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Abstract

Central counterparties’ ability to hold successful default auctions is critically important to
financial stability. However, due to the unique features of these auctions, standard auction
theory results do not apply. We present a model of CCP default auctions that incorporates
both the vital, but non-standard, objective of minimizing the likelihood it suffers reputationally
damaging losses and the potential for information leakage to affect CCP members’ private
portfolio valuations. This gives insight into the key question of how CCPs should select auction
participants. In particular, we prove that an entry fee, by appropriately incentivizing some
members not to enter the auction, can maximize the probability of auction success. The result is
novel, both in auction theory and as a mechanism for CCP auction design.
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1 Introduction

Central clearing has long been a ubiquitous feature of exchange-traded derivatives. It is a critical

market mechanism to mitigate counterparty credit risk: all large futures exchanges have an affiliated

clearing house, and trades are novated to this central counterparty (or ‘CCP’) following their

execution on the exchange. In response to the 2008 Global Financial Crisis, central clearing was

mandated for over-the-counter (OTC) derivatives too, with the G-20 declaring that ‘all standardized

OTC derivative contracts should be. . . cleared through central counterparties by end-2012 at the

latest’. OTC derivatives clearing mandates have now been enacted in most leading jurisdictions.

As a result, major CCPs are critical to the functioning of financial markets and are often deemed to

be systemically important financial infrastructures. These CCPs intermediate substantial amounts

of risk, as consideration of the total initial margin they require indicates. The three largest CCPs for

exchange-traded derivatives in the US and UK required over $300 billion in initial margin at the

beginning of 2024, for instance, while the margin requirements of the three largest OTC derivatives

CCPs topped $360 billion. Murphy (2012) and King et al. (2023) discuss the systemic importance

and risks of central clearing in more detail.

The role of a CCP is to sit between market participants, guaranteeing their performance to each

other and acting as the counterparty to all cleared trades. If one of their members defaults, the

clearing house must close-out the defaulter’s portfolio. Thus, they should make it far less likely that

a failure of one market participant causes direct losses at another by acting as a buffer, preventing

systemic runs as in Zawadowski (2013). In order to be able to do this, CCPs must have sufficient

resources to absorb any plausible losses resulting from the default management process. A loss of

confidence in a clearing house can cause or increase a loss of confidence in the financial system, as

Bernanke (2015) discusses, so this is an important issue.

Different CCPs use different methodologies to size these resources, subject to applicable regu-

latory minima. This topic has received substantial attention in the literature, with a focus on the

adequacy of resources in various situations. See, e.g., Antinolfi et al. (2022), Boissel et al. (2017), Cap-

poni et al. (2017), Cerezetti et al. (2019), Kuong and Maurin (2023), Murphy and Nahai-Williamson
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(2014), Rec (2019a,b). A particular issue is the potential clustering of defaults and episodic market

illiquidity, as in Azizpour et al. (2018), Carlin et al. (2007). The related and important question of

CCP (funding) liquidity risk has also been studied: see, e.g. Cont (2017) and King et al. (2023). In

contrast, the close-out process, and particularly the design of CCP default auctions, is relatively

less studied, despite it being crucial to the losses experienced by the clearing house in default

management. Default actions are therefore the focus of this paper.

When the defaulter’s portfolio is relatively small compared to available market liquidity, the

default management problem is straightforward: in markets with central limit order books, the

CCP can simply enter orders to liquidate the defaulter’s portfolio. Similarly, in markets which

trade largely on a request for quote basis, quotes will readily be available, and hence an auction

may not be necessary.

The problem can become much more challenging with the default of larger or concentrated

portfolios. Such defaults can create significant stress, as the CCP’s ability to close out the defaulter

near the market price is uncertain.1 Moreover, unlike the problem in many trading situations, the

CCP must trade a particular portfolio in a relatively short time frame: it has neither the mandate

nor the loss-absorbing resources to bear market risk. Therefore, it is common for the CCP to

auction the defaulter’s portfolio either as is, or after it has been hedged. Both Lehman Brothers’

$9 trillion interest rate swaps portfolio cleared by the London Clearing House, and their $2 billion

exchange-traded futures and options portfolios cleared by Chicago Mercantile Exchange, were

liquidated via multiple auctions, for instance.2 The analysis of CCP default auctions is therefore

practically important. It is also technically non-trivial, as these auctions have novel features.

CCPs have a fixed amount of funded resources to manage defaults, structured in what is known

as their default waterfall. The first tranche of these resources are provided by the defaulter in

the form of initial margin. This tranche is followed by the defaulter’s contribution to a layer of

1 A good example is the stress at the New Zealand clearing house caused by the default of Stephen Francis described in

Cox et al. (2016).
2 See Fleming and Sarkar (2014) and LCH.Clearnet (2008) for LCH and Valukas (2010) for CME. For further analysis of

Lehman, see Wiggins and Metrick (2019)
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mutualized resources: the CCP’s guarantee or default fund. Then there is a (typically thin) layer of

the CCP’s own resources, known as skin in the game. After this comes the rest of the guarantee

fund. Thus, first the defaulter pays, then the CCP does, then non-defaulting clearing members.

Any resources from the defaulter that are not needed to manage the close-out are returned to the

defaulter’s estate. There are legal requirements in leading jurisdictions for CCPs to act reasonably

in their close-out,3 but these requirements leave substantial flexibility in default management. All

of this means that CCPs are much more concerned with getting an acceptable bid in a default

auction than in the price of that bid. If it cannot completely close-out the defaulter’s portfolio

without suffering a loss bigger than the resources that they have provided, not only will it face

financial loss, but also it will almost certainly suffer reputational damage.

Obtaining an acceptable bid for the defaulter’s portfolio is by no means guaranteed. For instance,

in the 2018 default by Einar Aas at the Nasdaq Nordic clearing house, the first attempt at auctioning

the portfolio failed, and the second attempt resulted in a loss of €114 million in excess of the

resources Aas had provided to the CCP, resulting in losses to both the CCP’s skin in the game

and its guarantee fund. Subsequently, it was revealed that the second auction had not liquidated

the portfolio, but rather had just established hedges. In both auctions, Nasdaq Nordic limited

participation to four firms that it had selected.4

Standard auction theory suggests that revenue is increased by attracting as many bidders as

possible to an auction.5 However, this is not necessarily the best strategy in CCP default auctions

due to a phenomenon known as information leakage. The trigger event for a CCP auction—the

default of one or more clearing members—is public knowledge, as are the market movements

associated with the default. However, before the auction begins, only the CCP has full details of

3 See Braithwaite and Murphy (2017) for further details.
4 For details on the default and auctions, see Clancy (2018b), Clancy (2018a), and Mourselas (2019). Mourselas (2021)

covers the details that emerged later about the failure of the second auction and subsequent regulatory fine. Also, see

Box A: Two defaults at CCPs, 10 years apart, by S. Bell and H. Holden (Faruqui et al., 2018, pp. 75–76 in) for more

analysis, and McConnell and Saretto (2010) for a different example of auction failures.

5 Auction theory is covered in Milgrom (2004) and Krishna (2010); both cover standard models and equivalence results.
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the portfolio to be auctioned. Of course, it has to provide this information to bidders and, once

they know it, they can either choose to bid, or to trade against the CCP. Thus, there is a concern

that inviting more and more bidders will lead to an adverse change in market prices between

the portfolio being revealed and bids being submitted. This period cannot be very short, as a

defaulter’s portfolio may be large, and bidders need some time to price it. A CCP default auction is

thus analogous to a predictable trade, as discussed by Bessembinder et al. (2016), combined with

fundamental participation questions. Nasdaq Nordic explicitly stated that it limited participation

in its auction Aas’ positions to avoid information leakage, as Mourselas (2019) discusses. The recent

paper prepared by regulators, CPMI-IOSCO (2020), emphasizes both this topic and the questions

of who to include in an auction and how to incentivize bidders, as part of its broader discussion of

issues for CCPs to consider in default auctions. That paper raises these topics without providing

guidance on how to simultaneously choose and incentivize bidders, limit information leakage, and

successfully conduct an auction.

To summarise, clearing house default auctions have two salient features that sharply distinguish

them from standard auctions. First, the CCP wants to minimize the probability of using its own or

non-defaulting members’ resources, not to maximize income from the auction. Second, the possible

negative effects of information leakage means that it is not desirable to attract bidders who are

unlikely to submit competitive bids. This later aspect bears some resemblance to the literature on

endogenous auction participation (Lauermann and Wolinsky, 2017, Menezes and Monteiro, 2000).

The combination of these two aspects is particularly novel from an auction theory perspective.

