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Abstract

We revisit predictability of forecast errors in macroeconomic survey data, which is often

taken as evidence of behavioral biases at odds with rational expectations. We argue that to

reject rational expectations, one must be able to predict forecast errors out of sample. How-

ever, the regressions used in the literature often perform poorly out of sample. The models

seem unstable and could not have helped to improve forecasts with access only to available

information. We do find some notable exceptions to this finding, in particular mean bias in

interest rate forecasts, that survive our out-of-sample tests. Our findings help narrow down

the set of biases that merit closer attention of researchers in behavioral macroeconomics.
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1 Introduction

Ever since the the theory of rational expectations has entered economics several decades

ago, economists have debated the empirical question whether people’s expectations are

in fact rational. For the purpose of this paper, we say expectations are rational when

“outcomes do not differ systematically (i.e., regularly or predictably) from what people

expected them to be” (Sargent, 2007). The empirical question then becomes: Are fore-

cast errors predictable using available information, and if so, how?

In this paper, we want to contribute to this debate by drawing a parallel to the ques-

tion of return predictability in finance. It is easy to show that (aggregate) stock mar-

ket returns are predictable by regressing them on a readily observed variable like the

price/dividend ratio (Fama and French, 1988). This observation led to the development

of theoretical models and investment recommendations consistent with the observed

patterns of predictability. But the performance of the regressions had been evaluated

almost exclusively in sample (IS). In an influential study, Welch and Goyal (2007) argued

that the in-sample performance is not a useful definition of predictability, because pre-

dictions are made using future data that is not available to an investor predicting re-

turns in real time. They instead evaluated the predictive performance out of sample

(OOS), and found that the predictability previously documented in the literature all but

disappeared.

Similarly, it is relatively easy to show that forecast errors are predictable by regressing

them on a readily observed variable like forecast revisions. The predictable portion of

the forecast error is then called a bias. Many such biases have been documented using

different data sets on expectations. A host of labels such as “overreaction”, “underre-

action”, “extrapolation”, or “stickiness” have been proposed in an attempt to interpret

them. A sizable literature has been devoted to the development of theoretical models

of expectation formation to match the empirical findings, examine the propagation of

macroeconomic shocks through expectations, and even to make recommendations for

the conduct of policy.1 But again, predictive performance is almost exclusively evalu-

1Some examples in this literature are Angeletos et al. (2018); Winkler (2020); Pfäuti and Seyrich (2022);
Bhandari et al. (2022).
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ated in sample.

In our view, the in-sample approach for detecting biases in expectations suffers from

the same problem as that for detecting predictability of returns. The in-sample per-

formance is not a useful yardstick to reject the null of rational expectations, because

the regression makes use of future data that could not possibly have been available to

the agent who formed the expectation. Armed with the benefit of hindsight that an in-

sample test provides, it is easy to say that someone’s expectations were biased. A higher

bar is to demonstrate that more accurate predictions are possible in real time. This is

what we set out to do in this paper by evaluating the predictive performance out of sam-

ple.

We comprehensively re-examine the empirical evidence on the predictability of fore-

cast errors in survey data documented in the literature as of 2022. We find that many

so-called biases are unstable or spurious. By and large, the models have poor OOS

performance. At best, they predict forecast errors of some variables in some time pe-

riods without a clear pattern. Additionally, many regressions are not significant even

in-sample. Our evidence suggests that many empirical models of behavioral expecta-

tion formation would not have helped to improve their forecasts. In fact, trying to use

the models to correct for expectational biases would have led to larger forecast errors.

Importantly, we also find exceptions to this finding. Some biases are remarkably

stable out of sample. We find robust evidence of a mean bias in professional forecasts

of bond yields across the maturity curve. These patterns could be consistent with rigid

priors about the low-frequency behavior of interest rates (Farmer et al., 2021). Also,

there is strong evidence for what we call forecast combination bias—the fact that indi-

vidual forecasts exhibit excess dispersion around the cross-sectional mean. One can-

didate explanation for this pattern is strategic interaction between forecasters (Gemmi

and Valchev, 2021).

Our paper is simple, and we hope that the simplicity of our approach strengthens

the credibility of our evidence. We do not view our contribution as a judgment in fa-

vor of, or against, rational expectations. Rather, we want to carefully examine which

of the previously documented biases are actually useful to improve forecasts in prac-
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tice, much like Welch and Goyal (2007) asked which asset pricing models could actually

predict returns in practice. Our results can be seen as providing a selection criterion

that helps narrow down the set of biases that merit closer investigation in behavioral

macroeconomics. Researchers interested in theoretical models of expectation forma-

tion may want to focus on replicating those biases that survive our out-of-sample tests.

Why is it that some of the biases that were found to be statistically significant in pre-

vious studies do not work in our OOS tests? One candidate explanation is that our tests

suffer from low power. It is true that, if a researcher is confident in a well-specified, sta-

ble underlying model, an OOS test will always have lower power than an IS test. But this

confidence is rarely warranted in practice. Even a solid finding that one’s expectations

were biased in the past is of limited use if it does not lead to a prescription of how to

improve one’s expectations in the future.

From the evidence in this paper, we conclude that a more likely explanation for weak

OOS performance is that the models are not stable over time. Some of the biases docu-

mented in the literature may be time- or state-dependent.2 As a result, OOS prediction

is difficult because one not only has to estimate the bias, but also how it will change

in the future. This argument has also been made in the finance literature: Structural

changes in return prediction models likely explain the disconnect between IS and OOS

predictability (Lettau and Van Nieuwerburgh, 2007). However, we also document some

biases that do seem structurally stable: Mean bias in professional forecasts of interest

rates, as well as excess dispersion of forecasts around the cross-sectional mean. We

think these biases merit closer attention of researchers in the field.

The only recent study we are aware of that takes a rigorous OOS perspective when

assessing expectational biases is Bianchi et al. (2022). They show that a sophisticated

machine-learning algorithm can improve GDP and inflation forecasts of professional

forecasters out of sample. They also document that the predictive regressions of Coibion

and Gorodnichenko (2015) perform poorly out of sample for GDP and inflation. The

scope of our paper is different. Rather than constructing a new measure of bias, we

2In support of the idea of state-dependent biases, (Angeletos et al., 2021) construct impulse responses
of forecast errors to identified macroeconomic shocks and find that forecast errors exhibit different pat-
terns of predictability depending on the type of the shock and the time since it occurred.
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comprehensively revisit the existing evidence on expectational biases through the OOS

lens. Our paper is closer in spirit to an older literature which asks whether forecasts

from time-series models improve on survey forecasts out of sample (e.g. Pearce, 1987;

Bonham and Dacy, 1991) and usually concludes that they do not. We modify this exer-

cise and ask whether the models of bias proposed in the literature are able to improve

survey forecasts.

Our paper relates to a number of studies that voice skepticism about biases in ex-

pectations based on the existing empirical evidence. Andolfatto et al. (2008) argue that

in macroeconomic models with infrequent regime shifts, rational agents that have to

learn about the new regimes will make forecast errors that seem predictable in small

samples. Hajdini and Kurmann (2022) show that this can even be the case when the

regimes are observed by agents. More subtly, Farmer et al. (2021) argue that in-sample

predictability in small samples can still be consistent with rational Bayesian updating

if agents are unsure about the low-frequency behavior of the time series being forecast

and have relatively strong priors on it, because it takes a very long time for the effect

of the bias induced by the prior to fade away. Our paper takes an entirely empirical

approach and shows that, from an OOS perspective, the evidence on predictability is

often weak to begin with. There is also a strand of the literature that argues that sur-

vey forecasts are optimal, but just not in a mean squared error sense. This could be the

case because forecasters have asymmetric or otherwise non-quadratic loss functions

(Elliott et al., 2008) or have to deal with Knightian uncertainty (Bhandari et al., 2022).

Our paper offers a complementary argument for the optimality of survey forecasts from

an OOS perspective, retaining the standard mean squared error criterion.

The remainder of this paper is structured as follows. Section 2 describes the data,

and Section 3 lays out our empirical procedure. Section 4 contains our findings for sur-

veys of professional forecasters while Section 5 contains findings for household surveys.

Section 6 discusses the robustness of our findings. Section 7 concludes.
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2 Data

We use data from the Survey of Professional Forecasters (SPF), BlueChip Financial Fore-

casts (BC), the Michigan Surveys of Consumers (Michigan) and the Survey of Consumer

Expectations (SCE). The surveys differ in their sample length and coverage of forecast

variables. We only evaluate numerical point forecasts.

The SPF is the longest-running quarterly survey of macroeconomic forecasts in the

United States, starting in 1968. Since 1990, the survey is run by the Philadelphia Fed. In

the middle of each quarter, participants are asked to forecast a wide range of variables

for the current quarter and each of the following quarters, up to four quarters out. From

this survey, we take the following forecast variables: the GDP deflator, nominal GDP,

industrial production; real GDP, consumption, non-residential investment, residential

investment, federal government expenditures, as well as state and local government ex-

penditures; housing starts, the unemployment rate, and CPI headline inflation. For all

variables except the last two, the forecasts in the data are in levels but we transform

them into forecasts of the percent change between the forecast horizon and the quarter

preceding the survey date. For CPI inflation, the forecasts are for annualized quarterly

inflation rates but we transform them into forecasts of the percent change of the CPI

index between the forecast horizon and the quarter preceding the survey. For the un-

employment rate, we directly evaluate the level forecasts. We omit other variables in the

SPF as they have less than 20 years of data in order to guarantee a reasonable evaluation

period for our OOS tests. Our main focus is on a forecast horizon of three quarters, but

we also evaluate forecasts from zero quarters ahead (current-quarter nowcasts) to two

quarters ahead.

