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Abstract
This paper proposes a novel finite-state Markov chain approximation method for Markov
processes with continuous support, providing both an optimal grid and transition proba-
bility matrix. The method can be used for multivariate processes, as well as non-stationary
processes such as those with a life-cycle component. The method is based on minimiz-
ing the information loss between a Hidden Markov Model and the true data-generating
process. We provide sufficient conditions under which this information loss can be made
arbitrarily small if enough grid points are used. We compare our method to existing
methods through the lens of an asset-pricing model, and a life-cycle consumption-savings
model. We find our method leads to more parsimonious discretizations and more accurate
solutions, and the discretization matters for the welfare costs of risk, the marginal propen-
sities to consume, and the amount of wealth inequality a life-cycle model can generate.
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1 Introduction

Numerical methods to solve nonlinear dynamic stochastic models often rely on finite-state
Markov chain approximations of continuous stochastic processes. The stochastic process is
an important input for these models, and its finite-state Markov chain approximation should
therefore resemble the continuous process as closely as possible. This paper proposes a
novel full-information method that can be used for the discretization of continuous Markov
processes. We show that our method results in more accurate solutions to an asset-pricing
model, and a better characterization of earnings risk in a life-cycle consumption-saving model
with non-linear non-Gaussian earnings processes.

Approximating a continuous stochastic process by a discrete Markov process, characterized by
a grid of support points and a transition probability matrix, inherently comes down to picking
a misspecified approximating model. Borrowing from the misspecified model literature, we
therefore propose a finite-state Markov chain approximation method that minimizes the in-
formation loss between the misspecified process and the true continuous process. We assume
that the misspecified process is a Hidden Markov Model (HMM), that is, each realization is
equal to the sum of a state-dependent level (a grid point) and an error term. This state is unob-
served, and the evolution of the unobserved state is governed by a discrete first-order Markov
process (with a transition probability matrix). This effectively embeds a discrete Markov chain
into a continuous support process via a continuous measurement error. This allows us to use
the standard Kullback-Leibler (KL) divergence between the two processes as our measure of
information loss.

Consequently, the practical implementation of our method is simple, because in this setting,
minimizing the KL divergence is essentially quasi-maximum likelihood estimation, fitting a
HMM on data simulated from the continuous support process.1 What is attractive about our
approach is that it results in both an optimal grid and transition probability matrix, and can
be applied to multivariate processes, in which case the optimal grid helps limit the curse-
of-dimensionality issue posed by tensor grids by accounting for the dependency between
variables.

Our theoretical contribution is to prove that, under some assumptions, as the number of
unobserved states (and thus grid points) becomes large, the information loss between the

1As shown by Mevel and Finesso (2004) and later Douc and Moulines (2012), the maximum likelihood
estimator of a misspecified HMM is consistent, in the sense that it minimizes the KL divergence between the
model and the true process.
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misspecified HMM and the true continuous stochastic process becomes arbitrarily small. This
relates our paper to the literature on universal approximators, where we build on the result
by Zeevi and Meir (1997) on (Gaussian) mixtures, and extend this to the non-i.i.d. setting
of HMM’s.2 Our proof provides insights into what properties of the process determine
how many grid points are needed to obtain a certain information loss. For example, more
persistent processes require a larger number of grid points, which is why finite-state Markov
chain approximations of highly persistent processes tend to be less accurate.3

We evaluate the performance of our method in two economic applications: an asset pricing-
model and a life-cycle consumption-saving model. First, in our asset pricing model, we
discretize dividend growth, which is assumed to follow an autoregressive (AR(1)) process with
stochastic volatility, parametrized as in Bansal and Yaron (2004). As shown by De Groot (2015),
this model has a closed-form solution. We use this solution as a benchmark to compare the
performance of our method against the standards in the literature, and find our discretization
captures higher-order moments of the true continuous process better, is more parsimonious,
and results in more accurate model solutions. For example, we analyze the accuracy of these
discretization methods for estimates of the certainty equivalent level of consumption (CE)
and find that our method deviates 0.8-1.9% from the closed-form solution of De Groot (2015),
while the comparison methods have deviations ranging from 4 to 12%. These results highlight
the strength of a full-information approach, because for a non-linear object such as the CE, all
information of the stochastic process matters.

Second, we analyze the performance of our method through the lens of a life-cycle consumption-
saving model. In this application, we focus on two processes featuring life-cycle depen-
dence; the process proposed in Guvenen, Karahan, Ozkan, and Song (2021) that features
non-employment shocks, and innovations with positive skewness, and the non-parametric
process in Arellano, Blundell, and Bonhomme (2017). These processes are considered to be
at the frontier of the earnings dynamics literature (Altonji, Hynsjö, and Vidangos, 2022). Our
discretizations better capture the excess skewness and kurtosis of the Guvenen et al. (2021)
and Arellano et al. (2017) processes than commonly-used binning-based discretization meth-
ods.4 For the Guvenen et al. (2021) process specifically, the binning method fails to capture
the long-run dynamics of non-employment.

2The universal approximator property has also been shown to hold for Neural Networks, but to our knowledge
also only in an i.i.d. setting, see, e.g., the seminal work by Hornik, Stinchcombe, and White (1989).

3As discussed in/shown by Flodén (2008), Kopecky and Suen (2010) and Galindev and Lkhagvasuren (2010).
4These binning methods are adapted from the textbook treatment of Adda and Cooper (2003).
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In the life-cycle model, we find that the discretization method matters for various economic
quantities of interest, including the welfare cost of risk, wealth inequality measures, and
marginal propensities to consume (MPC). By failing to fully capture the excess kurtosis and
skewness of the processes over the life-cycle, binning-based methods underestimate the wel-
fare cost of risk and the amount of precautionary saving in the economy. For the Guvenen
et al. (2021) process, the binning-based method underestimates the welfare cost of risk by 23
percentage points relative to our method, and for the Arellano et al. (2017) process, the differ-
ence is 3 percentage points. Discretizations also matter for the amount of wealth inequality
a life-cycle model can generate. While it is known that life-cycle models struggle to match
the wealth distribution in the data (De Nardi and Fella, 2017), we show that more accurate
discretizations of the earnings process can generate more wealth inequality. Our discretiza-
tion of the Arellano et al. (2017) process generates a Wealth Gini of 0.76, close to that of the
United States (0.77-0.78), while binning results in a value that is 0.06 lower. Similarly, our dis-
cretization results in top 1% wealth shares close to those in the data, while the binning-based
estimates underestimate this moment.

Our results on the importance of discretization methods for life-cycle model solutions extends
to simpler processes. For a Gaussian AR(1) and mixture AR(1), we show the life-cycle model
solutions differ significantly between discretization methods, although the differences do
become smaller when a sufficiently large number of grid points is used. This is an important
insight, given the low number of grid points the literature tends to use for these processes.
Our solution, on the other hand, changes little when adding more grid points, because our
method is more parsimonious and captures more information of the true process than the
other discretization methods. For these processes, the sensitivity of the marginal propensities
to consume over the life-cycle stands out. Other discretization methods can underestimate the
MPC’s for younger age groups by as much as 20 percentage points when using a low number
of grid points.

Finally, we compare the life-cycle implications across different stochastic processes. To our
knowledge, this paper is the first to discretize the Guvenen et al. (2021) process and evaluate
its implications in an incomplete markets model. Furthermore, representing the Arellano et
al. (2017) and Guvenen et al. (2021) processes as discrete Markov chains allows for a consistent
comparison between the two processes. We find the largest source of risk in the Guvenen et
al. (2021) process comes from the probability of non-employment, which is a highly persistent
state with rising persistence over the life-cycle. In contrast, most risk in the Arellano et al. (2017)
process comes from the highest earnings state, which features a considerable probability of
earnings loss next period, especially at younger ages, creating a strong precautionary savings
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motive among high earners in the model. These differences between earnings processes result
in different dynamics in our life-cycle model. The risk of non-employment in the Guvenen et
al. (2021) process generates a life-cycle profile for MPC’s that is flatter than that of the Arellano
et al. (2017) process, and in a higher welfare cost of risk (0.69 instead of 0.19 in the model with
Arellano et al. (2017)). The Arellano et al. (2017) process features more earnings inequality
and consequently provides a better fit to the wealth distribution than the Guvenen et al. (2021)
process.

The paper proceeds as follows. The next subsection discusses the related literature. Section 2
discusses our discretization method and theoretical contributions. Section 3 presents the asset
pricing model with stochastic volatility. Section 4 discusses the life-cycle model applications.
Section 5 concludes. Appendix A provides the proof of our Main Theorem. Appendix B
provides details on the estimation of the HMM. Appendix C provides an additional application
to the discretization of vector autoregressive processes.

Related literature. Several methods have been proposed to discretize stochastic processes.
Most of these, such as Tauchen (1986), Rouwenhorst (1995), Tauchen and Hussey (1991), Duan
and Simonato (2001), Terry and Knotek II (2011), and Gospodinov and Lkhagvasuren (2014),
are designed for specific (linear) processes, such as AR(1) or VAR processes. Fella, Gallipoli,
and Pan (2019) adapt the methods of Rouwenhorst (1995), Tauchen and Hussey (1991) and
Adda and Cooper (2003) to processes with a life-cycle component, and analyze how it performs
under settings where the innovations are drawn from a mixture of normals. Galindev and
Lkhagvasuren (2010) adapt Rouwenhorst (1995) to a setting with highly-persistent correlated
AR(1) shocks. Civale, Díez-Catalán, and Fazilet (2016) adapt the Tauchen (1986) method
to accommodate autoregressive processes with innovations drawn from a normal mixture.
Unlike these methods, our method is applicable to any process, and provides both an optimal
grid and transition probability matrix, while these methods typically take a grid as input,
and/or assume equal-distant or equal-quantile grids.

Some discretization methods are applicable to a larger class of stochastic processes. Binning
methods as in Judd (1998) and Adda and Cooper (2003), that discretize via a partition of
the quantile space, are applicable to any stochastic process. However, binning methods only
match one-step ahead transitions between bins and take the grid spacing as an input, while
our discretization method looks at the full dynamics and provides an optimal grid. Farmer
and Toda (2017) propose a method to refine discrete approximations by moment matching.
Their method takes as inputs a grid, an initial transition probability matrix, and a set of
moments to match, where the goal is to match these moments exactly – if possible – with a
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transition matrix that is close, measured through relative entropy, to the initial approximation.
Our method, in contrast, can be seen as a full-information discretization method, rather than
moment-matching, that does not rely on prior information (i.e., an initial discretization) to
obtain identification.

For multivariate processes, most existing methods rely on tensor grids, which leads to a curse
of dimensionality and is computationally unattractive. As stated by Gordon (2021), tensor
grids are inefficient, because many of the grid points will rarely be visited. Gordon (2021)
proposes the use of pruning and sparse grids for VAR models. Our method results in optimal
grids that limit the curse-of-dimensionality issue when the variables are correlated, and is
applicable to any type of process.

Our results relate to the literature on misspecified models (Gourieroux, Monfort, and Trognon,
1984; White, 1982), and, specifically, misspecified Hidden Markov Models (Douc and Moulines,
2012; Mevel and Finesso, 2004). The use of HMM’s is prevalent in economics and machine
learning5, but, to our knowledge, the application of HMM’s as a finite-state Markov chain
approximation method for continuous stochastic processes is novel, as is our theoretical result
on the ability of HMM’s to approximate such processes.6 In the signal processing literature,
Vidyasagar (2005), Finesso, Grassi, and Spreĳ (2010), and others, consider the problem of
representing discrete state-space stationary processes as HMM’s, but their results do not
extend to continuous stochastic processes.

2 Discretization using a Hidden Markov Model

Let 𝑦𝑖𝑡 ∈ R𝑘 , 𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ..., 𝑇, denote a random variable for which the data generating
process is a discrete-time continuous-support Markov process. Denote its probability distri-
bution by 𝑓 (y). The objective is to approximate the distribution of y by a misspecified model,
with probability distribution 𝑝(y;�), by choosing parameter vector � such that the relative
entropy, also known as the information loss, between the approximating distribution and the
true distribution is minimized. Minimizing information loss, which can be measured through

5The interpretation of a HMM as a dimension reduction method for dependent data is common in the
statistics and machine-learning literature (McLachlan, Lee, and Rathnayake, 2019), where a common application
of HMM’s is text processing. Applications of HMM’s in econometrics include the detection of structural breaks
(Song, 2014) and modeling of regime switches (starting with Quandt (1958), Goldfeld and Quandt (1973), and
Hamilton (1990)). HMM’s have also been used to approximate the dynamics of the latent state in non-linear state
space models for the purpose of estimation, as in Kitagawa (1987), Langrock (2011), and Farmer (2021).

6This is an intuition Lehéricy (2021) refers to but does not prove.
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the Kullback-Leibler (KL) divergence, is a common way to think about misspecified models
and their consistency.

More precisely, let the relative entropy be defined as the logarithmic difference between the
distributions 𝑓 (y) and 𝑝(y;�), where the expectation is taken using the distribution 𝑓 (y), also
known as the Kullback–Leibler (KL) divergence:

𝐷𝐾𝐿( 𝑓 (y)| |𝑝(y;�)) =
∫

𝑓 (y) log
𝑓 (y)
𝑝(y;�)𝑑y, (1)

Minimizing the KL divergence with respect to parameter vector� requires taking the derivative
of Equation (1) with respect to �:∫

∇� log 𝑝(y;�) 𝑓 (y)𝑑𝑦 = 0

⇔ E 𝑓
[
∇� log (𝑝(y;�))

]
= 0.

Typically, E 𝑓 (·) is hard to evaluate, and can be replaced by an estimate, by simulating data from
𝑓 (y), and evaluating ∇� log (𝑝(·;�)) in the simulated data. This is similar to a quasi-maximum
likelihood approach, estimating a misspecified model using maximum likelihood estimation
(Gourieroux et al., 1984; White, 1982).

2.1 Hidden Markov Model

As our approximating model, we propose using the following Hidden Markov Model. Denote
the latent state by 𝑥𝑖 ,𝑡 , which lies in a finite discrete set {1, 2, . . . , 𝑚}, evolving according to a
first-order Markov process:7

𝑦𝑖 ,𝑡 |𝑥𝑖 ,𝑡 = �𝑡(𝑥𝑖 ,𝑡) + diag(𝜎𝑡)�𝑖 ,𝑡 , �𝑖 ,𝑡 ∼ 𝑁(0, 𝐼𝑘) (2)

𝑥𝑖 ,𝑡+1 |𝑥𝑡 ∼ Π𝑖 𝑗 ,𝑡 . (3)

The transition matrix Π𝑡 has stationary distribution δ𝑡 = (𝛿1,𝑡 , 𝛿2,𝑡 , . . . , 𝛿𝑚,𝑡). Parameter vector
� in Equation (1) thus consists of:

(i) the parameters in transition probability matrix Π𝑡 , denoted by Π𝑖 𝑗 ,𝑡 . In the case that there
is no time dependence, that is, Π𝑡 = Π for all 𝑡 = 1, ..., 𝑇, the number of parameters in

7Assuming Gaussianity for �𝑖 ,𝑡 is convenient, because we will be using the EM algorithm to estimate �, and,
for Gaussian errors, the M step has a closed-form solution. In addition, the assumption of Gaussianity is used in
our proof below.
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Π is 𝑚 × 𝑚, of which 𝑚 × (𝑚 − 1) are linearly independent, given that each row sums to
one.

(ii) the grid �𝑡 . When there is no time dependence, �𝑡 = � is an 𝑚 × 𝑘 matrix.

(iii) the variance of the error term 𝜎2
𝑡 . In the case that there is no time dependence, 𝜎2

𝑡 = 𝜎2.
If 𝑦𝑖 ,𝑡 ∈ R𝑘 has 𝑘 > 1, the variance is the diagonal matrix diag(𝜎𝑡 ,1, ..., 𝜎𝑡 ,𝑘).

These parameters � = (�,Π, 𝜎) result in a discretization of the process 𝑓 (y), where � is the grid
of the discretized process, and Π governs the transitions between the 𝑚 states. The intuition
behind this HMM is that it provides a time-varying (soft) clustering of the continuous variable
𝑦 into 𝑚 discrete states 𝑥 that each correspond to a grid point �(𝑥).

We consider time series settings where 𝑁 = 1, as well as panels with 𝑁 ≥ 2. The inclusion of
a panel dimension allows for the estimation of parameters that vary with 𝑡, for example, over
the life-cycle.

2.2 Properties of the KL divergence

Given our objective of minimizing the information loss between the true and approximating
process, two questions arise. First, whether there is a consistent estimator of the Hidden
Markov model parameters in this setting. In the case of misspecified models, consistency is
defined as whether the estimator converges to the value that minimizes the KL divergence.
This has been shown to be true for misspecified Hidden Markov Models by Mevel and Finesso
(2004), and later in a more general setting by Douc and Moulines (2012). The second question
is whether, with a sufficient number of hidden states (and thus grid points), the information
loss between the true and approximating process can be made arbitrarily small. We prove,
under a set of assumptions, that the answer to the second question is positive.

The Main Theorem builds on the results of Zeevi and Meir (1997), who show that a mixture
distribution with a sufficient number of components can approximate a large class of distri-
bution functions arbitrarily well. We extend this result to the non-i.i.d. setting of continuous
support Markov processes. That is, we show that a Hidden Markov Model in levels (as in
Assumption (A5)) can approximate any stationary Markov process satisfying Assumptions
(A1)-(A4) arbitrarily well as long as enough hidden states are used for the approximation.