Our contribution is to model the salient features of a clearing house default auction and to design

an optimal process for conducting it while allowing endogenous participation decisions. Different

CCPs will have different rules for conducting auctions, and different strategies for recovering from

an unsuccessful auction, so we focus on the common goals of the default management process

across CCPs. We show how the opposing effects of information leakage—where having more

bidders tends to lower the value of the object and hence leads to lower prices—and the need

to maximize the probability of a successful bid can lead to an optimum number of bidders that
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is strictly less than the number of available bidders. The key aspect from a mechanism design

perspective is the use of an optimally selected entry fee to get good bidders to self-select.

Bidders use commonly known information about the direction and likely size of the defaulted

position, and private information about the value to them of adding the position to their own

portfolio, to decide whether to pay the entry fee, become more informed about the actual size

of the defaulted position, and then decide whether or not to submit a bid.6 We prove that even

with a reservation price, if the cost of information leakage is high enough, a CCP maximizes its

probability of receiving a bid above its reservation price by setting a non-zero entry fee. Although

the entry fee limits participation, it does so in an equitable fashion in that it is set before the default

occurs. Furthermore, the entry fee excludes bidders who are not likely to bid high enough to win

the portfolio and consequently whose main impact is to increase information leakage.

2 Literature Review

In addition to the scholarship cited above, various authors explore aspects of central clearing on

market function. For example, Loon and Zhong (2014) find that central clearing improves market

liquidity. Duffie et al. (2015) and Grothe et al. (2023) find that CCPs’ impact on the demand for

collateral depends on the market structure and that if margin is required for non-centrally cleared

trades, then central clearing lowers the demand for collateral.

A different strand of the literature focuses more on clearing house default management. Cont

(2015) and Armakolla and Laurent (2017) both focus on the impact of loss allocation in CCP default

waterfalls. Cerezetti et al. (2019) is closer to the spirit of this paper as it looks at how to optimize

CCP default processes, but it focuses on hedging and does not analyze auctions at all. Koeppl et al.

(2012) considers the impact of default management on the market, demonstrating how concerns

over default at a CCP can harm market liquidity. However, this research looks at the impact of

central clearing prior to a default actually occurring.

6 The decision by each potential bidder whether to pay the entry fee is a key part of this process. A pre-committed fee, such

as a default fund contribution at risk from a failure to bid, would not achieve the same effect.
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After default occurs, a CCP will likely need to liquidate the defaulter’s positions and collateral.

The default of a large institution can cause large disorderly collateral liquidations, as Oehmke (2014)

discusses. Given that CCP default management is intended to make managing a default more

orderly, this is unhelpful. The other liquidation—that of positions—has received less attention,

which motivates our study of the problem.

There are, however, three papers that directly analyze CCP default auctions of positions. The

closest paper to this one, Ferrara et al. (2019), considers various designs of CCP default auctions

theoretically, but makes the standard assumption that the CCP seeks to maximize revenue. As

we detail below, that assumption ignores crucial features of the CCP’s payoff. Their paper also

assumes that the number of bidders is fixed, so it is silent on the question of who should actual

be invited to participate in the auction. The authors do examine the possibility that poor bids can

face a negative externality due to low competitiveness in the bidding process, which has some

similarities to the externality driven by information leakage in our model. However, there is no

endogenous entry in their framework, so the implications are more muted.7

In related research, Oleschak (2019) considers first price single item CCP default auctions where

bidders have private values and share eventual losses with the CCP. The author does look at the

impact of being invited to the auction or not, finding that invited bidders are better off than those

who are not invited to the auction. However, this mechanism depends on the CCP being able to

pick bidders with high private values. The inability to do so is exactly what we seek to study:

whether a CCP can include bidders with high valuations and conversely exclude those with low

valuations without knowing or even having a signal about private valuations.

Lastly, there are similarities between this paper and Huang and Zhu (2024), which builds on

Du and Zhu (2017). However, to avoid price impacts, the former paper assumes that bidders are

7 This negative externality is enough however to break the revenue equivalence between first and second price auctions;

the authors find that a second price auction with loss sharing, rather than first price auctions with or without penalty,

increases the liquidation value of the portfolio. This paper also uses a second price auction framework, but focuses on

designing an effective mechanism to maximize the chance of success with strategic participation, rather than the impact

ex post loss sharing when the auction is not as successful under fixed participation.
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infinitesimal and, similar to the other two papers on CCP auctions, focuses on analyzing what

happens if an auction results in losses that must be absorbed by the guarantee fund. It examines

the benefits of juniorization of guarantee fund contributions in such circumstances.

Interestingly, all three papers focus on the impact of loss sharing among clearing members

when the default auction goes poorly. But in each case, there is no reputational cost to the CCP of

such a poor auction outcome. In sharp contrast, we argue that CCPs are so strongly motivated by

the reputational costs, which would result from needing to apportion losses to its members, that

avoiding uncovered losses is their primary auction objective. Postulating loss-avoidance rather

than revenue maximization as the auction objective leads to a novel auction problem, not just

relative to the scant literature on CCP auctions, but also in the broader auction literature.

Besides specifying a realistic auction objective, we further tackle the related question of how to

construct the pool of bidders. This is a key issue raised in CPMI-IOSCO (2020), and it is challenging

due to the concerns raised about information leakage. As mentioned, there is a literature around

predictable trades. Admanti and Pfleiderer (2015) argues for a positive view here. The pertinent

concerns about information leakage are, however, much more consistent with a negative view, as in

Brunnermeier and Pedersen (2005) and Carlin et al. (2007). Indeed, the worse-case scenario is that

the liquidation of a defaulter’s portfolio takes on the characteristics of a fire sale: see Coval and

Stafford (2007) and Kuong (2020). Furthermore, limited participation is not merely a theoretical

concern as it seems to be a common feature of the relatively few CCP auctions observed. Besides

the prior discussion of Nasdaq Nordic, where the CCP selected four bidders only, it was reported

in Sourbes (2015) that LCH’s auctions of Lehman portfolios had (depending on the currency

concerned) around five participants.

There also exists a related market microstructure literature on how information leakage, or

front-running, affects trading. Burdett and O’Hara (1987) model how an institutional investor

constrains the number of dealers it approaches to execute a large trade due to information leakage.

In Hendershott and Madhavan (2015), the level of information leakage determines the venue that

a dealer utilizes for a trade. More recently, Baldauf and Mollner (2024) endogenize the impact of

8



information leakage in the subsequent on-market trading. Similarly to this last paper, we focus on

information that is available to auction participants.

There are critical differences between this literature and the CCP problem, however. First, in the

papers cited, the invitation to be in an auction reveals information to those invited, while a CCP’s

need to conduct an auction is public knowledge. Second, in previous information leakage papers,

there are no consequences to an auction failing, while for CCPs an auction failure causes material

loss and would significantly damage its reputation, potentially to the point that the CCP would no

longer remain viable. Third, in a CCP member default, the direction the market moved to cause the

clearing member default reveals the direction of the defaulting portfolio. Consequently, the optimal

strategy in Baldauf and Mollner (2024) of requesting two-sided bids is not available. As the focus

here is on the price impact of information leakage on the auction itself, we exogeneously specify

the price impact, which resembles Baldauf and Mollner (2024) but do not model the mechanism

through which it occurs like they do. In summary, the microstructure literature focuses on how

and where to search for best execution of regular and repeated trades to minimize the impact of

information leakage on transaction costs. In contrast, we focus on how to optimally endogneize

bidders’ participation to minimize the impact of information leakage on the success of the extremely

irregular, but critically important, auction of a defaulter’s portfolio.

The institutional characteristics of CCP default auctions mean that our analysis is non-standard

and arguably novel. But it does connect to certain strands of the broader auction literature. Lou

et al. (2013) finds that even in the liquid Treasury market, announced auctions can cause variations

in valuations due to dealers’ risk-capacity. Levin and Smith (1994) endogenizes entry and finds that

the results of the auction can diverge from those predicted by an analysis that ignores the entry

question. Furthermore Lauermann and Wolinsky (2017) and Menezes and Monteiro (2000) both

prove that in circumstances with endogenous entry revenue can decrease with an increase in the

number of participants. Similarly, in our paper, entry takes a centre stage in line with the discussion

in CPMI-IOSCO (2020). Our model explicitly allows that more competition is not necessarily

desirable. This is consistent with the empirical findings in Hong and Shum (2002) (although we

use private valuations rather than common ones) and the model of Glebkin and Kuong (2023). A
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key difference is that here endogenous entry is considered in an auction where the CCP’s objective

is not maximizing revenue. In addition, potential auction participants are risk-averse rather than

risk-neutral. Our setup also relates to Pinkse and Tan (2005), in that information leakage creates

affiliation amongst independent valuations, although in a second-price auction rather than first

price as in their analysis. Finally, Milgrom and Weber (1982) examine competition and entry fees,

raising the possibility that monotonic equilibria might not exist. Landsberger (2007) extends this

analysis and finds that such existence becomes increasingly unlikely as the number of bidders

grows. Our analysis is in the same vein; our structure implies non-monotonicity, so adding more

bidders is not optimal.

