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Abstract

This study examines the market-implied premiums for bearing systemic
credit risk by analyzing credit derivatives on the CDX North American
Investment Grade portfolio from September 2005 to March 2021. We con-
struct systemic credit risk premium (SCRP) as the difference between the
observed prices of multi-name super-senior tranches and their synthetic
counterparts valued from historical asset correlations implied by single-
name CDS spreads. Our findings show that the fitted SCRP surged during
the 2007-2009 financial crisis, remained stable for a period, declined gradu-
ally after 2016, and spiked again during the COVID-19 shock. The empiri-
cal analysis highlights that the estimated SCRP has significant implications
for asset pricing, particularly in affecting investment opportunities for U.S.
stock investors during periods of financial instability.

Keywords — Credit Default Swap (CDS); CDS Index (CDX); Reference Tranche
Rate; Systemic Credit Risk Premium

JEL — C63; G01; G12; G17

∗Korea University Business School, Seoul, South Korea, Email: bkw1120@korea.ac.kr.
†Corresponding Author, Korea University Business School, Seoul, 02841, South Korea,

Phone: +82-2-3290-2626, Fax: +82-2-922-7220, Email: baehokim@korea.ac.kr.
‡Federal Reserve Board, Washington, D.C. 20551, USA, Email: donghwan.oh@frb.gov.

1



1. Introduction

Market participants face the risk of encountering correlated defaults, as corporate
defaults tend to cluster Das et al. (2007); Duffie et al. (2009). Given the significant
impact of a potential cluster of correlated defaults on the entire system Giesecke
and Kim (2011), investors generally require significant premiums to account for the
risk of default correlation dynamics. Gaining insight into the default dependence
and the associated premium movements is both an intellectually stimulating task
and an important step toward understanding systemic risk, financial stability,
and cross-market asset pricing implications Bhansali et al. (2008); Azizpour et al.
(2011); Driessen et al. (2009); Bondarenko and Bernard (2023).

In this study, we construct, estimate and investigate systemic credit risk premium
(SCRP), which reflects the extra compensation that investors demand for holding
assets exposed to the risk of a cascade of defaults across multiple investments,
leading to systemic losses that are more severe than expected based on individual
credit risk alone. SCRP is a form of the credit risk premium that depends on
the joint behavior of the underlying assets and highlights the inter-dependencies
among them. In essence, SCRP addresses the risk premium for a borrower’s
defaults triggering other borrowers’ defaults, particularly if these defaults are cor-
related due to common exposures or contagion effects.

We aim to extract the dynamics of SCRP based on the portfolio-wide default risk
premium after controlling for the individual default risk premium. Through this
analysis, potential approaches for distinguishing the portfolio default risk premium
into two distinct components, namely the individual default risk premium and the
systemic credit risk premium, can be identified. The former component focuses on
the possibility of a single asset failing, while the latter relates to the probability
of multiple assets failing simultaneously. The structured credit market’s overall
perception of joint loss distribution for the reference entities in the index can be
deduced by examining the quotes of single-name Credit Default Swap (CDS) and
multi-name CDS index (CDX) tranche spreads. Accordingly, our study employs
both CDS and CDX tranche rates to isolate the individual default risk premium
at the portfolio level.
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To the best of our knowledge, the existing literature has not clearly addressed
these issues; thus, this paper fills this gap. For example, Giesecke and Kim (2011)
develop dynamic measures of systemic risk, defining it as the conditional probabil-
ity of correlated failures in the financial sector, based on a dynamic hazard model
for accurate out-of-sample forecasts of the U.S. term structure of systemic risk,
while not examining the dynamic premium for bearing systemic risk. Azizpour
et al. (2011) examine the premiums associated with correlated default risk using
corporate default data and CDX market rates. They compare the actual default
event intensity with the risk-neutral intensity of CDX market rates. In contrast,
our methodology compares CDX tranche spreads to hypothetically synthesized
tranche spreads derived solely from CDS spreads. Li and Zinna (2014) study sys-
temic bank credit risk using a multivariate credit risk model and CDS values to
examine the compensation for default risk as systemic risk and bank-specific risk.
Although they show that their estimated systemic credit risk is related to the
CDX spread, they use the CDS market data alone to estimate the premium. The
study by Huang (2020) explores correlated default risk and premiums in CDS of
six major U.S. banks from 2002 to 2018, finding that the estimated conditional
variance is asymmetric and leptokurtic, with positive shocks increasing variance
more than negative ones. Notably, the CDS-implied conditional correlations have
remained high since the financial crisis, in contrast to declining stock correlations,
indicating persistent systemic risk in the banking sector. Our approach differs in
that we employ both CDS and CDX market data to isolate the SCRP, while con-
trolling for the individual credit risk premiums across the 125 index constituents.

Admittedly, participants in the single-name CDS market also require significant
premiums to compensate for systemic credit risks Markose et al. (2012); Paddrik
et al. (2016). However, as shown in Amato and Gyntelberg (2005), different CDX
tranches exhibit different price sensitivities to the time-varying default correla-
tions. Consequently, the SCRP captured by CDS spreads (or, equivalently, CDX
index spreads) alone differs from the spreads across CDX tranches with different
attachment and detachment points. Bhansali et al. (2008) show that the senior
and super-senior tranches have high exposures to the systemic factor. The spreads
for the super-senior tranche reflect the market price of bearing systemic tail (or
economic catastrophe) risk, as the super-senior tranche investors face losses only
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in the event of a shock triggering the nearly simultaneous default of a substantial
number of firms in the economy Berndt and Obreja (2010). In addition, Az-
izpour et al. (2018) find that CDX investors require risk premiums for bearing
clustered default risk and part of the risk premiums for senior CDX tranches can
be attributed to contagion risk.

Accordingly, our study focuses specifically on the super-senior tranche spreads
of the CDX North American Investment Grade (CDX.NA.IG), which serve as a
proxy for the systemic credit risk premium. In this context, the SCRP is posi-
tively associated with the senior tranche spread. This positive relationship arises
because the realization of super-senior tranche losses is limited to extreme scenar-
ios, making the corresponding SCRP specific to the senior tranche a meaningful
measure of the market’s perception of the prevailing systemic credit risk. We fo-
cus on 5-year maturity, on-the-run CDS and CDX products to mitigate liquidity
concerns in our analysis. In the end, we analyze the 5-year super-senior tranche
at the tranche-swap spread level, rather than the correlation level, to circumvent
model risk across tranches and maturities.

The implication of SCRP has considerable academic significance in finance. It is
also pertinent for policymakers who utilize credit market signals to make decisions.
Consequently, its importance is highlighted by events such as the global financial
crisis and the COVID-19 pandemic, which illustrate how market participants per-
ceive systemic risk and how financial sector issues can impact the real sector or
vice versa. The 2007-9 global financial crisis demonstrated that risk management
at the individual financial firm level is insufficient and underscored the need for
macroprudential supervision to ensure the holistic management of systemic risk.
The recent downturn in financial markets due to the COVID-19 pandemic high-
lights the possibility of future similar scenarios, even with the potential resolution
of the pandemic-related adverse feedback loop.

This paper makes a unique and significant contribution to the literature by directly
estimating the SCRP and examining how market participants perceived major
recent crises, including the global financial crisis and the COVID-19 pandemic.
Tarashev and Zhu (2008) show the pricing of correlated default risk premiums
using the CDS and CDX market data. They extract the risk-neutral probability
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of default and physical asset return correlations from single-name CDS spreads and
compare them to correlations obtained using CDX tranche spreads. Nevertheless,
our study utilizes CDS spreads to produce artificial tranche spreads, which we then
compare directly to market-traded CDX tranche spreads to extract the time-series
implications of SCRP. The SCRP units are the same as market-traded instrument
units, allowing for a more direct interpretation of SCRP. Unlike the extraction
of implied correlation, the calculation of the spread exhibits a lower sensitivity
to model risk, and its theoretical range lacks an upper bound, making it more
practical and adaptable in times of market instability.

Our fitted SCRP is inferred from structured credit market data that encompasses
real-time market price information offering forward-looking indications of default
likelihood and the related premiums associated with the underlying names in the
portfolio. As such, the estimated SCRP provides the benefit of being more directly
linked to the system-wide credit risk premium, in contrast to measures extrapo-
lated from other markets, such as the equity market. Driessen et al. (2009) show
the market price of correlation risk inferred from the equity options market data.
Using S&P100 index options and individual equity options on all components,
their paper demonstrates that the index variance risk premium can be decom-
posed into an individual variance risk premium and a correlation risk premium.
Bondarenko and Bernard (2023) explore options written on individual stocks and
their associated index to identify a dependence structure that can illuminate the
return distribution of the index. To this end, they introduce the concept of model-
free dependence recovery (MFDR), leveraging options on the S&P 500 index and
nine industry sectors, particularly those traded as ETF options. Our approach is
similar in that it uses the multi-name CDX tranche spreads and the single-name
CDS of the reference entities that make up the CDX to decompose the portfolio
default risk premium into an individual default risk premium and a SCRP. How-
ever, the SCRP, estimated from credit derivatives directly related to corporate
default, can be seen as a conceptually more relevant measure of the system-wide
systemic credit risk premium than the correlated risk premium derived from eq-
uity options. Rodríguez-Moreno and Peña (2013) estimate market-based systemic
risk measures by using data on interbank interest rates, stock prices, and credit
derivatives, suggesting that measures based on CDS spreads outperform measures
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based on interbank rates or stock market prices.