As in Zeevi and Meir (1997), denote

ℱ𝑐,� = { 𝑓 ∈ ℱ𝑐 | 𝑓 ≥ � > 0,∀𝑦 ∈ 𝒴} , with ℱ𝑐 =

{
𝑓 | 𝑓 ∈ 𝐶𝒴, 𝑓 ≥ 0,

∫
𝑓 = 1

}
7



where ℱ𝑐 is the class of continuous density functions with compact support𝒴 ⊂ R𝑘 fixed and
given. ℱ𝑐,� ⊂ ℱ𝑐 is bounded below over 𝒴 by some positive constant, denoted by �.

We impose the following assumptions on the true process 𝑓 (y) and approximating model
𝑝(y, �):8

(A1) y = {𝑦𝑡}𝑇𝑡=1 has a data generating process characterized by 𝑓 (y), 𝑦𝑡 ∈ R𝑘 , that is first-order
Markov and stationary, that is,

𝑓 (𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1) = 𝑓 (𝑦𝑡 |𝑦𝑡−1),

and
𝑓 (𝑦𝑡+𝑠 |𝑦𝑡+𝑠−1) = 𝑓 (𝑦𝑡 |𝑦𝑡−1) ∀𝑠 ∈ N.

(A2) 𝑓 (𝑦𝑡 |𝑦𝑡−1) ∈ ℱ𝑐,�.

(A3) log 𝑓 (𝑦𝑡 |𝑦𝑡−1) and 𝑓 (𝑦𝑡 |𝑦𝑡−1) are differentiable in 𝑦𝑡−1 ∈ 𝒴.

(A4) log 𝑓 (𝑦𝑡 |𝑦𝑡−1) is locally Lipschitz continuous in 𝑦𝑡−1 ∈ 𝒴.

(A5) 𝑝(y;�𝑚) is characterized by:

𝑦𝑡 |𝑥𝑡 = �𝑚(𝑥𝑡) + diag(𝜎𝑚)�𝑡 , �𝑡 ∼ 𝑁(0, 𝐼𝑘),
𝑥𝑡+1 |𝑥𝑡 ∼ Π𝑖 𝑗 ,𝑚

with parameters �𝑚 = (�𝑚 ,Π𝑚 , 𝜎𝑚), and 𝑥𝑡 ∈ {1, ...𝑚} a latent state evolving accord-
ing to a first-order Markov process with transition probability matrix Π𝑚 . Denote the
conditional distribution by 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) ∈ ℱ𝑐,�.

The first-order Markov assumption (A1) is w.l.o.g., because any (finite) higher-order Markov
process can be written as a (multivariate) first-order Markov process. Compared to the set-up
of Section 2.1, Assumption (A5) omits time-variation in the parameters Π, � and 𝜎. Subscripts
𝑚 are used to indicate the number of states of the HMM ("grid points"), also referred to as the
complexity/size of the approximating model.

Main Theorem. Under assumptions (A1)-(A5), given a sufficiently large number of grid points 𝑚,
there exist a set of grid points �𝑚 ∈ 𝒴, variance 𝜎𝑚 ≥ 𝜏 > 0 and transition probability matrix Π𝑚 ,

8Assumption (A4) is satisfied for some well-known processes. For example, straightforward algebra shows
that for an AR(1) process, 𝑓 (𝑦𝑡 |𝑦𝑡−1) = 𝑁(𝜌𝑦𝑡−1 , 𝜎2) is Lipschitz, and log 𝑓 (𝑦𝑡 |𝑦𝑡−1) is locally Lipschitz.
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collected in �𝑚 = (�𝑚 ,Π𝑚 , 𝜎𝑚) such that the KL divergence between 𝑓 (y) and 𝑝(y;�) on the compact
subset 𝑦 ∈ 𝒴 ⊂ R𝑘 , given by

𝐷𝐾𝐿
𝒴

( 𝑓 (y)| |𝑝(y;�)) =
∫
𝒴

𝑓 (y) log
𝑓 (y)
𝑝(y;�)𝑑y,

can be made arbitrarily small.

The full proof is given in Appendix A.

Sketch of proof. The first step of the proof consists of showing that the conditional distribu-
tions of our Hidden Markov Model, denoted by 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚), are Gaussian mixtures,
whose mixture weights converge to a row of the transition probability matrix Π𝑚 as 𝑚 be-
comes large and the filter 𝑝(𝑥𝑡 |𝑦𝑡 , ..., 𝑦1;�𝑚) becomes better, such that 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚)
converges to 𝑝0(𝑦𝑡 |𝑦𝑡−1;�𝑚) :=

∑𝑚
𝑗=1 Π𝑙 𝑗𝜙 𝑗(𝑦𝑡), where �𝑚(𝑙) denotes the closest grid point to

𝑦𝑡−1. The proof then applies the result of Zeevi and Meir (1997) to 𝑚 conditional distributions
at the same time, that is, to 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)) and 𝑝0(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖);�𝑚), conditioning on
𝑦𝑡−1 being equal to one of 𝑚 grid points {�𝑚(𝑖)}𝑚𝑖=1. This results in an additional term in the
KL divergence compared to the Zeevi and Meir (1997) result, because in our setting, these 𝑚
conditional distributions 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)) are approximated by 𝑚 Gaussian mixtures that all
have the same location parameters �𝑚 , as opposed to being freely chosen. However, we do
have enough degrees of freedom for 𝑚 different sets of convex mixture weights, because the
transition probability matrix has 𝑚 × 𝑚 elements. This is summarized in Lemma 4 and 5 in
the Appendix.

The rest of the proof consists of three parts. First, we show that the additional term in the
KL divergence becomes arbitrarily small when 𝑚 is large. Second, we show that when the
KL divergences of these specific 𝑚 conditional distributions are small, the KL divergences
for all other potential realizations of {𝑦𝑡−𝑘}𝑡−1

𝑘=1 within the compact set 𝒴 are also small. This
follows because: (i) the true process is assumed stationary and Markovian, (ii) the local
Lipschitz assumption ensures that the KL divergences on the compact set are well behaved
and bounded, and (iii) 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) is Lipschitz in 𝑦𝑡−1, ..., 𝑦1 and as 𝑚 increases,
the filter 𝑝(𝑥𝑡 |𝑦𝑡 , ..., 𝑦1;�𝑚) becomes better, and 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) becomes approximately
forgetting beyond 𝑡 − 1. Finally, we show that the KL divergence between 𝑓 (y) and 𝑝(y;�) can
be written as a function of the KL divergences between all conditional distributions, which
concludes the proof.
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Estimation. The results of Mevel and Finesso (2004) allow us to extend our theorem by
the following insight. Given that the Maximum Likelihood Estimator (MLE) of a misspecified
HMM is consistent, we know it minimizes the KL divergence for a given grid size𝑚. Therefore,
we can use the Expectation-Maximization (EM) algorithm to obtain our grid points and
transition probability matrix.9 We describe the estimation procedure in Appendix Section B.

Number of grid points. When selecting the number of grid points 𝑚, one faces a trade-off
between parsimoniousness for computational efficiency and accuracy of the approximation.
In theory, the discretized process becomes arbitrarily accurate as the dimension of the grid
goes to infinity. In practice, the grid must always have a finite dimension. One advantage of
full-information discretization is that we can assess the fit of the approximating model with a
finite number of grid points, as this fit is quantified by the KL divergence. We propose using a
scree plot with the KL-divergence on the 𝑦-axis, and the number of grid points on the 𝑥-axis,
as visualized in Figure 1 for three different parameterizations of an AR(1) process. This allows
a practitioner to visualize the gain in approximation accuracy from adding an additional grid
point.

Figure 1: KL-divergence of the approximating model (in Equations (2)) versus the true process, where the true
process is an AR(1) process 𝑦𝑡 = 𝜌𝑦𝑡−1 + �𝑡 , �𝑡 ∼ 𝑁(0, 1) for three values of 𝜌. 𝑚 is the number of grid points
used for the discretization.
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Although the Main Theorem does not state the rate of convergence (that is, the number of grid
points needed to achieve a particular information loss), the proof does provide insights on

9This requires additional assumptions on the true stochastic process, including geometric ergodicity, and
uniformly bounded moments of sufficiently high order.
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what properties of the true process matter for how many grid points are needed to obtain a
particular precision. This will, among other things, depend on the local Lipschitz coefficient of
log 𝑓 (𝑦𝑡 |𝑦𝑡−1) and 𝑓 (𝑦𝑡 |𝑦𝑡−1), as well as the size of the compact set𝒴. One property that affects
the number of grid points is the persistence of the stochastic process. For an AR(1) process,
one can show these Lipschitz coefficients as well as the unconditional variance are increasing
in persistence. Consequently, the more persistent a stochastic process, the more grid point
are needed to achieve the same information loss. Figure 1 shows how the KL-divergence of
our HMM approximating an AR(1) process approaches zero when increasing the number of
grid points 𝑚, but does so more slowly when the AR(1) process is more persistent. As such,
our results shed some light on why discretizing highly persistent AR(1) processes poses a
challenge, as discussed in Flodén (2008), Galindev and Lkhagvasuren (2010), and Kopecky
and Suen (2010).

2.3 Imposing structure through restrictions

One can impose additional structure on the discretized process by estimating the process under
a set of restrictions. For example, one might prefer a discretization that does match certain
conditional or unconditional moments of the stochastic process, or reflects the symmetry in the
underlying stochastic process. In our EM estimation procedure, this can be done by modifying
the M step.

For symmetric processes, a symmetry restriction can be imposed on �. In case of a process
that is symmetric around zero and an odd number of grid points 𝑚, this means that:

�(⌈𝑚/2⌉) = 0, and �(⌈𝑚/2⌉ − 𝑟) = −�(⌈𝑚/2⌉ + 𝑟), for 𝑟 = 1, ...., ⌊𝑚/2⌋ (4)

Similarly, a process can also be symmetric in its dynamics, as reflected by the transition
probability matrix. In that case, the restriction takes the form

Π𝑖 , 𝑗 = Π(𝑚+1−𝑖),(𝑚+1−𝑗). (5)

For the specific restrictions in Equations (4)-(5), a closed-form solution is available for the M
step. In other cases, one may want to introduce restrictions through penalty terms rather
than hard restrictions. For example, one may want the discretized process to target certain
moments. Denote a certain set of moment functions of the discretized process by ℳ(𝑝(y;�))
and the moments of the continuous process by ℳ( 𝑓 (y)). In that case, instead of maximizing
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the log-likelihood of the simulated data ysim, maximize:

log(ℒ(� |y, x)) − �𝒟 (ℳ( 𝑓 (y)),ℳ(𝑝(y;�))) (6)

where � ∈ R+ is a scalar parameter and 𝒟(·, ·) a distance measure of choice. � is chosen by
the researcher. A higher � should be chosen if the researcher considers it more important that
the discretization matches the moments ℳ. When using this penalty term, the M step is no
longer analytically tractable and numerical optimization is necessary.

3 Application I: Asset Pricing Model with Stochastic Volatility

In this section, we evaluate the performance of our method in an asset pricing model where
dividend growth features stochastic volatility. Most models that involve solving a dynamic
stochastic optimization problem with a continuous-support process do not have a closed-form
solution. As shown by De Groot (2015), however, the model we present below does have
a closed-form solution for the price-dividend ratio and the conditional expected return on
equity. The existence of an analytical solution gives us a benchmark with which to compare a
model solved with ours and other discretization methods.

First, we present the analytically tractable asset pricing model of De Groot (2015). Next, we
demonstrate how to discretize the AR(1)-SV process using ours and two other methods, and
analyze their respective performance at capturing various moments of the stochastic process.
Finally, we assess how the numerical solution corresponding to each method differs relative
to the analytical benchmark solution.

3.1 Analytically tractable asset pricing model with AR(1)-SV dividend growth

We use the Lucas tree asset pricing model of De Groot (2015). A representative agent maxi-
mizes the expected discounted stream of utility:

E0

∞∑
𝑡=0

𝛽𝑡
𝑐

1−𝛾
𝑡

1 − 𝛾

s.t. 𝑐𝑡 + 𝑠𝑡+1𝑝𝑡 ≤ (𝑑𝑡 + 𝑝𝑡)𝑠𝑡 ,

where 𝑐𝑡 is consumption, and 𝑠𝑡 is an asset with price 𝑝𝑡 and dividends 𝑑𝑡 . Parameter 𝛽 ∈ (0, 1)
denotes the discount factor and 𝛾 is the coefficient of relative risk aversion.
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The growth rate of dividends 𝑦𝑡 = ln(𝑑𝑡/𝑑𝑡−1) is assumed to follow an AR(1) process with
stochastic volatility:10

𝑦𝑡 = �̄� + 𝜌(𝑦𝑡−1 − �̄�) +
√
�𝑡�𝑡 (7)

�𝑡 = �̄ + 𝜌�(�𝑡−1 − �̄) + 𝜔��,𝑡 . (8)

with persistence in levels 𝜌 ∈ (−1, 1), and �𝑡 is i.i.d. 𝑁(0, 1). The random variable �𝑡 is the time-
varying conditional variance of dividend growth. Parameter 𝜌� ∈ (−1, 1) is the persistence of
the stochastic volatility process, and ��,𝑡 is also i.i.d. 𝑁(0, 1).

Market clearing, 𝑠𝑡 = 1, implies that 𝑐𝑡 = 𝑑𝑡 . Defining the price-dividend ratio as 𝑣𝑡 := 𝑝𝑡/𝑑𝑡 ,
the first-order condition of the representative agent’s maximization problem is given by:

𝑣𝑡 = E𝑡𝛽

(
𝑑𝑡+1
𝑑𝑡

)1−𝛾
(𝑣𝑡+1 + 1). (9)

De Groot (2015) derives a closed-form solution for the price-dividend ratio 𝑣𝑡 and the condi-
tional expected return on equity, which is defined as:

E𝑡𝑅
𝑒
𝑡+1 = E𝑡

(
𝑑𝑡+1 + 𝑝𝑡+1

𝑝𝑡

)
. (10)

Details on the analytical solution of De Groot (2015) and the discretized solution are provided
in Appendix Section D.

The reason why we are interested in the performance of capturing E𝑡𝑅𝑒𝑡+1 in addition to 𝑣𝑡
is because of its non-linear dependence on 𝑣𝑡 , which is also approximated. The approxima-
tion errors will compound in a non-trivial way, and we are interested in how accurate the
discretization methods are when these errors accumulate.

Another object economists care about is the welfare cost of risk. In this application, we measure
this using the certainty equivalent consumption (CE). Define

𝑉(𝑑) = 𝑢(𝑑) + 𝛽E[𝑉(𝑑′)|𝑑],

where 𝑉(𝑑) is the value to the household of being in state 𝑑, where 𝑑 is the level of aggregate
dividends. 𝑉(𝑑) reflects the present discounted value of the risky dividend (i.e., consumption)

10Note that for this specification of the AR(1)-SV process, �𝑡 can become negative, in which case √
�𝑡 is

imaginary. In the parametrization we use, taken from Bansal and Yaron (2004), the probability of a negative
value for � is very small, and in our long sample of simulations, it doesn’t occur.
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stream. One could ask what the certainty equivalent level of consumption is that would make
the household indifferent between the risky consumption stream and a certain (constant) level
of consumption. We denote that constant value by 𝑥(𝑑), which is the solution to:

𝑉(𝑑) = 𝑢(𝑥(𝑑))
1 − 𝛽

.

We solve for 𝑥(1) numerically by simulation using the true stochastic process for dividend
growth and the discretized processes. Lower values of 𝑥 indicate a higher willingness to pay,
so to the extent the discretizations fail to capture risk, they will overstate 𝑥 relative to the true
value.

Calibration. The parametrization used for the results in the tables below are based on the
estimates of the stochastic volatility process in Bansal and Yaron (2004), annualized as in
De Groot (2015), that is, 𝛾 = 1.5, 𝜌� = 0.855, 𝜔 = 7.4000× 10−5, �̄ = 0.0012, 𝛽 = 0.95, 𝜌 = 0.868,
�̄� = 0.0179. We choose risk aversion 𝛾 and the discount factor 𝛽 such that the price-dividend
ratio is finite and stable.11

3.2 Discretizing the AR(1)-SV process of De Groot (2015)

The process of Equations (7)-(8) is multivariate, which is why we discretize over both the
levels 𝑦𝑡 and variances �𝑡 . We compare our discretization method with the method of Farmer
and Toda and the binning method of Adda and Cooper (2003), both using their standard
configurations.12 Both methods use a tensor grid for multivariate processes.

Figure 2 visualizes the KL divergence of our discretization for different choices of grid size 𝑚
relative to the true AR(1)-SV process. The figure also visualizes the KL divergences of the two
other discretization methods. The likelihoods for these methods are computed by interpreting
the transition probability matrix and grid of the different discretization methods as parameters
Π and � in our HMM framework, re-estimating the variance of the approximation error. For
the discretization methods that rely on tensor grids, we use a three-grid point discretization
for �𝑡 and vary the number of grid points for 𝑦𝑡 from three to eleven. The figure shows our
method is more parsimonious; to capture the same amount of information as we do with 15
grid points, the Farmer and Toda method needs 27 grid points, and the binning method needs

11De Groot (2015) provides parameter restrictions such that the price-dividend ratio is finite, see Appendix D.
12We use the codes provided on the personal website of A.A. Toda, available at https://alexisakira.github

.io/discretization/ for the implementation of the Farmer and Toda method. We adapt the Farmer and Toda
method for this specification of an AR(1)-SV, set to match the first two conditional moments in each grid point.
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more than 33. This is due to both our method being a full-information method, as well as our
method not relying on tensor grids but rather using an optimally chosen grid.

