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Abstract

This paper examines the provision of official flood risk information in the United States
and its distributional impacts on residential flood insurance take-up. Assembling all flood
maps produced after Hurricane Katrina, I document that updated maps decreased the
number of properties zoned in high-risk floodplains and incorrectly omitted five million
properties, primarily in neighborhoods with more Black and Hispanic residents. Leveraging
the staggered timing of map updates, I estimate they decreased flood insurance take-up
and exacerbated racial disparities in insurance coverage. Correcting flood maps could
increase welfare by $20 billion annually, but past map updates distorted risk and price
signals.
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1 Introduction

Climate change is increasing the frequency and impacts of extreme events, with natural dis-
asters causing more than a trillion dollars of economic damages in the United States over the
last decade. Adaptation strategies and insurance products are often available to mitigate these
costs, but the lack of information about risks can inhibit climate adaptation. To address this
challenge, most industrialized countries and a growing number of developing nations produce
and disseminate climate risk information. Yet, whether public information provision adequately
promotes climate adaptation is a priori unclear. Households and firms may be inattentive to
public information; official information might not reflect the current state of scientific knowl-
edge; and disparities in adaptive responses could raise equity concerns.

Flooding is the costliest disaster in the United States. To understand and manage flood risks,
the federal government produces flood insurance rate maps, commonly called “flood maps,”
that describe flood risk exposure for most properties in the country. This information also
conveys regulatory conditions crucial to the functioning of the National Flood Insurance Pro-
gram (NFIP), which sells around 95% of all residential flood insurance policies (Kousky, 2016;
Kousky et al., 2018). Updating these maps has become one of the most expensive risk mapping
efforts worldwide, but their ability to promote flood preparedness is unknown.

In this paper, I investigate how the provision of official flood risk information evolved over
the past two decades and estimate its impacts on insurance take-up. I leverage the digitization
of flood maps and changes to floodplain boundaries to study the role of floodplain classification
and digital information access on insurance take-up. I highlight the distributional consequences
of the maps, which partially explain growing neighborhood disparities in insurance coverage:
between 2008 and 2018, average take-up rates went from 3.9 to 3.6 percent in neighborhoods
in the top quartile of White residents, while coverage in neighborhoods with the highest share
of minority residents went from 2.7 to 2.3 percent.1

To study risk information provision and its impacts on household behavior, I consolidate
the most comprehensive set of files ever assembled on flood risk by collecting all flood maps
updated by the Federal Emergency Management Agency (FEMA) over a 15-year roll-out and
linking them to geolocalized data on the entire residential housing stock in the contiguous
US. Obtaining and compiling these data involved four separate Freedom of Information Act
requests and multiple meetings with current and former government officials. Using this novel
dataset, I can observe the evolution of the risk information provided to households, in particular
through the rezoning of properties inside and outside of the 100-year floodplain, or “high-risk

1Author’s calculations, using the Decennial Census measure of “White alone” households in a neighborhood,
with insurance take-up rates averaged over neighborhoods.
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zone,” detailed below. I also observe discrete changes in the costs of accessing pre-existing
information, through the digitization of previous floodplain boundaries. To assess the scientific
accuracy of the official risk information, I compare flood maps with the First Street Foundation
flood model, a recently developed, peer-reviewed, and independent alternative to official maps
regarded as providing more complete risk estimates. Finally, I combine these risk estimates
with a novel set of administrative records from FEMA on 60 million flood insurance policies.

I measure the effects of changes in the provision of information using the staggered roll-out
of digital flood maps. While most neighborhoods are covered by a digital map in 2020, due
to public funding constraints, the timing of the map updates differed between neighborhoods.
This variation across space and time allows me to leverage heterogeneity-robust difference-
in-differences estimators to recover the impact of map updates on the residential insurance
take-up (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021). To flexibly estimate the
entire distribution of treatment effects and assess the robustness of the difference-in-difference
estimates, I adapt recently developed synthetic control estimators (Abadie and L’Hour, 2021;
Ben-Michael et al., 2021) and implement a novel approach based on the estimation of unit-
specific and spatially clustered synthetic controls. I conclude by calibrating a model of insurance
demand to compute back-of-the-envelope welfare estimates of the official flood risk information.

This analysis yields three novel findings. First, over the past two decades new maps rezoned
1 million properties inside the high-risk floodplain while removing more than 2.4 million prop-
erties from these areas, resulting in a net decrease of more than 1.4 million properties from the
100-year floodplain – primarily in neighborhoods with a higher share of Black and Hispanic
residents.2 Such aggregate reduction in official flood risk is incompatible with current climate
science, which consistently estimates that flood risk is increasing nation-wide. This divergence
between official and independent risk information is driven by two factors: improved mapping
technology in areas exposed to coastal and fluvial risk, and the fact that pluvial (rain-based)
risk, the fastest growing driver of flooding, continues to be overlooked in official maps.

Second, I find that map updates decreased insurance take-up nation-wide and caused dispro-
portionate declines in neighborhoods with more Black and Hispanic residents, thus exacerbating
racial disparities in flood insurance coverage. The official floodplain classification drives these
impacts: despite higher premiums in the high-risk zones, for every five properties rezoned in-
side (outside) the high-risk zones, one household is induced to purchase (drop) flood insurance.
These impacts of information can a priori occur through two channels: changing households’

2Throughout the paper, I use the following US Census Bureau racial groups: “American Indian or Alaska
Native,” “Asian,” “Black or African American,” “Native Hawaiian or Other Pacific Islander,” “White,” and the
“Hispanic or Latino” ethnic group. When not included in the main texts, available results for other racial and
ethnic groups are presented in the appendix.
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beliefs about flood risks, or expanding the enforcement of the mandatory purchase requirement
(MPR) inside the 100-year floodplain, which nominally requires households with a federally
backed mortgage to purchase insurance – although disagreement exists regarding its actual en-
forcement (Tobin and Calfee, 2005; Michel-Kerjan et al., 2012; National Research Council, 2015;
Government Accountability Office, 2021b; Blickle and Santos, 2022). While I cannot perfectly
disentangle these two mechanisms, I find evidence suggesting that both are at play: rezoning
properties inside the high-risk zones causes adjacent properties outside of the high-risk zone
and not subject to the MPR to purchase insurance – a local spatial spillover effect driven by
beliefs about risks. Insurance take-up responses appear slightly stronger in neighborhoods with
a higher share of properties with a mortgage, consistent with the MPR constraint binding for
some households. In contrast, the digitization of already-available risk information does not im-
pact insurance take-up, suggesting that the costs of accessing information did not substantially
limit household’s demand for flood insurance.

Finally, I leverage the reclassifications of properties and independent estimates of flood risk
in a structural model of insurance demand to get back-of-the-envelope estimates of the welfare
impacts of risk information. I find that under plausible values of risk aversion parameters,
the map updates conducted after Hurricane Katrina decreased welfare – an effect driven by the
provision of incorrect risk information. These losses were spread across the income distribution.
In contrast, correcting floodplain boundaries nation-wide would yield gains exceeding $20 billion
annually, primarily in wealthy and majority-white neighborhoods.

Taken together, these results suggest that publicly provided climate risk information is a key
tool to promote private investments in residential flood insurance. Yet, because map updates
rezoned more than one million properties outside of the high-risk zones on aggregate, the flood
risk mapping program reduced coverage nation-wide by about 100,000 insurance policies and
exacerbated racial disparities in insurance coverage. This is in stark contradiction with the
objectives of the program of promoting insurance take-up through updated and digital infor-
mation. While the full welfare impacts of the program are highly sensitive to modelling choices,
back-of-the-envelope estimates suggest that flood information provision decreased welfare.

This work contributes to the large literature on the impacts and salience of information pro-
vision (Stigler, 1961; Cutler et al., 2004; Chetty et al., 2009; Jessoe and Rapson, 2014; Cabral
and Hoxby, 2015; Davis and Metcalf, 2016; Kamenica, 2017). A small but growing literature
focuses on the role of publicly provided information in the context of weather forecasts and
climate risks (Rosenzweig and Udry, 2014; Shrader, 2020; Shrader et al., 2022; Molina and
Rudik, 2022). I show that the coarse categorization of risk information currently used in the
official maps can promote insurance uptake, whereas digitizing previously existing information
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has no detectable effect. While previous work estimated the impact of flood risk information
on housing values (Pope, 2008; Bin and Landry, 2013; Beltrán et al., 2018; Shr and Zipp, 2019;
Gibson and Mullins, 2020; Hino and Burke, 2021; Gourevitch et al., 2023), this paper is the first
to study the roll-out of flood maps and their impacts on insurance take-up. The existence of
spillover effects reveals that households pay attention not only to their own floodplain classifi-
cation, but also to the classifications of other properties located within the same neighborhood,
implying that current hedonic estimates of the impacts of flood maps on property values might
be lower bounds on the real effects.