The BlueChip survey is a monthly survey of forecasts mainly of interest rates. Our

BlueChip sample starts in 1988. Because the BlueChip forecast horizons are quarterly,

we restrict our sample to the months in the middle of every quarter to ensure constant

forecast horizons. From BlueChip, we take forecasts of the federal funds rate; Treasury

yields at three months, one year, two years, ten years, and 30 years maturity; and Aaa

and Baa corporate bond yields. We also construct implicit forecasts of the one year-
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three month and ten year-two year term spread, as well as the Baa-Aaa corporate bond

spread.

While the respondents to these two surveys are professional forecasters, the Michi-

gan survey and the SCE are monthly household surveys. The Michigan survey starts in

1978 while the SCE starts in 2013. We only use 12-month ahead inflation forecasts, as

those are the only quantitative forecasts of traditional macroeconomic data available.

To construct forecast errors, we also need realized data. For some, like interest rates

which are market-quoted, this is straightforward. But for others, like GDP, the realized

values are subject to considerable revisions. We use vintage data from the real-time data

set for macroeconomists provided by the Philadelphia Fed, and use the first available

releases of the data.

3 Empirical procedure

3.1 Consensus forecasts

Many tests for rational expectations in the literature use consensus forecasts, i.e. the

cross-sectional average of individual forecasts. This average is then treated as the expec-

tation of a hypothetical aggregate forecaster. In our empirical procedure, we consider

the null hypothesis that consensus forecast errors are unpredictable. The regression

models we evaluate take the form:

yt+h − ȳt+h|t = β′xt + ut+h (1)

where yt+h is the realization of a variable at time t + h, ȳt+h|t is the consensus forecast

of yt+h made at time t, and xt are a set of K potential predictors, the values of which

are known at time t. When the consensus forecast is a rational expectation, the forecast

error has zero mean and is unpredictable by xt; that is, β = 0. If instead, model (1)

captures a behavioral bias, then β 6= 0.

We use the behavioral model to construct a series of bias-corrected forecasts:
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y∗t+h|t = ȳt+h|t + β̂′txt.

When we fit the model IS, then β̂t is constant over time and simply equals the OLS

coefficients of (1) estimated over the whole sample. When we fit the model OOS, then

β̂t are the OLS coefficients estimated using data available up to time t, either using re-

cursive or rolling windows. In the surveys we consider, the end-of-period values of the

forecast variables are not known at time t, so that β̂t is estimated using observations

through yt−1.

The prediction errors for the rational model and the behavioral model, respectively,

are:

eRt+h = yt+h − ȳt+h|t

eBt+h = yt+h − ȳt+h|t − β̂′txt.

Under the null of rationality, the rational model should predict better than the behav-

ioral model, as the latter is just injecting noise into the prediction. Following the liter-

ature, we evaluate the accuracy of forecasts using the sum of squared errors (SSE). We

divide the sample into a training period and an evaluation period, the latter starting at

time t0, and compute:

SSEm
t =

t∑
s=t0

(ems )2 ,m = R,B. (2)

Our main statistic of interest is the difference of the SSE of the rational model and the

behavioral model:

∆SSEt =
SSER

t − SSEB
t

SSER
T

. (3)

If the difference is positive, then the behavioral model predicted better in our sample.

If it is negative, then the rational model predicted better. We divide this difference by

SSER
T , the sum of the squared forecast errors over the entire evaluation period, to allow
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for an easier interpretation of the magnitudes. ∆SSEt thus represents the difference in

predictive performance of the rational and behavioral model up to time t, expressed as

a fraction of the total sum of squared original forecast errors in the data. A value of, say,

∆SSET = 0.1 means that the rational model produces squared forecast errors that are

10 percent larger over the sample than the behavioral model; in other words, correcting

for bias using the behavioral model reduces squared forecast errors by 10 percent.3

Although we could use statistical tests for equal forecast accuracy of nested mod-

els (e.g. Clark and West, 2007), we obtain critical values for ∆SSEt (both IS and OOS)

directly using a bootstrap, as we use relatively small samples, potentially serially corre-

lated independent variables, and overlapping observations whenever h > 1.

Our bootstrap follows Welch and Goyal (2007), adapted to the particular structure of

overlapping forecasts, and imposes the null of no predictability of forecast errors. The

data-generating process for our bootstrap is:

ut =
h∑

s=0

θsεt−s (4)

xk,t =

p∑
s=0

φsxk,t−1 +

q∑
s=0

ψsηk,t−s, k = 1, . . . , K (5)

We model forecast errors as a MA(h) process and regressands as ARMA(p,q) processes,

and estimate the parameters by maximum likelihood using the full sample of obser-

vations. The choice of p and q depends on the particular model. The joint residuals

(εt, η1t, . . . ηKt) are stored for sampling. Joint sampling preserves the correlation struc-

ture between the variables. We then generate 10,000 bootstrapped time series by draw-

ing with replacement from the residuals. The initial observation x−1 is selected by pick-

ing one date from the actual data at random. For each draw, we compute ∆SSEt and

use the resulting distribution to compute critical values. We use one-sided critical val-

ues because we are only interested in the whether the behavioral model predicts better

than the null.
3Note that, for IS regressions, ∆SSET is not the same as R2 because we only sum the squared errors

over the evaluation period starting in t0, and therefore can also be negative. In Welch and Goyal (2007), it
is named “IS for OOS R̄2”.
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To see that it is appropriate to model forecast errors as MA(h), consider that, under

the null,

ut = yt+h − E [yt+h | Ft] =
h∑

s=0

(E [yt+h | Ft+s+1]− E [yt+h | Ft+s]) (6)

where Ft is the information set at time t; in particular, yt and xt are part of this informa-

tion set. Each of the forecast revisions in the sum in (4) is uncorrelated with the others,

because rational forecast revisions are martingale differences. Also, ut is uncorrelated

with its own lags at lag length greater than h. As long as ut is also covariance-stationary,

then ut is therefore an MA(h) process. Moreover, xt is uncorrelated with all forecast revi-

sions that occur after time t.

For our OOS tests, we choose an initial estimation window t0 of 40 periods, after

which we begin the OOS forecasts, and restrict ourselves to forecasts for which at least

80 periods of data are available. Any choice of the window length is necessarily ad-hoc,

but our results are robust to this choice, as can be seen in our graphical analysis.

We mainly report results using a recursive window regression to estimate β̂t for our

OOS forecasts. It could be argued that this choice makes it harder to produce forecast

improvements if the true model coefficients are time-varying, as has been suggested for

example by Coibion and Gorodnichenko (2015). However, time variation also makes

it harder to predict forecast errors in real time even if properly accounted for, because

past data now contain less information about future biases. In Section 6.1, we find that

using rolling window regressions does little to improve the predictive performance of

the behavioral models.

3.2 Individual forecasts

Some of the literature conducts rationality tests directly on individual forecasts. Models

of biased expectations at the individual level take the form:

yt+h − yt+h|it = β′xit + uit+h (7)
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where yt+h|it is the forecast of yt+h made at time t by individual i, and xit are one or more

potential predictors of forecast errors, the values of which are known to individual i at

time t.

Again, our null hypothesis is that the individual expectations are rational so that

β = 0, while a behavioral model posits β 6= 0. As before, β̂t are the OLS coefficients

estimated using data available up to time t, and eRit and eBit are the prediction errors for

the rational model and the behavioral model, respectively. The sum of squared errors

(SSE) for the rational and behavioral model, and their difference, are now defined as

SSEm
t =

t∑
s=t0

∑
i∈Is

(emis)2 ,m = R,B (8)

∆SSEt =
SSEB

t − SSER
t

SSER
T

. (9)

where Is is the subset of individuals for which forecasts are available at time s.

For the bootstrap, we model the individual forecast errors and regressors analo-

gously to the consensus level:

uit+h =
h−1∑
s=0

θsεi,t+h−s (10)

xik,t+h =

p∑
s=0

φsxik,t−1 +

q∑
s=0

ψsηki,t−s, k = 1, . . . , K (11)

where the choice of p and q depends on the particular model. We estimate the param-

eters using maximum likelihood, now pooling parameter estimates across forecasters,

and store the estimated residuals for sampling. When we sample the residuals, we pre-

serve cross-sectional correlations and missing values in the following way. We first sam-

ple T +1 time indices randomly with replacement from {0, . . . , T}. For each time period

in the bootstrapped sample, we sample with replacement from the individual residuals

only within the corresponding sampled time index. Where possible, we jointly sample

residuals from uit and xit, preserving correlation at the individual level. The panel that

we obtain is balanced, while the original data have many missing values. In the last step,

we therefore replace simulated data with missing values wherever the original data has
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missing values. We repeat this simulation 10,000 times.

