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1. Introduction

“There was a time where there was a tight connection between unemployment and inflation.

That time is long gone.” (Jerome Powell, 2021.)1

“... gradualism is a well-established principle for central banks in times of uncertainty.

When faced with uncertainty about the resilience of the economy, it pays to move carefully.”

(Christine Lagarde, 2022.)2

The Phillips curve is a key element of the new Keynesian macroeconomic model and is

critical in how central banks think of the macroeconomy. Recently there has been much

debate about a potential flattening of the Phillips curve, which could, in turn, hinder the

central banks’ ability to control inflation. The goal of this paper is to apply Bayesian panel

methods with breakpoints to disaggregate data in order to revisit time variation in the slope

of the Phillips curve.

There are a number of motivations for looking at disaggregate data, whether by indus-

try, by region, or by country. First, there may be some cross-sectional heterogeneity which

might shed light on the causes of changing Phillips curves. Second, since different regions

and sectors experience different business cycles, there is extra information in disaggregate

data that enables us to identify slope coefficients and regime changes more precisely than

using aggregate data alone. For example, Bai et al. (1998) and Smith and Timmermann

(2021) argue that panel data imposing common timing of breaks increases the precision of

break date estimates, even when the effect of such breaks is allowed to vary across individual

units or variables. Third, several recent papers (e.g. Hooper et al. (2020), Fitzgerald et al.

(2020) and McLeay and Tenreyro (2020)) have pointed out that if the central bank is suc-

cessfully targeting inflation, then this creates an endogeneity bias in the slope of the Phillips

curve, biasing the coefficient towards zero. The use of disaggregate data in conjunction with

the inclusion of time fixed effects avoids this problem, because the central bank does not

specifically target inflation in any one particular region or sector.3

1This quote is from Federal Reserve Chair Jerome Powell’s press Conference, March 17, 2021;
https://www.federalreserve.gov/mediacenter/files/FOMCpresconf20210317.pdf.

2This quote is taken from the speech “Monetary policy in an uncertain world” by Christine Lagarde,
President of the ECB, at “The ECB and Its Watchers XXII conference, 17 March 2022.”

3The problem would not be solved with disaggregate data without time fixed effects, because in that case
some of the identification would come from the time series dimension where there is endogeneity.
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Building on these insights, in this paper we apply recent Bayesian panel break methods

to study Phillips curve inflation dynamics. Our Bayesian panel break approach estimates the

number of breaks to the Phillips curve and the time of their occurrence (location). Further,

it endogenously identifies clusters of inflation series with common Phillips curves and for

which the impact of breaks is similar. The latter feature allows us to examine evidence of

convergence in Phillips curves. Finally, our approach allows us to identify lead-lag effects in

the timing by which individual inflation series get affected by breaks.

Existing work on estimating Phillips curves in panels of disaggregate data mostly imposes

the restriction of a common slope coefficient. An alternative is to estimate the Phillips

curve for each industry or region separately, but this gives up a lot of information and tests

conducted on univariate Phillips curve models generally lack sufficient power to detect breaks

or to estimate their dates precisely. An advantage of our approach is that we can take a

middle ground, and do partial pooling, while allowing for some cross-sectional variation in

the slope coefficients. For example, our methodology allows us to consider groupings by

industry or geographic region, with different slope coefficients applying to each group. We

can impose the groupings a priori, or the grouping structure can be estimated as part of

the modeling process. If the data support a homogeneous Phillips curve that is identical

across all units, only a single group will be identified. Conversely, very strong heterogeneity

in Phillips curves across industries or regions will lead to a model in which each group

comprises a single unit. Our methodology endogenously determines whether any of these

special cases or an intermediate scenario with multiple units in each cluster, is supported by

the data, thus adapting to the degree of heterogeneity found in the data.

The focus of our analysis is on understanding how the Phillips curve has changed over

time and identifying possible drivers of such change. A complex set of factors could be at play,

including changes in unionization and wage indexation, exposure to international trade, and

even economic integration. The impact of breaks to the Phillips curve is, therefore, likely

to depend on the unit at which inflation is measured. To help identify these drivers, we

therefore apply our estimation approach to a variety of data sets. Specifically, we consider

US price Phillips curves using disaggregation at the industry and MSA level, and to wage

Phillips curves at the state level. We also examine Phillips curves at the country level within

the European Union.

Turning to the empirical results, in US industry data covering the sample 1959Q1-2022Q3,

we find two regime changes in the Phillips curve; a steepening around 1972 and a flattening

in 2001. Moreover, the recent flattening of the Phillips curve is more pronounced for goods
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prices than for services prices. The steepening around 1972 comes after a period when

inflation had been trending up for some years and when indexation of wage contracts, either

implicit or explicit, became more common. This would in turn steepen the Phillips curve.

Meanwhile, the subsequent flattening corresponds to a time of greater import penetration,

especially from China, with China joining the World Trade Organization in 2001.4 While

economic intuition might suggest that changes to the slope of the Phillips curve would occur

gradually, China’s accession to the WTO may have caused more of a sudden break with

quite sharp effects documented in studies such as Bena and Simintzi (2022). Declining

unionization and the fact that inflation is stable at a low level creating less of a need for

paying attention to inflation in wage setting are other possible explanations for the flattening

of the Phillips curve.5 These regime changes that we detect are consistent with some of the

existing literature (e.g. Hooper et al. (2020)), although Hazell et al. (2022) argue using state

level data that the Phillips curve has been consistently flat.

Our non-common break estimates suggest that the first break to the Phillips curve based

on the industry-level PCE series occurs between 1972 and 1973 while the break to the Phillips

curve based on the CPI series occurs between 1971 and 1974. A second break occurs between

2001 and 2002. In both cases, the timing of the breaks is, thus, quite precisely estimated.6

US regional (MSA) data are not available as far back in time, spanning the shorter sample

1980-2022. This means that we cannot examine the presence of Phillips curve breaks in the

70s for this data. Still, even with this shorter sample coverage, we manage to identify a regime

change around 2000. Further, we find again that MSAs with above (below) median rates of

import penetration from China have experienced a considerably stronger (weaker) flattening

of their price Phillips curve. These findings are consistent with more goods competition from

China explaining a part of the flattening of the price Phillips curve.

Broadly similar patterns are found in the EU for a sample that begins in 1986 and ends

in 2021. For this data we find evidence of a single break which we estimate occurs in 2004

at which point the slope of the Phillips curve flattens significantly. Using our clustering

methodology, we find that the Phillips curve used to be particularly steep in poorer (mostly

4Auer et al. (2017), Stock and Watson (2020), Gilchrist and Zakraǰsek (2019) and Firat (2020) all show
how greater trade openness can flatten the Phillips curve.

5While we do find a flattening break in the wage Phillips curve (estimated over the sample 1980Q1 -
2019Q4), it is of smaller magnitude than for the price Phillips curve, and it comes in 1989, earlier than we
find with most price data.

6The common break approach can be viewed as a simplification that places the break to the Phillips
curve at a given date within the break interval identified by the noncommon break model.
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East European) countries prior to the 2004 break, but has flattened by more in those coun-

tries, consistent with clear evidence of Phillips curve convergence across countries that, early

in our sample, used to display a very different inflation-unemployment trade-off.

We also study nonlinearity of the Phillips curve, which, as noted by Hooper et al. (2020),

is much easier to do with disaggregate data since the national labor market has not really

been tight since the late 1960s, whereas many individual MSAs have had tight labor markets

in this time period. Since the current policy debate is focused on such tight values of the

labor market, regional data seems likely to be helpful here. We consider a kink in the Phillips

curve at a threshold of unemployment rates of 5 and 4.2 percent.7 Using these thresholds,

we find that the Phillips curve is steeper in a tight labor market. Hooper et al. (2020), Babb

and Detmeister (2017) and Leduc et al. (2019) also find that the Phillips curve is steeper

in a tight labor market but do not consider subsample instability. Ignoring breaks has the

effect of leading to underestimation of the additional steepness in tight labor markets in the

most recent period.

Next, we explore some aggregate implications of our Phillips curve estimates. Our esti-

mates for both the US and the EU imply essentially no missing disinflation during the Great

Recession and no missing reinflation during the subsequent recovery years. In addition, we

find that a steeper (nonlinear) Phillips curve in hot labor markets combined with a higher

natural rate of unemployment driven by unusually strong wage growth (Crump et al. 2022)

can explain almost half of the surge in U.S. inflation between 2020 and 2022.8

Finally, we investigate the implications for optimal monetary policy of the break in

the Phillips curve around the turn of the century using our MSA-level estimates. The

break induces additional parameter uncertainty in our Bayesian framework which causes

the central bank to respond more cautiously to deviations in the unemployment gap as

the policy maker is uncertain about the link between economic slack and inflation, in line

with Brainard (1967)’s “conservatism principle” that is encapsulated in the opening quote

from ECB President Christine Lagarde. The policy-maker compensates for this caution by

responding more aggressively to deviations in inflation from target. We find a similar pattern

using our EU country-level estimates. These results are relevant for recent global monetary

policy actions in response to the re-opening of the economy after the lockdowns induced by

7For comparison, Stock and Watson (2009) define a tight labor market as an unemployment gap below
minus 1.5 percent while Babb and Detmeister (2017) use the same thresholds as we do.

8The kinked (nonlinear) Phillips curve effects are an important part of this explanation. Interestingly,
our approach does not detect a break around the Covid lockdown, suggesting that the linear Phillips curve
remained quite flat during this period.
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the pandemic.

Our analysis is related to a large body of research on time-variation in the Phillips curve.

This literature can be divided into two broad categories.9 The first approach captures time-

variation by assuming that the parameters of the Phillips curve follow a random walk (Ball

and Mazumder 2011; Matheson and Stavrev 2013; Blanchard 2016; Inoue and Wang 2022).

The second approach estimates the parameters of the Phillips curve subject to an assumption

that break dates are either pre-specified or determined based on the single breakpoint test of

Andrews (1993) or based on informal modeling techniques, such as regressions with rolling

windows (Roberts 2006; Coibion et al. 2013; Coibion and Gorodnichenko 2015; Leduc et al.

2017; Ball and Mazumder 2019; Gaĺı and Gambetti 2019; Gilchrist and Zakraǰsek 2019;

Del Negro et al. 2020; Fitzgerald et al. 2020; Hooper et al. 2020; Cerrato and Gitti 2022;

Hazell et al. 2022).10 However, break tests conducted on univariate time series have low

power, making it difficult to detect breaks in the Phillips curve on individual inflation series.

Exploiting the rich information in the cross-section of panel data sets offers the opportunity

for increased power and our study is the first to formally estimate multiple breaks in the

Phillips curve in the context of such panel data.11

The remainder of the paper proceeds as follows. Section 2 introduces the panel data

sets used in our analysis while Section 3 explains our Bayesian panel approach, including

estimation, model selection and choice of priors. Section 4 presents our main empirical results

on breaks in the industry and regional Phillips curves, and Section 5 discusses aggregate

implications of our results. Section 6 conducts a set of robustness exercises, while Section

7 concludes. Additional empirical results are described in an Appendix at the end of the

paper.

2. Data

This section introduces our data along with the data sources used in our empirical analysis.

We first describe our inflation expectations and aggregate unemployment gap measures before

explaining the inflation rate, unemployment rate, and NAIRU measures which we use for

the US Metropolitan Statistical Areas (MSAs) and industries, as well as for the EU.

9Appendix Table A1 contains a list of some of the main studies on variation in the Phillips curve.
10Barnichon and Mesters (2021) use a subsample split to track time-variation in the Phillips multiplier.
11Allowing for multiple breaks is also crucial when considering long time series samples for which station-

arity is less likely to hold.
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2.1. Inflation expectations, unemployment rates, and NAIRU

We source four-quarter-ahead Consumer Price Index (CPI) inflation expectations from Blue

Chip Economic Indicators. These data go back to 1985. Between 1980 and 1985, we use

Producer Price Index (PPI) inflation expectations from the same source. Before 1980, we

use data from Livingston which is only updated every six months and so we simply repeat

observations in the two corresponding quarters, effectively assuming that inflation expecta-

tions remain the same in each 6-month period. Because U.S. inflation expectations are only

measured for the aggregate price index as opposed to at the regional or sectoral level, we

can only use these inflation expectations data in specifications without time fixed effects.

We use the end-of-quarter monthly aggregate unemployment gap, measured as the dif-

ference between the unemployment rate from the U.S. Bureau of Labor Statistics (BLS) and

the NAIRU estimate (from the Congressional Budget Office). These data begin in January

1949 and end in September 2022.

We source the annual country-level unemployment rate and NAIRU estimates for the 28

EU member countries (the current 27 plus the UK which was a member until recently), and

hence the unemployment gaps, for the sample period 1965-2021 from the DG ECFIN/AMECO—

the European Commission’s macroeconomic database.12

For the regional analysis, we obtain annual unemployment rate data from 1980 to 2022

for 22 MSAs from the BLS. We also use the end of quarter monthly unemployment rate for

all 51 states (including the District of Columbia), also obtained from the BLS. These data

begin in January 1980 and end in December 2019.

2.2. Price data

2.2.1. MSA level

We source monthly total CPIs for 22 MSAs from the BLS. We construct annual levels as the

average of all monthly observations in the corresponding year.13 Next, we construct annual

inflation rates as log(CPIit/CPIit−1)×100 in which CPIit denotes the level for the ith MSA

in year t.

12We thank Michele Lenza for helping us access these country-level NAIRU estimates.
13Data for all but a few MSAs are collected only in either odd or even months. See

https://www.bls.gov/opub/hom/cpi/pdf/cpi.pdf for details of the complete methodology and
https://www.bls.gov/cpi/additional-resources/geographic-sample.htm. for the geographic definitions.
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Annual unemployment rates are constructed as the average of all monthly observations

in the corresponding year. Our sample for these data begins in 1980 and ends in 2022, but

for many MSAs the data only start in 1990.

2.2.2. Industry level

We use quarterly Personal Consumption Expenditures price indexes (PCE) for 16 industry

components, similar to those analyzed by Stock and Watson (2020), sourced from the Bureau

of Economic Analysis (BEA).14 Our sample is 1959:Q1 - 2022:Q3. We construct annualized

quarterly inflation rates as log(PCEi,t/PCEi,t−1)× 400.

