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Abstract

Central counterparties’ ability to hold successful default auctions is critically important to
financial stability. However, due to the unique features of these auctions, standard auction
theory results do not apply. We present a model of CCP default auctions that incorporates
both the vital, but non-standard, objective of minimizing the likelihood it suffers reputationally
damaging losses and the potential for information leakage to affect CCP members’ private
portfolio valuations. This gives insight into the key question of how CCPs should select auction
participants. In particular, we prove that an entry fee, by appropriately incentivizing some
members not to enter the auction, can maximize the probability of auction success. The result is
novel, both in auction theory and as a mechanism for CCP auction design.
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1 Introduction

Central clearing has long been a ubiquitous feature of exchange-traded derivatives. It is a critical
market mechanism to mitigate counterparty credit risk: all large futures exchanges have an affiliated
clearing house, and trades are novated to this central counterparty (or ‘CCP”’) following their
execution on the exchange. In response to the 2008 Global Financial Crisis, central clearing was
mandated for over-the-counter (OTC) derivatives too, with the G-20 declaring that “all standardized
OTC derivative contracts should be. .. cleared through central counterparties by end-2012 at the
latest’. OTC derivatives clearing mandates have now been enacted in most leading jurisdictions.
As a result, major CCPs are critical to the functioning of financial markets and are often deemed to
be systemically important financial infrastructures. These CCPs intermediate substantial amounts
of risk, as consideration of the total initial margin they require indicates. The three largest CCPs for
exchange-traded derivatives in the US and UK required over $300 billion in initial margin at the
beginning of 2024, for instance, while the margin requirements of the three largest OTC derivatives
CCPs topped $360 billion. Murphy| (2012) and King et al. (2023) discuss the systemic importance

and risks of central clearing in more detail.

The role of a CCP is to sit between market participants, guaranteeing their performance to each
other and acting as the counterparty to all cleared trades. If one of their members defaults, the
clearing house must close-out the defaulter’s portfolio. Thus, they should make it far less likely that
a failure of one market participant causes direct losses at another by acting as a buffer, preventing
systemic runs as in Zawadowski (2013). In order to be able to do this, CCPs must have sufficient
resources to absorb any plausible losses resulting from the default management process. A loss of
confidence in a clearing house can cause or increase a loss of confidence in the financial system, as

Bernanke|(2015) discusses, so this is an important issue.

Different CCPs use different methodologies to size these resources, subject to applicable regu-
latory minima. This topic has received substantial attention in the literature, with a focus on the
adequacy of resources in various situations. See, e.g., Antinolfi et al.|(2022), Boissel et al.| (2017), Cap+

poni et al. (2017), Cerezetti et al. (2019), Kuong and Maurin|(2023), Murphy and Nahai-Williamson



(2014), Rec (2019a)b). A particular issue is the potential clustering of defaults and episodic market
illiquidity, as in|/Azizpour et al.| (2018), Carlin et al.|(2007). The related and important question of
CCP (funding) liquidity risk has also been studied: see, e.g. Cont (2017) and King et al.| (2023). In
contrast, the close-out process, and particularly the design of CCP default auctions, is relatively
less studied, despite it being crucial to the losses experienced by the clearing house in default

management. Default actions are therefore the focus of this paper.

When the defaulter’s portfolio is relatively small compared to available market liquidity, the
default management problem is straightforward: in markets with central limit order books, the
CCP can simply enter orders to liquidate the defaulter’s portfolio. Similarly, in markets which
trade largely on a request for quote basis, quotes will readily be available, and hence an auction

may not be necessary.

The problem can become much more challenging with the default of larger or concentrated
portfolios. Such defaults can create significant stress, as the CCP’s ability to close out the defaulter
near the market price is uncertainEI Moreover, unlike the problem in many trading situations, the
CCP must trade a particular portfolio in a relatively short time frame: it has neither the mandate
nor the loss-absorbing resources to bear market risk. Therefore, it is common for the CCP to
auction the defaulter’s portfolio either as is, or after it has been hedged. Both Lehman Brothers’
$9 trillion interest rate swaps portfolio cleared by the London Clearing House, and their $2 billion
exchange-traded futures and options portfolios cleared by Chicago Mercantile Exchange, were
liquidated via multiple auctions, for instanceE] The analysis of CCP default auctions is therefore

practically important. It is also technically non-trivial, as these auctions have novel features.

CCPs have a fixed amount of funded resources to manage defaults, structured in what is known
as their default waterfall. The first tranche of these resources are provided by the defaulter in

the form of initial margin. This tranche is followed by the defaulter’s contribution to a layer of

1 A good example is the stress at the New Zealand clearing house caused by the default of Stephen Francis described in

Cox et al.|(2016).
2 Gee Fleming and Sarkar|(2014) and |[LCH.Clearnet| (2008) for LCH and Valukas|(2010) for CME. For further analysis of

Lehman, see|Wiggins and Metrick (2019)



mutualized resources: the CCP’s guarantee or default fund. Then there is a (typically thin) layer of
the CCP’s own resources, known as skin in the game. After this comes the rest of the guarantee
fund. Thus, first the defaulter pays, then the CCP does, then non-defaulting clearing members.
Any resources from the defaulter that are not needed to manage the close-out are returned to the
defaulter’s estate. There are legal requirements in leading jurisdictions for CCPs to act reasonably
in their close-outﬂ but these requirements leave substantial flexibility in default management. All
of this means that CCPs are much more concerned with getting an acceptable bid in a default
auction than in the price of that bid. If it cannot completely close-out the defaulter’s portfolio
without suffering a loss bigger than the resources that they have provided, not only will it face

financial loss, but also it will almost certainly suffer reputational damage.

Obtaining an acceptable bid for the defaulter’s portfolio is by no means guaranteed. For instance,
in the 2018 default by Einar Aas at the Nasdaq Nordic clearing house, the first attempt at auctioning
the portfolio failed, and the second attempt resulted in a loss of €114 million in excess of the
resources Aas had provided to the CCP, resulting in losses to both the CCP’s skin in the game
and its guarantee fund. Subsequently, it was revealed that the second auction had not liquidated
the portfolio, but rather had just established hedges. In both auctions, Nasdaq Nordic limited

participation to four firms that it had selectedﬂ

Standard auction theory suggests that revenue is increased by attracting as many bidders as
possible to an auctionEI However, this is not necessarily the best strategy in CCP default auctions
due to a phenomenon known as information leakage. The trigger event for a CCP auction—the
default of one or more clearing members—is public knowledge, as are the market movements

associated with the default. However, before the auction begins, only the CCP has full details of

w

See Braithwaite and Murphy|{(2017) for further details.
4 For details on the default and auctions, see Clancy| (2018b), |Clancy|(2018a), and Mourselas| (2019). Mourselas| (2021)

covers the details that emerged later about the failure of the second auction and subsequent regulatory fine. Also, see
Box A: Two defaults at CCPs, 10 years apart, by S. Bell and H. Holden (Faruqui et al., 2018} pp. 75-76 in) for more
analysis, and McConnell and Saretto| (2010) for a different example of auction failures.

5 Auction theory is covered in|Milgrom|(2004) and [Krishna|(2010); both cover standard models and equivalence results.



the portfolio to be auctioned. Of course, it has to provide this information to bidders and, once
they know it, they can either choose to bid, or to trade against the CCP. Thus, there is a concern
that inviting more and more bidders will lead to an adverse change in market prices between
the portfolio being revealed and bids being submitted. This period cannot be very short, as a
defaulter’s portfolio may be large, and bidders need some time to price it. A CCP default auction is
thus analogous to a predictable trade, as discussed by Bessembinder et al. (2016), combined with
fundamental participation questions. Nasdaq Nordic explicitly stated that it limited participation
in its auction Aas’ positions to avoid information leakage, as Mourselas| (2019) discusses. The recent
paper prepared by regulators, CPMI-IOSCO) (2020), emphasizes both this topic and the questions
of who to include in an auction and how to incentivize bidders, as part of its broader discussion of
issues for CCPs to consider in default auctions. That paper raises these topics without providing
guidance on how to simultaneously choose and incentivize bidders, limit information leakage, and

successfully conduct an auction.

