The Welfare Effects of Bank Liquidity and Capital Requirements

Skander J. Van den Heuvel

2022-072

Please cite this paper as:

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.
The Welfare Effects of Bank Liquidity and Capital Requirements

Skander J. Van den Heuvel*
Federal Reserve Board
October 30, 2022

Abstract
The stringency of bank liquidity and capital requirements should depend on their social costs and benefits. This paper investigates their welfare effects and quantifies their welfare costs using sufficient statistics. The special role of banks as liquidity providers is embedded in an otherwise standard general equilibrium growth model. Capital and liquidity requirements mitigate moral hazard from deposit insurance, which, if unchecked, can lead to excessive credit and liquidity risk at banks. However, these regulations are also costly because they reduce the ability of banks to create net liquidity and can distort investment. Equilibrium asset returns reveal the strength of demand for liquidity, yielding two simple sufficient statistics that express the welfare cost of each requirement as a function of observable variables only. Based on U.S. data, the welfare cost of a 10 percent liquidity requirement is equivalent to a permanent loss in consumption of about 0.02%, a modest impact. Even using a conservative estimate, the cost of a similarly-sized increase in the capital requirement is roughly ten times as large. Even so, optimal policy relies on both requirements, as the financial stability benefits of capital requirements are found to be broader.

*Email: skander.j.vandenheuvel@fb.gov. I thank Toni Ahnert, William Bassett, Francesca Carapella, Francisco Covas, Burcu Duygan-Bump, Pedro Gete, Itay Goldstein, Gary Gorton, Gazi Kara, Agnese Leonello, David Martinez-Miera, Mark Mink, Thien Nguyen, Ettore Panetti, Ned Prescott, David Rapopoort, Harald Uhlig, Alex Vardoulakis, and seminar participants at CEBRA, Cleveland Fed, Columbia, ECB, Fed Board, FDIC, FIRS, IMF, NBER, SAET, SED, and the Wharton Conference on Liquidity and Financial Crises for valuable comments, and Sorelle Peat, Jacob Fahringer, Olamide Bola, and Tristan D’Orsaneo for expert research assistance. A large part of this research was conducted during a secondment at the ECB. The views expressed here do not necessarily represent the views of the Federal Reserve Board, the ECB, or their staffs.
1 Introduction

The global financial crisis spurred key financial reforms, including the strengthening of bank capital requirements and the introduction of new liquidity requirements, as part of Basel III. Even so, an important debate continues on the question of whether the strengthening of these requirements has been appropriate, excessive, or insufficient, and their calibration remains at the top of the regulatory agenda (Barr (2022)). Whereas there is widespread agreement that capital requirements can and have helped make banks safer and that liquidity stress exacerbated the crisis through runs and fire sales, the ongoing debate in large part reflects differing views about the existence and magnitude of costs to society from imposing restrictions on banks’ balance sheets. While some progress has been made in understanding and quantifying the costs of capital requirements, a consensus has not yet emerged. Moreover, liquidity regulation, especially its social cost and its interaction with capital regulation, is much less well understood. Some have argued for narrow banking, where deposits are backed exclusively by safe, liquid assets - akin to a 100% liquidity requirement. The harm from liquidity stress would presumably be greatly reduced, if not eliminated, if such a policy were adopted. But what would be the cost? Clearly, to determine the optimal levels of liquidity and capital requirements the question of their social cost must be addressed.

This paper argues that liquidity and capital regulations can each impose an important cost for a similar reason: they reduce the ability of banks to create net liquidity through the transformation of illiquid loans into liquid deposits - a key, traditional function of banks. After all, capital requirements directly limit the fraction of bank loans that can be financed by issuing liquid, deposit-like liabilities. Liquidity requirements force banks to hold safe, liquid assets against deposits, limiting their liquidity transformation by restricting the asset side of their balance sheet. This can impose a social cost because safe, liquid assets are necessarily in limited supply and have competing uses (see, for example, Krishnamurthy and Vissing-Jorgensen (2012) and Greenwood, Hanson and Stein (2015)).

More specifically, the contribution of this paper is threefold. First, it builds a framework to analyze the social costs and benefits of liquidity and capital requirements. It provides a rationale for their joint use and characterizes the best division of labor in order

2A classic reference is Friedman (1960). See Cochrane (2014) for a recent proposal. Gorton et al. (forthcoming) note the similarity between the liquidity coverage ratio (LCR), a key Basel III liquidity requirement, and narrow banking. They argue that the historical experience from the U.S. National Banking Era suggests that narrow banking is unlikely to be desirable. I examine narrow banking in section 6.4.
to foster financial stability in the least costly way. Second, and this is the most important contribution, it derives two simple formulas for the magnitude of the welfare costs of capital and liquidity requirements. These formulas are sufficient statistics for the marginal welfare costs and are functions of observable variables only, sidestepping the difficulties inherent to full-model calibration or estimation (Chetty, 2009). The third contribution is quantitative: the paper deploys the sufficient statistics, using U.S. data, in order to measure the welfare cost of each requirement.

The framework is based on Van den Heuvel (2008) and embeds liquidity-creating banks in an otherwise standard general equilibrium growth model. Due to their role in the provision of liquidity services, bank liabilities are special and, as a result, the Modigliani-Miller theorem fails to hold for banks: their capital structure is not irrelevant. The welfare costs of the capital and liquidity requirements depend crucially on the value of the liquidity provided by bank deposits and by government bonds – a safe and liquid asset that can be used to satisfy the liquidity requirement. For this reason, investors’ preferences for liquidity are modeled in a flexible way. A key insight is that equilibrium financial spreads reveal the strength of these preferences for liquidity and this allows us to quantify the welfare costs without imposing restrictive assumptions on preferences. Furthermore, the analysis shows how capital and liquidity requirements can affect capital accumulation and the size of the banking sector. The formulas for the welfare costs take these general equilibrium feedbacks into account. The model also incorporates a rationale for the use of both regulations, based on a moral hazard problem created by deposit insurance (or similar types of government guarantees), which if unchecked, can lead banks to take on excessive credit and liquidity risk.

The main findings are as follows. The preference for liquidity implies that the pecuniary returns on liquid assets – bank deposits and Treasuries – are lower than the returns on non-liquid assets – equity in the model. For banks, this departure from Modigliani-Miller can result in a binding capital requirement. The liquidity requirement – a minimum ratio of banks’ holdings of Treasuries to their deposit liabilities – binds if the convenience yield on Treasuries exceeds the convenience yield on bank deposits, net of the non-interest cost of servicing those deposits. Because of competition, banks pass on the cheap deposit funding to borrowers in the form of a lower lending rate. However, if binding, both the capital requirement and the liquidity requirement limit the extent of this pass-through. Possible non-interest costs of financial intermediation can also increase the lending rate. If the net impact of these factors is such that bank loans are still relatively inexpensive, firms will borrow exclusively from banks. Otherwise, the equilibrium will be one of both bank and
non-bank finance, and the size of the banking sector will be determined endogenously.

As a consequence, in the model, liquidity and capital regulation can each lead to migration of financial activity to non-bank intermediaries, such as shadow banks, or to disintermediation. For liquidity regulation, this outcome is more likely if the supply of high-quality liquid assets is low relative to the demand for such assets, so that their convenience yield is high. Moreover, these regulations can alter not only the composition of the financial sector, but also the size of the economy, through their effect on firm investment.

Turning to normative results, both capital and liquidity regulations are helpful in mitigating the moral hazard from deposit insurance and thereby preventing financial crises. First, moral hazard can lead banks to take on excessive credit risk. A capital requirement is helpful in limiting this problem by ensuring that shareholders internalize potential losses. Second, moral hazard can lead banks to take on excessive liquidity risk. A liquidity requirement and a capital requirement are each helpful in mitigating this problem. However, a liquidity requirement addresses this problem more directly and efficiently and is therefore socially desirable. In sum, the model suggests a simple division of labor: liquidity regulation should address liquidity risk, and capital regulation should address credit risk.

These benefits are not a free lunch, however, as these regulations also entail social costs. If binding, each requirement reduces banks’ ability to perform liquidity transformation, a socially valuable activity. The model can be used as a lens to see how the magnitude of these costs can be measured with real-world data. As equilibrium asset returns reveal the strength of investors’ preferences for liquidity, two sufficient statistics can be derived for the marginal welfare costs of the two regulations – two simple formulas that are functions of observable variables only, shown in section 5 (propositions 5 and 6). First, the cost of the capital requirement scales with the convenience yield on bank deposits. Second, the cost of the liquidity requirement scales with the difference in the convenience yields on Treasuries and on bank deposits. (In each case, there is an adjustment for banks’ net non-interest costs.)

The intuition for the second result is that the liquidity requirement essentially removes Treasuries from non-bank investors and puts them in banks – but banks can finance these new assets with deposits which, like Treasuries, also provide liquidity services. This entails a net social cost only to the extent that the liquidity services of bank deposits (net of their non-interest costs) are, at the margin, valued less than the liquidity services of Treasuries to non-bank investors.

I then use U.S. data to measure these cost-revealing financial spreads and the other variables in the sufficient statistics. The welfare cost of a 10 percent liquidity requirement
is found to be equivalent to a permanent loss in consumption of about 0.02%, a modest cost.\footnote{This is for a liquidity requirement that is modelled after the liquidity coverage ratio (LCR), one of two liquidity rules introduced by Basel III. The other rule is the net stable funding ratio (NSFR), which is outside the scope of this paper.} Even using a conservative method, the cost of a similarly-sized increase in the capital requirement is found to be roughly ten times as large. The cost of a complete move to narrow banking would be another order of magnitude higher, about 2.4% of consumption. A comparison of these costs to existing estimates of the benefits of capital and liquidity requirements suggests that the post-crisis reforms to capital and liquidity requirements have resulted in net increases in welfare, especially with regard to capital requirements.

As a caveat, the model does not feature a lender of last resort that could save solvent banks with liquidity problems, which could lessen the need for ex-ante liquidity regulation. Because of that, the analysis may overstate the beneficial role of liquidity regulation, though this does not matter for the results on the cost. That said, in reality, the lender of last resort function of central banks is not completely free of challenges. Deciding whether a bank only experiences liquidity problems or liquidity and solvency problems can be difficult in crisis times. And it has been argued that interventions by a lender of last resort can themselves lead to moral hazard problems (see, e.g., Farhi and Tirole (2012)). To the extent that the lender of last resort function entails economic costs, these could be compared to the costs of liquidity regulation, which this paper attempts to quantify.\footnote{See Carlson et al. (2015) and Hoerova et al. (2018) for discussions of the relation between liquidity regulation and the lender of last resort.}

Several recent papers present quantitative, macroeconomic models of optimal bank capital regulation, including Begenau (2020), Begenau and Landvoigt (2022), Clerc et al. (2015), Elenev, Landvoigt, and Van Nieuwerburgh (2021), Martinez-Miera and Suarez (2014), and Nguyen (2015).\footnote{In addition, recent studies also provide quantitative examinations of optimal time-varying capital requirements; see, e.g., Canzoneri et al. (2020) and Davydiuk (2017).} In their calibrated versions, these models each yield an interior level of the capital requirement that maximizes a welfare criterion, with the optimal levels ranging from 6 percent in Elenev et al., whose model features financially constrained producers, to 16 percent in Begenau and Landvoigt, whose model features unregulated as well as regulated banks. There are three main differences with the model developed here.

First and most obviously, the above-mentioned papers do not aim to examine liquidity requirements, which is a focus in this paper. Second, the reason the Modigliani-Miller theorem fails for banks is different, except for Begenau (2020) and Begenau and Landvoigt
in which, as in this paper, it fails chiefly because banks provide liquidity services.\footnote{This is also the key friction in Gorton and Winton (2017) and Van den Heuvel (2008), who also show that bank capital requirements can have a social cost because they reduce the ability of banks to create liquidity in equilibrium. In addition, in Elenev et al. (2021)’s model, the specialness of bank debt as a safe asset is one among four frictions that lead to a failure of Modigliani-Miller at banks.}

Third, these studies all rely on a full-model calibration to draw out quantitative implications, whereas the main results in this paper are obtained without calibration, using a “sufficient statistics” approach instead (based on a revealed preference logic).\footnote{Dávila (2019) uses a sufficient statistics approach to examine welfare-maximizing bankruptcy exemptions. Similarly, Dávila and Goldstein (2021) use this approach to study optimal deposit insurance.}

Chetty (2009) argues that such a sufficient statistics approach “combines the advantages of reduced-form empirics – transparent and credible identification – with an important advantage of structural models – the ability to make precise statements about welfare.” This could be viewed as especially attractive in the context of macroeconomic models with financial intermediation, because such models tend to have many parameters that are notoriously difficult to calibrate or estimate. That said, a limitation of the approach used here is that it only quantifies the welfare costs of regulation, as sizing the benefits does not lend itself readily to sufficient statistics.\footnote{Moreover, the parameters governing their size are especially hard to calibrate, as discussed in section 7.} Instead, we will characterize the benefits qualitatively and compare our measurements of the costs to existing estimates of the benefits.

Finally, there is an emerging literature on the theoretical benefits of liquidity requirements, based on preventing bank runs or fire sales, including, for example, Calomiris, Heider, and Hoerova (2015), Diamond and Kashyap (2016), Kara and Ozsoy (2019), Kashyap, Tsomocos, and Vardoulakis (2020), and Vives (2014). Quantitative, positive examinations of the effects of liquidity and capital requirements are presented by Corbae and D’Erasmo (2021), who examine their effects on bank risk-taking, market structure, efficiency, and stability in a model of industry dynamics, by De Nicolo, Gamba, and Lucchetta (2014), who take a micro-prudential perspective, and by Covas and Driscoll (2014), who introduce these requirements into a DSGE model.

The rest of this paper is organized as follows. The next section presents the model and analyzes agents’ decision problems. Section 3 provides an initial, qualitative overview of the welfare implications of bank regulation, followed by a positive analysis of general equilibrium in section 4. Section 5 presents sufficient statistics for the social costs of regulation. These sufficient statistics are used in section 6 to measure the welfare costs of increases in liquidity and capital requirements, as well as a hypothetical government-imposed switch to narrow
banking. Section 7 revisits the welfare benefits, and the final section concludes.

2 The Model

As mentioned, the model extends Van den Heuvel (2008), which adds two features to the standard growth model: first, households have a need for liquidity and, second, certain institutions, labelled banks, are able to create financial assets, bank deposits, which provide liquidity services. As a novel element in this model relative to its precursor, bonds issued by the government can also serve as liquid assets for households and businesses. In addition, government bonds can be used by banks to deal with liquidity risk and to satisfy liquidity regulation – the main other new features in this paper.

Since a central goal of the model is to provide a framework not just for illustrating, but for actually measuring the welfare cost of liquidity and capital requirements, it is important to model the preferences for liquidity in a way that is not too restrictive. As much as possible, the data should be allowed to provide the answer, not special modeling choices. To that end, I follow Sidrauski (1967) and a large literature in monetary economics in adopting the modeling device of putting liquidity services in the utility function.

The advantage of this approach is its flexibility. Crucially, all main results will be derived without making any assumptions on the functional form of the utility function, beyond the standard assumptions that it is increasing and concave, thus allowing the data to speak.

Of course, this approach does not further our understanding of why households like liquid assets, but this is simply not the topic of this paper. That said, it is important to know that the Sidrauski modeling device is functionally equivalent to a range of more specialized, micro-founded models of liquidity demand, such as the Baumol-Tobin transaction technology or cash-in-advance, as shown by Feenstra (1986). In that equivalence, the utility function with money (or deposits) as an argument is simply a derived utility function. Because we will not impose any restrictions on that derived utility function, all results will hold for any of those more primitive models.

The economy consists of households, banks, (nonfinancial) firms, and a government. Households own both the banks and the nonfinancial firms. These firms combine capital and labor to produce the single good. The rest of this section describes and analyzes these agents’ decision problems.
2.1 Households

There is a continuum of identical households with mass one. Households are infinitely lived dynasties and value consumption and liquidity services. Households can obtain these liquidity services by allocating some of their wealth to bank deposits, an asset created by banks for this purpose. In addition, households also derive a convenience value from holding government bonds, which stems from their liquidity and safety. One can think of the household sector in this model as also encompassing certain non-bank financial firms, such as money market funds, bond funds, or pension funds, which often manage households’ holdings of government bonds on their behalf.

Besides holding bank deposits, denoted \(d_t \), or government bonds, \(b_t \), households can store their wealth by holding equity, \(e_t \). They supply a fixed quantity of labor, normalized to one, for a wage, \(W_t \). Taxes are lump-sum and equal to \(T_t \). There is no aggregate uncertainty, so the representative household’s problem is one of perfect foresight:

\[
\max_{\{c_t, d_t, b_t, e_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, d_t, b_t)
\]

s.t. \(d_{t+1} + b_{t+1} + e_{t+1} + c_t = W_t 1 + R_t^D d_t + R_t^B b_t + R_t^E e_t - T_t \)

and subject to a no-Ponzi-game condition and initial wealth constraint for \(d_0 + b_0 + e_0 \). \(c_t \) is consumption in period \(t \), \(\beta \) is the subjective discount factor and \(R_t^D \), \(R_t^B \) and \(R_t^E \) are the returns on bank deposits, government bonds, and (bank or firm) equity, respectively. The returns and the wage are determined competitively, so the household takes these as given. There is no distinction between bank and firm equity, since, in the absence of risk, they are perfect substitutes for the household and will thus yield the same return.

The utility function is assumed to be concave, at least once continuously differentiable on \(\mathbb{R}^3_{++} \), increasing in all arguments, and strictly so in consumption: \(u_c(c, d, b) \equiv \partial u(c, d, b) / \partial c > 0 \), \(u_d(c, d, b) \equiv \partial u(c, d, b) / \partial d \geq 0 \) and \(u_b(c, d, b) \equiv \partial u(c, d, b) / \partial b \geq 0 \).

The first-order conditions to the household’s problem are easily simplified to

\[
R_t^E = (\beta u_c(c_t, d_t, b_t) / u_c(c_{t-1}, d_{t-1}, b_{t-1}))^{-1}
\]

(1)

\[
R_t^E - R_t^D = u_d(c_t, d_t, b_t) / u_c(c_t, d_t, b_t)
\]

(2)

\[
R_t^E - R_t^B = u_b(c_t, d_t, b_t) / u_c(c_t, d_t, b_t)
\]

(3)

Equation (1), which determines the return on equity, is the standard intertemporal Euler equation for the consumption-saving choice, with one difference: the marginal utility of consumption may depend on deposits and bond holdings. Because there is no aggregate
risk, the return on equity is essentially a risk-free rate on an asset that does not provide any liquidity benefits.\(^9\) Equation (2) captures the convenience yield on bank deposits. If \(u_d > 0\), the interest rate on bank deposits is below the equity return reflecting the liquidity services provided by deposits. Equation (3) relates the spread between equity and bonds to the liquidity services of bonds in a similar fashion.

2.2 Banks

There is a continuum of banks, which make loans to nonfinancial firms, may hold government bonds, and finance these assets by accepting deposits from households and issuing equity. The ability of banks to create liquidity through deposit contracts is their defining feature. Banks last until they fail or choose to exit.\(^10\) Banks’ technology exhibits constant returns to scale and there is free entry into banking, so banks operate in an environment of perfect competition. The mass of banks is normalized to one. The balance sheet, and the notation, for the representative bank during period \(t\) is:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_t) Loans</td>
<td>(D_t) Deposits</td>
</tr>
<tr>
<td>(B_t) Bonds</td>
<td>(E_t) Bank Equity</td>
</tr>
</tbody>
</table>

The bank can make safe or risky loans to nonfinancial firms. Riskless loans yield a gross rate of return \(R^L_t\), for sure, at the end of the period \(t\). \(R^L_t\) is determined competitively in equilibrium, so each bank takes it as given. Risky loans will be discussed below. Similarly, the bank takes as given the return on the (riskless) government bonds, \(R^B_t\), and the interest rate on (insured) deposits, \(R^D_t\).