This paper directly contributes to the climate change adaptation literature (Kahn, 2005;
Annan and Schlenker, 2015; Barreca et al., 2016; Diaz and Moore, 2017; Botzen et al., 2019;
Kocornik-Mina et al., 2020; Kahn, 2021; Sastry, 2021; Carleton et al., 2022; Bakkensen and
Barrage, 2022; Ostriker and Russo, 2022; Fried, 2022). While post-disaster assistance is scarce
(Government Accountability Office, 2020), previous work found substantial indirect public costs
from extreme events (Deryugina, 2017), demonstrating that disaster impacts are not entirely
borne privately. Wagner (2022) shows through a compelling analysis of the US flood insurance
market how the existence of “frictions” in the demand for insurance justifies the strict imple-
mentation of an insurance mandate. Other work discusses the value of insurance to promote
reconstruction or migration post-disaster (Turnham et al., 2011; Kousky, 2019; Nguyen and
Noy, 2020; You and Kousky, 2023). Several papers discussed the role of information frictions
in reducing insurance demand below its optimal level (Chivers and Flores, 2002; Kunreuther
et al., 2013; Atreya et al., 2015; Shao et al., 2017; Bradt et al., 2021; Hu, 2022), and Mulder
(2022) provides a careful study of the welfare impacts of flood risk information. While these
studies are conducted in specific settings, I provide the first global assessment of the largest
climate risk mapping program in the US, finding that potential gains from flood information
markedly diverge from realized ones due to systematic issues in the implementation of the flood
risk mapping program. Outdated flood maps are an issue known to the government (Con-
gressional Budget Office, 2017), and several groups point to outdated maps as a main driver
of climate mis-adaptation (Scata, 2017; Lehmann, 2020; Frank, 2020). I find, however, that
map updates tended to further provide distorted information and price signals, with little sign
of improvements over time, thus jeopardizing household-level purchase of insurance and other
defensive investments.

Finally, this work contributes to the environmental inequalities and environmental justice lit-
erature (Bullard (1983), see Banzhaf et al. (2019) for a recent economic-focused review). While
earlier work focused on the interaction of race, poverty, and pollution exposures, Bakkensen
and Ma (2020) highlight correlations between race and flood risk. An active literature explores
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the causes of environmental inequalities (Gamper-Rabindran and Timmins, 2013; Depro et al.,
2015; Banzhaf and Walsh, 2016; Christensen and Timmins, 2022; Currie et al., 2022). Directly
related to the present paper, Hausman and Stolper (2021) discuss the role of information as
a potential driver of environmental inequalities, even when information is uniformly missing.
I uncover that both information provision and omission are unequal between neighborhoods,
which exacerbated an already wide gap in flood insurance coverage.

The remainder of this paper proceeds as follows. Section 2 provides additional background
on the flood maps and presents the datasets used in this paper. Section 3 presents descriptive
results on how the official flood risk information has evolved since Hurricane Katrina. Section 4
provides estimates of the average effects of flood map updates on insurance take-up using
heterogeneity-robust difference-in-differences estimators. Section 5 introduces local synthetic
controls to assess both the heterogeneity and robustness of the treatment effects. Section 6
presents a model of insurance demand and provides back-of-the-envelope welfare impacts of
flood map updates. Section 7 concludes.

2 Background and data sources

2.1 A brief history of flood maps

Flood risk is hard to estimate – like other “rare” events, reliance on historical data to predict
occurrence probabilities suffers from a small sample issue. The inability to predict flood events
and damages led to the unraveling of the private flood insurance market following the 1927 Mis-
sissippi River flood. Since its inception in 1968, the National Flood Insurance Program (NFIP)
has crucially relied on the provision and updating of Flood Insurance Rate Maps (FIRMs, col-
loquially called “flood maps”) with the dual goals of providing flood risk information and setting
federally provided flood insurance premiums. These maps are provided at the community level,
where communities can be towns, cities or counties (see Knowles and Kunreuther (2014) for a
discussion of the NFIP’s history).

While flood risk is hard to assess, communicating flood risk to non-experts is an additional
challenge. To convey flood risk probabilities to the public, the maps provide simplified risk
estimates that are differentiated by zones. In particular, flood maps highlight the 100-year
floodplain, also known as the Special Flood Hazard Area (SFHA) or high-risk zone, where
the annual probability of a flood event exceeds 1%. Flood maps also highlight the 500-year
floodplain (or X shaded zones) or low-risk zone, where the annual probability of flooding is
estimated to be between 0.2% and 1%. Areas outside of these zones are classified as “minimal
flood risk”. In practice, the 100-year floodplain plays an essential role in risk communication as
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well as regulatory constraints: (i) flood insurance is mandatory for properties with a federally
backed mortgage that are located within the 100-year floodplain, (ii) flood insurance premiums
vary discontinuously at the 100-year floodplain borders, and (iii) urban planning often restricts
development within the 100-year floodplains. 3

Until the early 2000s, almost all flood maps were paper-based. These maps were hard to find,
hard for non-experts to read, and generally outdated. To improve flood risk identification and
facilitate information access, an initiative called the Map Modernization program (MapMod)
allocated more than $1.4 billion starting in 2005 to update paper-based FIRMs to Digital
Flood Insurance Rate Maps (DFIRMs, or simply “digital maps”). This made MapMod one
of the most expensive public mapping programs in history (see Morrissey (2008) for detailed
background on the program). In 2008, MapMod was rolled into the Risk Mapping, Assessment,
and Planning Program, which essentially continued to update flood maps (FEMA, 2009), with
total estimated costs of $4 billion (Department of Homeland Security, 2012). To this day,
funding is continuously allocated to update the remaining paper-based maps to digital maps.

The flood maps’ digital transition reduced the cost of accessing flood risk information and,
in many cases, changed the underlying floodplain boundaries. To appreciate how digitization
improved access to information, imagine that a resident living in Upper Merion Township, Penn-
sylvania, wanted to learn about her property’s exposure to flood risk before the Montgomery
County flood map had been digitized.4 Because flood maps are divided into “panels,” or rect-
angular sections of the US, she would first have to figure out which panel number includes her
property: this implies finding the Montgomery Map Index and identifying the relevant panel
code (see Figure 1.A). She would then use this code to find the relevant paper-based map and
attempt to locate her property relative to the 100-year floodplain. In contrast, with the updated
digital flood map, she can access the National Flood Hazard Layer, a publicly available online
platform, and directly locate her property by typing her address in the search bar(see Fig-
ure 1.C). Figure 1 shows a situation where floodplain boundaries did not substantially change
through the map update. This is not always the case: map updates can rezone properties either
outside or inside of the 100-year and 500-year floodplains. In the rest of the paper, I use pure
digitizations as well as changes in floodplain boundaries to assess the impacts of both access to
information and of changing risk information on the demand for flood insurance.

3In principle, flood zones could be defined for any annual probability of flooding (for instance, the flood maps
could highlight the 200-year and the 1000-year floodplains within the current X zones). This has spurred criticism
of the 100-year floodplain concept as both an insurance-setting and a communication tool from academics and
practitioners alike (Wittenberg, 2017; Koerth, 2017; Bell and Tobin, 2007; Ludy and Kondolf, 2012; Highfield
et al., 2013). A recent policy change in the NFIP, called Risk Rating 2.0, aims to better reflect flood risk in
insurance premiums while still maintaining the use of 100-year floodplain boundaries to communicate risk.

4Hurricane Ida severely hit Montgomery County in September 2021, causing the deaths of three people.
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Figure 1: Evolution of the Flood Insurance Rate Maps in Montgomery County, PA

A: Map Index from Montgomery County, PA, effective in 1999. B: FIRM number 42091C0351F, effective in
1999. The 100-year and 500-year floodplains are shown in dark and light grey, respectively. C: Screenshot of the
DFIRM effective in 2016, as shown on the National Flood Hazard Layer. The 100-year floodplain is depicted in
blue and blue/red stripes, while the 500-year floodplain is depicted in orange. Sources: FEMA’s Map Service
Center and National Flood Hazard Layer.

2.2 Digital Flood Insurance Rate Maps

I collect and compile data on all digital flood maps released between 2005 and 2019, obtained
both through Freedom of Information Act requests and following meetings with former GIS
analysts who performed contractual work for FEMA. These digital maps provide both the date
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when the DFIRM became active and the spatial polygons of the 100-year and 500-year flood-
plains.5 Figure 2.A depicts the cumulative number of census tracts that received a DFIRM
since 2000, while Figure 2.B shows the spatial distribution of the census tracts that received at
least one digital flood map and the year they received it. More than 85% of census tracts are
now covered by a digital map – this contributes to the credibility of the difference-in-difference
estimation strategy presented in Section 5 below, as this mitigates concerns of selection into
treatment (this leaves out potential concerns of selection into treatment timing, discussed be-
low). Although flood maps are supposed to be updated at least once every five years, to date
less than 20% of census tracts have received more than one DFIRM, covering only 16 million
residential properties, or less than 12% of the residential housing stock. The main econometric
analysis of this paper focuses on census tracts that have received their first digital flood map,
as this allows me to estimate the impact of digitization.6

2.3 Digitized version of paper-based flood maps: the Q3 data

Most flood maps were paper-based prior to 2007. Because we are interested in how the mod-
ernization of flood maps changed the spatial extents of the floodplains, we need a GIS-ready
version of these paper-based maps. Luckily, FEMA produced digitized versions of the 100-year
and 500-year floodplain boundaries depicted on the paper-based maps that were effective in
over 1,300 counties at the time of scanning (1996-2000). This product, known as the Q3 data,
makes it possible to assess how FEMA’s floodplain designations evolved over time (FEMA,
1996).7 Although I can only track changes in the floodplains for which Q3 data exist, this
encompasses more than 48,000 census tracts and includes the most flood-prone areas, where
the majority of insurance policies are purchased.8

Figure 3.A shows the digital version of the 1984 flood map in New Orleans,9 while Figure 3.B
shows the digital flood map that became effective in September 2016. In both digital products,

5The steps used to process these maps are provided in Appendix A.1.
6This further facilitates the definition and interpretation of treatment effects: for census tracts that received

more than one digital flood map, defining treatment status after the first digital map and before the second
map is ambiguous. Resolving the ambiguity requires either (i) making assumptions about the dynamics of the
treatment effects and leveraging an ad hoc threshold above which the first treatment effect is considered to
have vanished, or (ii) defining treatment as a qualitative variable taking more than two values, which further
complicates the estimation of treatment effects.