From the BLS, we source monthly CPI inflation for 31 “level 3” industries, as currently

formulated, beginning in January 1954 and ending in September 2022, though not all series

go all the way back. We construct our annualized quarterly inflation rate observations from

end of quarter monthly observations as log(CPIi,t/CPIi,t−3)× 400.

2.3. Implied national Phillips curve slopes

Hazell et al. (2022) show that the regional Phillips curve slope can be divided by the expen-

diture share on nontradeables to obtain the national Phillips curve slope. We use the 31 CPI

industry weights to compute the expenditure share on nontradeables. We follow Hazell et al.

(2022) by assigning the following series to nontradeables: Full Service Meals and Snacks,

Limited Service Meals and Snacks, Food at employee sites and schools, Food from vend-

ing machines and mobile vendors, Other food away from home, Electricity, Utility (piped)

gas service, Water and sewer and trash collection services, Household operations, Medical

care services, Transportations services, Recreation services, Education and communication

services, Other personal services, and Shelter. The expenditure share on nontradeables is

therefore 69.1 percent. Doing the same using the 16 PCE component weights, the expendi-

ture share on nontradeables is 74.3 percent.

14The two categories – Housing and Household utilities – have since been replaced by one: Housing and
utilities.
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2.4. Wage data

Following Hooper et al. (2020), we directly compute average hourly earnings (AHE) for each

of the 50 states and the District of Columbia using the latest (2019) CEPR uniform extract

from the Current Population Survey (CPS)15. Aggregating from monthly data, we construct

quarterly data from 1980:Q1 through 2019:Q4, from which we construct quarterly annualized

wage inflation.

2.5. EU data

We source headline (as well as total goods and total services) annual inflation rates for our

28 countries (the 27 current members and the UK) from the ECB statistical warehouse. Our

sample begins in 1986 and ends in 2021.

2.6. Group structure

We will be interested in group heterogeneity, with either the group allocation imposed ac-

cording to pre-determined selection criteria, or determined by the Bayesian algorithm as part

of the estimation process.

The 16 PCE sectors are split into goods – Motor vehicles and parts, Furnishings and

durable household equipment, Recreational goods and vehicles, Other durable goods, Food

and beverages purchased for off-premises consumption, Clothing and footwear, Gasoline and

other energy goods, and Other nondurable goods – and services – Housing and utilities,

Health care, Transportation services, Recreation services, Food services and accommoda-

tions, Financial services and insurance, Other services, and NPISH.

We also split the 28 EU countries into rich and poor countries with rich countries defined

as countries with real GDP per capita deflated by PPP in 2019 above the EU average and

poor countries defined as the rest. The rich countries include Luxembourg, Ireland, Denmark,

Netherlands, Austria, Germany, Sweden, Belgium, Finland, France, and UK.16

15The data are available from https://ceprdata.org/cps-uniform-data-extracts/.
16The poor countries therefore include Malta, Italy, Czech Republic, Spain, Cyprus, Slovenia, Slovakia,

Romania, Portugal, Poland, Bulgaria, Estonia, Lithuania, Latvia, Hungary, Greece, and Croatia.
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3. Methodology

Our analysis examines three different Bayesian panel specifications. The first is our base-

line pooled panel model with multiple breakpoints. This model applies the methodology

developed by Smith and Timmermann (2021) to exploit information in the cross-section and

obtain increased power to detect structural breaks. Breaks are assumed to be common, i.e.,

they hit every series in the cross-section at the same time and by the same amount. To

summarize, this model assumes homogeneity both in the timing of any breaks and in their

impact on individual variables.

To gain further insight into the break dynamics, our second model relaxes the common

break-timing assumption, allowing series to be hit at different times. We accomplish this

using the methodology developed by Smith (2018) which is designed to detect lead-lag rela-

tions in the impact of breaks across different variables in the cross-section. This approach

can, thus, shed light on the diffusion of breaks and the speed at which different sectors,

regions, or countries are affected by breaks to their Phillips curves.

Our third model endogenously estimates both the number of groups and the assignment

of each series to a group using the methodology developed by Smith (2022). Relative to

the baseline model that pools parameters across the entire cross-section, this model pools

parameters across all series within a group, but allows the parameters to differ across groups.

This provides an effective way to allow for heterogeneity in the impact of breaks on individual

variables.17 The baseline homogeneous (pooled) panel model arises as a special case of this

specification when the data only identifies a single group. At the other extreme, a model

where each series in the cross-section gets assigned to its own individual group would allow

for complete heterogeneity.

3.1. Common breakpoint model

The first–baseline–model we take to the data allows for an unknown number of K breaks

occurring at unknown times τ = (τ1, . . . , τK) which are assumed to be common to all i =

1, . . . , N series in the cross-section.18 Our first specification is for the Phillips curve at the

MSA level. The data are annual, and the model for the kth regime takes the form (for

17We generally condition on the regimes identified by the baseline model when implementing this third
model in our empirical analysis.

18For simplicity our notation uses N as the cross-sectional dimension, but our approach can readily handle
unbalanced panels with a time-varying dimension, Nt.
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k = 1, . . . , K + 1):

πit = αi + γt + ρkπit−1 + λkURATEit−1 + εit, t = τk−1 + 1, . . . , τk (1)

in which πit denotes the inflation rate for the ith series at time t, αi and γt denote two-

way fixed effects, πit−1 is the lagged inflation rate for variable i, URATEit−1 denotes the

unemployment rate for the ith series at time t − 1, and εit is the residual for the ith series

at time t which is assumed to be normally distributed εit ∼ N(0, σ2
ik), so we allow volatility

to vary across individual variables. The parameters ρk, λk, and σ2
ik are all allowed to shift

across regimes separated by a break, but the former two are assumed to be identical across

all series within a given regime, effectively following step functions that shift at τk. Hall

(2023) argues that the Phillips curve is steeper in times of high volatility because volatile

price determinants reduce price stickiness as a larger fraction of sellers elect to reset their

prices. Allowing volatility to vary across breaks could thus be important in identifying shifts

in the steepness of the Phillips curve slope.

Our baseline model assumes that the residuals εit are cross-sectionally and serially un-

correlated. This assumption means that we are not required to estimate the N(N − 1)/2

covariance terms in each break segment but may not be empirically valid in some empirical

applications. Section 6 discusses how to test the validity of this assumption. More broadly,

we can allow for cross-sectional correlation in εit through a common factor structure that

allows for heterogeneity in factor loadings across units but assumes that the idiosyncratic

shocks that remain, after accounting for the common factors, are orthogonal across i.

The specification in Equation (1) uses the unemployment rate rather than the unemploy-

ment gap as the slack measure. At the MSA level, there are no estimates of the natural rate

of unemployment and while we could HP detrend the city-level unemployment data, such

estimates would be sensitive to the bandwidth parameter. We instead rely on the two-way

fixed effects to absorb variation in the natural rate across time and cities. Common time

variation in inflation expectations in Equation (1) is also absorbed by the time fixed effects.

The same model is applied to the EU-level data, except that the unemployment gap

replaces the unemployment rate since we have NAIRU estimates for EU countries unlike for

the US MSAs:

πit = αi + γt + ρkπit−1 + λkUGAPit−1 + εit, t = τk−1 + 1, . . . , τk. (2)

For the US industry-level data, using either PCE or CPI, we do not observe industry-
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level unemployment rates, let alone a NAIRU estimate.19 For this case, we substitute the

aggregate unemployment gap, UGAPt−1, for the disaggregate unemployment gap in Equation

(2). This means we must drop the time fixed effects which are not separately identifiable

from the aggregate unemployment gap. Finally, we include four-quarter-ahead CPI inflation

expectations, BCt−1, which are identified in the absence of time fixed effects, yielding the

model:

πit = αi + ρkπit−1 + λkUGAPt−1 + ψkBCt−1 + εit, t = τk−1 + 1, . . . , τk. (3)

Note that in this specification, the data are at a quarterly frequency.

3.2. Noncommon breakpoint model

For parsimony, we only formally exposit the noncommon breakpoint model that generalizes

the common breakpoint model detailed in Equation (1).20 The only difference is that the

break timing, which was previously common (τk), is now allowed to differ across series (τik).

Formally, for the MSA-level annual data the model is (for regimes k = 1, . . . , K + 1)

πit = αi + γt + ρkπit−1 + λkURATEit−1 + εit, t = τik−1 + 1, . . . , τik. (4)

While this specification does not impose that the timing of the breaks is identical across

all variables, we control the degree of heterogeneity in the timing of breaks across units by ef-

fectively only considering “local” variation in the break timing, i.e., breaks whose occurrence

is close to the break date for the majority of variables. This prevents our approach from

identifying idiosyncratic breaks in the individual series and enables us to use cross-sectional

information to more accurately identify clusters of breaks whose impact can spread across

units at different speeds.

Intuitively, the approach works by identifying break windows rather than single break

points. Variables can be hit at any time within a given break window. For example, a com-

mon break approach might identify a break around the Global Financial Crisis in September

2008 when Lehman Brothers failed. The break window approach, however, might identify

a local break window of, say, 6-12 months during which firms were hit by the break at dif-

19BLS does have some data on industry-level unemployment, in the sense of breaking out unemployment
by the sector of the unemployed worker’s last job, but this data only goes back to 2000.

20The models that use either EU data – displayed in Equation (2) – or U.S. industry-level data – displayed
in Equation (3) – generalize in the obvious way.
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ferent times as the financial crisis cascaded through the economy. We control the degree of

heterogeneity in the timing of breaks across series through the prior, detailed in Section 3.4.

3.3. Grouped heterogeneity model

So far we assumed homogeneity in the regression coefficients and, consequently, in the effect

of breaks on individual variables. However, in many cases both the slope coefficients and

the impact of breaks may differ across sectors, regions, or countries. For such cases, it

is important to allow for heterogeneous parameters. We accomplish this by assuming the

existence of Gk groups or clusters of variables and allowing parameters to vary across groups

while they are the same within groups. Each unit (or variable) in the cross-section belongs

to a single group (cluster) (i ∈ gk) and both the group membership and the number of

groups is allowed to vary across regimes. This approach offers a flexible specification. For

example, we can allow for full heterogeneity in a given regime by setting Gk = N , whereas

homogeneity within the regime corresponds to Gk = 1. Values of Gk between these extremes

indicate some degree of clustering within that regime. Moreover, variation across regimes in

the number of clusters can provide important information about issues such as convergence

(or lack thereof) in the Phillips curves across units.

Using the model for the EU-level data as our lead example, we estimate the following

model in each of the k = 1, . . . , K + 1 regimes identified by the baseline model21

πit = αi + γt + ρgkπit−1 + λgkUGAPit−1 + εit, t = τk−1 + 1, . . . , τk, (5)

where εit ∼ N(0, σ2
i ). The parameters ρgk and λgk are pooled across all series within the

gkth group, but differ across the Gk different groups. The number of groups and the series

assigned to each group can be either specified a priori or alternatively determined as part

of the estimation. In the latter case, our priors lean against identifying groups that contain

only a single series, thus reducing the likelihood of simply identifying outliers in the data.22

21The models that use industry-level data are not formally exposited for simplicity, but follow the same
structure.

22Our Bayesian approach has two features that help determine the number of groups. First, the marginal
likelihood guiding the estimation prefers fewer groups and penalizes additional groups since these require
estimating more parameters. Second, we use a prior that an average of five series comprise a group and apply
a penalty to very small and very large groups although these are not ruled out. Still, our prior is towards
not having groups with just a single member. In cases where we find empirically that some groups have just
a single or very few members, the empirical evidence therefore strongly supports separating these units.
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3.4. Prior distributions

Our Bayesian panel break approach requires us to specify priors on the regime durations

and regression parameters. Using the baseline model as our lead example, we next explain

how these priors are set. We further specify our priors on the break lags in our second,

noncommon breaks, model and our priors on the clustering (grouping) model. Finally, we

discuss our prior choices.

3.4.1. Prior on regime durations

Following Koop and Potter (2007), the regime durations, lk = τk − τk−1, follow a Poisson

prior distribution

p(lk | ζk) = Po(ζk), k = 1, . . . , K + 1, (6)

where the intensity parameter ζk follows a conjugate Gamma prior distribution

p(ζk) = Ga(c, d), k = 1, . . . , K + 1, (7)

and c and d are the hyperparameters of ζk. These hyperparameters only determine the

average regime duration since the expected regime durations are allowed to differ across

breaks, with each individual regime having its unique intensity parameter.

3.4.2. Priors on regression parameters

For regimes k = 1, . . . , K + 1, we follow conventional practice and specify an inverse gamma

prior distribution over the residual variances

p(σ2
ik) ∼ IG(a, b), i = 1, . . . , N, (8)

while we assume a Gaussian prior on the regression coefficients

p(λk) ∼ N(0, σ2
λ),

p(ρk) ∼ N(0, σ2
ρ). (9)
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Here σ2
λ and σ2

ρ are hyperparameters that control the degree to which λk and ρk are shrunk

towards their prior means of zero.23

3.4.3. Priors on heterogeneity in break dates

Our second specification allows for differences in the point in time when breaks affect the

individual series within a break window, the length of which is estimated. Let τk denote the

date at which the kth break window begins. The lag with which the ith series is hit by the

kth break is denoted ∆ik = τik − τk which can be zero (hit immediately at the beginning of

the break window) as well as positive (hit with a lag). We specify a Poisson prior over such

break delays

p(∆ik | δk) ∼ Po(δk), k = 1, . . . , K, i = 1, . . . , N. (10)

We assume that the average expected lag with which the N series are hit by the kth break,

δk, has a conjugate Gamma prior distribution.

p(δk) ∼ Ga(e, f) k = 1, . . . , K. (11)

The hyper parameters e and f again control the average degree of heterogeneity in break

dates across series and the lag in individual series’ break dates from the beginning of the

break window τk is allowed to vary across breaks. Some breaks might spread very rapidly

across all series, while others may undergo a slower diffusion process.

3.4.4. Priors on heterogeneity and grouping structure

Our third specification introduces heterogeneity through an endogenous break clustering

structure. We accomplish this by placing a Poisson prior over the number of series included

in the gth group, Ng
24

p(Ng | ψ) ∼ Po(ψ), g = 1, . . . , G+ 1 (12)

23The grouped heterogeneity model specifies a normal prior over the coefficients λg and ρg.
24This specification of multiple independent Poisson distributions is inferentially equivalent to a specifica-

tion that uses a single Multinomial distribution.
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where the expected number of series in every group, ψ, has a conjugate Gamma prior

p(ψ) ∼ Ga(h, j). (13)

The prior hyper parameters h, j control the average number of groups along with the differ-

ence in the number of groups across regimes.