3 Derivatives Markets and CCPs

Modern derivatives markets are characterized by the clearing of standardized contracts at CCPs

while other, potentially bespoke, contracts are cleared bilaterally.8 Dealers, and perhaps some other

market participants, are direct, or ‘clearing’ members of CCPs. Thus a dealer’s net risk position is

composed of its cleared position and its bilateral one, and only the former is typically known to the

CCP.

CCPs require that their members post initial and variation margin at least daily. Variation

margin on each cleared portfolio or ‘account’ is determined based on the current mark-to-market,

so it can be thought of as settling the value of the portfolio every day. Initial margin is based on the

risk of the portfolio: it is intended to cover its potential change in value over a fixed liquidation

horizon, known as the margin period of risk, to a high degree of confidence. Regulation sets

minimum standards for the margin period of risk and the confidence level of margin. For OTC

derivatives, initial margin is required to cover at least the 99th percentile of potential changes in

portfolio value over a five day period. Figure 1 on the following page illustrates the idea.

The margin period of risk is intended to be long enough that the non-defaulting party can

determine that an event of default has occurred, begin default management, hedge the defaulter’s

8 Such contracts are properly considered to be non-centrally cleared, but are often referred to as uncleared.
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Figure 1: The roles of initial and variation margin

portfolio if necessary, and sell it. In our context, ‘selling it’ means conducting an auction, including

determining who to invite to the auction, communicating the portfolio to them, receiving bids,

deciding on a winner, and novating the defaulter’s portfolio to them.

Bidders will use the market value of the portfolio at the point of bidding as a basis for their bids.

Thus, the CCP is most at risk from losses in default management when the value of the portfolio

has fallen between the last successful variation margin call with the defaulter, at t = 0 say, and

when bids are submitted, at t = T say.

We will model a modern futures market subject to initial and variation margin, reflecting these

features. This means that market participants, when they enter into trades, only pay initial margin.

Changes in value of their portfolios are settled day-by-day through variation margin. Before we

develop our model of the derivatives market, the remainder of this section provides a concrete

example of this situation.

Example. Suppose we are dealing with the front month London Metal Exchange (‘LME’) copper

futures, and assume that a party bought 10 lots of this future on 19th May 2020. On this day the

futures price was $5,314. The LME copper future is the right to receive 25 tonnes of copper and

is priced in US dollars per tonne. Therefore, this party locked in a price of $5,314 × 10 × 25 =

$1,328,500 for 250 tonnes of copper at the expiry of the future. The closing price of this future on

Friday 19th June 2020 of the front month was $5,855.50, meaning that someone who bought this

future on that day, locked in a price of 25 × $5,855.50 = $146,387.50 for 25 tonnes of copper at
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expiry. Suppose that our party defaulted at the close of business on Friday 19th June. The CCP

will have paid a cumulative ($5,855.5 − $5,314)× 25 × 10 = $135,375 of variation margin to the

defaulter. Note that if the future expires with this level, 5,855.50 as its settlement price, longs pay

this amount per tonne and shorts receive this amount: the reason that the defaulter locked in the

lower level of $5,314 per tonne is that they have received the difference as variation margin.

The use of variation margin means that if the futures price goes up, long position holders receive

money; if it goes down, they pay money. It is only at expiry that the obligation arises to pay the

settlement price and receive the commodity.

Now suppose that the initial margin was 500 points or $12,500 per lot; the defaulter will have

paid initial margin of $125,000. Further suppose that their guarantee fund contribution was $5,000

and that they default on Monday 22nd June, before the market opens. The CCP needs to auction

the right to pay $5,855.50 per tonne for 250 tonnes of copper. If the bid is say a per-lot price of

$5,200, then the CCP has lost ($5,855.50 − $5,200) × 25 × 10 = $163,875 and it only has initial

margin of $125,000 plus defaulter’s guarantee fund contribution of $5,000 so there is a loss of

$163,875 − $125,000 − $5,000 = $33,875 to be allocated first to the CCP’s skin in the game (‘SITG’)

then, if that is inadequate, to non-defaulter’s guarantee fund contributions. The CCP’s desired

per-lot auction price is at least $5,855.50 − $125,000+$5,000
25×10 = $5,335.50, as the defaulter’s resources

are sufficient to cover losses if the winning bid is at or above this level.

Note finally that the profits or losses of the auction are realized in the variation margin call at the

end of the day of the auction. If the successful bid in an auction on Monday 22nd July was a per-lot

price of $5,200 for a long position in 10 lots of futures, and the future closes at $5,800 (close to the

previous Friday’s close), then the CCP will pay the successful bidder ($5,800 − $5,200)× 25 × 10 =

$150,000. There is no cash flow in the auction itself—just like the initial purchase, what is being

agreed is not a price to pay but a level from which to base future variation margin payments.

Similarly, if the defaulter was short 10 lots, then bidders would rationally bid above the current

price of $5,855.50. If the winning bid was, say $5,950, and the future closes on the evening of the

auction at $5,870, the CCP would pay the bidder ($5,950 − $5,870)× 25 × 10 = $20,000.
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4 A Model of a Derivatives Market

This section introduces the model of a derivatives market that we will use for the rest of the paper.

We will model a single risk factor, to be thought of as the price of a commodity future.

There are two key features to this model. First, we assume that market participants are risk

averse. This is modelled by a private value for position which reduces their value to the holder the

bigger they are. Second, the model captures both OTC forwards and cleared futures positions, so

the CCP does not know the net risk position of any market participant.9 Without this, the problem

of selecting auction market participants is trivial, as it simply invites those with positions closest

to and opposite in sign from the defaulter. It is also realistic to assume that OTC positions can be

significant, and can have a material effect on the exchange-traded market.10

4.1 Positions

The net risk position of each clearing member is defined in terms of a single risk factor that can

take positive and negative integral values. The risk factor trades both as a cleared future and as

uncleared forwards, so the CCP does not know any clearing member’s net position. The position is

expressed as a futures equivalent. We will write si for the position of clearing member i ∈ I, where

si < 0 denotes a short position and si > 0 denotes a long position. Because we are dealing with a

derivatives market, the sum of the longs equals the sum of the shorts:

S := ∑
i∈I

max(si, 0) = −∑
i∈I

min(si, 0), (1)

where S denotes the size of the market.

9 The OTC market can be several times the size of the exchange-traded market, so this is a realistic assumption. See Oliver

Wyman (2023) for an example of this situation.
10 See, for instance, LME’s Consultation 22/145, 2022, which notes that “Recent events in the LME Nickel market have

demonstrated the effects that OTC activity can have on the wider LME market.”
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4.2 The Futures Price and Variation Margin

We will write V(t) for the quoted price of one lot at time t: think of this as the futures price. Because

of variation margin, the public mark-to-market of all positions cleared by non-defaulters at the end

of each day is always zero. Let t = 0 denote the end of one day. If the market participant acquires a

new position of s at the close, and t = 1 denotes the end of the next day, then the total variation

margin paid to the market participant will be s(V(1)− V(0)) if this is positive, or from the market

participant if it is negative.

After a default, the CCP has to continue to pay or receive variation margin on the other side

of the defaulter’s cleared position. We denote the defaulter by D and its cleared position by sD.11

Without loss of generality, denote the last time variation margin was exchanged prior to default by

t = 0. Then if the per-lot price changes from V(0) to V(T) at the time T when the CCP novates

the position to an auction participant, the mid-market profit or loss for the CCP on the defaulter’s

position is (V(T)− V(0))sD.

4.3 Funded Resources and a Successful Auction

We will denote the initial margin posted by clearing member i by Mi, their guarantee fund con-

tribution by Gi, and the CCP’s skin in the game by SITG. The total guarantee fund G is ∑i∈I Gi.

The resources contributed by the defaulter are MD + GD. After a default, the CCP can use these

resources to cover any losses it incurs in closing out the defaulter’s position.

Figure 2 on the next page shows an example path of the mark-to-market of the defaulter’s

portfolio through the margin period of risk. It starts at zero by definition as we assume a successful

variation margin call at t = 0.

We assume that at t = T the CCP transfers the position at a price b which could be either positive

or negative: positive b represents cash coming into the CCP from the next variation margin call and

negative, cash leaving, as usual. The CCP’s total profit or loss on the defaulter’s portfolio, after

11 The remainder of its portfolio, the bilaterally cleared part, would be managed during bankruptcy aside from the CCP

auction, so it is not relevant here.
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Figure 2: The value of the defaulter’s portfolio through the margin period of risk and the use of resources in
the default waterfall to absorb losses on it

using their resources, and including variation margin, is therefore:

P = (V(T)− V(0))sD + b. (2)

If the CCP has to pay out b in the auction, then the profit or loss is b below (V(T)− V(0))sD. The

total funded resources are MD + SITG + G. In general (V(T)− V(0))sD could take either sign, but

the auction is more difficult when it is negative, so this situation is illustrated as follows.