For quantitative realism the model allows for resource costs associated with servicing deposits and/or making loans. Specifically, a bank incurs a noninterest cost \(g(D, L)\) to service those financial contracts. \(g\) is assumed to be nonnegative, twice continuously differentiable, (weakly) increasing, convex and homogenous of degree 1, i.e. it exhibits constant returns to scale. Note that costless intermediation is included as a special case \((g = 0)\), as is a linear cost function.

\(^9\)Any bank- or firm-specific idiosyncratic risk in equity returns (described below) is perfectly diversified by households.

\(^{10}\)Because there are no adjustment costs, nor any agency problems between banks and the other optimizing agents (households and firms), each bank’s decision problem can be separated into a series of independent static decision problems. As explained below, a bank can fail due to loan defaults or liquidity stress, if it engages in excessive risk taking. Exiting takes the form of operating with scale set to zero.
Regulation
Banks are subject to regulation, as well as supervision, by the government.

First, banks face a capital requirement, which requires them to have a minimum amount of equity as a fraction of risk-weighted assets. In the context of this simple model, the capital requirement states that equity needs be at least a fraction γ of loans for a bank to be able to operate:

$$E_t \geq \gamma L_t$$

For the moment, the capital requirement is merely assumed. It will later be shown how it can be socially desirable to have such a requirement, as it mitigates the moral hazard problem that arises due to the presence of deposit insurance, discussed further below. There is no rationale in the model for requiring equity against the bank’s holdings of government bonds (which are assumed to be riskless). Accordingly, I have assumed that government bonds have a zero risk weight.

Second, banks must satisfy a liquidity requirement by holding a minimum level government bonds, set equal to a fraction λ of deposits:

$$B_t \geq \lambda D_t$$

Again, for the moment this regulation is merely assumed, but later it will be shown how it can be socially desirable in the presence of liquidity risk and the externalities associated with deposit insurance.

2.2.1 Assumptions Pertaining to the Benefits of Regulation

The remaining assumptions regarding banks, detailed in this subsection, are only relevant to the benefits of the capital and liquidity requirements, and for characterizing the conditions under which financial crises occur in the model, but not for the welfare costs of regulation. These assumptions add features – deposit insurance, credit risk, and liquidity risk – that shape the moral hazard problem of excessive risk taking. It is worth noting, however, that the equilibrium analysis in section 4 will primarily focus on the case that regulation is sufficiently stringent – according to conditions that will be derived – so that banks are deterred from engaging in excessive risk taking, a deterrence that is socially optimal under plausible conditions, as argued in section 3. In addition, the formulas for the gross welfare costs in section 5, and their measurement in section 6, are identical with or without the following assumptions.

Deposit insurance
A government-run deposit insurance fund ensures that no depositor suffers a loss in the event of a bank failure. That is, all deposits are fully insured. The
rationale for the deposit insurance is left unmodeled. However, it has been argued that deposit insurance improves the ability of banks to create liquidity.\footnote{Diamond and Dybvig (1983) provide a model of liquidity provision by banks, in which socially undesirable, panic-based bank runs can occur, and in which deposit insurance can prevent these runs.}

Deposit insurance creates a moral hazard problem: the bank has an incentive to engage in excessive risk taking. As this is the justification for capital and liquidity regulation, two bank risk choices are introduced, through credit and liquidity risk.

Loans with credit risk By directing a fraction of its lending to firms with a risky technology, described below, the bank can create a loan portfolio with riskiness σ_t that pays off $R_t^L + \sigma_t \varepsilon_t$, where ε_t is an idiosyncratic shock with negative mean, denoted $-\xi$ ($\xi \geq 0$). Further, ε has a cumulative distribution function, F_ε, that has bounded support $[\underline{\varepsilon}, \overline{\varepsilon}]$, with $-\infty < \underline{\varepsilon} < 0 < \overline{\varepsilon} < \infty$ and $\Pr[\varepsilon > 0] > 0$. ε is $i.i.d.$ across banks and time periods. These properties of ε derive from the risky technology, described below.

The negative mean of the shock implies that the expected return of the loan portfolio is decreasing in its risk. It is in this sense that risk-taking is excessive: absent a moral hazard problem due to deposit insurance, the bank would always prefer $\sigma_t = 0$. While the bank chooses σ_t, bank supervision imposes an upper bound: $\sigma_t \leq \overline{\sigma}$. This will be explained more fully in the discussion of the government.

Liquidity risk of deposits Deposits come with liquidity risk for the bank. This feature is introduced not just for realism, but also to provide a rationale for liquidity regulation. Consistent with the design principles of Basel III's liquidity coverage ratio (LCR) requirement, it is assumed that, with a small probability, an unusually high fraction of depositors decide to withdraw early, before the bank has received the income from the loans it has made. The occurrence of this event, termed "liquidity stress," can be thought of as the realization of bank-specific liquidity risk.\footnote{The model is silent about whether this liquidity stress is panic-based or based on a fundamental (preference) shock.}

The bank can cover these early withdrawals by drawing down its stock of liquid securities, i.e. its holdings of government debt. In contrast, loans are fully illiquid and no secondary market exists for loans. As a consequence, if the bank does not have sufficient government bonds to cover the intra-period withdrawals, the bank defaults and goes into bankruptcy protection. Shareholders get zero in this case, while depositors are made whole by the deposit insurance scheme. The resolution through the deposit insurance fund is dis-
cussed in more detail below. The assumption of complete illiquidity of loans is admittedly an extreme one. The key idea, however, is that loans are less liquid, especially in times of stress, and that this can make it desirable for banks to hold more liquid securities in anticipation of stressed outflows. The question then becomes whether the private incentives to hold liquid assets are as strong as the social benefits.

Formally, let \(\eta \) be a random variable that takes on the value one when liquidity stress materializes, and zero otherwise, and let \(p \) be the probability that a bank suffers liquidity stress. Thus, \(\eta = 1 \) with probability \(p \) and \(\eta = 0 \) with probability \(1 - p \). It is assumed that \(\eta \) and \(\varepsilon \) are mutually independent, and, like \(\varepsilon \), \(\eta \) is \(i.i.d. \) across banks and time periods. Denote the fraction of depositors who decide to withdraw early when \(\eta = 1 \) by \(w \). Thus, a bank fails due to liquidity stress if \(B < wD \) and \(\eta = 1 \). It is assumed that early withdrawers use their funds to make payments to other households, who then deposit the funds into the banking system. To economize on notation and avoid having to keep track of intra-period balance sheet changes, I adopt the simplifying assumption that those banks that experienced the liquidity outflows are also shortly thereafter recipients of liquidity inflows of the same magnitude (regardless of whether they survived the acute liquidity stress or are in FDIC resolution). Although this is clearly not the most realistic assumption, it simplifies the analysis and more realistic assumptions would lengthen the exposition without yielding additional insights.

As mentioned, the assumptions regarding the deposit insurance, excessive risk taking through lending, liquidity stress and bank supervision give rise to the benefits of regulations, but do not matter for their welfare costs, including measurements thereof.

2.2.2 The Bank’s Decision Problem

The objective of the bank is to maximize shareholder value, net of the initial equity investment:\(^{13}\)

\[
\pi^B = \max_{\sigma, L, B, D, E} \mathbb{E} \left[(1 - \mathbb{1}_{\{B < wD\}} \eta) \left((R^L + \sigma \varepsilon) L + R^B B - R^D D - g(D, L) \right) \right] / R^E - E
\]

\[
\text{s.t. } L + B = E + D, \quad E \geq \gamma L, \quad B \geq \lambda D, \quad \text{and } \sigma \in [0, \bar{\sigma}]
\]

The notation \(\{x\}^+ \) stands for \(\max(x, 0) \) and \(1_{\{B < wD\}} \) is an indicator variable taking the value \(1 \) if \(B < wD \) and zero otherwise, reflecting the fact that the bank will face bankruptcy.

^{13} Each bank is potentially long-lived. However, because there are no adjustment costs, nor any agency problems between banks and the other optimizing agents (households and firms), its decision problem can be separated into a series of independent static decision problems without loss of generality. In what follows, time subscripts will be used only where necessary to avoid confusion.
due to liquidity stress if both $B < wD$ and $\eta = 1$. The constraints are, respectively, the balance sheet identity, the capital requirement, the liquidity requirement, and the supervisory bound on σ.

The term $(R^L + \sigma \varepsilon)L + R^B B - R^D D - g(D, L)$ is the bank’s net cash flow at the end of the period, provided there was no failure due to liquidity stress. It consists of interest income from loans and bonds, minus any possible charge-offs on the loans, minus the interest owed to depositors, and minus the resource cost of intermediation. If the net cash-flow is positive, shareholders are paid this full amount in dividends. If the net cash flow is negative, the bank fails and the deposit insurance fund must cover the difference in order to indemnify depositors, as limited liability of shareholders rules out negative dividends. Shareholders receive zero in this event or if the bank has already failed due to liquidity stress, so dividends equal the expression inside the square brackets. E is the initial investment of the shareholders. At the beginning of period t shareholders discount the value of end-of-period dividends by the opportunity cost of holding this particular bank’s equity. This opportunity cost is R^E, the market return on equity. If $\sigma > 0$ or if $B < wD$, dividends are risky, but this risk is perfectly diversifiable, so shareholders do not price it.\footnote{Hence, the treatment of R^E as nonstochastic in the household problem is also still correct, since, even if banks are risky, households would not leave any such risk undiversified.}

2.2.3 Analysis of the Bank’s Problem

The analysis will start with the credit risk choice of the bank. Next, we will turn to its other balance sheet choices for the case that the liquidity requirement exceeds the level of stressed withdrawals ($\lambda \geq w$), forcing the bank to self-insure against the liquidity stress. And, finally, we will examine the bank’s liquidity risk choice and other choices when $\lambda < w$.

Credit risk choice First, consider the choice of loan risk, σ, conditional on L, B, D and E. For convenience, define $r \equiv R^L + R^B (B/L) - R^D (D/L) - g(D/L, 1) > 0$, a measure of the bank’s return on assets without excessive risk taking.\footnote{Recall that g is linear homogenous.} In this notation, expected dividends are $\mathbb{E} [(r + \sigma \varepsilon)L^+]$ if $B \geq wD$, or $(1 - p)\mathbb{E} [(r + \sigma \varepsilon)L^+]$ if $B < wD$ (using the independence of η and ε). Due to the max operator, the expected value is a convex function of σ.\footnote{See Appendix A.1 for proof of convexity.} For low values of σ, expected dividends are decreasing in σ, reflecting the negative mean of the shock ε – this is the cost of excessive risk-taking. But at higher levels of σ, there is not enough equity to absorb the loss in the event of a large negative...
realization of \(\epsilon \). In that event, the excess loss is covered by the deposit insurance fund. Increasing risk further at this point can increase expected dividends, as it raises the payoff to shareholders in the good states (\(\epsilon > 0 \)) without lowering it in (some of the) bad states – this is the benefit of excessive risk-taking to shareholders. Put differently, the value of the put option associated with the deposit insurance fund rises with \(\sigma \).\(^{17}\) Because of the convexity of expected dividends, only \(\sigma = 0 \) and \(\sigma = \bar{\sigma} \) need to be considered as candidates for the optimal choice of risk. Comparing expected dividends for these two values, and imposing further optimality conditions, yields the following result:

Proposition 1 (Credit risk choice) A sufficient condition for no excessive credit risk taking (\(\sigma = 0 \)) is given by:

\[
\phi_{\epsilon} \sigma \leq \gamma R^E \tag{5}
\]

This condition is also necessary if the capital requirement binds and \(B \geq wD \). If \(\sigma \neq 0 \), then \(\sigma = \bar{\sigma} \).

Proof: See Appendix A.

Here, \(\phi_{\epsilon} \) is a “value-at-risk” statistic derived from the distribution of \(\epsilon \). It is implicitly defined by

\[
\int_{-\xi}^{-\phi_{\epsilon}} (\epsilon + \phi_{\epsilon}) dF_\epsilon(\epsilon) \equiv -\xi \tag{6}
\]

The assumptions made regarding the distribution function \(F_\epsilon \) imply that \(\phi_{\epsilon} \) exists, is unique and satisfies \(0 < \phi_{\epsilon} \leq -\xi \) (see the appendix). \(\phi_{\epsilon} \approx -\xi \) for small values of \(\xi \).\(^{18}\) Note that condition (5) depends only on variables that the bank takes as given.

Intuitively, a sufficiently high capital requirement (\(\gamma \)) can deter excessive risk taking by ensuring that the bank internalizes enough of the losses that may arise as a result of such risk taking. Excessive risk is also less appealing if supervision is strong (captured by a low \(\bar{\sigma} \)). Conversely, risk taking is more attractive if the bank has little ‘skin-in-the-game’ (a low \(\gamma \)), if supervision is weak, if the distribution of \(\epsilon \) has a long and fat left tail (high \(\phi_{\epsilon} \)), or if the cost of excessive risk-taking is small (low \(\xi \), which also implies a higher value of \(\phi_{\epsilon} \)).\(^{19}\)

\(^{17}\)As an example, suppose \(\epsilon \) equals either \(-\xi + a \) or \(-\xi - a \), with equal probability, and with \(a > \xi \) (so that \(\Pr[\epsilon > 0] > 0 \) as assumed). Then \(\mathbb{E} [(r + \sigma \xi)L^+] = \{ \frac{(r-\sigma\xi)L}{\sigma r/(a+\xi)} \}_{\sigma \leq r/(a+\xi)} \).

\(^{18}\)For the illustrative distribution in the previous footnote, \(\phi_{\epsilon} = a - \xi \). As a further example based on a continuous distribution, suppose \(\epsilon \) is uniformly distributed on the interval \([-\xi - a, -\xi + a]\) with \(a > \xi \) (so that \(\bar{\xi} > 0 \) as required). Then it is straightforward to show that \(\phi_{\epsilon} = (\sqrt{a} - \sqrt{\xi})^2 \in (0, a) \).

\(^{19}\)In more detail, \(\phi_{\epsilon} \) is the value at risk such that losses in excess of that value (\(\epsilon < -\phi_{\epsilon} \)) are in expectation just equal to the mean of \(\epsilon \), \(-\xi \). When \(\phi_{\epsilon} \sigma = \gamma R^E \), the bank becomes just insolvent when \(\epsilon = -\phi_{\epsilon} \). In
An interesting corollary is that the liquidity requirement has no impact on the bank’s incentives to make excessively risky loans. There are two reasons for this invariance result. First, this type of excessive risk taking occurs through lending, creating credit risk, not liquidity risk. The result may still seem surprising, since the liquidity regulation requires the bank to hold more safe assets (government bonds), which ought to reduce its overall credit risk and the scope for excessive risk taking. However, this is where the second reason comes in: There are no assumptions in the model that artificially limit the level of the bank’s total assets. True, a higher liquidity requirement requires the bank to hold more bonds, but the bank does not have to reduce its loan portfolio as a result – it can simply raise more deposits and invest the proceeds in bonds, leaving the scope for excessive risk taking through lending unchanged.

The remainder of this section will focus on the case that the capital requirement satisfies condition (5); that is, $\gamma \geq \phi_2 \sigma / R^E$. In that case, the bank opts not to take on excessive credit risk. The next section will return to the alternative case, with excessive credit risk, and will explain why that case is socially undesirable due to the costs and distortions associated with bank failures.

Solution to the bank’s problem under a high liquidity requirement ($\lambda \geq \omega$) This part considers the case of a high liquidity requirement, defined as $\lambda \geq \omega$. In that case, the regulation forces the bank to self-insure against liquidity stress, so that the bank cannot engage in excessive risk taking through liquidity risk. With capital regulation stringent according to condition (5), the bank additionally forgoes excessive risk in lending ($\sigma = 0$), as explained. The bank’s maximization problem in (4) then simplifies to:

$$\pi^B = \max_{L,B,D,E} \mathbb{E} \left[R^L L + R^B B - R^D D - g(D,L) \right] / R^E - E$$

s.t. $L + B = E + D$, $E \geq \gamma L$, $B \geq \lambda D$

It is straightforward to solve this problem (see Appendix A.2). To summarize the results, it is convenient to first define the all-in cost of financing a unit of loans with deposits, taking into account the liquidity requirement (but setting aside the transaction costs $g(D,L)$):

$$\tilde{R}^D(\lambda) \equiv R^D + \frac{\lambda}{1-\lambda}(R^D - R^B)$$

that situation, the expected benefits of risk shifting for the bank (the expected shortfall) are equal to the expected costs (the reduction in NPV due to the negative mean of ε).

20In fact, condition (5) is identical to the analogous condition in Van den Heuvel (2008, equation 10), except that there $\phi_2 = 1$, reflecting a normalizing assumption adopted on the distribution of ε in that paper.
This reflects the fact that a fraction \(\lambda \) of the deposits must be invested in bonds, rather than loans, so to finance one unit of loans with deposits, \(1/(1 - \lambda) \) deposits must be raised, of which \(\lambda/(1 - \lambda) \) are put in bonds. If the return on bonds is less than the interest paid to depositors, then the liquidity requirement effectively increases the cost of financing loans with deposits. To build intuition, I first characterize the results for the special case of zero resource costs of intermediation \((g \equiv 0)\):\(^\text{21}\)

Proposition 2 (Solution for costless intermediation) For the special case of costless intermediation \((g \equiv 0)\) and with regulation satisfying \(\lambda \geq w \) and \(\gamma \geq \phi \sigma / R^E \) (so \(\sigma = 0 \)), the existence of a finite solution to the bank’s problem requires \(R^B \leq R^D \leq R^L \leq R^E \) and, hence, \(\tilde{R}^D(\lambda) \geq R^D \). The solution satisfies the zero-profit condition:

\[
R^L = \gamma R^E + (1 - \gamma) \tilde{R}^D(\lambda) \tag{9}
\]

resulting in \(\pi^B = 0 \). Finally,

- The liquidity requirement binds (so \(B = \lambda D \)) if and only if \(R^B < R^D \) or, equivalently, if and only if \(\tilde{R}^D(\lambda) > R^D \).

- The capital requirement binds (so \(E = \gamma L \)) if and only if \(R^L < R^E \) or, equivalently, if and only if \(\tilde{R}^D(\lambda) < R^E \).

Proof: See Appendix A.2.

Equation (9) has the interpretation of a zero-profit condition. For a bank with a binding capital requirement, one unit of lending is financed by \(\gamma \) in equity and \((1 - \gamma)\) in deposits. Thus, competition will equalize the rate of return to lending to the similarly weighted average of the required rates of return of equity and deposits. Condition (9) also takes into account that deposit finance of loans effectively costs \(\tilde{R}^D(\lambda) \) due to the liquidity requirement’s prescription that some of the deposits raised be invested in government bonds.

The all-in cost of financing loans with deposits, \(\tilde{R}^D(\lambda) \), exceeds \(R^D \) when the return on bonds is less than the interest paid to depositors and it is under that condition, \(R^B < R^D \), that the liquidity requirement binds; otherwise, if bonds and deposits yield the same, \(\tilde{R}^D(\lambda) = R^D \). \(R^B > R^D \) is ruled out, as it is incompatible with a finite solution: it would yield infinite profits, since the bank can always raise deposits and invest the proceeds in government bonds, which do not require capital; this stark implication is relaxed in the case of costly financial intermediation.)