To summarise, clearing house default auctions have two salient features that sharply distinguish
them from standard auctions. First, the CCP wants to minimize the probability of using its own or
non-defaulting members’ resources, not to maximize income from the auction. Second, the possible
negative effects of information leakage means that it is not desirable to attract bidders who are
unlikely to submit competitive bids. This later aspect bears some resemblance to the literature on
endogenous auction participation (Lauermann and Wolinsky), 2017, Menezes and Monteiro, 2000).

The combination of these two aspects is particularly novel from an auction theory perspective.

Our contribution is to model the salient features of a clearing house default auction and to design
an optimal process for conducting it while allowing endogenous participation decisions. Different
CCPs will have different rules for conducting auctions, and different strategies for recovering from
an unsuccessful auction, so we focus on the common goals of the default management process
across CCPs. We show how the opposing effects of information leakage—where having more
bidders tends to lower the value of the object and hence leads to lower prices—and the need

to maximize the probability of a successful bid can lead to an optimum number of bidders that



is strictly less than the number of available bidders. The key aspect from a mechanism design

perspective is the use of an optimally selected entry fee to get good bidders to self-select.

Bidders use commonly known information about the direction and likely size of the defaulted
position, and private information about the value to them of adding the position to their own
portfolio, to decide whether to pay the entry fee, become more informed about the actual size
of the defaulted position, and then decide whether or not to submit a bidﬂ We prove that even
with a reservation price, if the cost of information leakage is high enough, a CCP maximizes its
probability of receiving a bid above its reservation price by setting a non-zero entry fee. Although
the entry fee limits participation, it does so in an equitable fashion in that it is set before the default
occurs. Furthermore, the entry fee excludes bidders who are not likely to bid high enough to win

the portfolio and consequently whose main impact is to increase information leakage.

2 Literature Review

In addition to the scholarship cited above, various authors explore aspects of central clearing on
market function. For example, Loon and Zhong| (2014) find that central clearing improves market
liquidity. Dulffie et al.| (2015) and Grothe et al.| (2023) find that CCPs’ impact on the demand for
collateral depends on the market structure and that if margin is required for non-centrally cleared

trades, then central clearing lowers the demand for collateral.

A different strand of the literature focuses more on clearing house default management. Cont
(2015) and /Armakolla and Laurent (2017) both focus on the impact of loss allocation in CCP default
waterfalls. Cerezetti et al.|(2019) is closer to the spirit of this paper as it looks at how to optimize
CCP default processes, but it focuses on hedging and does not analyze auctions at all. Koeppl et al.
(2012) considers the impact of default management on the market, demonstrating how concerns
over default at a CCP can harm market liquidity. However, this research looks at the impact of

central clearing prior to a default actually occurring.

6 The decision by each potential bidder whether to pay the entry fee is a key part of this process. A pre-committed fee, such

as a default fund contribution at risk from a failure to bid, would not achieve the same effect.
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After default occurs, a CCP will likely need to liquidate the defaulter’s positions and collateral.
The default of a large institution can cause large disorderly collateral liquidations, as Oehmke (2014)
discusses. Given that CCP default management is intended to make managing a default more
orderly, this is unhelpful. The other liquidation—that of positions—has received less attention,

which motivates our study of the problem.

There are, however, three papers that directly analyze CCP default auctions of positions. The
closest paper to this one, Ferrara et al.| (2019), considers various designs of CCP default auctions
theoretically, but makes the standard assumption that the CCP seeks to maximize revenue. As
we detail below, that assumption ignores crucial features of the CCP’s payoff. Their paper also
assumes that the number of bidders is fixed, so it is silent on the question of who should actual
be invited to participate in the auction. The authors do examine the possibility that poor bids can
face a negative externality due to low competitiveness in the bidding process, which has some
similarities to the externality driven by information leakage in our model. However, there is no

endogenous entry in their framework, so the implications are more muted

In related research, Oleschak (2019) considers first price single item CCP default auctions where
bidders have private values and share eventual losses with the CCP. The author does look at the
impact of being invited to the auction or not, finding that invited bidders are better off than those
who are not invited to the auction. However, this mechanism depends on the CCP being able to
pick bidders with high private values. The inability to do so is exactly what we seek to study:
whether a CCP can include bidders with high valuations and conversely exclude those with low

valuations without knowing or even having a signal about private valuations.

Lastly, there are similarities between this paper and Huang and Zhu| (2024), which builds on

Du and Zhu|(2017). However, to avoid price impacts, the former paper assumes that bidders are

This negative externality is enough however to break the revenue equivalence between first and second price auctions;
the authors find that a second price auction with loss sharing, rather than first price auctions with or without penalty,
increases the liquidation value of the portfolio. This paper also uses a second price auction framework, but focuses on
designing an effective mechanism to maximize the chance of success with strategic participation, rather than the impact

ex post loss sharing when the auction is not as successful under fixed participation.



infinitesimal and, similar to the other two papers on CCP auctions, focuses on analyzing what
happens if an auction results in losses that must be absorbed by the guarantee fund. It examines

the benefits of juniorization of guarantee fund contributions in such circumstances.

Interestingly, all three papers focus on the impact of loss sharing among clearing members
when the default auction goes poorly. But in each case, there is no reputational cost to the CCP of
such a poor auction outcome. In sharp contrast, we argue that CCPs are so strongly motivated by
the reputational costs, which would result from needing to apportion losses to its members, that
avoiding uncovered losses is their primary auction objective. Postulating loss-avoidance rather
than revenue maximization as the auction objective leads to a novel auction problem, not just

relative to the scant literature on CCP auctions, but also in the broader auction literature.

Besides specifying a realistic auction objective, we further tackle the related question of how to
construct the pool of bidders. This is a key issue raised in CPMI-IOSCO, (2020), and it is challenging
due to the concerns raised about information leakage. As mentioned, there is a literature around
predictable trades. Admanti and Pfleiderer|(2015) argues for a positive view here. The pertinent
concerns about information leakage are, however, much more consistent with a negative view, as in
Brunnermeier and Pedersen| (2005) and |Carlin et al.| (2007). Indeed, the worse-case scenario is that
the liquidation of a defaulter’s portfolio takes on the characteristics of a fire sale: see|Coval and
Statford| (2007) and Kuong) (2020). Furthermore, limited participation is not merely a theoretical
concern as it seems to be a common feature of the relatively few CCP auctions observed. Besides
the prior discussion of Nasdaq Nordic, where the CCP selected four bidders only, it was reported
in Sourbes (2015) that LCH’s auctions of Lehman portfolios had (depending on the currency

concerned) around five participants.

There also exists a related market microstructure literature on how information leakage, or
front-running, affects trading. Burdett and O’Hara (1987) model how an institutional investor
constrains the number of dealers it approaches to execute a large trade due to information leakage.
In Hendershott and Madhavan/ (2015), the level of information leakage determines the venue that

a dealer utilizes for a trade. More recently, Baldaut and Mollner (2024) endogenize the impact of



information leakage in the subsequent on-market trading. Similarly to this last paper, we focus on

information that is available to auction participants.

There are critical differences between this literature and the CCP problem, however. First, in the
papers cited, the invitation to be in an auction reveals information to those invited, while a CCP’s
need to conduct an auction is public knowledge. Second, in previous information leakage papers,
there are no consequences to an auction failing, while for CCPs an auction failure causes material
loss and would significantly damage its reputation, potentially to the point that the CCP would no
longer remain viable. Third, in a CCP member default, the direction the market moved to cause the
clearing member default reveals the direction of the defaulting portfolio. Consequently, the optimal
strategy in Baldauf and Mollner| (2024) of requesting two-sided bids is not available. As the focus
here is on the price impact of information leakage on the auction itself, we exogeneously specify
the price impact, which resembles Baldauf and Mollner|(2024) but do not model the mechanism
through which it occurs like they do. In summary, the microstructure literature focuses on how
and where to search for best execution of regular and repeated trades to minimize the impact of
information leakage on transaction costs. In contrast, we focus on how to optimally endogneize
bidders’ participation to minimize the impact of information leakage on the success of the extremely

irregular, but critically important, auction of a defaulter’s portfolio.