If the CCP does not make a loss on closeout, P ≥ 0, it is obliged to return the defaulter’s

resources to the administrator of the estate. On the other hand, if it makes a loss, P < 0, it can

absorb that loss with the available resources.12 The CCP’s total profit or loss on the defaulter’s

portfolio after using the defaulter’s resources is therefore:

P if P ≥ 0,

0 if − MD − GD ≤ P < 0,

P + MD + GD otherwise.

(3)

This can be simplified to

max (P, min(P + MD + GD, 0)) . (4)

12 We assume that the CCP does not make any further recoveries in excess of the available collateral.
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The CCP’s own resources are at risk if the cost of default management is larger than MD + GD.

For simplicity, we assume that there are no other costs—such as hedging costs—and that an auction

succeeds if the CCP can liquidate the portfolio without paying more than this.

The payoff function in equation (4) is one of the things that makes CCP default auctions novel.

A standard assumption in auction theory is that the seller seeks to maximize revenue, and most

analysis of different auction characteristics focuses on the impact to expected revenue (Krishna,

2010). But in a default auction, the CCP does not actually profit from better bids b within the range

−MD − GD ≤ P. (5)

There is therefore little or no incentive for a CCP to care about increasing the bid within this

range. In contrast, there is a considerable negative reputational impact associated with a default

auction which eats into skin in the game. Furthermore, although it varies across CCPs, skin in the

game is generally a relatively thin layer of resources. If the CCP’s skin in the game is exhausted,

the CCP starts mutualizing losses among the remaining clearing members. While unlikely, this

situation could so severely damage the CCP’s reputation that avoiding it is paramount to the CCP.

Consequently, a CCP is much more concerned with maximizing the probability that it will receive a

winning bid that is high enough to ensure that losses are covered by the defaulter’s resources than

with maximizing auction revenue. Put another way, the CCP can be viewed as largely indifferent to

the level of revenue generated by the auction above the threshold illustrated in Figure 2, but it faces

a discontinuous loss below it. This produces a particular form of risk aversion, so that CCPs focus

on minimizing the downside risk rather than seeking to maximize revenues as a seller normally

does. Rather than specifying some form of risk aversion that would incorporates these complicated

threshold and reputational effects, we assume that the CCP seeks to maximize the probability that

its loss on the portfolio is covered by the defaulter’s resources MD + GD.

16



4.4 Private Values

Following the set-up in Du and Zhu (2017), suppose that market participants have an aversion to

risk, which affects their private value of positions. In particular, the private mark-to-market of a

position of size s ∈ R is

−βs2 (6)

for some positive β (i.e., the bigger positions become, the more holders (quadratically) discount

them). For ease we will assume β is constant for all participants and this is known. This formulation

is consistent with the findings of Lou et al. (2013) that dealer’s risk capacity affects valuations

around US Treasury auctions.

4.5 Private Values for Winning Bidders

The defaulting clearing member has a position sD. If a clearing member wins the auction for this

position at a price b, it will be netted with their existing position. If si was the clearing member’s

old position, the original position has a private value of −βs2
i , and the new position is privately

worth −β(si + sD)
2. Hence, the clearing member is indifferent between buying the position sD for

b and not buying it when

−β(si + sD)
2 − b = −βs2

i .

We will write b̃i for this rational bid threshold for clearing member i:

b̃i = −β(2sisD + s2
D).

Clearly it is irrational to bid above this level, as −β(si + sD)
2 − b < −βs2

i when b > b̃i.

4.6 Desirable and Undesirable Bidders

Suppose the defaulter’s position is big, sD ≫ 1, and all the bidders are on the same side of the

market as the defaulter and big too, si ≫ 1 for all i ∈ I. Then (2sisD + s2
D) is always positive and

large. Hence, unless β is very small, for all i ∈ I, bi will be negative and large, and the CCP will not
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get a bid above its threshold −MD − GD. Thus, only having bidders in the auction on the same side

of the market as the defaulter is damaging for the CCP’s objective of having a successful auction.

Conversely, if there is a bidder i with position opposite to the defaulter, sgn(si) ̸= sgn(sD),

and bigger than it in size, |si| > |sD|. Then 2sisD is negative and s2
i > s2

D, so (2sisD + s2
D) < s2

i ,

and hence winning the auction frees up private value. For this bidder, b̃i > 0. Clearly, if instead

si = −sD/2, then 2sisD + s2
D = 0 and so b̃i = 0.

Following on from this, if the number of auction participants is large and si is symmetrically

distributed, then there will be some bidders for whom si and sD are of opposite signs. Any of

these participants who have |si| > |sD| will make positive bids, so unless P < −MD − GD, the

probability that the CCP will get a bid above its threshold approaches 1 as the number of bidders

increases. In this setting, inviting more participants to the auction is always better. This result is not

surprising. Even with the change to the seller’s objective, the folk theorem result that adding more

bidders generally increases revenue intuitively suggests that adding more bidders will increase the

probability that the CCP receives a bid above its threshold.

4.7 The Auction and Information Leakage

It is reasonable to assume that market participants know the overall direction of the defaulter’s

portfolio sD—long or short—but not its precise size. The direction is revealed because the the

direction of market moves can be easily compared to the time of default, which is known. The size

is revealed to auction participants by the CCP just before the bidding process opens. Of course,

actual portfolios are more complicated, and in a default auction the actual positions would be

revealed to participants; revealing size stands as a good proxy for the revealed information in the

simpler market model.

Thus far, the market value of defaulter’s portfolio at the time of the auction has just depended

on the drift in the futures price V(t). We assume this movement is determined by a standard

normal random variable Z ∼ N (0, 1) so that

V(T) = V(0) (1 + σZ) ,
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where σ is a volatility-like scaling parameter. In addition, we will assume that information leakage

creates a risk that auction participants trade outside the auction against the defaulted position,

which hurts its value.13 As noted above, regulators recommend that CCPs should balance the risk

of information leakage and the aim of obtaining a competitive price when deciding on the most

appropriate execution method, highlighting the importance of modeling information leakage.

In order to do this, we assume that having N bidders with certainty reduces V(0) by an amount

γ(N − 1)Q for fixed γ > 0 and Q. The constants γ > 0 and Q are known and abstractly account

for the cost of information leakage. We assume that the impact of information leakage increases

non-linearly in the number of auction participants. So for N bidders, the futures price at the

moment bids are submitted is:

V(T) = V(0)
(

1 + σZ − γ(N − 1)Q
)

.

Note that the price move against the CCP depends on the number of (potential) bidders, so

we are assuming that having more bidders means more information leakage. In their model of

client trading, Baldauf and Mollner (2024) show how the possibility of information leakage, or

front-running, can reduce dealer’s competition for the client’s trade. Although their mechanism

endogenizes the impact of moving from one dealer to two, the actual price impact is exogenously

assumed. As the focus here is on the price impact of information leakage on the auction itself, we

exogeneously specify the price impact for a general increase in the number of auction participants.

The problem the CCP now faces is that there are two competing pressures: having more bidders

increases the probability of receiving a good bid (competition effect), but it also increases the size

of the price moving against the CCP (information leakage effect). The simple strategy of including

everyone in the auction is no longer optimal. In the next section, we consider the CCP’s auction

13 The need to send portfolios, which potentially consist of tens of thousands of instruments, to multiple market participants

and allow those participants time to price the portfolios and determine the impact winning them would have on their risk,

capital and liquidity inevitably means that the minimum time between participants receiving details of the defaulter’s

portfolio and bids being due is measured in hours. This is ample time for information leakage to occur.
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strategy in this situation. The CCP would rather like to be discriminating in who it invites. As

the CCP does not have the information available to fully discriminate, we examine whether it

can use an entry fee to endogenously encourage the right participants and discourage the wrong

participants so that it can induce the participants to balance the competing pressures.

4.8 Bidder Values

Bidder values at time T depend upon the price of the future V(T), the number of bidders N, and

the defaulter’s position sD. We assume that the CCP truthfully reveals sD to all the bidders that

enter the auction.

Bidder i’s maximum value of bidding vi then is

vi ≡ sDV(T)− βsD(2si + sD) = sDV(0)
(

1 + σZ − γ(N − 1)Q
)
− βsD(2si + sD).

We can take vi to represent bidder i’s private value. Interestingly, information leakage has made

bidders’ private values affiliated, so that competition is less intense than a bidder would have

thought before the auction; the mechanism is different but the result is similar to that in Pinkse and

Tan (2005).