Furthermore, our empirical analysis sheds light on the cross-market implications
for asset pricing, revealing that the estimated SCRP is vital as a significantly
priced risk factor in the investment opportunities available to U.S. stock investors,
particularly during times of financial instability. Our findings highlight the signifi-
cant impact of SCRP on the equity market, thereby establishing a link between the
equity market and the structured credit derivatives market. More specifically, this
paper empirically analyzes how U.S. equity market participants perceive SCRP
information extracted from the credit derivatives market. While the analyses in
Kitwiwattanachai and Pearson (2015) and Huang (2020) focused on discrepan-
cies between CDS-implied and equity return correlations, we conduct an in-depth
analysis to assess whether the fitted SCRP, extracted from credit market data, is
perceived as a significantly priced risk factor in the equity market, during crises
and in normal periods. Related to our approach, Collin-Dufresne et al. (2024), us-
ing multivariate affine transformation analysis, explore several aspects of the joint
dynamics of CDX and S&P 500 (SPX) options while showing that the credit and
equity markets are not fully integrated. Our analysis shows that, after controlling
for Fama and French’s three factors and a momentum factor in both time-series
and cross-sectional regressions, stock market participants demand additional com-
pensation for taking on systemic credit risk, primarily when the financial system is
vulnerable as a whole. These findings demonstrate that the estimated SCRP is an
important cross-market pricing factor affecting stock investors’ decisions during
periods of financial instability.

2. Motivation

This section outlines our research objectives, introduces the concept of market-
implied SCRP in credit derivatives, and explains how to apply the fitted SCRP
in a cross-market asset pricing framework.
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2.1. Main objectives

The aim of this study is to extract the time-series dynamics of the SCRP by analyz-
ing portfolio-wide default risk premiums while controlling for individual credit risk
premiums, using single-name CDS spreads and multi-name CDX tranche spreads.
In conceptual terms, the SCRP estimation approach is relevant to the trading
strategy of premiums on default timing correlation through combining individual
CDS contracts and CDX tranche swap contracts. This strategy aims to reduce
the risk of correlated defaults adversely affecting the overall portfolio while simul-
taneously hedging against the risk of individual reference entity defaults. CDX
tranche swaps allow investors to take positions on a reference entity portfolio’s
credit risk, enabling them to hedge against the risk of a cluster of defaults in the
index. In contrast, CDS contracts protect against the individual reference entity
default, allowing market participants to hedge against idiosyncratic default risk.
Market participants can trade default timing correlation by taking long positions
in CDX tranche swaps and short positions in CDS individual reference entity
contracts within the portfolio.

The paper examines the systemic credit risk premium by exploring the estimated
SCRPs derived from the market prices of credit derivatives directly associated
with corporate default events. We employ the CDX senior tranche swap price
as the portfolio default risk premium to obtain a more pertinent estimation of
the systemic credit risk premium. Tranches are structured products that allow
investors to take positions on a specific portion of the underlying credit risk. In
a synthetic collateralized debt obligation (CDO), the tranche is determined by
the attachment point at which the loss begins and the detachment point at the
maximum loss point the tranche can afford. Among CDO tranches, the highest-
rated and lowest-risk tranche is called the senior tranche. If there are any defaults
or losses on the underlying assets, the senior tranche is the last to experience
these losses, as all other tranches bear the losses first. Therefore, the price of
senior tranches may reflect the market’s assessment of the systemic credit risk. In
this regard, Seo and Wachter (2018) explain CDX senior tranche spread levels in
terms of a time-varying probability of economic disaster.

Furthermore, we extend our analysis of the SCRPs, estimated from credit mar-
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ket data, by exploring how equity market investors perceive systemic credit risk,
thereby expanding the scope of our investigation beyond the credit market. The
objective is to investigate whether equity market participants demand compen-
sation for the fitted SCRP, regarding it as a risk factor that affects changes in
portfolio returns in the equity market. If the SCRP factor is significantly priced
in the equity market, we can conjecture that the cross-market asset pricing im-
plications of the estimated SCRP are significant, particularly with respect to the
investment opportunities accessible to stock investors.

2.2. Identifying the systemic credit risk premium

We extract the dynamics of SCRPs as the difference between the market price
of CDX senior tranches and the valuation of artificially generated tranches com-
prising the same CDS contracts as the CDX reference entities. The magnitude
and time series behavior of the discrepancy reflect the market-implied perception
of systemic credit risk over time. If investors require compensation for taking
the risk of excessively clustering defaults in the system, the market tranche rate
should exceed the artificially generated tranche rate.

In principle, the approach adopted for estimating SCRPs entails the disentangle-
ment of individual default risk premiums from portfolio default risk premiums,
accomplished through the use of both single-name and multi-name credit deriva-
tive securities. A CDS is a derivative financial instrument that allows investors
to hedge against the individual default risk of an underlying asset associated with
individual credit risks, such as corporate bonds or loans. As a CDS contract refers
to an instrument on a single reference entity, the single-name CDS market price
data may primarily provide the unconditional risk-neutral probability of the de-
fault of an individual reference entity for its remaining maturity at a given point
in time. This is insufficient for capturing the systemic credit risk premium, which
incorporates a conditional set of information regarding the risk-neutral probability
of observing clustered defaults of multiple entities at the portfolio level. In this
regard, market-based information derived from the CDX tranche spreads, as a
specific category of CDOs, can be considered a valuable supplement for capturing
the compensation demanded by investors for bearing the portfolio-wide systemic
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credit risk. The CDX swap contracts are traded in the form of an index, which is
a basket of multiple CDS contracts and tranches. Tranches are segments created
from a pool of securities and classified according to the scope of CDO loss compen-
sation. The market price of a CDX tranche swap contains information regarding
individual default risk and systemic credit risk premiums, as it is composed of
multiple reference entities.

Therefore, SCRPs can be extracted from the portfolio default risk premium by
controlling the individual default risk premium through the association between
the individual and the portfolio-wide default risk premiums, representing the per-
ception of a correlated default risk of a product consisting of multiple assets. To
control for the individual default risk premium, we artificially construct time series
of senior tranche spreads using CDS spreads by matching the reference entities
with the CDS index tranche swap contracts. Each time, these artificial senior
tranches can be created with inverted marginal default probabilities and physical
correlation. We define them as reference tranches and compare them to market
tranche spreads for extracting SCRP. Since the individual default probabilities are
inverted from the CDS spreads observed in the market, we can effectively correct
the impact of the individual default risk premium on the CDX tranche spreads.

2.3. Cross-market asset pricing implications

The nature of SCRP dynamics should be time-varying, as its magnitude and di-
rection change over time. The time-varying risk factor could manifest only in
certain periods and is not present in others. As the SCRPs signify the compensa-
tion level for taking on systemic credit risk by design, they may more prominently
impact equity returns as a priced risk factor during economic downturns when the
systemic credit risk is relatively high but less so in economic expansions. In this
context, our empirical study employs various indices designed to differentiate be-
tween stable and distressed periods, including the Chicago Fed National Activity
Index (CFNAI), the St. Louis Fed Financial Stress Index (STLFSI), and the Of-
fice of Financial Research Financial Stress Index (OFRFSI), to examine whether
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SCRPs have divergent impacts on equity returns during these different periods.1

Our inter-market empirical analysis employs the fitted SCRPs sourced from credit
market information to investigate how equity market investors view systemic
credit risk. In other words, our asset-pricing study presumes that the credit-
market-implied SCRP can be viewed as an external risk factor affecting invest-
ment opportunities in the stock market in the sense that risk premiums in other
markets could be a significant risk factor in the stock market. Cross-market risk
factors have long been recognized as important drivers of stock market returns,
as evidenced in studies such as Chen et al. (1986) and Fama and French (1993),
among many others. These inter-market factors, including the default spread and
term spread inferred from bond market data, have been shown to significantly
impact stock market investments. CDS spreads are closely tied to corporate bond
yields, particularly when the reference entity in the CDS contract matches the
issuer of the risky bond. CDS spreads often reflect the excess of the bond yields
of the reference entity over the risk-free rate, as highlighted in Hull et al. (2004),
because both are affected by the same underlying credit risk.