3.5. Prior elicitation

Our analysis calibrates the prior hyper parameters determining the regime duration so that

breaks occur, on average, every twenty years. We achieve this by setting d = 2 and c = 40

or c = 160 for the annual and quarterly data, respectively. Our priors are thus set to focus

on rare, “secular” breaks in the Phillips curve.25 We set a = 2 and b = 1. σ2
λ and σ2

ρ, which

control the degree to which λk and ρk are shrunk towards their prior means (zero), are both

equal to 0.1. These are fairly uninformative priors which allow the autoregressive parameter

and the slope of the Phillips curve to vary with the data.

For the quarterly data, we set e = 8 and f = 1 such that the prior expected break lag

for each series is eight quarters (two years). Similarly, for the annual data we set f = 1 and

e = 2. Finally, to determine group size for our third specification, we set h = 5 and j = 1

to reflect our prior belief that there are, on average, five series in each group. This choice of

prior on the groups thus leans towards not having a single series comprise a group.

3.6. Estimation

Each of our models is estimated using a multi-step reversible jump Markov chain Monte

Carlo algorithm (Carlin and Chib 1995; Green 1995). Estimation of the baseline model

consists of three steps. First, we estimate the regression coefficients from their full conditional

distributions using a Gibbs step. Next, we estimate the break locations using a random-walk

Metropolis-Hastings algorithm. Finally, the third step estimates the number of breaks using

a reversible jump step. This latter step introduces the number of breaks K as a parameter

and repeatedly attempts to “jump” to different values of K, with the proportion of iterations

spent at each value of K approximating the posterior model probabilities.26

25Setting these priors to focus on breaks at higher frequencies (e.g., once every couple of years) tends to
produce noisy regimes whose parameters and inflation dynamics are difficult to interpret economically.

26For full details on how our three models are estimated, we refer the reader to the articles cited in the
first paragraph of Section 3 and only provide a brief discussion here for completeness.
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Estimation of the second, noncommon breaks, model proceeds in the same manner as for

the baseline model, except it includes an additional Metropolis-Hastings step that estimates

the exact break location for each series in the cross-section.

Finally, estimation of the third, grouping, model combines the first step of estimating

the baseline model with a second reversible jump step that introduces the number of groups

G as a parameter in the model and repeatedly attempts to ‘jump’ to different values of

G, with the proportion of iterations spent at each value of G approximating the posterior

model probabilities. The series are ordered with the first N1 series in group 1 and so on.

The ordering of the variables, and hence their group allocations, are further estimated using

a random walk Metropolis-Hastings algorithm.

4. Empirical Results

Having introduced our data and estimation approach, we next turn to the empirical analysis.

We begin with the industry-level data before turning to the MSA and EU country data.

4.1. Industry-level data

We separately analyze two panel data sets on industry-level inflation, namely 16 PCE infla-

tion rates and 31 CPI series.

4.1.1. PCE inflation rates

We first estimate Phillips curves on quarterly sectoral data spanning the sample 1959-2022.

Both the number of breaks and their location is very precisely estimated from the data:

Our model assigns nearly 100% probability to the presence of two breaks with negligible

uncertainty as to the timing of these breaks.27

Table 1 displays the baseline results for the 16 PCE industry-level inflation rates. The

first of the two breaks is a steepening in the Phillips curve around 1972. Prior to 1972,

the estimated slope of the Phillips curve is -0.51. This slope estimate steepens notably

27One might be concerned as to whether the identified breaks could be sensitive to the omission of time
fixed effects for the sectoral data. While we cannot test this directly, we estimated models with and without
time fixed effects for our MSA and EU country data examined below. For both data sets, we found that the
number of breaks and their location were not affected by the presence of time fixed effects. While the precision
of our estimated break location may partly hinge on the assumption of no cross-sectional dependence in the
residuals, we show in our robustness analysis that such dependencies are in fact quite weak in our data.
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in the 1972-2001 regime to -0.87. Coupled with an AR coefficient of 0.37, this implies a

dynamic slope of -1.38.28 Inflation volatility, computed as the square root of an industry-

weighted average of the individual σ2
ik estimates, is also notably higher in the 1972-2001

regime (2.90) than in the previous regime (1.60), consistent with major shocks to commodity

prices and sharp shifts in inflation expectations accompanying the marked changes to the

Federal Reserve’s monetary policy during this period.

Our Bayesian panel model identifies a second break in the industry PCE data in 2001.

After this break, the slope of the Phillips curve becomes insignificantly different from zero and

inflation dynamics become notably less persistent with an AR(1) estimate of 0.12 compared

with 0.37 in the regime prior to 2001. The estimated volatility of shocks to inflation is

slightly lower in this regime (2.76 after 2001 versus 2.90 from 1972 to 2001) but remains well

above that experienced in the first regime (1.60).

The right-most column in Table 1 shows the equivalent panel estimate based on the full

sample 1959-2022, i.e., for a conventional Phillips curve model with no breaks. At -0.24, the

estimated full-sample slope shows that ignoring breaks results in a modestly steep Phillips

curve. This estimate can be thought of as a weighted average of the slopes in the underlying

regimes and so conceals the sharp differences in slope estimates across the more than six

decades covered by our sample.

Food and energy prices are known to be more volatile than prices in other (“core”)

sectors. To examine the price dynamics in core industries, the second panel in Table 1

reports the Phillips curve slopes for a model estimated on all industries excluding food and

energy. Excluding food and energy changes the slope during the 1972-2001 period from -0.87

to -0.53 which is notably flatter, but still quite steep. Moreover, this estimate continues to

be steeper than that in both the first regime (1959-1972), which equals -0.35, and in the last

regime (2001-2022) which equals 0.09 and is insignificant at the conventional 5 percent level.

Excluding food and energy thus flattens the slope of the Phillips curve but the evidence of

a steeper unemployment-inflation trade-off in the “middle regime” (1972-2001) continues to

be strong.

To help interpret the underlying drivers of these breaks, we also report results separately

after pre-assigning the individual price indices into goods and services groups. For both of

these groups we obtain a similar pattern in slope coefficients with a steepening in 1972 and

a flattening in 2001. However, the shifts in the estimated slopes is much sharper among the

28The dynamic slope refers to the long-run effect of a sustained unit change in the unemployment gap.
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goods sectors (third panel in Table 1) as compared to the services sectors (bottom panel).

Specifically, for the goods sectors the slope coefficient steepens from -0.62 in the first regime

(1959-1972) to -1.16 between 1972 and 2001, only to flatten to a statistically insignificant

(and wrong-signed) value of 0.57 after 2001. For the services sectors, the corresponding

slope estimates for the three regimes are -0.35, -0.59, and -0.02 with the last estimate again

being statistically insignificant. In addition, the goods and services slope coefficients are

significantly different from one another in the first two regimes (indicated through the bold

font of the services slope), but not in the final regime.

Across all data sets examined in Table 1, the full-sample estimates (reported in the

right-most column) imply a markedly flatter Phillips curve than the curve implied by the

estimates in the first two regimes, 1959-1972 and 1972-2001. The reason for this is that the

Phillips curve essentially becomes flat in the last period (2001-2022) which, when pooled

with the earlier samples, flattens the curve. Ignoring breaks would therefore lead to the

wrong conclusion of a rather flat Phillips curve and conceal the more complex story that,

while quite flat during the last twenty years, the Phillips curve has, historically, been quite

steep, especially during the nearly three decades 1972-2001. The full-sample estimates also

show that ignoring breaks conceals the significant differences between the goods and services

slopes that we find prior to 2001.

The disaggregate results in Table 1 assigns industries to a set of pre-determined groups.

Our unobserved grouped heterogeneity model in Equation (5) instead endogenously assigns

industries to groups. Table 2 displays parameter estimates, along with the posterior mode

group allocation, from applying this approach to the 16 industry PCE series. Within all three

regimes, our approach identifies two groups with very different Phillips curve estimates. The

really steep Phillips curve in the 1972-2001 subsample is concentrated in a group (“Group 1”)

that includes Gasoline and other energy goods along with Financial services and insurance

and NPISH.

In fact, the behavior of the slope coefficient for Gasoline and other energy goods is so

different from that of the other industries that this is the only sector to be included in Group

1 after 2001 and it is only grouped together with Financial services and insurance and NPISH

in the 1972-2001 regime. This narrow, unbalanced grouping only happens when the behavior

of a very small number of individual industries is truly different from that of the remaining

industries. This point is further highlighted by the extremely high volatility estimate (39.79)

for the Gasoline industry in the 2001-2022 regime which is more than twenty times higher

than that of the other industries (1.95).
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Using our baseline panel break model, the black line in the top panel of Figure 1 plots

the posterior mean of the Phillips curve slope within each of the three regimes with the

blue bands denoting 95 percent posterior intervals. These bands are clearly narrower in the

first regime and widest in the last regime after 2001. To illustrate the value of using cross-

sectional information to estimate the Phillips curve, the red dotted lines plot industry-level

estimates of the slope coefficients estimated separately for the three regimes identified by our

panel breakpoint model and reported in Appendix Table A2. Two points stand out. First,

consistent with the estimates in Table 2, we see strong evidence of variation in the industry-

level Phillips curves both over time and across industries. The majority of industries have

a significantly negative slope coefficient on the lagged aggregate unemployment gap in the

first regime: 10 of 16 slope estimates are negative and significant (at the five percent level)

for 1959-1972. In contrast, no more than four industries generate a significantly negative

slope coefficient in either the final regime (2001-2022) or for the full sample (1959-2022).

Second, we see that the individual industry PCE Phillips curves are imprecisely estimated

with estimates covering a wide range of values that fall outside the 95% confidence band

for our panel estimates. This demonstrates the value of using cross-sectional information to

estimate the Phillips curve in a panel setting.

Figure 2 displays the posterior mode break dates for the 16 PCE industries obtained from

the generalized version of the baseline model displayed in Equation (3). This model allows

the break timing to vary across industries as described in Section 3.2. Industries that are hit

first appear further to the left while industries hit later show up on the right in this figure.29

The top and bottom panels show results for the 1972 and 2001 breaks, respectively.

The earliest industries to be hit by the 1972 break are Financial Services, Food and

Beverage, and NPISH. For these industries, the Phillips curve breaks in 1972Q3. Gasoline,

Food Services and Other Services follow suit in 1972Q4. Slightly less than half of all the

industries (six) are affected by the break in 1973Q3, a full year later than the first-hit

industries. Overall, the impact of the 1972 break to the Phillips curve took six quarters to

percolate through the economy.

The 2001 break hits Gasoline very early (2001Q1) followed by Motor Vehicles and NPISH

a year later (2002Q1) and the remaining 13 industries the following quarter (2002Q2). Thus,

as for the first break an energy sector (Gasoline) is hit early, but there is far less dispersion

in the timing of the break across industries for the 2001 break compared to the 1972 break.

29The vertical ordering of industries is arbitrary.
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4.1.2. Univariate results

It is important to emphasize that our ability to detect breaks in the Phillips curve is closely

linked to our use of panel data in conjunction with the assumption that both the timing of

breaks and their impact on individual series is relatively homogeneous, i.e., there is a strong

common component in the breaks.

To highlight this point, we undertook a set of univariate Phillips curve regressions on

the individual inflation series using the breakpoint methodology of Chib (1998). We fail

to identify a single break in any of the PCE inflation series. Next, we dispensed with the

assumption of homogeneous slope coefficients, imposing only that the timing of the break is

identical across all variables in the panel. Once again, we fail to find evidence of breaks to

the Phillips curves.

These results show that our ability to identify breaks in the Phillips curves hinges on the

ability of our panel estimation approach to efficiently exploit multivariate information in a

way that takes advantage of the relative homogeneity in both the timing and impact of the

breaks across industries. This increases the power of the panel break tests compared with

univariate approaches or approaches that rely on heterogeneous panels.

Next, we evaluate the ability of the frequentist breakpoint approach of Bai et al. (1998)

to detect breaks in the Phillips curve in the settings we consider. Since their approach only

permits a single break, the most direct comparison is with the data sets for which we identify

just one break, namely, the MSA- and EU country data. Their approach, which assumes

heterogeneous slope coefficients, does not detect a break in either data set, echoing what

we find when applying our approach with heterogeneous slope coefficients and no pooling

across variables. Indeed, the ability of our approach to exploit cross-sectional commonalities

in the timing and impact of breaks by (fully or partially) pooling parameters accounts for

the additional power our approach has to identify breaks.

4.1.3. CPI industry inflation

We next examine the results for the 31 CPI industry-level quarterly inflation rates (1954-

2022). Once again, there is very little uncertainty about the number and timing of breaks

and our model identifies two breaks–corresponding to three regimes–with posterior modes

in 1971 and 2001.

Table 3 displays the baseline results for the 31 CPI industry-level quarterly inflation
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rates (1954-2022). The first of the three regimes (1954-1971) has a Phillips curve slope of

-0.77, somewhat steeper than that obtained for PCE inflation (-0.51) in the regime ending

in 1972. The second regime (1971-2001), has a very steep Phillips curve with an estimated

slope of -1.56, while the third regime has an almost completely flat Phillips curve with an

insignificant slope estimate of 0.02. Autoregressive dynamics are generally quite weak with

estimates of 0.09 in the first and last regime and 0.22 in the middle regime.

Table 3 also reports results on the model that excludes food and energy prices (second

panel). Here, we find a pattern of a Phillips curve that flattens across both breaks in 1971

and 2001. While the slopes of the CPI Phillips curves fitted to core and all prices are similar

in the first and third regimes, the core CPI Phillips curve is noticeably flatter than the curve

fitted to all prices in the middle regime (-0.49 versus -1.56). The third and fourth panels show

inflation estimates generated separately for goods and services. In the two regimes prior to

2001, the Phillips curve is significantly steeper for goods than for services. Conversely, the

slope of the Phillips curve is insignificantly different from zero in the last regime for both

goods and services.