Despite the unusual event in the benchmark US oil futures market in March 2020 when the

front month futures price briefly turned negative, we assume not just that V(t) > 0 but also that

V(t)− βsi > 0 for all t and any si, i.e., long positions always have positive values.

5 Self-Selecting Mechanism

Without loss of generality, we take V(0) = 0, i.e., all mark-to-market fluctuations on the portfolio

are settled continuously before the auction. The maximum willingness to pay, or value, of bidder i

for the default portfolio is then

vi ≡ −βsD(2si + sD). (7)
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The timeline of the model is as follows:

■ The CCP sets the entry fee e ≥ 0 ex ante, before any default.14

■ Default happens. The CCP announces the side of the default portfolio, sgn(sD), but not its

magnitude. Bidders believe (correctly) that the magnitude of sD is distributed according

to a distribution with support from [0, ∞).15 Bidders decide whether they would pay e to

observe sD. Entry decisions are made simultaneously and only disclosed to the CCP.

■ The CCP announces the number of bidders K who have paid the entry fee, entered the

auction, and thus observed sD.

■ Bidders who enter the auction realize that their per-unit value of the default portfolio drops

by

−γ(K − 1)Q, (8)

reflecting the cost of information leakage (as captured by γ > 0 and Q). Put differently, while

the fair market value of the default portfolio remains V = 0 given the public information

set, the private values of everyone in the auction drop by γ(K − 1)Q.16 Bidders who do not

enter the auction do not see K and therefore do not observe the resulting drop in value.

Let R ≡ MD + GD > 0 be the resources the CCP has from the defaulter. The CCP conducts a

second-price auction with reservation price equal to −(R + Ke). The CCP’s objective function is

max
e

Prob(A), where A = {P + R + Ke ≥ 0}, (9)

and K is a random variable that determines how many bidders enter the auction conditional on the

entry fee e. The objective seeks to set the entry fee to maximize the probability that it avoids a loss

14 Setting the entry fee ex ante ensures that the entry fee reveals no information about the size of the defaulter’s position.
15 The support could be restricted to have an upper limit smaller than S; the larger support just simplifies the notation as

the point where the cumulative distribution reaches one does not affect the results.
16 Another mechanism that could result in such reduced private values would be communication amongst the participants;

Agranov and Yariv (2018) demonstrate experimentally that communication can reduce bids. The impact would be

captured by costs increasing as the number of participants rises.
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from the auction. Avoiding a loss is equivalent to ensuring that P (the cash flow from the auction

including any variation margin on the defaulting portfolio paid at the end of the auction day)

plus R (the available resources from the defaulter) plus Ke (the entry fees paid by the K bidders)

is non-negative. Importantly, P declines as the number of bidders increases due to information

leakage.

We can solve for the bidders’ entry decisions. Conjecture that v0 is the cutoff value, correspond-

ing to a cutoff inventory level s0 so that

v0 ≡ −βsD(2s0 + sD). (10)

The bidder who is at the cutoff should be indifferent between entering and not entering the auction,

so the expected profit of entering is equal to the entry fee e.

Note that besides the non-standard objective function, our model has two features that are

absent in the conventional auction models. First, entry decisions are made without observing sD,

but the actual bidding depends on learning sD after entry. Second, each entrant’s value is lower if

more bidders enter. These two features represent two shocks to bidders who enter the auction.

The threshold bidder who is indifferent wins if and only if she is the only one in the auction,

in which case there is no cost of information leakage, i.e., −γ(K − 1)Q = −γ(1 − 1)Q = 0. In the

second-price auction, the winning price for the sole bidder is the CCP’s reservation value, which is

−(R + e), i.e., the CCP gives R + e to the sole bidder, who is the cutoff bidder, in return for exiting

the defaulter’s position. The sole bidder’s ex post profit, if she bids, is

v0 + (R + e) = −βsD(2s0 + sD) + R + e. (11)

If sD turns out to be very positive, then this “profit” can be negative, so the optimal action for the

sole entrant is not to bid in that case. Therefore, the indifference condition for the cutoff-type bidder

is

e = (1 − F(s0))
N−1E [max(−βsD(2s0 + sD) + R + e, 0) | e] , (12)
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where F(·) is the cumulative distribution function of si. Because the entry fee e is set in advance, it

does not reveal sD in equilibrium.

The CCP’s objective is to minimize the probability that the auction fails, i.e., it receives no

bids above the reservation price. Obviously, the auction fails if no one enters, which happens

with probability (1 − F(s0))N . The auction may also fail if bidders who enter refuse to bid after

observing the realizations of sD and K.

If only the cutoff-type bidder enters, the auction succeeds if and only if

−βsD(2s0 + sD) + R + e ≥ 0. (13)

Note that from the CCP’s perspective, once e is set, the left-hand side of this condition is determin-

istic because e determines s0 by equation (12).

We now proceed to develop a series of building blocks (stated as lemmas) that we use to

establish our main result that characterizes the optimal CCP auction. Our first building block

establishes an upper limit on the entry fee. Let smin be the lowest inventory level of the K bidders.

Then we can state the following:

Lemma 1. If the entry fee e is sufficiently high, then no bidder enters and the auction fails.

The result is not trivial since the winning bidder may be compensated in part by the entry fee(s).

It is therefore necessary to prove that s0 is decreasing in e, as we do in Appendix A. This result shows

that increasing the entry fee will eventually push s0 below smin, at which point Prob(smin ≤ s0) = 0,

and no bidder enters.

In general, if K ≥ 1 bidders enter, the auction succeeds as long as

max
i∈K

vi︸︷︷︸
bidder’s

value

− γ(K − 1)QsD︸ ︷︷ ︸
cost of information

leakage

≥ −(R + Ke)︸ ︷︷ ︸
reservation

value

, (14)

or equivalently,

−βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0. (15)

23



Therefore, the auction succeeds if and only if a high-value bidder, who has a high willingness to

pay, enters and also bids, i.e., the CCP solves the following:

max
e

Prob(smin ≤ s0 and − βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0), (16)

where:

■ s0 is determined by equation (12), i.e., the indifference condition.

■ K is a random variable, determined by the rule that entry happens if a potential auction

participant’s inventory is lower than s0.

■ e depends on the distributions of sD and sj for ∀j ∈ K, where {sj}j∈K represents the inventory

levels of the participants, but does not depend on the realization of sD.17

It will be helpful to rewrite the two inequalities in the Prob(·) of expression (16) as

smin ≤ min
(

s0 ,
R + Ke − βs2

D − γ(K − 1)QsD

2βsD

)
. (17)

This formulation makes clear that the smaller one of the two terms in min(· , ·) would be binding.

Intuition suggests that we want the two terms to be “close” to make the probability large. In one

extreme with e = 0, equation (12) implies that F(s0) = 1, i.e., s0 is the upper bound of the inventory

distribution. As a result, everyone would enter the auction. However, in this case the second term

becomes R−βs2
D−γ(N−1)QsD

2βsD
(as K = N), which is small if Q is large and γ is not too small. In the other

extreme of setting e to be high, then K would be small, so R+Ke−βs2
D−γ(K−1)QsD
2βsD

is less binding but s0

would be quite binding. Therefore, there should be some intermediate values of e that maximize

the probability of auction success.

More formally, we first need to establish the existence of an optimal entry fee e∗. This result is

stated in the following lemma:

17 Recall that the potential for a large OTC market means that the CCP cannot use its information about the distribution of

cleared positions to reliably infer the distribution of sj.
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Lemma 2. There exists an optimal entry fee e∗, possibly 0, which maximizes the CCP’s objective given in

expression (16).

The proof of this lemma is provided in Appendix B.

It is not surprising that the optimality of no entry fee cannot be ruled out in Lemma 2. Optimality

of a zero entry fee would be the standard result without information leakage, as the CCP would

want to maximize auction participation. What we wish to show is that under some circumstances a

positive entry fee would be optimal, namely e∗ > 0.

