry cost. Suppose that each agent must pay a fixed entry
cost given by ξ > 0 if they choose to enter the market. Upon entry, the agent trades a
positive quantity, q, while paying the market tariff of T (q). The outside option is not paying
the entry cost of ξ, or a negative payment with zero trade quantity: ui(0,−ξ). Then, by
continuity and Assumption 2, there exists q

i
such that

ui(qi, 0) = ui(0,−ξ) = γi
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for any i. Also, by the single-crossing property,

ui(qi, 0) ≥ ui(0,−ξ)⇒ uj(qi, 0) > uj(0,−ξ),

for any j > i. Therefore, q
i
is decreasing in the index i, and

ui(q, t) ≥ γi ⇒ uj(q, t) > γj, ∀i < j,

by the single-crossing property.
The second way to interpret outside options is to consider the opportunity cost of agents

entering a separate market that requires costly verification of agent’s type.9 In this market,
agents pay a fixed cost of κ to trade, and the market can verify each agents type. Therefore,
agent 1 may be happy to pay κ and get the lowest price c1 for the quantity q1, whereas agent
n would not be happy to pay κ and pay the highest price cn. Thus, whenever agent j > i

exits, agent i should also exit as

uj(q, t) ≤ γj ⇒ ui(q, t) < γi ∀i < j, ∀q > 0, ∀t,

which implies that (12) holds as it is the contraposition of (12).

4.3 Implications and Broader Discussion

The model of moldy lemons with outside options generates an important feature of the
market—a small mass of moldy lemons can generate a sudden market shutdown. This
property not only resembles the movements in the financial markets in the real world, but
also has an important policy implication: relatively inexpensive policy interventions can
prevent sudden and costly market collapses. Policy needs only to prevent the small mass of
moldy lemons from contaminating the market and moderately increasing the overall supply
cost. For example, if the social planner lowers the market tariff with a total subsidy of (˜̄c1−
c̄1)q1

∑
i∈I
mi, then it is sufficient to prevent the exit of type 1 and the cascade of exits afterwards.

9The secondary market structure of agency mortgage-backed securities (MBS) is a good example. A
majority of MBS are traded in the to-be-announced (TBA) market, which pools heterogeneous MBS into
a few liquid TBA contracts but induces adverse selection. At the same time, traders can trade high-value
MBS outside the TBA market in a much less liquid specified-pool (SP) market by specifying the individual
CUSIP, but traders pay higher trading cost in the SP market (Huh and Kim, 2021).
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This policy would be desirable as long as the potential welfare losses,
∑
i∈I

(ui(qi, T (qi))− γi)10,

on top of the spillovers to other markets is higher than the intervention cost.11 Therefore,
our model provides a simple yet important reason to support market functioning even with
lemons to prevent a more widespread market breakdown.

The model does not rely on detailed market structure or other types of complex interac-
tions of the agents. Therefore, the model could be applied to various contexts and markets
with adverse selection to provide insights on how adverse selection problems can cause partial
or full market shutdowns through a variety of changes within a given setting. For example,
as we show below, if the degree of adverse selection in market relative to the outside option
becomes stronger, then the market is more vulnerable to sudden market shutdowns.

Our result that economies with more types are more vulnerable to exit cascades provides
a general theoretical underpinning to the information production literature (see for example,
Gorton and Ordoñez (2019, 2020); Dang et al. (2020)). In particular, one interpretation is
that economies with more types grouped together have less precise or opaque information
about each individual type. This interpretation is apt for models where an agent’s type
is stochastic as in production economies or asset holdings where agents maximize over the
expected value of their types. Our model shows that if more precise information about
each agent’s type results in more recognizable agents in the economy and more asymmetric
information between buyers and sellers, then the market is more unstable. This is in line
with Dang et al. (2020) who show that information production can lead to a collapse in the
market. Our result shows a similar phenomenon with a more simple, static model.

The cascade of exits is determined not only by the degree of adverse selection, but also by
the outside options of the agents. If entry is very costly—for example, because of high entry
or regulatory costs due to heavy usage of balance sheets—the outside option of agents not
entering the market could be more profitable. Then, there will be more exits in the market.
A moderate reduction of such costs (or reduction of the opportunity cost) could drastically
change the allocation by preventing the chain of exits and sudden collapse of the quantities
traded in the equilibrium.

10Since suppliers are competitive, they break even in any equilibrium even under complete breakdown.
Therefore, the measure of social welfare is simply the sum of utilities across all types of agents (buyers).