This bootstrap implies that forecast errors are not only unpredictable at the indi-

vidual level, but also at the consensus level. The literature has pointed out that even if

individual forecasters make rational predictions, average forecasts may still be biased.4

Our null hypothesis is somewhat stronger than individual rationality and thus easier to

reject. If we fail to reject our null for the behavioral models because of weak OOS per-

formance, then the same will hold true for a weaker null in which consensus forecast

errors can exhibit some predictability.

4 Results for Professional Forecasters

4.1 Consensus forecast revisions

We first present detailed results of our tests for the popular model of Coibion and Gorod-

nichenko (2015), which aims to predict consensus forecast errors with forecast revi-

sions. The model posits that forecast errors are predictable using forecast revisions:

yt+h − ȳt+h|t = β
(
ȳt+h|t − ȳt+h|t−1

)′
+ ut+h (12)

The in-sample coefficient in these regressions is typically positive, which can be inter-

preted as underreaction: When forecasters revise their expectations upwards, they still

make a positive forecast error and thus should have revised more.5 For this model, we

set p = q = 0 in (5) as rational forecast revisions are uncorrelated. Coibion and Gorod-

nichenko (2015) focus mainly on inflation expectations, but also apply the model to a

wide range of other variables.

We will first present the results of this model graphically, by plotting the series ∆SSEt

4This is the case, for example, in the noisy information model of Coibion and Gorodnichenko (2015).
In that model, the average forecast revision that appears on the right-hand side of the bias regression is
never observed by individuals.

5The empirical model estimated by Coibion and Gorodnichenko additionally has a constant term.
We omit the constant here to give the models the best chance to fit the data OOS because including a
constant makes it considerably harder to reject the null, i.e. reduces the power of our OOS tests. Since
forecast errors and forecast revisions have zero mean under the null, setting the constant to zero is a
reasonable economic prior. Later, we will test for mean bias in forecast errors separately.
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Figure 1: Prediction of consensus forecast errors with revisions.
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Note: Dashed and solid lines represent cumulative squared errors ∆SSEt for the in-sample regression
and the out-of-sample regression, respectively. An increase in a line indicates better performance of the
behavioral model; a decrease in a line indicates better performance of the rational model. Dotted verti-
cal lines mark the end of the training period and the beginning of the evaluation period. Shaded areas
represent NBER recessions.

over time. The ∆SSEt statistic represents the difference of the squared original forecast

errors and the squared model prediction errors (either IS or OOS) cumulated up to time

t. Thus, whenever a line increases, the behavioral model predicted better; whenever it

decreases, the rational model predicted better. The endpoint of the lines represent the

improvement in the mean squared forecast error. For example, a value of 0.1 at the end

of our sample would imply that a forecaster who used the behavioral model to correct

their predictions would have made forecasts with a ten percent lower mean squared er-

ror. Figure 1 shows the evolution of ∆SSEt over time for four variables that represent

typical outcomes of our tests.
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The top left panel shows results for forecasts of inflation as measured by the GDP

deflator, going back to 1968. The IS fit, represented by the dashed line, is surprisingly

weak. The behavioral model fits the data better over the entire sample by construction

of the OLS estimator. But this fit is largely achieved during a short period around 1975

and to a smaller extent after the Covid-19 recession of 2020. During most of the time, the

IS line is flat, indicating that the behavioral model did not fit the data any better than

the rational model. The OOS fit, represented by the solid line, is poor. The solid line

is below zero for almost the entire evaluation period (to the right of the vertical dotted

line). This means that, if a forecaster had used the Coibion and Gorodnichenko (2015)

model to improve forecasts in real time, they would have made larger forecast errors

than if they had treated the original forecasts as optimal predictions.

The top right panel shows the same results for real GDP growth. The IS fit, repre-

sented by the dashed line, is again surprisingly weak. Out of sample, the behavioral

model beats the rational model in the period after the financial crisis of 2008, when the

solid line moves up markedly. After that, however, the OOS line stayed flat, indicating

that the behavioral model had little predictive advantage. And after the Covid-19 re-

cession in 2020, the behavioral model fared terribly. Importantly, this bad performance

is not a mechanical result of the large forecast errors realized in 2020. The OOS line

would have stayed flat if the behavioral model had made forecast errors that were as

large as the unadjusted forecasts. But instead, the behavioral model modified the sur-

vey forecasts in the wrong direction, resulting in even larger forecast errors. When the

pandemic shock hit the economy, economic activity forecasts revised down and the be-

havioral model adjusted the forecasts down further, in line with the underreaction of

expectations. But subsequently, economic activity rebounded more quickly than im-

plied by the original forecasts, which would be more consistent with overreaction. This

is a good example of an unstable predictive relationship.

The model does somewhat better on expectations of CPI inflation, shown in the

bottom-left panel. CPI inflation expectations are the main focus of Coibion and Gorod-

nichenko, and here their model would have led to a 1 percent reduction in the mean

squared forecast error at the end of the sample. This improvement is sufficient to reject
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the null using our bootstrapped critical values. However, the figure also shows that the

gains over the rational model arise largely in 2021 and 2022, when inflation forecasts

indeed underreacted to a sharp rise in inflation. Between 2007 and 2020, the bias cor-

rection of the model would have made the forecasts worse. To us, this also looks like an

unstable model.

Remarkably, the Coibion and Gorodnichenko model does very well on interest rate

forecasts. The lower right panel of Figure 1 shows that federal funds rate forecasts could

have been substantially improved using this model. What’s more, the performance is

indicative of a stable prediction model: The OOS line trends up almost through the en-

tire sample. At the end of our sample, a forecaster relying on the behavioral model to

correct their forecasts would have reduced the mean squared error of their predictions

by an impressive 19 percent.

Our results do not depend materially on the split between the training and the eval-

uation period, and this can be seen directly from the plots. The IS and OOS lines repre-

sent cumulative sums of squared errors, and if we start the evaluation period at a later

date, then we can simply start summing the squared errors from that date.

In Table 1, we document the IS and OOS performance of the Coibion and Gorod-

nichenko model, measured by the ∆SSET statistic in (1)–(2), for all variables in the SPF

and BlueChip surveys with three-quarter ahead forecast horizons for which at least 20

years of data are available. Stars indicate whether the the null of no predictability is

rejected using our bootstrapped critical values for the IS and OOS versions of ∆SSET .

For almost all of the macroeconomic variables in the top half of the table, even the

IS predictive performance is not high enough to reject the null of rationality using our

bootstrap test. Note that the statistic ∆SSET is at times negative IS. If we summed over

the full sample in (2), the statistic would equalR2 and would be positive by construction

of the OLS estimator, but we only sum squared errors over the evaluation period, that is,

excluding the first 40 quarters of the sample. The fact that the IS performance is often

not significant during this evaluation period already indicates an unstable predictive

relationship.

The OOS performance for the macroeconomic variables is generally negative, inply-

15



ing that a forecaster who had relied on the Coibion-Gorodnichenko method to remove

bias from their forecasts would have been left worse off than with no adjustment at all.

There are some notable exceptions to this rule, however. The behavioral model beats

the rational model OOS for CPI inflation, industrial production and housing starts. The

improvements are significant and reduce the mean squared forecast error by several

percentage points. Where the model does really well is on interest rate forecasts, shown

in the bottom half of the table. A forecast correction using the behavioral model would

have led to a reduction in the mean squared forecast errors by up to 21 percent, which

are staggering numbers by forecasting standards.

4.2 Other models based on consensus forecasts

Moving beyond the prominent model of Coibion and Gorodnichenko (2015), we now

turn to discuss other widely known models of bias in consensus expectations.

First, we examine a simple model of mean bias, where forecasts are systematically

too high or too low. To test for mean bias, consensus forecast errors are regressed only

on a constant:

yt+h − ȳt+h|t = β + ut+h (13)

A positive coefficient implies that forecasters always underpredict a variable by a con-

stant amount. Because of its simplicity, we expect this bias to be the easiest to detect.

Next, we test for forecast autocorrelation, whereby forecast errors are predicted with

their own lag:

yt+h − ȳt+h|t = β
(
yt−1 − ȳt−1|t−h−1

)
+ ut+h (14)

A positive coefficient on the lagged forecast error implies that overpredictions tend to

be followed by more overpredictions, akin to a momentum effect in asset returns, im-

plying that forecasts are slow to react to incoming information. Note that, in the data,

forecasters at time t only know the realizations of the data (and thus their own forecast

errors) up to period t− 1. For the bootstrap, we set p = 0, q = h+ 1.

We also look at the well-known regressions of Mincer and Zarnowitz (1969), in which
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Table 1: Prediction of consensus professional forecast errors with revisions.

∆SSET IS OOS

Inflation (deflator) 0.034** -0.023

Inflation (CPI) 0.027** 0.015**

Real GDP -0.005 -0.119

Industrial Production 0.094*** 0.035***

Nominal GDP 0.021** -0.101

Unemployment rate 0.003 -0.251

Consumption 0.010 -0.031

Non-residential inv. 0.019** -0.061

Residential inv. 0.032*** -0.026

Federal govt. -0.002 -0.012

Non-federal govt. 0.002 -0.027

Housing starts 0.132*** 0.047***

Federal funds rate 0.219*** 0.203***

3-month yield 0.190*** 0.181***

6-month yield 0.234*** 0.211***

1-year yield 0.220*** 0.196***

2-year yield 0.143*** 0.112***

10-year yield 0.025* -0.001

Aaa yield 0.069*** 0.067***

Baa yield 0.061** 0.052**

1y-3m spread -0.002 -0.009

10y-2y spread 0.083*** 0.056***

Aaa-Baa spread -0.004 -0.011

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample. ***, ** and * repre-
sent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level
using bootstrapped critical values. Yield and spread variables are taken from BlueChip, other variables
are taken from the SPF.