To do so, we need to derive the analytical expression of Prob(·) in expression (16). Note that the

random variable K has a binomial distribution with probability of success F(s0). Let k denote a

realization of K. Clearly, the condition smin ≤ s0 is equivalent to k ≥ 1, i.e., at least one bidder has

inventory below s0. In addition, conditional on k ≥ 1 bidders entering the auction, smin is lower

than s0. Still conditioning on k, for any real value x ≥ s0, Prob(smin < x | smin < s0) = 1; for x < s0,

we have

Prob(smin < x | smin < s0) =
Prob(smin < x, smin < s0)

Prob(smin < s0)
=

Prob(smin < x)
Prob(smin < s0)

=
1 − Prob(smin ≥ x)
1 − Prob(smin ≥ s0)

=
1 − (1 − F(x))k

1 − (1 − F(s0))k , (18)

where in the last step we use the fact that if k bidders enter the auction, then the minimum inventory

of the N potential bidders is equal to the minimum inventory of the k bidders who have the k

lowest inventories and who actually enter. The auction success probability, conditional on sD, is

written as

Prob(smin ≤ s0, −βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0 | sD). (19)

Because K is binomial, this probability can be made explicit. In particular, let

ϕ(sD, K) :=
R + Ke − βs2

D − γ(K − 1)QsD

2βsD
. (20)
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Then we have the following

Prob(smin ≤ s0, − βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0 | sD)

= Prob

K ≥ 1, smin <
R + Ke − βs2

D − γ(K − 1)QsD

2βsD︸ ︷︷ ︸
:= ϕ(sD ,K)

| sD


=

N

∑
k=1

Prob(K = k)Prob(smin < ϕ(sD, k) | K = k | sD) (21)

=
N

∑
k=1

(
N
k

)
F(s0)

k(1 − F(s0))
N−k

·
[

1(ϕ(sD, k) ≥ s0) + 1(ϕ(sD, k) < s0)
1 − (1 − F(ϕ(sD, k)))k

1 − (1 − F(s0))k

]
,

where 1(·) denotes an indicator function that takes the value one if the condition in the brackets is

satisfied, and zero otherwise. Note, ϕ(sD, k) is a decreasing function of sD as

∂ϕ(sD, k)
∂sD

= −βs2
D + R + ke

2βs2
D

< 0. (22)

The final step to obtain the unconditional probability is to integrate the above conditional

probability over sD. Let G(·) denote the cumulative distribution function of sD, then the probability

of auction success, denoted as α, is

α =
N

∑
k=1

(
N
k

)
F(s0)

k(1 − F(s0))
N−k

·
∫ ∞

0

[
1(ϕ(sD, k) ≥ s0) + 1(ϕ(sD, k) < s0)

1 − (1 − F(ϕ(sD, k)))k

1 − (1 − F(s0))k

]
dG(sD). (23)

The function ϕ(sD, k) is decreasing in sD, so ϕ(sD, k) ≥ s0 if and only if sD ≤ ζ(s0), for some
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function ζ(s0) that is decreasing in s0.18 Then we can write the probability of auction success as:

α =
N

∑
k=1

(
N
k

)
F(s0)

k(1 − F(s0))
N−k

·
[∫ ζ(s0)

0
g(sD) dsD +

∫ ∞

ζ(s0)

1 − (1 − F(ϕ(sD, k)))k

1 − (1 − F(s0))k g(sD) dsD

]
. (24)

Based on equation (24), we have the following lemma, which is the key constructive result:

Lemma 3. If γ is sufficiently high, a small increase of entry fee from zero raises the probability that the

auction succeeds.

The proof of this lemma is provided in Appendix C.

We can now state our main result as the following proposition, which follows immediately from

Lemmas 1 through 3 (the first part follows from Lemmas 1 and 2 and the second part follows from

Lemma 3):

Proposition 1. There exists an optimal entry fee e∗ that maximizes the CCP’s objective given in expression

(16). If the impact of information leakage is sufficiently high, then the optimal entry fee is strictly positive.

Our main result shows that, in the face of information leakage, a positive entry fee can be an

effective mechanism to encourage potential bidders to self-select whether to enter an auction or not

so that the probability of a successful auction is maximized from the CCP’s point of view. To our

knowledge this is a novel mechanism. Many CCPs require potential auction participants to incur

18 The function ζ(s0) is

ζ(s0) =
−γ(k − 1)Q − 2βs0 +

√[
γ(k − 1)Q + 2βs0

]2
+ 4β(R + ke)

2β
> 0,

and so the first-order derivative with respect to s0 is

dζ(s0)

ds0
= −1 +

γ(k − 1)Q + 2βs0√[
γ(k − 1)Q + 2βs0

]2
+ 4β(R + ke)

< 0,

which means that ζ(s0) is decreasing in s0.
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ex ante costs, for example by participating in default exercises ex ante, which could be viewed as

an entry fee, but such implicit entry fees do not help the CCP maximize the probability it avoids

needing to use its skin in the game or non-defaulters’ resources.

The advantage of the entry fee mechanism developed here is that it is effective with low

information requirements. In particular, the CCP does not need to know the complete positions of

each potential bidder. If it did, a more efficient mechanism likely could be constructed. But without

such information, the entry fee mechanism avoids the CCP needing to use its own judgment on

who to invite and subsequently being open to criticism for its decision, as Nasdaq Nordic was, after

the auction.19

It should be clear that the result depends on an assessment of how costly information leakage

will be. The model of information leakage cost is simple, but the key characteristic is that private

values decrease as the number of participants increases. This characteristic seems intuitive and the

results are likely to hold for other models of information leakage that maintain this feature. In our

set-up, as the marginal cost of including participants in the auction increases, the optimal entry fee

also weakly increases. We state this as the following proposition:

Proposition 2. The optimal entry fee e∗ is weakly increasing in the impact of information leakage.

The proof of this proposition is provided in Appendix D.

The dependence on the cost of information leakage does, however, imply that whether or not

an entry fee is an effective mechanism may vary from CCP to CCP. For example, CCPs clearing

exchange-traded products might be less concerned about information leakage; more generally,

information leakage costs are likely higher in less liquid markets.20 But ignoring the potential

impact of information leakage, and the consequent difficult question of who to invite to a default

19 Such criticism was reported in Clancy (2018b) and Mourselas (2019).
20 The impact of market liquidity is also apparent in the analysis of transaction costs on CCP hedging strategies during a

close-out in Cerezetti et al. (2019) and in the general price impact of large trades even in liquid equity markets (Bouchaud

et al., 2009, Eisler et al., 2012).
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auction, would be inconsistent with CPMI-IOSCO (2020), where the regulators devote significant

attention to these issues.

6 Numerical Example

In this section, we present a numerical example that illustrates the results of our model. We assume

that {sj}j=1,2,...,N follows the Laplace distribution, i.e., the probability density function such that for

λF > 0 and sj ∈ (−∞, ∞),

f (sj) =
1
2

λFe−λF |sj| =


1
2 λFe−λFsj , if sj ≥ 0

1
2 λFeλFsj , if sj < 0

. (25)

In addition, we assume that sD follows the exponential distribution, i.e., the probability density

function such that for λG > 0 and sD ∈ [0, ∞),

g(sD) = λGe−λGsD . (26)

The algorithm for numerically calculating the probability of auction success as a function of e is

detailed as follows:

■ Set R = 1, β = 0.1, γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, N = 10, Q = 2, and λF = λG = 1.

■ Pick a non-negative e. We choose the grid such that e ∈ [0, 0.01, 0.02, . . . , 0.99, 1].

■ Given e, numerically solve for s0 from equation (12).21

■ Draw s1, s2, . . . , sN independently from F(·) (the Laplace distribution above). The number K

is set to be the number of bidders whose inventory level sj is lower than s0 that we have just

21 By plugging the exponential density function (26) into equation (12), solving equation (12) is equivalent to solving the

following equation:

e = (1 − F(s0))
N−1

[
2βs0e−b(b + 1)− 2βs0 − 2β + βe−b(b2 + 2b + 2) + (R + e)(1 − e−b)

]
,

where b ≡ −2βs0+
√

4β2s2
0+4β(R+e)

2β . The derivation is demonstrated in Appendix E.
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solved in the previous step. These bidders enter the auction and pay the entry fee e. Set smin

to be the lowest inventory of these bidders.

■ Draw sD from the distribution G(·) (the exponential distribution above).

■ Check if both inequalities in Prob(·) in expression (16) hold. If both of them hold, then the

auction is successful. Otherwise, the auction fails.

■ Repeat the aforementioned three steps multiple times, set to be 100,000 times, to obtain the

probability of auction success α̂ for each e:

α̂ = 1
100000

100000

∑
m=1

1
(

sm
min ≤ s0,−βsm

D(2sm
min + sm

D)− γ(Km − 1)Qsm
D + R + Kme ≥ 0

)
,

where the superscript m denotes the m-th round of simulation and 1(·) denotes the indicator

function.

■ Plot the probability of auction success as a function of e.

The numerical result for the case when γ = 0.5 is shown in Figure 3 on the following page.

Clearly, if the entry fee e increases a bit from zero, the probability that the auction succeeds increases.

This finding confirms our idea that imposing a positive entry fee is an effective mechanism for CCP

default auctions through endogenizing potential bidders’ entry decisions.

Figure 4 on page 32 presents simulation results for different marginal costs of information

leakage. Consistent with Proposition 2, we see that the optimal entry fee increases as γ increases.