7The Q3 data was meant as an early digitization effort to quickly distribute the floodplain data to prac-
titioners to facilitate disaster recovery and planning activities. It became the standard product for planning
under the Disaster Mitigation Act of 2000 (Gall et al., 2007)

8Out of the 2,930,143 residential flood insurance policies active in January 2009, 85 % were in areas covered
by a Q3 map.

9The original paper-based map, digitized in the Q3 product without changes in the underlying boundaries,
is presented in the Appendix Figure A.3. In Figure A.4, I show a similar procedure for the south-eastern part
of Broward County (FL), an area also subject to substantial flood risk.
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Figure 2: Flood map digitization progress throughout the US

A: Cumulative number of census tracts that received a first digital flood map (in blue circles) or a second digital
flood map (green triangles). The gray dotted line shows the total number of census tracts in the US (73,745
tracts, including Puerto Rico). B: Spatial release of the first digital flood maps, with 2006 representing all maps
released in 2006 or earlier for clarity.

the 100-year floodplain is depicted in light blue, while the 500-year floodplain is shown in orange.
In both panels the black dots represent residential properties, making it possible to compute
changes in the number of properties located inside the 100-year floodplain (Figure 3.C). For
the empirical estimation of Section 4, I aggregate these changes at the census tract level and
classify census tracts depending on whether the map update rezoned more than 1% of residential
properties inside or outside the 100-year floodplain on aggregate, or whether the map update
did not change the 100-year classification of any property (Figure 3.D).10

2.4 First Street Foundation data

For the past sixty years, official flood maps were the main source of flood risk information
available to the public, if not the only source.11 This changed in 2020 when a consortium of
scientists, technologists, and communicators called the First Street Foundation (FSF) started
producing and disseminating flood risk estimates for the entire contiguous US at a very fine

10The 1% cut-off is arbitrary and discussed below, before being relaxed in Section 5
11Several insurance and re-insurance companies developed their own models of flood risk, but these models

were not publicly available.
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Figure 3: Changes in the Flood Insurance Rate Maps in New Orleans, Orleans Parish, LA

A: Q3 data product showing the flood zones effective in 1984, combined with geolocalized residential properties
in Orleans Parish (black dots). B: Current DFIRM showing the flood zones effective as of September 2016,
combined with geolocalized residential properties. C: Changes in the 100-year floodplain computed at the
property level. D: Changes in the number of residential properties in the 100-year floodplain between 1984 and
2016, aggregated at the census tract level and classified into three categories (increase, decrease, or no change).
In New Orleans, the map modernization program led to a substantial rezoning of properties outside of the
100-year floodplain. This rezoning was rationalized by substantial investments made by the US Army Corps of
Engineers in flood control systems such as levees, floodgates and pump stations (FEMA, 2016).

level of spatial precision (3 meters).
The FSF flood model is built around LISFLOOD-FP, an open source hydrodynamic model

developed over the last decade (Bates et al., 2010; Neal et al., 2012; De Almeida and Bates,
2013; Sampson et al., 2013, 2015).12

12The first high-resolution model of fluvial and pluvial flood hazards for the entire contiguous United States
is presented in Wing et al. (2017). This modelling framework was substantially refined in Bates et al. (2020)
with the inclusion of coastal risk modelling, improved data sources, and inclusion of current and future climate
conditions. The cited studies underpin the FSF inundation depth estimates and have undergone extensive
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In addition to differences in the hydraulic models used to simulate inundation depths, the
FSF flood model and the FEMA FIRMs differ in 4 major ways: (i) FSF models pluvial risks,
while such flood drivers are typically omitted in the FIRMs (House of Representatives, 2020;
Government Accountability Office, 2021a); (ii) FSF considers the potential joint occurrence of
pluvial, coastal and fluvial risks; (iii) FSF covers all the United states, whereas as of 2020 the
FEMA FIRMs only covered about a third of the 3.5 million miles of stream (ASFPM, 2020);
(iv) FSF accounts for current and modeled climate projections (using global circulation models
and hurricane precipitation predictions), whereas FIRMs rely solely on historic data.13

Converting inundation-depth estimates into property-level damages poses an additional
challenge. The FSF model employs the HAZUS-MH methodology developed by FEMA (FEMA,
2013). Significant uncertainties surround the validity of these depth-damage functions, and on-
going research seeks to refine them (Pollack et al., 2022; Porter et al., 2023).

While the FSF flood model is not flawless, it is currently regarded as providing some of the
best publicly available flood risk estimates in the US (First Street Foundation, 2020; Armal
et al., 2020; Eby, 2023). The FSF model is now used by more than 30 federal agencies and
government sponsored enterprises (First Street Foundation, 2022).

2.5 Flood insurance policies

Finally, I use data on flood insurance policies provided by FEMA covering all NFIP policies
active between 2008 and 2019, obtained through Freedom of Information Act requests. Each of
the 60 million observations represents an insurance policy with information on the policy active
dates and the insured property (such as the construction year and the FEMA flood zone in
which the property is located) as well as details about the insurance contract (coverage and cost,
in particular). The dataset does not include property identifiers, and policies are not geocoded.
This implies that I cannot track changes in insurance take-up at the property level. For the
analyses below, I construct a panel of active policies at the census tract / month level. Details
about the construction of the panel are provided in Appendix A, and the different datasets are
summarized in Figure A.5.

The upper part of Table 1 presents summary statistics on the panel of insurance policies.
There is a wide range in the number of active policies per census tract, varying from 0 to more

validation against historical flood event data and local hydraulic models developed by USGS where available.
13Providing flood hazard estimates over very large scales implies substantial computational constraints. The

FSF model is tractable due to the use of LISFLOOD-FP, which solves the local inertial form of the shallow
water equations in two dimensions. The main alternative to LISFLOOD-FP for large scale modelling is to
use an approach based on the Height Above Nearest Drainage (Nobre et al., 2016), although this also requires
strong hydrodynamic assumptions.
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than 6,000. This spread will partially motivate the estimation strategy I conduct at the tract
level in Section 5. In some tracts, all the policies cover properties located inside the high-risk
zones, whereas in others all the policies cover only properties located outside of the 100-year
floodplain. The zoning inside and outside of the 100-year floodplain explains a substantial share
of the variation in average insurance premiums observed between tracts: the average policy cost
is about $596 per year, but it is $419 outside of the 100-year floodplain and $1,012 inside of it.

Table 1: Summary statistics, estimation panel and census tract cross section

Variable N mean sd min max

Panel:
Number of active policies 8200080 58.12 187.77 0 6545
Number of active policies inside 100-y 8200080 30.43 136.59 0 5399
Number of active policies outside 100-y 8200080 27.68 101.33 0 5358
Share policies inside 100-y 7297869 0.33 0.34 0 1
Average policy cost 7339805 614.93 362.93 36 10143
Average policy cost inside 100-y 4774686 1040.19 655.49 42 14048
Average policy cost outside 100-y 7043775 430.06 163.09 36 5378
Average construction of insured property 7339805 1972.5 20.26 1900 2019
Average initial insurance year 7339805 2008.57 3.74 1970 2020
Average coverage 8200080 192565.85 104842.46 0 7173600
Cost per thousand dollar insured 7339805 3.09 2.58 0.54 173.04
Cost per thousand dollar insured inside 100-y 4774652 6.65 4.31 0.1 720
Cost per thousand dollar insured outside 100-y 7043775 1.76 1.18 0.46 60

Cross section:
Year of map modernization 65341 2009.24 3.72 1995 2019
Disaster declaration within two years of treatment 65341 0.54 0.5 0 1
Has a Q3 map 71183 0.76 0.43 0 1
Has a digital map in 2019 71183 0.92 0.27 0 1
Relative change in properties zoned inside 100-y 38773 -0.02 0.13 -1 1
Share population Black or African American 70783 0.14 0.22 0 1
Median household income, past twelve months 70440 64314.44 32176.82 2499 250001

3 Stylized facts on official flood information provision

The data consolidation of the sources presented in Section 2 makes it possible to study at
scale how official flood risk information evolved over the past two decades and how it compares
with independent scientific estimates. This section highlights four stylized facts: (i) new maps
reduced the number of properties zoned in the 100-year floodplain over the past two decades;
(ii) this reduction is primarily due to the increased complexity of flood maps, with the drawing
of more floodplain boundaries; (iii) two-thirds of the rezoning that occurred is consistent with
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the FSF flood model, yet a larger concern lies in the omission of rain-based flood risk during the
updating process; (iv) properties rezoned outside of the 100-year floodplain as well as properties
incorrectly ignored during the risk mapping process are predominantly located in more Black
and Hispanic neighborhoods, which will have substantial implications on disparities in insurance
take-up.

3.1 Property counts

Starting with the simplest possible exercise, Table 2 presents an accounting of the number of
residential properties zoned inside the 100-year floodplain in the FEMA maps in 2005 (Q3 data)
and 2019 (NFHL19) as well as the number of properties inside the 100-year floodplain based on
the FSF Flood model. For all three columns and the rest of the analysis below, the properties’
coordinates are taken from the 2020 First Street Foundation registry, such that changes in
property counts within floodplains are entirely due to changes in the floodplain boundaries.14

The first striking finding is the decline in the number of properties classified inside the
100-year floodplain, despite the broader geographic coverage of the newer maps. Although
the Q3 maps only covered about two-thirds of residential properties nation-wide (87 million
properties compared with 116 million in NFHL19), they showed 7.2 million properties in the
100-year floodplain, or 500,000 more than the 6.7 million in the current digital FEMA maps.
The shrinking of the 100-year floodplain is even greater if we restrict the analysis to only the
tracts mapped in both the Q3 and NFHL19 products (lower panel of Table 2), which shows the
Q3 number decreasing to 6.3 and the NFHL19 declining to 4.9 million.15

This reduction in the number of properties zoned in high-risk floodplains is surprising, as
there is a consensus among scientists that flood risk in the US is increasing, which should lead
to expansions of the 100-year floodplain in urban areas (Marsooli et al., 2019; Bates et al.,
2020; Wing et al., 2022). Local reductions of the floodplains can be warranted to account for
new adaptation infrastructures and improvement in mapping technologies, but the aggregate
decline shown above is inconsistent with the current science.