17



realized outcomes are regressed on forecasts. An equivalent formulation is to regress

forecast errors on forecasts and a constant:

yt+h − ȳt+h|t = β0 + β1ȳt+h|t + ut+h (15)

Again, the null hypothesis implies β = 0. For this model, we set p = 2 and q = 0 in

the bootstrap (5). A positive coefficient on the forecast ȳt+h|t implies that forecasters are

too optimistic whenever their forecasts are high, thus capturing a form of extrapolation

bias.

Finally, we look at the Nordhaus (1987) test of forecast efficiency. Instead of putting

forecast errors on the left-hand side, Nordhaus examined the predictability of forecast

revisions. Rational expectations imply that forecast revisions are unpredictable, in ad-

dition to forecast errors, because of the law of iterated expectations.6 The Nordhaus

regression model has the form:

ȳt|t−h − ȳt|t−h−1 = β
(
ȳt|t−h−1 − ȳt|t−h−2

)
+ ut+h (16)

This model can be interpreted as a test of the stickiness of forecasts: A positive coeffi-

cient on past revisions implies underreaction of forecasts, as the forecasts will be pre-

dictably revised in the same direction as the previous revision. For the bootstrap, here

we model both the regressor and the regressand as white noise (p = q = 0).

The results of our OOS tests for these models are documented in Table 2. For the

macroeconomic variables, a similar picture emerges regardless of the model: The IS per-

formance is typically weak and insufficient to reject the null, and the OOS performance

is typically negative: A real-time bias correction would have made the forecasts worse.

In general, none of the models are able to consistently beat the null of no predictabil-

ity. There are some exceptions throughout the table. For example, forecast errors of

deflator-based inflation and housing starts are predictable OOS using the autocorrela-

tion model. To us, these isolated “wins” are likely to arise by chance, as a byproduct

6Strictly speaking, unpredictability of forecast revisions also requires that the information sets are
nested over time, so that no information is “forgotten” as the forecasts are revised.
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of the large number of tests in this paper. The picture looks a bit better for the Nord-

haus model, which only predicts forecast revisions instead of actual forecast errors, and

sometimes does well at that. This better performance relative to the other models may

reflect that revisions contain less noise than realizations and are therefore more easily

predictable. Nevertheless, the quest for a simple, unifying empirical relationship sum-

marizing bias in macroeconomic expectations of professional forecasters seems elusive.

The picture is different for interest rate forecasts, shown in the bottom half of the

table. Here, all models are able to improve forecast efficiency OOS for short-term yields.

The mean bias model in particular is able to reduce the mean squared forecast error

across all interest rates in the table, by as much as 29 percent. Our interpretation of

this strong deviation from rationality is that mean bias is driving the performance of

the other models, too. The level of interest rates has declined steadily over the past few

decades, and while forecasters continually revised their projections also, they consis-

tently underestimated the secular fall in interest rates (Rungcharoenkitkul and Winkler,

2022). As a result, forecast revisions and forecast errors are on average negative, result-

ing in predictability in the models of Coibion and Gorodnichenko (2015) and Nordhaus

(1987); forecast errors are positively correlated; and the Mincer and Zarnowitz (1969)

also performs well as it includes a constant that picks up the mean bias.

In sum, none of the models that feature prominently in the literature can consis-

tently improve forecasts of macroeconomic expectations. However, interest rate fore-

cast errors are robustly predictable with many of these models, perhaps related to the

persistent underprediction of the secular decline in interest rates.

4.3 Tests based on individual expectations

One can argue that consensus forecasts, which average out the idiosyncrasies of indi-

viduals, represent a “best case”: If it can be shown that average forecasts are biased,

then the individual forecasts must be biased as well. This argument is generally valid

as long as the predictor variable is a part of the information set of all individuals. But

using consensus forecasts is only an indirect way of testing for biases, because they do
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Table 2: Other models of consensus professional forecast errors.

(1) (2) (3) (4)

Mean bias Autocorrelation Mincer-Zarnowitz Nordhaus

∆SSET IS OOS IS OOS IS OOS IS OOS

Inflation (deflator) -0.025 -0.416 0.128*** 0.122*** -0.061* -0.476 0.094*** 0.066***

Inflation (CPI) -0.008 -0.073 -0.001 -0.040 0.013* -0.043 0.105*** 0.075***

Real GDP 0.006 -0.040 0.029* 0.005 -0.004* -0.153 0.004 -0.074

Industrial Production 0.055* 0.007 0.006 -0.008 0.082* 0.008 0.055*** -0.007

Nominal GDP 0.025 -0.029 0.018 -0.028 0.022* -0.052 0.013 -0.061

Unemployment rate -0.001 -0.029 0.005 -0.032 0.048 -0.041 0.000 -0.126

Consumption 0.012 -0.011 0.052* -0.172 0.021* 0.010 0.027** -0.082

Non-residential inv. -0.004 -0.065 0.000 -0.035 -0.001 -0.112 0.075*** 0.011**

Residential inv. 0.002 -0.063 0.075** -0.007 -0.041 -0.306 0.128*** 0.098***

Federal govt. 0.001 -0.062 0.044* -0.035 0.118* 0.027 -0.004 -0.014

Non-federal govt. 0.025 -0.105 0.056* 0.026 0.082* -0.103 0.107*** 0.084***

Housing starts 0.008 -0.043 0.141*** 0.117*** 0.027* -0.100 0.233*** 0.205***

Federal funds rate 0.121** 0.061** 0.071* 0.047** 0.134* -0.007 0.234*** 0.222***

3-month yield 0.183*** 0.129*** 0.113** 0.089*** 0.221** 0.089** 0.230*** 0.217***

6-month yield 0.211*** 0.157*** 0.186*** 0.129*** 0.255** 0.115** 0.259*** 0.245***

1-year yield 0.198** 0.135** 0.152* 0.037 0.208* 0.043 0.240*** 0.227***

2-year yield 0.212*** 0.154*** 0.128** -0.022 0.229** 0.046** 0.187*** 0.168***

10-year yield 0.323*** 0.295*** 0.040 -0.046 0.337*** 0.054** 0.068*** 0.042***

Aaa yield 0.268*** 0.225*** 0.044 0.016 0.260** -0.125 0.101*** 0.093***

Baa yield 0.439*** 0.402*** 0.172** 0.108** 0.442*** 0.238*** 0.135*** 0.097***

1y-3m spread -0.019 -0.118 0.030 0.011 0.093 -0.148 0.036** 0.017**

10y-2y spread 0.002 -0.061 0.008 -0.022 0.078 -0.057 0.118*** 0.090***

Aaa-Baa spread -0.036 -0.139 0.075 0.071 0.153 0.036 -0.040 -0.129

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of
predictive models of forecast errors. ***, ** and * represent rejection of the null hypothesis of no pre-
dictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical values. Yield and
spread variables are taken from BlueChip, other variables are taken from the SPF.
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not represent the forecasts of any one individual. The literature has also documented

biases in expectations at the individual level, to which we now turn.

One of the most prominent recent studies examining the rationality of individual

forecasts is Bordalo et al. (2020) (BGMS). They run a regression of the form:

yt+h − yt+h|it = β
(
yt+h|it − yt+h|it−1

)′
+ uit (17)

They document that the prediction of forecast errors with forecast revisions also works

at the individual level, but often with a negative coefficient on the revision. This nega-

tive coefficient is interpreted as overreaction of forecasts: When forecasters raise their

forecasts, they tend to overpredict.7

We further test the autocorrelation, Mincer and Zarnowitz (1969), and Nordhaus

(1987) models at the individual level:

yt+h − yt+h|it = β
(
yt−1 − yt−1|it−h−1

)
+ uit+h (18)

yt+h − yt+h|it = β0 + β1yt+h|it + uit+h (19)

yt|it−h − yt|it−h−1 = β
(
yt|it−h−1 − yt|it−h−2

)
+ uit+h. (20)

A variation of the Mincer and Zarnowitz (1969) model has recently been advanced by

Kohlhas and Walther (2021), who regress forecast errors on the realized values of a vari-

able. We only include the lagged value of the realization as the current-period value is

not part of the information set when the forecasts are made:

yt+h − yt+h|it = β0 + β1yt−1 + uit+h (21)

For this model, we set p = 2 and q = 0 in the bootstrap (11).