Figure 2: KL-divergence of the approximating model likelihood versus the likelihood of the true process for the
AR(1)-SV process in Equations (7)-(8), for different discretization methods and different grid sizes 𝑚.
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Notes: We only visualize a selected number of grid points, because the other methods rely on a tensor grid, and
cannot be computed for all choices of 𝑚. For those methods, we fix the dimension of � at three, and vary the
dimension of 𝑦, and 𝑚 is the product of both dimensions.

Figure 3 illustrates how our method optimally chooses the grid points for a multivariate
process like the AR(1)-SV process.13 Figure 3(a) shows the optimal grid for 𝑚 = 9 grid points,
and shows how our method assigns the grid points in the tails to have higher variances than
in the center. This is consistent with the intuition behind an AR(1)-SV process, as it is more
likely a high value of 𝑦𝑡 is accompanied by a high realization of the variance �𝑡 . As𝑚 becomes
larger, our optimal grid adds what we call ‘double’ or ‘triple’ states. These are grid points
with similar levels for 𝑦, but different values for the variance �. These grid points will have
different dynamics to next period’s state despite having the same level of 𝑦, as will be reflected
by differences in the rows of the transition probability matrix for these states.

Table 1 computes several statistics to compare the performance of our method and the existing
methods at capturing moments of 𝑦. As can be seen, the Farmer and Toda (2017) method
does well at the mean and variance, as these are the moments they target, while we do well at
higher order moments such as the skewness and kurtosis. The Mean Squared Forecast Error
(MSFE) of the other methods is 30-40% larger than ours, supporting that we give an agent a
better process to make forecasts with.14

13In Appendix C, we show the optimal grids for Vector Autoregressions, another multivariate process.
14The mean squared forecast error (MSFE) of the approximating model measures the one-step ahead forecast-

ing error that the agent makes. For this statistic, we assume that an agent assigns the grid point closest to the
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Figure 3: Visualisation of the optimal grid for grid sizes 𝑚 = (9, 18) compared to a tensor grid, for the AR(1)-SV
process as in Equation (7)-(8).

(a) 𝑚 = 9
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(b) 𝑚 = 18
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(c) Tensor: 𝑚𝑦 = 3, 𝑚� = 3
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(d) Tensor: 𝑚𝑦 = 6, 𝑚� = 3
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Notes: The grids for the AR(1)-SV process are two-dimensional. The 𝑦-axis depicts the variance, while the
positioning on the 𝑥-axis of the diamonds depicts the level of 𝑦.

3.3 Accuracy of the models solutions

To compare the relative performance of our method versus existing methods at solving the
asset pricing model, we compute moments of the discrete solutions (�̂�) and the analytical
benchmark (𝑀). To assess the accuracy of the different solutions, we compute the following
summary statistic:

log10(|�̂�/𝑀 − 1|).

Lower values of log10(|�̂�/𝑀 − 1|) indicate the moments of the discrete model are closer to
those of the benchmark. The results of this analysis are summarized in Table 2. Overall,

current realization of 𝑦𝑡 for forecasting 𝑦𝑡+1. Define MSFE = 1
𝑇

∑𝑇
𝑡=1(𝑦𝑡 − 𝑦𝑡)2 , where �̂�𝑡 =

∑
𝑗 Π𝑖 𝑗 · �(𝑥𝑡 = 𝑗) and

𝑖 = argmin
𝑖∈{1,...,𝑚}

|𝑦𝑡−1 − �(𝑥𝑡−1 = 𝑖)|.
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Table 1: Comparison for an AR(1) process with stochastic volatility as in Equation (7)-(8) (based on a simulation
of 𝑇 = 200, 000) parametrized as in Bansal and Yaron (2004).

Method Janssens-McCrary Farmer-Toda Binning
m = 15 (𝑚𝑦 = 5, 𝑚� = 3 for Farmer-Toda and binning)
Dev. uncond. mean 𝑦 0.018 0.018 0.018
% dev. uncond. variance 𝑦 −15.4 0.525 −23.7
Abs. dev. uncond. skewness 𝑦 <0.001 0.044 0.023
% dev. uncond. kurtosis 𝑦 −9.42 -19.2 −37.5
% dev. autocorrelation 𝑦 3.35 −0.053 −5.66
% abs. dev. cond. mean 𝑦 0.003 0.002 0.004
% abs. dev. cond. variance 𝑦 33.3 26.3 26.0
Abs. dev. cond. skewness 𝑦 0.543 1.16 0.580
% abs. dev. cond. kurtosis 𝑦 51.3 81.1 18.5
MSFE 𝑦 0.0013 0.0018 0.0017

our method always performs best at the mean, and, almost always, at the variance of both
statistics. The differences in accuracy between discretization methods for the mean expected
return of equity are larger than the differences in accuracy for the mean price-dividend ratio,
because of the accumulation of approximation errors through a non-linear transformation.

Table 2: Accuracy of asset pricing model solutions for the price-dividend ratio 𝑣𝑡 and the conditional expected
return on equity E𝑅𝑒

𝑡+1.

𝑀 log10(|�̂�/𝑀 − 1|)
Janssens-McCrary Farmer-Toda Binning

𝑚 = 9 𝑚 = 3 x 3 𝑚 = 3 x 3
Mean 𝑣𝑡 18.10 −1.67 −1.51 −1.13
Variance 𝑣𝑡 9.61 −1.33 −0.29 −0.07
Mean E𝑡(𝑅𝑒𝑡+1) 1.08 −3.10 −2.37 −2.67
Variance E𝑡(𝑅𝑒𝑡+1) 0.01 −0.64 −0.49 −0.28

𝑚 = 15 𝑚 = 5 x 3 𝑚 = 5 x 3
Mean 𝑣𝑡 18.10 −2.77 −2.23 −1.29
Variance 𝑣𝑡 9.61 −0.65 −2.33 −0.19
Mean E𝑡(𝑅𝑒𝑡+1) 1.08 −4.51 −2.44 −2.73
Variance E𝑡(𝑅𝑒𝑡+1) 0.01 −0.64 −0.49 −0.28

Notes: Comparison of the mean and variance of a simulated time-series from the discretized model solutions
(denoted by �̂�) and the analytical closed-form model solution (denoted by 𝑀), where the relative accuracy
of the solution for moment 𝑀 is measured by log10(|�̂�/𝑀 − 1|). The lower (more negative) this value is, the
closer this moment of the simulated time series of the discrete model solution is to the moment of time series
from the exact model solution. Lowest values are marked in bold.
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Table 3: Accuracy of asset pricing model solutions for the certainty equivalent of consumption (CE): true value
of CE compared to those following from three different methods. The lower the percentage deviation, the closer the
solution of the discretized model is to the truth. Different grid sizes are presented.

Janssens-McCrary Farmer-Toda Binning
CE (true) % dev % dev % dev

𝑚 = 9 𝑚 = 3 x 3 𝑚 = 3 x 3
1.65 0.76% 8.28% 5.41%

𝑚 = 15 𝑚 = 5 x 3 𝑚 = 5 x 3
1.65 1.93% 12.22% 3.95%

Notes: Lowest values are marked in bold. Average is taken over 50 simulations of the CE.

In Table 3, we analyze the accuracy of the different methods when computing the CE for
two different grid sizes. As follows from Table 3, our method produces the most accurate
estimates of the CE, with deviations in percentage points 0.8-2% from the truth. The other two
methods are at best 4% away from the truth, and at worst 12%, underestimating the amount
of consumption the household is willing to give up to remove risk.

4 Application II: Life-cycle Model

In this section, we evaluate the quantitative implications of different discretization methods
for consumption, wealth and welfare using an incomplete markets life-cycle model. While
simple, this model forms the basis for most of the heterogeneous agent quantitative macro
literature. We expect that our results on the importance of accurate discretizations also hold
in richer models. In addition, this application demonstrates how our discretization method
can be applied to non-linear non-Gaussian processes with life-cycle dynamics where the grids
and transition probability matrices are allowed to vary by age, using our adapted algorithm
laid out in Appendix Section B.2.

We first discuss the life-cycle model we will use in our analysis. Next, we discuss the dif-
ferent stochastic processes, our performance at discretizing these processes, and what the
implications are for the model solutions, using ours and existing methods.

4.1 Model and calibration

We begin by discussing the model environment, followed by the household optimization
problem, and the details of the calibration.
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Environment. We consider a partial equilibrium life-cycle version of the canonical incomplete-
markets model without aggregate uncertainty. Households live up to 𝑇 periods, where the
first 𝑡 < 𝑇𝑟 are spent working, and the remaining periods are spent in retirement. Working
households supply one unit of labor inelastically with pre-tax earnings 𝔢𝑡 that evolve stochas-
tically as described in more detail below. Retired households receive pension 𝑏 and survive
with probability 𝑠𝑡 each period. Asset markets are incomplete. Agents can borrow and save
using an uncontingent bond, at risk-free interest rate 𝑟, up to an exogenous borrowing limit 𝑎.

Household problem. At every age, agents choose consumption 𝑐 and saving 𝑎′ subject to the
budget constraint which depends on the current state of assets 𝑎 and earnings 𝔢. During their
working life (𝑡 < 𝑇𝑟), households solve the following optimization problem:

𝑉𝑡(𝑎, 𝔢) = max
𝑐,𝑎′

{
𝑢(𝑐) + 𝛽E𝑡𝑉𝑡+1 (𝑎′, 𝔢′)

}
,

s.t. 𝑐 + 𝑎′ = 𝜏(𝔢) + (1 + 𝑟)𝑎
𝑎′ ≥ 𝑎,

where earnings satisfy
𝔢𝑡 = 𝑔𝑡𝑦𝑡 .

That is, earnings in levels 𝔢𝑡 are the product of a common deterministic age component 𝑔𝑡 and
an idiosyncratic stochastic component 𝑦𝑡 that evolves according to a (possibly age-dependent)
Markov transition matrix Π𝑡 . The specification for the deterministic component of earnings
𝑔𝑡 is taken from Guvenen et al. (2021).

Retired households solve the following problem:

𝑉𝑡(𝑎) = max
𝑐,𝑎′

{
𝑢(𝑐) + 𝛽𝑠𝑡𝑉𝑡+1 (𝑎′)

}
,

s.t. 𝑐 + 𝑎′ = 𝑏 + (1 + 𝑟)𝑎
𝑎′ ≥ 𝑎.

Calibration. Agents enter the model at age 25 and work until age 𝑇𝑟 = 65 (60 for the ABB
process), after which they can be retired up to 25 years. If agents reach age 𝑇 = 𝑇𝑟 + 25, they
die with certainty. The exact year of death after retirement is stochastic, and the survival
probabilities are taken from the Social Security Administration actuarial life table. Retirement
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benefit 𝑏 is chosen to match the 45% replacement rate of average earnings, which is a good
approximation of the system in the United States (Mitchell and Phillips, 2006).

Utility has CRRA form:
𝑢(𝑐) = 𝑐1−𝛾/(1 − 𝛾).

The coefficient of relative risk aversion 𝛾 is set to 2. The risk free rate 𝑟 is 4% and the borrowing
limit 𝑎 is 12% of average earnings, which De Nardi, Fella, and Paz-Pardo (2020) find is roughly
the ratio of credit card limits to income in the Survey of Consumer Finances. The discount
factor 𝛽 is calibrated to match a wealth-to-income ratio of 3.1 for the working age population,
and this will be re-calibrated for each process, and for each discretization method.

Following Benabou (2002), the labor income tax function has the form:

𝜏(𝑦) = (1 − 𝜒)𝑦1−�. (11)

The parameters 𝜒 and � govern the level and progressivity of the tax function. Following
Krueger and Wu (2021), we set the progressivity parameter to 0.1327, and the level parameter
to 0.1575. The calibration is summarized in Table 4.

Table 4: Calibration of the life-cycle model parameters

Parameter Description Value Motivation
𝛾 Risk aversion 2.0 De Nardi et al. (2020)
𝑏 Retirement benefits 0.45 Mitchell and Phillips (2006)
𝑟 Risk-free interest rate 0.04 De Nardi et al. (2020)
𝑎 Borrowing limit -0.12 De Nardi et al. (2020)
� Income tax progressivity 0.1327 Krueger and Wu (2021)
𝜒 Income tax level 0.1575 Krueger and Wu (2021)
W/I Wealth-to-income ratio 3.1 De Nardi et al. (2020)

Model statistics. When presenting the model solution, we report several statistics, such as
correlations and standard deviations of consumption, asset holdings and earnings over the
life cycle. In addition, we compute three other statistics. First, we compute the certainty
equivalent value (CEV). This is the fraction of lifetime consumption an individual would be
willing to give up to live in a world without risk.15 The CEV is commonly used to evaluate
policy experiments, so it is important to know its sensitivity to the discretization method.

15Let 𝑐1 be the sequence of consumption arising in an economy with risk and 𝑐0 be the sequence of consumption
without risk. The CEV is defined in terms of welfare𝑊 as𝑊

(
(1 − 𝐶𝐸𝑉)𝑐0) =𝑊 (

𝑐1) (Wu and Krueger, 2021).
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Second, we report the partial insurance to persistent income shocks coefficient as in Blundell,
Pistaferri, and Preston (2008):

𝜓𝑃BPP = 1 −
cov(Δ𝑐𝑖𝑡 , 𝑦𝑖 ,𝑡+1 − 𝑦𝑖 ,𝑡−2)
cov(Δ𝑦𝑖𝑡 , 𝑦𝑖 ,𝑡+1 − 𝑦𝑖 ,𝑡−2)

.

This statistic measures the extent to which consumption responds to unpredictable persistent
changes in income. This statistic is used to validate the predictions of life-cycle models versus
data in practice. Third, we use the model solution to compute the Marginal Propensity to
Consume out of transitory income shocks (MPC). We compute the MPC as the change in
consumption divided by the (unexpected) increase in cash-on-hand. We study MPC’s over
the life-cycle and across the wealth distribution. MPC’s are a common object of interest when
studying fiscal policy.

4.2 Discretizing Guvenen, Karahan, Ozkan and Song (2021)

Stochastic process. The first earnings process we consider is the process proposed by Guvenen
et al. (2021). This earnings process is given by:16

𝑦 𝑖𝑡 = (1 − �𝑖𝑡)𝑒(𝑧
𝑖
𝑡+�𝑖𝑡)

𝑧 𝑖𝑡 = 𝜌𝑧 𝑖𝑡−1 + �𝑖𝑡

𝑧 𝑖0 ∼ 𝑁(0, 𝜎𝑧0)

�𝑖𝑡 ∼

𝑁(��,1, 𝜎�,1) with prob. 𝑝𝑧

𝑁(��,2, 𝜎�,2) with prob. 1 − 𝑝𝑧

�𝑖𝑡 ∼

𝑁(��,1, 𝜎�,1) with prob. 𝑝�

𝑁(��,2, 𝜎�,2) with prob. 1 − 𝑝�

𝑣 𝑖𝑡 ∼


0 with prob. 1 − 𝑝𝑣(𝑡 , 𝑧 𝑖𝑡),
min{1, exp(�)} with prob. 𝑝𝑣(𝑡 , 𝑧 𝑖𝑡)

(12)

16We leave out the non-stochastic elements of the income-level, such as the fixed effect. Following Guvenen
et al. (2021), we use the following parametrization: 𝜌 = 0.959, 𝑝𝑧 = 0.407, ��,1 = −0.085, ��,2 = 0.085𝑝𝑧/(1 − 𝑝𝑧),
𝜎�,1 = 0.364, 𝜎�,2 = 0.069, 𝑝� = 0.13, ��,1 = 0.271, ��,2 = −0.271𝑝�/(1 − 𝑝�), 𝜎�,1 = 0.285, 𝜎�,2 = 0.037, � = 0.0001.
We have (𝑎, 𝑏, 𝑐, 𝑑) = (−3.353,−0.859,−5.034,−2.895).
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where 𝑝𝑣 is given by

𝑝𝑣(𝑡 , 𝑧𝑡) =
𝑒�

𝑖
𝑡

1 + 𝑒�𝑖𝑡
, where �𝑖𝑡 ≡ 𝑎 + 𝑏𝑡 + 𝑐𝑧 𝑖𝑡 + 𝑑𝑧 𝑖𝑡𝑡.

Here 𝑦 𝑖𝑡 is the earnings level of individual 𝑖 at time 𝑡, 𝑧 𝑖𝑡 is the persistent component of
earnings, �𝑖𝑡 is the transitory component and 𝑣 𝑖𝑡 is a non-employment shock. The process is
essentially a persistent-transitory earnings process, where the main features are: (i) the fat-
tailed innovations to the persistent and transitory component, and (ii) the non-employment
shocks �𝑡 .