At the same time we also see that increasing γ reduces the probability of auction success. This is a

general property of the model that follows from the fact that for any fixed e, through equation (12)

s0 is also fixed and invariant to changes in γ and so the first constraint in expression (16) is fixed.

Consequently, the probability that the second constraint in expression (16) holds, i.e.,

−βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0, (27)

is decreasing in γ (and Q).22

22 For a given e, if this second constraint is binding, the probability of auction success will strictly decrease at that e for
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Figure 3: This figure illustrates the probability of auction success as a function of the entry fee e. Parameter
values: R = 1, β = 0.1, γ = 0.5, N = 10, Q = 2, λF = λG = 1.

7 Conclusion

CCP default auctions are critically important. A CCP’s main task is managing its risk such that a

default does not spread. It is nearly a tautology to say that if a default auction is successful, the

CCP’s risk management is successful. Conversely, as suggested by Clancy (2018a), an unsuccessful

default auction can cast doubt not only on the individual CCP but on central clearing more broadly.

Nevertheless, CCP default auctions have received relatively little attention in the literature.

We have developed a simple but realistic model of the cleared market and the challenges a CCP

faces in conducting a default auction. We paid particular attention to what information would be

known to both the CCP and its clearing members at various points in the default management

process. In particular, the occurrence of a default, the resulting need to conduct an auction, and the

direction of the market move associated with the default are assumed to be common knowledge.

The CCP is assumed to know members’ cleared positions, but not their total market exposures.

This assumption, and the associated opacity of clearing members’ risk preferences, is realistic.

higher γ.
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Figure 4: This figure illustrates the probability of auction success as a function of the entry fee e, with different
values of γ. Parameter values: R = 1, β = 0.1, γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, N = 10, Q = 2, λF = λG = 1.

Consequently, the CCP lacks the information to just specify who should be invited to an auction

with any degree of reliability.

Within this model, we have addressed several unique aspects of CCP default auctions. First,

that revenue maximization is not a reasonable objective for CCPs. Second, that one of the most

common and fundamental questions CCPs face is who to include in the auction. Third, we have

explicitly incorporated information leakage, which means inviting everyone is not optimal. These

characteristics taken together result in a highly non-standard auction problem, so standard results

in auction theory do not apply. Nevertheless, we are able to obtain a constructive analytical result.

In the CCP framework, the reserve price and the entry fee perform different functions, contrary

to their equivalence in the standard auction model. The impact of this is that a positive entry

fee can be optimal precisely because of its effect on endogenous entry decisions. To the authors’

knowledge, this result is novel. It focuses attention on the key question of how CCPs decide which

market participants to invite to an auction, and provides an effective mechanism for resolving it.
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There are other characteristics of CCP default auctions that we have not modeled. For example,

we have assumed that all participants are clearing members, thus ignoring the question of whether

it would be advantageous to invite clients or others to bid. Although, clients are formally excluded,

clearing members are modeled rather generally, suggesting that the results likely could incorporate

clients in a similar way. In that sense, the entry fee mechanism may be even more useful as it may

be able to effectively sort both clearing members and clients into participants and non-participants.

Other characteristics, like the cost of preparing a bid, whether and how to split up the defaulting

positions, the impact of hedging, or the chance for a limited number of participants to collude are

not addressed. Hopefully, the model presented here, which incorporates some of the most unique

characteristics of CCP auctions, will encourage more of these nuances to be addressed.
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Appendices

A Proof of Lemma 1

Proof. We formally prove that s0 decreases as e increases, i.e., ds0
de < 0. First, we need to obtain the

mathematical expression for equation (12). We know that the first term in the max(·, ·) operator is

the following:

−βsD(2s0 + sD) + R + e = −2βs0sD − βs2
D + R + e.

Therefore, it is useful to solve the following quadratic equation with respect to sD:

βs2
D + 2βs0sD − (R + e) = 0, (28)

where β > 0 and R + e > 0. Since the discriminant of equation (28) is

∆ = (2βs0)
2 − 4β[−(R + e)] = 4β2s2

0 + 4β(R + e) > 0,

this quadratic equation has two different roots, denoted by a and b, which are

a =
−2βs0 −

√
4β2s2

0 + 4β(R + e)

2β
,

and

b =
−2βs0 +

√
4β2s2

0 + 4β(R + e)

2β
.

Hence, b > a. Since −β < 0, R + e > 0, and the quadratic function of sD, i.e., h(sD) ≡ −βs2
D −

2βs0sD + (R + e), intersects with the vertical axis at the point (0, h(0)) = (0, R + e), we have

a < 0 < b,

and thus,

−βsD(2s0 + sD) + R + e ≥ 0, sD ∈ [a, b],
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−βsD(2s0 + sD) + R + e < 0, sD ∈ (−∞, a) ∪ (b,+∞).

In addition, because we require that sD ≥ 0, we then have

−βsD(2s0 + sD) + R + e ≥ 0, sD ∈ [0, b],

and

−βsD(2s0 + sD) + R + e < 0, sD ∈ (b,+∞).

As a result, equation (12) can be expressed as

e = (1 − F(s0))
N−1E [max(−βsD(2s0 + sD) + R + e, 0) | e]

= (1 − F(s0))
N−1

∫ +∞

0
max(−βsD(2s0 + sD) + R + e, 0)g(sD) dsD

= (1 − F(s0))
N−1

∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD. (29)

Next, taking the first-order derivatives with respect to e on both sides of equation (29), we can

obtain

1 = −(N − 1)(1 − F(s0))
N−2 f (s0)

ds0

de

(∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

)
+ (1 − F(s0))

N−1 ·
[

∂

∂e

∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

+

(
∂

∂s0

∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

)
ds0

de

]
. (30)

By the Leibniz integral rule, we first get

∂

∂e

∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD =

(−βb(2s0 + b) + R + e)︸ ︷︷ ︸
= 0

g(b)
db
de

+
∫ b

0
g(sD) dsD

= G(b)− G(0) = G(b) ∈ (0, 1).
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We also get

∂

∂s0

∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD =

(−βb(2s0 + b) + R + e)︸ ︷︷ ︸
= 0

g(b)
db
ds0

+
∫ b

0
−2βsDg(sD) dsD

= −2β
∫ b

0
sDg(sD) dsD,

where, in both equations, g(·) and G(·) denote the probability density function and the cumulative

distribution function, respectively. Therefore, equation (30) can be written as

0 < 1 − (1 − F(s0))
N−1G(b)

= −(N − 1)(1 − F(s0))
N−2 f (s0)

(∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

)
ds0

de

− 2β(1 − F(s0))
N−1

(∫ b

0
sDg(sD) dsD

)
ds0

de
. (31)

We know that
∫ b

0 (−βsD(2s0 + sD) + R + e)g(sD) dsD > 0 and
∫ b

0 sDg(sD) dsD > 0, so

−(N − 1)(1 − F(s0))
N−2 f (s0)

(∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

)
< 0,

and

−2β(1 − F(s0))
N−1

(∫ b

0
sDg(sD) dsD

)
< 0.

As a result, the condition
ds0

de
< 0

should hold in order to make the right-hand side of equation (31) be equal to the left-hand side of

equation (31), i.e., 1 − (1 − F(s0))N−1G(b), which is positive.

B Proof of Lemma 2

Proof. From Lemma 1, without loss of generality we can set an upper limit for the entry fee at

ē such that Prob(smin ≤ s0) = 0 at ē. Existence of an optimal entry fee is immediate from the
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Extreme Value Theorem, by noting that the optimum is over a closed and bounded set [0, ē], and

that expression (16) is a continuous function because probabilities are continuous. Since we are

only interested in the maximum, ē can be ruled out as a candidate, and we have the existence of

e∗ ≥ 0.

C Proof of Lemma 3

Proof. We want to show that if we increase e from 0 to something positive, then α increases.

Equivalently, we can show that α is decreasing in s0 for sufficiently large s0, i.e., if we reduce s0

from ∞ to something smaller, α increases.

We repeat equation (24), which specifies the auction success probability, here for convenience,

α =
N

∑
k=1

(
N
k

)
F(s0)

k(1 − F(s0))
N−k

·
[∫ ζ(s0)

0
g(sD) dsD +

∫ ∞

ζ(s0)

1 − (1 − F(ϕ(sD, k)))k

1 − (1 − F(s0))k g(sD) dsD

]
︸ ︷︷ ︸

:= Hk(s0)

. (32)

Taking the first-order derivative with respect to s0, we have

dα

ds0
=F(s0)

N H′
N(s0) + NF(s0)

N−1 f (s0)HN(s0) + NF(s0)
N−1(1 − F(s0))H′

N−1(s0)

+ [N(N − 1)F(s0)
N−2(1 − F(s0))− NF(s0)

N−1] f (s0)HN−1(s0)

+
N−2

∑
k=1

(
N
k

)
F(s0)

k(1 − F(s0))
N−k H′

k(s0) (33)

+
N−2

∑
k=1

(
N
k

)
·
[
kF(s0)

k−1(1 − F(s0))
N−k − (N − k)F(s0)

k(1 − F(s0))
N−k−1

]
f (s0)Hk(s0).