Finally, we test a model based on forecast combination. It is well documented that

combining forecasts from different people and models almost always improves fore-

7Like at the consensus level, we exclude a constant from the regression. We also omit fixed effects and
pool the regression coefficient. Including individual-specific parameters would make OOS prediction
very hard, due to the small number of observations in the individual samples (less than 10 on average in
the SPF).
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casting performance in practice (see Timmermann, 2006, for a review). Based on this

idea, we construct a model of biased expectations as follows:

yt+h − yt+h|it = β0 + β1

(
ȳt−1|t−h−1 − yt−1|it−h−1

)′
+ uit+h. (22)

The variable on the right-hand side is the lagged difference between the consensus fore-

cast and the individual forecast. The timing is important: We do not relate individual

forecasts to the consensus forecast in the same period, since this object is not known to

the agents at the time they complete the survey. However, past consensus forecasts as

well as the agents’ own predictions are part of their information set, making this a valid

test of rationality. For the bootstrap (11), here we set p = 1, q = 0.

We subject these models to OOS tests at the level of individual forecasts. If our failure

to reject the null of no predictability at the consensus level were a problem of small

sample size and estimation noise, we should expect predictive performance to improve

at the individual level, where the cross-sectional dimension of the data greatly expands

the number of observations.

In Figure 2, we show charts plotting ∆SSEt of the first and last of these models, using

CPI inflation, unemployment rate, and three-month Treasury bill forecasts.

The left panels show the performance of the BGMS model (17). For CPI inflation (top

left panel), the model’s performance is mixed. It outperforms the rational benchmark

between 2008 and 2020, but these gains are erased at the end of the sample. Overall,

we cannot reject the null of no predictability. For real GDP growth (middle left panel),

the picture is the reverse: Tepid performance during most of the sample, then a big

improvement at the end which lifts the OOS performance to levels for which we can

reject the null. The estimated coefficient on revisions is negative throughout the sam-

ple, which allows the model to fit the overreaction of (aggregate) expectations after the

Covid-19 shock in 2020. For federal funds rate forecasts (bottom left panel), the behav-

ioral model outperforms the null of rationality by eight percent, which is less than the

Coibion and Gorodnichenko (2015) model at the consensus level but still quite strong.

The right panels of Figure 2 show the performance of the forecast combination bias
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Figure 2: Prediction of individual professional forecast errors.

(a) Revisions.
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(b) Forecast combination.
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Note: Dashed and solid lines represent cumulative squared errors ∆SSEt for the in-sample regression
and the out-of-sample regression, respectively. Dotted vertical lines mark the end of the training period
and the beginning of the evaluation period. An increase in a line indicates better performance of the
behavioral model; a decrease in a line indicates better performance of the rational model. Shaded areas
represent NBER recessions.
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model (22). We judge the performance of this model to be remarkable. It consistently

performs well across all variables in our data set. For CPI inflation (top right panel), the

reduction in the mean squared forecast error is about three percent. Moreover, the null

of no predictability consistently is rejected consistently over time: The black line in the

chart steadily trends upward, never moving down appreciably. This is a beautiful exam-

ple of a stable predictive relationship. Indeed, the estimated coefficients β̂t in the OOS

prediction also remain stable over the sample. A similar picture emerges for real GDP

forecasts (middle right panel): Here, too, the forecast combination bias model outper-

forms the null consistently, and the performance is roughly double that of the BGMS

model. For interest rate forecasts, this model achieves a reduction in the mean squared

forecast error of close to five percent. What is remarkable is that the gains in predictive

performance are accumulated steadily and robustly over time.

Results for all variables are shown in Table 3. Starting in Column (1), the BGMS

model predicting forecast errors with revisions manages to achieve significant perfor-

mance gains for a number of variables. This model seems to outperform the null of

rationality in some areas, but not in others. Overall, we think that it does not represent

a bias that is universal in professional forecasts.
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Table 3: Prediction of individual professional forecast errors.

(1) (2) (3) (4) (5) (6)

∆SSET , OOS BGMS Autocorrelation Mincer-Zarnovitz Nordhaus Kohlhas-Walther Forecast combination

Inflation (deflator) 0.007*** 0.114*** -0.513 0.007*** -0.323 0.141***

Inflation (CPI) -0.003 -0.036 0.043** -0.009 -0.036 0.034***

Real GDP 0.022*** -0.029 0.042** 0.004*** 0.013 0.060***

Industrial Production -0.010 -0.016 0.036** -0.010 0.002 0.049***

Nominal GDP 0.011*** -0.060 -0.071 0.002** -0.061 0.061***

Unemployment rate -0.114 -0.048 0.010 -0.065 0.024 0.013***

Consumption 0.058*** -0.166 -0.003 0.003** -0.090 0.036***

Non-residential inv. -0.018 -0.035 -0.055 -0.007 -0.102 0.064***

Residential inv. -0.019 0.046*** -0.037 -0.021 -0.092 0.108***

Federal govt. 0.082*** 0.063*** -0.009 -0.014 -0.027 0.148***

Non-federal govt. 0.123*** 0.039*** 0.126*** -0.007 -0.048 0.206***

Housing starts 0.004 0.208*** -0.099 -0.009 -0.054 0.108***

Federal funds rate 0.080*** 0.075*** -0.070 0.083*** 0.035** 0.035***

3-month yield 0.071*** 0.132*** 0.025** 0.063*** 0.123*** 0.043***

6-month yield 0.108*** 0.145*** 0.091*** 0.089*** 0.132*** 0.031***

1-year yield 0.085*** 0.070*** -0.007 0.071*** 0.039** 0.041***

2-year yield 0.040*** 0.032*** -0.015 0.032*** 0.04** 0.044***

10-year yield -0.003 -0.016 0.008 -0.012 0.099*** 0.069***

Aaa yield 0.000 0.005 -0.181 -0.003 -0.160 0.068***

Baa yield 0.001 0.197*** 0.012 -0.043 0.248*** 0.130***

1y-3m spread 0.084*** -0.025 0.232*** 0.108*** -0.233 0.087***

10y-2y spread -0.002 -0.004 0.029** -0.006 0.002 0.053***

Aaa-Baa spread 0.008 -0.084 0.513*** -0.069 0.066 0.067***

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of predictive models of forecast errors. ***,
** and * represent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical
values.
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Columns (2) through (5) show the performance of the autoregressive model, the

Mincer-Zarnovitz model, the Nordhaus model, and the Kohlhas-Walther model. Among

these models, the autoregressive model in Column (2) performs the best across the

macroeconomic variables, so that there is some evidence that professional forecast er-

rors are persistent at the individual level, though not universally so. For interest rates,

it is the Nordhaus model in Column (4) that performs best, and with a similar magni-

tude as the BGMS model. To us, these findings are consistent with inefficient, slowly

mean-reverting deviations of individual forecasts from the average. If individual revi-

sions reflect such deviations, then positive revisions negatively predict forecast errors

and future revisions, and forecast errors are autocorrelated. Such inefficient forecast

dispersion could arise because forecasters respond to strategic diversification incen-

tives by deviating from optimal forecasts (Gemmi and Valchev, 2021).

The forecast combination bias model in Column (6) precisely represents such ineffi-

cient deviations, as it predicts that forecasters that are optimistic relative to the average

last period will be too optimistic. This model shows significant predictive gains across

all variables in our data set. We judge this to be a remarkable achievement. It is worth

noting that this result is stronger than the well-known fact that the consensus forecast

is more efficient than individual forecasts, because the behavioral model is based off

the lagged value, rather than the current value, of the consensus forecast. Combined

with the earlier observation that the performance gains accrue steadily over time, we

conclude that inefficient dispersion of individual forecasts is the most robust and stable

departure from rational expectations in surveys of professional forecasters.

5 Results for Households

So far, we have focused on expectations of professional forecasters. These individuals

are usually well-educated specialists employed by financial institutions who expend a

great amount of time and resources forming their expectations. Our failure to reject

the null of rationality with our OOS tests may in fact indicate that the expectations of

these individuals are quite close to rational. However, there also exist surveys of less
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sophisticated forecasters, particularly of households. We expect that households form

less accurate expectations, and that it should be easier to reject the null of rational ex-

pectations.

The two main surveys of American households that elicit macroeconomic expecta-

tions are the Michigan survey and the Survey of Consumer Finances (SCE). There are

several differences in methodology between these two surveys, but most importantly,

the SCE starts in 2013 while the Michigan survey goes back to 1978. We restrict our-

selves to 12-month ahead inflation expectations (h = 12), as other expectations either

have limited coverage or only have categorical response variables. We define realized

inflation as headline CPI inflation.

We first aggregate the individual forecasts using both the average and the median,

since there are meaningful differences between the two for households. At the aggre-

gated level, we test the models (12)–(15). For the Coibion-Gorodnichenko model (12),

we use the month-over-month difference in consecutive 12-month ahead inflation ex-

pectations as a proxy for forecast revisions due to data limitations. At the disaggregated

individual level, we test a panel version of the mean bias model (13), as well as the

Mincer-Zarnovitz model (19) and the forecast combination model (22). For the forecast

combination test, we use the difference of the current forecast and last period’s consen-

sus forecast to proxy for past disagreement, again due to data limitations. The bootstrap

parameters are set in the same way as for the professional forecaster data, except for the

forecast errors themselves. Fitting an MA(13) process, which would be natural under

the null, is infeasible due to data limitations. Instead, we fit an MA(3) process.

Table 4 summarizes the results of our tests for households.