The institutional characteristics of CCP default auctions mean that our analysis is non-standard
and arguably novel. But it does connect to certain strands of the broader auction literature. |Lou
et al. (2013) finds that even in the liquid Treasury market, announced auctions can cause variations
in valuations due to dealers’ risk-capacity. Levin and Smith! (1994) endogenizes entry and finds that
the results of the auction can diverge from those predicted by an analysis that ignores the entry
question. Furthermore |[Lauermann and Wolinsky| (2017) and Menezes and Monteiro| (2000) both
prove that in circumstances with endogenous entry revenue can decrease with an increase in the
number of participants. Similarly, in our paper, entry takes a centre stage in line with the discussion
in CPMI-IOSCO (2020). Our model explicitly allows that more competition is not necessarily
desirable. This is consistent with the empirical findings in Hong and Shum (2002) (although we

use private valuations rather than common ones) and the model of (Glebkin and Kuong| (2023). A
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key difference is that here endogenous entry is considered in an auction where the CCP’s objective
is not maximizing revenue. In addition, potential auction participants are risk-averse rather than
risk-neutral. Our setup also relates to Pinkse and Tan|(2005), in that information leakage creates
affiliation amongst independent valuations, although in a second-price auction rather than first
price as in their analysis. Finally, Milgrom and Weber|(1982) examine competition and entry fees,
raising the possibility that monotonic equilibria might not exist. Landsberger (2007) extends this
analysis and finds that such existence becomes increasingly unlikely as the number of bidders
grows. Our analysis is in the same vein; our structure implies non-monotonicity, so adding more

bidders is not optimal.

3 Derivatives Markets and CCPs

Modern derivatives markets are characterized by the clearing of standardized contracts at CCPs
while other, potentially bespoke, contracts are cleared bilaterallyﬁ Dealers, and perhaps some other
market participants, are direct, or ‘clearing” members of CCPs. Thus a dealer’s net risk position is
composed of its cleared position and its bilateral one, and only the former is typically known to the

CCP.

CCPs require that their members post initial and variation margin at least daily. Variation
margin on each cleared portfolio or ‘account’ is determined based on the current mark-to-market,
so it can be thought of as settling the value of the portfolio every day. Initial margin is based on the
risk of the portfolio: it is intended to cover its potential change in value over a fixed liquidation
horizon, known as the margin period of risk, to a high degree of confidence. Regulation sets
minimum standards for the margin period of risk and the confidence level of margin. For OTC

derivatives, initial margin is required to cover at least the 99" percentile of potential changes in

portfolio value over a five day period. Figure|l on the following page|illustrates the idea.

The margin period of risk is intended to be long enough that the non-defaulting party can

determine that an event of default has occurred, begin default management, hedge the defaulter’s

8 Such contracts are properly considered to be non-centrally cleared, but are often referred to as uncleared.
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portfolio if necessary, and sell it. In our context, ‘selling it" means conducting an auction, including
determining who to invite to the auction, communicating the portfolio to them, receiving bids,

deciding on a winner, and novating the defaulter’s portfolio to them.

Bidders will use the market value of the portfolio at the point of bidding as a basis for their bids.
Thus, the CCP is most at risk from losses in default management when the value of the portfolio
has fallen between the last successful variation margin call with the defaulter, at t = 0 say, and

when bids are submitted, at t = T say.

We will model a modern futures market subject to initial and variation margin, reflecting these
features. This means that market participants, when they enter into trades, only pay initial margin.
Changes in value of their portfolios are settled day-by-day through variation margin. Before we
develop our model of the derivatives market, the remainder of this section provides a concrete

example of this situation.

Example. Suppose we are dealing with the front month London Metal Exchange (‘LME’) copper
futures, and assume that a party bought 10 lots of this future on 19th May 2020. On this day the
futures price was $5,314. The LME copper future is the right to receive 25 tonnes of copper and
is priced in US dollars per tonne. Therefore, this party locked in a price of $5,314 x 10 x 25 =
$1,328,500 for 250 tonnes of copper at the expiry of the future. The closing price of this future on
Friday 19th June 2020 of the front month was $5,855.50, meaning that someone who bought this

future on that day, locked in a price of 25 x $5,855.50 = $146,387.50 for 25 tonnes of copper at

11



expiry. Suppose that our party defaulted at the close of business on Friday 19th June. The CCP
will have paid a cumulative ($5,855.5 — $5,314) x 25 x 10 = $135,375 of variation margin to the
defaulter. Note that if the future expires with this level, 5,855.50 as its settlement price, longs pay
this amount per tonne and shorts receive this amount: the reason that the defaulter locked in the

lower level of $5,314 per tonne is that they have received the difference as variation margin.

The use of variation margin means that if the futures price goes up, long position holders receive
money; if it goes down, they pay money. It is only at expiry that the obligation arises to pay the

settlement price and receive the commodity.

Now suppose that the initial margin was 500 points or $12,500 per lot; the defaulter will have
paid initial margin of $125,000. Further suppose that their guarantee fund contribution was $5,000
and that they default on Monday 22nd June, before the market opens. The CCP needs to auction
the right to pay $5,855.50 per tonne for 250 tonnes of copper. If the bid is say a per-lot price of
$5,200, then the CCP has lost ($5,855.50 — $5,200) x 25 x 10 = $163,875 and it only has initial
margin of $125,000 plus defaulter’s guarantee fund contribution of $5,000 so there is a loss of
$163,875 — $125,000 — $5,000 = $33,875 to be allocated first to the CCP’s skin in the game (‘SITG’)
then, if that is inadequate, to non-defaulter’s guarantee fund contributions. The CCP’s desired
per-lot auction price is at least $5,855.50 — w = $5,335.50, as the defaulter’s resources
are sufficient to cover losses if the winning bid is at or above this level.

Note finally that the profits or losses of the auction are realized in the variation margin call at the
end of the day of the auction. If the successful bid in an auction on Monday 22nd July was a per-lot
price of $5,200 for a long position in 10 lots of futures, and the future closes at $5,800 (close to the
previous Friday’s close), then the CCP will pay the successful bidder ($5,800 — $5,200) x 25 x 10 =
$150,000. There is no cash flow in the auction itself—just like the initial purchase, what is being

agreed is not a price to pay but a level from which to base future variation margin payments.

Similarly, if the defaulter was short 10 lots, then bidders would rationally bid above the current
price of $5,855.50. If the winning bid was, say $5,950, and the future closes on the evening of the

auction at $5,870, the CCP would pay the bidder ($5,950 — $5,870) x 25 x 10 = $20,000.

12



4 A Model of a Derivatives Market

This section introduces the model of a derivatives market that we will use for the rest of the paper.

We will model a single risk factor, to be thought of as the price of a commodity future.

There are two key features to this model. First, we assume that market participants are risk
averse. This is modelled by a private value for position which reduces their value to the holder the
bigger they are. Second, the model captures both OTC forwards and cleared futures positions, so
the CCP does not know the net risk position of any market participantﬂ Without this, the problem
of selecting auction market participants is trivial, as it simply invites those with positions closest
to and opposite in sign from the defaulter. It is also realistic to assume that OTC positions can be

significant, and can have a material effect on the exchange-traded marketm

4.1 Positions

The net risk position of each clearing member is defined in terms of a single risk factor that can
take positive and negative integral values. The risk factor trades both as a cleared future and as
uncleared forwards, so the CCP does not know any clearing member’s net position. The position is
expressed as a futures equivalent. We will write s; for the position of clearing member i € I, where
s; < 0 denotes a short position and s; > 0 denotes a long position. Because we are dealing with a

derivatives market, the sum of the longs equals the sum of the shorts:

S:=) max(s;,0) = — ) ‘min(s;,0), (1)

iel iel

where S denotes the size of the market.

9 The OTC market can be several times the size of the exchange-traded market, so this is a realistic assumption. See|Oliver

Wyman| (2023) for an example of this situation.
10 Gee, for instance, LME’s Consultation 22 /145, 2022, which notes that “Recent events in the LME Nickel market have

demonstrated the effects that OTC activity can have on the wider LME market.”
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4.2 The Futures Price and Variation Margin

We will write V(t) for the quoted price of one lot at time #: think of this as the futures price. Because
of variation margin, the public mark-to-market of all positions cleared by non-defaulters at the end
of each day is always zero. Let t = 0 denote the end of one day. If the market participant acquires a
new position of s at the close, and t = 1 denotes the end of the next day, then the total variation
margin paid to the market participant will be s(V (1) — V(0)) if this is positive, or from the market
participant if it is negative.