By the Leibniz integral rule, we can show that

H′
k(s0) = − k(1 − F(s0))k−1

[1 − (1 − F(s0))k]2
f (s0)

∫ ∞

ζ(s0)
[1 − (1 − F(ϕ(sD, k)))k]g(sD) dsD < 0. (34)
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Therefore, to prove that dα/ds0 is negative as s0 is sufficiently large, it is sufficient to show that all

terms not involving H′
k(s0) are negative, i.e., we want to show that

0 > f (s0)

[
NF(s0)

N−1HN(s0)

− NF(s0)
N−1HN−1(s0) + N(N − 1)F(s0)

N−2(1 − F(s0))HN−1(s0)

+
N−2

∑
k=1

(
N
k

)
[kF(s0)

k−1(1 − F(s0))
N−k − (N − k)F(s0)

k(1 − F(s0))
N−k−1]Hk(s0)

]
(35)

for sufficiently large s0. Because density f (s0) is positive, we only need to show that the entire

term within the square bracket is negative. But note that as s0 becomes large, (1 − F(s0))N−k and

(1 − F(s0))N−k−1 both go to zero. So the sufficient condition for dα/ds0 becomes that

lim
s0→∞

[HN−1(s0)− HN(s0)] > 0. (36)

As s0 → ∞, we have ζ(s0) ↓ 0 as dζ(s0)
ds0

< 0, so the sufficient condition is that

∫ ∞

0
(1 − F(ϕ(sD, N)))N g(sD) dsD >

∫ ∞

0
(1 − F(ϕ(sD, N − 1)))N−1g(sD) dsD. (37)

The sufficient condition for the above condition is that

Γ(k) ≡
∫ ∞

0
(1 − F(ϕ(sD, k)))kg(sD) dsD (38)

is strictly increasing in k. Ignoring the integral constraint on k and treating it as a real number, a

sufficient condition is that Γ′(k) > 0 for k ∈ [N − 1, N]. At e = 0, we need

0 < Γ′(k) =
∫ ∞

0
[1 − F(ϕ(sD, k))]k ln[1 − F(ϕ(sD, k))]g(sD) dsD

+
γkQ(k − 1)Q−1

2β

∫ ∞

0
[1 − F(ϕ(sD, k))]k−1 f (ϕ(sD, k))g(sD) dsD, (39)

that is,
kQ(k − 1)Q−1

2β
γ >

−
∫ ∞

0 [1 − F(ϕ(sD, k))]k ln[1 − F(ϕ(sD, k))]g(sD) dsD∫ ∞
0 [1 − F(ϕ(sD, k))]k−1 f (ϕ(sD, k))g(sD) dsD

. (40)
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Note that the left-hand side goes to ∞ as γ becomes large. On the right-hand side, the term

−[1 − F(ϕ(sD, k))]k ln[1 − F(ϕ(sD, k))] in the numerator is bounded above regardless of γ; label

this upper bound Mk > 0. For the denominator, we want a lower bound. Choose a finite ϵ

independent of k. Then

∫ ∞

0
[1 − F(ϕ(sD, k))]k−1 f (ϕ(sD, k))g(sD) dsD

>
∫ ϵ

0
[1 − F(ϕ(sD, k))]k−1 f (ϕ(sD, k))g(sD) dsD

> [ min
x∈[0,ϵ]

f (x)]
∫ ϵ

0
[1 − F(ϕ(sD, k))]k−1g(sD) dsD. (41)

Note that as γ → ∞, ϕ(sD, k) → −∞. Thus, there exists an ϵ′ < ϵ and γ̄ such that for all γ > γ̄,

sD ∈ [ϵ′, ϵ], and k ∈ [N − 1, N], (1− F(ϕ(sD, k)))k−1 > 1/2. So the lower bound of the denominator

becomes

[ min
x∈[0,ϵ]

f (x)]
∫ ϵ

ϵ′

1
2

g(sD) dsD. (42)

The required inequality becomes

kQ(k − 1)Q−1

2β
γ >

maxk∈[N−1,N] Mk

[minx∈[0,ϵ] f (x)]
∫ ϵ

ϵ′
1
2 g(sD) dsD

, (43)

which holds for sufficiently large γ.

D Proof of Proposition 2

Proof. We first prove that for any entry fee e, the probability of auction success (weakly) decreases

in γ. For any fixed e, through equation (12), s0 is also fixed and invariant to changes in γ, so the

first constraint in expression (16) is fixed. Consequently, the probability that the second constraint

in expression (16) holds, i.e.,

−βsD(2smin + sD)− γ(K − 1)QsD + R + Ke ≥ 0, (44)
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is decreasing in γ (and Q) and all other variables are fixed. In addition, for a given e, if this second

constraint is binding, the probability of auction success will strictly decrease at that e for higher γ.

Next, let e∗ maximize expression (19). If γ increases, then based on the aforementioned result,

the probability of auction success decreases at e∗. There are two possibilities. If the first constraint

binds, then e∗ is still the optimum and ∂e∗
∂γ = 0. Alternatively, the second constraint binds. Then, we

can take K to be fixed for small changes in γ. We then can restate the second condition as

e ≥ 1
K

(
βsD(2smin + sD) + γ(K − 1)QsD − R

)
︸ ︷︷ ︸

:= C(γ)

. (45)

Define γ∗ such that

e∗ = C(γ∗). (46)

This condition means that as γ increases to γ∗, the second constraint in expression (19) binds at e∗.

In addition, define ∆γ > 0 and e∗∗ such that

e∗∗ := e∗ + ∆e = e∗ +
∂e∗

∂γ
∆γ, (47)

and

C(γ∗ + ∆γ) = C(γ∗) +
∂C(γ)

∂γ
∆γ = C(γ∗) +

(K − 1)QsD

K
∆γ. (48)

Since the condition (45) holds, we should have e∗∗ ≥ C(γ∗ + ∆γ). Therefore,

e∗∗ = e∗ +
∂e∗

∂γ
∆γ ≥ C(γ∗ + ∆γ) = C(γ∗) +

(K − 1)QsD

K
∆γ (49)

=⇒ ∂e∗

∂γ
∆γ ≥ C(γ∗)− e∗︸ ︷︷ ︸

= 0

+
(K − 1)QsD

K
∆γ, (50)

and so
∂e∗

∂γ
≥ (K − 1)QsD

K
> 0, (51)

for sD held constant.
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E Derivation of the Analytic Expression for e in Sec. 6. Numerical

Example

Proof. We want to derive the analytical expression for equation (12) when sD follows the exponential

distribution. The original equation is

e = (1 − F(s0))
N−1E [max(−βsD(2s0 + sD) + R + e, 0) | e] .

Based on the results demonstrated in Section A of the Appendix, we know that

−βsD(2s0 + sD) + R + e ≥ 0, sD ∈ [0, b],

and

−βsD(2s0 + sD) + R + e < 0, sD ∈ (b,+∞).

Thus, we are able to calculate the expectation term. We have

E [max(−βsD(2s0 + sD) + R + e, 0) | e]

=
∫ +∞

0
max(−βsD(2s0 + sD) + R + e, 0)g(sD) dsD

=
∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD +

∫ +∞

b
0 × g(sD) dsD

=
∫ b

0
(−βsD(2s0 + sD) + R + e)g(sD) dsD

=
∫ b

0
(−βsD(2s0 + sD) + R + e)λGe−λGsD dsD

= 2βs0
e−λGb(λGb + 1)− 1

λG
− β

2 − e−λGb(λ2
Gb2 + 2λGb + 2)
λ2

G
+ (R + e)(1 − e−λGb).
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When λG = 1, then

E [max(−βsD(2s0 + sD) + R + e, 0) | e]

= 2βs0[e−b(b + 1)− 1]− β[2 − e−b(b2 + 2b + 2)] + (R + e)(1 − e−b)

= 2βs0e−b(b + 1)− 2βs0 − 2β + βe−b(b2 + 2b + 2) + (R + e)(1 − e−b).

Therefore, in order to numerically solve for s0 from equation (12), we need to solve the following

equation:

e = (1 − F(s0))
N−1

·
[
2βs0e−b(b + 1)− 2βs0 − 2β + βe−b(b2 + 2b + 2) + (R + e)(1 − e−b)

]
,

where b ≡ −2βs0+
√

4β2s2
0+4β(R+e)

2β .
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