Table 4 displays the results from the unobserved grouped heterogeneity model that uses

the 31 CPI industries.30 Our approach identifies a single group in the first regime but

two groups in the second and third regimes. In the second regime (1971-2001), there is a

group with an especially steep Phillips curve (slope estimate of -1.82 versus -0.26 for the

other group) which includes energy and some food components of CPI. In the third regime

(2001-2022), two groups are again identified, both with flat Phillips curves and only the first

group generates a significant slope estimate. While certain food and energy items are again

overrepresented in the second (smaller) group of industries identified for this regime, others

are included in the first group and, as a result, the group structure in the third regime is

quite different from that in the second.31

Appendix Table A3 examines the heterogeneity in further detail by estimating univariate

Phillips curve time-series regressions separately for each of the three regimes identified by

30Some industries do not have inflation data in the early parts of our sample and so cannot be allocated
to a group. These show up as missing observations in the first two regimes in the table.

31Our approach allows all parameters to shift across regimes and clusters. Which cluster a particular
industry gets assigned to will therefore depend on its persistence, slope, and volatility parameter. For
example, in the third regime, group 1 has an AR slope of 0.30 with a t-statistic of 12.51 while Group 2 has
a comparatively modest AR slope of 0.08 with a t-statistic of 1.92. Group 1 therefore tends to consist of
industries with more persistent inflation dynamics. Similarly, among the food industries, those allocated to
group 2 (the high-volatility cluster) have volatility estimates of 6.84 (Meats), 7.83 (Dairy), 7.80 (Fruits), and
25.65 (Food at employee sites). The remaining food sectors have much lower volatility estimates close to 2.5.
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our panel break method as well as for the full sample. Many of the CPI series are not

available in the first two regimes which limits the comparisons across time and industries.

Nevertheless, for 19 of the 23 industry CPI series for which we have estimates for both the

middle and last regime, the Phillips curve is steeper in the former (1971-2001) than in the

latter (2001-2022) period. This again is strong evidence of a flattening of the Phillips curve

at the industry level.

Figure 3 displays the posterior mode break dates for the 31 CPI industries based on the

model that allows the break timing to vary across industries. Our findings are in line with

what we found for the PCE industries: For the 1971 break (top panel), Food prices (Meats,

Poultry, Fish and Eggs and Fruits and Vegetables) are the first categories to be affected in

1971:Q3, followed by food items and various energy sectors whose break date is estimated

to occur in 1972. For the majority of industries, the break date is 1974:03, a full three years

after the first sectors are affected, suggesting that it took a very long time for this break to

percolate throughout the economy.

The 2001 break (bottom panel) initially affects fuel sectors (Motor Fuel and Utility

(piped) gas service) in 2001:Q1, followed by Fuel oil and other fuels and various food indus-

tries. Once again, the impact plays out over three years with the vast majority of industries

experiencing the break only in 2004:Q1.

4.2. MSA-level data

The top panel of Table 5 displays the baseline results for the 22 annual MSA-level inflation

rates (1980-2022).32 We identify a single break in 2000, with a marginal flattening of the

Phillips curve which goes from a pre-break slope estimate of -0.29 to a post-break estimate of

-0.25, with both being highly significant.33 The persistence of the inflation process, measured

through the autoregressive parameter, increases significantly from 0.16 before the break to

0.35 afterwards.34

The MSA data suggests a much flatter slope of the Phillips curve in the pre-2000 period

than that identified with either PCE or CPI sectoral data. There are a number of reasons

for this. First, the sectoral Phillips curve is particularly steep in the period after the early

seventies and the MSA data only starts in 1980. Consistent with this, sectoral Phillips curves

32The number of breaks and break dates are, once again, very precisely estimated.
33The slope, scaled by the expenditure share on non-tradeables (as discussed in subsection 2.3) flattens

from -0.43 before the break to -0.37 after it.
34Our results are robust to the inclusion of regional inflation expectations from the Michigan survey.
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are flatter if estimated only on data starting in 1980. Second, the MSA data are observed only

at the annual frequency whereas sectoral data are quarterly, further attenuating the impact

of the periods that experienced the steepest inflation-unemployment dynamics. Third, the

MSA-level results apply to the slope of the regional Phillips curve and the implied national

PC is steeper as we noted earlier.

To examine a possible source of breaks to the Phillips curve, the middle panel in Table

5 displays results when, conditional on the regimes identified by the baseline model, we

estimate the Phillips curve regression separately for MSAs located in states with below

and above median rates of import penetration from China based on the state-level import

penetration rates calculated by Riker (2022).35 We find that the flattening of the Phillips

curve is concentrated in cities with above-median rates of import penetration. Specifically,

whereas the slope of the Phillips curve changes only marginally from -0.19 to -0.18 for MSAs

with below-median import penetration from China, it declines from -0.41 to -0.29 in cities

with above-median import penetration from China. This finding lends credence to the role

of international trade as an explanation for the flattening of the Phillips curve. Moreover,

the slope coefficients for the two groups are significantly different from one another in both

regimes and in the full-sample results.36

In Appendix Table A4 we report the results from a series of univariate MSA-level Phillips

curve regressions on the two regimes identified by our benchmark model, i.e., 1980-2000 and

2001-2022, as well as for the full sample, 1980-2022. Importantly, when we conduct the

break-point estimation for these univariate series, i.e., for individual MSAs, we fail to find

significant evidence of breaks for any of the series. This reflects the weak power of break

tests conducted on individual (univariate) time series which fail to exploit information in the

cross-section to identify breaks. However, we can still use the breaks identified by our panel

model to examine evidence of time-variation in Phillips curve slope estimates across time

and cities. In fact, we observe stark differences over the two samples. In the early sample

(1980-2000), 12 of 19 estimates are negative while, conversely, in the late sample (2001-2022)

18 of 22 slope estimates are positive.37 Moreover, 15 of 19 coefficient estimates increase in

35Riker (2022) estimates these values using a structural econometric model that exploits data on the
location of import entry, domestic shipments, and distances between states. The MSAs that comprise the
below median group are Detroit-Warren-Dearborn, MI, Dallas-Fort Worth-Arlington, TX, Denver-Aurora-
Lakewood, CO, Philadelphia-Camden-Wilmington, PA-NJ-DE-MD, and St Louis, MO-IL.

36Many MSAs have missing data from the 1980s. This makes it difficult for our endogenous clustering
approach to identify groups of cities with distinctly different Phillips curve dynamics, so we do not apply
our grouping approach to the MSA-level data.

37For three of the 22 series we do not have sufficient data to estimate the regression in the first sample
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the second regime compared to the first regime. This is strong evidence of a flattening of

the Phillips curve estimated from MSA-level price data.

Other studies have found evidence of a flattening Phillips curve. Using a simple subsample

split on state-level data, Hazell et al. (2022) find that the Phillips curve flattens post-1990,

but not significantly. We estimate our breakpoint approach using their data and corroborate

their findings with a single break, except the break date is estimated to occur in 2000, aligned

with the date estimated from our other data sets. In both regimes, we observe a flat Phillips

curve with the slope estimate being marginally significant in the first regime (1978-2000)

but insignificant in the second (2001-2017).38 Of course, their data is core CPI excluding

shelter and so it is not surprising that the slope is much flatter than when we estimate it

from the MSA-level data since shelter is one of the most cyclically sensitive categories (Stock

and Watson 2020) and comprises more than 40 percent of core CPI.

4.3. Nonlinear Phillips Curve

Tests for breaks are conducted in the context of, and conditional upon, the maintained model

specification, in our case a linear Phillips curve model. It is possible that our findings on the

presence of breaks to this model reflect omitted non-linearities in the inflation-unemployment

trade-off. Previous studies such as Babb and Detmeister (2017) have in fact identified non-

linearities in the Phillips curve.

To examine this possibility, while still allowing for the possibility of breaks, we generalize

the linear Phillips curve specification in Equation (1) to allow the unemployment-inflation

trade-off to have a kink at a pre-specified threshold, θ, so that for regimes k = 1, . . . , K + 1

and t = τk−1 + 1, . . . , τk,

πit = αi + γt + ρkπit−1 + λkURATEit−1 + ωk(URATEit−1 − θ)1URATEit−1<θ + εit. (14)

Note that there is no discontinuity at the threshold point (θ) but the nonlinearity (“kink”)

can differ across regimes. This allows us to examine if nonlinearities were more or less

important in regimes with a steep or flat Phillips curve.

and so are left with only 19 MSAs.
38Specifically, using the baseline model in Equation (1) on the state-level core CPI data from Hazell et al.

(2022), we regress the 34 state-level nontradeables inflation rates from 1978 through 2017 on the lagged
state-level unemployment rates and an autoregressive term while allowing for two-way fixed effects. The
four-quarter inflation rate in each year is regressed on the four-quarter inflation rate in the previous year
and the average monthly unemployment rate computed over the 12 months of the previous year.
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Because we only have aggregate measures of slack for the sectoral (PCE and CPI) data, we

cannot estimate the model in Equation (14) on these data. Conversely, the MSA-level data

has city-level unemployment rate data and so can be used to examine nonlinear (threshold)

effects.

The lower panel of Table 5 displays results from estimating Equation (14) with threshold

values for the unemployment rate (θ) of 5% (top panel) and 4.2% (second panel), respectively.

These are the thresholds considered by Babb and Detmeister (2017).39 In both regimes we

find evidence of a significant and economically large kink in the Phillips curve. For example,

in the post-2000 regime, at an unemployment rate below 4.2 percent, the slope is -0.53 versus

-0.23 at higher unemployment rates. The estimated size of the post-2000 kink is notably

bigger than the kink estimated without allowing for any regime change (-0.30 versus -0.19).

This is consistent with a time-varying non-linearity and shows that, at least for the MSA

data, the Phillips curve has become notably steeper after 2000 at low levels of unemployment.

This finding is clearly relevant to current policy debates about costs and benefits of a hot

labor market.

4.4. Wage Phillips curves

The top panel of Table 6 displays results for the wage Phillips curve when using the 51

state-level (including the District of Columbia) quarterly wage inflation rates from 1980

through 2019. We identify a single break in 1989Q4, earlier than the break dates found for

price Phillips curves. This break results in a flattening of the wage Phillips curve with the

estimated slope falling from -0.46 to -0.34 which is less dramatic than for some of the price

Phillips curves. This smaller and earlier flattening of the wage Phillips curve–relative to

the price Phillips curve–may reflect factors like declining unionization and better anchored

inflation expectations, both of which were well underway around 1990. Conversely, the

flattening of the price Phillips curve is likely to be more sensitive to the expansion of trade

around the turn of the century.

Table 6 also considers the same kind of non-linearity in the wage Phillips curve that we

earlier examined for prices at the MSA level in Table 5, i.e., using thresholds of 5% (middle

panel) and 4.2% (bottom panel). For both threshold values, we find very strong evidence

of a much steeper wage Phillips curve in tight labor markets. For example, the slope of the

39We condition on the two regimes identified by the Phillips curve fitted to the MSA-level inflation data,
but the break dates remain the same if we estimate the model augmented to allow for the kink.
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Phillips curve after 1990 is -0.30 when the unemployment rate exceeds 4.2% but, at -0.93, is

three times steeper when unemployment falls below this level. Moreover, for this data, the

steep threshold effect holds in both the early and late regimes and is even slightly stronger

in the earlier data.

4.5. EU Data

Table 7 displays the baseline results for the 28 EU country-level annual inflation rates (1986-

2021). Our model identifies a single break in 2004. Before the break, the slope of the

Phillips curve is -0.72 with an AR coefficient of 0.10, implying a dynamic slope coefficient of

-0.8. After the break, the slope coefficient declines to -0.09 with an AR coefficient of 0.48,

implying a dynamic slope coefficient of -0.17. Both estimates are significant, so the inflation-

unemployment trade-off remains valid, but the Phillips curve becomes much flatter after the

break.40 Grouping the countries into “rich” and “poor” nations, based on whether GDP

per capita deflated by PPP is above or below average, we find that the poor countries had

a significantly steeper Phillips curve in the first subsample (1986-2003), whereas the slopes

of the Phillips curve are the same, and flat, for the two groups in the second subsample

(2004-2021). This finding is consistent with the greater goods and labor market integration

of countries in Southern and Eastern Europe seen in recent years.

To further track how the heterogeneity in Phillips curve slopes evolves over time, the

black line in the lower panel of Figure 1 graphs the evolution of the posterior mean of

the EU Phillips curve slope over time with blue bands denoting the 95 percent posterior

interval and red lines tracking the univariate Phillips curves estimated country-by-country.

Uncertainty about the panel estimate of the Phillips curve slope is much stronger in the first

regime and considerably smaller after 2001. As for the PCE inflation series, we see that the

individual country-level Philips curves are imprecisely estimated and often fall outside the

95% posterior interval.

The lower panel of Table 7 displays results for the full sample, as well as separately

in the two regimes identified by the baseline model, for a Phillips curve that uses either

country-level total goods inflation, or total services inflation as the dependent variable. The

flattening of the Phillips curve after 2004 is apparent for both goods and services inflation.

40Our results are robust to the inclusion of country-level inflation expectations from Consensus Economics
when conditioning on those observations for which inflation expectations data from this data source are
available.
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Interestingly, while flatter in absolute terms, the Phillips curve remains significantly steeper

for services inflation in the second regime (slope estimate of -0.15 versus -0.07), consistent

with what we found for the US. For the full sample, the Phillips curve estimated on services

inflation is significantly steeper than the curve estimated on goods inflation (slope estimates

of -0.19 versus -0.11).

Table 8 uses the group heterogeneity model that endogenously determines if there are

differences in individual countries’ Phillips curves and how these are affected by breaks. We

identify two groups of countries in the first regime that ends in 2003.41 One group (labeled

group 1 in the table) has a relatively steep Phillips curve before 2004 with a slope of -0.39.

This cluster mainly comprises countries on the European periphery, including Bulgaria,

Estonia, Ireland and Portugal. The second group has a much flatter Phillips curve with an

estimated slope of -0.05 which fails to be significant. In the post-2004 regime, we identify a

single group, whose estimated slope is -0.09.