Perhaps counter-intuitively, I find that the rezoning of properties outside the 100-year flood-
plain is due to the drawing of more floodplain boundaries. This can be summarized with the
Polsby-Popper score, used in the political science literature to measure district gerrymander-

14In Appendix Table A.1, I show using data from Zillow’s ZTRAX records that these patterns are not driven
by differential residential construction rates inside and outside of the floodplains. The First Street Foundation
registry has substantially better coverage than ZTRAX (especially in rural areas) and can directly be matched
to the FSF Flood Model estimates used below, making it the preferred source of residential data.

15Figure C.6 presents the spatial distribution of increases and decreases in the number of properties located
inside the 100-year floodplain.
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Table 2: Residential properties in the 100-year floodplain in different risk mapping products

Flood zone 2005 NFHL 2019 First Street Model

Unconditional:
Inside 100-year floodplain 7,209,546 6,653,511 14,776,887
Outside 100-year floodplain 79,981,116 109,614,405 117,510,574
Not mapped 45,096,799 16,019,545 0

Conditional on Q3 and NFHL19:
Inside 100-year floodplain 6,296,693 4,917,259 9,023,220
Outside 100-year floodplain 72,746,998 74,126,432 70,020,471

The conditional counts include only those properties in census tracts that are mapped in both the Q3 and
NFHL19 data products.

ing.16 I find that in 2005, the official 100-year floodplain covered an area of 255,402 km2, and
this area slightly increased to 269,678 km2 in 2019 (about the area of Colorado). However,
the perimeter of the 100-year floodplain boundaries experienced a spectacular increase, from
1,289,567 to 1,766,252 km. Thus, between 2005 and 2019, the Polsby-Popper score of the
100-year floodplain changed by -44 %, revealing a surge in the complexity of the underlying
polygons. As discussed below, the increased complexity is consistent with better modelling
tools that allow for a finer-grain estimation of flood risk. Table B.2 in the appendix shows that
such increased flood map complexity occurred in almost all US states.

3.2 Discrepancies between official and independent flood maps

To assess the scientific accuracy of official flood information, I compare the official map updates
with the First Street Foundation estimates at the property level. While the FSF model is not
perfect, it provides an independent proxy of “true flood risk” based on the latest peer-reviewed
flood science.

Figure 4 focuses on areas that were mapped in both the Q3 flood product (in 2005) as well
as in 2019 (digital flood maps) to decompose how flood maps impacted the number of properties
zoned inside the 100-year floodplain. The “correct” floodplain status is assumed to be provided
by the FSF flood model. There are three important conclusions. First, comparisons with the
FSF flood model indicates that out the 2.4 million properties that were rezoned outside of

16The Polsby-Popper metric of a district D is defined as PP (D) = 4πA(D)
P (D)2 , with A(D) and P (D) the area

and perimeter of district D, respectively. A perfect circle has a Polsby-Popper score of 1, and reduction in the
“compactness” of a polygon brings the Polsby-Popper down, with a lower bound at 0.
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the 100-year floodplain during the map updates, 1.7 were correctly removed. Second, half of
the 1.1 million properties that were zoned inside the 100-year floodplain during the flood map
update appear to have been correctly added. Lastly, over 5.2 million properties were outside
the 100-year floodplain in 2005 and should have been rezoned inside the 100-year floodplain.
However, they were omitted during the map update.

Figure 4: Changes in the number of residential properties in the FEMA 100-year floodplain
between 2005 and 2019, compared to the FSF flood model

Counts are based on residential properties that are mapped in both the Q3 product and in the 2019 digital flood
maps. The FSF flood model is assumed to provide the “correct” depiction of the 100-year floodplain. Additional
counts for residential properties that remained correctly mapped inside or outside of the 100-year floodplains
are omitted.

Previous work highlights the potential for biases in the official flood maps due to local
political considerations (Pralle, 2019; Lea and Pralle, 2022). In particular, homeowners and
city officials have incentives to lobby to remain outside of the 100-year floodplain, given that
the 100-year floodplain increases flood insurance premiums and decreases property values (Hino
and Burke, 2021). The results above suggest that local political motivations are unlikely to be
driving the bulk of floodplain rezoning: most removals from the 100-year floodplain appear to
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have been warranted, at least according to the FSF model.
These comparisons reveal that the modernization of flood maps primarily failed by omis-

sion: while two thirds of the removals from the official 100-year floodplain align with the FSF
estimates, more than five million properties were incorrectly “ignored” during the modernization
process when they should have been added to the 100-year floodplain.

Columns 5 to 8 in Table 3 show that most properties incorrectly left outside the 100-year
floodplain throughout the map updates are substantially more likely to be subject to pluvial
flood risk, as opposed to coastal or fluvial risk. These results complement previous work that
discussed how official maps systematically omit pluvial risk (Wing et al., 2018).

Public officials recently recognized the problematic omission of pluvial risk in official flood
maps, with ongoing policy discussions aiming to find ways to better account for rain-based
flooding events (House of Representatives, 2020; Government Accountability Office, 2021a).
The omission of pluvial risk was historically driven by the high data requirements (accurate
pluvial risk assessment requires detailed topographical data, soil information, and localized
rainfall patterns) and resource constraints (developing models that include pluvial risk would
require significant investment in technology, training, and data collection). Climate change
further complicates the assessment of rain-based events. Surprisingly, the results above reveal
that the map update process does not correct the omission of pluvial risk.17

3.3 Racial disparities in floodplain exclusion and omission

Two key observations regarding the map updates over the past two decades are the removal of
1.4 million properties and the omission of 5.2 million properties from the 100-year floodplain. To
assess whether the provision of official risk information could lead to unequal climate adaptation,
this subsection examines where property exclusions and omissions from the 100-year floodplain
occurred in the US. The main text focuses on highlighting disparities in neighborhoods with
more Black and Hispanic residents, as these disparities are among the largest. I perform similar
analyses in the appendix for the other main racial and ethnic groups defined by the Census
Bureau.18

Columns 1 to 4 in Table 3 show properties in neighborhoods with an increasing share of Black
and Hispanic residents were more likely to be removed from the 100-year floodplain, even after
conditioning on FSF-estimated flood risk. These results are robust to alternative specifications
(see Table C.3). Table C.4 in the appendix show that large disparities in floodplain removals

17Table C.6 in the appendix shows that the accounting of flood risk in the official flood maps does not appear
to substantially improve in more recently updated flood maps.

18American Indians and Alaska Natives are omitted due to small sample sizes. Racial quantiles are defined
at the neighborhood-level based on Decennial Census respondents who self-identify as single-race.
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Table 3: Characteristics of properties removed and incorrectly ignored during map updates

Dependent Variables: Removed from Q3 100-year FSF 100-year, ignored during update
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Constant 0.5031 0.5118 0.2619 0.2496

(0.0089) (0.0091) (0.0087) (0.0084)
Coastal -0.3488 -0.2563 -0.3425 -0.2602

(0.0097) (0.0110) (0.0097) (0.0109)
Inland fluvial -0.2915 -0.2590 -0.2856 -0.2592 0.2317 0.0033 0.2334 0.0103

(0.0103) (0.0074) (0.0103) (0.0074) (0.0102) (0.0137) (0.0100) (0.0137)
Inland pluvial -0.2451 -0.2101 -0.2389 -0.2105 0.4817 0.3054 0.4859 0.3137

(0.0073) (0.0061) (0.0076) (0.0060) (0.0083) (0.0125) (0.0083) (0.0125)
Black or AA 25-50% 0.0790 0.0427 0.0457 0.0660

(0.0115) (0.0088) (0.0090) (0.0081)
Black or AA 50-75% 0.1566 0.0820 0.0741 0.1202

(0.0129) (0.0108) (0.0092) (0.0093)
Black or AA 75-100% 0.1983 0.0826 0.0771 0.1593

(0.0121) (0.0120) (0.0075) (0.0095)
Hispanic 25-50% 0.0479 0.0365 0.0545 0.0564

(0.0107) (0.0085) (0.0073) (0.0074)
Hispanic 50-75% 0.1343 0.0579 0.0721 0.0999

(0.0126) (0.0106) (0.0090) (0.0096)
Hispanic 75-100% 0.1617 0.0574 0.1050 0.1453

(0.0132) (0.0144) (0.0093) (0.0119)

Fixed-effects
County FE Yes Yes Yes Yes

Fit statistics
Observations 6,288,904 6,288,904 6,288,904 6,288,904 8,979,280 8,979,280 8,979,280 8,979,280
R2 0.12240 0.30302 0.11577 0.30150 0.18612 0.29154 0.18770 0.28818
Within R2 0.06026 0.05822 0.08598 0.08164

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Yi = αc+βXi+εi, where Yi is a dummy variable
equal to 1 if the property used to be in the Q3 100-year floodplain and was removed during the map updates
(columns 1 to 4), and a dummy equal to 1 when the property should be in the 100-year floodplain based on
the FSF model but was left outside of the FEMA 100-year floodplain during the map update (columns 5 to
8). αc are county fixed effects, and Xi is a vector of property and neighborhood-level characteristics. Race
come from the Decennial Census. For all models, the sample is restricted to census tracts mapped in both
Q3 and the NFHL19 product. In columns 1 to 4, the sample is further restricted to properties that were in
the Q3 100-year floodplain, while in columns 5 to 8 the sample is restricted to properties in the FSF 100-year
floodplain. “Coastal,” “Inland fluvial” and “Inland pluvial” refers to the nature of flood risk in the FSF model.

are apparent for Asian neighborhoods as well.
In addition, Columns 5 to 8 show that properties incorrectly left outside the 100-year flood-

plain during the mapping process are disproportionately situated in neighborhoods with higher
shares of Black and Hispanic residents.19.