After a default, the CCP has to continue to pay or receive variation margin on the other side
of the defaulter’s cleared position. We denote the defaulter by D and its cleared position by s DE-I
Without loss of generality, denote the last time variation margin was exchanged prior to default by
t = 0. Then if the per-lot price changes from V(0) to V(T) at the time T when the CCP novates
the position to an auction participant, the mid-market profit or loss for the CCP on the defaulter’s

position is (V(T) — V(0))sp.

4.3 Funded Resources and a Successful Auction

We will denote the initial margin posted by clearing member i by M;, their guarantee fund con-
tribution by G;, and the CCP’s skin in the game by SITG. The total guarantee fund G is ) ;| G;.
The resources contributed by the defaulter are Mp + Gp. After a default, the CCP can use these

resources to cover any losses it incurs in closing out the defaulter’s position.

Figure [2 on the next page|shows an example path of the mark-to-market of the defaulter’s

portfolio through the margin period of risk. It starts at zero by definition as we assume a successful

variation margin call at t = 0.

We assume that at t = T the CCP transfers the position at a price b which could be either positive
or negative: positive b represents cash coming into the CCP from the next variation margin call and

negative, cash leaving, as usual. The CCP’s total profit or loss on the defaulter’s portfolio, after

11 The remainder of its portfolio, the bilaterally cleared part, would be managed during bankruptcy aside from the CCP

auction, so it is not relevant here.
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Figure 2: The value of the defaulter’s portfolio through the margin period of risk and the use of resources in
the default waterfall to absorb losses on it

using their resources, and including variation margin, is therefore:
P=(V(T)—-V(0))sp +b. ()

If the CCP has to pay out b in the auction, then the profit or loss is b below (V(T) — V(0))sp. The
total funded resources are Mp + SITG + G. In general (V(T) — V(0))sp could take either sign, but

the auction is more difficult when it is negative, so this situation is illustrated as follows.

If the CCP does not make a loss on closeout, P > 0, it is obliged to return the defaulter’s
resources to the administrator of the estate. On the other hand, if it makes a loss, P < 0, it can
absorb that loss with the available resourcesF_ZI The CCP’s total profit or loss on the defaulter’s

portfolio after using the defaulter’s resources is therefore:

P if P >0,
0 if—Mp—Gp<P<DO, 3)

P+ Mp + Gp otherwise.

This can be simplified to

max (P, min(P + Mp + Gp,0)). 4)

12 We assume that the CCP does not make any further recoveries in excess of the available collateral.
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The CCP’s own resources are at risk if the cost of default management is larger than Mp + Gp.
For simplicity, we assume that there are no other costs—such as hedging costs—and that an auction

succeeds if the CCP can liquidate the portfolio without paying more than this.

The payoff function in equation (4) is one of the things that makes CCP default auctions novel.
A standard assumption in auction theory is that the seller seeks to maximize revenue, and most
analysis of different auction characteristics focuses on the impact to expected revenue (Krishna,

2010). But in a default auction, the CCP does not actually profit from better bids b within the range

—Mp—Gp <P. 5)

There is therefore little or no incentive for a CCP to care about increasing the bid within this
range. In contrast, there is a considerable negative reputational impact associated with a default
auction which eats into skin in the game. Furthermore, although it varies across CCPs, skin in the
game is generally a relatively thin layer of resources. If the CCP’s skin in the game is exhausted,
the CCP starts mutualizing losses among the remaining clearing members. While unlikely, this
situation could so severely damage the CCP’s reputation that avoiding it is paramount to the CCP.
Consequently, a CCP is much more concerned with maximizing the probability that it will receive a
winning bid that is high enough to ensure that losses are covered by the defaulter’s resources than
with maximizing auction revenue. Put another way, the CCP can be viewed as largely indifferent to
the level of revenue generated by the auction above the threshold illustrated in Figure|2} but it faces
a discontinuous loss below it. This produces a particular form of risk aversion, so that CCPs focus
on minimizing the downside risk rather than seeking to maximize revenues as a seller normally
does. Rather than specifying some form of risk aversion that would incorporates these complicated
threshold and reputational effects, we assume that the CCP seeks to maximize the probability that

its loss on the portfolio is covered by the defaulter’s resources Mp + Gp.
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4.4 Private Values

Following the set-up in Du and Zhu|(2017), suppose that market participants have an aversion to
risk, which affects their private value of positions. In particular, the private mark-to-market of a

position of size s € R is

—ps® (6)

for some positive B (i.e., the bigger positions become, the more holders (quadratically) discount
them). For ease we will assume B is constant for all participants and this is known. This formulation
is consistent with the findings of |Lou et al. (2013) that dealer’s risk capacity affects valuations

around US Treasury auctions.

4.5 Private Values for Winning Bidders

The defaulting clearing member has a position sp. If a clearing member wins the auction for this
position at a price b, it will be netted with their existing position. If s; was the clearing member’s
old position, the original position has a private value of —Bs?, and the new position is privately
worth —B(s; + sp)?. Hence, the clearing member is indifferent between buying the position sp for
b and not buying it when

—B(si+sp)* —b = —ps?.
We will write b; for this rational bid threshold for clearing member i:

b = —B(2sisp +55).

Clearly it is irrational to bid above this level, as —B(s; + sp)? — b < —Bs? when b > b;.

4.6 Desirable and Undesirable Bidders

Suppose the defaulter’s position is big, sp > 1, and all the bidders are on the same side of the
market as the defaulter and big too, s; > 1 for all i € I. Then (2s;5p + s3) is always positive and

large. Hence, unless B is very small, for all i € I, b; will be negative and large, and the CCP will not
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get a bid above its threshold —Mp — Gp. Thus, only having bidders in the auction on the same side

of the market as the defaulter is damaging for the CCP’s objective of having a successful auction.

Conversely, if there is a bidder i with position opposite to the defaulter, sgn(s;) # sgn(sp),
and bigger than it in size, |s;| > |sp|. Then 2s;sp is negative and s? > s3,, so (2s;sp + 5%,) < 7,
and hence winning the auction frees up private value. For this bidder, b; > 0. Clearly, if instead

s; = —sp/2, then 2s;sp + S%) = 0 and so Ei =0.

Following on from this, if the number of auction participants is large and s; is symmetrically
distributed, then there will be some bidders for whom s; and sp are of opposite signs. Any of
these participants who have |s;| > |sp| will make positive bids, so unless P < —Mp — Gp, the
probability that the CCP will get a bid above its threshold approaches 1 as the number of bidders
increases. In this setting, inviting more participants to the auction is always better. This result is not
surprising. Even with the change to the seller’s objective, the folk theorem result that adding more
bidders generally increases revenue intuitively suggests that adding more bidders will increase the

probability that the CCP receives a bid above its threshold.

4.7 The Auction and Information Leakage

It is reasonable to assume that market participants know the overall direction of the defaulter’s
portfolio sp—Ilong or short—but not its precise size. The direction is revealed because the the
direction of market moves can be easily compared to the time of default, which is known. The size
is revealed to auction participants by the CCP just before the bidding process opens. Of course,
actual portfolios are more complicated, and in a default auction the actual positions would be
revealed to participants; revealing size stands as a good proxy for the revealed information in the

simpler market model.

Thus far, the market value of defaulter’s portfolio at the time of the auction has just depended
on the drift in the futures price V(t). We assume this movement is determined by a standard

normal random variable Z ~ A (0,1) so that
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where 0 is a volatility-like scaling parameter. In addition, we will assume that information leakage
creates a risk that auction participants trade outside the auction against the defaulted position,
which hurts its Value As noted above, regulators recommend that CCPs should balance the risk
of information leakage and the aim of obtaining a competitive price when deciding on the most

appropriate execution method, highlighting the importance of modeling information leakage.

In order to do this, we assume that having N bidders with certainty reduces V(0) by an amount
(N —1)9 for fixed v > 0 and Q. The constants ¢ > 0 and Q are known and abstractly account
for the cost of information leakage. We assume that the impact of information leakage increases
non-linearly in the number of auction participants. So for N bidders, the futures price at the

moment bids are submitted is:
V(T) = V(0) (1 +0Z— (N - 1)Q) .

Note that the price move against the CCP depends on the number of (potential) bidders, so
we are assuming that having more bidders means more information leakage. In their model of
client trading, Baldauf and Mollner| (2024) show how the possibility of information leakage, or
front-running, can reduce dealer’s competition for the client’s trade. Although their mechanism
endogenizes the impact of moving from one dealer to two, the actual price impact is exogenously
assumed. As the focus here is on the price impact of information leakage on the auction itself, we

exogeneously specify the price impact for a general increase in the number of auction participants.