Recent research, such as Friewald et al. (2014), further highlights the importance
of these inter-market risk factors by demonstrating that the credit risk premium
estimated from CDS spreads contains information about stock prices not captured
by traditional risk factors. Specifically, they show that firms’ stock returns tend
to increase with the credit risk premium, as reflected in the term structure of CDS
spreads. Collin-Dufresne et al. (2024) employ the multivariate affine transforma-
tion analysis to capture several aspects of the joint dynamics of CDX and S&P
500 (SPX) options, showing that the credit and equity markets are not fully in-
tegrated. While the studies by Kitwiwattanachai and Pearson (2015) and Huang
(2020) examined the differences between CDS-implied and equity return corre-
lations, our analysis goes further by investigating whether the estimated SCRP,
derived from credit market data, is recognized as a significant risk factor in equity
markets, both during times of crisis and under normal conditions.

1The CFNAI is a monthly economic indicator that comprehensively measures overall eco-
nomic activity and inflationary pressures in the United States. The STLFSI is a weekly index
that monitors the stress level of the U.S. financial system using a range of financial indicators,
whereas the OFRFSI is a stress index covering the global scope and is updated daily to track
stress levels in financial systems.
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3. Model Framework

In this section, we introduce our model framework for capturing the time-varying
dynamics of SCRPs and outline the methodologies used to estimate these premi-
ums based on the implied information from the credit derivatives market data.
We consider a portfolio of n credit sensitive positions, e.g., the CDX.NA.IG index
has n = 125 constituents. In our analysis, we fix a statistical data-generating
probability measure denoted as P. For the valuation of both single-name and
multi-name credit derivatives in the absence of arbitrage opportunities, we fur-
ther introduce a fixed risk-neutral probability measure Q, which is equivalent to
P and is associated with a constant risk-free rate r > 0.2

3.1. CDS-implied dependence structure

Our model specification aims to capture the time-series patterns of SCRP across
single-name and multi-name credit market participants. Specifically, we extract
individual distance-to-default values from single-name CDS spreads at each time
point, focusing on the evolution of their cross-sectional correlation structure. Mo-
tivated by Kitwiwattanachai and Pearson (2015) based on Merton (1974) and
Black and Cox (1976), our structural credit risk model aims to infer the correla-
tion dynamics of distance-to-defaults based on the market-quoted CDS spreads.
Specifically, we presume that the risk-neutral dynamics of a firm’s asset value (V )
follows a geometric Brownian motion specified as

d log V (t) = (r − σ2/2)dt + σdW (t) ,

where W is a standard Brownian motion under Q. Default occurs when the asset
value hits a boundary. For a parsimonious model specification, we adopt the
base model3 of Kitwiwattanachai and Pearson (2015), by assuming that the Q-

2The assumption of a constant risk-free rate facilitates our calibration procedure. Empirical
studies related to credit derivatives markets commonly assume a constant risk-free rate for
computational tractability, as evidenced by several works such as Driessen (2005), Pan and
Singleton (2008), Carr and Wu (2011), Oh and Patton (2018), and many others.

3Kitwiwattanachai and Pearson (2015) explore various default boundary dynamics, including
generalized growth rates, mean-reverting leverage ratios, and stochastic boundary models, and
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dynamics of the boundary process B(t) at time t is given by B(t) = B(0)e(r−0.5σ2)t.
Then, by applying Theorem 3.7.1 of Shreve (2004), the Q-density of default time
is derived as a function of the distance-to-default, represented by m ≥ 1, taking
the form of

q(m, t) = m

t
√

2πt
× e

−m2
2t .

This default time density is used to calculate the present value of the cash flow
stream associated with a CDS contract, specifying a contractual agreement be-
tween a protection buyer and a protection seller. In the context of CDS valuation,
the contract consists of two main components: the default leg, also known as the
protection leg, and the premium leg. The default leg represents the protection
seller’s obligation to make a payment upon default of the reference entity, while
the premium leg represents the periodic payments made by the protection buyer
to the protection seller.

The present value of the payments on the default leg of a CDS is given by

Λ1(m, ℓ, r) = ℓ
∫ T

0
q(m, t)v(t)dt ,

where v(t) is the present value of $1 received at time t and ℓ is the loss rate.4 The
present value of the premium leg is obtained by multiplying the fair CDS spread,
denoted by S(m, ℓ, r), with the risky present value of a basis point (RPV01) of
the CDS contract, which is given by

Λ2(m, r) =
∫ T

0
q(m, t)g(t)dt +

(
1 −

∫ T

0
q(m, t)dt

)
g(T ) ,

where g(t) = 1
4
∑

j:0<uj≤t e−ruj is the cumulative present value as of time t of the
quarterly payments at the rate of $1 per year on the payment dates between t and
u, and captures the premiums paid on these dates. Subsequently, the fair CDS
spread with its time-to-maturity T can be obtained by equating the present values

find that the correlation estimates are reasonably similar across these specifications. We adopt
the base model for its parsimonious specification, minimizing the number of parameters to reduce
overfitting and ensure a more tractable and reliable calibration.

4We assume a constant loss rate (ℓ), which is a common simplification in the relevant litera-
ture, for the feasibility of our model fitting procedure; e.g., refer to Longstaff et al. (2005), Chen
et al. (2008), Chen et al. (2013) and Li and Zinna (2014) for similar treatment.
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of the cash flow streams implied by default and premium legs, or equivalently

S(m, ℓ, r) = Λ1(m, ℓ, r)
Λ2(m, r) .

At each time point t, we observe a market-quoted CDS spread and infer the
distance-to-default, m(t), by calibrating our model to be consistent with CDS
spread data. Recall that the computational feasibility of parameter calibration is
facilitated by our assumption of a constant r and ℓ, as the CDS spread is then
a one-to-one function of the distance-to-default m. As Itô’s lemma implies that
dm(t) = dW (t), we can derive the stochastic differential equation of the CDS
spread dynamics in the form of

dS(m(t)) = ∂S

∂m
dW (t) + 1

2
∂2S

∂m2 dt

= b1(S(t))dW (t) + 1
2b2(S(t))dt ,

where b1(S) = ∂S
∂m

and b2(S) = ∂2S
∂m2 are the first and second order derivatives

of S with respect to m, respectively. Since S(m), ∂S
∂m

and ∂2S
∂m2 are one-to-one

functions of m, we approximate the first derivative b1(S) and the second derivative
b2(S) based on the third-order polynomial fitting of the CDS spread, respectively.
Through this process, the past trajectory of the implied distance-to-default m(t)
can be extracted from the CDS spread data based on the relationship given by

dm(t) = dW (t) =
dS(t) − 1

2b2(S(t))dt

b1(S(t)) .

To quantify the statistical behaviors of the CDS-implied asset correlations under
P, we incorporate the dynamic information flow observed from the CDS mar-
ket regarding the co-movement of asset returns. This is achieved in our study
by adopting the DCC-GARCH(1,1) approach, following the model specifications
proposed by Tse and Tsui (2002) and Engle (2002). It is worth noting that anal-
ogous methodologies have been extensively employed in recent literature, as they
effectively capture the dynamic nature of market conditions better than uncondi-
tional correlations containing only static information. Based on the DCC-GARCH
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modeling approach, Cho and Parhizgari (2009) analyzed the impact of the 1997
East Asian financial crisis on the stock markets of eight countries to investigate
contagion effects. Celık (2012) used a DCC-GARCH model to test the existence
of financial contagion among the foreign exchange markets of several emerging
and developed countries during the U.S. subprime crisis. DCC-GARCH models
are also used to measure systemic risk. Girardi and Ergün (2013) used a DCC-
GARCH model to estimate CoVaR, originally proposed by Adrian and Brunner-
meier (2016), the Value-at-Risk of the financial system conditional on an institu-
tion being in financial distress. Brownlees and Engle (2017) used a DCC-GARCH
model to define SRISK to measure financial firms’ contributions to systemic risk.

Specifically, on a daily basis, we introduce the statistical correlation between the
CDS-implied returns of the underlying assets for any two firms i and j, denoted
by ρij(t), as

ρij(t) ≜ CorrP (∆ log Vi(t), ∆ log Vj(t)) = CorrP (∆mi(t), ∆mj(t)) (1)

on each date t. Subsequently, we form the (n × n) correlation matrix

Σ(t) =
(

ρij(t)
)

1≤i,j≤n
,

representing the statistically observed conditional correlations between the cross-
firm innovations of the distance-to-defaults. As illustrated by Equation (1), the
matrix Σ(t) equivalently captures the observed P-dynamics of the pairwise corre-
lations among the CDS-implied asset returns.