\(^{21}\)This proposition is really a corollary to the more general proposition that follows it.
The capital requirement binds if equity finance is more expensive than deposit finance, taking into account the impact of the liquidity requirement on the all-in cost of deposit finance. In that situation, the rate on loans will be strictly in between R^E and $\tilde{R}^D(\lambda)$. In contrast, the capital requirement is slack when $R^E = \tilde{R}^D(\lambda)$ and then $R^L = R^E = \tilde{R}^D(\lambda)$, so (9) holds trivially. Regardless of whether the two regulatory constraints are slack or binding – all four cases are possible – economic profits are zero due to the constant returns to scale and perfect competition. Shareholders simply get the competitive return, R^E.

The following proposition summarizes the results for the more general case with non-negative intermediation costs.

Proposition 3 (Solution for general intermediation cost) Assume regulation satisfies $\lambda \geq w$ and $\gamma \geq \phi_\varepsilon \bar{\sigma}/R^E$, so $\sigma = 0$. A finite solution to the bank’s problem requires

$$R^B \leq R^D + g_D(D, L) \leq R^L - g_L(D, L) \leq R^E$$

(10)

The liquidity requirement binds if and only if the first inequality is strict. The capital requirement binds if and only if the last inequality is strict or, equivalently, if and only if $\tilde{R}^D(\lambda) + \frac{1}{1-\lambda}g_D(D, L) < R^E$. The solution satisfies the zero-profit condition:

$$R^L - g_L(D, L) = \gamma R^E + (1-\gamma) \left\{ \tilde{R}^D(\lambda) + \frac{1}{1-\lambda}g_D(D, L) \right\}$$

(11)

resulting in $\pi^B = 0$. Four cases are possible:

1. If $R^B = R^E$, then both regulatory requirements are slack, and all relations in (10) hold with equality.

2. If $R^B < R^E$, $R^B < R^D + g_D(\rho, 1)$ and $R^L - g_L(\rho, 1) \geq R^E$, then the liquidity requirement binds, so $B = \lambda D$, the capital requirement is slack, and

$$R^B < R^D + g_D(D, L) < R^L - g_L(D, L) = R^E = \tilde{R}^D(\lambda) + \frac{1}{1-\lambda}g_D(D, L)$$

3. If $R^B < R^E$, $R^B \geq R^D + g_D(\rho, 1)$ and $R^L - g_L(\rho, 1) < R^E$, then the liquidity requirement is slack, the capital requirement binds, so $E = \gamma L$, and

$$R^B = R^D + g_D(D, L) < R^L - g_L(D, L) = \gamma R^E + (1-\gamma)R^B < R^E$$

4. If $R^B < R^E$, $R^B < R^D + g_D(\rho, 1)$ and $R^L - g_L(\rho, 1) < R^E$, then both regulatory requirements bind, so $B = \lambda D$ and $E = \gamma L$, all inequalities in (10) are strict, and

$$\tilde{R}^L = \gamma R^E + (1-\gamma)\tilde{R}^D(\lambda) + g(\rho, 1)$$

(12)
Proof: See Appendix A.2.

Here, ρ is defined as the value of the ratio D/L when both regulatory constraints are binding (so $B = \lambda D$ and $E = \gamma L$):

$$\rho \equiv \frac{1 - \gamma}{1 - \lambda}$$

Proposition 2 closely mirrors proposition 1, except that the interest rates are now adjusted for the marginal cost of intermediation. Specifically, the cost of deposit finance now includes not only the interest rate paid to depositors, R^D, but also the cost of servicing an additional unit of deposits, $g_D(D, L)$. Similarly, the bank deducts the marginal cost of screening and servicing loans, $g_L(D, L)$, from the lending rate that it receives from borrowers. With these adjustments, the conditions for a binding liquidity or for a binding capital requirement remain the same, and competition still equalizes the lending rate to the weighted average of the required return on equity and the all-in cost of financing loans with deposits, with the weights determined by the capital requirement. Because g exhibits constant returns to scale, the marginal zero-profit condition in (11) continues to imply zero total economic profits ($\pi^B = 0$). Also reflecting constant returns to scale, only ratios (not levels) of the balance sheet components are determined by the above optimality conditions.\(^{22}\)

The four cases enumerate when each of the regulatory requirements is binding or slack as a function of variables that the bank takes as given only (that is, independent of D and L).

Liquidity risk choice and solution under a low liquidity requirement ($\lambda < w$)

As mentioned, analysis of the bank’s general problem in (4) differs when liquidity regulation is not as stringent – that is, when $\lambda < w$ – since the bank must decide whether or not to self-insure against liquidity problems. That said, many of the details of the analysis are similar to the case $\lambda \geq w$ and so are relegated to Appendix A.3. I focus here on describing and explaining the results.

The basic intuition is as follows. If holding government bonds is costly (in that $R^B < R^D + g_D$) and the probability of liquidity stress is low, then the bank will be tempted to forego the option to self-insure and to set B at its minimum level, λD, which is less than stressed withdrawals, wD, and entails the risk of failure due to liquidity stress. This is especially likely when the required liquidity ratio λ is far below w. It is also especially likely if the bank has little equity, so that most of the losses from such an event are borne by the government. Thus, a capital requirement also turns out to improve incentives to self-insure.

\(^{22}\)The partial derivatives of g are homogenous of degree zero, so $g_D(D, L) = g_D(D/L, 1)$, etc. As discussed below, equilibrium conditions pin down aggregate levels.
against liquidity risk, in addition to improving incentives with regard to the credit risk profile of the bank.

Formally, the following proposition describes the conditions under which the bank opts to hold liquid assets at a level commensurate with its liquidity risk profile.

Proposition 4 (Liquidity risk choice & solution with a low requirement) Suppose \(\lambda < w \) and \(\gamma \geq \phi \sigma / R^E \), so \(\sigma = 0 \). Let

\[
\zeta \equiv (1 - \gamma) \left(\frac{w}{1 - w} - \frac{\lambda}{1 - \lambda} \right) (R^D - R^B) - \gamma \left(\frac{p}{1 - p} \right) R^E + h
\]

If \(\zeta \leq 0 \) then the bank self-insures against liquidity stress by setting \(B \geq wD \) and proposition 7 applies; the bank acts as if \(\lambda = w \). If \(\zeta > 0 \), then the bank sets \(B = \lambda D \), is at risk of failure due to liquidity stress, and proposition 8 applies.

Proof: See Appendix A.3.

The variable \(h \) is defined in equation (34) and collects terms related to differences in intermediation costs between the two business models (that is, \(B \geq wD \) versus \(B = \lambda D \)). For the special case of costless intermediation \((g \equiv 0) \), \(h = 0 \). Propositions 7 and 8 can be found in the appendix and closely mirror proposition 2, with the following exceptions: If \(\zeta > 0 \), the bank fails if there is an episode of liquidity stress. Moreover, because shareholders get zero in that event, they require that the realized return on equity conditional on such stress not occurring is higher by a factor \(1/(1 - p) \). If \(\zeta \leq 0 \), the bank’s behavior is identical to a bank whose liquidity requirement equals \(w \).

As expected, an imprudent liquidity risk profile is especially tempting if the spread \(R^D - R^B \) is high, or if the level of stressed withdrawals \(w \) is high relative to the liquidity requirement \(\lambda \) – these factors relate to the cost of self-insurance against liquidity stress. The temptation is smaller if the odds of liquidity stress \((\frac{p}{1 - p}) \) are high or if the capital requirement \(\gamma \) is high – these factors relate to the expected (private) benefits of insuring against distress from liquidity problems.

A high capital requirement can help incentivize a prudent liquidity risk profile by ensuring that the bank internalizes more of the potential losses from liquidity stress. In addition, even a liquidity requirement that is somewhat below \(w \) still has a similar positive incentive effect. Both effects are helpful if (realistically) the exact value of \(w \) is not known to the regulator. For example, if the regulator estimates that \(w \) is, say, 20 percent, but could be as high as, say, 30 percent for some banks, a 20 percent liquidity requirement could be sufficient if the capital requirement is high enough, avoiding the economic inefficiency of a uniform 30 percent liquidity requirement.
2.3 Firms

Nonfinancial firms cannot create liquidity through deposits. They can, however, produce output of the good using capital and labor as inputs. Capital (K_t) is purchased at the beginning of the period and can be financed by issuing equity to households (E^F_t) and by borrowing from banks (L_t), so $K_t = E^F_t + L_t$.\footnote{In the model, nonfinancial firms do not want to hold any government bonds as $R^B \leq R^L \leq R^E$ in equilibrium, so explicit consideration of the possibility would not change any of the results.}

Firms can employ a riskless or a risky production technology. The riskless technology is standard. Output in period t is $F(K_t, H_t)$, where H_t is hours of labor input and $F()$ is a well-behaved production function exhibiting constant returns to scale. A fraction δ of the capital stock depreciates during the period. Firms last for one period\footnote{The absence of adjustment costs and agency problems implies that this is without loss of generality.} and each period, there is a continuum of firms with mass normalized to one, so each firm takes prices as given.

The firm maximizes shareholder value net of initial equity investment, subject to the constraint that equity cannot be negative:

$$\pi^F = \max_{K,H,E^F \geq 0} \left(F(K, H) + (1-\delta)K - WH - R^L(K - E^F) \right) / R^E - E^F$$

Here loans have been substituted out using the balance sheet identity. The first-order conditions for the choices of labor and capital are standard:

$$\begin{align*}
(H) & \quad F_H(K, H) = W \\
(K) & \quad F_K(K, H) + 1-\delta = R^L \\
(E^F) & \quad R^L/R^E = 1 - \mu, \quad \mu \geq 0, \quad \mu E^F = 0
\end{align*}$$

A finite solution requires $R^E \geq R^L$. If $R^E > R^L$, then $E^F = 0$, so $K = L$. In other words, if bank loans are cheaper than equity finance, the firm chooses to use only bank loans to finance its capital. If $R^E = R^L$, the firm’s financial structure is not determined by individual optimality. These optimality conditions, together with the constant returns to scale assumption, imply that economic profits, π^F, equal zero.

Instead of this riskless technology, firms can also choose to use a risky technology, in which case output is $F(K, H) + \sigma_{RF}\varepsilon K$, where ε is the same negative mean, idiosyncratic shock as defined in the subsection on loans with credit risk (and $\sigma_{RF} \geq \bar{\sigma}$). The optimal loan contract with such a firm is the type of risky loan described above, which provides a
rationale for capital regulation. As mentioned, the analysis will mostly focus on the case that (5) holds, so that banks do not engage in excessive risk taking. No risky firms then exist in equilibrium.

2.4 Government

The government runs fiscal policy, manages the deposit insurance fund, sets capital and liquidity requirements, and conducts bank supervision. The purpose of bank supervision is not only to enforce regulations, but also to monitor excessive risk taking by banks, σ. Supervisors can to some degree detect such behavior and stop any bank that is ‘caught’ attempting to take on excessive risk in order to protect the deposit insurance fund. It seems reasonable to assume that a small amount of risk taking is harder to detect than a large amount. The largest level of risk-taking that is still just undetectable is $\bar{\sigma}$.

The assumption of imperfect observability of excessive risk taking is important. If regulators could perfectly observe each bank’s riskiness, they could simply adjust each bank’s deposit insurance premium so as to make the bank pay for the expected loss to the deposit insurance fund, thus eliminating any moral hazard. They could also achieve this by adjusting each bank’s capital requirement in response to its true risk. But such perfect observability is simply not realistic, whence the moral hazard problem.

The government’s fiscal policy is to maintain a constant level of government debt, \bar{B}. T is tax revenue spent on bank supervision. The model allows for a resource cost arising from the resolution of failed banks by the government. $\psi_{Liq} \geq 0$ denotes the deadweight resolution cost per unit of loans in banks that fail early due to liquidity stress, while $\psi_{Sol} \geq 0$ denotes the resolution cost per unit of loans in banks that fail due to insolvency. Lump-sum taxes are

$$ T_t = (R^B_t - 1)\bar{B} + T + p1\{B_t < wD_t\}(\psi_{Liq} - (r_t - \sigma_t\xi))L_t $$

$$ + (1 - p1\{B_t < wD_t\})\int_{-\infty}^{-r_t/\sigma_t} (\psi_{Sol} - (r_t + \sigma_t\varepsilon))L_t dF_\varepsilon(\varepsilon) $$

See Van den Heuvel (2008), Appendix B, for details. The supervisory bound on σ can be viewed as a more granular risk-based capital requirement or a risk-based deposit insurance premium, but one based on observable risk. Under that interpretation, regulators deter detectable excessive risk taking by imposing a sufficiently high capital requirement, or a sufficiently high deposit insurance premium on that risk when detected. The precise value of this requirement or premium when $\sigma > \bar{\sigma}$ is irrelevant, as it is never implemented in equilibrium. Not inconsistent with this, the model assumes that the bank actually pays a deposit insurance premium equal to zero; this is the actuarially fair deposit insurance premium when (5) holds – the case I will focus on.
The terms on the right-hand side are respectively the (net) interest on the government debt, supervision spending, the cost of resolving banks that fail due to liquidity stress, net of gains/losses from the operation of these banks in resolution by the deposit insurance fund, and the loss to deposit insurance fund due to bank failures associated with loan losses, including deadweight resolution costs. If (5) holds and \(\lambda \geq w \) (or \(\zeta \leq 0 \); see prop. 4), then taxes are simply: \(T_t = (R_t^B - 1) \bar{B} + T \).

3 Financial Stability Policy

This section provides an initial, qualitative overview of the welfare implications of bank regulation and characterizes the best division of labor between capital and liquidity requirements.

Optimal regulatory policy involves macroprudential trade-offs. On the cost side, regulation reduces the ability of banks to create liquidity and impacts investment, as will be shown explicitly in later sections. On the benefit side, the capital requirement can deter excessive risk taking by banks, whether from lending to excessively risky borrowers or from holding inadequate buffers of liquid assets. The liquidity requirement only addresses the latter threat to financial stability, but not the former.

When it happens, banks’ excessive risk taking causes a high rate of bank failures, resulting in a situation that resembles a financial crisis. Specifically, in the model, the bank failure rate when banks take excessive risk is \(p \) (for liquidity risk), \(F_e(-r_t/\bar{\sigma}) \) (for credit risk), or \(p + (1 - p)F_e(-r_t/\bar{\sigma}) \) (if both are present). Bank failures entail negative externalities: Losses are transferred onto the deposit insurance fund and ultimately to taxpayers. Moreover, this is not a mere transfer from taxpayers to banks, as bank failures and ‘bailouts’ come with additional deadweight costs and negative spillovers, and their prospect can create distortions ex-ante. In the model, these costs are very simple: the ex-post resolution costs, \(\psi_{Liq} \) and \(\psi_{Sol} \), and the ex-ante direct cost of lending to inefficient, excessively risky firms, \(\xi \). Of course, in reality such costs are vastly more complex.

If these costs (that is, \(\psi_{Liq} \), \(\psi_{Sol} \), and \(\xi \) in the model) are sufficiently high, then it will be socially optimal to deter banks’ excessive risk taking, even as the capital and liquidity regulations also entail welfare costs due to reduced liquidity creation by banks, as will be shown explicitly. Motivated by estimates of the costs of financial crises, I will adopt the view that avoiding financial crises – and thus excessive risk taking – is in fact socially desirable.\(^{27}\)}

\(^{27}\)Preventing financial crises in the model requires fully deterring excessive risk taking, since banks’ risk choices have dichotomous solutions – that is, either \(\sigma = 0 \) or \(\sigma = \bar{\sigma} \), and, if \(\lambda < w \), liquid assets are either
Figure 1 illustrates the welfare implications of different regulatory choices under this view. It shows the level of welfare as a function of the capital requirement for two levels of the liquidity requirement: $\lambda = 0$ and $\lambda = w$. The figure relies on results derived later in this paper regarding the welfare costs of the two requirements, on estimates of the magnitude of their benefits in terms of reducing the expected costs of financial crises, obtained from BCBS (2010), and on assumptions regarding the values of certain parameters (see Appendix B for details). The parameters in question are difficult to know or estimate with any precision, so the figure should be regarded as illustrative. In particular, the numbers on the axes should not be taken seriously.

The solid black line represents welfare without liquidity regulation. For low levels of the capital requirement, welfare is low, reflecting the costs of widespread bank failures, which put the economy in a crisis-like state. These failures occur without adequate regulation as banks take on excessive credit and liquidity risk. Once the capital requirement is increased to its threshold level for no excessive credit risk taking ($\gamma = \phi_Z \bar{\sigma}/R^E$ – see proposition 1), banks are incented to refrain from such risk and there is an upward jump in welfare, reflecting a reduced risk of bank failures. Moving further to the right, a second upward jump occurs at a higher level of the capital requirement, at which banks have enough ‘skin-in-the-game’ (according to the condition in proposition 4) so that they self-insure against liquidity stress ($B \geq wD$), further reducing the rate of bank failures and improving welfare.\(^{28}\) Outside the jumps, the relation between the capital requirement and welfare is negative, as indicated by the negative slope of the line segments. This reflects the gross welfare cost of the capital requirement due to reduced liquidity creation by banks, an effect that is characterized more precisely and quantified in sections 5 and 6.

Welfare with liquidity regulation is depicted by the solid blue line. Specifically, the liquidity requirement is set at the rate of deposit withdrawals in the event of liquidity stress ($\lambda = w$). As a result, there are no bank failures due to liquidity stress, and welfare is strictly higher for most levels of the capital requirement, as the gain from the reduction in bank failures exceeds any cost of reduced net liquidity creation by banks which now have to satisfy the liquidity requirement. Only for levels of the capital requirement that are high enough to incentivize prudent liquidity management with $\lambda = 0$ is welfare equal with and

\(^{28}\)The net increase in welfare reflects the gain from the reduction in bank failures minus the cost of reduced net liquidity creation by banks, which start to hold more government bonds. The figure is constructed such that the net increase is positive, consistent with the evidence showing high costs of financial crises and the view that preventing such crises is socially desirable.
As shown in the chart, the strictly highest level of welfare is achieved with liquidity regulation and with the capital requirement set at its first threshold level, which deters excessive credit risk taking. This combination prevents bank failures from both forms of excessive risk taking – liquidity and credit – at the lowest cost. Although liquidity regulation is not necessary to prevent all excessive risk taking, using only capital regulation is inefficient because it requires a higher capital requirement – which is costly – and it results in $B \geq wD$ in any case, so that the gross welfare cost of increased government bond holdings by banks is the same as with $\lambda = w$. The liquidity requirement thus addresses the problem of excessive liquidity risk more directly and therefore more efficiently.

In sum, the socially optimal policy is to use both tools and set $\gamma = \phi \varepsilon \tilde{\sigma} / R^E$ and $\lambda = w$. This represents a simple division of labor: it is optimal to use the liquidity requirement to deal with liquidity risk and let the capital requirement deal with credit risk.\footnote{From proposition 4, it can be seen that slightly lower levels of λ (levels that will keep $\zeta \leq 0$ given without liquidity regulation.}
The discrete changes in risk taking and welfare at threshold levels of the requirements – the jumps in the chart – are a stark implication of the model. They occur because banks are homogenous and their risk choices have dichotomous solutions, with either zero or maximum risk.30 Although analytically convenient, this implication is unlikely to generalize to environments with heterogenous banks or regulatory uncertainty.