To further understand this heterogeneity, Appendix Table A5 reports country-level esti-

mates of the Phillips curve coefficients estimated separately for the two regimes (1986-2003,

2004-2021) and for the full sample (1986-2021). Only three countries (the Netherlands,

Finland, and Cyprus) generate a significantly negative estimate over the full sample (1986-

2021), versus five countries in the early period and three countries for the regime that starts

in 2004. This demonstrates two important points. First, Phillips curves are poorly identified

using inflation series at the individual country-level. Possible explanations for this include

non-stationarities in the data and the relatively small samples (at most 36 observations)

available at the annual frequency. Second, break tests conducted at the univarate level tend

to have weak power. As for the U.S. data, break tests conducted at the individual country

level based on the break estimation methodology proposed by Chib (1998) fail to find signif-

icant evidence of breaks for any of the countries. This point is linked to the large estimation

errors associated with the country-level Phillips curves and shows up in the form of quite

large variation in coefficient estimates across the two regimes for individual countries.42

In summary, our estimates for the EU Phillips curve suggest that in addition to a flat-

tening of the Phillips curves, there has been some “convergence” in Phillips curve slopes

with the flattening being most pronounced in countries that previously had steep Phillips

41Inflation in Romania contains extreme outliers during the post-Communist transition, so this country is
in a group of its own during the early sample. We simply mark it as missing in the table.

42We also fail to identify breaks in a panel break model with heterogeneous slope coefficients. Hence, it is
exploiting cross-sectional information and pooling parameters that generates break detection power.
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curves. European integration thus appears to have been associated with a convergence of the

slopes of country-level Phillips curves, consistent with what we found for “rich” and “poor”

countries in Table 7 above.

To examine possible nonlinearities in the EU Phillips curve, the results displayed in the

final panel of Table 7 allow for a single kink at an unemployment gap threshold below -1.5%

as in Equation (14).

Under normal labor market conditions, we find a significantly negative and very steep

Phillips curve in the first regime (1986-2003) with a slope estimate of -1.17. Conversely,

the Phillips curve in a tight labor market (UGAP < −1.5%) is poorly identified in this

subsample, likely because Europe had so few cases with very tight labor markets in this

time period. Turning to the second regime (2004-2021), there is a significant steepening of

the Phillips curve which goes from -0.02 (flat) to -0.60 (steep) in tight labor markets. The

full sample kink (-0.13) is insignificant, underscoring again the insights from considering

nonlinearity and structural stability jointly.

These findings are consistent with the US findings and support the presence of a Phillips

curve trade-off over the last two decades but only in tight labor markets.

Figure 4 displays the posterior mode break dates for the 28 EU countries based on the

generalized version of the baseline model in Equation (2) that allows the break timing to

vary across countries as described in Section 3.2. As in the earlier figures, circles to the

left (right) indicate countries that are affected first (last) by a break. The vertical array

of circles to the far left of the figure comprises all the advanced, early EU members which,

thus, are affected first by the break to the Phillips curve in 2003. Countries such as Slovakia,

Slovenia, and Hungary follow in 2004. With a five-year delay, Romania and Bulgaria are the

last countries to exhibit flattening of their Phillips curves. The Bayesian algorithm has no

knowledge of the timing of EU accession, but it is noteworthy that these two countries were

the last to join the EU, in 2007. This points to EU membership, and the associated trade

linkages and freedom of movement of labor, as possible factors associated with the observed

flattening and convergence of the Phillips curves.

5. Aggregate Implications

In this section we explore aggregate implications of our findings, including evidence of missing

disinflation, the recent inflationary surge, and implications of breaks in the Phillips curve

for optimal monetary policy and the Brainard (1967) conservatism principle.
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5.1. Missing disinflation, reinflation and the recent inflationary surge

The top panel of Figure 5 displays the Phillips curve fit from our linear MSA breakpoint

model (black line). Specifically, in each year this is our prevailing regime-specific MSA

regional linear Phillips slope coefficient divided by the nontradeables share and multiplied

by the lagged national unemployment rate gap. The red line graphs the annual national

headline CPI inflation rate minus long term inflation expectations, which are 10-year ahead

SPF CPI inflation expectations.43

If there were missing disinflation during the Great Recession we would expect to see the

black line run below the red line. Likewise, we would expect the black line to run above

the red line if there were a missing reinflation during the recovery years following the Great

Recession. In fact, the black line tracks the red line closely and so there appears to be little

evidence of missing disinflation and missing reinflation according to the fit of our Phillips

curve model. This echoes the results of Ball and Mazumder (2019) and Hazell et al. (2022).

The dotted black line graphs the implied estimates from our nonlinear Phillips curve

estimates in the second regime using MSA-level data and increasing the noncyclical rate of

unemployment (NROU) in 2021 and 2022 to the estimates from Crump et al. (2022) who

argue that NROU has risen since COVID-19 due to unusually strong wage growth.44 The

dotted black line increases just under half as much as the red line between 2020 and 2022,

suggesting that a steeper Phillips curve in hot labor markets combined with a higher NROU

can explain a bit less than half of the recent inflationary surge.

We repeat this exercise for the EU and display the results in the lower panel of Figure 5.

The black line uses estimates from our linear breakpoint Phillips curve model. The red line

uses the EU inflation rate and long term (five-year ahead) Eurozone inflation expectations

from the ECB SPF which goes back to 2002 Q3. Prior to this, we use one-year ahead

expectations, going back to 1999 Q1.45 We average expectations across the four quarters

in a given year. Once again, we see little evidence of missing disinflation during the Great

Recession or missing reinflation during the subsequent recovery.

43Missing observations prior to 1991 Q4 are filled using linear interpolation.
44Specifically, we use their 5.9 percent estimate in 2021 and a value of 5.6 percent in 2022 which is about

the middle of their range of forecasts.
45Eurozone expectations data are sourced from the ECB statistical data warehouse.
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5.2. Optimal monetary policy

We next examine the implication of regime shifts in the Phillips curve for optimal monetary

policy. We consider a standard model consisting of a Phillips curve and an IS curve:

ut = βuut−1 + βiit−1 + εt,u,

πt = γuut−1 + γππt−1 + εt,π, (15)

where ut is the unemployment gap, πt is the deviation of inflation from steady state (all

constants are dropped), and it is the central bank’s policy rate at time t. Following common

assumptions, the objective of the central bank is to minimize E(u2
t + π2

t ) using a rule of the

form it = ρuut−1 + ρππt−1. By substitution this implies a VAR of the form:

xt = Axt−1 + εt (16)

where

A =

(
βu + βiρu βi(ρπ − 1)

γu γπ

)
and εt = (εt,u, εt,π)′ is N(0,Σ) with Σ = diag(σ2

u, σ
2
π).

The loss function of the central bank can be written as ω11 + ω22 where Ω = [ωij] is the

unconditional variance of xt and Ω solves the equation Ω = AΩA′ + Σ. We can plug in the

draws from the posterior for the parameters (βu, βi, γu, γπ, σ
2
u, σ

2
π) and then find the choice

of ρu and ρπ that minimizes this loss.

We obtain the IS curve by estimating a Bayesian time series regression (with no breaks) of

the quarterly percent U.S. national unemployment gap on an intercept, its own one quarter

lag, and the real federal funds rate lagged one quarter.46 The IS curve estimates (and t-

statistics) for the intercept, autoregressive term, and lagged real federal funds rate are 0.25

(1.02), 0.69 (5.85), and 0.02 (0.33).47 We combine these estimates with our baseline Phillips

curve estimates using MSA-level data for the US and country-level data for the EU to gauge

how the break in the Phillips curve affects optimal monetary policy. To evaluate the policy

impact of allowing for breaks, we compare results based on (i) the Phillips curve estimates

46We use the noncyclical rate of unemployment sourced from FRED. The real federal funds rate is measured
as the nominal four-quarter average federal funds rate minus the four-quarter headline CPI inflation rate in
percent.

47To isolate the impact of the break in the Phillips curve, we preclude breaks in the IS curve and hold the
IS curve estimates fixed across our US and EU calculations.
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from our baseline Bayesian breakpoint model, and (ii) the full-sample model that precludes

breaks. We compute the optimal monetary policy coefficients by simulating 20,000 posterior

draws and use a 200 × 200 grid search.

The top panel of Table 9 displays results for the U.S.. Relative to the no-break frame-

work, allowing for breaks induces more parameter uncertainty which, in turn, causes the

policymaker to respond less aggressively to deviations in the unemployment gap (-0.68 ver-

sus -0.88) because they are less certain about the relation between the unemployment gap

and inflation. This is in line with Brainard (1967)’s conservatism principle and the opening

quote from the ECB president Christine Lagarde. The policymaker compensates for this

additional caution by responding more aggressively to inflation deviations.48 Indeed, this

has been the action taken by many central banks during the re-opening of the economy after

pandemic-induced lockdowns.

Specifically, for the break and no-break models we use the corresponding Phillips curve

posteriors for our model or the same model that precludes breaks and combine this with

the estimates of the U.S. IS curve. For the MSA data, the uncertainty surrounding the PC

slope is nearly two-thirds (65%) higher than for the PC slope estimate from the no-break

model. To further illustrate how parameter uncertainty depends on the presence of breaks

to the Phillips curve, the top panel of Figure 6 displays density plots of the Phillips curve

slope coefficients in the first (black line) and second regimes (green line) estimated from

our baseline breakpoint model using MSA-level data against the corresponding plot from

the same model that precludes breaks (red line). Parameter uncertainty is greater in both

regimes as compared to the full-sample estimate.

For the final row in the table, we simply allow the mean to shift according to how much

the Phillips curve flattens across regimes (adding this mean difference to the posteriors), but

keep the variance of the posteriors fixed. Here we see essentially no difference in optimal

policy relative to the no-break case, suggesting that it is not the break in the mean of the

Phillips curve slope itself, but the additional parameter uncertainty caused by the break,

that affects optimal policy.

The bottom panel displays results for the EU. Here we find the same pattern as for the

US. Namely, that allowing for breaks causes the optimal monetary policy to respond less

aggressively to deviations in the unemployment gap (-0.65 versus -1.01) and to compensate

48As noted by Söderström (2002), once parameter uncertainty in the persistence parameter is allowed
for, the policymaker may respond more aggressively to additional uncertainty. Sack (2000) and Rudebusch
(2001) also consider the effect of uncertainty on the aggressiveness of optimal monetary policy responses.
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for this by responding more aggressively to deviations in inflation. For the EU data, the

uncertainty surrounding the PC slope is 141% higher than for the PC slope estimate from

the no-break model. The lower panel of 6 displays that parameter uncertainty is actually

lower in the second regime compared to the full-sample estimate, and so the effect on optimal

monetary policy is driven by the increased parameter uncertainty in the first regime. Once

again, a break in the mean of the Phillips curve slope alone has no impact.

The magnitude of our estimates of the effect of breaks in the Phillips curve on optimal

monetary policy should be viewed as a lower bound because they are estimated ex-post

using the full data sample. In practice, the central bank must set policy in real time. They

would therefore face additional uncertainty regarding whether a break has occurred any time

they observe a data realization in the tail of the distribution. In the no-break model, policy

makers would only update their posteriors of the parameters of the distribution, but in our

framework they now have to decide whether there has been a break. If a break has occurred,

pre-break data becomes less informative, inducing a large spike in uncertainty.

6. Robustness checks

In this section, we perform a number of robustness checks on our results. Specifically, we

first consider the possible effect on our panel break estimates of serial correlation or cross-

sectional error dependence in the residuals. Next, we evaluate whether our panel break model

better fits the data than a time-varying parameter model with smoothly-evolving coefficients.

Finally, we consider the effect of adopting alternative specifications for the priors.

6.1. Serial correlation

Serial correlation in the residuals of our model could potentially result in misleading inference.

Across all four data sets, the top panel of Appendix Table A6 shows that the p value of

the Durbin and Watson (1950) test statistic fails to reject the null hypothesis of no serial

correlation in the Phillips curve residuals within every regime across the four data sets (CPI

and PCE sectoral, MSA-level, and EU country-level) we consider in our analysis.
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6.2. Cross-sectional error dependence

Next, we consider the possibility of cross-sectional error dependence in the residuals from our

model. In applications with reasonably large cross-sections, weak dependence or dependence

that is confined to a relatively small number of series will not pose serious estimation and

inferential problems and only pervasive cross-section dependence is problematic (Pesaran

2015). Moreover, if cross-sectional dependence is caused by unobserved common factors

that are uncorrelated with the regressors, our estimator remains consistent, though some of

the efficiency gains from pooling may be lost and the standard error estimates may be biased

(Phillips and Sul 2003; Chudik and Pesaran 2013).

We test for cross-sectional error dependence using the test statistic proposed by Juodis

and Reese (2022) which is a bias-corrected version of the original CD test statistic proposed

by Pesaran (2021). Results are reported in the lower panel of Appendix Table A6. We

cannot reject the null hypothesis of no cross-sectional error dependence in any regime across

the four data sets, although we are on the borderline of rejecting the null in the third regime

for CPI data. If we exclude the Motor Fuel category in this regime when computing the

test statistic, however, we cannot reject the null, suggesting that the cross-sectional error

dependence is not pervasive. Reassuringly, the estimates from the CPI sectoral data in the

third regime follows the same basic pattern as the PCE sectoral data (which has no cross-

sectional error dependence), namely a flattening curve in the final regime. We therefore

conclude that any cross-sectional error dependence is insufficiently pervasive to cause serious

inferential problems in our settings.

6.3. Time-varying parameters

Finally, we compute Bayes factors for the baseline panel model with discrete breaks versus

the same model estimated using a time-varying parameter (TVP) specification. Bayes factors

are constructed using the marginal likelihood of each model computed using the methodology

of Chib (1995), for our four price Phillips curve data sets (at the PCE and CPI sectoral-

level, the MSA-level, and the EU country-level). Bayes factor values between 1 and 3 are

inconclusive, values between 3 and 20 indicate positive evidence in favor of the restricted

model, while values between 20 and 150 indicate strong evidence in support of the restricted

model (Kass and Raftery 1995). The TVP model can be viewed through the lens of our

breakpoint model, but imposes that a (typically small) break occurs every period. We do
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not impose this assumption. Instead we estimate the number of breaks, specifying a prior

on the regime duration that places relatively little weight on very short regimes and so our

framework tends to reveal few (typically large) breaks.

Across all four data sets we find Bayes factors above 20, suggesting strong evidence in

favor of modeling time variation in the Phillips curve as discrete breakpoints rather than

smoothly-evolving changes.

6.4. Alternative prior specifications

Our analysis uses fairly uninformative priors on the key parameters of the Phillips curve

such as ρk and λk, both of which are centered on zero. Effectively, this stacks the results

against finding a steep Phillips curve, but we mitigate such effects by allowing for relatively

large values of the prior variances σ2
ρ and σ2

λ. Because our priors are relatively uninformative,

changing the centering of λk has little impact on our results.