Column (1) shows the results from the simple mean bias model. In sample, it is rel-

atively easy to detect a (positive) mean bias in household inflation expectations.8 But

out of sample, this mean bias is difficult to exploit because it is hard to estimate its

magnitude in real time. The mean bias model still significantly improves Michigan av-

erage forecast errors OOS, but fails badly for the shorter sample in the SCE. The dis-

8The bias is more pronounced for the average compared to the median, as the distribution of individ-
ual inflation forecasts is skewed to the upside.
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Table 4: Prediction of household inflation forecast errors.

(1) (2) (3) (4) (5)

Mean bias Revisions Autocorrelation Mincer-Zarnovitz Forecast combination

∆SSET IS OOS IS OOS IS OOS IS OOS IS OOS

Michigan avg. 0.239*** 0.028** 0.003* 0.002 0.086** 0.063*** 0.181*** 0.008** – –

Michigan median 0.012 -0.226 0.001 -0.005 -0.001 -0.043 -0.034 -0.252 – –

Michigan ind. 0.024*** -0.014 – – – – 0.875*** 0.617*** 0.896*** 0.889***

SCE avg. 0.250** -0.104 0.000 -0.002 0.178* 0.032 0.355** -1.491 – –

SCE median -0.115 -0.562 0.203*** 0.050** -0.013 -0.061 0.184 -2.139 – –

SCE ind. -0.034 -0.113 – – – – 0.742*** 0.632*** 0.819*** 0.799***

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of
predictive models of forecast errors. ***, ** and * represent rejection of the null hypothesis of no pre-
dictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical values. For the
bootstrap on SCE data, we restrict the lag length of the MA process of uit to 3.

crepancy between the two surveys can be attributed to their different sample windows.

To see this, we show the evolution of OOS performance of the mean bias model in the

Michigan survey over time in Figure 3. The left panel shows the predictive performance

for the average expectation. Starting around 1990, the mean bias model made steady

gains as average inflation expectations stayed stubbornly above actual inflation for two

decades. However, after 2020, inflation soared much faster than inflation expectations,

defying the predictions of a positive mean bias. Over the length of the Michigan sam-

ple, the overall predictive performance of the mean bias model is good enough so that

we assign statistical significance using our bootstrapped critical values. But in the more

limited sample of the SCE (not shown in the figure), the period of high inflation start-

ing in 2021 takes a much greater share of the sample, which explains why the mean

bias model underperforms the null of rational expectations in Table 4. Also, the right

panel of Figure 3 illustrates that median inflation expectations tracked actual inflation

much more closely than average expectations, resulting in a mean bias that averages

near zero in sample and dismal OOS performance of the mean bias model applied to

median household expectations.

Column (2) of Table 4 shows that using the Coibion and Gorodnichenko (2015) model

of regressing forecast errors on revisions does not lead to any significant improvements

in Michigan forecast errors, either in sample or out of sample. This model is quite un-
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Figure 3: Prediction of Michigan inflation expectations: mean bias model.

(a) Average expectations.
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(b) Median expectations.
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Note: Dashed and solid lines represent cumulative squared errors ∆SSEt for the in-sample regression
and the out-of-sample regression, respectively. Dotted vertical lines mark the end of the training period
and the beginning of the evaluation period. An increase in a line indicates better performance of the
behavioral model; a decrease in a line indicates better performance of the rational model. Shaded areas
represent NBER recessions.

stable and the estimated coefficient is sometimes positive, sometimes negative. The

model does work well for SCE medians, but the entire forecasting performance in that

specification is generated in 2022, the last year of the sample. During that year, me-

dian forecast errors and median revisions were positive, consistent with underreaction

of expectations. By contrast, the model is not able to improve on SCE average forecasts

because the average expectation—consistently higher than the median—was remark-

ably close to actual inflation in 2022.

Column (3) shows the performance of the autoregressive model. Like the mean bias

model, this model only works well for Michigan average expectations, but not for SCE

averages, or medians in either survey. This pattern is an expression of the same positive

mean bias in household average inflation expectations in the last two decades discussed

above, because mean bias implies autocorrelation of forecast errors.9

Column (4) shows the Mincer-Zarnovitz model. At the mean or median level, this

model fares similarly to the mean bias model due to the inclusion of a constant term in

9Note that we omit a constant in the autoregressive model, so that mean bias implies a positive coeffi-
cient on lagged forecast errors in that model.
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that model (in fact, the coefficient β1 on forecasts in (15) is stable around one). What is

most noticeable, however, is the stunning performance of this model at the individual

level: More than 60 percent of the mean squared forecast error is predictable OOS us-

ing this model in both surveys. The model consistently predicts β1 ≈ −1 in Equation

(19), which means that the individual forecasts are treated entirely as noise, and the im-

proved forecast of that model is just the constant β0. This behavior is a consequence

of the fact that the dispersion in individual household inflation expectations dwarfs the

variation in mean forecasts, and so it is best to disregard the individual variation in fore-

casts.

Excess dispersion of forecasts also explains why the forecast combination model in

Column (5) performs well. More than 80 percent of the individual mean squared fore-

cast error can be predicted using this model. The coefficient on the lagged difference

of an individual’s forecast and the consensus is close to one and stable over time. The

fact that the lagged difference predicts individual forecast errors so well points to the

persistence in household inflation forecasts.

Summing up, household inflation forecasts do seem much more biased than those

of professional forecasters. Their deviation from optimal forecasts occurs mostly at the

individual level, where inflation forecasts display an excessive degree of dispersion. At

the consensus level, there is some evidence of mean bias, although this bias is not stable

over time. Instead, household’s mean bias in inflation expectations appears to be time-

varying.

6 Robustness

6.1 Rolling window regression

A central theme that emerges from our analysis is that the behavioral models often seem

unstable over time. Indeed, in our OOS regressions, many of the estimated model co-

efficients display sizable variation over time. Biases can be time- or state-dependent.

If this is the case, real-time prediction of forecast errors is inherently more difficult, as
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one now has to not only estimate past bias, but also predict how the bias will change

in the future. This may explain the disconnect between IS and OOS predictability that

we have often observed in our analysis so far. This explanation has also been put for-

ward in the finance literature (Lettau and Van Nieuwerburgh, 2007). Traditional tests

that have a constant parameter hypothesis, such as the ones we have used so far, are

then misspecified.

One way to take time variation into account is to run our regressions with a rolling

window instead of a recursive window. In keeping with the simplicity of our empirical

approach, we choose rolling windows over a more sophisticated time-varying parame-

ter regression. We keep the initial training sample period of 40 quarters, but now also

use this as the size of a rolling window used to estimate the real-time OOS coefficients

for prediction. Generally, we find that using rolling window regression does not help to

predict forecast errors: The increased estimation noise from smaller window sizes out-

weighs any gain from capturing time variation in the true model coefficients. Because

of the increase in estimation noise, our bootstrapped critical values for rejecting the null

also decrease. The bootstrapped significance levels remain fairly similar to those of our

baseline estimation. The online appendix contains detailed results of rolling window

regressions.

6.2 Other forecast horizons

Our baseline estimation uses three-quarter ahead horizons, which is used by Coibion

and Gorodnichenko (2015) and many other studies in the literature. But we also exam-

ine the robustness of our results to the choice of the forecast horizon. As documented

in the online appendix, the results do not depend materially on this choice. There is

some more OOS predictability at the “nowcast” horizon, i.e. of forecast errors of the

current-quarter realizations h = 0.

31



6.3 Adding an intercept

We have omitted an intercept term from the models whenever this can be motivated

with an economic prior. For example, in the model of Coibion and Gorodnichenko

(2015), forecast errors and forecast revisions both have zero unconditional mean, and

yet the former is predictable by the latter, so an intercept is in principle unnecessary

for the empirical regression. While having an intercept in an IS regression is common

and amounts to nothing more than demeaning the data, in an OOS test this decision

can have important consequences. An intercept is another parameter that needs to be

estimated in real time, increasing estimation noise. Moreover, in small samples, distin-

guishing between the contributions of a highly autocorrelated variable and a constant

can be challenging.

When we include an intercept in our regressions, the predictive performance of the

models typically deteriorates except when there is a strong mean bias in the data to start

with. As an illustration, consider the use of the Bordalo et al. (2020) model to predict

individual inflation forecast errors using revisions at the individual level. Figure 4 con-

trasts the OOS performance of that model without an intercept (left panel) and with an

intercept (right panel), for forecast errors of inflation based on the GDP deflator. With-

out an intercept, the model is able to outperform the null of rational expectations by a

modest margin. But with an intercept, the performance is dismal. The reason is that

the intercept is a regressor that has no cross-sectional variation and operates purely on

the time-series dimension of the data, trying to fit mean bias in the average forecast.

Because, as previously documented in Table 2, a mean bias model fits professional in-

flation forecasts poorly, this model inherits that bad performance. The online appendix

documents that similar patterns hold for all models covered in this paper: Adding an

intercept improves performance when the corresponding mean bias model performs

well, while it deteriorates performance when the corresponding mean bias model per-

forms poorly.
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Figure 4: Effect of an intercept term on prediction (using revisions, individual level).