To illustrate this, suppose that the regulator is uncertain about the values of the thresholds. This seems plausible since the underlying parameters, like the “value-at-risk” associated with excessively risk loans (ϕ_e) and the probability and rate of stressed withdrawals (p and w), are difficult to know with great precision. The dashed lines in figure 1 show expected welfare when there is uncertainty about the threshold levels of the capital requirement.31 As can be seen, the relation between the requirements and welfare is much smoother in the presence of regulatory uncertainty.

Two further conclusions emerge in this setting. First, the welfare-maximizing level of the capital requirement is higher with uncertainty and, although not shown explicitly, it is also increasing in the degree of uncertainty. The higher level is needed as a precaution to ensure that the probability of excessive risk taking and associated bank failures is kept acceptably low. Exactly what ‘acceptably low’ means depends on the cost of crises and the gross welfare cost of raising the capital requirement. If there is little cost of tightening regulation, then the probability of a crisis should be brought to (nearly) zero by setting a very high capital requirement.

This leads to the second conclusion: with regulatory uncertainty, the optimal capital requirement depends negatively on the marginal welfare cost of the capital requirement. Similar conclusions hold for the liquidity requirement if the regulator is uncertain about the level of withdrawals in liquidity stress (w). Although not modelled, one might also expect similar implications if banks were heterogenous in, say, their risk-taking opportunities, which would likely result in a smoother relationship between the aggregate rate of bank failures and regulation.

The next section will present a positive analysis of general equilibrium. Motivated by $\gamma = \phi_e \sigma / R^2$ may be able achieve the same level of welfare as with $\lambda = w$. In addition, to the extent that the quality of supervision can be improved (perhaps by devoting more resources to bank supervision), that could improve welfare by reducing σ.

30That is, either $\sigma = 0$ or $\sigma = \bar{\sigma}$, and, if $\lambda < w$, liquid assets are either minimal (λD) or high enough to forestall all liquidity stress (at least wD).

31The uncertainty is captured by thresholds that are normally distributed with standard deviations equal to 0.02 around means set at 0.08 and 0.13.
the arguments above, it will focus on the case that regulation is successful in preventing excessive risk taking and financial crises. The remainder of the paper will then characterize and quantify the gross welfare costs of the two requirements and, finally, revisit the welfare benefits.

4 General Equilibrium

Given a government policy λ, γ, and T, an equilibrium is defined as a path of consumption, capital, employment, and financial quantities and returns, for $t = 0, 1, 2, \ldots$, such that households, banks and firms all solve their maximization problems, taxes are set according to (16), and all markets clear:

$$e_t = E_t + E_t^F, \quad d_t = D_t, \quad L_t = K_t - E_t^F, \quad B_t + b_t = B, \quad H_t = 1$$ (17)

and, for the goods market,

$$F(K_t, 1) - \xi \sigma_t L_t + (1 - \delta)K_t = c_t + K_{t+1} + g(D_t, L_t) + p1_{\{B_t < wD_t\}}\psi_{\text{Liq}}L_t \quad (18)$$

$$+(1 - p1_{\{B_t < wD_t\}})F(\varepsilon(-r_t/\sigma_t)\psi_{\text{Sol}}L_t + T$$

For the reasons explained in the previous section, I will focus on the case that regulatory policy deters excessive risk taking by banks: $\lambda \geq w$ and $\gamma \geq \phi \sigma / R^E$. The government can achieve this by setting λ and γ sufficiently high. In that case, there are no bank failures, as $1_{\{B_t < wD_t\}} = 0$, $\sigma_t = 0$, and $F(\varepsilon(-r_t/\sigma_t) = 0$. By combining this with the market clearing conditions, equations (1), (2), (3), (8), (13), (14) and (15), and proposition 3, the resulting equilibrium allocation can be characterized as a dynamic system in (K_t, c_t). This system is shown in full in Appendix C, which also provides a more technical discussion of its characteristics than what follows. Here, I highlight some key features of the equilibrium.

First, the bank capital requirement typically binds in equilibrium due to the convenience yield on deposits, which makes them a cheaper source of funds for banks than equity (see (2)). For example, without noninterest costs of banking ($g = 0$), the capital requirement binds whenever the convenience yield on deposits exceeds a fraction λ of the convenience yield on government bonds.\footnote{With positive noninterest costs, the capital requirement binds under the same condition provided the convenience yield on deposits is taken net of their marginal noninterest costs; that is, the capital requirement binds if $u_d(c_t, d_t, b_t) - gD(d_t, L_t)u_d(c_t, d_t, b_t) > \lambda u_b(c_t, d_t, b_t)$. Moreover, as shown in Appendix C, this condition always holds in equilibrium if $gL(d_t, L_t) > 0$.}
Second, the liquidity requirement may or may not bind, depending on the convenience yield of government bonds relative to bank deposits. Specifically, it binds when, at the margin, the convenience yield of Treasuries exceeds the convenience yield of bank deposits, net of the marginal noninterest costs of servicing those deposits; that is, if

$$u_b(c_t, d_t, b_t) > u_d(c_t, d_t, b_t) - g_D(d_t, L_t)u_c(c_t, d_t, b_t)$$

Third, investment can be affected by the capital requirement as well as the liquidity requirement, if binding. In equilibrium, the marginal product of capital is equated with the banks’ lending rate, which can be lower than the cost of equity and depend on these requirements. Two features of the model are key to understanding how and when this can happen. First, as noted, households’ liquidity preference implies that the pecuniary return on deposits is lower than the return on equity. Second, competitive banks will pass on the cheap deposit finance in the form of a lower lending rate, but this pass-through is moderated by regulation.

Take the case that the capital and liquidity requirements both bind. Then the cheap deposit finance lowers the lending rate by $$(1 - \gamma)(R^E - \tilde{R}^D(\lambda))$$, as a fraction γ of loans is still financed with bank equity and as the liquidity regulation raises the all-in cost of financing loans with deposits by $\tilde{R}^D(\lambda) - R^D = \frac{\lambda}{1 - \lambda}(R^D - R^B)$. Using the households’ first-order conditions for deposits and bonds and taking into account noninterest costs yields a net reduction in the lending rate, relative to the return on equity, that is equal to

$$R^E_t - R^L_t = \Delta_{K,t} \equiv 1 - \frac{1}{1 - \lambda} \left(\frac{u_d(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - g_D(d_t, L_t) - \lambda \frac{u_b(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} \right) - g_L(d_t, L_t)$$

This is the equilibrium analogue to the bank’s zero profit condition (11). Thus, the marginal product of capital is given by

$$F_K(K_t, 1) + 1 - \delta = R^L_t = \beta^{-1} \frac{u_c(t - 1)}{u_c,t} - \Delta_{K,t}$$

(see (1) and (14)). If the spread Δ_K is positive, so that $R^L < R^E$, firms will rely exclusively on the cheaper bank loans to finance investment and $L = K$ in such a ‘pure bank finance’ equilibrium.33 In that equilibrium, because banks pass on the low cost of deposits to firms, the steady state capital stock is higher than the level implied by the standard growth model’s modified golden rule.

33 Appendix C shows that the condition $\Delta_K > 0$ is a necessary and sufficient condition for a pure bank finance equilibrium ($L = K$), regardless of the bindingness of the regulatory requirements. That said, in a pure bank finance equilibrium the capital requirement always binds, because $R^L < R^E$ (see proposition 3).
Moreover, as a consequence, the steady state levels of the capital stock and income per capita are not invariant to changes in the liquidity requirement or in the capital requirement, as these requirements influence the spread \(R^E - R^L \) (see (19)). With respect to the capital requirement, this non-invariance result is similar to the one obtained in Van den Heuvel (2008) and explored more fully in Begenau (2020) and Van den Heuvel (2006). With respect to the liquidity requirement, the non-invariance result is, as far as I know, novel within the context of this type of model.\(^\text{34}\)

As a fourth key feature, the equilibrium can also be characterized by ‘mixed finance,’ where firms finance investment with a combination of bank and non-bank funding (so \(L < K \)). In the model, non-bank funding takes the form of firm equity, but this can be interpreted more broadly as representing any funds raised on capital markets or through non-bank financial intermediaries, including shadow banks. Technically, the mixed finance equilibrium occurs if \(\Delta_K < 0 \) when evaluated at \(L = K \). In such an equilibrium, firms use both bank loans and equity, in such proportion that, in equilibrium, their costs are exactly equal: \(R^L = R^E \), and the relative size of the banking sector is then determined endogenously by that condition (or, equivalently, by \(\Delta_K = 0 \)).\(^\text{35}\)

Fifth, very stringent regulation can lead to disintermediation or a shift to shadow banking. Intuitively, the mixed finance equilibrium prevails when the resource cost of bank intermediation, \(g \), is high relative to the liquidity services of deposits, when the capital requirement is high, or because of the combination of a high liquidity requirement, \(\lambda \), and a high liquidity premium (low yield) on government bonds; see (19). Thus, a very high capital or liquidity requirement can cause migration toward non-bank finance, whether through capital markets or through non-bank intermediaries, such as shadow banks. For the liquid-

\(^{34}\)The result contrasts starkly with the well-known superneutrality result of the Sidrauski (1967) model. In that model, liquidity preference and monetary policy do not influence the steady state capital stock. A key difference is that the supply of liquid assets (money) is exogenous in the Sidrauski model.

\(^{35}\)In contrast to the pure bank finance case, with \(R^L = R^E \) in a mixed finance equilibrium, the steady state level of the capital stock satisfies the modified golden rule \((\frac{MPK}{\beta})^1 \), as the return on equity does not command a convenience yield). Accordingly, the long-run level of capital is independent of liquidity preference or any banking or regulatory parameters, although these elements do influence the composition of the financial sector, as noted below.

Given that firms in the real world do not exclusively use bank loans, it may seem that the mixed finance equilibrium is more realistic, and that the dependence of economic activity in the long run on regulation is a mere theoretical possibility. However, that would be taking the model too literally in my view, as, in reality, bank and non-bank funding are not perfect substitutes for all firms, as they are in the model by simplifying assumption. In reality, some firms are bank-dependent, and even firms that can access capital markets often rely on backup lines of credit from banks to facilitate that access.
ity requirement, this is more likely to happen if the convenience yield on government bonds is high; that is, when the supply of government bonds or close substitute high-quality liquid assets is low relative to the demand for such assets.

5 The Welfare Costs of Regulation

To quantify the welfare cost of the liquidity and capital requirements, we will use a social planner’s problem that is constrained to respect the regulations. This planner’s problem is designed to replicate the decentralized equilibrium, rather than to solve for the first-best. After showing that the planner’s allocation is indeed identical to the decentralized equilibrium, this equivalence will then be exploited to analytically derive two simple formulas that will serve as sufficient statistics for the welfare costs of the requirements.

Define the following constrained social planner’s problem:

\[
\begin{align*}
V_0(\theta) &= \max_{\{c_t,d_t,b_t,B_t,L_t,K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t, d_t, b_t) \\
\text{s.t. } K_{t+1} &= F(K_t, 1) + (1 - \delta)K_t - c_t - g(d_t, L_t) - T, \\
B_t &\geq \lambda d_t, \ (1 - \gamma)L_t + B_t \geq d_t, \ B_t + b_t = B, \ K_t \geq L_t
\end{align*}
\]

where \(\theta = (\lambda, \gamma, K_0) \). The constraints correspond to the social resource constraint (for \(\sigma = 0 \) and \(\lambda \geq w \)), the liquidity requirement, the capital requirement, bond market clearing, and the nonnegativity constraint on firm equity, in that order. Appendix C shows that the allocation of this planner is identical to the decentralized equilibrium when regulation satisfies \(\lambda \geq w \) and condition (5) for all \(t \geq 0 \), so that there is no excessive risk taking. Under these conditions, therefore, the constrained social planner’s problem replicates the decentralized equilibrium and welfare in that equilibrium is equal to \(V_0(\theta) \).

With that, it is straightforward to derive expressions for the marginal welfare costs of the two regulations by differentiating \(V_0(\theta) \) with respect to \(\lambda \) and \(\gamma \), using the envelope theorem. Combining the resulting expressions with the planner’s first-order conditions, exploiting the equivalence of the planner’s allocation with the decentralized equilibrium’s, and using the households’ optimality conditions for the choices of deposits and bonds, (2) and (3), yields the main results – two sufficient statistics for the marginal welfare costs. These are presented in the next two propositions, starting with the liquidity requirement:
Proposition 5 (Gross welfare cost of the liquidity requirement) Assume that the economy is in steady state in the current period, that \(\lambda \geq w \) and that (5) holds. Consider permanently increasing the liquidity requirement \(\lambda \) by \(\Delta \lambda \). A first-order approximation to the resulting welfare loss, expressed as the welfare-equivalent permanent relative loss in consumption, is \(\nu_{LIQ} \Delta \lambda \), where

\[
\nu_{LIQ} = \frac{d}{c} \left(R^D + g_D(d, L) - R^B \right) (1 - \lambda)^{-1}
\]

(22)

Proof: See Appendix C.

The above formula is empirically implementable. Remarkably, it does not rely on any assumptions about the functional form of preferences, beyond the standard assumptions of monotonicity, differentiability and concavity. Instead, the formula relies on asset yields to reveal the strength of the household’s preference for liquidity. In addition, the measurements presented below will also avoid making any functional form assumptions on the cost function \(g \). As is common for “sufficient statistics” formulas, there are multiple combinations of primitive parameters and functional forms that are consistent with the inputs to the formulas, and all such combinations have the same welfare implications (Chetty, 2009).

The result shows that there is a positive (gross) welfare cost associated with bank liquidity regulation only to the extent that the interest rate on deposits, plus the marginal cost of servicing deposits, exceeds the interest rate on government bonds. The logic is simple: from the perspective of the other agents, the liquidity requirement effectively forces banks to transform some government bonds into deposits, both instruments prized for their liquidity. Thus, imposing a liquidity requirement entails a social cost only to the extent that the liquidity services of deposits are, at the margin and net of the noninterest cost of creating these services, valued less than those of Treasuries; only then is there a costly net reduction in liquidity available to investors. The deposit-Treasury spread, adjusted for the noninterest cost of deposits, reveals whether this is true or not.

The formula takes into account gains and losses associated with the move to a new steady state and is valid whether the equilibrium is characterized by pure bank finance or by mixed bank and nonbank finance and even if the liquidity requirement does not bind (in which case \(R^D + g_D(d, L) = R^B \), so \(\nu_{LIQ} = 0 \) as expected). The regulation entails a gross social cost whenever the requirement binds and is costless otherwise. Moreover, the formula is valid even if we discard all of the assumptions adopted to generate the benefits of regulation (section 2.2.1).36

36In that case, \(w \) and \(\phi \) should be taken to equal zero in propositions 5 and 6.
The next key proposition presents a sufficient statistic for the marginal gross welfare cost of the capital requirement:

Proposition 6 (Gross welfare cost of the capital requirement) Assume that the economy is in steady state in the current period, that $\lambda \geq w$ and that (5) holds. Consider permanently increasing the capital requirement γ by $\Delta \gamma$. A first-order approximation to the resulting welfare loss, expressed as the welfare-equivalent permanent relative loss in consumption, is $\nu_{\text{CAP}} \Delta \gamma$, where

$$\nu_{\text{CAP}} = \frac{L}{c} \left(R^E - \tilde{R}^D(\lambda) - (1 - \lambda)^{-1} g_D(d, L) \right)$$

(23)

Proof: See Appendix C.

Recall that $\tilde{R}^D(\lambda) \equiv R^D + \frac{\lambda}{1 - \lambda} (R^D - R^B)$. Again, the above formula is empirically implementable, does not rely on any assumptions about the functional form of preferences, and takes into account gains and losses associated with the move to a new steady state. It is valid whether the equilibrium is characterized by pure bank finance or by mixed finance, even if the capital requirement does not bind (in which case $R^E = \tilde{R}^D(\lambda) + (1 - \lambda)^{-1} g_D$, so $\nu_{\text{CAP}} = 0$ as expected), and even if all assumptions adopted to generate the benefits of regulation (section 2.2.1) are discarded.

An increase in the capital requirement beyond the threshold necessary for financial stability lowers welfare by constraining the ability of banks to issue deposit-type liabilities, which are valued by households for their liquidity. The spread between the risk-adjusted\(^\text{37}\) return on bank equity and the pecuniary return on deposits, $R^E - R^D$, reveals the strength of households’ preferences for the liquidity services of deposits. However, the production of these services also entails noninterest costs, $g_D(d, L)$, and requires banks to hold more government bonds—which are also prized for their liquidity—to satisfy the liquidity requirement. To account for this, the formula deducts the marginal noninterest cost of deposits\(^\text{38}\) and factors in the impact of the liquidity requirement, λ, by using the all-in cost of financing loans with deposits, $\tilde{R}^D(\lambda)$, instead of R^D. Only if a positive spread remains after these adjustment, is a scarcity of deposits due the capital requirement revealed and only then is there a welfare effect at the margin.

\(^{37}\)Recall that bank equity is aggregate-risk-free in the model, so there are no Modigliani-Miller ‘offsets.’ However, when the model is confronted with the data in the next section, this will be a key area of concern.

\(^{38}\)The factor $1/(1 - \lambda)$ multiplying $g_D(d, L)$ reflects the fact that the bank must raise $1/(1 - \lambda)$ in deposits to finance one unit of lending, while satisfying the liquidity requirement.
This result generalizes the one obtained in Van den Heuvel (2008), which does not feature liquidity regulation. Proposition 1 in the latter paper is nested by setting \(\lambda = 0 \) in (23):

\[
\nu_{CAP}|_{\lambda=0} = (L/c) \left(R^E - R^D - g_D(d, L) \right)
\]

(24)

Thus, \emph{for given observables} \((R^E, R^D, \text{ etc.})\) imposing a liquidity requirement lowers the welfare cost of the capital requirement if the liquidity requirement binds. Of course, these observables are generally not completely invariant to changes in the liquidity requirement.

6 Measurement of the Welfare Costs

The goal of this section is to measure the gross welfare costs of bank liquidity requirements and capital requirements by combining the formulas derived in the previous section with data. To that end, I use annual aggregate balance sheet and income statement data for all FDIC-insured commercial banks in the United States. These data are obtained from the FDIC’s Historical Statistics on Banking (HSOB) and are based on regulatory filings (‘call reports’). I employ data from the period 1986 to 2019.\(^{40}\)

A key challenge to the empirical application of the formulas in (22) and (23) is the measurement of the marginal net noninterest cost of servicing deposits, \(g_D\). This includes the cost of ATMs, some of the cost of maintaining a network of branches, etc. Fees on deposits should be netted out. The call reports contain data on noninterest expense and revenue, and the difference, net noninterest cost, is nontrivial, averaging 1.3 percent of total assets on an annual basis over the 1986-2019 period. However, there is little information in the data permitting a breakdown by activity (e.g. servicing deposits, screening loan applications, collecting payments, etc.).

Fortunately, however, the model suggests a way to infer the marginal net noninterest cost of deposits when banks voluntarily hold Treasuries on their balance sheet. Specifically,

\(^{39}\)The statement of proposition 1 in Van den Heuvel (2008) also uses the fact that, in that model, \(L = d/(1 - \gamma) \) if \(R^E - R^D - g_D(d, L) \neq 0 \).

\(^{40}\)Regulation Q, which placed restrictions on banks' deposit rates, was fully phased out on January 1, 1986.
proposition 3 shows that whenever the liquidity requirement is not binding, then

$$R^D + g_D(d, L) = R^B$$

The interpretation is banks will only hold more Treasuries than required if investing in Treasuries and financing them with deposit-type liabilities is not a money-losing activity, taking into account noninterest costs. Thus, by finding a historical period when banks held Treasuries well in excess of any regulatory requirements, we can infer g_D from that period’s Treasury-deposit spread.