Priors can also be used to incorporate economic beliefs into the model. For example,

truncating the prior on the slope of the unemployment rate at zero can be used to rule out

positive values for the Phillips curve slope coefficient. Empirically, we find that truncating

the prior has little impact on our baseline estimates of the price Phillips curve across all four

data sets. Specifically, the truncation never binds for the MSA-level data and only binds

for the CPI and PCE sectoral data sets in the final regime, causing their slope coefficients

to turn negative (-0.17 and -0.07) but insignificantly different from zero. The truncation

binds in each regime for the EU data but only on a relatively small number of posterior

draws, causing the magnitude of the Phillips curve to steepen slightly without altering our

conclusions in any way. Overall, truncating the Phillips curve slope coefficient at zero has

little impact on inference in our study.

Our prior on the break frequency is somewhat more informative and selected so that

a break is expected to occur every 20 years. This means that our results tend to select

relatively rare shifts in the Phillips curve which are likely to be of a more secular nature,

representing “trend breaks”.

7. Conclusions

In this paper, we examine time variation in the Phillips curve, applying new Bayesian panel

methods with breakpoints to panel data from the U.S. and the European Union. Our analysis

uncovers a third reason for exploiting disaggregate data in the analysis of Phillips curves.
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Specifically, whereas break tests conducted on individual (univariate) inflation series have

insufficient power to detect breaks in the Phillips curves for any of the sectoral, MSA, or

country series, in contrast, exploiting commonalities in the timing and impact of breaks on

the cross-section of variables allows us to uncover strong evidence of breaks to the Phillips

curve.

Our Bayesian panel estimation approach allows us to estimate the number of breaks,

their location, as well as the magnitude of the shift in both mean and volatility parameters.

We also consider an extension that allow breaks to affect individual inflation series at dif-

ferent points in time so as to identify “lead-lag” relations in the cross-sectional diffusion of

breaks. Finally, we consider a “partial pooling” approach that endogenously forms groups or

clusters of inflation series, allowing the Phillips curves to differ across clusters (but assuming

homogeneity within a particular cluster). This approach is more flexible than conventional

panel data methods and yet more efficient than estimating separate time series regressions

for each region or industry. Because the grouping structure is identified as part of the es-

timation process, our approach can adapt to the degree of heterogeneity in Phillips curve

dynamics observed across industries, cities, or countries.

Though our empirical results depend on the specific data under consideration, we identify

a number of consistent patterns. First, we find evidence for up to two breaks; one in the early

1970s and the other around 2000. The Phillips curve steepened after the first break, and

flattened after the second. Second, the flattening around 2000 is greater for goods than for

services, is greater for MSAs with above median rates of import penetration from China than

for MSAs with below-median rates, is greater in price Phillips curves than in wage Phillips

curves, and is greater in comparatively poor EU countries than in rich EU countries. Third,

we identify a distinct pattern of convergence in EU country Phillips curve slope coefficients,

consistent with greater geographic mobility.

Finally, we discuss implications of breaks to the Phillips curve for optimal monetary

policy. Breaks to the Phillips curve increases uncertainty about parameter values and we

find that this has a notable effect on the optimal policy of a central bank policy maker.

Specifically, accounting for breaks leads the policy maker to respond less aggressively to

deviations in the unemployment gap but, conversely, respond more aggressively to deviations

from target inflation.
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Table 1: Quarterly 16 PCE industry-level inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022

All industries
PC -0.51∗∗∗ -0.87∗∗∗ 0.24 -0.24∗∗∗

AR 0.31∗∗∗ 0.37∗∗∗ 0.12∗∗∗ 0.26∗∗∗

vol. 1.60 2.90 2.76 2.90

All industries (ex. food and energy)
PC -0.35∗∗∗ -0.53∗∗∗ 0.09∗ -0.16∗∗∗

vol. 1.44 2.39 1.67 2.19

Goods
PC -0.62∗∗∗ -1.16∗∗∗ 0.57∗ -0.19
AR 0.12∗∗∗ 0.36∗∗∗ 0.16∗∗∗ 0.24∗∗∗

vol. 1.89 3.37 3.96 3.55

Services
PC -0.35∗∗∗ -0.59∗∗∗ -0.02 -0.21∗∗∗

AR 0.57∗∗∗ 0.36∗∗∗ 0.40∗∗∗ 0.43∗∗∗

vol. 1.39 2.31 1.44 2.02

Note: The top panel of this table displays estimates of the slope coefficients on the lagged aggregate un-
employment gap (PC) and the autoregressive term (AR) from the baseline model displayed in Equation
(3). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported volatility
(vol.) is the weighted average of the sectoral-level volatility estimates, weighted using the 2022:Q1 expen-
diture weights. This model regresses the 16 PCE sector quarterly inflation rates from 1959 through 2022
on an autoregressive term, the lagged aggregate unemployment gap, and the lagged long-term inflation
expectations, including industry fixed effects. We display results for the three regimes identified by the
model, and for the full sample (by estimating the model but precluding any breaks). The second panel
displays results when food and energy sectors are excluded from the model. The third and fourth panels
display results when estimating the same model separately for goods and services sectors, while preclud-
ing breaks and conditioning on either the regimes identified by the baseline model or on the full sample.
The goods group consists of Motor vehicles and parts, Furnishings and durable household equipment,
Recreational goods and vehicles, Other durable goods, Food and beverages purchased for off-premises
consumption, Clothing and footwear, Gasoline and other energy goods, and Other nondurable goods.
The services group consists of Housing and utilities, Health care, Transportation services, Recreation ser-
vices, Food services and accommodations, Financial services and insurance, Other services, and NPISH.
Values in bold font denote that the services PC is significantly different from the goods PC at the 95%
confidence level.
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Table 2: Grouped heterogeneity estimates: Quarterly 16 PCE industry-level inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022

Parameter Estimates

Group 1
PC -0.54∗∗∗ -2.23∗∗∗ 3.19 0.21
vol. 3.09 9.31 39.79 11.09

Group 2
PC -0.39∗∗∗ -0.47∗∗∗ 0.07 -0.18∗∗∗

vol. 1.21 1.89 1.95 1.93

Equal-weighted average
slope -0.43 -0.80 0.27 -0.13

Group Allocation Estimates

Motor vehicles and parts 1 2 2 2
Furnishings and durable household equipment 2 2 2 2

Recreational goods and vehicles 2 2 2 2
Other durable goods 1 2 2 2

Food and beverages purchased for off-premises consumption 1 2 2 2
Clothing and footwear 2 2 2 2

Gasoline and other energy goods 1 1 1 1
Other nondurable goods 2 2 2 2

Housing and utilities 2 2 2 2
Health care 2 2 2 2

Transportation services 2 2 2 2
Recreation services 2 2 2 2

Food services and accommodations 2 2 2 2
Financial services and insurance 2 1 2 1

Other services 2 2 2 2
NPISH 1 1 2 2

Note: The top panel of this table displays estimates of the slope coefficient on the lagged aggregate
unemployment gap (PC) from the model that estimates an unobserved grouping structure as described
in Section 3.3. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. This model
regresses the 16 PCE industry-level quarterly inflation rates from 1959 through 2022 on an autoregressive
term, the lagged aggregate unemployment gap, and lagged long-term inflation expectations, including
industry fixed effects. We also report the industry-weighted volatility (vol.) estimate within each group,
using the 2022:Q1 expenditure weights. The model is estimated within the three regimes identified by
the baseline model displayed in Equation (3) that uses the 16 PCE sector inflation rates, and for the full
sample. The lower panel displays the corresponding posterior mode group allocations.
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Table 3: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022

All industries
PC -0.77∗∗∗ -1.56∗∗∗ 0.02 -0.34∗∗∗

AR 0.09∗∗ 0.22∗∗∗ 0.09∗∗∗ 0.15∗∗∗

vol. 1.57 3.39 4.79 4.14

All industries (ex. food and energy)
PC -0.78∗∗∗ -0.49∗∗∗ 0.07 -0.10∗∗∗

vol. 1.31 1.91 2.33 2.42

Goods
PC -0.85∗∗∗ -1.96∗∗∗ 0.23 -0.36∗∗

AR 0.03 0.29∗∗∗ 0.02 0.09∗∗∗

vol. 1.56 5.18 9.78 7.13

Services
PC -0.54∗∗∗ -0.59∗∗∗ -0.14 -0.27∗∗

AR 0.34∗∗∗ 0.56∗∗∗ 0.40∗∗∗ 0.43∗∗∗

vol. 1.58 2.37 1.91 2.42

Note: The top panel of this table displays estimates of the slope coefficients on the lagged aggregate
unemployment gap (PC) and the autoregressive term (AR) from the baseline model displayed in Equation
(3). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported volatility
(vol.) is the weighted average of the sectoral-level volatility estimates, weighted using the October 2022
relative importance weights. This model regresses the 31 CPI sector quarterly inflation rates from 1954
through 2022 on an AR term, the lagged unemployment gap, and lagged long-term inflation expectations,
including industry fixed effects. We display results for the three regimes identified by the model, and for
the full sample (estimating the model but precluding any breaks). The other panels display results when
excluding food and energy sectors, and running the models separately for goods and services sectors,
conditioning on either the regimes identified by the baseline model or on the full sample. The services
group consists of Full Service Meals and Snacks, Limited Service Meals and Snacks, Food at employee
sites and schools, Food from vending machines and mobile vendors, Other food away from home, Utility
(piped) gas service, Shelter, Water and sewer and trash collection services, Household operations, Medical
care services, Transportation services, Recreation services, Education and communication services, and
Other personal services. The remaining sectors comprise the goods group. Values in bold font denote
that the unemployment gap slope for services is significantly different from that of goods at the 95%
confidence level.
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Table 4: Grouped heterogeneity estimates: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022

Parameter Estimates

Group 1
PC -0.77∗∗∗ -1.82∗∗∗ -0.12∗∗ -0.16∗∗∗

vol. 1.57 10.83 4.79 3.29

Group 2
PC -0.26∗∗∗ 0.38 -0.50∗∗∗

vol. 0.72 18.27 11.71

Equal-weighted average
PC -0.77 -1.14 0.01 -0.29

Group Allocation Estimates

Cereals and Bakery Products 2 1 1
Meats, Poultry, Fish and Eggs 1 1 2 2
Dairy and Related Products 1 2 2

Fruits and Vegetables 1 1 2 2
Nonalcoholic Beverages and Beverage Matls 1 1 1 2

Other Food At Home 1 1 1 2
Full Service Meals and Snacks 2 1 1

Limited Service Meals and Snacks 2 1 1
Food at employee sites and schools 2 2 2

Food from vending machines and mobile vendors 2 1 1
Other food away from home 2 1 1

Fuel oil and other fuels 1 1 2 2
Motor fuel 1 1 2 2
Electricity 1 1 1 2

Utility (piped) gas service 1 1 2 2
Household furnishings and supplies 1 1

Apparel 1 1 1 1
Transportation commodities less motor fuel 2 2

Medical care commodities 1 2 1 1
Recreation commodities 1 1

Education and communication commodities 1 1
Alcoholic beverages 1 1 1 1

Other goods 1 1
Shelter 1 1 1 1

Water and sewer and trash collection services 2 1 1
Household operations 2 1 1
Medical care services 1 2 1 1

Transportation services 1 1 1 2
Recreation services 1 1

Education and communication services 1 1
Other personal services 1 1

Note: The top panel of this table displays estimates of the slope coefficient on the lagged aggregate
unemployment gap (PC) from the model that estimates an unobserved grouping structure as described
in Section 3.3. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The
reported volatility (vol.) is the weighted average of the sectoral-level volatility estimates within each
group, weighted using the October 2022 relative importance weights. This model regresses the 31
CPI industry-level quarterly inflation rates from 1954 through 2022 on an autoregressive term, the
lagged aggregate unemployment gap, and lagged long-term inflation expectations, including industry
fixed effects. The model is estimated within the three regimes identified by the baseline model displayed
in Equation (3) that uses the 31 CPI sector inflation rates, and for the full sample. The lower panel
displays the corresponding posterior mode group allocations. Missing group allocations indicate that the
corresponding series had no inflation observations in the regime and so was not assigned to any group.
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Table 5: Annual 22 CPI MSA-level inflation rates (1980-2022)

1980-2000 2001-2022 1980-2022

All MSAs

PC -0.29∗∗∗ -0.25∗∗∗ -0.23∗∗∗

PC (scaled) -0.42 -0.37 -0.35
AR 0.16∗∗∗ 0.35∗∗∗ 0.32∗∗∗

vol. 0.63 0.64 0.65

Above and below median rate of import penetration from China

PC (above) -0.41∗∗∗ -0.29∗∗∗ -0.28∗∗∗

PC (below) -0.19∗∗∗ -0.18∗∗ -0.18∗∗∗

Kink at 5% or 4.2% U rate

PC -0.28∗∗∗ -0.22∗∗∗ -0.21∗∗∗

Extra PC (Urate <5%) -0.16 -0.27∗∗∗ -0.19∗∗∗

AR 0.15∗∗∗ 0.33∗∗∗ 0.29∗∗∗

PC -0.29∗∗∗ -0.23∗∗∗ -0.23∗∗∗

Extra PC (U <4.2%) -0.17 -0.30∗∗∗ -0.19∗∗

AR 0.15∗∗∗ 0.34∗∗∗ 0.31∗∗∗

Note: The top panel of this table displays estimates of the slope coefficients on the lagged MSA-level
unemployment rates (PC) and the autoregressive term (AR) from the baseline model that includes two-
way fixed effects displayed in Equation (1). Significance at the 10, 5, and 1 percent levels are denoted
by ∗, ∗∗, and ∗∗∗. We also report the slope scaled by the expenditure share on nontradeables to map the
regional PC slope into the national PC slope as suggested by Hazell et al. (2022). The reported volatility
(vol.) is the equal-weighted average of the series-specfic volatility estimates. We display results for the
two regimes identified by the model, and for the full sample (by estimating the model but precluding
breaks). The middle panel displays corresponding results when, conditional on the regimes identified
by the baseline model and for the full sample, we estimate the regression separately for those MSAs
that correspond to states with above or below median rates of import penetration from China based on
the state-level import penetration rates estimated by Riker (2022) who estimates these values using a
structural econometric model that exploits data on the location of import entry, domestic shipments,
and distances between states. The MSAs that comprise the below median group are Detroit-Warren-
Dearborn, MI, Dallas-Fort Worth-Arlington, TX, Denver-Aurora-Lakewood, CO, Philadelphia-Camden-
Wilmington, PA-NJ-DE-MD, and St Louis, MO-IL. Values in bold font denote that the PC slope for the
below median rate of import penetration group is significantly different from that of the above median
group. The lower panel displays results, conditional on the regimes identified by the baseline model
and for the full sample, from estimating the nonlinear Phillips curve in Equation (14), using a kink at
unemployment rate values below either five or 4.2 percent.
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Table 6: Wage Phillips curve: 51 state-level quarterly wage inflation rates (1980-2019)