The problem the CCP now faces is that there are two competing pressures: having more bidders
increases the probability of receiving a good bid (competition effect), but it also increases the size
of the price moving against the CCP (information leakage effect). The simple strategy of including

everyone in the auction is no longer optimal. In the next section, we consider the CCP’s auction

The need to send portfolios, which potentially consist of tens of thousands of instruments, to multiple market participants
and allow those participants time to price the portfolios and determine the impact winning them would have on their risk,
capital and liquidity inevitably means that the minimum time between participants receiving details of the defaulter’s

portfolio and bids being due is measured in hours. This is ample time for information leakage to occur.
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strategy in this situation. The CCP would rather like to be discriminating in who it invites. As
the CCP does not have the information available to fully discriminate, we examine whether it
can use an entry fee to endogenously encourage the right participants and discourage the wrong

participants so that it can induce the participants to balance the competing pressures.

4.8 Bidder Values

Bidder values at time T depend upon the price of the future V(T'), the number of bidders N, and
the defaulter’s position sp. We assume that the CCP truthfully reveals sp to all the bidders that

enter the auction.

Bidder i’s maximum value of bidding v; then is
0; = spV(T) = Bsp(2si +5p) = spV (0) (1+0Z = 7 (N =1)) = Bsp(2s; + sp).

We can take v; to represent bidder i’s private value. Interestingly, information leakage has made
bidders” private values affiliated, so that competition is less intense than a bidder would have
thought before the auction; the mechanism is different but the result is similar to that in Pinkse and

Tan| (2005).

Despite the unusual event in the benchmark US oil futures market in March 2020 when the
front month futures price briefly turned negative, we assume not just that V(¢) > 0 but also that

V(t) — Bs; > 0 for all t and any s;, i.e., long positions always have positive values.

5 Self-Selecting Mechanism

Without loss of generality, we take V(0) = 0, i.e., all mark-to-market fluctuations on the portfolio
are settled continuously before the auction. The maximum willingness to pay, or value, of bidder i

for the default portfolio is then

v = —,BSD(ZSZ‘—FSD). (7)
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The timeline of the model is as follows:

= The CCP sets the entry fee e > 0 ex ante, before any defaultE]

= Default happens. The CCP announces the side of the default portfolio, sgn(sp), but not its
magnitude. Bidders believe (correctly) that the magnitude of sp is distributed according
to a distribution with support from [0, c0) E] Bidders decide whether they would pay e to
observe sp. Entry decisions are made simultaneously and only disclosed to the CCP.

= The CCP announces the number of bidders K who have paid the entry fee, entered the

auction, and thus observed sp.
= Bidders who enter the auction realize that their per-unit value of the default portfolio drops
by
—7(K-1)%, (®)

reflecting the cost of information leakage (as captured by v > 0 and Q). Put differently, while
the fair market value of the default portfolio remains V = 0 given the public information
set, the private values of everyone in the auction drop by (K — 1)Q Bidders who do not

enter the auction do not see K and therefore do not observe the resulting drop in value.

Let R = Mp + Gp > 0 be the resources the CCP has from the defaulter. The CCP conducts a

second-price auction with reservation price equal to —(R + Ke). The CCP’s objective function is
max Prob(A), where A= {P+ R+ Ke >0}, )
e

and K is a random variable that determines how many bidders enter the auction conditional on the

entry fee e. The objective seeks to set the entry fee to maximize the probability that it avoids a loss

14 Setting the entry fee ex ante ensures that the entry fee reveals no information about the size of the defaulter’s position.

15 The support could be restricted to have an upper limit smaller than S; the larger support just simplifies the notation as

the point where the cumulative distribution reaches one does not affect the results.

16 Another mechanism that could result in such reduced private values would be communication amongst the participants;
Agranov and Yariv| (2018) demonstrate experimentally that communication can reduce bids. The impact would be

captured by costs increasing as the number of participants rises.
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from the auction. Avoiding a loss is equivalent to ensuring that P (the cash flow from the auction
including any variation margin on the defaulting portfolio paid at the end of the auction day)
plus R (the available resources from the defaulter) plus Ke (the entry fees paid by the K bidders)
is non-negative. Importantly, P declines as the number of bidders increases due to information

leakage.

We can solve for the bidders” entry decisions. Conjecture that vy is the cutoff value, correspond-

ing to a cutoff inventory level sy so that

vo = —Bsp (250 + sp). (10)

The bidder who is at the cutoff should be indifferent between entering and not entering the auction,

so the expected profit of entering is equal to the entry fee e.

Note that besides the non-standard objective function, our model has two features that are
absent in the conventional auction models. First, entry decisions are made without observing sp,
but the actual bidding depends on learning sp after entry. Second, each entrant’s value is lower if

more bidders enter. These two features represent two shocks to bidders who enter the auction.

The threshold bidder who is indifferent wins if and only if she is the only one in the auction,
in which case there is no cost of information leakage, i.e., —y(K — 1)2 = —9(1 — 1)€ = 0. In the
second-price auction, the winning price for the sole bidder is the CCP’s reservation value, which is
—(R +e¢), i.e., the CCP gives R + e to the sole bidder, who is the cutoff bidder, in return for exiting

the defaulter’s position. The sole bidder’s ex post profit, if she bids, is

vo+ (R+e) = —Bsp(2so+sp) + R+e. (11)

If sp turns out to be very positive, then this “profit” can be negative, so the optimal action for the
sole entrant is not to bid in that case. Therefore, the indifference condition for the cutoff-type bidder
is

e=(1- F(so))N’l]E [max(—pBsp(2so +sp) + R+¢,0) | ¢], (12)
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where F(-) is the cumulative distribution function of s;. Because the entry fee e is set in advance, it

does not reveal sp in equilibrium.

The CCP’s objective is to minimize the probability that the auction fails, i.e., it receives no
bids above the reservation price. Obviously, the auction fails if no one enters, which happens
with probability (1 — F(sp))". The auction may also fail if bidders who enter refuse to bid after

observing the realizations of sp and K.

If only the cutoff-type bidder enters, the auction succeeds if and only if

—,BSD(250+SD)+R+€ZO. (13)

Note that from the CCP’s perspective, once e is set, the left-hand side of this condition is determin-

istic because e determines sy by equation (12).

We now proceed to develop a series of building blocks (stated as lemmas) that we use to
establish our main result that characterizes the optimal CCP auction. Our first building block
establishes an upper limit on the entry fee. Let siin be the lowest inventory level of the K bidders.

Then we can state the following;:
| Lemma 1. If the entry fee e is sufficiently high, then no bidder enters and the auction fails.

The result is not trivial since the winning bidder may be compensated in part by the entry fee(s).
It is therefore necessary to prove that sy is decreasing in e, as we do in Appendix[A] This result shows
that increasing the entry fee will eventually push sy below spin, at which point Prob(smin < so) =0,

and no bidder enters.

In general, if K > 1 bidders enter, the auction succeeds as long as

max ©v; — 9(K—1)%p > —(R+Ke), (14)
ieK S~
bidder’s  cost of information reservation
value leakage value
or equivalently,
—B5p(25min +sp) — ¥(K —1)%p + R + Ke > 0. (15)
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Therefore, the auction succeeds if and only if a high-value bidder, who has a high willingness to

pay, enters and also bids, i.e., the CCP solves the following:
max Prob(smin < 8o and — Bsp(25min +5p) — ¥(K —1)%p + R + Ke > 0), (16)
e

where:

= 5 is determined by equation (12), i.e., the indifference condition.

= K is a random variable, determined by the rule that entry happens if a potential auction

participant’s inventory is lower than sp.

» ¢ depends on the distributions of sp and s; for Vj € K, where {s;};cx represents the inventory

levels of the participants, but does not depend on the realization of s DEI

It will be helpful to rewrite the two inequalities in the Prob(-) of expression (16) as

R+ Ke— Bs3 — y(K — 1)QSD>

T (17)

Smin < Min <SO/

This formulation makes clear that the smaller one of the two terms in min(-, -) would be binding.
Intuition suggests that we want the two terms to be “close” to make the probability large. In one
extreme with e = 0, equation (I2) implies that F(sp) = 1, i.e., sg is the upper bound of the inventory

distribution. As a result, everyone would enter the auction. However, in this case the second term

becomes X—F s E%E;N*l)QSD (as K = N), which is small if Q is large and <y is not too small. In the other
D
extreme of setting e to be high, then K would be small, so Rike-p S%Z’ﬁfsg(Kfl)QsD is less binding but s

would be quite binding. Therefore, there should be some intermediate values of e that maximize

the probability of auction success.