Figure 2 shows U.S. Treasuries and excess reserves held by U.S. depository institutions, expressed as a share of total assets, from 1986 to 2019.\(^\text{41}\) As can be seen from the chart, between 1986 and 2000, banks invested a significant part of their balance sheet in Treasuries.

\(^\text{41}\)In a sense, excess reserves can be thought of as holding Treasuries through the Federal Reserve’s balance sheet. Before 2008, excess reserves were not renumerated by the Fed and were a negligible share of banks’ total assets. In 2008, the Fed started paying interest on excess reserves and embarked on large scale asset purchases, developments that boosted excess reserves in the following years. See Ennis and Wolman (2015) for an empirical analysis of banks’ excess reserves in this period.
(more than 1 percent of total assets). This asset allocation was voluntary, as there was no Basel-style liquidity requirement applicable during this period (so $\lambda = 0$ in the sense of the model).\footnote{One could view this period as one where liquidity regulation was not needed because high-quality liquid assets were abundant so banks voluntarily held them in sufficient amounts.} Reserve requirements were in place, but these could only be satisfied by holding reserves at the Fed, not by holding Treasuries. Thus, I use data from the 1986-2000 period to infer g_D using equation (26).\footnote{Starting around 2014, banks also held notable amount of Treasuries. However, as discussed in more detail below, holdings in this period are affected by the anticipation and implementation of liquidity regulation.}

For R^B, I use the 3-month Treasury bill rate on the secondary market. The average net interest rate on deposits, $R^D - 1$, is calculated as the HSOB’s Interest on Total Deposits divided by Total Deposits.\footnote{All data are nominal. While the model is real, using nominal data consistently is correct, because the formulas for the welfare costs contain only ratios of quantities and spreads of returns.} For the period 1986-2000, the resulting average Treasury-deposit spread, $R^B - R^D$, equals 1.22 percent. Accordingly, I set the marginal net noninterest cost associated with deposits at $g_D = 0.0122$ per annum.

As a robustness check, a second estimate for the marginal net noninterest cost of deposits can be obtained from Hanson, Schleifer, Stein, and Vishny (2015). They use a hedonic regression approach and estimate the average cost of servicing deposits at 1.30 percent. Netting out the noninterest income from service charges on deposit accounts (0.49\%) yields a marginal net noninterest cost of 0.81 percent, a little below the first estimate.

It is useful to compare these estimates to an upper bound that can be obtained by attributing all net noninterest cost to servicing deposits and none to lending. Maintaining the assumption of constant returns to scale of g, this upper bound equals $g_D(D, L) = g(D, L)/D$.\footnote{Constant returns to scale imply $g(D, L) = g_D(D, L)D + g_L(D, L)L \geq g_D(D, L)D$.} The latter ratio is equal to 0.0216 per annum, on average for the same time period. Consistent with the model, the upper bound exceeds the spread-based estimate and suggests that about half of total net noninterest cost can be attributed to deposits (slightly more than half for the spread-based estimate and a bit less than half for the Hanson et al.-based estimate). This implication strikes me as plausible.

To map the data into the remaining variables, I largely follow Van den Heuvel (2008). For deposits, D, the HSOB’s Total Deposits is used. For consumption, c, personal consumption expenditures from the NIPA is used. For loans, I use Total Assets net of U.S. Treasuries and excess reserves. To quantify the welfare costs, I calculate long run averages of the ratios and the spreads in the formulas in propositions 5 and 6, starting with the
welfare cost of liquidity requirements.

6.1 Liquidity Regulation

I use data from two distinct periods to gauge the long-run economic costs of liquidity regulation. The first period is 2001-2007, a time without liquidity regulation and when the introduction of such regulation likely would have been binding. As can be seen in figure 2, in each of these years, banks’ holding of Treasuries plus excess reserves were less than 1 percent of total assets, indicating that even a modest liquidity requirement would have necessitated changes to banks’ balance sheets and making this period a good candidate to gauge its potential welfare cost.\footnote{The 2001-2007 period might be viewed as time where banks counted on the lender of last resort and the interbank market, but also as a time when there was an overreliance on such backstops and excessive liquidity risk taking. Under that view, liquidity regulation was in fact necessary in these years, with the global financial crisis that followed these years in part the result of its absence.} The second period, 2016-2019, covers the time after the implementation of the LCR, a key Basel III liquidity requirement.\footnote{The years between the two periods contained the intense phase of the global financial crisis, three rounds of large scale asset purchases (QE) by the Fed, and several announcements that provided increasing clarity about the Basel III liquidity rules, making those years less arguably attractive for measuring their steady state welfare costs.}

Starting with the pre-Basel III period, over 2001-2007, the average nominal yields on Treasuries and deposits are, respectively, 2.80% and 2.04%, so the average spread is 76 basis points, less than the marginal noninterest cost of servicing deposits, which we have already estimated at 122 basis points. The mean deposit to consumption ratio is 0.67, and, as already noted, there was no liquidity requirement in place ($\lambda = 0$). Applying (22), the first-order approximation to the gross welfare cost of introducing a liquidity requirement set at $\lambda_{\text{new}} > 0$ is:

$$
\nu_{\text{LIQ}} \lambda_{\text{new}} = \frac{d}{c} (R^D + g_D(d, L) - R^B) (1 - \lambda)^{-1} \lambda_{\text{new}}
$$

$$
= 0.67 \times (0.0122 - 0.0076) \times 1 \times \lambda_{\text{new}} = 0.0031 \times \lambda_{\text{new}}
$$

To interpret this number, consider the cost of a 10 percent liquidity requirement, a level that is roughly comparable to Basel III’s LCR requirement.\footnote{The LCR requirement depends on more detailed balance sheet information than can be captured in a macroeconomic model. However, internationally, 10% appears a reasonable ratio to capture the LCR. In the U.S., the ratio appears somewhat higher, as elaborated below.} Its gross welfare cost is equivalent to a permanent loss in consumption of

$$
\nu_{\text{LIQ}} \times 0.1 = 0.0031 \times 0.1 \times 100\% = 0.031\%
$$
or about $4.5 billion per year (using 2019 consumption). While perhaps not trivial, this is a relatively small number compared to estimates of the welfare cost of inflation (see e.g. Lucas (2000)), or compared to many existing estimates of the cost of capital requirements (see e.g. BCBS (2010)). Even modest financial stability benefits would easily justify this cost.\footnote{It is interesting to note that the cost is non-negative, as predicted by the model. There is nothing in the empirical methodology that guaranteed a non-negative number, so this might be viewed as a small empirical validation of the model.}

Using the alternative estimate for the net noninterest cost of servicing deposits that is based on Hanson, Schleifer, Stein, and Vishny (2015) ($g_D = 0.81$ percent) results in an even lower measurement of the marginal welfare cost: $\nu_{LIQ} = 0.0003$. Using this, the gross welfare cost of a 10 percent liquidity requirement is equivalent to a permanent loss in consumption of only 0.003 percent, a tiny effect.

Our second set of measurements covers the period following the implementation of the LCR, 2016-2019.\footnote{The liquidity coverage ratio and the modified liquidity coverage ratio, a similar but less stringent requirement for smaller banks, were phased in at 90 percent of their final values beginning on Jan. 1, 2016 and at 100 percent beginning on Jan.1, 2017. Starting the measurement period in 2017 makes little difference to the results. Similarly, extending the sample to 2020, a year affected by the onset of the pandemic, has little impact.} Admittedly, this time span includes fewer years, raising the risk that short-term fluctuations in spreads have an outsize influence on the results. With that said, during this period, the average nominal yields on Treasuries and deposits are, respectively, 1.31\% and 0.50\%, so the average spread is 81 basis points, actually quite similar to the 2000s. The mean deposit to consumption ratio is 0.94, a somewhat higher value. To obtain a value for λ, I use the period’s average ratio of depository institutions’ holdings of Treasuries plus excess reserves to their total deposits. This results in $\lambda = 0.17$.\footnote{Because, as mentioned, the actual the LCR requirement depends on more detailed balance sheet information than can be captured in a tractable model, I measure its implied value for λ under the assumption that the LCR was binding, or at least dynamically binding. In practice, banks reportedly held a buffer stock of liquid assets above minimum LCR requirements (at roughly 10-20\% of the requirement). Adjusting for that would slightly reduce the measured welfare cost. It is also worth noting that the level of excess reserves in the measurement period may have been elevated due to the lack of a complete unwind of the large scale asset purchases by the Fed that occurred between 2008 and 2014. Focusing on the year least affected by this, 2019, would result in $\lambda = 0.15$. Again, using that value barely changes the measured welfare cost, reducing it just slightly.}

Combining these measurements with the first estimate of the net noninterest cost of servicing deposits (1.22\%), yields a gross marginal welfare cost of the liquidity requirement...
in the post-implementation period equal to $\nu_{LIQ} = 0.0046$. Again, to interpret this number, we can consider the gross welfare cost of a 10 percentage point increase in the liquidity requirement. To a first-order approximation, this cost is equivalent to a permanent loss in consumption of 0.046%, or about 6.6 billion per year. While it this is about 50 percent higher than its pre-implementation value, it may still be considered a small welfare cost. Using the alternative estimate for the net noninterest cost of deposits (0.81%) again results in a lower marginal welfare cost: $\nu_{LIQ} = 0.0001$, or a tiny 0.001 percent of consumption for a 10 percentage point increase in the liquidity requirement.

As a caveat, these estimates are, as noted, first-order approximations and may be less accurate for large changes in liquidity regulation. In particular, it is possible that further or larger increases in the liquidity requirement would entail more than proportionally larger welfare costs, as the stock of Treasuries that remains available to the non-bank public progressively shrinks.

6.2 Capital Regulation

To measure the welfare cost of capital requirements, we need an estimate of the required return on bank equity. Whereas the model abstracts from aggregate risk, a risk-adjusted measure is in fact called for. A risk adjustment captures the degree to which equity’s required return adjusts in response to changes in leverage, such as those brought about by changes to capital requirements. In particular, for given asset risk, a decline in leverage should make bank shares less risky, and in theory this should lower the required return that shareholders demand. Indeed, under the idealized conditions underlying Modigliani and Miller’s propositions, the strength of this effect is just such that the weighted average cost of funds does not depend on its leverage at all, so that the firm can change its leverage at zero cost.52

In reality, there are several reasons why the Modigliani-Miller theorem does not hold – agency problems, taxes, bankruptcy costs, etc. – and it is especially unlikely to hold for banks in light of the special nature of their debt. Indeed, in the model presented, the liquidity of bank debt is simultaneously the reason that banks exist and the chief reason the Modigliani-Miller theorem fails to hold for them.53 On this point, empirical analysis by Baker and Wurgler (2015) finds that, while better-capitalized banks have lower risk as

52For this reason, this risk-adjustment is sometimes referred to as a ‘Modigliani-Miller offset.’

53The only other source of its failure is the moral hazard problem, which manifests itself only when the capital requirement is too low, and thus leverage is too high, according to the threshold in proposition 1.
expected, lower-risk banks tend to have higher stock returns on a risk-adjusted or even raw basis, so that an increase in capital ratios would result in a (possibly sharply) higher weighted average cost of capital, an outcome that would be qualitatively consistent with the model. Nonetheless, even if the Modigliani-Miller theorem does not hold exactly in reality (as well as in the model), it is still possible that the expected return on equity adjusts to changes in bank leverage, and the empirical approach should take this into account.

Thus, whereas the model abstracts from aggregate risk, a risk-adjusted measure of the required return on equity is needed from the data. Following Van den Heuvel (2008), I use the average return on subordinated bank debt as a proxy for the risk-adjusted return on equity. The reason for this choice is that (a) subordinated debt counts towards regulatory equity capital, albeit within certain limits, and (b) defaults on this type of debt have historically been rare, so the debt is not very risky, certainly compared to common equity. This proxy avoids the difficulties inherent in measuring the (ex ante) risk premium on common equity, and how that premium adjusts to changes in leverage. Concretely, \((R^E - 1) \) is measured by Interest on Subordinated Notes divided by Subordinated Notes.\(^54\)

The limits on the use of subordinated debt for regulatory purposes as well as its tax treatment imply that this is a conservative measure for the risk-adjusted required return on bank equity. First, subordinated debt can count only towards tier 2 capital, so it only helps to satisfy the risk-based total capital ratio requirement, not the risk-based tier 1, common equity tier 1, or leverage ratio requirements. Second, until the recent adoption of Basel III, the amount of subordinated debt in tier 2 was limited to 50 percent of the bank’s tier 1 capital. So if the tier 1 capital ratio was close to binding, subordinated debt could count for at most approximately 25 percent of total capital. Third, relative to common equity, interest on subordinated debt receives favorable corporate income tax treatment. Due to factors, it is possible that for many banks the required return on subordinated debt is lower than the pre-tax, risk-adjusted required return on common equity.

Again, we will use two measurement periods to quantify the welfare cost, one pre- and one post-implementation of Basel III. The pre-Basel III period is set to 1993-2010. The

\(^{54}\)For example, the historical average excess return on bank equity would imply a high premium, but does this equal the \textit{ex ante} expected premium? In addition, depending on what interest rate is used to measure the excess return on equity, one would run the risk of contaminating the measured risk premium with a liquidity premium, which one would definitely want to avoid in the present context.

\(^{55}\)Part of the HSOB’s Subordinated Notes does not qualify as regulatory capital. However, cross-checking with the call reports (item RCFD5610) indicates that the difference is minimal after 1992. Also, some subordinated bank debt is callable. Flannery and Sorescu (1996) find that the average call option value for callable bank sub-debt is 0.19%, so the point is minor for the present purpose.
start date is motivated by the fact that the first Basel Accord and the FDICIA legislation enacting it were not fully implemented until January 1, 1993, and prior to Basel the use of subordinated debt for regulatory purposes was rather limited. 2010 is chosen as end date, because the Basel III package was published in December 2010. That said, extending this sample period by a few years, or letting it start earlier, has little impact on the results. The post-Basel III-implementation period is set at 2016-2019, the same time span as for liquidity regulation.

For 1993-2010, the average nominal interest rates on subordinated debt and deposits are, respectively, 5.45% and 2.43%, so the average cost-revealing spread is 302 basis points. The mean loans to consumption ratio is 0.95 (using total assets minus Treasuries and excess reserves for loans). As explained, the net noninterest cost of servicing deposits is set at 122 basis points and \(\lambda = 0 \) for this period. Combining these measurements with the analytical result in (24) yields a marginal gross welfare cost of the capital requirement equal to

\[
\nu_{CAP|\lambda=0} = \left(\frac{L}{c} \right) \left(R^E - R^D - g_D(d, L) \right) \\
= 0.95 \times (0.0302 - 0.0122) = 0.0171
\]

Thus, the gross welfare cost of an increase in the capital requirement by 10 percentage points is equivalent to a permanent loss in consumption of about

\[
\nu_{CAP} \times 0.1 \times 100\% = 0.17\%
\]

This is substantially higher than obtained for a 10 percent liquidity requirement, a point I discuss in more detail below. Further, the cost is similar to the welfare cost of a permanent increase in inflation by a few percentage points, as measured by Lucas (2000). Of course, it should really be compared to the financial stability benefits of such an increase in the capital requirement, captured in proposition 1. Section 3 has already discussed this at a conceptual level, and section 7 below will provide further analysis.

Using the alternative, Hanson et al. based estimate for the net noninterest cost of deposits \(g_D = 0.81 \) percent yields a modestly larger measurement of the gross marginal welfare cost: \(\nu_{CAP} = 0.0210 \), resulting in a gross welfare cost of 0.21 percent of consumption for an increase in the capital requirement by 10 percentage points.

Turning to the more recent period, it worth noting that the U.S. rule implementing Basel III’s new capital regime was already finalized and published in 2013, but its phase-in was an especially gradual one, starting on Jan. 1, 2014 and ending on Jan. 1, 2019. That said, in part reflecting anticipation effects and in part the banks’ desire to pass the stress tests, most of the post-crisis capital buildup, which was substantial, had occurred by the
end of 2015. In light of this, and since a sample period starting in 2019 would seem too short, I employ the same Basel III sample period as for liquidity regulation, 2016-2019, even though technically this time span includes some of the phase in. Reassuringly, shifting the start of the measurement period up or down by one or two years does not have a big impact on the results.

For 2016-2019, the average nominal interest rates on subordinated debt and deposits are, respectively, 3.86% and 0.50%, yielding an average spread of 336 basis points. With liquidity regulation in place in this period, adjustments are needed to use the all-in cost of financing loans with deposits (see (8)) as well as for the noninterest costs of servicing deposits, first set at 1.22%. With $\lambda = 0.17$ now, these adjustments reduce the spread to 206 basis points. The mean loans to consumption ratio is now 1.07. Combining these measurements with the analytical result (23) in proposition 6 yields a marginal gross welfare cost of the capital requirement equal to $\nu_{CAP} = 0.022$. Thus, for the Basel III period, as a first-order approximation, the gross welfare cost of a further increase in the capital requirement by 10 percentage points is equivalent to a permanent loss in consumption of 0.22 percent, a bit more than before Basel III’s implementation.

Using the alternative, Hanson et al.-based estimate for the net noninterest cost of deposits ($g_D = 0.81\%$) again yields a modestly larger measurement of the gross marginal welfare cost: $\nu_{CAP} = 0.027$, or a gross welfare cost of 0.27 percent of consumption for a 10 percentage points increase in the capital requirement.

6.3 Comparative Assessment

For comparison, table 1 recaps the measurements of the gross welfare costs of both regulations. It presents the permanent consumption loss, in percent, that is to a first-order approximation welfare-equivalent to a 10 percentage point increase in each requirement, for each of the two measurement periods and taking the average across the two estimates of the net noninterest costs of servicing deposits. The numbers below, in parentheses, represent the full range depending on these cost estimates.

56 For example, for the largest U.S. banks (global systemically important bank holding companies) the ratio of common equity tier 1 capital to risk-weighted assets increased from 6.3% at the end of the great recession (2009Q2) to 12.0% at year-end 2015, rising only marginally further to 12.2% by the start of 2019. See the Federal Reserve’s Financial Stability Report, https://www.federalreserve.gov/publications/financial-stability-report.htm
Table 1. Gross Welfare Costs of the Liquidity and Capital Requirements

<table>
<thead>
<tr>
<th>Welfare cost of:</th>
<th>Pre-Basel III</th>
<th>Basel III</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LIQUIDITY requirement</td>
<td>0.017</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.003-0.031)</td>
<td>(0.001-0.046)</td>
</tr>
<tr>
<td>10% CAPITAL requirement</td>
<td>0.191</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>(0.171-0.210)</td>
<td>(0.219-0.272)</td>
</tr>
</tbody>
</table>

Note: Entries are first-order approximations of the permanent consumption loss, expressed in percent, that is welfare-equivalent to a 10 percentage point increase in each requirement, holding fixed the incidence of financial crises, and taking the average across estimates of the net noninterest costs of servicing deposits (0.81% and 1.22%). Numbers in parentheses indicate the full range of measured welfare costs, with the upper end associated with high (low) net noninterest costs for the liquidity (capital) requirement. ‘Pre-Basel III’ means 2001-2007 for liquidity and 1993-2010 for capital. ‘Basel III’ means 2016-2019.

The main comparative takeaway from table 1 is that the welfare cost of an increase in the capital requirement is roughly ten times as large as the cost of a similarly sized increase in the liquidity requirement. The divergence by an order of magnitude appears to hold regardless of the measurement period.