1980:1-1989:4 1990:1-2019:4 1980:1-2019:4

Linear model

PC -0.46∗∗∗ -0.34∗∗∗ -0.39∗∗∗

AR 0.03 0.04∗∗∗ 0.04∗∗∗

Nonlinear model

Kink at 5%

PC -0.41∗∗∗ -0.25∗∗∗ -0.33∗∗∗

Extra PC (U < 5%) -0.60∗∗∗ -0.50∗∗∗ -0.52∗∗∗

AR 0.02 0.04∗∗∗ 0.04∗∗∗

Kink at 4.2%

PC -0.43∗∗∗ -0.30∗∗∗ -0.36∗∗∗

Extra PC (U < 4.2%) -0.85∗∗ -0.63∗∗∗ -0.69∗∗∗

AR 0.02 0.04∗∗∗ 0.04∗∗∗

Note: The top panel of this table displays estimates of the slope coefficient on the lagged state-level
unemployment rate (PC) and the autoregressive term (AR) when regressing the 51 (including the Dis-
trict of Columbia) state-level quarterly wage inflation rates (growth rates of average hourly earnings
of production and nonsupervisory workers) from 1980 through 2019 on an autoregressive term and the
lagged state-level unemployment rates, including industry and time fixed effects. Significance at the 10,
5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We display results for the two regimes identified
by the model. Average Hourly Earnings of production and nonsupervisory workers are at the quar-
terly frequency beginning in 1980:Q1 and ending in 2019:Q4, sourced from the CEPR extract of the
underlying CPS data. The middle and lower panels display estimates when including a kinkpoint for
unemployment rate values below 5 or 4.2 percent, and conditioning on either the full sample or the two
regimes identified by the baseline model.
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Table 7: Annual 28 EU countries inflation (1986-2021)

1986-2003 2004-2021 1986-2021

All countries
PC -0.72∗∗ -0.09∗∗∗ -0.15

PC (scaled) -1.03 -0.13 -0.21
AR 0.10 0.48∗∗∗ 0.54∗∗∗

vol. 2.54 1.08 1.84

Rich vs poor

PC (rich) -0.21∗∗∗ -0.06 -0.12∗∗∗

PC (poor) -0.73 -0.07∗ -0.13

Goods vs services

PC (servs.) -0.34∗∗∗ -0.15∗∗∗ -0.19∗∗∗

PC (goods) -0.33∗∗∗ -0.07∗∗ -0.11∗∗∗

Kink at -1.5%
PC -1.17∗∗∗ -0.02 -0.14

Extra PC (UGAP < -1.5%) 3.30 -0.58∗∗∗ -0.13
AR 0.09 0.45∗∗∗ 0.54∗∗∗

Note: The top panel of this table displays estimates of the slope coefficient on the lagged country-
level unemployment gaps (PC) and the autoregressive term (AR) from the baseline model displayed
in Equation (2). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We
also report the slope scaled by the expenditure share on nontradeables to map the regional PC slope
into the national PC slope as suggested by Hazell et al. (2022). The reported volatility (vol.) is the
weighted average of the country-level volatility estimates, using HICP country weights. This model
regresses the 28 EU (including the UK) country-level annual inflation rates from 1986 through 2021 on
an autoregressive term and the lagged country-level unemployment gaps, including two-way fixed effects.
We display results for the two regimes identified by the model, and for the full sample (by estimating the
model but precluding any breaks). The second panel displays results when estimating the same model
separately for rich and poor countries – while precluding breaks and conditioning on either the regimes
identified by the baseline model or on the full sample. Rich countries are defined as countries with real
GDP per capita deflated by PPP in 2019 above the EU average and poor countries are defined as the
rest. The third panel displays results when using either total services or total goods inflation, rather
than total inflation for each country. Values in bold font denote that the PC for goods (poor countries)
is significantly different from that of services (rich countries) at the 95% confidence level. The final panel
displays results, conditional on the regimes identified by the baseline model and for the full sample, when
including a kink at an unemployment gap below minus 1.5 percent as displayed in Equation (14).

46



Table 8: Grouped heterogeneity estimates: Annual 28 EU countries inflation (1986-2021)

1986-2003 2004-2021

Parameter Estimates

Group 1
PC -0.39∗∗ -0.09∗∗∗

vol. 1.86 1.08

Group 2
PC -0.05
vol. 0.72

Group Allocation Estimates

Germany 2 1
Belgium 2 1
Bulgaria 1 1
Cyprus 1 1
Croatia 2 1

Czech Republic 1 1
Denmark 2 1
Estonia 1 1
Spain 2 1

Finland 2 1
France 2 1
Greece 2 1

Hungary 2 1
Ireland 1 1
Italy 2 1

Lithuania 2 1
Latvia 2 1

Luxembourg 2 1
Malta 2 1

Netherlands 2 1
Austria 2 1
Poland 1 1

Portugal 1 1
Romania 1
Sweden 1 1
Slovenia 2 1
Slovakia 1 1

United Kingdom 2 1

Note: The top panel of this table displays estimates of the slope coefficient on the lagged EU country-
level unemployment gaps (PC) from the model that estimates an unobserved grouping structure as
described in Section 3.3. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗.
The reported volatility (vol.) is the weighted average of the country-level volatility estimates within each
group, using HICP country weights. This model regresses the EU country-level annual inflation rates
from 1986 through 2021 on an autoregressive term and the lagged country-level unemployment gaps,
and includes two-way fixed effects. The model is estimated within the two regimes identified by the
baseline model displayed in Equation (2). The lower panel displays the corresponding posterior mode
group allocations. Due to high volatility and extreme outliers, Romania was omitted from the analysis
in the first regime.
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Table 9: Optimal monetary policy

Model specification Optimal coefficient

Unemployment Inflation
US

No break -0.88 0.68
Break -0.68 1.10
Break in PC mean holding distribution fixed -0.82 0.77

EU

No break -1.01 1.19
Break -0.65 1.26
Break in PC mean holding distribution fixed -0.97 1.19

Note: The top panel of this table displays the optimal monetary policy rule coefficients on the unem-
ployment gap and inflation simulated using the U.S. IS curve estimates detailed in Section 5.2 and the
MSA Phillips curve estimates from our panel break model in which, following Hazell et al. (2022), the
Phillips curve slope is scaled by the nontradeables share to back out the implied national Phillips curve
slope. We display estimates for specifications that preclude breaks, allow for breaks in all parameters,
and allow for breaks in the mean of the Phillips curve coefficient holding the distribution fixed. We use
20,000 posterior draws and a 200 × 200 grid search in our simulation. The lower panel displays corre-
sponding results for the EU. To isolate the effect of the Phillips curve, we hold the IS curve estimates
fixed across the US and EU simulations.
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Figure 1: The black line in the top panel of this figure graphs the evolution of the posterior mean Phillips
curve slope over time estimated from our baseline breakpoint model displayed in Equation (3) using the
PCE sectoral data. The blue bands cover the corresponding 95 percent posterior interval of the estimates.
The red dotted lines graph the OLS time series estimates for each individual sector, conditioning on each of
the regimes identified by our breakpoint model. For illustrative clarity, the red dotted lines are not allowed
to overlay the blue shaded area. The lower panel displays the same information but uses the EU data and
the breakpoint model displayed in Equation (2).
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Figure 2: This figure displays the posterior mode break dates estimated from the model that regresses the 16
PCE industry-level quarterly inflation rates from 1959 through 2022 on an autoregressive term, the lagged
aggregate unemployment gap, and lagged long-term inflation expectations, including industry fixed effects,
and allowing the timing of the breaks to vary across industries as described in Section 3.2. The top panel
displays results for the 1972 break, and the lower panel displays results for the 2001 break.
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Figure 3: This figure displays the posterior mode break dates estimated from the model that regresses the
31 CPI industry-level quarterly inflation rates from 1954 through 2022 on an autoregressive term, the lagged
aggregate unemployment gap, and lagged long-term inflation expectations, including industry fixed effects,
and allowing the timing of the breaks to vary across industries as described in Section 3.2. The top panel
displays results for the 1971 break, and the lower panel displays results for the 2001 break.
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Figure 4: This figure displays the posterior mode break dates estimated from the model that regresses the
28 EU country-level annual inflation rates from 1986 through 2021 on an autoregressive term and the lagged
country-level unemployment gaps, including industry and time fixed effects, and allowing the timing of the
breaks to vary across countries as described in Section 3.2.
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Figure 5: The top panel of this figure displays the linear Phillips curve fit from our MSA breakpoint model
(solid black line). Specifically, in each year this is our prevailing regime-specific MSA regional Phillips slope
coefficient divided by the nontradeables share multiplied by the lagged national unemployment gap. The red
line graphs the annual national headline CPI inflation rate minus long term inflation expectations, which are
10-year ahead SPF CPI inflation expectations back to 1991 Q4. Missing observations prior to 1991 Q4 are
filled using linear interpolation. The dotted black uses our implied national PC slopes from the nonlinear
Phillips curve estimated in the second regime using MSA-level data and replacing the noncyclical rate of
unemployment in 2021 and 2022 with the higher estimates from Crump et al. (2022). The lower panel plots
the same information for the EU. Specifically, the black line is our estimated prevailing regime-specific EU
linear PC slope coefficient multiplied by the lagged EU unemployment gap. The red line uses the EU inflation
rate and long term (five-year ahead) Eurozone inflation expectations from the ECB SPF which goes back to
2002 Q3. Prior to this, we use one-year ahead expectations, going back to 1999 Q1. Eurozone expectations
data are sourced from the ECB statistical data warehouse. We average expectations across the four quarters
in a given year. 53
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Figure 6: The top panel of this figure displays density plots of the Phillips curve slope coefficients in the first
(black line) and second regimes (green line) estimated from our baseline breakpoint model using MSA-level
data against the corresponding plot from the same model that precludes breaks (red line). The lower panel
displays the same information estimated using the EU data.
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Appendix A. Appendix Tables

Table A1: Summaries of existing papers on instability in the Phillips curve

Authors Sample Method Finding Notes
Ball and Mazumder (2011) 1960-2010 Random Walk parameter Steepening around 1970,

flattening in 80s
Lower and more stable inflation
both flatten curve. Paper uses
median and core CPI

Slope coefficient linear
function of level and
variance

Ball and Mazumder (2019) 1985-2015 Sup Wald test Flattening break in 1995 Break identified indirectly from
expectations formation. Paper
uses median CPI.

Perron and Yamamoto 1960-1997 Sup Wald test Break in 1991 Uses GDP deflator.
Matheson & Stavrev (2013) 1961-2012 Random Walk parameter Flattening in 80s Uses headline CPI inflation.
Gali and Gambetti (2019) 1964-2017 Regimes with fixed dates Flattening in 2007 Wage Phillips curve
Leduc and Wilson (2017) 1991-2015 Regimes with fixed dates Flattening in 2009 Wage Phillips curve
Hooper et al. (2019) 1961-2018 Regimes with fixed dates Flattening in 1988 Uses headline and core PCE

and average hourly earnings and
MSA panel data.

Coibion & Gorodnichenko
(2015)

1961-2007 Regimes with fixed dates Possible break in 1985;
mixed evidence

No break if augmented with
household expectations. Uses
various aggregate inflation mea-
sures (CPI, core CPI...)

Coibion et al. (2013) 1968-2013 Regimes with fixed dates Flattening break in 1985 Break in price Phillips curve not
wage Phillips curve

Roberts (2006) 1960-2002 Regimes with fixed dates Flattening break in 1983 Uses core PCE inflation.
Hazell et al. (2002) 1978-2018 Regimes with fixed dates Break in 1990 but not sig-

nificant
State level panel data

Cerrato and Gitti (2022) 1990-2022 Regimes with fixed dates Flattening in pandemic;
steepened after

MSA level panel data

Fitzgerald et al. (2020) 1977-2018 Regimes with fixed dates No significant break MSA level panel data
Williams (2006) 1980-2016 Recursive regressions Flattening in the 90s Core CPI and PCE
Del Negro et al. (2020) 1964-2019 Regimes with fixed dates Break in 1990 Estimated in VAR
Barnichon & Mesters (2021) 1969-2007 Regimes with fixed dates Break in 1990 Phillips multiplier not slope of

curve. Uses headline PCE
Gilchrist & Zakrajsek (2019) 1962-2017 Sup-Wald test Mixed results; possible

break in 80s
Panel and aggregated data (CPI
and PPI)

Interact gap with trade
share

Inoue et al. (2002) 1970-2021 IV estimation with ran-
dom walk parameters

Flattening until early
2000s; then steepening

Uses core PCE

Blanchard (2016) 1960-2014 Random walk parameter Flattening in the 1980s Uses headline CPI
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Table A2: Time series regressions: 16 PCE industry-level quarterly inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022 1959-1972 1972-2001 2001-2022 1959-2022
Motor vehicles and parts Furnishings and durable household equipment

PC -0.18 0.12 0.63∗∗ 0.31∗∗ -0.33∗∗∗ -0.11 -0.06 -0.09
corr -0.06 0.18 0.29 0.19 -0.64 0.10 -0.14 -0.13

Recreational goods and vehicles Other durable goods
PC -0.13 -0.10 0.08 -0.03 -0.59∗∗ -0.22 0.08 -0.11
corr -0.22 0.19 -0.09 -0.14 -0.36 -0.03 0.04 -0.09

Food and beverages purchased for off-premises consumption Clothing and footwear
PC -0.97∗∗∗ -0.54∗ -0.42∗∗∗ -0.38∗∗∗ -0.69∗∗∗ -0.00 0.62∗∗ -0.01
corr -0.38 -0.31 -0.24 -0.24 -0.76 -0.00 0.24 -0.05