(a) Without intercept.
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Note: Dashed and solid lines show cumulative squared errors for the in-sample regression ∆SSEIS
t and

the out-of-sample regression ∆SSEOOS
t , respectively, expressed as a fraction of the total sum of squared

forecast errors over the evaluation period. Dotted vertical lines mark the end of the training period and
the beginning of the evaluation period. An increase in a line indicates better performance of the be-
havioral model; a decrease in a line indicates better performance of the rational model. Shaded areas
represent NBER recessions.

6.4 Data transformations

In our tests, we have transformed macroeconomic data following the conventions of

the literature. In particular, we convert level forecasts of macroeconomic aggregates in

the SPF into growth rate forecasts. Our results are robust to a range of data transfor-

mations, including taking log differences instead of working with growth rates in per-

centage points; working with quarter-over-quarter growth rates instead of annualized

growth rates; and working with growth rates between the quarter of the forecast hori-

zon and the previous quarter instead of growth rates between the quarter of the forecast

horizon and the quarter before the survey date.10

7 Conclusion

This paper has shown that many models of biases in expectations documented in the

literature are not robust to out-of-sample tests. These models seem unstable and would

10Detailed results of these additional tests are available upon request.
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not have helped a forecaster to improve their predictions in real time. This general find-

ing holds for professional forecasters and households.

However, there are some notable exceptions to this finding. First, interest rate fore-

casts display a stable mean bias that can be used to greatly improve forecasts out-of-

sample. Second, there is some evidence for mean bias and autocorrelation in household

inflation expectations. Third, individual expectations of professional forecasters display

excess dispersion from the consensus for every variable and forecast horizon available.

This excess dispersion is even more striking in inflation expectations in household sur-

veys.

We hope that our findings will be useful to researchers in behavioral macroeco-

nomics, where facts about deviations from rational expectations abound and models

are validated by their success in matching moments corresponding to these facts. Our

out-of-sample tests provide a simple and natural way to focus on those facts are most

robust in the data and the associated research questions. These are: Why did forecast-

ers systematically overpredict interest rates for decades? Why have household inflation

expectations been so high for so long? And why do people disagree so much about the

future, seemingly ignorant of the benefits of forecast combination?
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A Additional results

In this appendix, we report results of additional OOS tests using rolling window regres-

sions, alternative forecast horizons, an added intercept, and a different way of trans-

forming the raw data.

Table (A1) contains results from the consensus tests in Sections 4.1 and 4.2 but using

rolling window regressions with a window length of 40 periods, i.e. ten years. The criti-

cal values for the bootstrap have been recomputed for the rolling window version of the

∆SSET statistic. Across all tests, the predictive OOS performance of the rolling regres-

sions is worse than our benchmark recursive window regressions: The added noise from

the shorter window length outweighs the benefits of accounting for time variation in the

parameters. Table A2 contains the results for the individual models reported in Section

4.3 using rolling window regressions. Here, too, the predictive OOS performance of the

rolling regressions is mostly worse than our benchmark recursive window regressions,

although it is a little better for the Kohlhas-Walther model. Table A3 contains the results

for household data reported in Section 5 using rolling window regressions. Here, the

rolling window performance is almost identical to the recursive window performance.

The next two tables show results for different forecast horizons for a subsection of

the variables in professional forecasts. Table A4 contains results at the consensus level

while Table A5 contains results at the individual level. The results are broadly similar

across forecast horizons. At times, the nowcast (h = 0) has a better performance than

longer horizons and also crosses the significance thresholds of our bootstrap. Thus,

nowcasts seem somewhat more predictable than longer-horizon forecasts. This may be

due to higher power, as the forecast errors have lower variance at the short horizon.

Next, this appendix documents the OOS performance of some of the models when

an intercept is added. Adding an intercept makes the OOS estimation noisier and lowers

the power of the OOS test, but also allows to fit the data better if the true model contains

an intercept. Table A6 shows results for professional forecasters at the consensus level

and Table A7 shows results at the individual level. For the interest rate forecasts, adding

an intercept to the models generally improves the OOS performance. This is consis-
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tent with the good OOS fit of the mean bias model reported in the paper. For the other

variables, the performance generally deteriorates, especially for the Coibion and Gorod-

nichenko (2015), Bordalo et al. (2020) and forecast combination models.
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Table A1: Prediction of consensus professional forecast errors: rolling window regres-
sions.

(1) (2) (3) (4) (5)

∆SSET , OOS Revisions Mean bias Autocorrelation Mincer-Zarnovitz Nordhaus

Inflation (deflator) -0.052 -0.254 0.039** -0.557 0.051***

Inflation (CPI) -0.028 -0.101 -0.089 -0.177 0.046***

Real GDP -0.083 -0.067 -0.146 -0.190 0.083***

Industrial Production -0.052 -0.021 -0.066 -0.076 -0.056

Nominal GDP -0.108 -0.073 -0.484 -0.043** 0.028***

Unemployment rate -0.046 -0.066 -0.156 -0.187 -0.150

Consumption -0.019 -0.069 -0.075 0.014** 0.069***

Non-residential inv. -0.015 -0.058 -0.034 -0.069 0.062***

Residential inv. 0.042*** -0.168 0.081** -0.590 0.167***

Federal govt. -0.063 -0.200 0.012 -0.019 -0.037

Non-federal govt. -0.179 -0.047 -0.056 -0.090 0.048***

Housing starts 0.088*** -0.231 0.135*** -0.524 0.223***

Federal funds rate 0.193*** 0.041** -0.003 -0.080 0.200***

3-month yield 0.173*** 0.109*** 0.058** -0.025** 0.197***

6-month yield 0.211*** 0.153*** 0.107*** -0.056 0.230***

1-year yield 0.193*** 0.128** 0.041 -0.167 0.211***

2-year yield 0.143*** 0.151*** 0.010 -0.230 0.171***

10-year yield 0.034*** 0.266*** -0.017 0.010** 0.058***

Aaa yield 0.024** 0.190*** -0.182 -0.136 0.082***

Baa yield 0.031** 0.385*** 0.077** 0.185** 0.092***

1y-3m spread -0.021 -0.124 -0.035 -0.094 -0.007

10y-2y spread 0.068*** -0.063 0.002 -0.135 0.072***

Aaa-Baa spread -0.026 -0.094 0.059 -0.037 -0.129

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample. ***, ** and * repre-
sent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level
using bootstrapped critical values. Yield and spread variables are taken from BlueChip, other variables
are taken from the SPF.
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Table A2: Prediction of individual professional forecast errors: rolling window regressions.

(1) (2) (3) (4) (5) (6)

∆SSET , OOS BGMS Autocorrelation Mincer-Zarnovitz Nordhaus Kohlhas-Walther Forecast combination

Inflation (deflator) 0.001** 0.102*** -0.280 0.002*** -0.133 0.122***

Inflation (CPI) -0.013 -0.054 -0.077 -0.023 -0.104 0.035***

Real GDP 0.034*** -0.166 -0.081 0.021*** 0.054*** 0.057***

Industrial Production -0.024 -0.077 -0.044 -0.005 0.010** 0.049***

Nominal GDP 0.006*** -0.340 -0.142 0.001** -0.012 0.057***

Unemployment rate -0.023 -0.187 -0.135 0.007*** -0.050 0.016***

Consumption 0.077*** -0.112 -0.095 0.007*** 0.021** 0.036***

Non-residential inv. 0.008** -0.034 -0.042 -0.002 0.031** 0.059***

Residential inv. -0.011 0.084*** -0.072 -0.015 0.009 0.099***

Federal govt. 0.081*** 0.066*** -0.276 -0.042 -0.005 0.126***

Non-federal govt. 0.117*** 0.025*** 0.213*** 0.005*** -0.058 0.169***

Housing starts 0.008*** 0.212*** -0.560 -0.012 -0.220 0.100***

Federal funds rate 0.111*** 0.040*** -0.065 0.077*** 0.184*** 0.033***

3-month yield 0.087*** 0.097*** 0.004 0.057*** 0.252*** 0.041***

6-month yield 0.105*** 0.117*** -0.064 0.073*** 0.267*** 0.030***

1-year yield 0.084*** 0.068*** -0.173 0.062*** 0.204*** 0.039***

2-year yield 0.060*** 0.053*** -0.225 0.035*** 0.226*** 0.042***

10-year yield 0.007** 0.017** -0.004 -0.013 0.257*** 0.064***

Aaa yield -0.004 -0.070 -0.145 -0.011 0.102*** 0.063***

Baa yield -0.008 0.142*** -0.052 -0.050 0.285*** 0.115***

1y-3m spread 0.077*** -0.016 0.327*** 0.100*** 0.010 0.079***

10y-2y spread -0.006 0.004 -0.062 -0.014 -0.034 0.053***

Aaa-Baa spread 0.007 -0.096 0.293*** -0.071 -0.006 0.066***

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of predictive models of forecast errors. ***,
** and * represent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical
values.
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Table A3: Prediction of household forecast errors for inflation: rolling regressions.