This key result reflects an insight obtained from the model: capital requirements reduce the supply of safe, liquid assets available to the public by much more than liquidity requirements do. Even with the general equilibrium feedbacks that change the size of the banking sector, capital requirements effectively reduce the supply of bank deposits, replacing them to an important degree with bank equity, an instrument that does not provide liquidity services. In contrast, liquidity requirements effectively transform some government bonds held by the public into bank deposits (which fund the banks’ holdings of government bonds). These are both liquid instruments that command a convenience yield, so the net reduction in liquidity services available to the non-bank public is much smaller. In the data, this is manifested by a smaller spread between Treasuries and bank deposits than between equity and deposits, and that is why the welfare cost estimates differ as much as they do.

Indeed, the (potentially large) changes in the size of the banking sector, the capital stock, and consumption – taking into account changes in both the transition and the steady state – have a combined effect on welfare that is second-order. Mathematically, this is a manifestation of the envelope theorem.
While capital requirements entail substantially higher welfare costs according to these measurements, it is important to recall that they also have broader financial stability benefits than liquidity requirements in the model. As explained, liquidity regulation only addresses liquidity risk, while capital regulation can ameliorate both credit and liquidity risk-taking. The two requirements are thus not perfect substitutes. In fact, one might say that you get what you pay for.

A secondary finding that is apparent from the table is that the gross marginal welfare costs of both tools are higher now than in the pre-Basel III period, by 37 and 29 percent, respectively, for the liquidity and the capital requirement (based on the period-specific averages). Since Basel III raised both requirements, this finding is consistent with increasing marginal costs, i.e. convex welfare costs.

From an accounting perspective, the increase in measured costs reflects both parametric factors and observables. Specifically, for the liquidity requirement, the rise in marginal welfare cost can be attributed to the direct effect of a higher λ (due to the factor $1/(1 - \lambda)$ in (22)) and an observed increase in the ratio of deposits to consumption, as banks expanded their balance sheets, primarily through larger holdings of liquid assets. There was relatively little movement in the relevant spread. For the capital requirement, the rise in marginal cost is accounted for by increases in the loans to consumption ratio and in the cost-revealing equity-deposit spread, which outweighed the adjustments for a higher λ; see (23).

6.4 Narrow Banking

A narrow bank is a depository institution that holds only safe, liquid assets. Proponents of narrow banking argue that such firms would be (virtually) immune to bank runs and failures, thus eliminating the economic harm caused by failures of deposit-taking firms. Loans to firms and households would instead be made by non-deposit-taking financial firms, such as finance companies, or would be replaced by market-based finance, such as bonds or commercial paper.

In our model, narrow banking is already permitted: a bank can become a narrow bank by maintaining a balance sheet with only government bonds and deposits. Moreover, other banks could opt to become a finance company by making only equity-financed loans, and

\[R^E - R^D \]

As shown in Begenau (2020) and Van den Heuvel (2006), the general equilibrium effect of an increase in the capital requirement on bank lending can be positive. While perhaps surprising, this outcome occurs when the interest-elasticity of the demand for deposits is low. In that case, an increase in the capital requirement leads to an increase in the deposit spread ($R^E - R^D$) that is sufficiently large to reduce banks’ lending rate (R^L), despite the costlier funding mix.
firms in the model can borrow directly from households, akin to market-based finance. For banks, neither business model would violate regulatory constraints. However, the data suggest that these strategies are not always profitable. The narrow bank is not profitable whenever the liquidity requirement binds (that is, whenever \(R^D + g_D > R^B \)) or, equivalently, whenever there is a positive welfare cost of liquidity regulation, which we have found to be the case for at least some periods. The finance company is not profitable whenever the capital requirement binds (that is, whenever \(R^L - g_L < R^E \)) or, equivalently, whenever there is a positive welfare cost of the capital requirement - again, we have found this to be true in the data.

What then would be the gross welfare cost of requiring deposit-taking institutions to be narrow banks? In the model, this can be achieved by imposing 100% liquidity and capital requirements. We can gauge the cost of such a policy in the same way as we have measured the costs of smaller policy changes above. It must be stated at the outset, however, that doing so seems likely to come with large approximation error: our measurements rely on first-order approximations, which may not perform well for such a big policy change.

If we nonetheless proceed with that caveat in mind, relative to current regulations, the gross welfare cost of requiring deposit-taking institutions to be narrow banks is (very) roughly equal to \(\nu_{LIQ} \times (1 - 0.17) + \nu_{CAP} \times (1 - 0.12) = 2.4\% \) of consumption. Not surprisingly, a move to narrow banking would be considerably costlier than the smaller policy changes contemplated in table 1. Intuitively, narrow banking is costly because it ignores the reality that, despite the demandable nature of many deposits, most depositors do not withdraw their funds all the time, allowing banks to use a portion of their deposits to fund more illiquid loans.

\[\text{59} \text{This reflects the absence of a leverage ratio restriction from the model. A leverage ratio rule would require the narrow bank to maintain some equity against its government bonds.} \]

\[\text{60} \text{Hanson, Schleifer, Stein, and Vishny (2015) reach a similar conclusion by comparing the total cost of deposits to the return on T-bills (or, in our notation, } R^D + g_D \text{ to } R^B). \]

\[\text{61} \text{Technically, such a policy } (\lambda = 1 \text{ and } \gamma = 1) \text{ would not impose the separation of narrow banks and finance companies. This is without loss of generality if } g = 0 \text{ or if } g \text{ is separable in its arguments. However, if } g \text{ is not zero nor separable, then its assumed convexity and linear homogeneity imply that there are cost savings from combining the narrow bank and financing company in a single firm } (g(D, L) \leq g(D, 0) + g(0, L)). \text{ In that case, the calculations that follow will miss some of the costs associated with a move to narrow banking.} \]

\[\text{62} \text{The baseline level of the capital requirement is set at 0.12, which is the current ratio of common equity tier 1 capital to risk-weighted assets of the largest U.S. bank holding companies, and the baseline liquidity requirement is set at its current level, 0.17 (see section 6.1 for details). The calculation is based on the average welfare costs for the Basel III period, as reported in table 1 for 10 p.p increases in each requirement. Using the averages from the pre-Basel III measurement period results in an estimated welfare cost of 1.8%.} \]
As mentioned, this number should not be viewed as a precise estimate. In particular, it may underestimate the cost of narrow banking because the convenience yield on Treasuries would almost surely rise due to the extra demand for these assets from narrow banks. On the other hand, it could overestimate the cost because the marginal welfare cost of raising the capital requirement is decreasing in the product of the liquidity requirement and its marginal welfare cost; see (25). Finally, whatever the precise gross cost of a move to narrow banking, incurring it would only be justifiable within the model if maximum liquidity and capital requirements were necessary to prevent excessive risk taking (according to the thresholds in propositions 1 and 4).

7 The Welfare Benefits of Regulation

While the previous section provided a quantification of the welfare costs of regulation, the discussion of the welfare benefits has so far been qualitative in nature. What would it take to quantify the benefits of regulation and thereby the optimal levels of the requirements through the lens of the model? Those benefits arise from the social costs of excessive risk taking and bank failures and from the ability of the two regulations to prevent these costs. In the model, the former depend on the ex-ante cost of lending to excessively risky firms, ξ, and the ex-post resolution costs, ψ_{Sol} and ψ_{Liq}. The latter are captured by the thresholds for the capital and liquidity requirements that are derived in propositions 1 and 4, which in turn depend on parameters such as the “value-at-risk” of excessively risk loans (ϕ_e), the quality of bank supervision ($1/\sigma$), and the rate and probability of stressed withdrawals (w and p), as well as equilibrium objects. Providing a compelling calibration or estimation of these parameters would be quite challenging.

Moreover, in contrast to the welfare costs, measuring the benefits does not appear amenable to a sufficient statistics approach that would be straightforward to implement empirically. One reason is that revealed preference arguments are unlikely to be very informative regarding the social costs from bank failures or the ability of regulation to prevent such failures, precisely because of their externalities.

All that said, regulators do need to make quantitative choices about capital and liquidity requirements. In this respect, it is important to note that much of the quantitative analysis done by regulators for the calibration of such requirements relates to their benefits. For example, for capital requirements, regulators examine the historical distribution of credit losses for different types of bank loans (akin to ϕ_e in the model). For the liquidity regulation, the calibration of the LCR rule is importantly based on stressed withdrawal
rates of different types of bank liabilities \((w\) in the model). This paper has little to add to those very detailed analyses. Instead, it hopes to provide a convenient way to measure the social costs – something that is often challenging for regulators.

In that vein, it is useful to compare the measurements of the welfare costs in this paper to existing estimates of benefits. For example, a study by the Basel Committee intended to inform the overall calibration of the Basel III reforms \((\text{BCBS 2010})\) estimates those benefits as a reduction in the probability of a financial crisis due to stricter regulation times the loss in output conditional on a crisis. It finds that the gross benefits of increasing capital requirements from 7 to 15 percent are 0.8\% to 2.64\% of GDP, depending on whether the output effects of banking crises are considered to be temporary or permanent (see Appendix B for details). Section 6 of this paper measures the gross welfare cost of such an increase as
\[
0.019 \times (0.15 - 0.07) \times 100\% = 0.15\% \text{ of consumption.}\]

Comparing these numbers suggests that the increase in capital requirements is clearly welfare improving, regardless of whether the output effects of crises are temporary or permanent (provided, of course, that the estimates are sufficiently accurate).

Similarly, \(\text{BCBS (2010)}\) estimates the gross benefits of an LCR-style liquidity requirement at about 0.23\% to 0.76\% of GDP, again depending on the persistence of the output effects. These numbers are conditional on a capital requirement of 7 percent, and the estimates drop if the capital requirement is higher, as more capital already reduces the frequency of crises. For example, at a 10 percent capital requirement, the estimated benefits of liquidity regulation are 0.03\% to 0.12\% of GDP, and they drop further to 0.01\% to 0.03\% at a 12 percent capital requirement.\(^{64}\) For comparison, in the model, a 10\% liquidity requirement – a simplified but reasonable approximation to the LCR requirement\(^{65}\) –

\(^{63}\)The calculation is based on the average for the pre-Basel III period (reported in table 1 for a 10 p.p. increase in the requirement). This measurement period is most consistent with the timing of the \(\text{BCBS (2010)}\) study. Based on the more recent measurement period, the welfare cost of an increase in capital requirements by 8 percentage points amounts to 0.20\% of consumption.

\(^{64}\)To provide some perspective on these levels of the capital requirement, Basel III raised the minimum requirements (including the capital conservation buffer) to 7\% of risk-weighted assets for common equity tier 1 capital (the highest quality capital); to 8.5\% for tier 1 capital; and to 10.5\% for total capital. However, those numbers do not include the surcharges applicable to the largest banks (1-3.5\% in the U.S.), the countercyclical capital buffer (currently set at 0\%), nor any additional capital that large banks may need to pass the stress tests (or, since 2020, satisfy the stress capital buffer). Partly reflecting all these factors, and partly reflecting voluntary buffers above regulatory requirements, common equity tier 1 capital of U.S. bank holding companies is currently about 12 percent of their risk-weighted assets.

\(^{65}\)As mentioned, the LCR requirement depends on more detailed balance sheet information than can be captured in a macro-style model, but, internationally, 10\% appears a reasonable ratio to capture the LCR.
tails a gross welfare cost of about 0.02% of consumption, or slightly less as a percentage of GDP. Taken together, these estimates suggest that the liquidity requirement is also welfare improving, although it is a closer call at higher levels of the capital requirement.

8 Conclusion

This paper has presented a framework for measuring the welfare costs of bank liquidity and capital requirements. While such requirements have important financial stability benefits, they also entail social costs because they reduce banks’ ability to create net liquidity in equilibrium. The cost of the capital requirement scales with the convenience yield on bank deposits, net of the non-interest costs of servicing those deposits. The cost of the liquidity requirement scales with the difference between the convenience yields on Treasuries and bank deposits (again, net off their non-interest costs). Using U.S. data, the welfare cost of a 10 percent liquidity requirement is found to be equivalent to a permanent loss in consumption of about 0.02% – a modest impact. According to conservative estimates, the cost of a 10 percentage point increase in capital requirements is roughly ten times as large.

At the same time, the financial stability benefits of capital requirements were found to be broader than those of liquidity requirements. In particular, liquidity requirements are not a substitute for capital requirements when it comes to credit risk, and optimal policy relies on both tools to safeguard financial stability. Finally, comparing our measurements of the welfare costs of the increases in capital and liquidity requirements associated with Basel III to existing estimates of their benefits, we found that the Basel III reforms produced net welfare gains.

References

In the U.S., as noted, the ratio appears somewhat higher, reflecting in part the balance sheet compositions of large U.S. banks and the details of the U.S. implementation of the LCR, factors not explicitly considered in BCBS (2010).

Appendix A. Analysis of the Bank’s Problem

A.1. Credit Risk Choice, Part 1

Since loans are nonnegative, expected dividends equal $\mathbb{E}[(r + \sigma \varepsilon)^+]L$ if $B \geq wD$ or $(1-p)\mathbb{E}[(r + \sigma \varepsilon)L^+]$ if $B < wD$. Next,

$$\mathbb{E}[(r + \sigma \varepsilon)^+] = (r + \sigma \varepsilon) - \mathbb{E}\{r + \sigma \varepsilon\}^- = (r - \sigma \xi) + \sigma j(-r/\sigma)$$

where j is the following function, derived from the distribution function of ε:

$$j(x) \equiv \int_{\xi}^{x} (x - \varepsilon) dF_{\varepsilon}(\varepsilon)$$

Note that $j(x)$ is continuous and increasing in x, equals zero when $x \leq \xi$ (< 0) and strictly exceeds $\xi \geq 0$ when $x = 0$ (by the definition of ξ and the assumption $\bar{\varepsilon} > 0$). As shown in Van den Heuvel (2008), appendix D.1, $\sigma j(-r/\sigma)$ is a convex function of σ. Hence, expected dividends are convex in σ. Therefore, either $\sigma = 0$ or $\sigma = \bar{\sigma}$ is optimal. Comparing these two choices,

$$\sigma = 0 \text{ if and only if } j(-r/\bar{\sigma}) \leq \xi$$

The definition of ϕ_{ε} in (6) can be rewritten in this notation, as follows:

$$j(-\phi_{\varepsilon}) \equiv \xi$$

From the above-mentioned properties of j, it follows that ϕ_{ε} exists, is unique and satisfies $\varepsilon \leq -\phi_{\varepsilon} < 0$, so $0 < \phi_{\varepsilon} \leq -\varepsilon$. Using this notation, we have66

\textbf{Lemma 1} $\sigma = 0$ if and only if $\phi_{\varepsilon} \bar{\sigma} \leq r$. Otherwise, $\sigma = \bar{\sigma}$.

The condition in proposition 1 imposes additional optimality conditions (a zero-profit condition, really) on lemma 1. These additional optimality conditions are derived in Appendices A.2 and A.3, which also conclude the proof of proposition 1.

A.2. The Bank’s Problem When $\lambda \geq w$ and $\sigma = 0$ (Proof of Propositions 2 and 3)

Under the condition in lemma 1, $\sigma = 0$. After scaling the resulting problem in (7) by R^E and using the balance sheet identity to substitute out B, the Lagrangian and first-order

66When $\phi_{\varepsilon} \bar{\sigma} = r$, the bank is indifferent. For convenience, it is assumed that $\sigma = 0$ in that case.
conditions (FOCs) are:\footnote{For brevity, the arguments of \(g(D, L)\) and its partial derivatives are often suppressed where this does not lead to confusion.}

\[
\mathcal{L} = R^L L + R^B (E + D - L) - R^D D - g(D, L) - R^E E + \Lambda [E + (1 - \lambda) D - L] + \chi [E - \gamma L]
\]

\[
\begin{align*}
(L) & \quad R^L = R^B + g_L + \Lambda + \gamma \chi \\
(E) & \quad R^E = R^B + \Lambda + \chi \\
(D) & \quad R^D + g_D = R^B + (1 - \lambda) \Lambda
\end{align*}
\]

The complementary slackness conditions are: \(\chi [E - \gamma L] = 0, \ \chi \geq 0, \ \Lambda [E + (1 - \lambda) D - L] = 0, \ \Lambda \geq 0\). Note that

\[
R^B + \Lambda = R^D + g_D + \lambda \Lambda = R^L - g_L - \gamma \chi = R^E - \chi
\]

(27)

Since the Kuhn-Tucker multipliers must be nonnegative, a finite solution requires the ranking of returns shown in (10) in proposition 3, i.e.:

\[
R^B \leq R^D + g_D \leq R^L - g_L \leq R^E
\]

From FOC \((D)\), \(\Lambda = \frac{1}{1 - \chi} (R^D + g_D - R^B)\). Hence, the liquidity requirement binds if and only if \(R^D + g_D > R^B\).

In addition, from (27), \(\chi = \frac{1}{1 - \gamma} (R^E - (R^L - g_L))\). Hence, the capital requirement binds if and only if \(R^E > R^L - g_L\).

Furthermore, (27) implies that \(R^L - g_L - \gamma \chi = \gamma \{R^E - \chi\} + (1 - \gamma) \{R^D + g_D + \lambda \Lambda\}\). Rearranging and using the expression for \(\tilde{R}^D(\lambda)\) (see (8)) yields the (marginal) zero-profit condition:

\[
R^L - g_L (D, L) = \gamma R^E + (1 - \gamma) \{\tilde{R}^D(\lambda) + \frac{1}{1 - \chi} g_D(D, L)\}
\]

(28)

which is \(11\) in proposition 3.

Moreover, this implies that \(R^L - g_L - R^E = (1 - \gamma) \{\tilde{R}^D(\lambda) + \frac{1}{1 - \chi} g_D\} - R^E\), yielding the equivalent, alternative condition for a (non)binding capital requirement:

\[
R^L - g_L (D, L) < (=) R^E \iff \tilde{R}^D(\lambda) + \frac{1}{1 - \lambda} g_D(D, L) < (=) R^E
\]
Zero profits follow from

\[R^E \pi^B = R^L L + R^B E - R^D D - g(D, L) - R^E E \]
\[= R^L L + R^B (E + D - L) - R^D D - (Dg_D(D, L) + Lg_L(D, L)) - R^E E \]
\[= [R^L - g_L(D, L) - R^B]L - [R^D + g_D(D, L) - R^B]D - [R^E - R^B]E \]
\[= [\lambda + \gamma \chi]L - [(1 - \lambda)\Lambda]D - [\lambda + \chi]E \]
\[= -\chi(E - \gamma L) - \lambda[E + (1 - \lambda)D - L] = 0 \]

where the steps follow from Euler’s theorem, the first-order conditions and the complementary slackness conditions, in that order.

Credit risk choice, part 2 Recall that \(r \equiv R^L + R^B (B/L) - R^D (D/L) - g(D/L, 1) \) and note that \(\pi^B = rL/R^E - E \). Zero profits \((\pi^B = 0)\) imply that \(r = (E/L)R^E \geq \gamma R^E \), so the critical value of \(\sigma \) for \(\sigma = 0 \) in lemma 1, \(r = \phi / \phi \), is at least \(\gamma R^E / \phi \), and is equal to that value if the capital requirement binds. Hence, \(\phi / \phi \leq \gamma R^E \) is a sufficient condition for \(\sigma = 0 \), and this condition is also necessary if the capital requirement binds. This concludes the proof of proposition 1 for the case \(\lambda \geq w \).