In our DCC-GARCH(1,1) model framework, we consider a vector of the demeaned
daily distance-to-default innovations y(t) =

(
y1(t), · · · , yn(t)

)⊤
specified as

y(t) = H(t)1/2 z(t) ,

where H(t) is the date-t conditional variance-covariance matrix of y(t), H(t)1/2 is
obtained by a Cholesky factorization of H(t), and z(t) is a random vector with a
zero mean and an identity covariance matrix of order n. In turn, we posit

H(t) =
(

ρij(t)
√

hi(t)hj(t)
)

1≤i,j≤n
,
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where ρij(t) is a conditional correlation and, for ωi > 0, αi ≥ 0, βi ≥ 0 with
αi + βi < 1, we have

hi(t) = wi + αiy
2
i (t − 1) + βihi(t − 1) i = 1, . . . , n

representing the conditional variance of yi(t) under the GARCH(1,1) model. Fur-
thermore, we assume that the conditional correlation matrix Σ(t) =

(
ρij(t)

)
1≤i,j≤n

can be expressed as Σ(t) = A⋆(t)−1 A(t) A⋆(t)−1 , where the dynamics of A(t) =(
aij(t)

)
1≤i,j≤n

can be expressed as

A(t) =
(
aij(t)

)
1≤i,j≤n

= (1 − α − β)Ā + αz(t − 1)z⊤(t − 1) + βA(t − 1)

for non-negative scalar parameters α and β satisfying α + β < 1 to ensure sta-
tionarity along with

A⋆(t) = diag
((√

aii(t)
)

1≤i≤n

)

and Ā as the unconditional covariance matrix of devolatized residuals
(
yi(t)/

√
hi(t)

)
i=1,...,n

.
To reflect market participants’ perceptions, we forecast a one-step-ahead condi-
tional correlation matrix Σ(t + 1) from estimated DCC-GARCH(1,1) and use it
as input value to evaluate the reference tranche spread.5

3.2. Extracting the SCRP estimates

Notice that the P-correlation dynamics, reflecting the statistically estimated asset-
correlation structure inferred from the time-series evolution of the CDS spreads
alone, cannot fully address the systemic credit risk premium implied by the
market-observed CDX tranche spreads. In this vein, we wish to assess credit mar-
ket participants’ perception of systemic credit risk by comparing market-quoted
CDX (senior) tranche spreads with corresponding reference tranche spreads con-
structed using a statistically estimated asset dependence structure. To ensure
consistency with the single-name assumption of risk-neutral dynamics of asset

5We fit the DCC-GARCH(1,1) model to our dataset by maximizing the log-likelihood func-
tion. This is done by employing the dccfit function provided as a built-in module in the R
package rmgarch; refer to Ghalanos (2022) for details. The sample average of estimates for α
and β are 0.0096 and 0.9009, with sample standard deviation of 0.0119 and 0.2073, respectively.
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value following a geometric Brownian motion, we extend this framework to the
multi-name level when calculating the reference tranche spreads.

This entails integrating the statistically estimated asset-return correlation struc-
ture, enabling us to infer the risk-neutral dynamics of the underlying asset value
specified as a geometric Brownian motion, for tractable pricing purposes. Ac-
cordingly, we assess the reference tranche spreads, serving as the counterparts to
the market-quoted tranche spreads, while consistently assuming the risk-neutral
dynamics of a name’s asset value by using the estimated P-correlation matrix as
an input.6 We adopt the Monte Carlo simulation method to numerically compute
the first passage time of a multivariate geometric Brownian motion. This is ac-
complished through a joint simulation of the distance-to-default processes for a
portfolio comprising n assets. A constituent defaults when its distance-to-default
process reaches zero, and we count the number of defaults in the portfolio for a
given horizon.

More specifically, at each time t, we obtain the statistically estimated correlation
matrix Σ(t) from the P-observed movements of the extracted distance-to-defaults,
which are obtained by inverting the CDS pricing formula under the Q-geometric
Brownian motion framework. To ensure a simulation procedure that is both cohe-
sive and unified with our pricing model, we generate the correlated default times
based on the statistically estimated correlation matrix Σ(t), assuming it remains
constant throughout the simulation horizon between time t and t + T . On the
subsequent date t+1, we re-estimate Σ(t+1) using the DCC-GARCH(1,1) model,
considering it as a time-invariant input over the next simulation horizon between
t + 1 and t + 1 + T , and so forth. This approach imposes a hypothetical inter-
dependence structure among the risk-neutral default times of different entities to
generate the reference tranche spreads, which cannot capture all the premiums for
taking correlated defaults reflected in the CDX tranche spreads. Our objective is
to examine the time-series dynamics of the discrepancy between market-quoted
and reference (senior) tranche spreads.

Having simulated a sequence of the ordered default times, (τk)n
k=0, in the reference

6In contrast, the market-quoted tranche is based on the risk-neutral dynamics of reference
entities combined with Q-correlation matrix.
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portfolio of firms, where 0 = τ0 < τ1 < τ2 < · · · < T , we use them to estimate
the exposure of an investor selling default protection on the CDX tranche swap
contract.7 The joint default times generate the default counting process

Nt =
∑
k≥1

1{τk≤t} ,

which counts the number of defaults in the portfolio. The loss process

Lt =
∑
k≥1

ℓk1{τk≤t}

for ℓk ∈ (0, 1] records the cumulative financial loss due to defaults until t, where
the jump times of Lt are identical to those of Nt. In our analysis, we assume that
the loss rates, which specify the jump sizes of Lt at each of the default times, are
all ℓk = ℓ for all k ≥ 1; i.e., Lt = ℓNt, which is consistent with the assumption in
the CDS valuation.

A tranche of a synthetic CDO is a swap contract specified by a lower attachment
point K ∈ [0, 1) and an upper attachment point K ∈ (K, 1], where K = K − K is
the tranche width. The protection seller agrees to cover all losses due to default
in the reference portfolio, provided these losses are realized between Kn and
Kn. In exchange, the protection buyer pays the protection seller an upfront
fee at inception and a quarterly spread payment, both of which are negotiated at
contract inception. With the convention that the portfolio loss at the contract
inception is equal to zero, the cumulative tranche loss at post-inception time t is
given by the call spread on the portfolio loss taking the form of

Ut = (Lt − Kn)+ − (Lt − Kn)+ .

The default leg of a tranche swap is a stream of payments that cover portfolio
losses as they occur, given that the cumulative losses are larger than Kn but do
not exceed it. The protection buyer pays the upfront payment FKn at inception
with the upfront rate F , and SCm(Kn − Utm) at each date tm, where S is the
tranche spread and Cm = 0.25 is the day count fraction for quarterly payments.

7For simplicity in notation, we assume that the simulation horizon is from time 0 to T .
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The fair tranche swap spread at time t equates the two leg present values satisfying

(Fair Tranche Spread) =
EQ

[∫ T
0 e−rtdUt

]
− FKn

EQ [∑tm
e−rtmCm (Kn − Utm)] .

When fixing a market-observed CDS spread, the CDS-implied distance-to-default
is indeed influenced by assumptions regarding the risk-free and recovery rates.
On one hand, our simulation study demonstrates that variations in the risk-free
rate assumptions have a negligible impact on the results.8 On the other hand, our
simulation study also reveals a negative association between the recovery rate and
the model-implied senior tranche spreads, if all others remain equal. An increase
in the loss rate assumption typically results in larger values for the CDS-implied
distance-to-defaults, leading to a decrease in the number of simulated defaults in
the portfolio. Despite the recovery-rate assumptions, the total expected losses
remain unchanged; however, the distribution of portfolio losses shifts towards
extreme values. Consequently, the expected loss for the equity tranche decreases,
while the expected loss for the senior tranche increases, even when the index
spread remains constant. To be precise, this assumption implies that the difference
between the market-quoted and the model-implied tranche spreads captures the
premium associated with default loss clustering risk.

We compare the CDX market tranche spread with the corresponding reference
one as a benchmark, which is obtained by calculating the fair tranche swap spread
using the same attachments and detachments as the original tranche and incorpo-
rating individual default risk premiums along with physical dependence structure
implied by CDS spreads. Recall that the reference tranche spreads are derived
solely from CDS spreads, which primarily capture the individual credit risk pre-
mium that we want to separate from the extraction of the SCRP. In contrast,
market-quoted CDX tranche spreads incorporate both the individual default risk
premium and the entirety of SCRP.

Given the model assumptions, the expected loss processes can be computed for a
specific tranche position via simulation. This involves taking into account the joint
distribution of default times, influenced by the distance-to-default derived from

8Further details are available upon request.

18



market-quoted CDS spreads and the estimated asset-return correlations implied
by the model. Using these expected loss processes, we can calculate a refer-
ence tranche spread at each time, including individual default risk premiums but
omits the critical components of SCRP. Therefore, we can determine the portfolio-
wide premium for bearing systemic credit risk by comparing the reference tranche
spread with the market-observed tranche spread after adjusting for the marginal
default risk premium effect.