Discretization. For our discretization, we use a multivariate discretization on log(𝑦 𝑖𝑡 + 1)
and 𝑧 𝑖𝑡 jointly. We allow the grid and transition probabilities of our discretization to be age-
dependent. We use twelve grid points, because, as one can see below in the moment analysis,
twelve grid points captures the main features of the process well.

The resulting optimal age-dependent grids are visualized in Figure 4. Figure 4b shows that
the grid points have a positive trend in age, capturing the increase in earnings dispersion over
the life-cycle. Figure 4a shows that the discretization method generates a grid with multiple
non-employment states. Having multiple states with an earnings level of zero generates
heterogeneous job-finding probabilities, that is, non-employment states that differ in terms of
their persistence. This is visualized in Figure E1 in the Appendix, depicting the age-dependent
transition probability matrix. The first three rows represent the zero-earnings states, and by
looking at the diagonal, we can see that these states indeed differ in terms of their persistence,
and that this persistence changes over the life-cycle. Furthermore, Figure E1 shows how in the
Guvenen et al. (2021) process, non-employment becomes highly persistent towards the end of
working life.17

To the best of our knowledge, our paper is the first to discretize the process in Guvenen et
al. (2021). We compare ourselves against a binning method. Standard binning methods,
however, do not work for the Guvenen et al. (2021) process, because of the large number of
zeros generated by the process. We adapt Adda and Cooper (2003) by adding a zero earnings-
state and then use standard binning on the observations 𝑦𝑖𝑡 > 0. We allow both the grid and
transition probability matrix to vary by age.

17It should be noted that Guvenen et al. (2021) do not differentiate between unemployment and non-
employment, which explains why these transition probabilities out of the zero-earnings states are different
from those we know from the unemployment duration literature.
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Figure 4: Visualisations of the optimal grid of the discretization of the stochastic process in Guvenen et al. (2021)
with 𝑚 = 12. Note that panel (b) only shows ten lines, because there are three grid points at zero.

(a) Optimal grid at age 𝑡 = 25
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Figure 5 visualizes the unconditional moments of the earnings levels and arc-changes in
earnings of the Guvenen et al. (2021) process over the life-cycle, and the extent to which the
discretized processes can replicate these moments.18 As these figures show, our discretization
method captures the unconditional moments of the earnings levels well, and does so better
than the binning method. The binning method performs similar to our method at the moments
on arc-changes. In Figure 5c, the non-employment dynamics over the life-cycle are visualized
for the two different discretizations. Our discretization is able to capture the life-cycle profile
of the two- and three-period ahead conditional non-employment probabilities better than
the binning method. The binning method by construction performs well at the one-period-
ahead persistence of non-employment, but fails to capture the longer-run non-employment
dynamics.

4.3 Discretizing Arellano et al. (2017)

Stochastic process. Next, we consider the nonparametric earnings process in Arellano et al.
(2017). As in Arellano et al. (2017), let 𝑦𝑖𝑡 be pre-tax labor earnings. Decompose log 𝑦𝑖𝑡 as
follows:

log 𝑦𝑖𝑡 = �𝑖𝑡 + �𝑖𝑡 , 𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ..., 𝑇,

18Arc-changes are an important statistic in the Guvenen et al. (2021) paper.
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Figure 5: Age-dependent moments, for two different discretizations of the stochastic process by Guvenen et al.
(2021). 𝑚 = 12 for both methods.
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(b) Unconditional moments of arc changes in earnings
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(c) Non-employment dynamics
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The solid red line represents the Guvenen et al. (2021) process, the solid black line is our discretization
method, and the blue dash-dot line is the binning method. Arc changes are defined as 𝑦𝑖 ,𝑡+1−𝑦𝑖 ,𝑡

(𝑦𝑖 ,𝑡+1+𝑦𝑖 ,𝑡 )/2 .

where �𝑖𝑡 denotes the persistent component and �𝑖𝑡 denotes the transitory component. The
transitory component is mean zero and is independent over time and from the persistent
component. The persistent component �𝑖𝑡 follows a general first-order Markov process, with
its 𝜏th conditional quantile given �𝑖 ,𝑡−1 by 𝑄𝑡(�𝑖 ,𝑡−1, 𝜏) for each 𝜏 ∈ (0, 1), that is, without loss
of generality:

�𝑖𝑡 = 𝑄𝑡(�𝑖 ,𝑡−1, 𝑢𝑖𝑡), (𝑢𝑖𝑡 |�𝑖 ,𝑡−1, �𝑖.𝑡−2, ...) ∼ Uniform(0, 1), 𝑡 = 2, ..., 𝑇.
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This model allows for nonlinear dynamics of earnings, and in particular, generates nonlinear
persistence. Arellano et al. (2017) estimate this model non-parametrically, approximating
𝑄 using low-order products of Hermite polynomials and limiting time-dependence to age-
dependence, that is, 𝑄𝑡(�𝑖 ,𝑡−1, 𝜏) = 𝑄(�𝑖 ,𝑡−1, age𝑖𝑡 , 𝜏).

Discretization. Our method only requires a simulated sample from the true stochastic process,
and, therefore, can be applied to non-parametric processes like Arellano et al. (2017). We focus
on the discretization of �𝑖𝑡 , because the transitory component �𝑖𝑡 is i.i.d. The simulated values
from the stochastic process are noisy, so we follow Arellano et al. (2017) in truncating the
simulations at four age-dependent standard deviations around the mean.19

We allow the grids and transition probability matrices to vary by age, as visualized in Figure
E2 in the Appendix. The grids are more dispersed than those of the Guvenen et al. (2021)
process. In addition, while for the Guvenen et al. (2021) process most age-dependence in the
transition probabilities is at the low-earnings states, for the Arellano et al. (2017) process this
is at the high earnings states. For example, the highest earnings state becomes more persistent
from age 35 onwards.

We compare the performance of our discretization method with the method De Nardi et al.
(2020) propose to discretize the Arellano et al. (2017) process.20 In particular, their method
adapts Adda and Cooper (2003) and uses simulation-based binning, adding additional bins
in the tails of the process. Their discretization for �𝑖𝑡 uses 18 grid points, and we follow them
in this choice. For details we refer to their paper. In what follows below, we refer to this
adaptation of binning as "tail-binning".

Figure 6 visualizes the moments of the persistent component �𝑡 and first-differences Δ�𝑡 for
the Arellano et al. (2017) process, our discretization and the tail-binning discretization. Our
discretization method does a good job at capturing the first four unconditional moments of
the levels of �𝑡 . The tail-binning method misses the gradual increase in skewness and kurtosis
over the life cycle, and instead catches up by rapidly increasing around age 45-50. Our method
does better at capturing the skewness and excess kurtosis of the first-differences of �𝑡 , but does
still miss out on some of the excess kurtosis the process exhibits.

19For the simulations from their earnings process, we use the publicly-available codes that accompany their
publication.

20Note that their discretization originally was applied to a re-estimated version of Arellano et al. (2017) that
uses after-tax earnings, so our results are not directly comparable.
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Figure 6: Moments of �𝑡 and Δ�𝑡 for the process of Arellano et al. (2017). The red line is data simulated from
the Arellano et al. (2017) process, the black line follows from our discretization method, and the blue dotted line
is based on the tail-binning method.
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4.4 Life-cycle model with the processes of Guvenen et al. (2021) and Arellano et al. (2017)

Next, we illustrate the importance of the choice of the discretization method for the earnings
process through the lens of the life-cycle model. We use the discretizations of the persistent
component of the earnings processes as presented above, and separately add a three-grid-
point equal-quantile discretization of the transitory component to the model. Figure 7 plots
how assets and consumption develop over the life cycle of an individual using the two different
discretization methods. We observe that for both the Guvenen et al. (2021) and Arellano et al.
(2017) process, the discretization method has economically meaningful implications for the
development of mean consumption over the life-cycle, for the mean MPC’s, and for the mean
saving rate. In addition, the variance of consumption growth over the life-cycle is also sensitive
to the discretization method used; discretizing the Guvenen et al. (2021) process using the
binning method results in a larger variance of consumption growth over the life-cycle than
our discretization method does. For the Arellano et al. (2017) process, what stands out is the
difference in MPC’s over the life-cycle between the two methods; our method generates higher
MPC’s for younger individuals (around 0.7) than the tail-binning method (around 0.6).

Table 5 summarizes several key statistics of the life-cycle model, and how these vary for the two
different processes and their different discretizations. For the Guvenen et al. (2021) process,
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the most notable difference between the discretizations is in the welfare cost of risk (CEV).
For our discretization, the CEV is 0.69, while the binning-method based solution implies a
CEV that is considerably lower (0.46). We believe this is mainly driven by the binning method
discretization understating the amount of longer-term non-employment risk. For the Arellano
et al. (2017) process, the CEV estimates also differ between discretization methods; our method
implies a CEV of 0.19, and tail-binning results in a CEV estimate of 0.16. Given that the CEV
measures the welfare gain in applications with policy experiments, the sensitivity of CEV’s to
the choice of discretization method is an important finding.

Figure 7: Simulations from the life-cycle model for two different discretizations of the earnings process of Guvenen
et al. (2021) and Arellano et al. (2017).

(a) Guvenen et al. (2021) for 𝑚 = 12
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(b) Arellano et al. (2017) for 𝑚 = 18
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Table 5: Summary statistics computed from simulations from the life-cycle model for two different discretizations
of the earnings processes of Guvenen et al. (2021) and Arellano et al. (2017).

Model + Guvenen Model + ABB
Method Janssens-McCrary Binning Janssens-McCrary Tail-Binning
St.dev.(log 𝑐𝑖𝑡) 0.77 0.74 0.46 0.41
St.dev.(Δ log 𝑐𝑖𝑡) 0.17 0.19 0.10 0.11
Corr(log 𝑐𝑖𝑡 , log 𝑦𝑖𝑡) 0.91 0.90 0.95 0.93
Corr(Δ log 𝑐𝑖𝑡 , Δ log 𝑦𝑖𝑡) 0.75 0.82 0.78 0.77
CEV 0.69 0.46 0.19 0.16
𝜓𝑃BPP 0.51 0.47 0.66 0.67
Mean MPC 0.22 0.23 0.22 0.21
Discount factor 𝛽 0.94 0.94 0.97 0.97

Table 6 summarizes several wealth inequality measures as found in the data (obtained from
Krueger, Mitman, and Perri (2016)) and compares them to those computed from the life-
cycle model solutions. We find that the discretization method matters for the amount of
wealth inequality a life-cycle model can generate. Using binning to discretize both earnings
processes results in less wealth inequality than when using our method. Most likely this is
because binning misses out on the skewness and excess kurtosis present in the process. The
differences between methods are largest for the Arellano et al. (2017) process. When using
our discretization method for the Arellano et al. (2017) process, the model matches the wealth
distribution of the data fairly well. For example, our discretization results in a wealth Gini
index of 0.76, close to the 0.77-0.78 in the data (tail-binning: 0.7), and a top 1% wealth share of
34.5% (tail binning: 27.6), which is actually larger than the 30.9-33.5% reported by Krueger et
al. (2016)). The ability of our model solution to match these aspects of the wealth distribution
– without targeting it – is notable, given that the literature has documented that simple life-
cycle models like this one typically struggle matching the right tail of the empirical wealth
distribution (De Nardi and Fella, 2017).

Comparing the earnings process of Guvenen et al. (2021) with Arellano et al. (2017) in the
context of a life-cycle model, we find that while both the mean MPC and the mean MPC’s over
the wealth distribution are comparable between processes, the Guvenen et al. (2021) process
implies a flatter MPC profile over the life-cycle than the Arellano et al. (2017) process. This is
because the presence of the non-employment shock in the Guvenen et al. (2021) process creates
a strong precautionary savings motive for younger generations, resulting in lower MPC’s for
young ages than in the Arellano et al. (2017) process (0.35 instead of 0.75 for the 25 year olds).
This large downside risk in the Guvenen et al. (2021) also result in a higher CEV (0.69) than
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Table 6: Wealth inequality measures. Data from Krueger et al. (2016).

Data Model + Guvenen Model + ABB
% Share held by: PSID, 06 SCF, 07 Janssens-McCrary Binning Janssens-McCrary Tail-binning
Q1 -0.9 -0.2 -0.7 -0.6 -0.4 -0.3
Q2 0.8 1.2 0.9 1.4 1.5 2.3
Q3 4.4 4.6 6.4 7.6 7.1 9.5
Q4 13.0 11.9 19.6 21.1 15.7 19.2
Q5 82.7 82.5 73.0 70.6 76.0 69.3
T1% 30.9 33.5 10.9 8.9 34.5 27.6
Gini 0.77 0.78 0.73 0.69 0.76 0.70

in the Arellano et al. (2017) process (0.19). While the Guvenen et al. (2021) process by and
large focuses on downside earnings risk, the Arellano et al. (2017) process features a longer
right-tail, resulting in more wealth inequality (as in Table 6) than the Guvenen et al. (2021)
process.

4.5 Canonical stochastic processes

To illustrate that discretization methods matter beyond the setting of highly non-linear pro-
cesses like the ones presented above, this section considers the discretization of two simpler
persistent-transitory earnings processes in the context of a life-cycle model. Both processes
characterize the persistent component as an AR(1) process. The first process uses Gaussian
innovations both to the persistent and transitory component (referred to as AR(1) below).
The second process has Gaussian mixture innovations for both the persistent and transitory
component (henceforth referred to as AR(1)-M). Specifically, for the second process, we use
a simplified version of the Guvenen et al. (2021) process in Equation (12), disregarding the
non-employment shock, with the same parameters. We parametrize the AR(1) process such
that it has the same autocorrelation and variance as the AR(1)-M. In Equations, the AR(1)-M
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process is given by:21

𝑦 𝑖𝑡 = 𝑒(𝑧
𝑖
𝑡+�𝑖𝑡)

𝑧 𝑖𝑡 = 𝜌𝑧 𝑖𝑡−1 + �𝑖𝑡

�𝑖𝑡 ∼

𝑁(��,1, 𝜎�,1) with prob. 𝑝𝑧

𝑁(��,2, 𝜎�,2) with prob. 1 − 𝑝𝑧

�𝑖𝑡 ∼

𝑁(��,1, 𝜎�,1) with prob. 𝑝�

𝑁(��,2, 𝜎�,2) with prob. 1 − 𝑝�.

(13)

For the AR(1) persistent-transitory process with Gaussian innovations, we use �𝑖𝑡 ∼ 𝑁(0, 𝜎2
�)

and �𝑖𝑡 ∼ 𝑁(0, 𝜎2
�) where 𝜎2

� = 𝑝�𝜎2
�,1 + (1 − 𝑝�)𝜎2

�,2 + 𝑝��2
�,1 + (1 − 𝑝�)�2

�,2 and similar for
𝜎2
�. For both processes, we only discretize the persistent component and separately add a

three-grid-point equal-quantile discretization of the transitory component to the model.

Comparison with other methods. We compare our discretization method to the methods of
Rouwenhorst (1995), Tauchen (1986), and Farmer and Toda (2017) for the AR(1) process and
to Farmer and Toda (2017) and the binning method of Judd (1998)/Adda and Cooper (2003)
for the AR(1)-M process.22

Figure 8 presents the information loss of each discretization relative to the true process. To
compute the information loss, we interpret the transition probability matrix and grid of the
different discretization methods as parameters Π and � in our HMM framework, and then
re-estimate the variance of the approximation error. This results in a likelihood for each
discretization. We compute this statistic for different grid sizes 𝑚.

Given that our method minimizes information loss, it is no surprise that our method results
in the lowest losses. Figure 8 shows the Farmer and Toda method is, for larger grids, closest
to ours in terms of information loss, and the differences in information loss between ours and
the alternative methods are large. For the AR(1) process, we achieve the same information
loss as the Farmer and Toda method with 27 grid points using only 19. We achieve the same

21Parameters: 𝜌 = 0.959, 𝑝𝑧 = 0.407, ��,1 = −0.085, ��,2 = 0.085𝑝𝑧/(1− 𝑝𝑧), 𝜎�,1 = 0.364, 𝜎�,2 = 0.069, 𝑝� = 0.13,
��,1 = 0.271, ��,2 = −0.271𝑝�/(1 − 𝑝�), 𝜎�,1 = 0.285 and 𝜎�,2 = 0.037.

22All implementations of these methods are standard, except for the grid width we use in the Farmer and
Toda (2017) method. For the AR(1) process, we use a grid width equal to max{3, 1.2 log(𝑚 − 1)} times the
standard deviation of the process. This grid width is based on the proposal of Flodén (2008), and we find that
this choice works better in this setting than the width of

√
𝑚 − 1 that Farmer and Toda (2017) propose. For the

AR(1)-M process, we use max{4, 1.2 log(𝑚−1)}. The Farmer-Toda method is set to match the first four conditional
moments at each grid point.
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Figure 8: KL divergence of the approximating model likelihood versus the likelihood of the true process for an
AR(1) and AR(1)-M process, for different discretization methods and different grid sizes 𝑚.
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information loss as the Tauchen method with 27 using only 15 grid points, and the same loss
as the Rouwenhorst method at 27 using only 13 grid points. For the AR(1)-M, we achieve the
same information loss as the Farmer and Toda method at 39 grid points using only 25 grid
points, and the same information loss as the binning method at 39 using only 11 grid points.
Because the Rouwenhorst method is dominated by the Farmer and Toda method and Tauchen
method for larger grids, we drop this method in the analysis that follows below.