This also concludes the proof of the first half of proposition 3 (up to ‘four cases are possible’). Proposition 2 in the main text follows immediately as a corollary by setting \(g = 0 \) in the first half of proposition 3.

Proof of second half of proposition 3

What follows is a proof of the second half of proposition 3 (after ‘four cases are possible’), which characterizes the solution further by showing when each of the two regulatory constraints is binding or slack as a function of objects that the bank takes as given only.\(^{68}\)

Case 1. Nonbinding constraints \((\chi = 0 \text{ and } \Lambda = 0)\) From (27), \(R^B = R^D + g_D = R^L - g_L = R^E \). Note that this case requires \(R^D \leq R^B = R^E \leq R^L \). With the partial derivatives of \(g \) homogenous of degree 0, the ratio \(D/L \) is determined by \(g_D(D/L, 1) = R^B - R^D \) and by \(g_L(D/L, 1) = R^L - R^D \). A solution requires that the configuration of returns is such that both equations imply the same value for \(D/L \).

\(^{68}\)The issue is that the conditions derived so far – that is, \(R^D + g_D(D, L) > R^B \) for a binding liquidity requirement and \(R^E > R^L - g_L(D, L) \) for a binding capital requirement – still depend on two decision variables of the bank, \(D \) and \(L \), so that the characterization of the solution is not complete. This issue does not arise when \(g = 0 \), the case summarized in proposition 1.
A.3. The Bank’s Problem When \(\lambda < w \) (Proof of Proposition 4 and conclusion of proof of proposition 1)

Recall that if \(\lambda \geq w \), then \(1_{\{B<w,D\}} = 0 \), so that problem (4) simplifies to:

\[
\pi^B|_{\lambda \geq w} = \max_{\sigma, L, B, D, E} \mathbb{E} \left[\left((R^L + \sigma \varepsilon)L + R^B B - R^D D - g(D, L) \right)^+ \right] / R^E - E \]

s.t. \(B \geq \lambda D \) and \((29) \)

\[\text{Case 2. Only liquidity requirement binds (} \chi = 0 \text{ and } \Lambda > 0 \text{)} \quad \text{From the FOCs,} \]

\[R^L - g_L(D, L) = R^E = \tilde{R}^D(\lambda) + \frac{1}{1-\chi} g_D(D, L)\]

Again, we have two equations that each pin down the ratio \(D/L \). This case requires that \(R^B < R^D + g_D(D, L) < R^L - g_L(D, L) = R^E \) and in particular \(R^B < R^E \). Recall that \(\rho \) is defined as the value of \(D/L \) when both regulatory constraints are binding: \(\rho = \frac{1-\gamma}{\chi} \). Due to the nonbinding capital requirement here, \(D/L \leq \rho \). Hence, as \(g \) is convex, \(g_D(D, L) = g_D(D/L, 1) \leq g_D(\rho, 1) \) and \(g_L(D, L) = g_L(D/L, 1) \geq g_L(\rho, 1) \). Thus, \(R^B < R^D + g_D(\rho, 1) \) and \(R^L \geq R^E + g_L(\rho, 1) \).

\[\text{Case 3. Only capital requirement binds (} \chi > 0 \text{ and } \Lambda = 0 \text{)} \quad \text{From the FOCs,} \]

\[R^L - g_L(D, L) = \gamma R^E + (1-\gamma)(R^D + g_D(D, L)) = \gamma R^E + (1-\gamma)R^B\]

This case requires that \(R^B = R^D + g_D(D, L) < R^L - g_L(D, L) < R^E \). Due to the nonbinding liquidity requirement, \(D/L \geq \rho \), so \(g_D(D, L) \geq g_D(\rho, 1) \) and \(g_L(D, L) \leq g_L(\rho, 1) \). Hence, \(R^B \geq R^D + g_D(\rho, 1) \) and \(R^L < R^E + g_L(\rho, 1) \). Also, \(R^D + g_D(\rho, 1) < R^E \).

\[\text{Case 4. Both requirements bind (} \chi > 0 \text{ and } \Lambda > 0 \text{)} \quad \text{In this case,} \]

\[D/L = \rho, \quad \text{so (28) implies} \quad R^L - g_L(\rho, 1) = \gamma R^E + (1-\gamma)(R^D + g_D(D, L)) = \gamma R^E + (1-\gamma)R^B\]

Using Euler’s theorem and \(\rho = (1-\gamma)/(1-\lambda) \), this can also be written as \(R^L = \gamma R^E + (1-\gamma)\tilde{R}^D(\lambda) + g(\rho, 1) \), which is (12). \(g(\rho, 1) \) is the total noninterest cost of making one unit of loans and servicing \(\rho \) units of deposits. With \(\chi > 0 \) and \(\Lambda > 0 \), the inequalities in the ranking of returns (10) are all strict, and, with \(D/L = \rho \), \(R^B < R^D + g_D(\rho, 1) < R^L - g_L(\rho, 1) \). This concludes the proof of proposition 3.\(^{69}\)

\(^{69}\)The case \(R^B < R^E \) and \(R^B \geq R^D + g_D(\rho, 1) \) and \(R^L - g_L(\rho, 1) \geq R^E \) is missing from proposition 3 because it is incompatible with a finite solution. It is straightforward to show that feasible choices \(B = \lambda D \) and \(E = \gamma L \) result in strictly positive profits and an optimal scale that is infinite in this case.
where (29) collects the non-liquidity constraints to the bank’s problem:

\[L + B = E + D, \quad E \geq \gamma L, \quad \sigma \in [0, \hat{\sigma}] \quad (29) \]

To analyze the case \(\lambda < w \), we make use of the mathematical fact that if \(S = A \cup B \), then
\[
\max_{x \in S} f(x) = \max\{\max_{x \in A} f(x), \max_{x \in B} f(x)\},
\]
provided \(\max_{x \in A} f(x) \) and \(\max_{x \in B} f(x) \) both exist. Thus, for \(\lambda < w \), the general problem in (4) can be equivalently described as:

\[
\pi^B|_{\lambda < w} = \max\{\pi^B|_{B < wD}, \pi^B|_{B \geq wD}\}
\]

where

\[
\pi^B|_{B \geq wD} = \max_{\sigma, L, B, D, E} \quad \mathbb{E} \left[\{(R^L + \sigma \varepsilon)L + R^B B - R^D D - g(D, L)\}^+ \right] / R^E - E \\
\text{s.t.} \quad B \geq wD \quad \text{and} \quad (29)
\]

\[
\pi^B|_{B < wD} = \max_{\sigma, L, B, D, E} \quad (1 - p)\mathbb{E} \left[\{(R^L + \sigma \varepsilon)L + R^B B - R^D D - g(D, L)\}^+ \right] / R^E - E \\
\text{s.t.} \quad B \in [\lambda D, wD) \quad \text{and} \quad (29)
\]

The statement of \(\pi^B|_{B < wD} \) also uses the independence of \(\varepsilon \) and \(\eta \). The strict inequality constraint \(B < wD \) could lead to nonexistence of a solution to this problem. However, we will show shortly that this issue does not arise. It turns out to be mathematically convenient to define a slightly modified problem (which differs only in the liquidity constraint):

\[
\pi^B|_{\text{liq.risk}} = \max_{\sigma, L, B, D, E} \quad (1 - p)\mathbb{E} \left[\{(R^L + \sigma \varepsilon)L + R^B B - R^D D - g(D, L)\}^+ \right] / R^E - E \\
\text{s.t.} \quad B \geq \lambda D \quad \text{and} \quad (29)
\]

(The subscript \(\text{liq.risk} \) stands for \textit{liquidity risk}.) Note that \(\pi^B|_{\text{liq.risk}} \geq \pi^B|_{B < wD} \) because the set the of feasible choices is larger. However, if \(\pi^B|_{\text{liq.risk}} > \pi^B|_{B < wD} \), it must be because the optimal choice involves \(B \geq wD \) and for any such choice \(\pi^B|_{\text{liq.risk}} \leq \pi^B|_{B \geq wD} \) (as \(p > 0 \)). Hence,

\[
\pi^B|_{\lambda < w} = \max\{\pi^B|_{\text{liq.risk}}, \pi^B|_{B \geq wD}\}
\]

Note that these latter two problems are isomorphic to \(\pi^B|_{\lambda \geq w} \):

\[
\pi^B|_{B \geq wD} \quad \text{is identical to} \quad \pi^B|_{\lambda \geq w} \quad \text{if} \quad \lambda \text{ is set equal to} \quad w \text{ in the latter}
\]
\[
\pi^B|_{\text{liq.risk}} \quad \text{is identical to} \quad \pi^B|_{\lambda \geq w} \quad \text{if} \quad R^E \text{ replaced by} \quad R^E/(1 - p) \text{ in the latter}
\]
Analysis of $\pi^B|_{\lambda < w}$ with $\sigma = 0$

Assume the condition $\phi_x \sigma \leq r$ is satisfied (see lemma 1). Then the profit-maximization problems simplify as follows:

$$
\pi^B|_{B \geq wD} = \max_{L,B,D,E} \frac{[R^L L + R^B B - R^D D - g(D,L)]}{R^E} - E
\text{ s.t. } L + B = E + D, \quad B \geq wD, \quad E \geq \gamma L
$$

$$
\pi^B|_{\text{liq. risk}} = \max_{L,B,D,E} (1-p) \frac{[R^L L + R^B B - R^D D - g(D,L)]}{R^E} - E
\text{ s.t. } L + B = E + D, \quad B \geq \lambda D, \quad E \geq \gamma L
$$

Recall that $\pi^B|_{\lambda < w} = \max\{\pi^B|_{\text{liq. risk}}, \pi^B|_{B \geq wD}\}$. I will first analyze $\pi^B|_{B \geq wD}$, then $\pi^B|_{\text{liq. risk}}$. Due to the isomorphisms between these two problems on the one hand and $\pi^B|_{\lambda \geq w}$ on the other hand, the solutions follow almost immediately from proposition 2.

Solution to $\pi^B|_{B \geq wD}$ with $\sigma = 0$ Recall that the problem of maximizing $\pi^B|_{B \geq wD}$ is the same as the problem of maximizing $\pi^B|_{\lambda \geq w}$ if λ is replaced by w in the latter. Thus, defining $\rho_w \equiv \frac{1-\gamma}{1-w}$, adapting the notation $\tilde{R}^D(w) = R^D + \frac{w}{1-w}(R^D - R^B)$, and referring to the $B \geq wD$ constraint as the ‘liquidity constraint,’ we have

Proposition 7 (Solution to problem $\pi^B|_{B \geq wD}$ with $\sigma = 0$.) A finite solution requires

$$
R^B \leq R^D + g_D(D,L) \leq R^L - g_L(D,L) \leq R^E
$$

(30)

The liquidity constraint ($B \geq wD$) binds if and only if the first inequality is strict. The capital requirement binds if and only if the last inequality is strict or, equivalently, if and only if $\tilde{R}^D(w) + \frac{1}{1-w}g_D(D,L) < R^E$. The solution satisfies the zero-profit condition:

$$
R^L - g_L(D,L) = \gamma R^E + (1-\gamma)\{\tilde{R}^D(w) + \frac{1}{1-w}g_D(D,L)\}
$$

(31)

resulting in $\pi^B = 0$. Four cases are possible, which are as described in proposition 2, with ρ_w in place of ρ, w in place of λ, and ‘liquidity constraint’ in place of ‘liquidity requirement’.

Solution to $\pi^B|_{\text{liq. risk}}$ with $\sigma = 0$ Recall that the problem of maximizing $\pi^B|_{\text{liq. risk}}$ is the same as the problem of maximizing $\pi^B|_{\lambda \geq w}$ if R^E is replaced by $R^E/(1-p)$ in the latter. Hence,
Lemma 2 (Solution to problem $\pi^B_{\text{liq.risk}}$ with $\sigma = 0$) A finite solution requires
\[
R^B \leq R^D + g_D(D, L) \leq R^L - g_L(D, L) \leq R^E/(1 - p)
\]
(32)
The liquidity requirement binds if and only if the first inequality is strict. The capital requirement binds if and only if the last inequality is strict or, equivalently, if and only if $\tilde{R}^D(\lambda) + \frac{1}{1 - \lambda} g_D(D, L) < R^E/(1 - p)$. The solution satisfies the zero-profit condition:
\[
R^L - g_L(D, L) = \gamma R^E/(1 - p) + (1 - \gamma)\{\tilde{R}^D(\lambda) + \frac{1}{1 - \lambda} g_D(D, L)\}
\]
(33)
resulting in $\pi^B = 0$. Four cases are possible, which are as described in proposition 2, with $R^E/(1 - p)$ in place of R^E.

In this case, expected economic profits are zero, but realized profits are state-contingent. Economic profits conditional on $(\eta = 0)$ are $pE/(1 - p)$ so shareholders earn a rate of return $R^E(1 + \frac{p}{1-p}) = R^E/(1 - p)$ in that event. Economic profits conditional on $(\eta = 1)$ are $-E$ as shareholders lose all their investment in that event.

Solution to $\pi^B|_{\lambda < w}$ with $\sigma = 0$ Recall that
\[
\pi^B|_{\lambda < w} = \max\{\pi^B|_{B \geq wD}, \pi^B_{\text{liq.risk}}\}
\]
Let δ^s_w be an optimal choice for the ratio D/L associated with problem $\pi^B|_{B \geq wD}$ and define δ^s_{lr} analogously for problem $\pi^B_{\text{liq.risk}}$. The zero-profit condition (31) for problem $\pi^B|_{B \geq wD}$ provides an expression for the breakeven lending rate for this problem that is consistent with optimal choice:
\[
R^L|_{B \geq wD|\text{breakeven}} = \gamma R^E + (1 - \gamma)\{\tilde{R}^D(w) + \frac{1}{1 - w} g_D(\delta^s_w, 1)\} + g_L(\delta^s_{lr}, 1)
\]
(Recall that the partial derivatives of g are homogenous of degree 0.) Similarly, for $\pi^B_{\text{liq.risk}}$,
\[
R^L_{\text{liq.risk}|\text{breakeven}} = \gamma R^E/(1 - p) + (1 - \gamma)\{\tilde{R}^D(\lambda) + \frac{1}{1 - \lambda} g_D(\delta^s_{lr}, 1)\} + g_L(\delta^s_{lr}, 1)
\]
To have a finite solution to $\pi^B|_{\lambda < w}$, it must be the case that
\[
R^L = \min\{R^L|_{B \geq wD|\text{breakeven}}, R^L_{\text{liq.risk}|\text{breakeven}}\}
\]
The reason is as follows: (i) if $R^L < \min\{R^L|_{B \geq wD|\text{breakeven}}, R^L_{\text{liq.risk}|\text{breakeven}}\}$, no bank would operate with a strictly positive scale (lest it earns strictly negative profits), a situation that is ruled out by equilibrium conditions; (ii) if $R^L > \min\{R^L|_{B \geq wD|\text{breakeven}}, R^L_{\text{liq.risk}|\text{breakeven}}\}$, then the
business model with the lowest breakeven rate would yield infinite profits by operating at infinite scale, which is incompatible with a finite solution. (In all this, recall that \(g \) is linear homogenous and all constraints are linear, so each of the problems is linear homogenous in \((L, B, D, E)\).) Moreover, the business model with the \textit{lowest} break-even lending rate will be operated in equilibrium. That is, provided a finite solution exists, \(\pi^B|_{\lambda<w} = \pi^B|_{B\geq wD} \) if \(R^L|_{B\geq wD} \leq R^L|_{\text{breakeven}} \) and \(\pi^B|_{\lambda<w} = \pi^B|_{\text{liq.risk}} \) otherwise. Now,

\[
R^L|_{B\geq wD} - R^L|_{\text{breakeven}} = \gamma R^E \left(1 - \frac{1}{1-w} - \frac{1}{1-\lambda}\right) (R^D - R^B) + h
\]

where \(h \) collects terms related to differences in intermediation costs between the two business models: \(^{70}\)

\[
h \equiv \rho_w g_D(\delta^*_w, 1) + g_L(\delta^*_w, 1) - \rho g_D(\delta^*_l, 1) - g_L(\delta^*_l, 1)
\]

Hence, we have:

Lemma 3 Suppose \(\lambda < w \) and \(\phi \sigma \leq r \), so \(\sigma = 0 \). Let

\[
\zeta \equiv (1-\gamma) \left(\frac{w}{1-w} - \frac{\lambda}{1-\lambda}\right) (R^D - R^B) - \gamma \left(\frac{p}{1-p}\right) R^E + h
\]

If \(\zeta \leq 0 \) and a finite solution to \(\pi^B|_{B\geq wD} \) exists, then \(\pi^B|_{\lambda<w} = \pi^B|_{B\geq wD} \) and proposition 7 applies; the bank self-insures against liquidity stress. If \(\zeta > 0 \) and a finite solution to \(\pi^B|_{\text{liq.risk}} \) exists, then \(\pi^B|_{\lambda<w} = \pi^B|_{\text{liq.risk}} \) and proposition 8 applies; the bank is at risk of failure due to liquidity stress.

Proposition 8 (shown immediately below) simply imposes \(\zeta > 0 \) on the solution to \(\pi^B|_{\text{liq.risk}} \) in lemma 2. It is straightforward to show that \(\zeta > 0 \) implies \(R^B < R^D + g_D(D, L) \), so the liquidity requirement binds whenever \(\zeta > 0 \), simplifying lemma 2 as follows:

Proposition 8 (Solution to problem \(\pi^B|_{\text{liq.risk}} \) with \(\sigma = 0 \) and \(\zeta > 0 \)) A finite solution requires

\[
R^B \leq R^D + g_D(D, L) \leq R^L - g_L(D, L) \leq R^E/(1-p)
\]

With \(\zeta > 0 \), the first inequality is strict, so the liquidity requirement always binds and \(B = \lambda D \). The capital requirement binds if and only if the last inequality is strict or, equivalently, if and only if \(\tilde{R}^D(\lambda) + \frac{1}{1-\lambda} g_D(D, L) < R^E/(1-p) \). The solution satisfies the zero-profit condition:

\[
R^L - g_L(D, L) = \gamma R^E/(1-p) + (1-\gamma) \{\tilde{R}^D(\lambda) + (1-\lambda)^{-1} g_D(D, L)\}
\]

\(^{70}\)If the capital requirement and the liquidity constraint are both binding for each problem, then \(h = g(\rho_w, 1) - g(\rho, 1) \) (using Euler’s theorem). As \(\lambda < w, \rho < \rho_w \), so \(h \geq 0 \) in this case.
resulting in $\pi^B = 0$. Two cases are possible:

1. If $R^L - g_L(\rho, 1) \geq R^E / (1 - p)$, then the capital requirement is slack, and

 $$R^L - g_L(D, L) = R^E / (1 - p) = \tilde{R}^D(\lambda) + (1 - \lambda)^{-1}g_D(D, L)$$

2. If $R^L - g_L(\rho, 1) < R^E / (1 - p)$, then the capital requirement binds, so $E = \gamma L$, and

 $$R^L = \gamma R^E / (1 - p) + (1 - \gamma)\tilde{R}^D(\lambda) + g(\rho, 1)$$

Risk choices with $\lambda < w$

Credit risk choice, part 3 From lemma 1, $\sigma = 0$ if and only if $\phi_\epsilon \bar{\sigma} \leq r$ ($\equiv R^L + R^R(B/L) - R^D(D/L) - g(D/L, 1)$), and recall that, in that case, finite solutions satisfy $\pi^B|_{B \geq wD} = rL/R^E - E = 0$ and $\pi^B|_{\text{liq. risk}} = (1 - p)rL/R^E - E = 0$ (see prop. 7 and 8). Hence:

- If $\zeta \leq 0$, so that $\pi^B|_{\lambda < w} = \pi^B|_{B \geq wD} = 0$, then $r = R^E(E/L) \geq R^E\gamma$, so $\phi_\epsilon \bar{\sigma} \leq \gamma R^E$ is a sufficient condition for no excessive credit risk taking (and is necessary if the capital requirement binds).