As empirically verified by Tarashev and Zhu (2008), we presume that the multi-
name CDX and single-name CDS markets employ similar risk-neutral individual
default risk premiums. Therefore, our definition of SCRP at each time t is given
by

SCRPt = (Market Tranche Spread)t − (Reference Tranche Spread)t ,

where the difference between the market tranche and reference tranche spreads
reflects the systemic credit risk premium. If investors require compensation for
taking the risk of excessively correlated defaults in the system, then the market
tranche rate should exceed the reference tranche rate. Thus, the magnitude and
time-series behavior of the discrepancy reflect the credit-market-implied market
price of the systemic credit risk.

3.3. Implications of SCRP estimates

The estimated SCRP provides valuable information to policymakers and practi-
tioners by serving as a crucial tool to assess and manage aggregate credit risk
exposure at the system level. As a market-based measure, SCRP offers forward-
looking signals in real time, capturing investor expectations and market senti-
ment instantly, while accounting-based indicators rely on historical data and are
reported with delays IMF (2009); Borri et al. (2012). This distinction makes
the SCRP a leading indicator for proactive systemic credit risk management,
strengthening regulatory responses to market fluctuations. Unlike equity-based
measures of systemic risk, which may not fully capture the required compensa-
tion to take aggregate credit risk, the estimated SCRP is derived from the prices
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of credit derivatives, directly reflecting market-wide default risk exposures as a
whole Rodríguez-Moreno and Peña (2013); Suh et al. (2013). By more precisely
capturing the market price of systemic credit risk, the SCRP provides critical in-
sights for macroprudential authorities and central banks, enabling them to detect
early signs of rising systemic credit risk and implement timely interventions to
prevent broader financial instability.

From a practical standpoint, institutional investors and traders can leverage the
estimated SCRP as a valuable market indicator to inform and refine their invest-
ment strategies and risk management decisions. By capturing market perceptions
of systemic credit risk, the SCRP informs asset allocation decisions Kole et al.
(2006); Meinerding (2012); Altinoglu (2023). For instance, a rising SCRP sig-
nals heightened systemic credit risk, prompting investors to hedge by shifting
toward safe assets or employing credit derivatives to mitigate downside expo-
sure. Conversely, if the SCRP remains low despite macroeconomic uncertainty,
it may suggest that the market is underpricing systemic credit risk premia. In
such cases, investors might apply leverage by increasing exposure to underval-
ued credit-sensitive assets, anticipating a market repricing. Furthermore, as em-
pirically demonstrated in Section 4.3, the estimated SCRP, derived from credit
derivatives market data, reveals significant insights into cross-market asset pricing
dynamics. When treated as an external risk factor in the equity market, it allows
investors to capture positive alpha through a long-short strategy based on the
estimated SCRP beta, thereby improving the performance of equity portfolios.

4. Empirical Analysis

In this section, we provide information on our data and sample, analyze the time-
series behavior of the extracted SCRP, and examine its cross-market asset-pricing
implications, specifically in relation to the U.S. stock market. Given that the
structured credit derivatives market, in contrast to the stock market, transforms
latent credit risk premium into observable prices, our hypothesis is that the ex-
tracted SCRP may be priced in the equity market.
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4.1. Data and sample

We obtain single-name CDS spreads and multi-name CDX index and tranche
spreads from the Markit database. The CDX North American Investment Grade
(CDX.NA.IG) index’s senior tranche rates are of interest, as they do not incur
any losses until substantial defaults occur, thereby providing critical information
about how the market assesses systemic credit risk among high-quality firms;
refer to Seo and Wachter (2018) for related discussions. The CDX.NA.IG index
consists of 125 equally weighted CDS contracts on representative North American
investment-grade firms. In general, on-the-run products with a 5-year maturity
exhibit high liquidity in both the CDS and CDX tranche markets. Consequently,
we have selected both CDS and CDX products with a 5-year maturity and on-the-
run series to address liquidity concerns in our analysis.9 Ultimately, we examine
the 5-year super-senior tranche at the tranche-swap spread level, rather than the
correlation level, to mitigate model risk across different tranches and maturities
from a pricing perspective.

Furthermore, we limited our data selection to Wednesdays to remove any potential
day-of-the-week effects. In cases where data were unavailable on a Wednesday,
we calculated a weighted average of the adjacent trading days within the same
week. If there were no trading days during a week, the data were considered
incomplete. Our sample period for constructing the reference tranche spread
ranges from Series 5 to Series 35, from September 2005 and March 2021, as the
CDO market dataset is unavailable for the first four CDX indices, as stated by
Koziol et al. (2015). Notably, our study period incorporates the 2007-9 financial
crisis and the recent COVID-19 pandemic. We selected CDS contracts that align
with the reference entities included in the CDX.NA.IG portfolio over time. We
assumed a daily discretization interval by setting ∆t = 1/252. To simulate default
timing scenarios, we generated one million sample paths per day, with a time-to-
maturity of five years, a risk-free rate of 2.5%, and a fixed loss rate of 60%. The

9Nevertheless, the estimated SCRP still accounts for the potential discrepancy in liquidity risk
premiums between the multi-name CDX tranche and the single-name CDS markets. Therefore,
from a broader perspective, it is desirable to interpret the fitted SCRP as inclusive of this cross-
market liquidity premium differential, if any. More precisely, we treat the liquidity premium as
one of the components contributing to the broader landscape of systemic credit risk premium.
Any further decomposition is beyond the scope of our study and is left for future work.
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statistical correlations among asset returns were numerically estimated through
maximum likelihood estimation using the DCC-GARCH(1,1) model with a rolling-
window approach, employing a window size of one year.

4.2. The time-series behavior of the fitted SCRP

As the CDX.NA.IG series evolved, changes occurred over time that affected the
tranche attachment points, trading units, and fixed coupon rates. To facilitate
a meaningful comparison of market prices between the CDX senior tranches and
the reference tranches as benchmark, we calculated their adjusted fair spreads.
Specifically, these adjusted spreads are based on the consistent tranche width,
trading units over time, accompanied by the appropriate adjustments for fixed
coupon rates. For the senior tranche, the tranche width is typically set in the
range of 0.15 to 1.00, consistent with recent years. Trading units are aggregated
into spreads. As for the reference tranche, the adjusted fair spreads are adjusted
by setting the prepayment upfront rate set to zero. To calculate the adjusted fair
spreads for the market tranches, we combine the market-quoted CDS spreads and
the base correlations of the senior tranche.

[Figure 1 about here.]

Figure 1 shows the time series of the market and reference tranche spreads. As
shown, the time-series behavior of market tranche spreads generally aligns with
that of reference tranche spreads, with market tranche spreads typically higher.
The dynamics of the SCRPs are derived by calculating the difference between
the market price of the CDX senior tranches and the value of synthetic reference
tranches, both based on the same CDS contracts on the reference entities that are
constituents of CDX.NA.IG.

[Table 1 about here.]

Table 1 presents summary statistics for the estimated SCRPs. Over the entire
period, market participants demanded an average compensation of 13 bps for sys-
temic credit risk. Following the complete redesign of the CDX product with Series
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15 (September 2010), we also report summary statistics for the periods before and
after Series 15. The mean value decreased after Series 15, suggesting that market
participants no longer demand higher compensation for systemic credit risk af-
ter the restructuring, indicating that the product changes contributed to market
stabilization.

[Figure 2 about here.]

Figure 2 shows the time series of the estimated SCRPs. If investors require com-
pensation for bearing systemic credit risk, the market-quoted senior tranche rate
should exceed the reference tranche rate. For instance, the SCRP peaked in
March 2008, coinciding with the Bear Stearns bailout, the first major intervention
for an investment bank, which had a significant psychological impact on mar-
ket participants. Notably, the SCRP steadily increased from mid-2007 until the
Bear Stearns crisis, indicating growing compensation demands for systemic credit
risk, even before the official onset of the recession. In September 2008, Lehman
Brothers’ bankruptcy caused the SCRP to reach its second-highest value, mark-
ing the largest financial shock of the global financial crisis. While CDX products
were disrupted after Lehman’s collapse, the Bear Stearns bailout was perceived as
more traumatic. Following the reorganization of CDX tranche swap contracts in
September 2010, the market resumed normal trading, though the trading volume
continued to decline. By January 2016, the SCRP had begun to fall, likely due to
the central clearing system’s role in enhancing CDS market stability. The SCRP
surged again in March 2020 due to the COVID-19 crisis, contrasting with the
earlier steady rise, but then declined as financial markets stabilized.