Table 7 summarizes some other statistics of the discretized processes, being the unconditional
and conditional moments of the distribution. The Farmer-Toda method is based on moment-
matching, which is why they tend to perform well at most moments. However, their method is
implemented such that when it cannot match a moment in one of the grid points, that specific
moment restriction gets dropped for that grid point. This is why there are cases in which
it doesn’t match all moments even when targeting them, and ours or the Binning/Tauchen
method may perform better at matching those moments. One statistic where we consistently
outperform the other methods is the Mean Squared Forecast Error (MSFE), that is, if an agent
would use the discretized process to make forecasts about the true process, what are the
forecast errors the agent makes.

Implications in a life-cycle model. Next, we evaluate how the choice of the discretization
method affects the solutions of the life-cycle model, where we focus on a selected number of
statistics given in Table 8 and Figure 9. Our main conclusion from Table 8 is that for these
two stochastic processes, the choice of the discretization method can matter for the model
solution, and particularly when using a low number of grid points. For example, with an
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Table 7: Summary statistics on unconditional and conditional moments for different discretizations of the AR(1)
and AR(1)-M stochastic processes.

AR(1) AR(1)-M
𝑚 = 7 𝑚 = 17 𝑚 = 17 𝑚 = 31

JM FT T JM FT T JM FT Bin JM FT Bin
Abs. dev. uncond. mean <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 0.01
% dev. uncond. var. 5.33 18.4 56.6 0.09 <0.01 11.7 2.99 0.70 7.3 2.51 0.70 4.04
% dev. uncond. skew. 0.03 <0.01 0.04 0.02 0.01 0.03 7.88 26.3 20.2 0.81 8.80 15.3
% dev. uncond. kurt. 10.8 61.8 11.3 3.62 1.45 7.83 3.06 6.36 18.8 1.34 1.03 12.7
% dev. autocor. 0.75 0.07 1.65 1.28 0.03 0.09 0.55 <0.01 0.69 0.26 0.01 0.29
Ave. abs. dev. cond. mean 1.07 <0.01 1.49 1.19 <0.01 0.25 0.01 <0.01 <0.01 0.01 <0.01 0.01
Ave. % dev. cond. var. 14.1 79.6 4.17 24.7 <0.01 16.1 19.1 8.74 19.1 26.1 8.74 13.0
Ave. % dev. cond. skew. 1.12 3.47 1.45 0.74 1.38 0.14 1.01 0.60 1.11 1.13 1.40 1.20
Ave. % dev. cond. kurt 336 1628 265 349 907 2.55 122 132 84.0 167 485 84.0
MSFE 0.09 0.12 0.12 0.07 0.07 0.07 0.07 0.08 0.08 0.06 0.07 0.07

Notes: For the skewness moments of the AR(1) process, these are the absolute deviations rather than the %
deviation. For the conditional moments, the average is computed across grid points.

AR(1) process, the standard deviation of log consumption, the welfare cost of risk (CEV), the
wealth Gini index, and the Wealth Share of the top 20% vary in economically significant ways
across the different discretization methods when using a grid size of 𝑚 = 7. When increasing
the grid size to 𝑚 = 17, the differences between the methods are smaller. In general, the
solutions that follow from our discretization method change little when adding grid points.
For the AR(1)-M method, we look at a larger 𝑚, because it requires more grid points to
get to the same information loss (as shown in Figure 8b). At 𝑚 = 17, the solutions differ
for, particularly, the Gini Index, the mean MPC’s and Top 1% Wealth Share, but the solutions
between discretizations are more similar at𝑚 = 31. We think the sensitivity of model solutions
at low 𝑚 is an important insight, because it is common in the literature to use discretizations
of AR(1) processes with few grid points.

Figure 9 visualizes the mean MPC’s across the life-cycle and the wealth distribution for the
different AR(1) and AR(1)-M discretizations. We again see that the choice of the discretization
method matters, mostly for low 𝑚. Interestingly, for the AR(1)-M, the aggregate statistics on
consumption and earnings in Table 8 are similar for both 𝑚 = 17 and 𝑚 = 31, and appear
insensitive to the choice of discretization, however, we see the life-cycle profile of MPC’s and
the MPC’s across the wealth distribution differ significantly for 𝑚 = 17 and even with 𝑚 = 31
the choice of discretization matters. For some age groups, the mean MPC’s can vary as much
as 20% between methods. Compared with the other discretization methods, the MPC’s that
follow from our method change less when adding more grid points, in line with our method
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Table 8: Summary statistics computed from simulations from the life-cycle model solved for an AR(1) and AR(1)-
M earnings process discretized using different methods.

Model + AR(1) Model + AR(1)-M
𝑚 = 7 𝑚 = 17 𝑚 = 17 𝑚 = 31

JM FT T JM FT T JM FT Bin JM FT Bin
St.dev(log 𝑐𝑖𝑡) 0.70 0.79 0.91 0.72 0.72 0.76 0.71 0.71 0.68 0.71 0.71 0.70
St.dev(Δ log 𝑐𝑖𝑡) 0.14 0.15 0.15 0.14 0.15 0.16 0.14 0.15 0.15 0.14 0.15 0.15
Corr( log 𝑐𝑖𝑡 , log 𝑦𝑖𝑡) 0.96 0.95 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96
Corr(Δ log 𝑐𝑖𝑡 , Δ log 𝑦𝑖𝑡) 0.78 0.82 0.82 0.79 0.80 0.82 0.89 0.89 0.89 0.89 0.89 0.89
CEV 0.37 0.42 0.46 0.38 0.38 0.39 0.40 0.40 0.38 0.40 0.40 0.39
𝜓𝑃BPP 0.51 0.55 0.46 0.52 0.51 0.52 0.51 0.51 0.52 0.51 0.51 0.52
Mean MPC 0.26 0.21 0.26 0.25 0.25 0.25 0.21 0.15 0.20 0.20 0.18 0.21
Gini index 0.78 0.83 0.81 0.79 0.78 0.78 0.75 0.75 0.72 0.75 0.75 0.73
Q5 Wealth Share 0.80 0.87 0.85 0.82 0.80 0.81 0.76 0.76 0.73 0.76 0.76 0.75
T1% Wealth Share 0.12 0.19 0.16 0.15 0.14 0.14 0.12 0.13 0.09 0.12 0.12 0.10
Discount factor 𝛽 0.95 0.93 0.93 0.95 0.94 0.94 0.95 0.94 0.94 0.95 0.94 0.94

Notes: JM stands for Janssens-McCrary, FT stands for the Farmer-Toda method, Bin refers to the binning method,
and T stands for the Tauchen method.

Figure 9: Mean Marginal Propensities to Consume for three different discretizations of AR(1) and AR(1)-M
processes in a life-cycle model, computed across the wealth distribution and by age.
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(b) AR(1), 𝑚 = 17
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(c) AR(1)-M, 𝑚 = 17
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(d) AR(1)-M, 𝑚 = 31
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Notes: The solid black line is our discretization method, and the dashed line is the Farmer-Toda method. For the
AR(1), the dash-dot line is the Tauchen method, for AR(1)-M, it is the binning method.

being more parsimonious by capturing a larger fraction of the information using fewer grid
points.
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Comparison between an AR(1), AR(1)-M and the Guvenen et al. (2021) process. Finally, we
use this model to ask what the differences are between an AR(1) and AR(1)-M process in a
life-cycle context, that is, what do excess skewness and kurtosis imply for a life-cycle model.
Consider Table 8 and the largest choice of 𝑚. Most notably, the Gaussian mixture leads to a
larger correlation between consumption and income changes. In addition, we see an decrease
of the mean MPC, and a decrease in wealth inequality. The intuition behind these results
is that the income distribution in the economy with the mixture distribution is less unequal,
because the mixture process is skewed towards lower incomes. This results in a less unequal
wealth distribution. In addition, the increased left-tail risk increases the correlation between
consumption and income changes, and it lowers MPC’s because of a stronger precautionary
savings motive. Comparing this with the Guvenen et al. (2021) process that features non-
employment shocks in addition to Gaussian mixture innovations, we see that non-employment
shocks substantially increase the CEV compared to the AR(1)-M process (from 0.40 to 0.69),
lowers the wealth Gini index from 0.75 to 0.73, and increases mean MPC’s from 0.20 to 0.22
because about 2% more people live hand-to-mouth.

5 Conclusion

This paper proposes a novel finite-state Markov chain approximation method, based on mini-
mizing the information loss between the true stochastic process and a Hidden Markov Model.
A finite-state Markov chain approximation is inherently a misspecified model, and the objec-
tive of minimizing the KL divergence is standard in the misspecified model literature. We
show that this is a consistent approach in our setting in the sense that under some assump-
tions, using enough hidden states, the information loss between the approximating Hidden
Markov Model and the true stochastic process can be made arbitrarily small. Our discretiza-
tion method is applicable to a large class of stochastic processes and provides both an optimally
selected grid and transition probability matrix. This optimal grid is especially powerful in the
case of correlated multivariate processes, as it avoids the use of tensor grids.

We apply and compare our method in two applications. The first application is an asset-
pricing model with stochastic volatility, which, as shown by De Groot (2015), has a closed-form
analytical solution. This analytical solution is our benchmark when comparing the solutions
based on different discretization methods, and we find our method results in numerical
solutions closer to this benchmark. The second application evaluates the effect of the choice of
the discretization method on the solutions that follow from a life-cycle model with a variety
of different earnings processes, including Guvenen et al. (2021) and Arellano et al. (2017). We
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find that the discretization method matters for, among other things, the welfare cost of risk,
the marginal propensity to consume, and wealth inequality measures.

Discretized stochastic processes have many more applications than the ones we use to bench-
mark our method. The econometric literature has shown stochastic processes featuring non-
linearities, excess skewness and kurtosis provide a better description of the data. Our method
provides a tool for the use of richer statistical processes in structural economic models.
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A Proof of Main Theorem

A.1 Preliminaries, notation and existing results

As in Zeevi and Meir (1997), denote

ℱ𝑐,� = { 𝑓 ∈ ℱ𝑐 | 𝑓 ≥ � > 0,∀𝑦 ∈ 𝒴}

where

ℱ𝑐 =

{
𝑓 | 𝑓 ∈ 𝐶𝒴, 𝑓 ≥ 0,

∫
𝑓 = 1

}
is the class of continuous density functions with compact support 𝒴 ⊂ R𝑘 fixed and given.
ℱ𝑐,� ⊂ ℱ𝑐 is bounded below over 𝒴 by some positive constant, denoted by �.

We impose the following assumptions on the true process 𝑓 (y) and approximating model
𝑝(y, �):

(A1) y = {𝑦𝑡}𝑇𝑡=1 has a data generating process characterized by 𝑓 (y), 𝑦𝑡 ∈ R𝑘 , that is first-order
Markov and stationary, that is,

𝑓 (𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1) = 𝑓 (𝑦𝑡 |𝑦𝑡−1),

and
𝑓 (𝑦𝑡+𝑙 |𝑦𝑡+𝑙−1) = 𝑓 (𝑦𝑡 |𝑦𝑡−1) ∀𝑙 ∈ N.

(A2) 𝑓 (𝑦𝑡 |𝑦𝑡−1) ∈ ℱ𝑐,�.

(A3) log 𝑓 (𝑦𝑡 |𝑦𝑡−1) and 𝑓 (𝑦𝑡 |𝑦𝑡−1) are differentiable in 𝑦𝑡−1 ∈ 𝒴.

(A4) log 𝑓 (𝑦𝑡 |𝑦𝑡−1) is locally Lipschitz continuous in 𝑦𝑡−1 ∈ 𝒴.

(A5) 𝑝(y;�𝑚) is characterized by:

𝑦𝑡 |𝑥𝑡 = �𝑚(𝑥𝑡) + diag(𝜎𝑚)�𝑡 , �𝑡 ∼ 𝑁(0, 𝐼𝑘),
𝑥𝑡+1 |𝑥𝑡 ∼ Π𝑖 𝑗 ,𝑚
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with parameters �𝑚 = (�𝑚 ,Π𝑚 , 𝜎𝑚), and 𝑥𝑡 ∈ {1, ...𝑚} a latent state evolving accord-
ing to a first-order Markov process with transition probability matrix Π𝑚 . Denote the
conditional distribution by 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) ∈ ℱ𝑐,�.

Denote the 𝐿𝑝 distance between two functions by

𝑑𝑝( 𝑓 , 𝑔) :=
(∫

| 𝑓 (𝑥) − 𝑔(𝑥)|𝑝𝑑𝑥
)1/𝑝

and the 𝑙𝑝 distance between two vectors as 𝑑𝑝(𝑥, 𝑥′) = (|𝑥1 − 𝑥′1 |𝑝 + ...+ |𝑥𝑑 − 𝑥′𝑑 |
𝑝)1/𝑝 , for 𝑝 ≥ 1.

We denote the class of basic densities that we use in our approximation class as

Φ�,𝜏 =

{
𝜙𝜎 ∈ Φ� |𝜙𝜎 = 𝜎−𝑑𝜙

( · − �

𝜎

)
, � ∈ 𝒴, 𝜎 ∈ R s.t. 𝜎 ≥ 𝜏 > 0

}
with Φ� = {𝜙 ∈ Φ|𝜙 ≥ � > 0,∀𝑦 ∈ 𝒴} and Φ = {𝜙 |𝜙 ∈ 𝐶(R𝑘), 𝜙 > 0,

∫
𝜙 = 1} the class of

continuous densities. Note Φ�,𝜏 ⊂ Φ� ⊂ Φ. The approximation class is given by

𝒢𝑛 =

{
𝑓 �𝑚 | 𝑓 �𝑚 (·) =

𝑛∑
𝑖=1

𝛼𝑖𝜙𝜎(·;�𝑖), 𝜙𝜎 ∈ Φ�,𝜏 , 𝛼𝑖 > 0,
𝑚∑
𝑖=1

𝛼𝑖 = 1

}
and we write � = (�, 𝜎),where � = [�(1), ..., �(𝑚)]. That is, we consider a mixture distribution
where all functions have the same scale parameter but a different location. Unlike Zeevi
and Meir (1997), we will strictly refer to 𝜙 as the Gaussian probability density function,
which falls into the class of functions they consider. For multivariate distributions, we have
�(𝑖) = (�1(𝑖), ...�𝑘(𝑖)), and 𝜎 = (𝜎1, ..., 𝜎𝑘), such that 𝜙𝜎 is the product of 𝑘 independent
Gaussian pdf’s, also known as a product kernel.

Define 𝛾 such that � = 1
𝛾2 .

Lemma 1 (Eq. 14 in Zeevi and Meir, 1997). For 𝑔, 𝑓 s.t. 𝑔, 𝑓 ≥ 1
𝛾2 > 0,

𝐷𝐾𝐿( 𝑓 | |𝑔) ≤ 𝛾2𝑑2
2( 𝑓 , 𝑔).

That is, for densities 𝑓 and 𝑔 that are bounded below by 1
𝛾2 , the KL divergence is bounded

from above by the squared L2 norm between 𝑓 and 𝑔 multiplied by 𝛾2.
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Lemma 2 (Petersen, 1983 as in Zeevi and Meir, 1997). Let 1 ≤ 𝑝 < ∞ and let 𝜙 ∈ 𝐿1(R𝑘),
∫
𝜙 = 1.

Letting 𝜙𝜎(𝑥) = 𝜎−𝑘𝜙(𝑥/𝜎), then for any 𝑓 ∈ 𝐿𝑝(R𝑘), we have 𝜙𝜎 ∗ 𝑓 → 𝑓 in 𝐿𝑝(R𝑘) as 𝜎 → 0 where

(𝜙𝜎 ∗ 𝑓 )(𝑥) :=
∫

𝜙𝜎(𝑥 − 𝑦) 𝑓 (𝑦)𝑑𝑦.

Here, 𝐿1(R𝑘) and 𝐿𝑝(R𝑘) denote the space of measurable functions for which | | 𝑓 | |1 < ∞ and
| | 𝑓 | |𝑝 < ∞, respectively. If we define 𝑓 := 𝑓 ∗ 𝜙𝜎, Lemma 2 implies ∀� > 0 and 𝑓 ∈ ℱ𝑐,�, there
exists an 𝑓 such that

𝑑2
2( 𝑓 , 𝑓 ) ≤ �. (A.1)

Corollary 1 (Zeevi and Meir, 1997). Function 𝑓 belongs to the closure of the convex hull of Φ�,𝜏.

Lemma 3 (Barron, 1993 as in Zeevi and Meir, 1997). If 𝑓 is in the closure of the convex hull of a set
𝐺 in Hilbert Space, with | |𝑔 | |2 ≤ 𝑏 ∀𝑔 ∈ 𝐺, then ∀𝑚 ≥ 1 and ∀𝑐 > (𝑏2 − || 𝑓 | |22), ∃ a function 𝑓 0

𝑚 in
the convex hull of 𝑚 points in 𝐺 s.t.

𝑑2
2( 𝑓 , 𝑓 0

𝑚) ≤
𝑐

𝑚
.

Corollary 2 (Zeevi and Meir, 1997). For any 𝑓 ∈ ℱ𝑐,� and � > 0, there exists a convex
combination 𝑓 0

𝑚 in 𝒢𝑚 s.t.
𝑑2

2( 𝑓 , 𝑓 0
𝑚) ≤ � + 𝑐

𝑚
.