11There are still many complicated issues related to the optimal interventions such as changing incentives
under the new rules (or mechanisms) as discussed in Philippon and Skreta (2012).
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5 Numerical Analysis

With the insights on market breakdown in the model with outside options, we analyze the
model further numerically. In particular, we bring the model into the context of insurance
market with binary loss model of Rothschild and Stiglitz (1976) and Hendren (2014) following
the idea of Dubey and Geanakoplos (2019). With the numerical model, we first compare
the results between the baseline model of Attar et al. (2021) without outside options and
our model with outside options. Then, we perform comparative statics to obtain more
implications of moldy lemons and market shutdowns.

5.1 Model Setup and Equilibrium

Agents have initial endowment (e, 0) for (eg, eb), where eg and eb represent good state and
bad state endowment, respectively. They will consume (xg, xb) = (e, 0) under autarky, where
xg and xb represent good state and bad state consumption, respectively. Suppose that agents
have constant relative risk aversion (CRRA) and agent i’s utility function is

vi(xg, xb) = pi log(1 + xb) + (1− pi) log(1 + xg),

where pi is the probability of agent i faces a loss and receives bad state endowment. The
marginal rate of substitution for agent i is

τi(xg, xb) ≡

∂vi(xg, xb)

∂xb
∂vi(xg, xb)

∂xg

=
pi

1− pi
1 + xg
1 + xb

.

Following the assumption of competitive suppliers in the main model, the service cost for
suppliers is ci = pi, so they need pi amount of xg to insure 1 − pi amount of xb to agent i.
Under nonexclusive contracts, suppliers require the upper-tail conditional expected cost,

c̄i =
∑
j≥i

mjpj∑
j≥imj

,

where mi is the relative mass of agent i.
Denote the additional utility level of taking the outside option on top of utility under

no trade, vi(e, 0), as γ for each i. Agents will compare the level of utility they can get from
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their optimal consumption bundle in the market to the level of utility they can get from the
outside option and decide whether to enter or exit the market. Utilizing the results on the
general model, the Condition ML(i) for this model is

vi(x
i
g, x

i
b) ≤ γi = vi(e, 0) + γ,

where vi(e, 0) + γ is decreasing in i. If the above inequality holds, then any agent j ≤ i exits
the market and we set xjb = 0.

5.2 Effect of Outside Options and Moldy Lemons

We verify the main result of this paper with the numerical model. Figure 3 shows equilibrium
of the baseline model in the top panel and equilibrium of the model with outside options in
the bottom panel. For each panel, the horizontal axis represents the good state consumption
xg and the vertical axis represents the bad state consumption xb with the 45-degree line
depicted as dotted lines. Each colored curve represents the consumption possibility frontier
for a given mass of moldy lemons in the market. Different shapes of dots represent each
agent’s optimal consumption bundle for the given mass of moldy lemons and other agents’
consumption in the equilibrium.

First, the results show that xb decreases monotonically with the increase in the mass of
moldy lemons, verifying Theorem 1. As more moldy lemons enter the market, the upper-tail
conditional expected cost ˜̄ci increases, depressing the consumption possibility frontier for
every agent in the market. With the higher cost, agents purchase less (insurance) contracts.

Second, the results show a market shutdown (collapse) in the model with outside options,
which does not exist in the model without outside options. Even though both models show
decrease in overall quantity of contract purchases, the model without outside options shows
a smooth contraction of quantities traded over the increase in the mass of moldy lemons.
Thus, even when the moldy lemons mass is 0.4, all agents still enter the market and trade in
positive amounts. In contrast, the model with outside option shows the exit of agents and
total market shutdown at the moldy lemons mass of 0.3. Thus, the numerical exercise shows
how the existence of outside options can generate market shutdowns even for a small mass
of moldy lemons.12

12The definition of market shutdown here is the exit of all agents except for moldy lemons.

27



Figure 3: Consumption bundles of models without and with outside options
Note: Each curve represents consumption possibility frontier and consumption bundles of each agent repre-
sented by different shape of dot for a different mass of moldy lemons.

5.3 Coarse Partition of Types and Moldy Lemons

Using the model with outside options, we analyze comparative statics of Proposition 3 on the
division of types depicted in Figure 4. In particular, we group a couple of adjacent types of
agents into a one type of agent with the average cost of servicing them (average probability
of bad state), with the mass as the sum of mass for each type. The top panel of Figure 4
is the baseline case as shown in the bottom panel of Figure 3, while the bottom panel of
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Figure 4: Consumption bundles of models with different partition of types
Note: Each curve represents consumption possibility frontier and consumption bundles of each agent repre-
sented by different shape of dot for a different mass of moldy lemons.