Recall that we do not require the estimated SCRP to be strictly positive. As
noted by Huang (2020), CDS contracts can serve as a risk-betting tool, enabling
investors to speculate on the default risk of a reference entity without holding its
reference liability. Although the estimated SCRP is generally positive, occasional
dips below zero may signal overconfidence in the market’s perception of systemic
credit risk. Notably, the fitted SCRP dropped below zero prior to both the global
financial crisis and the onset of the COVID-19 pandemic, indicating that such
instances could serve as early warning signals of impending system-wide credit
risk events, such as the collapse of a systemic bubble.
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4.3. Cross-market asset-pricing implications

Our empirical analysis examines how U.S. equity market investors perceive sys-
temic credit risk by analyzing the extracted SCRPs from structured credit market
data. In contrast to stock prices, which reflect latent credit risks, credit deriva-
tives make these risks observable, thereby providing a clearer measure of systemic
credit risk. The goal is to assess whether stock market participants price the es-
timated SCRP as a significant risk factor. If the SCRP is found to significantly
affect equity prices, it would suggest that both equity and credit market investors
demand compensation for their exposure to systemic credit risk, with the CDS
market serving as a transparent mechanism for incorporating these risks into eq-
uity pricing. Conducting this analysis during both crisis and normal periods offers
a more comprehensive view, as the perceived importance of systemic risk may vary
across market conditions. By comparing these two periods, we can better under-
stand how market participants adjust their risk perceptions in response to evolving
financial environments.

Our economic reasoning is that the SCRP is closely linked to the cross-section
of stock returns, particularly during financial crises, when systemic risks rise as
defaults cluster across firms through common macroeconomic channels. During
these periods, stocks more exposed to systemic risk or with higher default correla-
tion, such as those in highly leveraged sectors or industries sensitive to economic
downturns, tend to underperform. This underperformance reflects the increased
demand for compensation for bearing the risk of correlated defaults. During crises,
investors typically engage in a flight to quality, reallocating capital toward safer
assets, which further depresses the returns of riskier stocks. Furthermore, the
widening of credit spreads and rising CDS premiums signal higher default cor-
relation risk, which is priced into the market. As a result, we conjecture that
there is greater cross-sectional variation in stock returns, with riskier, more cor-
related assets commanding higher risk premiums to compensate for the increased
probability of joint defaults during crisis periods.

To test whether the estimated SCRP correlates with a premium in returns, we
estimated the SCRP betas based on a rolling-window regression with a window
size of one year for each stock by taking the fitted SCRP as a risk factor in the
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stock market. We then sorted the stocks into ten decile groups based on their
SCRP beta levels to construct value-weighted portfolios. Subsequently, we cre-
ated a long-short portfolio by combining the upper and lower decile portfolios to
investigate whether the SCRP factor exhibits a significant premium even after
controlling for the Fama and French (1993) three factors and the Carhart (1997)
momentum factor. We further examined whether the estimated SCRP is a time-
varying risk factor for equity returns, specifically during distressed periods when
systemic credit risk is high. To achieve this, we employ various indices that differ-
entiate between stable and distressed periods, such as the Chicago Fed National
Activity Index (CFNAI) from the Federal Reserve Bank of Chicago, the St. Louis
Fed Financial Stress Index (STLFSI) from the Federal Reserve Bank of St. Louis,
and the Office of Financial Research Financial Stress Index (OFRFSI) from the
Office of Financial Research. Stock returns are obtained from CRSP, factor data
are from Kenneth French’s website, and indices that distinguish between stable
and distressed periods are from the websites of the organizations that produce
them. Summary statistics for the variables used in the analysis are presented in
Table 2.

[Table 2 about here.]

The CFNAI is a monthly economic indicator measuring the overall economic ac-
tivity and inflationary pressure in the United States. It is produced by the Federal
Reserve Bank of Chicago and is based on 85 different economic indicators, includ-
ing production, employment, consumption, and sales indicators. It is designed to
provide a comprehensive and timely snapshot of the U.S. economy and to analyze
economic trends and potential changes in the economy’s direction. A positive CF-
NAI reading indicates that economic activity is above the historical trend, while a
negative reading suggests that economic activity is below it. As such, the CFNAI
is used to distinguish between expansion and contraction periods.

The STLFSI is a weekly index measuring the stress level of the U.S. financial
system based on a set of financial indicators. The index is calculated by the
Federal Reserve Bank of St. Louis and is based on 18 financial market indicators,
including seven interest rates, six yield spreads, and five other indicators. The
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STLFSI is used to monitor the health of the financial system and identify potential
risks to financial stability. An STLFSI below zero suggests below-average financial
market stress, while above zero suggests above-average financial market stress. As
such, the STLFSI is used to distinguish between stable and distressed periods.

The OFRFSI is another index measuring the stress level of the financial system.
It is calculated by the Office of Financial Research (OFR), an independent bureau
within the U.S. Department of the Treasury established in response to the 2008
financial crisis. The OFRFSI is based on 33 financial market indicators, includ-
ing credit, equity valuation, funding, safe assets, and volatility. The OFRFSI’s
key features are that it covers the global scope and is updated daily to provide
real-time insights into changes in financial market conditions. Like STLFSI, an
OFRFSI below zero indicates that financial market stress is below average, while
above zero indicates above average. As such, the OFRFSI is used to distinguish
between stable and distressed periods.

[Figure 3 about here.]

Figure 3 presents the alphas for value-weighted portfolios constructed from the ten
deciles of SCRP beta levels, which are calculated using a rolling-window approach
with a one-year window. The portfolios are adjusted to account for Fama-French’s
three factors and a momentum factor. To assess the statistical significance of
the factor risk premiums, the standard errors were adjusted using the method
of Newey and West (1987) with a lag of T 1/4, where T is the number of obser-
vations. As shown, portfolios with higher SCRP betas tend to exhibit positive
alphas, whereas portfolios with lower SCRP betas generally have negative alphas,
indicating a positive correlation between SCRP betas and stock returns.

[Figure 4 about here.]

To further explore the implications of SCRP, we implement a long-short strat-
egy by purchasing high-SCRP portfolios and selling low-SCRP portfolios. The
univariate time-series regression is specified as

Yt = α0 + β1MKTRFt + β2SMBt + β3HMLt + β4MOMt + ϵt , (2)
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where Yt represents the difference in returns between high- and low-SCRP portfo-
lios in week t. In the regression model of Equation (2), the statistical significance
of the alpha indicates whether stock market participants require additional com-
pensation for the SCRP factor.

Figure 4 presents the estimated alphas obtained from regressing the weekly returns
of the long-short SCRP portfolio on the Fama-French three factor and momentum
factor models, which are long in the top deciles and short in the bottom deciles of
the SCRP beta levels. The box plot displays the estimated alpha values and their
corresponding confidence intervals. The center line represents the alpha estimate,
the outer perimeter of the box represents the 90% confidence interval, and the
whiskers represent the 95% confidence interval. The dashed line represents zero,
and if the confidence interval encompasses zero, it suggests that the estimated
alpha is not statistically significant at the given significance level. The reported
results indicate that the estimated alphas are not statistically significant during
the expansion and stable periods as well as the entire period. However, the alphas
are significantly positive during the contraction and distressed periods.

These results imply that additional compensation for the SCRP factor is required
for distressed and contraction periods after controlling the Fama-French three fac-
tors and the momentum factor. The significance of the SCRP factor becomes more
pronounced during distressed periods compared to contraction periods, indicating
that the SCRP more strongly relates to financial stability than the economic busi-
ness cycle. Given that the estimated SCRP entails a premium for systemic credit
risk, it is reasonable that the significance of the SCRP factor is observed only
during distressed periods when systemic credit risk is more salient. As such, the
SCRP derived from the credit derivatives market can be considered a transient
and pro-cyclical risk factor in the stock market, subject to variations over time.

4.4. Robustness checks

Our empirical results in the previous subsection show that equity market investors
demand extra compensation for the SCRP factor obtained from the credit market
when the financial system is vulnerable, even after adjusting for the Fama-French

27



three factors and the momentum factor. To test the robustness of our findings, we
conduct a Fama and MacBeth (1973) cross-sectional regression analysis to investi-
gate whether equity market investors require an additional premium for the SCRP
factor, controlling for common downside risk measures such as the Chicago Board
Options Exchange Volatility Index (VIX), Moody’s Seasoned Baa Corporate Bond
minus Federal Funds Rate (BAAFF), and the Treasury-Eurodollar (TED) spread
as additional control variables.