Note that Corollary 2 follows directly from the triangle inequality and Equation A.1 and
Lemma 3. One of the implications of Corollary 2 is that the Gaussian mixture model is a
universal approximator in the L2 norm.

Combining Corollary 2 with Lemma 1, we have:

𝐷𝐾𝐿
𝒴

( 𝑓 | | 𝑓 0
𝑚)) ≤ 𝛾2� + 𝛾2 𝑐

𝑚
(A.2)

Note that although the KL divergence is not a strict metric and does not generally satisfy the
triangle inequality, the 𝑑2

2 distance function does. We can use the relationship between the 𝑑2
2

metric and the KL divergence laid out by Lemma 1 in Lemma 4 below.
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A.2 Bound on the KL divergence of a Gaussian Mixture in a Given Grid

In Lemma 4, we provide an upper bound on the L2 norm and KL divergence between a
Gaussian mixture and a function 𝑓 , when the Gaussian mixture takes a choice of grid points
�̃𝑚 and variance and �̃�𝑚 that may not be same as �0

𝑚 and 𝜎0
𝑚 of Corollary 2.

Lemma 4. Let 𝜙𝜎 denote the Gaussian distribution function (or product of 𝑘 independent Gaussian
distribution functions), 𝑓 𝑚0 and 𝑓 are as defined in Corollary 2, and 𝑓𝑚 is the same function as 𝑓 0

𝑚 ,
characterized by (𝛼0

𝑚 , �
0
𝑚 , 𝜎

0
𝑚) except it is evaluated in a different � and variance 𝜎, with elements

denoted by �̃𝑚(𝑖) ∈ 𝒴 ⊂ R𝑘 , and �̃�𝑚 ≥ 𝜏 > 0 but with same mixture weights 𝛼0
𝑚 . Then

𝑑2
2( 𝑓 , 𝑓𝑚) ≤ � + 𝑐

𝑚
+ 1

4

(
max
𝑖

{(�0
𝑚(𝑖) − �̃𝑚(𝑖))′(Σ̃−1

𝑚 )(�0
𝑚(𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1

𝑚 Σ0
𝑚) − 𝑘 + ln |Σ̃𝑚 |

|Σ0
𝑚 |

)
and

𝐷𝐾𝐿
𝒴

( 𝑓 | | 𝑓𝑚) ≤ 𝛾2
(
� + 𝑐

𝑚
+ 1

4

(
max
𝑖

{(�0
𝑚(𝑖) − �̃𝑚(𝑖))′(Σ̃−1

𝑚 )(�0
𝑚(𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1

𝑚 Σ0
𝑚) − 𝑘 + ln |Σ̃𝑚 |

|Σ0
𝑚 |

))
with 𝛾, � and 𝑐 given in Lemma 1, 2 and 3, respectively, and Σ = diag(𝜎1, ..., 𝜎𝑘).

Proof. We use the L2 - L1 norm inequality: 𝑑2( 𝑓 0
𝑚 , 𝑓𝑚) ≤ 𝑑1( 𝑓 0

𝑚 , 𝑓𝑚) and Pinsker’s inequality:

𝑑1( 𝑓 0
𝑚 , 𝑓𝑚) ≤

√
1
2𝐷

𝐾𝐿
(
𝑓 0
𝑚 | | 𝑓𝑚

)
. Given that we are comparing two Gaussian mixtures with the

same mixture weights, from Do (2003), we obtain the following upper bound:

𝐷𝐾𝐿
(
𝑓 0
𝑚 | | 𝑓𝑚

)
≤

𝑚∑
𝑖=1

𝛼𝑖𝐷
𝐾𝐿

(
𝑓 0,𝑖
𝑚 | | 𝑓 𝑖𝑚

)
,

where we denote the 𝑖th component of the mixture distribution with superscript 𝑖. By prop-
erties of the Gaussian distribution, we have:

𝐷𝐾𝐿
(
𝑓 0,𝑖
𝑚 | | 𝑓 𝑖𝑚

)
=

1
2

{
(�0
𝑚(𝑖) − �̃𝑚(𝑖))

′
Σ̃−1
𝑚 (�0

𝑚(𝑖) − �̃𝑚(𝑖)) + tr(Σ̃−1
𝑚 Σ0

𝑚) − 𝑘 + ln |Σ̃𝑚 |
|Σ0
𝑚 |

}
.

Using that
∑

𝛼𝑖 = 1:

𝑑2
2( 𝑓 0

𝑚 , 𝑓𝑚) ≤
1
4 max

𝑖
𝐷𝐾𝐿( 𝑓 0,𝑖

𝑚 | | 𝑓 𝑖𝑚)

≤ 1
4

(
max
𝑖

{(�0
𝑚(𝑖) − �̃𝑚(𝑖))′(Σ̃−1

𝑚 )(�0
𝑚(𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1

𝑚 Σ0
𝑚) − 𝑘 + ln |Σ̃𝑚 |

|Σ0
𝑚 |

)
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Combining this with 𝑑2
2( 𝑓 , 𝑓 0

𝑚) ≤ � + 𝑐
𝑚 from Corollary 2, and using the triangle inequality for

the L2 norm and Lemma 1, we conclude. □

As long as 𝜎0
𝑚 and �̃�𝑚 go to zero at the same rate, and the distance between �𝑜𝑚 and �̃𝑚 goes

to zero, the expressions in Lemma 4 will converge to those in Corollary 2 and Equation (A.2).

A.3 𝑚 Gaussian Mixtures

Lemma 5 extends Lemma 4, applying Lemma 4 to 𝑚 conditional distributions at the same
time.

Lemma 5. Let �̃𝑚(𝑖) ∈ 𝒴 ⊂ R𝑘 , 𝑖 = 1, ..., 𝑚 and �̃�𝑚 ≥ 𝜏 be given. Let 𝑓 𝑖 ∈ ℱ𝑐,�, for 𝑖 = 1, ..., 𝑚
denote 𝑚 distributions and let 𝑓 0,𝑖

𝑚 , 𝑖 = 1, ..., 𝑚 as in Corollary 2. Let 𝑓 𝑖𝑚 , 𝑖 = 1, ...𝑚 be the same as
𝑓 0,𝑖
𝑚 , but all with the same location parameters �̃𝑚 and scale �̃�𝑚 ≥ 𝜏, but their own mixture weights
𝛼0,𝑖
𝑚 . For every � > 0, there exists𝑚 > 0 and𝑚×𝑚 matrix with mixture weights𝐴𝑚 = [𝛼0,1

𝑚 , ..., 𝛼0,𝑚
𝑚 ]

such that for all 𝑗 = 1, ..., 𝑚

𝐷𝐾𝐿
𝒴

( 𝑓 𝑗 | | 𝑓 𝑗𝑚)) ≤ 𝛾2
(
�max + 𝑐max

𝑚
+ ...

1
4 max

𝑙

{
max
𝑖

{(�0,𝑙
𝑚 (𝑖) − �̃𝑚(𝑖))′Σ̃𝑚)−1(�0,𝑙

𝑚 (𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1
𝑚 Σ

0,𝑙
𝑚 ) − 𝑘 + ln |Σ̃𝑚 |

|Σ0,𝑙
𝑚 |

})
(A.3)

and

𝑑2
2( 𝑓 𝑗 | | 𝑓

𝑗
𝑚)) ≤ �max + 𝑐max

𝑚
+ ....

1
4 max

𝑙

{
max
𝑖

{(�0,𝑙
𝑚 (𝑖) − �̃𝑚(𝑖))′Σ̃𝑚)−1(�0,𝑙

𝑚 (𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1
𝑚 Σ

0,𝑙
𝑚 ) − 𝑘 + ln |Σ̃𝑚 |

|Σ0,𝑙
𝑚 |

}
(A.4)

where �max = max𝑙 �𝑙 and 𝑐max = max𝑙 𝑐 𝑙 , where 𝑐 𝑙 , �0,𝑙
𝑚 , 𝜎0,𝑙

𝑚 and 𝛼0,𝑙
𝑚 are as in Corollary 2:

𝑑2
2( 𝑓 𝑙 , 𝑓

0,𝑙
𝑚 )) ≤ �𝑙 + 𝑐 𝑙

𝑚
(A.5)

for each 𝑙 = 1, ..., 𝑚.

Proof. Equation (A.3) follows from applying Corollary 2 to each conditional distribution 𝑓 𝑖 ,
𝑖 = 1, ..., 𝑚, such that Equation (A.5) holds for each of these distributions, except with a
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different �𝑖 and 𝑐 𝑖 , and at different grids and variances (denoted �0,𝑖
𝑚 and 𝜎0,𝑖

𝑚 respectively) for
each of the 𝑖 = 1, ..., 𝑚 conditional distributions. This results in 𝑚 sets of 𝑚 mixture weights
𝛼0
𝑚 .

In addition to showing Equation (A.5) holds, where we use a different grid �0,𝑙
𝑚 and variance

𝜎0,𝑙
𝑚 to fit each conditional distribution 𝑙 = 1, ..., 𝑚, we need to argue this result also goes

through when evaluating the KL divergence of these distributions all in the same grid �̃𝑚 and
variance �̃�𝑚 . For this, we use Lemma 4. This gives us

𝐷𝐾𝐿
𝒴

( 𝑓 𝑖 | | 𝑓 𝑖𝑚))

≤ 𝛾2

(
�𝑙 + 𝑐 𝑙

𝑚
+ max

𝑖
{(�0,𝑙

𝑚 (𝑖) − �̃𝑚(𝑖))′Σ̃𝑚)−1(�0,𝑙
𝑚 (𝑖) − �̃𝑚(𝑖))} + tr(Σ̃−1

𝑚 Σ
0,𝑙
𝑚 ) − 𝑘 + ln |Σ̃𝑚 |

|Σ0,𝑙
𝑚 |

)
for each 𝑙, and similar for the 𝐿2 norm, such that we can take the maximum over all these
𝑙 = 1, ..., 𝑚, to get the expression in Equation (A.3) which then holds for each conditional that
is evaluated in one of the 𝑗 = 1, ..., 𝑚 grid points. □

A.4 Properties of the HMM

Lemma 6. If 𝑝(y;�) as in Assumption (A5) and {�𝑚(𝑖)}𝑚𝑖=1 and 𝜎𝑚 ≥ 𝜏 > 0 are such that ∃ 𝑙 ∈
{1, ..., 𝑚} s.t. 𝜙𝑖(𝑦𝑡−1) < �(𝜎𝑚)/(𝑚−1) if 𝑖 ≠ 𝑙, for each 𝑦𝑡−1 ∈ 𝒴, and

∑𝑚
𝑖=1 𝜙𝑖(𝑦𝑡−1) = 𝐾(𝜎𝑚), where

�(𝜎𝑚) → 0 as 𝜎𝑚 → 0 and 𝐾 non-increasing in 𝜎𝑚 , then for ℎ ≥ 1, log 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦𝑡−ℎ , ..., 𝑦1;�)
is Lipschitz continuous in 𝑦𝑡−ℎ , and for ℎ ≥ 2, the Lipschitz constant goes to zero as 𝑚 grows large.

Proof. First of all, log 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�) is everywhere differentiable in 𝑦𝑡−1. Therefore, to
show Lipschitz continuity, we have to show its derivative is bounded.

𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�) =
𝑚∑
𝑗=1

[
𝑝(𝑦𝑡 |𝑥𝑡 = 𝑗)

𝑚∑
𝑖=1

(𝑃(𝑥𝑡 = 𝑗 |𝑥𝑡−1 = 𝑖)𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�))
]

=

𝑚∑
𝑗=1

[
𝜙 𝑗(𝑦𝑡)

𝑚∑
𝑖=1

(
Π𝑖 𝑗𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1)

) ]
and 𝑝(𝑦1) =

∑𝑚
𝑗=1

[
𝜙 𝑗(𝑦1)𝛿1𝑖

]
. Here

𝑃(𝑥𝑡 = 𝑖 |𝑦𝑡 , 𝑦𝑡−1, ..., 𝑦1) =
𝜙𝑖(𝑦𝑡)

∑𝑚
𝑗=1 Π𝑗𝑖𝑃(𝑥𝑡−1 = 𝑗 |𝑦𝑡−1, ..., 𝑦1)∑𝑚

𝑖=1 𝜙𝑖(𝑦𝑡)
∑𝑚
𝑗=1 Π𝑗𝑖𝑃(𝑥𝑡−1 = 𝑗 |𝑦𝑡−1, ..., 𝑦1)

:= 𝐴𝑖𝑡

𝐵𝑡
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where 𝑃(𝑥1 = 𝑖 |𝑦1) = 𝛿1𝑖𝜙𝑖(𝑦1)/
∑𝑚
𝑖=1 𝛿1𝑖𝜙𝑖(𝑦1).

We need to evaluate 𝜕 log 𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1)/𝜕𝑦𝑡−ℎ . For ℎ ≥ 1, we have:

𝜕 log 𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)
𝜕𝑦𝑡−ℎ

=
1

𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)
𝜕𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)

𝜕𝑦𝑡−ℎ
, (A.6)

where

𝜕𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)
𝜕𝑦𝑡−ℎ

=

𝑚∑
𝑖=1

𝜙𝑖(𝑦𝑡)
𝑚∑
𝑗=1

Π𝑗𝑖

𝜕𝑃(𝑥𝑡−1 = 𝑗 |𝑦𝑡−1, ..., 𝑦1)
𝜕𝑦𝑡−ℎ

(A.7)

with, for ℎ = 1:

𝜕𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, ..., 𝑦1)
𝜕𝑦𝑡−1

=

𝐵𝑡−1𝜙′
𝑖
(𝑦𝑡−1)

∑𝑚
𝑗=1 Π𝑗𝑖𝑃(𝑥𝑡−2 = 𝑗 |𝑦𝑡−2, ..., 𝑦1) − 𝐴𝑖𝑡−1

∑𝑚
𝑙=1 𝜙

′
𝑙
(𝑦𝑡−1)

∑𝑚
𝑗=1 Π𝑗𝑙𝑃(𝑥𝑡−2 = 𝑗 |𝑦𝑡−1, ..., 𝑦1)

𝐵2
𝑡−1

(A.8)

The expression in Equation (A.6) is bounded and therefore Lipschitz in 𝑦𝑡−1. First of all,
1

𝑝(𝑦𝑡 |𝑦𝑡−1 ,𝑦𝑡−2 ,...,𝑦1) is bounded from below and finite. 𝐴𝑖𝑡 and 𝐵𝑡 are finite, and 𝜙′(·) is bounded
because the Gaussian distribution itself is Lipschitz continuous, so boundedness of the ex-
pressions follows.

For ℎ ≥ 2:

𝜕𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, ..., 𝑦1)
𝜕𝑦𝑡−ℎ

=

𝐵𝑡−1𝜙𝑖(𝑦𝑡−1)
∑𝑚
𝑗=1 Π𝑗𝑖

𝜕𝑃(𝑥𝑡−2=𝑗 |𝑦𝑡−2 ,...,𝑦1)
𝜕𝑦𝑡−ℎ

− 𝐴𝑖𝑡−1
∑𝑚
𝑙=1 𝜙𝑙(𝑦𝑡−1)

∑𝑚
𝑗=1 Π𝑗𝑙

𝜕𝑃(𝑥𝑡−2=𝑗 |𝑦𝑡−2 ,...,𝑦1)
𝜕𝑦𝑡−ℎ

𝐵2
𝑡−1

(A.9)

and, as this is recursive, we need the expression for 𝜕𝑃(𝑥1 = 𝑖 |𝑦1)/𝜕𝑦1, which is given by:

𝜕𝑃(𝑥1 = 𝑖 |𝑦1)
𝜕𝑦1

=
𝛿1𝑖𝜙′

𝑖
(𝑦1)

∑𝑚
𝑗=1 𝛿1𝑗𝜙 𝑗(𝑦1) − 𝛿1𝑖𝜙𝑖(𝑦1)

∑𝑚
𝑗=1 𝛿1𝑗𝜙′

𝑗
(𝑦1)(∑𝑚

𝑗=1 𝛿1𝑗𝜙 𝑗(𝑦1)
)2
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Define 𝐶𝑖𝑡−1 := 𝜙𝑖(𝑦𝑡−1)
∑𝑚
𝑗=1 Π𝑗𝑖

𝜕𝑃(𝑥𝑡−2=𝑗 |𝑦𝑡−2 ,...,𝑦1)
𝜕𝑦𝑡−ℎ

and 𝐷𝑡 =
∑
𝑖 𝐶𝑖𝑡−1. Denote

𝐶low,𝑖 =
�(𝜎𝑚)
𝑚

∑𝑚
𝑗=1 Π𝑗𝑖

𝜕𝑃(𝑥𝑡−2=𝑗 |𝑦𝑡−2 ,...,𝑦1)
𝜕𝑦𝑡−ℎ

and 𝐴low,𝑖 =
�(𝜎𝑚)
𝑚−1

∑𝑚
𝑗=1 Π𝑗𝑖𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, ..., 𝑦1) <

�(𝜎𝑚)
𝑚−1 . We rewrite Equation (A.9) as (𝐵𝑡−1𝐶𝑖𝑡−1 − 𝐴𝑖𝑡−1𝐷𝑡−1)/𝐵2

𝑡−1.