Figure 4 is the case with less division of types of agents. In particular, we combine type 1
and 2 together to create a new type 1 agent with probability and mass as

p̂1 =
m1p1 +m2p2
m1 +m2

m̂1 = m1 +m2.
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Similarly, we also combine type 3 and 4 in the baseline case into a new type 2 agent as

p̂2 =
m3p3 +m4p4
m3 +m4

m̂2 = m3 +m4,

while simply renaming the previous agent 5 as agent 3. Therefore, the market-wide uncer-
tainty and service cost remain the same as before.

The numerical results show that the decrease in the partition of types makes the equi-
librium less vulnerable to moldy lemons. The example with fewer types shows fewer exits
across varying masses of moldy lemons. Also, full market shutdown does not happen even
when the moldy lemons mass is 0.3, in which the market collapses under the baseline case.
The results imply that if more agents are unsure about their true type, the market is less
likely to experience market shutdown as the exit cascades is less likely.

The reason is due to Theorem 2: The sufficient mass of new moldy lemons needed to
trigger market shutdowns increases as the relative mass of existing agents increases. For
example, agent 1 in the baseline case might have exited under the increased cost due to
moldy lemons’ entry, but agent 2 might have stayed had agent 1 stayed in the market.
However, the exit of agent 1 could have triggered agent 2 to exit as well. If both agents 1
and 2 are unsure about their true type, then they could both stay in the market, preventing
the cascade of exits.

5.4 Aggregate Shock and Market Shutdowns

We analyze the effect of an aggregate shock to the market’s vulnerability to moldy lemons.
The aggregate shock will increase pi for each agent i proportionally by multiplying β, which
is the probability multiplier. As seen in the previous exercises, there is a tipping point for
when a mass of moldy lemons causes a total market shutdown. Define such a value as the
market shutdown moldy lemon mass denoted as m∗n+1. Under this parameter, Condition
ML(n) is satisfied—that is, the market shuts down.

Figure 5 depicts how the market shutdown moldy lemon mass m∗n+1 changes with the
changes in the probability multiplier β. The top panel is the case with fixed outside options,
in which the absolute level of vi(e, 0) + γ with vi calculated before multiplying with β is
used. Therefore, agent i’s exit decision is based on comparing the utility level of the optimal
consumption bundle and the outside option utility level γi ≡ vi(e, 0) + γ. The bottom panel
of Figure 5 is the case with proportional outside options, in which vi(e, 0) also changes to
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Figure 5: Market shutdown moldy lemons mass m∗n+1 for each probability multiplier β for
models with fixed and proportional outside options
Note: Each curve represents the required mass of moldy lemons m∗n+1 that generate market shutdowns for
a given level of aggregate increase in bad state probability.

ṽi(e, 0) following the increase in βpi. Therefore, agent i’s exit decision is based on comparing
the utility level of the optimal consumption bundle and the new outside option utility level
γ̃i ≡ ṽi(e, 0) + γ.

The simulation shows the opposite results of the two cases. When the outside options
are fixed, increases in probabilities of bad state generate market shutdowns much easily
as agents are much more likely to suffer losses in the bad state with the higher price of
contracts whereas the outside option utility levels remain fixed. In contrast, if the outside
option values also decrease proportionally, then the decrease in the total utility of the outside
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option can dominate the decrease in the total utility of the optimal consumption bundle. This
is because the difference between no trade and the optimal consumption bundle increases as
the marginal rate of substitution increases.

This result implies that vulnerability from moldy lemons depends on how the aggregate
shocks are distributed across different markets. If a specific market is hit harder than the
others, the market is more vulnerable to cascade of exits with the entry of moldy lemons.
Finally, this result implies that having a policy that restricts entry by requiring additional
cost (that increases relative γ) can rather make the market more vulnerable to moldy lemons.
The restrictive policy itself might have a role in enhancing transparency and deterring entry
of bad types, but it could also make cascade of exits more likely.