These disparities in floodplain exclusion and omission are surprising. They are not driven by
income (see Tables C.5 and C.3), but rather appear to be due to correlations between pluvial

19To ease interpretation, the racial quantiles are defined using all neighborhoods. To account for potential
selection into observation, I estimated the same models but defining quantiles based on the sample of tracts
for which I can observe property level changes in the floodplain classifications, and obtained similar results (see
Table C.8 in the appendix).
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risk, race, and pre-existing inaccuracies in the official maps. For households who purchase
insurance, it is unambiguously preferable to be outside of the 100-year floodplain, as this lowers
insurance premiums. However, households rezoned or left outside of the 100-year floodplain
might decide to not purchase insurance, even when it might beneficial for them to do so. The
impact of map updates on consumer (and social) welfare is thus ambiguous, and will first
depend on whether residents respond to new information. This is analyzed in Sections 4 and 5.

4 Estimating the average effects of flood map updates

4.1 Raw evidence on the impacts of flood map updates

To motivate the econometric models below, it is instructive to look at the patterns of insurance
take-up already noticeable in the raw data. Figure 5 depicts the number of insurance policies
covering residential properties in each month relative to January 2008, separated by the year
of the map update and based on whether the map update rezoned more than 1% of properties
outside (left) or inside (right) the 100-year floodplain at the tract level.20

Whatever the year in which the map update occurs, post treatment flood insurance take-up
appears to decrease following map updates that rezone more properties outside of the 100-
year floodplain (left facet, with the exception of 2013), and it increases after the updates that
rezone more properties inside the 100-year floodplain (right facet). While only suggestive, these
patterns indicate that map updates may have substantial impacts on quantities of insurance
policies purchased, based on the direction of rezoning of properties relative to the 100-year
floodplain. In addition, Figure 5 shows that most treatment-year cohorts experience slow
declines in insurance take-up prior to treatment, as well as positive shocks to insurance take-up
in 2016 and 2017 (likely attributable to the hurricane seasons in these years). Unit and time
fixed effects will to some extent control for these shocks, and additional methods variation, and
additional methods in Section 5 will control for the potential spatial correlations in the impacts
of hurricanes.

4.2 Heterogeneity-robust event studies

Our empirical setting involves a large number of units (census tracts) that get treated (receive
a digital map) in different time periods (year and month). In such contexts, where the treat-
ment is staggered, recent econometric work highlights important pitfalls with the use of the

20Figure 5 defines treatment cohorts by year for clarity only – the empirical analyses will leverage the full
variation of treatment timing by defining treatment by year and month.
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Figure 5: Raw evidence on the impact of floodplain rezoning on insurance take-up

Number of active flood insurance policies covering residential properties in each month relative to January, 2008
(baseline 100). Treatment cohorts are defined at the year-level for clarity, with diamonds marking the year of
the map update for each treatment-year cohort. The two facets are based on whether the map updates rezoned
more than 1% of properties outside (left) or inside (right) the 100-year floodplain at the census tract level.

two-way fixed effect estimators that is still standard in the applied literature. In particular,
de Chaisemartin and D’Haultfoeuille (2020) demonstrate that if the treatment effect is het-
erogeneous between cohorts (group of units treated simultaneously), then the two-way fixed
effect estimator does not recover the Average Treatment Effect on the Treated (ATT).21 Recent
applied work shows such pitfalls make two-way fixed effect estimators extremely sensitive to
minor specifications of the regression model (Weill et al., 2021).

In our context, treatment effects are likely to be heterogeneous between cohorts. Section C.4
in the appendix shows that census tracts treated earlier are different from tracts treated later
(potential heterogeneity due to selection), and tracts treated later received an updated map
that tended to rezone more properties outside of the 100-year floodplain (potential heterogeneity

21This is true even when the identifying parallel trends assumption holds. Goodman-Bacon (2021) provides
an intuitive decomposition of the two-way fixed effect estimator as a weighted average of all possible two-by-two
diff-in-diff estimators. Sun and Abraham (2021) show that even the more flexible event-study specification used
to estimate dynamic effects is not robust to heterogeneity between cohorts, and they provide a general formula
for the bias that arises in various specifications. They further highlight that the estimated effects on leads and
lags of the treatment can be contaminated by other time periods even if treatment effect is homogeneous.
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due to varying implementation). In addition, the impact of a new map on insurance take-up
will mechanically be dynamic, because insurance policies are usually purchased for an entire
year.22 Purchases of policies are also not uniform within a year, with more purchases during
the summer months. These aspects lead me to consider heterogeneity-robust estimators of the
dynamic treatment effects.

I closely follow the approach proposed by Callaway and Sant’Anna (2021) and estimate a
distinct treatment effect for each cohort and period relative to treatment. To understand how
within-tract rezoning impacts the demand for insurance, I separate the models for treated tracts
based on net rezoning inside or outside the 100-year floodplain at the tract level (“treatment
intensity”).23 Formally, we are interested in the Average Treatment effects on the Treated
(ATTs) for each group g, time period t, and net map rezoning at the tract level x:

ATT (g, t, x) = E(Yt(g, x)− Yt(0, x)|Gg = 1, X = x) (1)

where Yt(g, x) denotes the potential outcome of units in group x at time t, if they were to
become treated at time g. Yt(0, x) denotes the potential outcome of these same units had they
not received treatment. For each unit we only observe the realized outcome. To identify these
effects from observable data, we need to assume (i) no treatment anticipation, as well as (ii)
conditional parallel trends in potential outcomes between the treated units and the group of
control units.

The parallel trend assumption requires the evolution of insurance take-up in tracts that
receive a map earlier to be similar to that in “control” tracts in the absence of treatment. In a
standard application of the Callaway and Sant’Anna (2021) estimator, these control units are
either all those “not yet treated” at the time of the cohort considered, or all those “never treated”
by the end of the sample. In our context, one might be worried that potential outcomes in tracts
where the map update removes properties from the 100-year floodplain might be on a different
trend than those in tracts where the update rezones properties inside the 100-year floodplain.
To enhance the credibility of the identification strategy, in my preferred specifications, the
’control’ tracts are those that have not yet been treated but will eventually receive a digital

22For instance, consider a homeowner who purchased flood insurance exactly one month before the new
digital flood map is released, and the new flood map induces her to stop buying flood insurance. Because
canceling a flood insurance policy is costly, this homeowner may “passively decide” to remain insured for up to
11 months after the new flood map was released, and then wait until the end of the one year term to decide to
not renew her policy. In this scenario, the individual decision of interest is the one to not renew the policy.

23Few properties are zoned inside or outside the 500-year floodplain without a simultaneous change in the
100-year floodplain. For instance, most properties zoned inside the 500-year floodplain used to be zoned inside
the 100-year floodplain. When estimating the effect of map updates on properties that are zoned in the 500-
year floodplain without an associated change in the 100-year floodplain, estimates are small and not statistically
significant.
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flood map with a similar 100-year floodplain rezoning.24 The assumptions of no anticipation
and conditional parallel trends allow us to rewrite the ATT as

ATT (g, t, x) = E(Yt − Yg−1)|Gg = 1, X = x)− E(Yt − Yg−1|Dt = 0, X = x) (2)

where Dit is a binary variable equal to one if unit i is treated in period t and equal to zero
otherwise. This expression is similar to the standard 2 periods, 2 groups difference-in-differences
estimators, which evaluates the evolution of potential outcomes in group g and adjusts it with
the evolution of potential outcomes in the control group. To estimate it from the data, the
expectations are replaced with sample averages:

ÂTT (g, t, x) = (Ȳg,t,x − Ȳg,g−1,x)− (Ȳ0,t,x − Ȳ0,g−1,x) (3)

where Ȳg,t,x = 1
Ngtx

∑
i:Gi=g,Xi=x

Yi,t,x.25

I construct the groups x to reflect treatment intensity based on how the map updates
impacted rezoning into the 100-year floodplain at the tract-level. The choice of x here is
arbitrary, and implies a trade-off between the degree of heterogeneity we can estimate and
the quality of the treatment–control comparisons on the one hand, and the feasibility of the
estimation procedure on the other hand. To see this, consider one extreme, where we seek
to estimate the ATT for all tracts where exactly .75% of residential properties were removed
from the 100-year floodplain. To ensure the estimation is robust to potentially heterogeneous
treatment effects between cohorts, we would have to also split the estimation between units that
receive treatment in different year/month, and compare each sub-sample to tracts that receive a
map update later with exactly .75% of properties rezoned inside the 100-year floodplain. While
this would allow to flexibly assess heterogeneity for varying intensity of rezoning, in many cases
this approach is not feasible, because too few observations are in the estimation samples. I
focus on the role of the 100-year floodplain rezoning, where x is one of {Increase in 100-year
floodplain, Decrease in 100-year floodplain, No change in 100-year floodplain}. “Increase” or
“decrease” in the 100-year floodplain denote tracts where more than 1% of residential properties
are rezoned inside or outside of the 100-year floodplain on net respectively, while “No change
in 100-year floodplain” denotes tracts with properties in the 100-year floodplain, but where the
map update didn’t rezone any property relative to the 100-year floodplain. In the appendix I

24For instance, consider the cohort of census tracts that receive a map in February 2012 which removes a
share x of properties from the 100-year floodplain. To estimate the ATTs for this group, I use as control units
all the census tracts that have not received a digital flood map as of February 2012 but that will receive one
removing a share x of properties from the 100-year floodplain before the end of the sample period (2020).