- If $\zeta > 0$, so that $\pi^B|_{\lambda < w} = \pi^B|_{\text{liq. risk}} = 0$, then $r = R^E E / ((1 - p)L) \geq R^E\gamma / (1 - p)$, so $\phi_\epsilon \bar{\sigma}(1 - p) \leq \gamma R^E$ is a sufficient condition for no excessive credit risk taking (and is necessary if the capital requirement binds).

Interestingly, a (slightly) lower level of capital requirement is sufficient to deter excessive risk taking if the optimal choice involves liquidity risk, taking R^E and $\bar{\sigma}$ as given. More importantly, $\phi_\epsilon \bar{\sigma} \leq \gamma R^E$ is always sufficient, even if $\lambda < w$. Having dealt with the case $\lambda \geq w$ in Appendix A.2, this concludes the proof of proposition 1.

Liquidity risk choice Combining proposition 1 with lemma 3 yields proposition 4 in the main text. QED.

Appendix B. Notes to Figure 1

Figure 1 is based on the following measurements and assumptions. These are not used elsewhere in the paper, except that section 7 discusses the BCBS (2010) estimates further (and the welfare costs measurements are obtained from section 6, as noted).
<table>
<thead>
<tr>
<th>Object</th>
<th>Value</th>
<th>Basis/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross marginal welfare cost of -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquidity requirement</td>
<td>0.0031</td>
<td>Measured in section 6 (v_{LIQ})</td>
</tr>
<tr>
<td>capital requirement</td>
<td>0.0171</td>
<td>Measured in section 6 (v_{CAP})</td>
</tr>
<tr>
<td>Macroeconomic cost of -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquidity risk taking</td>
<td>0.23%</td>
<td>BCBS (2010), benefit of liquidity req.</td>
</tr>
<tr>
<td>credit risk taking</td>
<td>0.57%</td>
<td>BCBS (2010), benefit of capital req.</td>
</tr>
<tr>
<td>Stressed withdrawals (w)</td>
<td>0.1</td>
<td>Assumption</td>
</tr>
<tr>
<td>Capital requirement threshold for -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no excessive credit risk</td>
<td>0.08</td>
<td>Assumption; equals $\phi_{\varepsilon}\tilde{\sigma}/R^E$ (proposition 1)</td>
</tr>
<tr>
<td>no excessive liquidity risk</td>
<td>0.13</td>
<td>Assumption; $\zeta = 0$ with $\lambda = 0$ (prop. 4)</td>
</tr>
</tbody>
</table>

Except for w, all objects depend on multiple parameters (and, in some cases, the functional forms of $u(.)$ and $g(.)$). For example, the first capital requirement threshold depends on the “value-at-risk” of excessively risky loans (ϕ_{ε}) and the quality of bank supervision (indexed by $\tilde{\sigma}$); the macroeconomic cost of credit risk taking depends on resolution costs (ψ_{Sol}), the distribution of credit risk (F_{ε}), and other parameters. As the values of many of these parameters are difficult to know or estimate, the figure instead relies on measurements of, or assumptions regarding, the values of the 7 objects listed above. A large number of combinations of underlying parameter values can be consistent with these choices.

The avoidance of the macroeconomic costs associated with excessive risk provides the benefits to regulation in the model. The figure uses existing estimates of the benefits of capital and liquidity requirements from BCBS (2010), which estimates those benefits as a reduction in the probability of a financial crisis due to stricter regulation times the loss in output conditional on a crisis. The numbers shown above are expressed as a percent of GDP and are obtained from Table 8 of the BCBS report under ‘no permanent output losses from crises’.

The slope of the line segments in the figure equals the negative of the gross marginal

71This yields the *smallest* estimate of benefits; estimates that include some permanent output losses are substantially larger, and using those would make the jumps in the charts so large that it would be hard to discern the negative slope outside the jumps. For the liquidity requirement, gross benefits are calculated from the entries in Table 8 as net benefits plus expected costs at the baseline capital requirement (7%) with the liquidity requirement met minus that same number without the liquidity requirement met. For the capital requirement, gross benefits of deterring excessive credit risk (i.e. the first threshold) are calculated as net benefits plus expected costs at the highest capital requirement (15%) minus that same number at the baseline, net of the benefits attributed to the liquidity requirement.
welfare cost of the capital requirement as measured in section 6 (using $g_D = 0.0122$). Welfare is expressed in consumption equivalents and is normalized to 100 for $\gamma = 0.08$ and $\lambda = w$.

Appendix C. Equilibrium and Planner’s Problem

Competitive equilibrium

As explained, we focus on the case that regulation satisfies $\lambda \ge w$ and $\gamma \ge \phi_e \bar{\sigma}/R^E$, so that $1_{\{B_t < w; D_t\}} = 0$, $\bar{\sigma}_t = 0$, and $F_\varepsilon(-r_t/\sigma_t) = 0$. Inserting this into (18), and combining with (1), (2), (3), (8), (13), (14), (15), (17), and proposition 3, the resulting equilibrium allocation can be characterized in terms of a dynamic system in (K_t, c_t) with R^E_t, L_t, d_t, and b_t as auxiliary variables:

$$K_{t+1} = F(K_t, 1) + (1 - \delta)K_t - c_t - g(d_t, L_t) - T$$ \hspace{1cm} (35)

$$R^E_t = (\beta u_c(c_t, d_t, b_t)/u_c(c_{t-1}, d_{t-1}, b_{t-1}))^{-1}$$ \hspace{1cm} (36)

$$F_K(K_t, 1) + 1 - \delta = R^L_t = R^E_t - \Delta_K(c_t, d_t, b_t, L_t)$$ \hspace{1cm} (37)

with the spread $\Delta_K = R^E - R^L$ defined by:\footnote{The expression for Δ_K follows from (11) and (8): $R^E - R^L = (1 - \gamma)(R^E - \bar{R}^D(\lambda)) - pg_D(D, L) - g_L(D, L) = \rho(R^E - R^D) - \lambda \rho(R^E - R^B) - pg_D(D, L) - g_L(D, L)$.}

$$\Delta_K(c_t, d_t, b_t, L_t) \equiv \rho \left(\frac{u_d(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - g_D(d_t, L_t) - \lambda \frac{u_b(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} \right) - g_L(d_t, L_t)$$ \hspace{1cm} (38)

and where L_t, d_t, and b_t are jointly determined by the following equilibrium versions of the firms’ and banks’ complementary slackness conditions:

If $\Delta_K(c_t, d_t, b_t, L_t) > 0$, then $L_t = K_t$; else $\Delta_K(c_t, d_t, b_t, L_t) = 0$ \hspace{1cm} (39)

If $\Delta_K(c_t, d_t, b_t, L_t) > -g_L(d_t, L_t)$, then $d_t = (1 - \gamma)L_t + \bar{B} - b_t$; else $g_L(d_t, L_t) = \Delta_K(c_t, d_t, b_t, L_t) = 0$ and $(d_t - \bar{B} + b_t)/(1 - \gamma) \le L_t \le K_t$ \hspace{1cm} (40)

If $\Delta_B(c_t, d_t, b_t, L_t) > 0$, then $\bar{B} - b_t = \lambda d_t$; else $\Delta_B(c_t, d_t, b_t, L_t) = 0$ \hspace{1cm} (41)

with the wedge $\Delta_B = R^D + g_D - R^B$ given by:

$$\Delta_B(c_t, d_t, b_t, L_t) \equiv \frac{u_b(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - \frac{u_d(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} + g_D(d_t, L_t)$$ \hspace{1cm} (42)
The first and second equations restate, respectively, the social resource constraint with \(\sigma = 0 \) and \(\lambda \geq w \) and the household’s intertemporal optimality condition (1), which determines the required return on (riskless) equity. The marginal product of capital is equal to the lending rate, which can be below the equity return, as acknowledged by (37). The spread between the return on equity and then lending rate, \(\Delta_K \), is given by (38), which is the equilibrium version of the bank’s zero profit condition (11).

A pure bank finance equilibrium obtains when \(R^L < R^E \), which implies \(L = K \) (see (15)). In equilibrium, this requires \(\Delta_K(c_t, d_t, b_t, K_t) > 0 \), as stated in (39). Such an equilibrium is always characterized by a binding capital requirement, which is implied by \(R^L < R^E \) (see proposition 3). A pure bank finance with binding capital and liquidity requirements is an equilibrium if \(\Delta_K(c, \rho K, \bar{B} - \lambda \rho K, K) > 0 \) and \(\Delta_B(c, \rho K, \bar{B} - \lambda \rho K, K) > 0 \). A pure bank finance equilibrium with a nonbinding liquidity requirement (and binding capital requirement) occurs if instead \(\Delta_B(c, \rho K, \bar{B} - \lambda \rho K, K) \leq 0 \). In that case, bond holdings by banks and by households are determined by the equilibrium condition \(\Delta_B(c, (1 - \gamma)K + \bar{B} - b, b, K) = 0 \) (see (41)).

When \(\Delta_K(c, d, b, K) < 0 \), the equilibrium is characterized by mixed finance \((L < K) \), with \(R^E = R^L \) and the relative size of the banking sector determined endogenously by \(\Delta_K(c_t, d_t, b_t, L_t) = 0 \) (see (39)). Under this condition, the capital and liquidity requirements can each be slack or binding, according to conditions (40) and (41), respectively.\(^{73}\) Thus, all four cases listed in proposition 3 are theoretically possible as part of a mixed finance equilibrium.

Equivalence of the planner’s problem and the competitive equilibrium

The Lagrangian and first-order conditions to the constrained planner’s problem in (21) are:

\[
\mathcal{L} = \max_{\{c_t, d_t, b_t, L_t, K_{t+1}\}} \beta_t \{ u(c_t, d_t, b_t) + \omega_t^{sp}[F(K_t, 1) + (1 - \delta)K_t - c_t - K_{t+1} - g(d_t, L_t) - T] \\
+ \lambda_t^{sp}[\bar{B} - b_t - \lambda d_t] + \gamma_{t+1}^{sp}[(1 - \gamma)L_t + \bar{B} - b_t - d_t] + \mu_t^{sp}[K_t - L_t]\}
\]

\(^{73}\) An equilibrium with a slack capital requirement requires that \(\Delta_K(c_t, d_t, b_t, L_t) + g_L(d_t, L_t) = 0 \). Since \(\Delta_K \geq 0 \) in equilibrium, this requires that \(g_L = 0 \) as indicated by (40), which is ruled if at least some of the non-interest costs are due to lending. Note also that with \(g > 0 \), an equilibrium with banks requires that \(u_d - \lambda u_b > 0 \). Otherwise, we would have \(R^L > R^E \) (see (38)), and the demand for banks loans would be infinitely negative (see (15)).
(c) \(u_c(c_t, d_t, b_t) = \omega_t^{sp} \)

(d) \(u_d(c_t, d_t, b_t) = \omega_t^{sp} g_D(d_t, L_t) + \Lambda_t^{sp} \lambda + \chi_t^{sp} \)

(b) \(u_b(c_t, d_t, b_t) = \Lambda_t^{sp} + \chi_t^{sp} \)

(L) \(\chi_t^{sp}(1 - \gamma) = \omega_t^{sp} g_L(d_t, L_t) + \mu_t^{sp} \)

\((K) \quad \omega_t^{sp} [F_K(K_t, 1) + 1 - \delta] = \beta^{-1} \omega_{t-1}^{sp} - \mu_t^{sp} \)

with \(\Lambda_t^{sp} \geq 0, \Lambda_t^{sp}[\bar{B} - b_t - \lambda d_t] = 0, \chi_t^{sp} \geq 0, \chi_t^{sp}[(1 - \gamma) L_t + \bar{B} - b_t - d_t] = 0, \mu_t^{sp} \geq 0, \) and \(\mu_t^{sp}[K_t - L_t] = 0. \)

Subtract \(\lambda \) times the first-order condition with respect to bonds (FOC (b)) from FOC (d) to obtain \(u_d - \lambda u_b = (1 - \lambda) \chi_t^{sp} - \omega_t^{sp} g_D \) (omitting arguments for brevity). Solving for \(\chi_t^{sp} \) and inserting the result into FOC (L) and using FOC (c) yields:

\[
\frac{\mu_t^{sp}}{\omega_t^{sp}} = \rho \left(\frac{u_d(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - \frac{\mu_t(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - g_D(d_t, L_t) \right) - g_L(d_t, L_t) = \Delta_K(c_t, d_t, b_t, L_t)
\]

(Recall that \(\rho = (1 - \gamma)/(1 - \lambda) \).) Inserting this into FOC (K) and using FOC (c) yields:

\[
F_K(K_t, 1) + 1 - \delta = \beta^{-1} \frac{u_c(c_{t-1}, d_{t-1}, b_{t-1})}{u_c(c_t, d_t, b_t)} - \Delta_K(c_t, b_t, d_t, L_t)
\]

This replicates equations (36), (37) and (38) in the characterization of the decentralized equilibrium. Furthermore, (39) follows from \(\Delta_K(c_t, d_t, b_t, L_t) = \mu_t^{sp}/\omega_t^{sp} \), \(\omega_t^{sp} = u_c > 0, \mu_t^{sp} \geq 0, \) and \(\mu_t^{sp}[K_t - L_t] = 0. \)

Since \(\mu_t^{sp} + \omega_t^{sp} g_L = \chi_t^{sp} (1 - \gamma) \) (from FOC(L)), \(\mu_t^{sp} \geq 0, \omega_t^{sp} \geq 0, \) \(g_L \geq 0, \chi_t^{sp} \geq 0 \) and \(\chi_t^{sp}[(1 - \gamma) L_t + \bar{B} - b_t - d_t] = 0, \) it follows that \(\chi_t^{sp} > 0 \) and \(d_t = (1 - \gamma) L_t + \bar{B} - b_t \) if \(\mu_t^{sp} > 0 \) or if \(g_L > 0 \) (or both); otherwise \(\chi_t^{sp} = 0 \) and \(d_t \leq (1 - \gamma) L_t + \bar{B} - b_t, \) a result that is equivalent to (40) in the decentralized equilibrium.

Taking the difference between FOC(b) and FOC(d) yields

\[
(1 - \lambda) \frac{\Lambda_t^{sp}}{\omega_t^{sp}} = \frac{u_b(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} - \frac{u_d(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)} + g_D(d_t, L_t) = \Delta_B(c_t, d_t, b_t, L_t)
\]

the expression in (42). (41) follows from \(\Delta_B(c_t, d_t, b_t, L_t) = (1 - \lambda) \Lambda_t^{sp}/\omega_t^{sp}, \omega_t^{sp} = u_c > 0, \) \(\Lambda_t^{sp} \geq 0, \) and \(\Lambda_t^{sp}[\bar{B} - b_t - \lambda d_t] = 0. \) Finally, equation (35) in the characterization of the decentralized equilibrium is included as one of the constraints of the planner’s problem.

Collecting these results, it is apparent that the allocations of \(K_t, c_t, b_t, d_t \) and \(L_t \) implied by the planner’s problem are identical to those of the decentralized equilibrium summarized in equations (35)-(42). Hence, the constrained social planner’s problem replicates the decentralized equilibrium if \(\lambda \geq \nu \) and (5) holds for all \(t \geq 0 \) in that equilibrium, so that \(\sigma_t = 0. \) Moreover, under those conditions, welfare equals \(V_0(\theta), \) as defined in (21).
Proof of proposition 5 Call the current period 0. Using the envelope theorem, the marginal effect on welfare of raising the liquidity requirement \(\lambda \) is:

\[
\frac{\partial V_0(\theta)}{\partial \lambda} = - \sum_{t=0}^{\infty} \beta^t \lambda_s^p d_t = - \sum_{t=0}^{\infty} \beta^t \{u_b(c_t, d_t, b_t) - u_d(c_t, d_t, b_t) + u_c(c_t, d_t, b_t)g_D(d_t, L_t)\} \frac{d_t}{1 - \lambda}
\]

(see (43)). Since the allocations of \(c_t, d_t, b_t \) and \(L_t \) are identical to those of the decentralized equilibrium, their equilibrium values can be used. Moreover, in that equilibrium, we have, by taking the difference between the household’s first-order conditions (2) and (3),

\[
u_u(c_t, d_t, b_t) - u_d(c_t, d_t, b_t) = u_c(c_t, d_t, b_t)(R_t^D - R_t^B)
\]

Thus, with the assumption that the economy is in steady state in period 0,

\[
\frac{\partial V_0(\theta)}{\partial \lambda} = - \frac{u_c(c_0, d_0, b_0)(R_0^D - R_0^B + g_D(d_0, L_0))d_0}{(1 - \beta)(1 - \lambda)}
\]

As is standard, compare this to the welfare effect of a permanent change in consumption by a factor \((1 + \nu)\), which equals, to a first-order approximation, \(\sum_{t=0}^{\infty} \beta^t u_c(c_t, d_t, b_t)c_t\nu\), or \(u_c(c_0, d_0, b_0)c_0\nu/(1 - \beta)\) with a steady state reigning in period 0. Equating this to the right-hand side of the previous equation yields proposition 5. QED.

Proof of proposition 6 Call the current period 0. Using the envelope theorem, the marginal effect on welfare of raising \(\gamma \) is:

\[
\frac{\partial V_0(\theta)}{\partial \gamma} = - \sum_{t=0}^{\infty} \beta^t \chi_t^p L_t = - \sum_{t=0}^{\infty} \beta^t \{u_d(c_t, d_t, b_t) - \lambda u_b(c_t, d_t, b_t) - u_c(c_t, d_t, b_t)g_D(d_t, L_t)\} \frac{L_t}{1 - \lambda}
\]

where the second equality follows from the planner’s first-order conditions for bonds, deposits and consumption. Since the allocations of \(c_t, d_t, b_t \) and \(L_t \) are identical to those of the decentralized equilibrium, their equilibrium values can be used. Moreover, in that equilibrium, we have, from the household’s first-order conditions (2) and (3),

\[
u_u(c_t, d_t, b_t) - \lambda u_b(c_t, d_t, b_t) = u_c(c_t, d_t, b_t)(R_t^E - R_t^D - \lambda(R_t^E - R_t^B))
\]

\[
= u_c(c_t, d_t, b_t)(1 - \lambda)(R_t^E - \tilde{R}_t^D(\lambda))
\]

Hence,

\[
\frac{\partial V_0(\theta)}{\partial \gamma} = - \sum_{t=0}^{\infty} \beta^t u_c(c_t, d_t, b_t)(R_t^E - \tilde{R}_t^D(\lambda) - \frac{g_D(d_t, L_t)}{1 - \lambda})L_t
\]
With the assumption that the economy is in steady state in period 0,
\[
\frac{\partial V_0(\theta)}{\partial \gamma} = -(1 - \beta)^{-1} u_c(c_0, d_0, b_0)(R_0^E - \tilde{R}_0^D(\lambda) - \frac{g_D(d_t, L_t)}{1 - \lambda})L_0
\]

With a steady state in period 0, the welfare effect of a permanent change in consumption by a factor \((1 + \nu)\) equals, to a first-order approximation, \(u_c(c_0, d_0, b_0)c_0\nu/(1 - \beta)\). Equating this to the right-hand side of the previous equation yields the proposition. QED.