6 Conclusion

We show that the entry of a small mass of the worst type of agents (moldy lemons) can induce
a cascade of exits and market shutdown. The model is based on the general framework
of Attar et al. (2021), which is one of the most general and least restrictive models in
the literature. The baseline model does not show a market shutdown after the entry of
a small mass of moldy lemons, because the exit of agents rather increases marginal rate of
substitution of the remaining agents. We extend the baseline model with a simple yet realistic
extension of introducing outside options of the agents. After the entry of moldy lemons, trade
quantities plunge because the exit of an agent decreases total utility of the remaining agents,
which could trigger a cascade of exits. Our results suggest a parsimonious yet realistic
way of generating sudden market shutdowns without imposing additional structure, belief-
or sentiment-driven runs, or institutional details on the model. Thus, our model is widely
applicable to many different markets and contexts. Lastly, the model provides simple insights
on properties of market shutdowns as it is relatively free from other confounding features. For
example, we show that economies with more precise information about the type of agents
trading are more prone to exit cascades. This result provides an alternative theoretical
underpinning for market failures due to information production in the recent models of
Gorton and Ordoñez (2019, 2020); Dang et al. (2020).
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Appendix

A Details of Numerical Simulations

For computational tractability, we would like to represent agents’ optimization problem
as isomorphic optimization problem across all agents by adjusting the endowments ei for
each agent i. This can be done by exploiting the single-crossing property and any agent
i > j would consume as much as agent j does in equilibrium. For a given ei, the optimal
consumption bundle is

x∗g = (1− pi)ei −
pi − c̄i
1− c̄i

x∗b =
pi − c̄i
c̄i

+
(1− c̄i)pi

c̄i
ei,

for an interior solution. If it is a corner solution, then (x∗g, x
∗
b) =

(
0,

1− c̄i
c̄i

ei
)

or (x∗g, x
∗
b) =

(ei, 0).
From the results in the general model, we know that agent 1 first decides on the optimal

quantity q∗1 for the given price c̄1 and then agent 2 decides on q∗2 for the price c̄2 on top of
purchasing q∗1, and so forth. Agent 1’s optimal consumption bundle is

x1g = (1− p1)e−
p1 − c̄1
1− c̄1

x1b =
p1 − c̄1
c̄1

+
(1− c̄1)p1

c̄1
e,

assuming that they have interior solutions without loss of generality. For agent 2, the same
optimality condition should hold, but the budget constraint is different from the previous
representation. This is because agent 2 can purchase the bundle in a cheaper price

c̄1
1− c̄1

instead of
c̄2

1− c̄2
up to x1b . Therefore, the updated budget constraint for agent 2 becomes

x2g = e− c̄1
1− c̄1

x1b −
c̄2

1− c̄2
(x2b − x1b)

= e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b −

c̄2
1− c̄2

x2b .
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Therefore, we simply change the endowment from e to

e2 = e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b

for the agent 2’s budget constraint. Thus, the optimal consumption bundle for agent 2 is

x2g = (1− p2)e2 −
p2 − c̄2
1− c̄2

x2b =
p2 − c̄2
c̄2

+
(1− c̄2)p2

c̄2
e2.

Agent 3’s problem is isomorphic to agent 2’s problem except that agent 3’s endowment is

e3 = e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b +

(
c̄3

1− c̄3
− c̄2

1− c̄2

)
x2b ,

and agent 3’s optimal consumption bundle becomes

x3g = (1− p3)e3 −
p3 − c̄3
1− c̄3

x3b =
p3 − c̄3
c̄3

+
(1− c̄3)p3

c̄3
e3.

For a general agent i, agent i’s updated endowment is

ei = e+
∑
j<i

(
c̄j+1

1− c̄j+1

− c̄j
1− c̄j

)
xjb,

and agent i’s optimal consumption bundle becomes

xig = (1− pi)ei −
pi − c̄i
1− c̄i

xib =
pi − c̄i
c̄i

+
(1− c̄i)pi

c̄i
ei.

Given these setup, the parameters of the model are as in the following Table 1.
For the numerical procedure, we check Condition ML(i) starting from i = 1 and updating

the endowment of ei+1 = e whenever the condition is satisfied. The algorithm repeats this
until it finds the agent that does not violate the test. Then, we proceed with the rest of the
agents’ consumption quantities using the iterative representation.
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Parameter Description Value
e good state endowment 10
(p1, p2, . . . , p5) probability of bad state (0.1, 0.15, . . . , 0.3)
(m1,m2, . . . ,m5) mass of each type (0.2, 0.2, . . . , 0.2)
γ outside option utility level 0.0758

Table 1: Parameter values for numerical simulations

The algorithm that solves this numerical model is the following: For each i,

1. Calculate the endowment of agent i, ei, using the previous agents’ quantities.

2. Derive the optimal quantity for agent i, (xig, x
i
b) under ei and c̄i.

3. Compute the utility level vi(xig, xib) and compare that to vi(e, 0) + γ.

4. If it is above vi(e, 0) + γ, then the (xig, x
i
b) quantity is the optimal quantity. Otherwise,

set (xig, x
i
b) = (e, 0).

5. Move to the next agent i+ 1 and repeat from the first step.
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