25Formally, when the never-treated units are part of the control group we have
Ȳ0,t,x = 1

N0tx

∑
i:Gi=g,{Xi=x}∪{Xi=∅} Yi,t,x
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present results using a 3% rezoning cutoff (shown in Figure D.9 and Figure D.10 – as expected,
treatment effects tend to increase with the magnitude of the rezoning). Section 5 is devoted to
fully relaxing the arbitrary choice of x by estimating tract-specific individual treatment effects.

I again follow Callaway and Sant’Anna (2021) and aggregate cohort-specific ATTs into ATTs
by length of exposure using cohort sample-size weights:

θ(e, x) =
∑
g

1{g + e ≤ T} · P (G = g ∩ X = x|G+ e ≤ T} · ATT (g, g + e, x) (4)

where e is the exposure time (e = t− g), g is an index for the cohort of flood map update,
G is the time period that a unit is first treated, and T is the last time period for which ATTs
are identified. The estimator is obtained by replacing ATT with its sample analogue from
equation 3, ÂTT .

4.3 Event study estimates of the impacts of flood map updates

Figure 6 presents the ATT estimates by length of exposure, aggregated over all 117 cohorts
following equation 4. The three panels estimate effects separately based on whether the map
update rezoned properties outside of the 100-year floodplain (first panel), inside (second panel),
and where the map update did not cause any rezoning inside or outside of the 100-year floodplain
(third panel). The figure shows estimates for two different outcomes: the number of active
flood insurance policies in the census tract (solid blue line) as well as the average price of the
insurance policy (dashed gold line), both transformed using the inverse hyperbolic sine. For
all three treated samples and both outcome variables, we note the absence of pre-trends: the
estimated average effects of receiving an updated flood map on take-up and average prices is
not significantly different from zero prior to the treatment date, increasing our confidence in
the identifying assumption.

Post-treatment, effects are large and heterogeneous between samples, strongly suggesting
that rezoning relative to the 100-year floodplain is a decisive driver of insurance take-up. Fo-
cusing first on the number of active policies, we note that among census tracts where the map
modernization decreased the number of properties located inside the 100-year floodplain (first
panel), the map update led to an average decline in the number of policies of about 10% after
2 years. In contrast, the map modernization caused an average increase of almost 40% in areas
where the digital map rezoned properties inside the 100-year floodplain (second panel). In
neighborhoods where the new maps did not rezone properties (third panel), effects are small
and not statistically different from zero.

In the appendix, I show in Figure D.7 that these effects (obtained aggregating models 3 over
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Figure 6: Aggregated event study estimates of the impacts of map updates

ATT estimates obtained using Callaway and Sant’Anna (2021) regressions. The outcome variables (active
insurance policies in blue, average policy prices in orange) are transformed using the Inverse Hyperbolic Sine
(IHS). Each facet represents average treatment effects for a different treated group, using treated census tracts
where the flood map update increased, decreased, or did not change the number of properties zoned inside
the 100-year floodplain (first, second and third facet respectively). The three control groups comprise not-
yet-treated census tracts that later receive a flood map with a similar floodplain rezoning direction as the
corresponding treated group. Error bars represent 95% confidence intervals using the multiplier bootstrap.

all treatment cohorts) also exist within each cohort, regardless of the treatment date. For almost
all cohorts, the estimated impacts of map updates on insurance take-up are positive for tracts
where the map updates rezoned properties inside the 100-year floodplain, and negative in tracts
where the map rezoned properties outside of the 100-year floodplain. Such patterns confirm
the role the 100-year floodplain as a major driver of heterogeneity. In the appendix I also
present alternative models showing the robustness of the results presented above. Figure D.11
shows these effects are not driven by new residential constructions: the estimates are extremely
similar if we only retain insurance policies covering properties that were built prior to 2008 in

24



the analysis. 26

Figure 6 shows the observed impacts on quantities are not driven by changes in prices.
The impacts of flood map updates on average prices follow the same patterns as the effects
on the quantities, although the effects are more modest. Due to the aggregate nature of
the data, interpretation of these effects is difficult. At the census tract level, average price
is an equilibrium outcome: the effects measured here include both a direct floodplain effect
(everything else equal, being in the 100-year floodplain increases the price of the insurance
policy), as well as a composition effect (the pool of properties purchasing insurance might change
with the new flood map). I highlight these effects in the next section by further separating
policies that are purchased inside and outside the 100-year floodplain.

Overall, these results rule out any large effects of the pure digitization of paper-based maps,
suggesting that access to digital information was not a barrier to insurance take-up. On the
other hand, the large impacts of the 100-year floodplain rezoning on insurance take-up could
be due to individuals revising their beliefs about flood risk following the new map, or because
of the insurance mandate requirement inside the 100-year floodplain. While I can’t perfectly
decompose the take-up effect between these channels, the analyses below suggest that both
mechanisms are at play.

4.4 Within-census tracts spillover effects of updated flood maps

Flood maps present a discrete depiction of risk: the location of any property is either high-
risk (100-year floodplain), low risk (500-year floodplain), or “minimal risk” (outside of the
floodplains). Although flood maps provide some additional information within each zone, the
categorical definition of flood risk has no underlying physical basis: absent specific structures,
flood risk is in general continuous in space. This implies that homeowners might rationally form
beliefs about their risk exposure beyond the discrete floodplain classification of their property.
For instance, a homeowner could be located outside of the 100-year floodplain both before
and after the map update, but might revise her beliefs about risk if the map update rezoned
adjacent properties towards the 100-year floodplain.

The main challenge in testing for these “spillover effects” is that I cannot match insurance
policies to geolocalized properties. However, the insurance data provide information on the
floodplain in which the insured property is located at the time of the policy purchase. This
last point bears emphasizing as it means that we can track, at any time, how many insurance

26These results are also robust to changes in the transformation variable (log versus inverse hyperbolic spline),
changes in the estimation sample (excluding all tracts with less than 5 active insurance policies at all times),
and controls for the occurrence of presidential disaster declarations in the past 2 or 3 years (available upon
request).
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policies are covering properties inside and outside of the 100-year floodplain, within census
tract. However, we cannot interpret changes in the number of policies in a particular floodplain
as changes in the take-up of properties that previously purchased a policy in this floodplain,
since the definition of the floodplain itself is changing due to the map update.

Figure 7 presents heterogeneity-robust event-study estimates for the number of active in-
surance policies as outcome variables, this time differentiating the number of insurance policies
by floodplains within tracts (recall that the definition of the floodplains changes at the time of
treatment, since the floodplain classification comes from the insurance data). The models are
only estimated for treated census tracts where the map updates rezoned properties inside the
100-year floodplain (these treated census tracts in Figure 7 were previously part of the first
panel in Figure 6), and further on tracts where properties were removed (many properties get
rezoned from the 500-year floodplain to the 100-year floodplain).

I find that updates increase take-up from properties located inside the 100-year floodplain
(purple line), which we would mechanically expect even if there is no change in tract-level take-
up – this effect could be entirely due to the rezoning of properties. However, I also find these
map updates also increased demand from properties located outside of the 100-year floodplain
(light blue). This is surprising: among the treated census tracts, multiple properties were
rezoned from the 500-year to the 100-year floodplain and were likely carrying flood insurance
– rezoning inside the 100-year floodplain would therefore mechanically cause the number of
active policies covering properties outside of the 100-year floodplain to decrease (recall that the
number of insurance policies within each floodplain is derived from the insurance data itself and
records the floodplain at the time of the purchase of the insurance policy). This means that the
increase in insurance demand from properties located outside of the 100-year floodplain more
than compensates this composition effect.27

Overall, these results demonstrate that rezoning properties inside the 100-year floodplain
not only has a direct impact on insurance demand (by increasing the demand for insurance
from properties located within the 100-year floodplain, as previously seen in the first panel
of Figure 6), but also has a large indirect impact on properties located outside of the 100-
year floodplain. While I cannot completely rule out the potential role played by the insurance
mandate requirement inside the 100-year floodplain, these indirect or “spatial spillover” effects
outside of the 100-year floodplain strongly suggest that a substantial portion of the impacts of
updated flood maps on insurance demand is driven by changing beliefs about flood risks.

27Looking at tracts with a decrease in the 100-year and increase in the 500-year is complicated by coding
errors in the measurement data, yet does not reveal any spillover effects (take-up decrease in the 100-year and
increase outside of the floodplain).
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Figure 7: Aggregated event study estimates of the impacts of flood map updates on flood
insurance take-up at the census tract and flood zone-level

ATT estimates obtained using Callaway and Sant’Anna (2021), focusing on treated census tracts where the
flood map update increased the number of properties in the 100-year floodplain while simultaneously rezoning
properties outside of the 500-year floodplain. The outcome is measured at the census tract / flood zone-level,
where the flood zone designations are derived from the insurance policy data. As such, they provide the number
of policies that are active within each zone at the time when the policy is purchased. The control groups
comprise census tracts that have not yet received a digital flood map at the time of treatment, but will receive
one later with the same direction of 100-year floodplain rezoning. The outcome variables are transformed using
the Inverse Hyperbolic Sine (IHS). Error bars represent 95% confidence intervals using the multiplier bootstrap.
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4.5 Event-study heterogeneity

Figure 8: Event-study, heterogeneity analysis

ATT estimates obtained using Callaway and Sant’Anna (2021) regressions. The outcome variable is the number
of active insurance policies in the tract, transformed using the Inverse Hyperbolic Sine (IHS). Rows represent
average treatment effects for different treatment groups, using treated census tracts where the flood map update
decreased (top row) or decreased (bottom row) the number of residential properties in the 100-year floodplain
by more than 1% relative to the total number of residential properties in the census tract. Vertical facets focus
on different heterogeneity variables. The control groups comprise not-yet-treated census tracts that later receive
a flood map with a similar floodplain rezoning direction as the treated groups and that are within the same
heterogeneity quartile of the variable being investigated. Error bars represent 95% confidence intervals using
the multiplier bootstrap.