VIX represents the market’s expectation of 30-day forward-looking volatility and
is calculated using the implied volatility of a basket of S&P 500 index options.
It is used to measure investor sentiment and risk aversion, with higher numbers
indicating greater uncertainty and risk in the market. BAAFF measures the
yield spread between corporate bonds rated Baa and the risk-free rate and is
often used as a benchmark to measure the credit risk of corporate bonds. A
high level of BAAFF means investors demand higher returns in exchange for
investing in riskier corporate bonds. TED is calculated by the difference between
the three-month London Interbank Offered Rate (LIBOR) and the interest rate
on three-month U.S. Treasury bills and is a measure of perceived credit risk in
the economy. LIBOR is the rate at which banks trade short-term funds between
themselves, so a wider TED spread means that investors perceive a higher risk
of default on interbank loans. The data on these risk measures come from the
Federal Reserve Economic Data (FRED), and all other data come from the sources
previously mentioned. Summary statistics are presented in Table 2. Note that the
Fama-French factors are already expressed in terms of returns, thereby obviating
the need to apply any changes or differentials. Moreover, control variables such
as VIX, BAAFF, and TED are known to exhibit mean-reverting behavior, in
contrast to asset prices, which tend to diverge.10 By dividing the dataset into
stable and distressed periods, we mitigate potential non-stationarity concerns, as
non-stationary behavior is expected to be less pronounced within each subset of
the mean-reverting data, reducing the risk of spurious regression results.

Panel A of Table 3 reports the estimated risk premium for each factor, indicated
by the time-series averages of the beta estimates from cross-sectional regressions,

10Comparable specifications incorporating VIX and TED spread as control variables can be
found in Kim et al. (2017) and Han and Kong (2022).
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separately for stable and distressed periods as distinguished by the OFRFSI. These
estimates are obtained from the Fama-MacBeth two-stage regressions Fama and
MacBeth (1973): (i) regressing each stock’s returns on the risk factors, along with
additional factors such as SCRP, VIX, BAAFF, and TED, to estimate the cross-
sectional betas for each stock, and (ii) regressing stock returns for each of T time
periods on the estimated cross-sectional betas to determine the risk premiums for
each factor. The t-statistics, shown in parentheses, are adjusted using Newey-
West standard errors with a lag of T 1/4. The effects of SCRP are significant in
the distressed period, regardless of the additional control variables such as VIX,
BAAFF, and TED. These results suggest that equity market investors demand
compensation for the SCRP factor during the distressed period, even with ad-
ditional controls on common risk measures in financial markets. However, the
effects of SCRP are generally not significant during stable periods. These results
are the same as the previous results of time-series regressions. SCRP’s negative
coefficient when incorporating BAAFF and its statistical significance is intriguing.

[Table 3 about here.]

The results presented in Panel B of Table 3 provide further clarification that the
impact of SCRP remains significantly negative during financially stable periods.
This is consistent with the conclusions drawn by Danielsson et al. (2018) that
low volatility prompts risk-taking, resulting in riskier investments. Moreover, it is
noted that the negative impact of the SCRP is more pronounced in the STLFSI,
which measures the stress level of the US financial system, than in the OFRFSI,
which captures the stress level of the global financial system.

While Panel C of Table 3 shows similar results to previous analyses, the signifi-
cance of SCRP’s effectiveness is weakened for the contraction period than during
the distress period, and the effect of SCRP is insignificant when TED is included.
These results imply that SCRP is related to financial stability rather than the
business cycle. Notably, the reduced explanatory power of SCRP when both
SCRP and the TED spread are included suggests that SCRP serves a compara-
ble function to the TED spread during the distressed periods.11 This, in turn,

11Our analysis reveals that the estimated SCRPs and TED spreads exhibit a positive cor-
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highlights the practical relevance of SCRP, particularly in light of concerns re-
garding the use of the TED spread as a proxy for aggregate counterparty credit
risk, particularly its reliance on the LIBOR rate, which has a limited capacity
to capture the nuanced credit risks within the banking system. Moreover, the
TED spread is highly sensitive to short-term market fluctuations and primarily
reflects short-term funding risks, making it potentially misleading during periods
of market uncertainty and inadequate for capturing broader, longer-term systemic
risks.

Although not reported in the table, the cross-sectional analysis for the entire
period confirms that the SCRP factor’s impact lacks statistical significance, con-
sistent with the previous time series analysis. Our findings suggest that equity
investors demand additional compensation for the SCRP factor in periods of finan-
cial fragility, accordant with the results of our previous time-series analysis using
Fama-French’s three factors and the momentum factor. Including additional con-
trol variables on common downside risk measures such as VIX, BAAFF, and TED
does not change the results that market participants require compensation for the
SCRP factor during distressed or contraction periods.

5. Conclusion

This paper investigates the systemic credit risk premium (SCRP), which quantifies
the extra compensation demanded by investors exposed to the risk of experiencing
a series of defaults that occur in a connected and systemic manner. To isolate the
SCRP level more precisely and directly at the portfolio level, this study employs
both CDS and CDX tranche rates by focusing on the CDX North American In-
vestment Grade portfolio between September 2005 and March 2021. As such, we
construct time series of reference tranche rates that have been adjusted to isolate
the systemic credit risk premium incorporated in the multi-name CDX tranche
market. When investors require additional compensation for correlated defaults
within a portfolio, the senior tranche rate quoted by the market is anticipated to

relation during distressed periods (OFRFSI: 0.426, STLFSI: 0.432, CFNAI: 0.383), whereas
the correlation turns negative during stable periods (OFRFSI: -0.194, STLFSI: -0.299, CFNAI:
-0.115).
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surpass the reference tranche rate, thereby capturing the premiums for bearing
systemic credit risk. Furthermore, our empirical study shows that the estimated
SCRP, as a risk factor, has considerable implications for asset pricing, notably
impacting the investment opportunities available to U.S. stock investors when the
financial system is vulnerable.

Our research contributes to the existing literature by presenting a novel approach
to extracting the time-series dynamics of the SCRP, considering the portfolio
default risk premium while controlling for the individual default risk premium,
which has not been adequately addressed in the existing literature. In addition,
our findings underscore the significance and pertinence of SCRP in various sys-
temic events, such as the global financial crisis and the COVID-19 pandemic. This
provides valuable insights into how market participants perceive systemic credit
risk, and how the credit derivatives and equity markets are linked in terms of the
systemic credit risk premium.

The evolution of the extracted SCRP provides insightful information to policy-
makers who use credit market signals to make decisions. The inter-market asset
pricing implication of the fitted SCRP carries valuable insights for risk manage-
ment and investment strategies, as it enables a deeper understanding of the market
price of systemic credit risk and provides opportunities for achieving excess returns
while managing systemic credit risk.
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Figure 1
The market and reference tranche spreads

This figure presents the time series of the market and reference tranche spreads for every Wednes-
day from September 20, 2006, to March 17, 2021. The reference tranche spreads are artificially
generated tranche spreads via CDS. To compare the market prices of CDX senior tranches and
reference tranches, we calculated adjusted fair spreads that incorporated tranche width and
trading units and adjusted for fixed coupon rates. The tranche width of the senior tranche is
set to an attachment point between 0.15 and 1.00, as with the recent year. The trading units
are aggregated into spreads. For the reference tranche, the adjusted fair spreads are the fair
spreads obtained with the prepayment rate set to zero.
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Figure 2
The estimated Systemic Credit Risk Premium

This figure presents the time series of the SCRPs for every Wednesday from September 20, 2006,
to March 17, 2021. SCRPs are calculated through the difference between the market tranche
spread and the artificially generated tranche spread via CDS. The SCRP units are the basis
points, and the vertical lines represent important events.
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Figure 3
Alphas for portfolios based on SCRP beta levels

This figure presents the alphas obtained for the value-weighted portfolios constructed based
on the ten deciles of the SCRP beta levels, controlling for Fama-French’s three factors and a
momentum factor. The sample period covers September 20, 2006, to March 17, 2021. The
value-weighted portfolios are formed based on the ten deciles of the SCRP beta levels calculated
using a rolling-window method with a window size of one year. The units on the y-axis are
percentages (%), and the x-axis are portfolios organized by SCRP beta levels.
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Figure 4
The estimated alphas for high-minus-low portfolio returns in relation to SCRP

This figure presents the estimated alpha values and their corresponding confidence intervals for
the regression model (as illustrated in Equation (2)) applied to the long-short SCRP portfolio,
including the Fama-French three factors and momentum factor models. The period sample
is from September 20, 2006, to March 17, 2021. The value-weighted portfolios are formed
based on the ten deciles of the SCRP beta levels calculated through a rolling-window approach
with a window size of one year. The box plot displays the estimated alpha values and their
corresponding confidence intervals. The center line represents the alpha estimate, the outer
perimeter of the box represents the 90% confidence interval, and the whiskers represent the 95%
confidence interval. The factor model includes Fama and French’s three factors (MKTRF, HML,
SMB) and the Carhart momentum (MOM) factor. Confidence intervals for alpha estimates are
calculated using t-statistics based on the Newey-West standard error with lag T 1/4, where T is
the number of observations. The Chicago Fed National Activity Index (CFNAI), the St. Louis
Fed Financial Stress Index (STLFSI), and the Office of Financial Research Financial Stress
Index (OFRFSI) are indices that distinguish between stable and distressed periods. A negative
value of CFNAI indicates a contraction period, while a positive value indicates an expansion
period. Similarly, a positive value of STLFSI and OFRFSI indicates a distressed period, while
a negative value indicates a stable period.
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Table 1
Descriptive statistics of the estimated SCRP

This table reports the summary statistics for the estimated SCRPs for every Wednesday from
September 20, 2006, to March 17, 2021. The estimated SCRPs are the difference between the
market tranche and reference tranche spreads. Tranches with attachment points between 0.15
and 1.00 are defined as senior tranches, and we unified their trading units in basis points. The
first column is based on time series of SCRPs throughout the entire sample period. The second
and third columns are the SCRPs for the period before and after Series 15, respectively, where
there was a significant change in CDX.NA.IG.