More formally, we first need to establish the existence of an optimal entry fee e*. This result is

stated in the following lemma:

17 Recall that the potential for a large OTC market means that the CCP cannot use its information about the distribution of

cleared positions to reliably infer the distribution of s -

24



Lemma 2. There exists an optimal entry fee e*, possibly 0, which maximizes the CCP's objective given in

expression (16).

The proof of this lemma is provided in Appendix

It is not surprising that the optimality of no entry fee cannot be ruled out in Lemma[2} Optimality
of a zero entry fee would be the standard result without information leakage, as the CCP would
want to maximize auction participation. What we wish to show is that under some circumstances a

positive entry fee would be optimal, namely e* > 0.

To do so, we need to derive the analytical expression of Prob(-) in expression (16). Note that the
random variable K has a binomial distribution with probability of success F(sg). Let k denote a
realization of K. Clearly, the condition spmin < sg is equivalent to k > 1, i.e., at least one bidder has
inventory below sy. In addition, conditional on k > 1 bidders entering the auction, smin is lower
than s. Still conditioning on k, for any real value x > sy, Prob(Smin < X | Smin < S0) = 1; for x < s,
we have
Prob(smin < ¥, Smin < S0) _ Prob(smin < x)

Prob(Smin < S0) ~ Prob(smin < 50)

. 1-— PrOb(Smin > X) - 1- (1 — F(x))k
1 —Prob(smin >s0) 1—(1—F(sp))*’

Prob(Smin < X | Smin < So0) =

(18)

where in the last step we use the fact that if k bidders enter the auction, then the minimum inventory
of the N potential bidders is equal to the minimum inventory of the k bidders who have the k
lowest inventories and who actually enter. The auction success probability, conditional on sp, is

written as

Prob(smin < S0, —BSD(28min +sp) — ¥(K —1)%p + R+ Ke > 0| sp). (19)

Because K is binomial, this probability can be made explicit. In particular, let

_ R+Ke—pst —y(K—1)%p
¢(sp, K) = 5 Bop : (20)
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Then we have the following

Prob(smin < S0, — BSp(2Smin + sp) — ¥(K — 1)QSD +R+Ke>0]|sp)

R+ Ke — Bs3 — y(K—1)%p

= ¢(sp,K)
N
=Y Prob(K = k) Prob(smin < ¢(sp,k) | K=k | sp) (21)

»
Il
—_

B JFlsn)t 1= Fo)

»
Il
—_

I
1=

1— (1—F(¢(sp,k)))*
1—(1—F(sp))k

- [L¢(sp, k) = s0) +1L(¢(sp, k) < so)

| ——

where 1(-) denotes an indicator function that takes the value one if the condition in the brackets is

satisfied, and zero otherwise. Note, ¢(sp, k) is a decreasing function of sp as

9¢(sp, k) Bs% + R + ke
G =g <O (22)

The final step to obtain the unconditional probability is to integrate the above conditional
probability over sp. Let G(-) denote the cumulative distribution function of sp, then the probability

of auction success, denoted as «, is

N

o= 3 (3 ) R0 1 - Foo)

k=1

. /0°° [n((p(sD,k)zs0)+n(q>(sp,k)<so)1_1(:1F_("’F((SSL;')')‘Z)>k dG(sp). (23)

The function ¢(sp, k) is decreasing in sp, so ¢(sp, k) > s if and only if sp < {(sp), for some
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function {(sp) that is decreasing in S()E Then we can write the probability of auction success as:

kf:l( )t (1 = Flso)*

S0 o0 — 4= s ‘
‘[/OZ( )g(sD dSD+/ 1 (1 (1P_(¢’F((§)3§2)) g(sp)dsp|. (24)

Based on equation (24), we have the following lemma, which is the key constructive result:

Lemma 3. If vy is sufficiently high, a small increase of entry fee from zero raises the probability that the

auction succeeds.

The proof of this lemma is provided in Appendix

We can now state our main result as the following proposition, which follows immediately from
Lemmas 1| through 3| (the first part follows from Lemmas[l|and [2|and the second part follows from

Lemma 3):

Proposition 1. There exists an optimal entry fee e* that maximizes the CCP’s objective given in expression

(16). If the impact of information leakage is sufficiently high, then the optimal entry fee is strictly positive.

Our main result shows that, in the face of information leakage, a positive entry fee can be an
effective mechanism to encourage potential bidders to self-select whether to enter an auction or not
so that the probability of a successful auction is maximized from the CCP’s point of view. To our

knowledge this is a novel mechanism. Many CCPs require potential auction participants to incur

18 The function Z(sg) is

—y(k-1)Q - 2,3s0+\/ k—1) Q+2/850] +4B(R + ke)
2 >0,

Z(so0) =
and so the first-order derivative with respect to s is

di(so) _ ;. 7(k—1)9 +2sy
dso \/['y(k—1)Q+2,Bso]2+4ﬁ(R+ke)

<0,

which means that {(sg) is decreasing in s.
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ex ante costs, for example by participating in default exercises ex ante, which could be viewed as
an entry fee, but such implicit entry fees do not help the CCP maximize the probability it avoids

needing to use its skin in the game or non-defaulters’ resources.

The advantage of the entry fee mechanism developed here is that it is effective with low
information requirements. In particular, the CCP does not need to know the complete positions of
each potential bidder. If it did, a more efficient mechanism likely could be constructed. But without
such information, the entry fee mechanism avoids the CCP needing to use its own judgment on
who to invite and subsequently being open to criticism for its decision, as Nasdaq Nordic was, after

the auction

It should be clear that the result depends on an assessment of how costly information leakage
will be. The model of information leakage cost is simple, but the key characteristic is that private
values decrease as the number of participants increases. This characteristic seems intuitive and the
results are likely to hold for other models of information leakage that maintain this feature. In our
set-up, as the marginal cost of including participants in the auction increases, the optimal entry fee

also weakly increases. We state this as the following proposition:
I Proposition 2. The optimal entry fee e* is weakly increasing in the impact of information leakage.

The proof of this proposition is provided in Appendix[D}]

The dependence on the cost of information leakage does, however, imply that whether or not
an entry fee is an effective mechanism may vary from CCP to CCP. For example, CCPs clearing
exchange-traded products might be less concerned about information leakage; more generally,
information leakage costs are likely higher in less liquid markets@ But ignoring the potential

impact of information leakage, and the consequent difficult question of who to invite to a default

Such criticism was reported in|Clancy| (2018b) and [Mourselas| (2019).

The impact of market liquidity is also apparent in the analysis of transaction costs on CCP hedging strategies during a
close-out in|Cerezetti et al.|(2019) and in the general price impact of large trades even in liquid equity markets (Bouchaud

et al.}|2009, Eisler et al.,|2012).
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auction, would be inconsistent with CPMI-IOSCO (2020), where the regulators devote significant

attention to these issues.

6 Numerical Example

In this section, we present a numerical example that illustrates the results of our model. We assume
that {s;};—1.,.~ follows the Laplace distribution, i.e., the probability density function such that for

Ar>0ands; € (—00,00),

1 */\FS‘ 3
1 —/\Fe 1, if s; >0
fls) = sApe el = {2 = (25)

2
IApeMS, ifs; <0

In addition, we assume that sp follows the exponential distribution, i.e., the probability density

function such that for Ag > 0 and sp € [0, o),

g(sp) = Age ™o, (26)

The algorithm for numerically calculating the probability of auction success as a function of e is

detailed as follows:

SetR=1,8=0.1,7 € {0.1,03,05,0.7,09}, N =10,Q = 2,and Af = Ag = 1.

Pick a non-negative e. We choose the grid such that e € [0,0.01,0.02,...,0.99,1].
= Given ¢, numerically solve for sy from equation

= Draw sy, 53, ..., sy independently from F(-) (the Laplace distribution above). The number K

is set to be the number of bidders whose inventory level s; is lower than sy that we have just

21 By plugging the exponential density function into equation (12), solving equation (I2) is equivalent to solving the

following equation:

e = (1— F(sp))N1 [Zﬁsoe_b(b +1) —2Bsg— 2B+ Pe P(B2 +2b+2) + (R+e) (1 — e—b)] ,

where b = 2Pt 4€§%+4ﬁ(R+e)

. The derivation is demonstrated in Appendix
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solved in the previous step. These bidders enter the auction and pay the entry fee e. Set smin

to be the lowest inventory of these bidders.
= Draw sp from the distribution G(-) (the exponential distribution above).