Figure 8 continues the investigation of treatment effect heterogeneity within the event-study
framework, focusing on four neighborhood-level characteristics. In the appendix, Figure D.12
present additional heterogeneity results based on race, while Figure D.13 focuses on correctness
of the map change based on the FSF model, disaster experience, and disclosure laws. The
control groups are further restricted to be in same quartile as the treatment units. For instance,
estimates in the top left panel present heterogeneity based on the neighborhood-level share of
Black or African American households for neighborhoods where the map update rezone more
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than 1% of properties outside of the 100-year floodplain. The yellow coefficients are obtained
by restricting the estimation sample to treated and control units within the top quartile of the
neighborhood-African American share only.

Focusing on neighborhoods where the map updates rezoned properties outside of the 100-
year floodplain (top row), Figure 8 reveals that effects are larger in neighborhoods with a
higher percentage of Black residents (column 1) and Hispanic residents (column 2), poorer
neighborhoods (column 3). Rezoning inside the 100-year floodplain (bottom row) caused greater
increase in take-up in more Hispanic neighborhoods and areas with greater properties owned
with a mortgage.

The stronger effects of map updates in areas with more properties with a mortgage provides
suggestive evidence that the mandatory purchase requirement in the 100-year floodplain might
be binding, at least for some households. The larger effects estimated in African American
and Hispanic neighborhoods, on the other hand, could be due to greater price elasticity due to
reduced budget sets. This is consistent with results in column 3 of Figure 8 and with Bradt et al.
(2021), which shows that insurance uptake monotonously increases with income. This suggests
that at lower level of wealth, an increase in the price of insurance (stemming from a rezoning
inside the 100-year floodplain) is more likely to lead a household to drop their insurance policy.
It could also be due by the disproportional share of removals from the 100-year floodplain that
occurred in these areas, identified in Section 3. Tackling these questions requires to control for
the treatment intensity at the census tract level.

5 Synthetic controls and distributional impacts

The share of properties rezoned inside and outside of the 100-year floodplain varied between
neighborhoods. Yet, accounting for disparities in the type of information provided by the
map updates cannot be done performed flexibly within the event-study framework, due to the
small sample sizes issues discussed above. In addition, one might question the parallel trend
assumption imposed above. Three features could undermine this assumption in our context.
First, although there is little concern about selection into treatment (given that all tracts
are scheduled to receive a map at some point), as discussed above there is some evidence of
selection into treatment timing : units treated later appear to be exposed to more flood risk than
units treated earlier. While this is partially addressed by the event studies, one might worry
about diverging potential outcome trends between early and later treated units. Second, the
policy environment changed during our observation window. In particular, the Biggert-Waters
Act of 2012 progressively phased out insurance subsidies for a subset of properties that were
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constructed prior to the community’s first flood map (called “pre-FIRM properties”) and are
now located in the 100-year floodplain. Failing to account for these differential trends could
attribute some impacts of the BW Act to the map updates. Third, previous work found that
the occurrence of a disaster is itself a strong determinant of flood insurance take-up (Gallagher,
2014). When estimating the impacts of flood map updates, one might therefore wish to account
for the occurrence of disasters.

One way to dive deeper into heterogeneous treatment effects and to construct better control
groups – by accounting for the share of pre-FIRM properties, the share of properties zoned in
the 100-year floodplain before the map update, and the potentially non-linear effects of disasters
– would be to further split the samples of census tracts along these observable characteristics
of interests. Unfortunately, this quickly becomes infeasible when using heterogeneity-robust
estimators of the ATT such as the Callaway and Sant’Anna (2021) estimator, as the number
of units in each {g, t, x} cell quickly becomes too small – especially as the dimension of x (the
number of characteristics along which we wish to assess heterogeneity of the treatment effects)
increases.28 To escape this Catch-22, I now turn to tract-specific synthetic controls.

5.1 Estimating census tract-specific synthetic controls

Synthetic controls were originally developed to estimate treatment effects when only a small
number of distinct units are available, such as states or countries, and when only one unit
receives treatment (Abadie and Gardeazabal, 2003; Abadie et al., 2010). Because directly
comparing the outcome of the treated unit to the outcomes of the control units generally
provides a poor estimation of the treatment effect, a “synthetic control” is first constructed by
taking a weighted average of the different untreated units, where the weights are chosen so that
the evolution of the synthetic control’s outcome pre-treatment matches as closely as possible
the evolution of the outcome of the treated unit.

I estimate unit-specific synthetic controls for each census tract observed for at least 12
months pre-treatment and 24 months post-treatment. While most applications construct syn-
thetic controls by only matching on the outcome variable, matching on select covariates can
improve the credibility of synthetic control estimates, even if from an estimation perspective
doing so can only decrease pre-treatment fit Abadie (2021).29 I construct synthetic controls by

28A “standard” approach to heterogeneity would be to run two-way fixed effect regressions and interact
treatment with census tract-specific covariates. As discussed above, this would deliver biased and inconsistent
treatment effect estimates due to both between-cohort heterogeneity in the treatment effect and treatment effect
dynamics (which was the entire rationale for using the Callaway and Sant’Anna (2021) estimator in the first
place).

29Abadie (2021) emphasizes this aspect: “Part of the literature on synthetic controls emphasizes estimators
that depend only on pre-intervention outcomes and ignore the information of other predictors [...]. This reliance
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matching on pre-treatment values of the outcome variable (the number of active flood insur-
ance policies in the census tract), as well as the share of pre-FIRM properties and the share of
policies covering properties in the 100-year floodplain. Doing so will create control units that
are even more likely to similarly respond to the BW Act and other idiosyncratic time shocks,
matching on these two covariates generate more credible synthetic controls.

An important choice that remains concerns the definition of the “donor pool,” i.e., the
group of control units that are considered when estimating the controls’ weights. In a typical
synthetic control application, all untreated units are part of the donor pool. However, in our
case, flooding and other spatially correlated disasters cause large increases in insurance take-up,
not only in areas directly impacted by flooding, but also in neighboring areas that are located
in the same television-network market (Gallagher, 2014). During our observation window,
flooding occurs in multiple states, which might cause potential outcomes between treated units
and their counterparts to diverge. To mitigate this issue, I estimate spatially clustered synthetic
controls: for each treated tract, the “donor pool” contains units that do not receive treatment
within our observation period and that are located within the same FEMA region.30

Finally, to improve the quality of pre-treatment fit, I use the augmented synthetic control
method of Ben-Michael et al. (2021). This approach uses an explicit outcome model to remove
potential bias in the original synthetic control estimates, detailed in the appendix (Section E.1).

Moving from the estimation of average treatment effects to neighborhood-specific treatment
effects is not without costs. One major drawback is that synthetic controls can perform poorly
when the treatment effect is small relative to the noise in the outcome variable (Abadie, 2021).
Unlike with difference-in-differences estimators, the statistical power of synthetic control esti-
mators does not increase with sample size. In our context, this means that we are more likely to
credibly estimate treatment effects where flood map updates lead to large changes in insurance
take-up, and for census tracts where there is a large number of active insurance policies.31 I
therefore estimate synthetic controls in census tracts that have at least 20 active policies at
all times.32 Finally, quantifying the uncertainty around synthetic control estimates is still an
active area of research. To the best of my knowledge, there is no agreement on how to account

on pre-intervention outcomes only, while adopted in many cases for technical or expositional convenience, may
create the mistaken impression that other predictors play a minor role in synthetic control estimators.”

30One possibility is to form the donor pool using units that are not-yet-treated, instead of units that are
never-treated. This is appealing, since not-yet-treated units are more likely to resemble already-treated units.
However, this makes it hard to interpret changes in the treatment effects over time, since some of these changes
are driven by changes in the composition of the donor pool.

31Recent extensions of synthetic controls consider Average Treatment Effect estimation when several units
receive treatment at different times (Xu, 2017; Robbins et al., 2017; Ben-Michael et al., 2019).

32Due to the spatial concentration of the demand for flood insurance, excluding census tracts with less than
20 active insurance policies at all times lead to a negligible reduction in the aggregate number of active policies
considered for the synthetic control estimation.
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for multiple hypothesis testing when evaluating the uncertainty around the treatment effects
of thousands of synthetic controls. Despite these shortcomings, I use the recently developed
jackknife+ procedure from Barber et al. (2021) to construct confidence intervals.

5.2 Synthetic controls results and the distribution of treatment effects

This section presents the (ridge-augmented) synthetic control estimates for each of the 4795
census tracts that have at least 20 active policies at all times, for which I can identify changes
in the 100-year floodplain, and that received a digital flood map within the period 2009-2017.