By our assumptions, there are two cases. If we are in the case that 𝑖 and 𝑦𝑡−1 are such that
𝜙𝑖(𝑦𝑡−1) < �(𝜎𝑚)/(𝑚 − 1), we have 𝐵𝑡−1𝐶𝑖𝑡−1 < 𝐵𝑡−1𝐶low,𝑖 and 𝐴𝑖𝑡−1𝐷𝑡−1 < 𝐴low,𝑖𝐷𝑡−1. Both
𝐴low,𝑖 and 𝐶low,𝑖 are decreasing in 𝑚, so in this case Equation (A.9) is decreasing in 𝑚. On
the other hand, if 𝑖 is such that 𝜙𝑖(𝑦𝑡−1) > (𝐾 − �(𝜎𝑚)), we have 𝐵𝑡−1𝐶𝑖 ,𝑡−1 − 𝐴𝑖 ,𝑡−1𝐷𝑡−1=
(𝐵𝑡−1 −𝐴𝑖 ,𝑡−1 +𝐴𝑖 ,𝑡−1)𝐶𝑖 ,𝑡−1 −𝐴𝑖 ,𝑡−1(𝐷𝑡−1 −𝐶𝑖 ,𝑡−1 +𝐶𝑖 ,𝑡−1) = (𝐵𝑡−1 −𝐴𝑖 ,𝑡−1)𝐶𝑖 ,𝑡−1 −𝐴𝑖 ,𝑡−1(𝐷𝑡−1 −
𝐶𝑖 ,𝑡−1), with 𝐵𝑡−1 − 𝐴𝑖 ,𝑡−1 < �(𝜎𝑚)

∑
𝑘≠𝑖

∑𝑚
𝑗=1 Π𝑗𝑘𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, ..., 𝑦1) and 𝐷𝑡−1 − 𝐶𝑖 ,𝑡−1 <

�(𝜎𝑚)
∑
𝑘≠𝑖

∑𝑚
𝑗=1 Π𝑗𝑘

𝜕𝑃(𝑥𝑡−2=𝑗 |𝑦𝑡−2 ,...,𝑦1)
𝜕𝑦𝑡−ℎ

. Both terms in the numerator are decreasing towards
zero in 𝑚. Note that 𝐵𝑡−1 is bounded by 𝐾(𝜎𝑚). Thus, in both cases, the derivative in Equation
(A.9) decreases in 𝑚, so the Lipschitz coefficient of log 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) to 𝑦𝑡−ℎ , ℎ ≥ 2 is
decreasing in 𝑚. □

This result is related to Le Gland and Mevel (2000) who show that Hidden Markov Models have
exponential forgetting, which in this context means that 𝜕𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�)/𝜕𝑦𝑡−ℎ declines
in ℎ at an exponential rate. However, for our result, exponential forgetting is not sufficient,
because we need the Lipschitz constant not only to decline if the history is longer ago, but the
Lipschitz constant also needs to become smaller as 𝑚 grows larger, which is what we showed
with Lemma 6. Intuitively, this result says that as the number of states grows large enough,
and the filter becomes better, our HMM becomes approximately first-order Markov.

Corollary 3. Under the assumptions of Lemma 6, the Hellinger distance between the conditional
distribution 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�) and the Gaussian mixture 𝑝0(𝑦𝑡 |𝑦𝑡−1;�) :=

∑𝑚
𝑗=1 𝜙 𝑗(𝑦𝑡)Π𝑙 𝑗 with

mixture weights {Π𝑙 𝑗}𝑚𝑗=1, with 𝑙 as in Lemma 6, approaches zero as 𝑚 becomes large.

Note that 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�) is a Gaussian mixture with convex mixture weights∑𝑚
𝑖=1

(
Π𝑖 𝑗𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1)

)
, 𝑗 = 1, ..., 𝑚. From Lemma 6, the 𝑙2-norm between the

mixture weights
∑𝑚
𝑖=1

(
Π𝑖 𝑗𝑃(𝑥𝑡−1 = 𝑖 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1)

)
and Π𝑙 𝑗 goes to zero when 𝑚 large.

From this, it follows that 𝑑2(𝑝(𝑦𝑡 |𝑦𝑡−1, ...., 𝑦1;�), 𝑝0(𝑦𝑡 |𝑦𝑡−1;�)) is decreasing in 𝑚.

A.5 The KL divergence is a function of all conditional KL divergences

Lemma 7. Under assumption (A1) and (A5), if 𝐷𝐾𝐿
𝒴

( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚)) is bounded
and can be made arbitrarily small for any sequences {𝑦𝑘}𝑡−1

𝑘=1 for all 𝑡, then 𝐷𝐾𝐿
𝒴

( 𝑓 (y)| |𝑝(y;�𝑚)) is also
bounded and can be made arbitrarily small by picking 𝑚 large.
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Proof. The first-order Markov assumption on the true DGP of y implies 𝑓 (𝑦𝑡 |𝑦0, 𝑦1, ..., 𝑦𝑡−1) =
𝑓 (𝑦𝑡 |𝑦𝑡−1), such that we can write

𝑓 (y) = 𝑓 (𝑦1)
𝑇∏
𝑡=2

𝑓 (𝑦𝑡 |𝑦𝑡−1)

where 𝑓 (𝑦1) denotes some initial distribution.

Hidden Markov Models do not satisfy the Markov property for y. We have

𝑝(y;�) = 𝑝(𝑦1;�)
𝑇∏
𝑡=2

𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)

with 𝑝(𝑦1;�) again the initial distribution.

The KL divergence for 𝑇 observations is given by∫
𝑓 (y) log

(
𝑓 (y)
𝑝(y;�)

)
𝑑y =∫ ∫

· · ·
∫

𝑓 (𝑦1)
𝑇∏
𝑡=2

𝑓 (𝑦𝑡 |𝑦𝑡−1) log

(
𝑓 (𝑦1)

∏𝑇
𝑡=2 𝑓 (𝑦𝑡 |𝑦𝑡−1)

𝑝(𝑦1 |�)𝑝(𝑦2 |𝑦1;�) · · · 𝑝(𝑦𝑇 |𝑦𝑇−1, ..., 𝑦1;�)

)
𝑑𝑦𝑇𝑑𝑦𝑇−1...𝑑𝑦1

Straightforward algebra shows the KL divergence can be written as:∫
𝑓 (y) log

(
𝑓 (y)
𝑝(y;�)

)
𝑑y =

𝐷𝐾𝐿
𝒴

( 𝑓 (𝑦1)| |𝑝(𝑦1 |�))) +
𝑇∑
𝑡=2

∫
𝑓 (y1:𝑡−1)𝐷𝐾𝐿

𝒴
( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�))𝑑y1:𝑡−1

Note that 𝑓 (𝑦1:𝑡−1) integrates to 1 and 𝐷𝐾𝐿
𝒴

is non-negative. This implies if
𝐷𝐾𝐿

𝒴
( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1;�)) → 0 for all 𝑦𝑡 , ..., 𝑦1, and all 𝑡 > 1, then

𝐷𝐾𝐿
𝒴

(𝑝(y;�)| | 𝑓 (y)) → 0. □

A.6 Proof of Main Theorem

Main Theorem. Under assumptions (A1)-(A5), given a sufficiently large number of grid points 𝑚,
there exist a set of grid points �𝑚 ∈ 𝒴, variance 𝜎𝑚 ≥ 𝜏 > 0 and transition probability matrix Π𝑚 ,
collected in �𝑚 = (�𝑚 ,Π𝑚 , 𝜎𝑚) such that the KL divergence between 𝑓 (y) and 𝑝(y;�) on the compact
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subset 𝑦 ∈ 𝒴 ⊂ R𝑘 , given by

𝐷𝐾𝐿
𝒴

( 𝑓 (y)| |𝑝(y;�)) =
∫
𝒴

𝑓 (y) log
𝑓 (y)
𝑝(y;�)𝑑y,

can be made arbitrarily small.

Proof. By Corollary 3, as 𝑚 becomes large, 𝑑2(𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚), 𝑝0(𝑦𝑡 |𝑦𝑡−1;�)) goes to zero.
Next, we apply Lemma 5 to the 𝑚 conditional distribution functions 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)) and
𝑝0(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖);�𝑚) for 𝑖 = 1, ....𝑚. By Lemma 5, the 𝐿2 norm between these 𝑚 conditional
distributions is bounded and becomes arbitrarily small as 𝑚 becomes large. This holds for a
grid �𝑚 on 𝒴 for which the grid points get closer together as 𝑚 grows larger, and 𝜎𝑚 ≥ 𝜏 > 0
approaches zero. By the triangle inequality,

𝑑2( 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)), 𝑝(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖), ..., 𝑦1;�𝑚)) ≤
𝑑2(𝑝0(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖);�𝑚), 𝑝(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖), ..., 𝑦1;�𝑚)) + ...
𝑑2(𝑝0(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖);�𝑚), 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)))

Together with Lemma 1, this implies 𝐷𝐾𝐿
𝒴

( 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖)), 𝑝(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖), ..., 𝑦1;�𝑚))
approaches zero when 𝑚 becomes large.

Next, we show that when the KL-divergence of the distribution conditional on 𝑦𝑡−1 being one
of the 𝑚 gridpoints, i.e., in 𝑦𝑡−1 = �𝑚(𝑖), becomes arbitrarily small as 𝑚 becomes large, then
the KL divergence of distributions conditional on any 𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦1 in the compact set 𝒴
also becomes small.

By Assumptions (A3)-(A4), and Lemma 6, we have

𝐷𝐾𝐿( 𝑓 (𝑦𝑡 |𝑦𝑡−1 = 𝑦)| |𝑝(𝑦𝑡 |𝑦𝑡−1 = 𝑦, 𝑦𝑡−2, ..., 𝑦1;�𝑚)) ≤
𝐷𝐾𝐿( 𝑓 (𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖))| |𝑝(𝑦𝑡 |𝑦𝑡−1 = �𝑚(𝑖), 𝑦𝑡−2, ..., 𝑦1;�𝑚)) + ...
𝑂(𝐾𝑝 |𝑦 − �𝑚(𝑖)|, 𝐾 𝑓 |𝑦 − �𝑚(𝑖)|, 𝐾log 𝑓 |𝑦 − �𝑚(𝑖)|)

Here 𝐾𝑝 denotes the Lipschitz coefficient of 𝑝(𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1;�𝑚) in 𝑦𝑡−1, 𝐾 𝑓 denotes the Lip-
schitz coefficient of 𝑓 (𝑦𝑡 |𝑦𝑡−1) in 𝑦𝑡−1, and 𝐾log 𝑓 the Lipschitz coefficient for log 𝑓 (𝑦𝑡 |𝑦𝑡−1) in
𝑦𝑡−1. Note here that the relevant �𝑚(𝑖) to consider is the one closest to 𝑦. 𝑂(𝐾 |𝑦−�𝑚(𝑖)|, 𝐾 𝑓 |𝑦−
�𝑚(𝑖)|, 𝐾log 𝑓 |𝑦−�𝑚(𝑖)|) denotes some function increasing in the terms in between brackets. As
can be seen, these three terms converge to zero as the grid points are closer together, because
then the maximum distance |𝑦 − �𝑚(𝑖)| also goes to zero, so 𝑂(·) will also converge to zero.
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By Lemma 6, if 𝐷𝐾𝐿
𝒴

( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, {𝑦𝑡−𝑘}𝑡−1
𝑘=2;�𝑚)) can be made arbitrarily small for 𝑚

large enough, then 𝐷𝐾𝐿
𝒴

( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, {�̃�𝑡−𝑘}𝑡−1
𝑘=2;�𝑚) is arbitrarily small for any other

sequence {�̃�𝑡−𝑘}𝑡−1
𝑘=1, because log 𝑝(𝑦𝑡 |𝑦𝑡−1, {𝑦𝑡−𝑘}𝑡−1

𝑘=2;�𝑚)) is Lipschitz continuous in {𝑦𝑡−𝑘}𝑡−1
𝑘=2

with a coefficient that goes to zero as 𝑚 becomes large. This implies the KL divergence for all
𝐷𝐾𝐿

𝒴
( 𝑓 (𝑦𝑡 |𝑦𝑡−1)| |𝑝(𝑦𝑡 |𝑦𝑡−1, {�̃�𝑡−𝑘}𝑡−1

𝑘=2;�𝑚) goes to zero when 𝑚 becomes large, for all 𝑡 ≥ 2.

For the initial distribution, the parameters 𝛿1𝑖 function as mixture weights, where 𝑝(𝑦1) =∑𝑚
𝑗=1 𝜙 𝑗(𝑦1)𝛿1𝑖 is also a mixture of Gaussians. Applying Lemma 4 shows this KL divergence is

also bounded and can be made arbitrarily small.

Applying Lemma 7 to the conditional KL divergences concludes the proof. □

B Estimation procedures

B.1 Estimation of HMM’s using the EM algorithm

We first discuss the general procedure we use for the estimation of the HMM. We omit the
panel data dimension and assume all parameters are constant. Let 𝜙 𝑗(𝑦𝑡) = 𝑃(𝑦𝑡 |𝑥𝑡 = 𝑗)denote
the density of 𝑦𝑡 conditional on 𝑥𝑡 being in state 𝑗. That is,

𝜙 𝑗(𝑦𝑡) =
1

𝜎
√

2𝜋
𝑒
− 1

2𝜎2 (𝑦𝑡−�(𝑗))
2
, (B.1)

if 𝑘 = 1, or det(2𝜋Σ)− 1
2 𝑒−

1
2 (𝑦𝑡−�(𝑗))′(Σ)−1(𝑦𝑡−�𝑗) for 𝑘 > 1, where Σ𝑡 = diag(𝜎2). It will be useful to

think of the following matrix form for the observation densities:

𝚽(𝑦𝑡) =
©«
𝜙1(𝑦𝑡) 0

. . .

0 𝜙𝑚(𝑦𝑡)

ª®®®¬ , (B.2)

that is, 𝚽 is an 𝑚 × 𝑚 diagonal matrix with the observation densities as diagonal elements.

Denote bold variables y = {𝑦1, 𝑦2, . . . , 𝑦𝑇} and x = {𝑥1, 𝑥2, . . . , 𝑥𝑇} as realizations of this
random process. The complete data likelihood of the model in Equation (2) is given by

ℒ(� |y,x) = 𝑝(y,x|�) = 𝑝(y |x, �)𝑝(x|�), (B.3)
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and the maximum likelihood estimator is given by

�∗ = argmax
�

ℒ(� |y,x). (B.4)

If the latent states x were observed, the log-likelihood would be straightforward to maximize.
This is because the log-likelihood is given by

log (ℒ(� |y,x)) = log (𝑝(y |x, �)) + log (𝑝(x|�)) , (B.5)

and, conditional on x, the parameters Π do not influence y and, similarly, the parameters
(µ, 𝜎) do not matter for x. Together, this implies the log-likelihood is given by

log (ℒ(� |y,x)) = log (𝑝(y |x,µ, 𝜎)) + log (𝑝(x|Π)) . (B.6)

That is, the parameters governing the observation equation and state transition equation could
be solved for separately, given x. Intuitively, if the states x are observed, one could estimate
Π using only data on transitions from x, estimate �(𝑗) by averaging the 𝑦𝑡 that are observed
when 𝑥𝑡 is in state 𝑗, and then estimate Σ using the sample variance of the observations y

demeaned by the estimates of µ.

In practice, the latent states x are unobservable, but we can use the EM algorithm to maximize
the likelihood. The EM algorithm iterates between updating the posterior distribution over
the latent states 𝑝x = 𝑝(x|y, �) taking the parameters and observations (y, �) as fixed in the
E step, and updating the parameters �(𝑖) → �(𝑖+1) taking the latent states and observations
(𝑝x, y) as fixed in the M step.

We now describe the E-step. Let 𝑦𝑡 = (𝑦1, 𝑦2, . . . , 𝑦𝑡), i.e., the observed values up to time 𝑡.
Similarly, let 𝑦𝑇

𝑡+1 = (𝑦𝑡+1, 𝑦𝑡+2, . . . , 𝑦𝑇), i.e., the observed values from time 𝑡 + 1 to 𝑇. The
forward probabilities α𝑡(𝑗) are given by

α𝑡(𝑗) = 𝑝
(
𝑦𝑡 , 𝑥𝑡 = 𝑗 |�

)
(B.7)

and the backward probabilities β𝑡(𝑘) are given by

β𝑡(𝑘) = 𝑝
(
𝑦𝑇𝑡+1 |𝑥𝑡 = 𝑘, �

)
. (B.8)
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These are defined recursively as:

α1(𝑗) = 𝛿1, 𝑗𝜙 𝑗(𝑦1)

α𝑡+1(𝑗) =
(
𝑚∑
𝑘=1

α𝑡(𝑘)Π𝑘 𝑗

)
𝜙 𝑗(𝑦𝑡+1),

β𝑇(𝑘) = 1

β𝑡(𝑘) =
𝑚∑
𝑗=1

Π𝑘 𝑗𝜙 𝑗(𝑦𝑡+1)β𝑡+1(𝑗),
(B.9)

or in matrix form
α𝑡 = α𝑡−1Π𝚽(𝑦𝑡) and β′

𝑡 = Π𝚽(𝑦𝑡+1)β′
𝑡+1. (B.10)

Using these probabilities, we can define the probability of being in state 𝑘 at time 𝑡, and
observing y as

𝑝(y, 𝑥𝑡 = 𝑘 |�) = α𝑡(𝑘)β𝑡(𝑘). (B.11)

This leads to a posterior probability of being in state 𝑘, given by

γ𝑡(𝑘) = 𝑝(𝑥𝑡 = 𝑘 |y, �) =
𝑝(y, 𝑥𝑡 = 𝑘 |�)

𝑝(y |�) =
𝑝(y, 𝑥𝑡 = 𝑘 |�)∑𝑚
𝑗=1 𝑝(y, 𝑥𝑡 = 𝑗 |�) =

α𝑡(𝑘)β𝑡(𝑘)∑𝑚
𝑗=1 α𝑡(𝑗)β𝑡(𝑗)

. (B.12)

We can also define the posterior transition probability between state 𝑖 at time 𝑡 and state 𝑗 at
time 𝑡 + 1 as

�𝑡(𝑘, 𝑗) = 𝑝(𝑥𝑡+1 = 𝑗 , 𝑥𝑡 = 𝑘 |y, �)
∝ β𝑡+1(𝑗)𝜙 𝑗(𝑦𝑡+1)Π𝑘 𝑗α𝑡(𝑘),

(B.13)

where the last line follows from the definition of γ𝑡(𝑘) from above.