= Check if both inequalities in Prob(-) in expression hold. If both of them hold, then the
auction is successful. Otherwise, the auction fails.
= Repeat the aforementioned three steps multiple times, set to be 100,000 times, to obtain the

probability of auction success & for each e:

100000
&= 100 ). 1 (Sgin < so, —Bsp(2smin +55) — y(K™ —1)%s + R+ K"e > 0) ,
m=1

where the superscript m denotes the m-th round of simulation and 1(-) denotes the indicator

function.

= Plot the probability of auction success as a function of e.

The numerical result for the case when o = 0.5 is shown in Figure 3 on the following pagel

Clearly, if the entry fee e increases a bit from zero, the probability that the auction succeeds increases.
This finding confirms our idea that imposing a positive entry fee is an effective mechanism for CCP

default auctions through endogenizing potential bidders” entry decisions.

Figure presents simulation results for different marginal costs of information
leakage. Consistent with Proposition[2) we see that the optimal entry fee increases as -y increases.
At the same time we also see that increasing y reduces the probability of auction success. This is a
general property of the model that follows from the fact that for any fixed e, through equation (12)
so is also fixed and invariant to changes in 7y and so the first constraint in expression (16) is fixed.

Consequently, the probability that the second constraint in expression holds, i.e.,
—B5p(25min +5p) — (K —1)%sp + R+ Ke > 0, (27)

is decreasing in y (and Q)F_ZI

22 For a given e, if this second constraint is binding, the probability of auction success will strictly decrease at that e for
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Figure 3: This figure illustrates the probability of auction success as a function of the entry fee e. Parameter
values: R=1,=01,7v=05N=10, Q=2 Ar =Ac =1

7 Conclusion

CCP default auctions are critically important. A CCP’s main task is managing its risk such that a
default does not spread. It is nearly a tautology to say that if a default auction is successful, the
CCP’s risk management is successful. Conversely, as suggested by Clancy| (2018a), an unsuccessful
default auction can cast doubt not only on the individual CCP but on central clearing more broadly.

Nevertheless, CCP default auctions have received relatively little attention in the literature.

We have developed a simple but realistic model of the cleared market and the challenges a CCP
faces in conducting a default auction. We paid particular attention to what information would be
known to both the CCP and its clearing members at various points in the default management
process. In particular, the occurrence of a default, the resulting need to conduct an auction, and the
direction of the market move associated with the default are assumed to be common knowledge.
The CCP is assumed to know members’ cleared positions, but not their total market exposures.

This assumption, and the associated opacity of clearing members’ risk preferences, is realistic.

higher +.
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values of 7. Parameter values: R=1,  =0.1,v € {0.1,0.3,0.5,0.7,09}, N =10,Q =2, A = Ag = 1.

Consequently, the CCP lacks the information to just specify who should be invited to an auction

with any degree of reliability.

Within this model, we have addressed several unique aspects of CCP default auctions. First,
that revenue maximization is not a reasonable objective for CCPs. Second, that one of the most
common and fundamental questions CCPs face is who to include in the auction. Third, we have
explicitly incorporated information leakage, which means inviting everyone is not optimal. These
characteristics taken together result in a highly non-standard auction problem, so standard results

in auction theory do not apply. Nevertheless, we are able to obtain a constructive analytical result.

In the CCP framework, the reserve price and the entry fee perform different functions, contrary
to their equivalence in the standard auction model. The impact of this is that a positive entry
fee can be optimal precisely because of its effect on endogenous entry decisions. To the authors’
knowledge, this result is novel. It focuses attention on the key question of how CCPs decide which

market participants to invite to an auction, and provides an effective mechanism for resolving it.
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There are other characteristics of CCP default auctions that we have not modeled. For example,
we have assumed that all participants are clearing members, thus ignoring the question of whether
it would be advantageous to invite clients or others to bid. Although, clients are formally excluded,
clearing members are modeled rather generally, suggesting that the results likely could incorporate
clients in a similar way. In that sense, the entry fee mechanism may be even more useful as it may
be able to effectively sort both clearing members and clients into participants and non-participants.
Other characteristics, like the cost of preparing a bid, whether and how to split up the defaulting
positions, the impact of hedging, or the chance for a limited number of participants to collude are
not addressed. Hopefully, the model presented here, which incorporates some of the most unique

characteristics of CCP auctions, will encourage more of these nuances to be addressed.
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Appendices

A Proof of Lemma

Proof. We formally prove that sy decreases as e increases, i.e., ‘%0 < 0. First, we need to obtain the
mathematical expression for equation (I2). We know that the first term in the max(-, -) operator is
the following:

—Bsp(2s0 +sp) + R+ e = —2Bsosp — Bs% + R +e.

Therefore, it is useful to solve the following quadratic equation with respect to sp:
Bs?, +2Bsosp — (R +e) =0, (28)
where f > 0 and R + e > 0. Since the discriminant of equation is
A = (2Bs0)” — 4p[— (R +e)] = 4B%s§ + 4p(R +¢) > 0,

this quadratic equation has two different roots, denoted by a and b, which are

—2ps — /46253 + 4B(R +¢)
a= ’

2

and
L Mt V/4B2S3 +4B(R + o)
— % )
Hence, b > a. Since —p < 0, R + ¢ > 0, and the quadratic function of sp, i.e., h(sp) = —,Bs%) —

2Bsosp + (R + e), intersects with the vertical axis at the point (0,%(0)) = (0, R 4 ¢), we have

a<0<b,

and thus,

—Bsp(2so+sp)+R+e >0, sp € [a,b],

38



—Bsp(2sg+sp) + R+e <0, sp € (—o0,a) U (b, +00).

In addition, because we require that sp > 0, we then have
—Bsp(2sp+sp) + R+e >0, sp €0,b],

and

—ﬁSD(ZSO —|—SD) +R+e<0, sp € (b, —|—00)

As a result, equation (12) can be expressed as

= (1 — F(s0))N"YE [max(—Bsp (250 +sp) + R +¢,0) | ]

—+00

= (1— F(s9))N ! ; max(—pBsp(2so+sp) + R+¢,0)g(sp) dsp

= (1= E(so)¥ [ (~s(2s0-+ sp) + R +)gls) dsp. 9)

Next, taking the first-order derivatives with respect to e on both sides of equation (29), we can

obtain

1= ~(N = 1)1 = Fo)™ 2(s0) 52 ([ (B 250+ 50) + R+ lgs0) )

+ (1—F( [ / —Bsp(2so +sp) + R+e)g(sp) dsp

+ (aa /b( Bsp(2s0 + sp) —i—R—i—e)g(sD)dsD) c;seo]. (30)

By the Leibniz integral rule, we first get

9 b
a/o (=Bsp(2so +sp) + R+e)g(sp)dsp =

b
(—,Bb(250+b)+R+e)g(b)Zi)+/0 2(sp) dsp
=0
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We also get

d

. /Ob(—ﬁsD(Zso +sp)+R+e)g(sp)dsp =

db b
(—Bb(2s0 1) + R +e)g(b) 57 + [ ~2Psog(sn) dsp
=0

b
= —2,8/0 spg(sp)dsp,

where, in both equations, g(-) and G(-) denote the probability density function and the cumulative

distribution function, respectively. Therefore, equation (30) can be written as

0<1—(1-F(s0)N"'G(b)

= —(N—1)(1— F(s0))N"%f(s0) </0b(—,BsD(2$o +sp)+R+e)g(sp) dsD> %
—2B(1 — F(sp))N 1 (/Ob spg(sp) dsD> Eilseo' (31)

We know that fob(—ﬁsD(Zso +$p) + R+e)g(sp)dsp > 0and fob spg(sp)dsp > 0, so

b

~(N =11~ F))¥ 2f60) ([ (~Boo(s0-+50) + R+ e)gls0)dsn ) <0,

and

—2B(1 — F(s0))N " (/Ob ng(sD)dsD> < 0.