(1) (2) (3) (4) (5)

∆SSET , OOS Mean bias Revisions Autocorrelation Mincer-Zarnovitz Forecast combination

Michigan mean 0.120*** -0.008 -0.165*** -0.139 –

Michigan median -0.089 -0.018 -0.694 -0.358 –

Michigan ind. 0.007*** – – 0.822*** 0.889***

SCE mean 0.178 -0.013 -0.212 -0.364 –

SCE median -0.280 0.048** -0.140 -0.357 –

SCE ind. -0.053 – – 0.676*** 0.803***

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of
predictive models of forecast errors. ***, ** and * represent rejection of the null hypothesis of no pre-
dictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical values. For the
bootstrap on SCE data, we restrict the lag length of the MA process of ut to 3. Forecast revisions are prox-
ied by lagged forecasts.
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Table A4: Prediction of consensus professional forecast errors: alternative horizons.

(1) (2) (3) (4) (5)

h Revisions Mean bias Autocorrelation Mincer-Zarnovitz Nordhaus

Inflation (deflator)

0 0.008** -0.035 0.040*** -0.039 -0.027

1 -0.078 -0.140 0.078*** -0.128 0.047***

2 -0.001 -0.270 0.156*** -0.282 0.066***

Real GDP

0 -0.225 -0.017 -0.028 -0.054 -0.079

1 -0.195 -0.019 -0.003 -0.094 -0.105

2 -0.160 -0.033 -0.013 -0.137 -0.074

Industrial Production

0 -0.074 -0.027 0.077*** 0.064*** -0.106

1 -0.135 -0.016 -0.039 -0.031 -0.068

2 -0.040 -0.006 -0.035 -0.017 -0.007

Unemployment rate

0 -1.622 0.041*** 0.110*** 0.088*** -0.169

1 -0.369 -0.003 -0.098 0.002 -0.180

2 -0.367 -0.014 -0.057 -0.021 -0.126

Housing starts

0 0.090*** -0.016 0.051*** 0.013** 0.071***

1 0.018** -0.028 -0.005 -0.039 0.147***

2 0.066*** -0.037 0.059*** -0.066 0.205***

3-month yield

0 0.029** 0.439*** 0.387*** 0.508*** 0.144***

1 0.126*** 0.160*** 0.127*** 0.180*** 0.186***

2 0.160*** 0.121*** 0.151*** 0.112*** 0.217***

10-year yield

0 0.087*** 0.082*** 0.004 0.037*** 0.017**

1 0.012 0.132*** -0.027 0.030** 0.027**

2 -0.032 0.208*** -0.039 0.061** 0.042***

10y-2y spread

0 0.046*** -0.013 0.082*** -0.024 0.030**

1 0.028** -0.023 0.032** -0.035 0.055***

2 0.071*** -0.046 0.024 -0.050 0.09***

Note: Each row shows cumulative squared errors for the in-sample regression ∆SSEIS
T and out-of-

sample regression ∆SSEOOS
T , respectively. All series are scaled by SSER

T , so that values correspond to
the fraction of the mean squared forecast error predicted by the behavioral model. ***, ** and * represent
rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level us-
ing bootstrapped critical values. Yield and spread variables are taken from BlueChip, other variables are
taken from the SPF.
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Table A5: Prediction of individual professional forecast errors: alternative horizons.

(1) (2) (3) (4) (5) (6)
h BGMS Autocorrelation Mincer-Zarnovitz Nordhaus Kohlhas-Walther Forecast combination

Inflation (deflator)

0 0.129*** 0.080*** 0.014** 0.006*** -0.015 0.041***

1 0.038*** 0.133*** -0.116 0.010*** -0.038 0.076***

2 0.008*** 0.161*** -0.279 0.007*** -0.091 0.117***

Real GDP

0 -0.069 -0.006 -0.063 -0.002 -0.016 0.018***

1 0.038*** -0.024 0.062*** 0.005*** 0.006** 0.024***

2 0.023*** -0.032 0.034** 0.004*** 0.017** 0.048***

Industrial Production

0 0.013*** 0.046*** 0.015** -0.015 -0.027 0.009***

1 -0.022 -0.020 0.010 -0.008 -0.012 0.020***

2 -0.012 -0.011 0.024** -0.010 -0.007 0.044***

Unemployment rate

0 -0.413 0.058*** 0.074*** -0.081 0.022*** 0.010***

1 -0.217 -0.111 0.022*** -0.083 0.000 -0.007

2 -0.202 -0.084 0.012 -0.065 -0.010 0.003***

Housing starts

0 -0.001 0.087*** -0.015 -0.007 0.007** 0.038***

1 -0.010 0.036*** -0.034 -0.006 -0.014 0.066***

2 -0.002 0.148*** -0.057 -0.009 -0.018 0.095***

3-month yield

0 -0.008 0.217*** 0.315*** 0.053*** 0.287*** 0.025***

1 0.045*** 0.123*** 0.162*** 0.065*** 0.181*** 0.012***

2 0.067*** 0.153*** 0.079*** 0.059*** 0.170*** 0.027***

10-year yield

0 -0.001 0.020*** 0.008*** -0.004 0.012*** 0.005***

1 -0.006 -0.019 0.028*** -0.008 0.062*** 0.024***

2 -0.010 -0.004 0.051*** -0.012 0.095*** 0.042***

10y-2y spread

0 0.014*** 0.020*** 0.010*** -0.008 0.001 0.009***

1 -0.011 0.040*** 0.014*** -0.008 0.002 0.020***

2 -0.004 0.037*** 0.013*** -0.006 -0.005 0.037***

Note: Each row shows cumulative squared errors for the in-sample regression ∆SSEIS
T and out-of-sample regression ∆SSEOOS

T , respectively. All
series are scaled by SSER

T , so that values correspond to the fraction of the mean squared forecast error predicted by the behavioral model. ***, **
and * represent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical
values. Yield and spread variables are taken from BlueChip, other variables are taken from the SPF.
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Table A6: Prediction of consensus professional forecast errors: adding an intercept.

(1) (2) (3)

∆SSET , OOS Revisions Autocorrelation Nordhaus

Inflation (deflator) -0.143 -0.084 0.001

Inflation (CPI) -0.053 -0.106 0.005

Real GDP -0.145 -0.021 -0.029

Industrial Production 0.032** 0.013 0.032***

Nominal GDP -0.157 -0.070 -0.036

Unemployment rate -0.274 -0.064 -0.124

Consumption -0.049 -0.152 -0.076

Non-residential inv. -0.125 -0.136 0.014**

Residential inv. -0.088 -0.097 0.111***

Federal govt. -0.075 -0.091 0.007

Non-federal govt. -0.134 -0.076 0.089***

Housing starts 0.021** 0.075*** 0.206***

Federal funds rate 0.211*** 0.108** 0.213***

3-month yield 0.238*** 0.174*** 0.212***

6-month yield 0.266*** 0.198*** 0.251***

1-year yield 0.243*** 0.149*** 0.238***

2-year yield 0.192*** 0.139** 0.191***

10-year yield 0.283*** 0.27*** 0.120***

Aaa yield 0.226*** 0.205*** 0.127***

Baa yield 0.382*** 0.411*** 0.162***

1y-3m spread -0.144 -0.332 0.030**

10y-2y spread 0.017 -0.070 0.079***

Aaa-Baa spread -0.199 -0.105 -0.180

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample. ***, ** and * repre-
sent rejection of the null hypothesis of no predictability of forecast errors at the 10, 5, and 1 percent level
using bootstrapped critical values. Yield and spread variables are taken from BlueChip, other variables
are taken from the SPF.
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Table A7: Prediction of individual professional forecast errors: adding an intercept.

(1) (2) (3) (4)

∆SSET , OOS BGMS Autocorrelation Nordhaus Forecast combination

Inflation (deflator) -0.263 -0.074 -0.062 -0.157

Inflation (CPI) -0.085 -0.088 -0.044 -0.038

Real GDP 0.013 -0.035 0.024*** 0.042**

Industrial Production 0.013 -0.001 0.014*** 0.06***

Nominal GDP -0.020 -0.084 0.007** 0.037**

Unemployment rate -0.136 -0.075 -0.066 -0.012

Consumption 0.027 -0.189 0.004 0.009

Non-residential inv. -0.091 -0.155 -0.011 -0.008

Residential inv. -0.084 -0.038 0.003 0.033

Federal govt. 0.029** 0.019** -0.014 0.082***

Non-federal govt. 0.091*** 0.011 -0.004 0.139***

Housing starts -0.029 0.18*** -0.004 0.065**

Federal funds rate 0.111*** 0.111*** 0.062*** 0.117***

3-month yield 0.179*** 0.188*** 0.055*** 0.209***

6-month yield 0.197*** 0.175*** 0.104*** 0.182***

1-year yield 0.163*** 0.140*** 0.093*** 0.165***

2-year yield 0.162*** 0.139*** 0.022*** 0.205***

10-year yield 0.225*** 0.218*** 0.012*** 0.293***

Aaa yield 0.104*** 0.099*** 0.036*** 0.167***

Baa yield 0.291*** 0.308*** 0.039*** 0.396***

1y-3m spread -0.003 -0.162 0.103*** 0.002

10y-2y spread -0.051 -0.051 -0.028 -0.001

Aaa-Baa spread -0.113 -0.531 -0.159 -0.034

Note: Each row shows cumulative squared errors ∆SSET in sample and out of sample for a number of
predictive models of forecast errors. ***, ** and * represent rejection of the null hypothesis of no pre-
dictability of forecast errors at the 10, 5, and 1 percent level using bootstrapped critical values.
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