Entire Period Before Series 15 After Series 15
count 716 169 547
mean 13.30 15.87 12.50
stdev. 9.32 12.83 7.77
min -3.82 -0.98 -3.82
25% 5.95 3.54 6.56
50% 14.46 14.21 14.56
75% 18.36 25.45 17.78
max 52.50 52.50 32.98
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Table 2
Descriptive statistics of the variables

This table reports summary statistics of the variables we used for cross-market asset-pricing
implications analysis. Stock returns are obtained from CRSP by referring to Scheuch et al.
(2023), and Fama and French’s three factors (MKTRF, HML, SMB) and the Carhart momentum
(MOM) factor data are from Kenneth French’s website. Daily data were converted to weekly
data, and the sample period was every Wednesday from September 20, 2006, to March 17, 2021.
The excess returns are winsorized at the 0.5th and 99.5th percentiles to control for extreme
values, and the number of observations is 2,985,745. The risk factors, such as the Chicago
Board Options Exchange Volatility Index (VIX), Moody’s Seasoned Baa Corporate Bond minus
Federal Funds Rate (BAAFF), and the Treasury-Eurodollar (TED) spread, are also used as an
additional control. All units are the percent.

Excess return MKTRF HML SMB MOM VIX BAAFF TED
mean 0.04 0.20 -0.06 0.03 0.01 20.01 22.54 2.22
stdev. 3.44 2.47 1.70 1.27 2.50 9.78 9.95 2.39
min -13.98 -15.64 -8.36 -6.09 -14.27 9.15 3.56 0.33
25% -1.33 -0.71 -0.82 -0.80 -0.79 13.42 15.51 0.99
50% 0.00 0.40 -0.15 0.02 0.17 17.29 23.38 1.40
75% 1.33 1.44 0.64 0.79 1.18 23.14 28.51 2.17
max 16.38 11.05 9.52 6.08 11.37 76.45 55.24 19.95
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Table 3
Fama and MacBeth cross-sectional regression

The table reports the estimated risk premiums from the Fama and MacBeth cross-sectional
regressions of weekly stock excess returns, with the sample period covering September 20, 2006,
to March 17, 2021. In addition to Fama and French’s three factors (MKTRF, HML, SMB)
and the Carhart momentum (MOM) factor, risk factors, such as Chicago Board Options Ex-
change Volatility Index (VIX), Moody’s Seasoned Baa Corporate Bond minus Federal Funds
Rate (BAAFF), and the Treasury-Eurodollar (TED) spread, are also used as additional con-
trol factors. The t-statistics, presented in parentheses, are adjusted based on the Newey-West
standard error with lag T 1/4, where T is the number of observations. ∗ ∗ ∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively. The Chicago Fed National
Activity Index (CFNAI), St. Louis Fed Financial Stress Index (STLFSI), and Office of Finan-
cial Research Financial Stress Index (OFRFSI) are indices that distinguish between stable and
distressed periods. It is a contraction period if CFNAI is negative; otherwise, it is an expansion
period. In contrast, it is a distressed period when STLFSI and OFRFSI are positive and oth-
erwise a stable period. Panels A and B show the results of the analysis distinguished between
stable and distressed periods according to OFRFSI and STLFSI, respectively. Panel C shows
the results of the analysis distinguished between expansion and contraction periods according
to the CFNAI. The intercept is included in the regression model but not in the table.

Panel A. OFRFSI
Stable Distressed

SCRP -0.0073 -0.0067 -0.0078* -0.0062 0.0509** 0.0499** 0.0529** 0.0502**

(-1.6165) (-1.4728) (-1.6990) (-1.2894) (2.1727) (2.2696) (2.2346) (2.2041)

MKTRF 0.0081 0.0160 0.0405 0.0125 -0.5266 -0.4169 -0.3504 -0.4356

(0.1051) (0.2097) (0.5270) (0.1637) (-1.6206) (-1.4973) (-1.1681) (-1.4582)

SMB -0.0103 -0.0014 -0.0081 -0.0110 -0.1543 -0.0705 -0.0812 -0.1095

(-0.1894) (-0.0260) (-0.1459) (-0.1997) (-1.1942) (-0.6288) (-0.6960) (-0.9446)

HML -0.0292 -0.0326 -0.0138 -0.0434 0.0162 -0.0425 0.0232 -0.0705

(-0.4080) (-0.4560) (-0.1852) (-0.6153) (0.1265) (-0.3103) (0.1781) (-0.5553)

MOM 0.0127 0.0037 -0.0253 0.0382 0.1092 0.0885 -0.0464 0.2196

(0.1677) (0.0482) (-0.3138) (0.5089) (0.4807) (0.4091) (-0.2191) (1.0194)

VIX -0.3001 6.7064**

(-0.7353) (2.5511)

BAAFF -0.7495*** 4.1733**

(-2.9487) (2.2584)

TED -0.0804 1.4694*

(-1.4064) (1.8101)
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Table 3
Fama and MacBeth cross-sectional regression (Cont.)

Panel B. STLFSI
Stable Distressed

SCRP -0.0077* -0.0072* -0.0081** -0.0071* 0.0364* 0.0358** 0.0376** 0.0368**

(-1.9442) (-1.7913) (-2.0270) (-1.7710) (1.9625) (2.0510) (1.9985) (2.0294)

MKTRF -0.2219*** -0.2204*** -0.1980* -0.2069*** -0.0537 0.0390 0.0975 -0.0004

(-2.8044) (-2.7332) (-2.5293) (-2.6067) (-0.2166) (0.1867) (0.4301) (-0.0020)

SMB -0.0593 -0.0534 -0.0579 -0.0625 -0.0457 0.0230 0.0102 -0.0091

(-1.0457) (-0.9464) (-1.0041) (-1.0904) (-0.4425) (0.2568) (0.1099) (-0.0972)

HML -0.0292 -0.0365 -0.0147 -0.0385 0.0043 -0.0343 0.0149 -0.0706

(-0.3978) (-0.4959) (-0.1921) (-0.5346) (0.0359) (-0.2825) (0.1236) (-0.6200)

MOM 0.1351* 0.1263* 0.1060 0.1474** -0.0935 -0.1115 -0.2315 0.0138

(1.8808) (1.7481) (1.3864) (2.0174) (-0.5038) (-0.6303) (-1.3209) (0.0803)

VIX -0.6745* 5.4283***

(-1.7483) (2.6669)

BAAFF -0.7727*** 2.927**

(-3.2401) (2.0645)

TED -0.1396*** 1.1524*

(-2.6364) (1.8479)

Panel C. CFNAI
Expansion Contraction

SCRP -0.0078 -0.0063 -0.0085 -0.0048 0.0228* 0.0219* 0.0237* 0.0217

(-1.3175) (-1.0350) (-1.4463) (-0.7386) (1.6852) (1.7182) (1.7215) (1.6335)

MKTRF -0.2057* -0.2170* -0.1668 -0.1789 -0.1169 -0.0436 -0.0156 -0.0837

(-1.7794) (-1.8465) (-1.4847) (-1.4662) (-0.6600) (-0.2858) (-0.0948) (-0.5169)

SMB -0.0292 -0.0253 -0.0264 -0.0144 -0.0708 -0.0202 -0.0327 -0.0590

(-0.3938) (-0.3389) (-0.3507) (-0.1978) (-0.9152) (-0.2927) (-0.4594) (-0.8154)

HML -0.0351 -0.0590 -0.0117 -0.0775 -0.0020 -0.0194 0.0036 -0.0336

(-0.3064) (-0.5066) (-0.0997) (-0.6736) (-0.0213) (-0.2069) (0.0392) (-0.3779)

MOM 0.0681 0.0802 0.0121 0.1318 0.0236 -0.0060 -0.0620 0.0660

(0.5034) (0.5941) (0.0879) (0.9816) (0.1829) (-0.0477) (-0.5016) (0.5338)

VIX 0.5634 2.6818

(0.9272) (1.6090)

BAAFF -0.8061** 1.8055*

(-2.5870) (1.7671)

TED -0.1016 0.7264

(-1.2443) (1.5874)
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