As a result, the condition
dS()

— <0
de<

should hold in order to make the right-hand side of equation be equal to the left-hand side of

equation (B1), i.e., 1 — (1 — F(sg))N"1G(b), which is positive. O

B Proof of Lemma

Proof. From Lemma (1}, without loss of generality we can set an upper limit for the entry fee at

¢ such that Prob(smin < so) = 0 at &. Existence of an optimal entry fee is immediate from the
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Extreme Value Theorem, by noting that the optimum is over a closed and bounded set [0, ¢], and
that expression is a continuous function because probabilities are continuous. Since we are
only interested in the maximum, & can be ruled out as a candidate, and we have the existence of

e* > 0. ]

C Proof of Lemma[3

Proof. We want to show that if we increase e from 0 to something positive, then « increases.
Equivalently, we can show that « is decreasing in sy for sufficiently large sy, i.e., if we reduce s

from co to something smaller, « increases.

We repeat equation (24), which specifies the auction success probability, here for convenience,

N

w= % ()Pt = Fs)

k=1
8 = 1 (1= F(9(s0, k)
[/0 g(sD)dSD—i—/g(so) gy s(n)dso| . 62

= Hy(so)

Taking the first-order derivative with respect to sp, we have

5;; =F(s0)"Hy(s0) + NF(s0)N ™" f(s0) Hn(s0) + NF(s0)N (1 — F(s0)) Hy_1(s0)

+[N(N —1)F(s0)" (1 = F(so)) — NF(s0)™ "] f (s0) Hn-1(s0)
2

=1 () R0 (1= Flso) V4o @)

- [KF(0) (1= Flso))N ¥ = (N = K)F(s0)(1 = F(so)™* "] f(s0) He(s0).

By the Leibniz integral rule, we can show that

[ee]

2f0) [ 1= (1= F(p(sp, ) I3(s0) dsp <0 @4

k(1 — F(sg))*1
[1— (1= F(s0))"]

Hi(so) = —
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Therefore, to prove that da /dsg is negative as sy is sufficiently large, it is sufficient to show that all

terms not involving Hj (sy) are negative, i.e., we want to show that

0> f(S()) [NF(SO)NlHN(SO)
— NF(s0)N THy_1(s0) + N(N — 1)F(s0)N"2(1 — F(s0)) Hx_1(s0)
# 1 () B0 = Flsol ¥ = (= F(s0(1 = Fln) VG| 69
for sufficiently large sp. Because density f(so) is positive, we only need to show that the entire

term within the square bracket is negative. But note that as sy becomes large, (1 — F(so))N ¥ and

(1 — F(s0))N=*1 both go to zero. So the sufficient condition for da/dsy becomes that

lim [HN—l(SO) — HN(S())] > 0. (36)

Sp—> 00

As sy — oo, we have {(sp) | 0 as ( o) <0, so the sufficient condition is that

/ (1= F(¢p(sp, N))Vg(sp) dsp > / (1= B(¢(sp, N — 1)))N"1g(sp) dsp. (37)

0 0

The sufficient condition for the above condition is that

M= [ (1= F(g(sn,k)g(sp) dsp 9)

is strictly increasing in k. Ignoring the integral constraint on k and treating it as a real number, a

sufficient condition is that I'(k) > 0 for k € [N — 1, N|. Ate = 0, we need

0<T'(K) = [ [1 = F(@(s0,K)) " In[1 = F(@(sp,K))Ig(sp) dso

)01 e
+7kQ(k2[51) /0 [1— F(¢p(sp, k)] f(¢(sp, k))g(sp) dsp, (39)

that is,
kQ(k — 1)Q*1,y 2 - Jo [1 = F(¢(sp, k)" In[1 — F(¢(sp, k))]g(sp) dsp
2p Jo 1= E(¢(sp, k)1 f(¢(sp,k))g(sp)dsp

(40)
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Note that the left-hand side goes to oo as oy becomes large. On the right-hand side, the term
—[1 — F(¢(sp,k))]*In[1 — F(¢(sp, k))] in the numerator is bounded above regardless of 7; label
this upper bound M; > 0. For the denominator, we want a lower bound. Choose a finite €

independent of k. Then

= F@(n, k) f(@(0,K))g(s0) ds
> [ 1= F@sp, k) f (@50, K))g(s0) dso

> [min f(x)] [ [1=Fg(sp, k)] g(sn)dsp. (4)

x€[0,€]

Note that as v — o0, ¢(sp, k) — —oo. Thus, there exists an €’ < € and ¥ such that for all v > 7,

sp € [€/,€],and k € [N —1,N], (1 - F(¢(sp,k)))*! > 1/2. So the lower bound of the denominator

becomes
. €1
[min f(x)] [ Sg(s0)dso. )
x€[0,€] e 2
The required inequality becomes
kQ(k —1)9-1 maxgen_1.n M
R . L LR )
2p [min,ep,e f(x)] o 28(sp) dsp
which holds for sufficiently large -y. O

D Proof of Proposition

Proof. We first prove that for any entry fee ¢, the probability of auction success (weakly) decreases
in . For any fixed e, through equation (12), sy is also fixed and invariant to changes in v, so the
tirst constraint in expression is fixed. Consequently, the probability that the second constraint

in expression holds, i.e.,

—Bsp(25min +5p) — (K —1)%p + R4 Ke > 0, (44)
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is decreasing in 7y (and Q) and all other variables are fixed. In addition, for a given ¢, if this second

constraint is binding, the probability of auction success will strictly decrease at that e for higher 1.

Next, let e* maximize expression (19). If 7y increases, then based on the aforementioned result,
the probability of auction success decreases at e*. There are two possibilities. If the first constraint
binds, then e* is still the optimum and % = 0. Alternatively, the second constraint binds. Then, we

can take K to be fixed for small changes in y. We then can restate the second condition as

e> % (ﬁsD(Zsmin+sD) + (K —1)%p —R). (45)
=C(7)
Define v* such that
e" =C(y"). (46)

This condition means that as -y increases to y*, the second constraint in expression binds at e*.

In addition, define Ay > 0 and e** such that

e =e"+Ae=¢e"+ a;yA'y, (47)
and
. . 0C . K—1)%s
el + a7 = clr) + 25 —c(r) + B0 )
Since the condition holds, we should have e** > C(y* 4+ A7). Therefore,
*ok * de* * * (K - 1)QSD
e =e +87A726('y +A7):C(7)+TA (49)
* —_ 1)@
— Payscpr) e KD, (50)
a’)’ | K
and so
de* _ (K—1)%p
A o A
e (51)
for sp held constant. ]

44



E Derivation of the Analytic Expression for e in Sec. 6. Numerical

Example

Proof. We want to derive the analytical expression for equation when sp follows the exponential

distribution. The original equation is
e = (1 —F(so))N " E [max(—Bsp(2s0 + sp) + R +¢,0) | e].
Based on the results demonstrated in Section [A]of the Appendix, we know that
—Bsp(2so+sp) + R+e >0, sp €0,b],

and

—Bsp(2so+sp) +R+e <0, sp € (b, +0c0).

Thus, we are able to calculate the expectation term. We have

E [max(—Bsp(2s0 +sp) + R+¢,0) | ¢]

=/, max(—psp(2so+sp) + R+¢,0)g(sp) dsp

= /Ob(—,BsD(Zso +sp)+ R+e)g(sp)dsp + /b+000 x g(sp)dsp
= /Ob(—,BsD(Zso +sp)+ R+e)g(sp)dsp

b
:/0 (—Bsp(2s0 +sp) + R +e)Age 1650 dspy

e b (Agh+1) =1 2—e *P(AZ +2A6b +2)

P B A%; +(R+¢e)(1— e’)‘Gb).

= 2,350
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When Ag = 1, then

E [max(—pBsp(2s0+sp) + R+¢,0) | e]
= 2Bsple P (b4+1) —1] — B2 —e P (B* +2b4+2)] + (R+e)(1 —e?)

= 2Bs0e U(b+1) —2Bso — 2B+ Pe P (b? +2b+2) + (R+e)(1—e?).

Therefore, in order to numerically solve for sy from equation (12), we need to solve the following

equation:

e=(1—F(so))N !

. [2550e—b(b 1) —2Bso — 2B+ Be U (B? +2b +2) + (R +e)(1 — e_b)] ,

where b =

—2Bso++/4p*s5+4B(R+e) O
2B :
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