At last, the 𝑀 step is given by

�𝑙(𝑗) =
∑𝑇
𝑡=1 𝑦𝑙 ,𝑡𝑝(𝑥𝑡 = 𝑗 |y, �)∑𝑇
𝑡=1 𝑝(𝑥𝑡 = 𝑗 |y, �)

=

∑𝑇
𝑡=1 𝑦𝑙 ,𝑡γ𝑡(𝑗)∑𝑇
𝑡=1 γ𝑡(𝑗)

(B.14)

(𝜎𝑙)2 =
1
𝑇

𝑇∑
𝑡=1

𝑚∑
𝑗=1

(𝑦𝑙 ,𝑡 − �𝑙(𝑗))2γ𝑡(𝑗) (B.15)

Π𝑞 𝑗 =

∑𝑇
𝑡=2 𝑝(𝑥𝑡 = 𝑗 , 𝑥𝑡−1 = 𝑞 |y, �)∑𝑇

𝑡=2 𝑝(𝑥𝑡−1 = 𝑞 |y, �)
=

∑𝑇
𝑡=2 �𝑡(𝑞, 𝑗)∑𝑇
𝑡=2 γ𝑡(𝑞)

, (B.16)

for 𝑙 = 1, ..., 𝑘 subscripts denoting different elements of the vector 𝑦𝑡 = (𝑦1𝑡 , ..., 𝑦𝑘𝑡).
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Given the updated transition matrix Π𝑡 we can update the stationary probabilities as

δ = 1′ (𝐼𝑚 −Π +𝑈)−1 . (B.17)

Here𝑈 is an 𝑚 × 𝑚 matrix of ones.

Note that this setting can be adapted to allow for the discretization of age-dependent earnings
processes, with age-dependent transition probabilities and grid placement. In this case, the
asymptotics depend on 𝑁 and a different transition probability matrix and grid are estimated
for every age group. However, in practice this implies the estimation of many parameters,
which is why, for the estimation of models with rich life-cycle dynamics, we will use an
iterative adaption of this algorithm. This algorithm is described in Appendix Section B.2. The
idea behind this algorithm is that it only uses data on two time periods at a time, but passes
the estimates for the filtered states on to the next time period.

B.2 A multi-step EM algorithm for HMM

In this subsection, we outline the multi-step EM algorithm we use for the estimation of the
HMM in case of life-cycle dynamics, where the transition matrix Π𝑡 and grid �𝑡 are allowed
to vary over the life-cycle. The large number of parameters to be estimated here requires 𝑁 to
be large, and the EM algorithm has to converge for many parameters. A multi-step algorithm
provides more stability.

Assume a panel of 𝑦𝑖𝑡 ∈ R𝑘 , 𝑡 = 1, ..., 𝑇 and 𝑖 = 1, ..., 𝑁 . Assume a given grid size 𝑚.
Initialization:

• Estimate a Gaussian Mixture Model on 𝑦𝑖1, 𝑖 = 1, ..., 𝑁 . This gives a grid for the first
time period and iteration, �1

1, stationary probabilities 𝛿1
1 and the filtered probabilities 𝛼1

1.
Set iteration 𝑗 = 1.

We have a forward and backward step. For the forward step, set 𝑡 = 1 and:

• Estimate the HMM of Section B for (𝑦𝑖𝑡 , 𝑦𝑖𝑡+1), 𝑖 = 1, ..., 𝑁 , restricting the grid of time
period 𝑡 to �

𝑗

𝑡 , the stationary probabilities of time period 𝑡 to 𝛿
𝑗

𝑡 , the forward probabilities
to 𝛼

𝑗

𝑡 (except for 𝑡 = 1, in which case they follow from Equation (B.9)). For 𝑗 > 1, also
restrict the backward probabilities for 𝑡 + 1 to those obtained from the backward step,
𝛽
𝑗−1
𝑡+1, else set to 1. Estimate and store the grid �

𝑗

𝑡+1, the transition probability matrix Π
𝑗

𝑡 ,
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stationary probabilities 𝛿
𝑗

𝑡+1, and forward probabilities 𝛼
𝑗

𝑡+1. Set 𝑡 = 𝑡 + 1 and repeat up
until and including 𝑡 = 𝑇 − 1.

For the backward step, set 𝑡 = 𝑇 and:

• Estimate the HMM of Section B for (𝑦𝑖𝑡−1, 𝑦𝑖𝑡), 𝑖 = 1, ..., 𝑁 , restricting the grid of time
period 𝑡 to �

𝑗

𝑡 , the stationary probabilities of time period 𝑡 to 𝛿
𝑗

𝑡 , the forward probabilities
to 𝛼

𝑗

𝑡 , the backward probabilities to 𝛽
𝑗

𝑡 (for 𝑡 < 𝑇). When 𝑡 = 𝑇, all of these (except the
backward probabilities) come from the last time period of the forward step. Estimate
and store the grid �

𝑗

𝑡−1, the transition probability matrix Π
𝑗

𝑡−1, stationary probabilities
𝛿
𝑗

𝑡−1, and backward probabilities 𝛽
𝑗

𝑡−1. Set 𝑡 = 𝑡 − 1 and repeat up until and including
𝑡 = 2.

Once can iterate multiple times between the forward and backward step until they stabilize.
In that case, update 𝑗 = 𝑗 + 1.

C Discretization of a VAR process

In this Appendix, we demonstrate the performance of our method for discretizing a bivariate
VAR model of the form

𝑦1,𝑡 = 𝛽11𝑦1,𝑡−1 + 𝛽12𝑦1,𝑡−1 + �1,𝑡 (C.1)

𝑦2,𝑡 = 𝛽21𝑦1,𝑡−1 + 𝛽22𝑦2,𝑡−1 + �2,𝑡 , (C.2)

where �𝑡 ∼ 𝑁(0,Σ).

We consider two different parametrizations but keep the grid size fixed to 𝑚 = 25 to show
how our discretization method optimally selects the grid. The optimal grids are visualized
in Figure C1. As can be seen, as opposed to a tensor grid, our optimal grid incorporates the
structure of the process into the grid. For example, in a VAR model where both variables are
positively correlated (𝛽12 = 𝛽21 > 0), if 𝑦1 is large, 𝑦2 is also likely large. Figure C1b shows
how this is reflected in our optimal grid, while a standard tensor grid as in Figure C1c does
not reflect this dependence.

Table C1 summarizes the performance of our discretization compared to the discretization
of Farmer and Toda (2017) for two different parametrizations of the VAR model in Equation
(C.1). In their discretization, Farmer and Toda (2017) target the first four conditional moments.
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Figure C1: Visualisation of optimal grid for two different parametrizations of the data generating process in
Equation (C.1), 𝑚 = 25.

(a) JM grid: uncorrelated 𝑦1 , 𝑦2
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(b) JM grid: positively corr. 𝑦1 , 𝑦2
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(c) Tensor grid
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For both parametrizations, Σ = diag(0.1). Panel (a)/(c): 𝛽11 = 0.7, 𝛽12 = 0, 𝛽21 = 0, 𝛽22 = 0.7. Panel (b)/(c):
𝛽11 = 0.7 𝛽12 = 0.2, 𝛽21 = 0.2, 𝛽22 = 0.7. JM stands for Janssens-McCrary.

As we can see, they outperform our discretization method in the first two conditional and
unconditional moments, but for higher order moments, our method tends to be closer to the
true process. Our method also has a smaller mean squared forecast error.
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Table C1: Comparison for VAR model in Equation (C.1) for 𝑚 = 25 (𝑚𝑦1 = 5, 𝑚𝑦2 = 5 for Farmer-Toda).

Method Janssens-McCrary Farmer-Toda
Parametrization 1
Abs. dev. uncond. mean 𝑦 0.103 < 0.001

% dev. uncond. variance 𝑦 -0.042 0.083
% dev. autocorrelation 𝑦 0.111 -0.264
Abs. dev. uncond. skewness 𝑦 0.009 -0.046
% dev. uncond. kurtosis 𝑦 -0.049 0.097
Abs. dev. correlation(𝑦1, 𝑦2) 0.059 0.007
Abs. dev. cond. mean 𝑦 0.041 < 0.001

% abs. dev. cond. variance 𝑦 37.8 23.3
% abs. dev. cond. skewness 𝑦 0.256 0.466
% abs. dev. cond. kurtosis 𝑦 12.7 49.3
MSFE 𝑦 0.109 0.133
Parametrization 2
Abs. dev. uncond. mean 𝑦 0.144 < 0.001

% dev. uncond. variance 𝑦 -0.122 0.034
% dev. autocorrelation 𝑦 0.074 -0.110
Abs. dev. uncond. skewness 𝑦 -0.046 0.278
% dev. uncond. kurtosis 𝑦 -0.030 -0.015
Abs. dev. correlation(𝑦1, 𝑦2) 0.093 -0.007
Abs. dev. cond. mean 𝑦 0.030 < 0.001

% abs. dev. cond. variance 𝑦 38.3 9.86
% abs. dev. cond. skewness 𝑦 0.337 0.609
% abs. dev. cond. kurtosis 𝑦 43.4 81.7
MSFE 𝑦 0.120 0.211

Notes: Parametrization 1: 𝛽11 = 0.7 𝛽12 = 0.2, 𝛽21 = 0.0, 𝛽22 = 0.7. Parametrization 2:
𝛽11 = 0.7 𝛽12 = 0.2, 𝛽21 = 0.2, 𝛽22 = 0.7. The statistics average over 𝑦1 and 𝑦2.
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D Asset Pricing Model with Stochastic Volatility

D.1 A closed-form solution

From De Groot (2015), we obtain closed-form expressions for the asset pricing model with
stochastic volatility presented in Equations (7)-(8). The solution for the price-dividend ratio is
given by:

𝑣𝑡 =

∞∑
𝑖=1

𝛽𝑖 exp(𝐵𝑖𝑦𝑡 + 𝐶𝑖�̄ + 𝐷𝑖(�𝑡 − �̄) + 𝐻𝑖),

where

𝐵𝑖 =

(
1 − 𝛾

1 − 𝜌

)
𝜌(1 − 𝜌𝑖)

𝐶𝑖 =
1
2

(
1 − 𝛾

1 − 𝜌

)2 (
𝑖 − 2𝜌

1 − 𝜌𝑖

1 − 𝜌
+ 𝜌2 1 − 𝜌2𝑖

1 − 𝜌2

)
𝐷𝑖 =

𝜌�
2

(
1 − 𝛾

1 − 𝜌

)2 (
𝜙1 + 𝜙2𝜌�𝜌

𝑖−1
� + 𝜙3𝜌

𝑖−1 + 𝜙4𝜌
2(𝑖−1)

)
𝐻𝑖 = 𝐹𝑖𝜔

2

where

𝐹𝑖 =
1
8

(
1 − 𝛾

1 − 𝜌

)4 (
𝑖𝜙2

1 + 𝜙2
2
1 − 𝜌2𝑖

�

1 − 𝜌2
�

+ 𝜙2
3
1 − 𝜌2𝑖

1 − 𝜌2 + 𝜙2
4
1 − 𝜌4𝑖

1 − 𝜌4 ...

... + 2𝜙1𝜙2
1 − 𝜌𝑖�
1 − 𝜌�

+ 2𝜙1𝜙3
1 − 𝜌𝑖

1 − 𝜌
+ 2𝜙1𝜙4

1 − 𝜌2𝑖

1 − 𝜌2 + 2𝜙2𝜙3
1 − (𝜌�𝜌)𝑖

1 − 𝜌�𝜌
...

... + 2𝜙2𝜙4
1 − (𝜌�𝜌2)𝑖

1 − 𝜌�𝜌2 + 2𝜙3𝜙4
1 − 𝜌3𝑖

1 − 𝜌3

)
and

𝜙1 =
1

1 − 𝜌�
, 𝜙2 =

−𝜌�(𝜌� + 𝜌)(1 − 𝜌)2

(𝜌2 − 𝜌�)(𝜌 − 𝜌�)(1 − 𝜌�)
,

𝜙3 =
−2𝜌2

𝜌 − 𝜌�
, 𝜙4 =

𝜌4

𝜌2 − 𝜌�
.
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The conditional expected return on equity is defined as

E𝑡𝑅
𝑒
𝑡+1 = E𝑡

(
𝑑𝑡+1 + 𝑝𝑡+1

𝑝𝑡

)
=
E𝑡 exp(𝑦𝑡+1) + E𝑡𝑣𝑡+1 exp(𝑦𝑡+1)

𝑣𝑡

The solution to this expression gives that

E𝑡 exp(𝑦𝑡+1) = exp
(
𝜌𝑦𝑡 +

1
2 �̄ +

𝜌�
2 (�𝑡 − �̄) + 1

8𝜔
2)

and

E𝑡𝑣𝑡+1 exp(𝑦𝑡+1) =
∞∑
𝑖=1

𝛽𝑖 exp
(
(𝐵𝑖 + 1)𝜌𝑦𝑡 + (𝐶𝑖 +

1
2(𝐵𝑖 + 1)2)�̄ + 1

2(𝐵𝑖 + 1)2𝜌�(�𝑡 − �̄) + ...

(𝐹𝑖 +
1
2(

1
2(𝐵𝑖 + 1)2 + 𝐷𝑖)2)𝜔2

)
.

As shown by De Groot (2015), there is a parameter restriction that guarantees a finite price-
dividend ratio:

𝛽 exp

(
1
2

(
1 − 𝛾

1 − 𝜌

)2
�̄ + (1 − 𝛾)4

8(1 − 𝜌)4(1 − 𝜌�)2
𝜔2

)
< 1.

We chose our parametrization of 𝛽 and 𝛾 such that this condition is satisfied.

D.2 A discretized solution

Instead of solving the model using the continuous-support process in Equations (7)-(8), one
can discretize the stochastic process and obtain approximate solutions for the price-dividend
ratio, the conditional expected return on equity, and other objects of interest. If 𝑦𝑡 follows
a discrete-state-space first-order Markov process with states 𝑦𝑠 , 𝑠 ∈ {1, ..., 𝑚} and transition
probability matrix Π with elements Π𝑠𝑠′ = 𝑃(𝑦𝑡+1 = 𝑦𝑠′ |𝑦𝑡 = 𝑦𝑠), then we can rewrite Equation
(9) as

𝑣(𝑦𝑠) = 𝛽
𝑚∑
𝑠′=1

exp((1 − 𝛾)𝑦𝑠′)(𝑣(𝑦𝑠′) + 1)Π𝑠𝑠′

57



which solves to

𝑣 =
(
𝐼𝑚 − 𝛽Πdiag(exp(1 − 𝛾)𝑦)

)−1
𝛽Π exp((1 − 𝜎)𝑦), (D.1)

where 𝑚 denotes the number of discrete states of 𝑦𝑡 , 𝑦 is an 𝑠 × 1 vector with all the levels 𝑦𝑡
attains, and 𝑣 is an 𝑠 × 1 vector with all discrete realizations of the price-dividend ratio in each
discrete realization of 𝑦. Similarly, for the vector of conditional expected returns on equity at
each value of the grid 𝑦𝑠 , denoted 𝑅𝑒(𝑦𝑠), we have

𝑅𝑒(𝑦𝑠) =
(∑

𝑠′
Π𝑠𝑠′ exp(𝑦𝑠)(1 + 𝑣(𝑦𝑠′))

)
/𝑣(𝑦𝑠). (D.2)
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E Age-dependent transition probabilities and grids

Figure E1: Visualisation of the age-dependent transition probabilities for a discretization of the stochastic process in Guvenen et al. (2021), with
𝑚 = 12 grid points. The order of the matrix corresponds with a sorted (low-to-high) earnings grid, where the three lowest states are zero-earnings
states. Age on the x-axis of all figures.
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Figure E2: Visualisation of (selected) age-dependent transition probabilities and the age-dependent grid of the
𝑚 = 18-discretization of the stochastic process in Arellano et al. (2017). Age on the x-axis of all figures.

(a) Transition probabilities of the five top earnings states (b) Age-dependent grid (in logs)
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