Gasoline and other energy goods Other nondurable goods
PC -1.03∗ -3.49∗∗∗ 3.19 0.36 -0.38∗∗∗ -0.25∗ -0.07 -0.13∗∗

corr -0.19 -0.29 0.12 -0.01 -0.59 0.07 -0.05 -0.04
Housing and utilities

PC -0.17∗ -0.02 -0.09 -0.05
corr -0.30 0.27 -0.59 -0.01

Health care Transportation services
PC -0.84∗∗∗ -0.12 -0.06 -0.09∗ -0.56∗∗ -0.07 -0.12 -0.10
corr -0.65 0.31 -0.10 -0.06 -0.41 0.02 -0.11 -0.09

Recreation services Food services and accommodations
PC -0.29∗∗ -0.16 -0.25∗∗∗ -0.14∗∗∗ -0.58∗∗∗ -0.16 0.06 -0.04
corr -0.34 -0.07 -0.35 -0.22 -0.64 -0.13 -0.16 -0.19

Financial services and insurance Other services
PC -0.24 1.05∗∗ 0.41∗ 0.25 -0.35∗∗ 0.01 -0.06 -0.06
corr -0.34 0.18 0.17 0.07 -0.42 0.13 -0.18 -0.07

NPISH
PC -0.37 -1.11∗∗∗ -0.00 -0.35∗

corr -0.25 -0.41 -0.14 -0.28

Note: This table displays estimates of the slope coefficient on the lagged aggregate unemployment gap
(PC) when estimating OLS time series regressions of each of the 16 PCE sector quarterly inflation rates
from 1959 through 2022 on an intercept, an autoregressive term, the lagged aggregate unemployment
gap, and the lagged long-term inflation expectations. Significance at the 10, 5, and 1 percent levels are
denoted by ∗, ∗∗, and ∗∗∗. We estimate the model conditioning on each of the three regimes identified
by the baseline PCE model displayed in Equation (3), and for the full sample. Within each of the three
regimes, and for the full sample, we also report the correlation between the industry’s inflation rate and
the aggregate unemployment gap.
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Table A3: Time series regressions: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022 1954-1971 1971-2001 2001-2022 1954-2022 1954-1971 1971-2001 2001-2022 1954-2022
Cereals and Bakery Products Meats, Poultry, Fish and Eggs Dairy and Related Products

PC -0.18 -0.35∗ -0.34∗∗∗ -4.54 -1.48 -0.21 -0.66 -1.14 -0.32 -0.42
corr 0.15 -0.27 -0.24 -0.42 -0.09 -0.11 -0.09 -0.14 -0.13 -0.13

Fruits and Vegetables Nonalcoholic Beverages and Beverage Matls Other Food At Home
PC -0.99 -2.19∗∗ -0.41 -0.88∗∗ -1.47 -0.33 -0.48∗∗ -0.48 -0.83 -1.36∗∗ -0.22 -0.56∗∗∗

corr -0.09 -0.09 -0.09 -0.07 -0.19 0.01 -0.31 -0.05 0.01 -0.21 -0.21 -0.19
Full Service Meals and Snacks Limited Service Meals and Snacks Food at employee sites and schools

PC 0.64 -0.07 -0.04 -1.85 -0.08 -0.05 7.39∗∗∗ -0.00 0.33
corr 0.36 -0.33 -0.27 -0.44 -0.19 -0.12 0.64 -0.14 -0.13

Food from vending machines and mobile vendors Other food away from home Fuel oil and other fuels
PC -1.55∗∗∗ -0.31 -0.17 -1.43 -0.32∗∗ -0.30∗∗ -0.39 -6.91∗∗∗ 1.50 -0.51
corr -0.51 -0.14 -0.06 -0.20 -0.26 -0.26 -0.19 -0.32 0.06 -0.06

Motor fuel Electricity Utility (piped) gas service
PC -0.15 -5.89∗∗∗ 3.15 0.01 -0.01 -1.56∗∗∗ -0.28 -0.27 0.29 -0.89 -0.74 -0.41
corr 0.02 -0.26 0.11 0.00 -0.04 -0.02 -0.25 -0.03 0.07 0.06 -0.11 -0.03

Household furnishings and supplies Apparel Transportation commodities less motor fuel
PC -0.04 -0.04 -1.00∗∗∗ -0.66∗∗∗ 0.72∗∗∗ -0.12 1.24∗ 1.24∗

corr -0.19 -0.19 -0.66 -0.00 0.25 -0.04 0.17 0.17
Medical care commodities Recreation commodities Education and communication commodities

PC -0.08 -0.21 0.02 0.02 0.17 0.17 0.16 0.16
corr 0.19 0.36 -0.05 0.15 0.02 0.02 0.11 0.11

Alcoholic beverages Other goods Shelter
PC -0.35 -0.94∗∗∗ -0.19∗∗ -0.41∗∗∗ -0.13 -0.13 -1.17∗∗∗ -1.75∗∗∗ -0.17∗∗ -0.56∗∗∗

corr -0.05 -0.11 -0.27 -0.19 -0.24 -0.24 -0.63 -0.15 -0.64 -0.22
Water and sewer and trash collection services Household operations Medical care services

PC -1.17 0.23∗∗∗ 0.28∗∗∗ -4.95 -0.73∗∗∗ -0.71∗∗∗ -0.53∗∗∗ -0.35∗∗ -0.20∗∗ -0.29∗∗∗

corr -0.17 0.27 0.37 -0.41 -0.32 -0.32 -0.49 0.23 -0.32 -0.09
Transportation services Recreation services Education and communication services

PC -0.60∗ -0.24 0.34 -0.08 -0.35∗∗∗ -0.35∗∗∗ 0.31∗∗ 0.31∗∗

corr -0.37 0.19 0.05 0.00 -0.27 -0.27 0.33 0.33
Other personal services

PC -0.19 -0.19
corr -0.26 -0.26

Note: This table displays estimates of the slope coefficient on the lagged aggregate unemployment gap
(PC) when estimating OLS time series regressions of each of the 31 CPI sector quarterly inflation rates
from 1954 through 2022 on an intercept, an autoregressive term, the lagged aggregate unemployment
gap, and the lagged long-term inflation expectations. Significance at the 10, 5, and 1 percent levels are
denoted by ∗, ∗∗, and ∗∗∗. We estimate the model conditioning on each of the three regimes identified
by the baseline CPI model displayed in Equation (3), and for the full sample. Within each of the three
regimes, and for the full sample, we also report the correlation between the industry’s inflation rate and
the aggregate unemployment gap. Missing values indicate that the industry has insufficient inflation
observations in the corresponding regime to either estimate the regression or compute the correlation.
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Table A4: Time series regressions: 22 CPI MSA-level annual inflation rates (1980-2022)

1980-2000 2001-2022 1980-2022 1980-2000 2001-2022 1980-2022
Urban Alaska Atlanta-Sandy Springs-Roswell, GA

PC -0.44 1.08∗∗∗ 0.09 0.18 0.01 0.02
corr -0.41 0.49 0.03 0.37 -0.20 -0.13

Boston-Cambridge-Newton, MA-NH Baltimore-Columbia-Towson, MD
PC 0.27 -0.11 -0.04 -0.14 0.11 -0.04
corr 0.56 -0.25 -0.17 0.26 -0.07 0.13

Chicago-Naperville-Elgin, IL-IN-WI Detroit-Warren-Dearborn, MI
PC -0.09 0.08 0.03 0.03 0.07 0.05
corr 0.23 -0.04 0.11 0.11 -0.09 -0.01

Denver-Aurora-Lakewood Houston-The Woodlands-Sugar Land, TX
PC 0.00 0.09 0.07 0.52∗∗∗ -0.04 -0.00
corr 0.26 -0.05 -0.02 0.83 -0.09 -0.11

Los Angeles-Long Beach-Anaheim, CA Miami-Fort Lauderdale-West Palm Beach, FL
PC 0.23 0.61∗∗ 0.54∗∗∗ -0.18∗ 0.08 0.02
corr 0.41 0.40 0.39 -0.40 -0.17 -0.21

Minneapolis-St Paul-Bloomington, MN-WI Dallas-Fort Worth-Arlington, TX
PC 0.33 0.02 -0.02 -0.27 0.07 -0.00
corr 0.43 -0.19 -0.15 0.11 -0.05 -0.00

New York-Newark-Jersey City, NY-NJ-PA Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
PC -0.03 0.13 0.08 -0.04 0.09 0.05
corr -0.11 0.06 0.06 0.01 -0.06 -0.05

Phoenix-Mesa-Scottsdale, AZ Riverside-San Bernardino-Ontario, CA
PC 0.18 0.18 0.74∗∗∗ 0.74∗∗∗

corr -0.24 -0.24 0.66 0.66
San Diego-Carlsbad, CA San Francisco-Oakland-Hayward, CA

PC -0.24 0.07 -0.03 -0.65∗∗∗ -0.07 -0.11
corr 0.02 -0.19 -0.08 -0.90 -0.33 -0.40

St Louis, MO-IL Seattle-Tacoma-Bellevue WA
PC -0.05 0.09 0.03 -0.03 0.17 0.08
corr 0.38 0.04 0.25 -0.28 -0.21 -0.24

Tampa-St Petersburg-Clearwater, FL Washington-Arlington-Alexandria, DC-VA-MD-WV
PC 0.01 0.01 -0.39 0.21 0.04
corr -0.20 -0.18 -0.05 -0.02 -0.06

Note: This table displays estimates of the slope coefficient on the lagged MSA-level unemployment rate
(PC) when estimating OLS time series regressions of each of the 22 MSA-level annual inflation rates from
1980 through 2022 on an intercept, an autoregressive term, and the lagged MSA-level unemployment
rate. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We estimate the model
conditioning on each of the two regimes identified by the baseline MSA model displayed in Equation
(1), and for the full sample. Within each of the two regimes, and for the full sample, we also report
the correlation between the MSA’s inflation rate and its unemployment rate. Missing values indicate
that the MSA has insufficient inflation observations in the corresponding regime to either estimate the
regression or compute the correlation.
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Table A5: Time series regressions: 28 EU country-level annual inflation rates (1986-2021)

1986-2003 2004-2021 1986-2021 1986-2003 2004-2021 1986-2021
Germany Belgium

PC -0.49∗∗ 0.37 -0.12 -0.22 0.10 -0.14
corr -0.69 0.29 -0.23 -0.46 0.09 -0.09

Bulgaria Cyprus
PC -0.40 0.29 0.05 -0.44 -0.31∗∗∗ -0.33∗∗∗

corr -0.40 -0.12 -0.21 -0.23 -0.64 -0.58
Croatia Czech Republic

PC -3.31 -0.13 -0.09 -0.11 -0.92 -0.26
corr 0.13 -0.16 -0.04 -0.25 -0.34 -0.29

Denmark Estonia
PC -0.09 -0.11 -0.08 1.31 0.15 0.24
corr -0.51 -0.21 -0.30 0.01 -0.00 0.02

Spain Finland
PC -0.09 -0.14 -0.07 -0.26∗∗∗ -0.61 -0.18∗∗

corr -0.14 -0.44 -0.25 -0.85 -0.52 -0.59
France Greece

PC -0.20 -0.46 -0.20 -0.43 -0.25∗∗∗ -0.06
corr -0.51 -0.36 -0.31 -0.59 -0.84 -0.46

Hungary Ireland
PC 2.11 -0.29 -0.25 -0.49 0.18 0.09
corr 0.88 0.03 0.09 -0.35 -0.01 -0.09

Italy Lithuania
PC -0.21 -0.45∗∗∗ -0.11 -0.01 -0.26 -0.27
corr -0.46 -0.68 -0.07 -0.40 -0.43 -0.45

Latvia Luxembourg
PC -0.38 -0.40 -0.42 -1.44 0.07 -0.12
corr -0.19 -0.52 -0.52 -0.59 -0.04 -0.14

Malta Netherlands
PC 4.78 0.51 0.55 -0.61∗∗ -0.39∗ -0.49∗∗∗

corr 0.89 0.13 0.12 -0.56 -0.46 -0.53
Austria Poland

PC -0.84∗∗ 0.41 0.08 -0.97 -0.16 -0.26∗

corr -0.48 0.18 -0.11 -0.76 -0.37 -0.43
Portugal Romania

PC -0.19 0.02 -0.15 2.21 0.10 6.43
corr -0.36 0.09 -0.17 -0.12 -0.18 0.01

Sweden Slovenia
PC -0.41 0.04 -0.25 1.23 -0.25 -0.03
corr -0.54 -0.12 -0.41 0.36 -0.40 -0.20

Slovakia United Kingdom
PC -0.95 -0.05 -0.21 -0.49∗∗ 0.09 -0.24
corr -0.67 0.06 0.07 -0.53 0.33 -0.22

Note: This table displays estimates of the slope coefficient on the lagged EU country-level unemployment
gap (PC) when estimating OLS time series regressions of each of the 28 EU country-level annual inflation
rates from 1986 through 2021 on an intercept, an autoregressive term, and the lagged country-level
unemployment gap. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We
estimate the model conditioning on each of the two regimes identified by the baseline EU model displayed
in Equation (2), and for the full sample. Within each of the two regimes, and for the full sample, we
also report the correlation between the country’s inflation rate and its unemployment rate gap.
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Table A6: Testing for error dependence

PCE CPI EU MSA

Durbin-Watson p-value
Regime 1 0.41 0.68 0.93 0.47
Regime 2 0.65 0.64 0.28 0.15
Regime 3 0.23 0.44

CD test statistic
Regime 1 0.91 0.44 1.58 1.75
Regime 2 1.52 1.44 0.32 0.60
Regime 3 0.11 1.97

Note: The top panel of this table reports the p-values from a Durbin-Watson test for serial correlation
in the residuals from our baseline panel breakpoint models across every regime and all four data sets we
consider for the price Phillips curve. Here, we exclude observations for Romania when computing the
p-value of the DW test in the first regime due to extreme and volatile outliers. The lower panel displays
the bias corrected CD test statistic, which has a standard Normal distribution, proposed by Juodis and
Reese (2022) in each regime across the same four data sets. The first ten time periods of the first regime
are excluded when computing the test statistic for the MSA data because more than half of the series
have missing observations.
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