To assess pre-treatment fit of the synthetic control estimates, I compute the normalized
root mean squared error (NRMSE) during the pre-treatment period: for 76 % of the estimated
synthetic controls, the NRMSE is less than 0.025, meaning that synthetic controls and treated
tracts deviate by less than 2.5% on the number of policies prior to treatment in most cases.33 A
histogram of the NRMSE is presented in Figure E.14 in the Appendix. In the following sections,
I restrict the analysis to census tracts for which I estimated a synthetic control that provides
a close match to the pre-treatment outcome, defined as an NRMSE lower than 0.05.34 In the
current application, the smallest and largest donor pools have 58 and 898 units, respectively.
Figure E.15 shows that pre-treatment fit is not correlated with the number of units in the pools.

Figure E.18 in the appendix presents the full paths of dynamic synthetic control treatment
effects for selected census tracts. While long-term treatment effects are most relevant from a
public policy perspective, this requires strong assumptions and more data. For the remainder
of this section I focus on the estimated treatment effects at 24 months post-treatment.35

To investigate treatment effect heterogeneity and flexibly assess the role of rezoning inside
and outside of the 100-year floodplain, I run the following regressions:

T̂Ei = α + βRezoning100yeari ·Xi + εi (5)

where T̂Ei is the synthetic control treatment effect estimate of the impact of the map update
on the flood insurance take-up in census tract i, Rezoning100yeari indicates the number of
residential properties rezoned inside the 100-year floodplain with the map update (relative to
the number of residential properties in the census tract), Xi is a fixed variable at the census
tract level along which we wish to estimate heterogeneity. Note that because the left-hand side

33It is smaller than .01 in 63 % of cases.
34Most of the deviations between the treated units and their estimated synthetic control outcomes pre-

treatment arise from the inclusion of covariates in the matching procedure: when omitting covariates, the
weighting procedure generates weights that lead to NRMSE lower than 0.01 in 92% of cases.

35Additional results show that effects are similar when focusing on treatment effects after 12 months or 30
months instead.
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of regression 5 is estimated using synthetic controls, uncertainty surrounding the estimates need
to be interpreted with caution. To the best of my knowledge, this “second stage” regression
(where the first stage is the construction of the synthetic control estimates) has not been
considered previously and its theoretical properties have not yet been derived. This is left for
future developments.

Figure 9: Second-stage regression, marginal effects

Each dot represents a census tract-specific treatment effect estimate of the impact of the flood map update
on flood insurance take-up 24 months post-treatment, using synthetic controls augmented by ridge regression.
For each treated unit, the donor pool comprises never-treated census tracts within the same FEMA region.
Large dots are significant treatment effects at the 10% level, using the jackknife+ procedure. Regression lines
represent the marginal effects of a change in the number of properties rezoned inside the 100-year floodplain
on the synthetic control treatment effect estimates, following regression 5. The marginal effects are estimated
separately per quartiles.

Figure 9 show results for the entire estimation sample. Each dot represents a census
tract-specific synthetic control estimate at 24 months post treatment. The x-axis depicts the
change in the share of residential properties in the 100-year floodplain due to the map update
(Rezoning100yeari, with rezoning outside of the 100-year floodplain counted negatively), while
the y-axis depicts the treatment effects TEi expressed relative to the number of properties in
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the tract. The treatment effects plotted are the same in all four vertical panels, but each panel
focuses on a specific heterogeneity dimension, with different colors representing census tracts in
different quartiles for this particular variable. The lines are marginal effects of increasing the
share of properties rezoned in the 100-year floodplain for each of the quartile groups.

We first note a strong relationship between treatment intensity and floodplain rezoning: the
more properties rezoned inside the 100-year floodplain, the larger the treatment effect. The
overall effect of rezoning inside the 100-year floodplain in regression 5 is 0.17 , meaning that
for every 5 properties rezoned relative to the 100-year floodplain, one is induced to change
insurance status. The adjusted-R2 of regression 5 (without heterogeneity variables) is 47 %,
i.e., the share of properties rezoned in and out of the 100-year floodplain explain more than
half of the variation in the synthetic control estimates.

As with event study models, we find that rezoning outside of the 100-year floodplain decrease
insurance take-up, whereas rezoning inside the 100-year floodplain increases take-up. The
synthetic control estimates further reveal that larger 100-year floodplain rezoning cause larger
treatment effects, and this relationship holds over most tracts, although treatment effects are
noisier when the share of properties rezoned is small.

Neighborhoods with more properties with a mortgage (second panel of Figure 9) and neigh-
borhoods with more Hispanic residents (fourth panel) experience greater map-induced declines
in insurance take-up when rezoned outside the 100-year floodplain, even when flexibly account-
ing for the magnitude of rezoning. In contrast, poorer neighborhoods and neighborhoods with
more Black residents (first and third panels) do not appear to respond more strongly to the
map update conditional on the intensity floodplain rezoning. Map updates did cause greater
declines in insurance take-up in neighborhoods with more Black residents, but this is predom-
inantly caused by the substantial rezoning outside of the 100-year floodplain that occurred in
these areas (see Figure E.20).36

On the other hand, Figure 9 reveals that income is unlikely to drive the distributional
effects of the map updates. The marginal effects of rezoning properties inside the 100-year
floodplain increases (in absolute value) with income, suggesting that higher-income households
are more sensitive to the rezoning of properties inside and outside of the 100-year floodplain.
This pattern is inconsistent with decreasing absolute risk aversion, but could be rationalized
by differential access to information between poorer and wealthier neighborhoods.37

Households may hold private information about their true risk exposure. Under this sce-
nario, households could selectively respond to flood map updates that are “correct,” and not

36In Figure E.21 appendix, I extend the analysis to other racial groups.
37Outreach efforts regarding the updated flood maps may vary between neighborhoods, but despite multiple

requests I was not able to obtain data on the magnitude of outreach efforts in different communities.
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substantially change their demand for insurance following an incorrect update. Such differenti-
ated response to map updates would mitigate the welfare costs of providing incorrect informa-
tion. While crucial to welfare analysis, assessing the role of private information about true risk
is challenging. True flood risk is unknown, both to the households and the econometrician. In
Figure E.22, I proceed by assuming that the First Street Foundation model provides a good
proxy for true flood risk. I do not find meaningful differences in the effects of map updates
on insurance take-up based on whether the majority of rezoning were correct within a census
tract, suggesting that official risk information is the main source of information about risk.38.

Overall, these results show that using local control units and matching on ex-ante measures
of risk and floodplain extents generate treatment effect estimates in striking agreement with
those of Section 4: rezoning inside the 100-year floodplain increase take-up, while rezoning
outside reduces the demand for insurance. Due to the more numerous rezoning outside of
the floodplain, map updates decreased insurance take-up on net. These declines in insurance
coverage were not uniform across neighborhoods, but concentrated in neighborhoods with more
Black and Hispanic residents. Individuals appear to respond to the official flood map updates
whether or not the information conveyed in these maps align with the best available science.
As such, their impacts on consumer welfare could be negative.

6 A model of flood insurance demand

The impact of flood information on welfare crucially depends on the correctness of the infor-
mation. This section provides back-of-the-envelope estimates of the impacts of map updates
on welfare by outlining a static model of insurance demand that isolates the correctness of the
risk information, and assuming the First Street Foundation provides a measure of true risk.
While restrictive, these assumptions allow for baseline estimates in the absence of any market
distortions other than incorrect information. Other considerations of primary importance for
welfare estimates are consumer’s risk preferences, whether the insurance mandate requirement
is binding, potential moral hazard due to post-disaster funding, adverse selection due to pri-
vately known and non-contractible costs, limited foresight, and insurance loading costs. Some
of these aspects are carefully studied in recent work (Wagner, 2022; Mulder, 2022).

38Figure E.22 further shows that neighborhoods hit by a disaster prior to the map update appear to respond
more to the official flood map, consistent with it being the main source of information. On the other hand,
map updates cause larger effects in areas where flood information disclosure is not required by home sellers,
consistent with map updates providing more information in this context)
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6.1 Model outline

A homeowner ω decides whether or not to purchase insurance, with utility uω1 if she purchases
and uω0 if she does not. Let α(ω) denote her (absolute) risk aversion. The homeowner will
purchase insurance as long as her risk aversion is above a threshold value kω: uω1 > uω0 ⇐⇒
α(ω) > kω. The probability of ω purchasing insurance is then p(α(ω) > kω) ⇐⇒ 1− Fc(kω)

for some census tract-specific cumulative distribution function Fc.
The expected social surplus obtained from homeowner ω before the map update is

Wω,pre = p(α(ω) > kω,pre) · (CSw,pre + PSw,pre)

= p(α(ω) > kω,pre) · (WTPω − rω,pre + rω,pre − bω)

= p(α(ω) > kω,pre) · (WTPω − bω)

(6)

where CSω,pre and PSω,pre are the surpluses from the insurance contract that accrue prior
to the map update to the homeowner and insurer respectively,39 bω is the expected (annual)
cost due to flooding, rω,pre is the price of the contract prior to the map update, and WTPω

is the homeowner’s underlying willingness-to-pay for flood insurance. Intuitively, the welfare
that arises from homeowner ω is 0 if she does not purchase insurance, while it is the difference
between her willingness-to-pay and the expected costs of supplying the contract if she purchases
insurance. Importantly, we consider her accurately informed willingness-to-pay, that is, the one
that would arise if she had access to correct flood risk information.

Integrating over homeowners, the expected welfare at the census tract level before the map
update is computed as

E[Wc,pre] =

∫
ω

(WTPω − bω) · 1(α(ω) > kω,pre) · dFc

=

∫ +∞

α(ω)>kω,pre

(WTPω − bω) · dFc
(7)

and similarly after the map update for E[Wc,post]. Finally, we sum over tracts to get the
aggregate welfare change: ∆W =

∑
cE[Wc,post]−E[Wc,pre]

In this framework, all social welfare changes attributable to the map updates arise due to
changes in the probabilities of households purchasing flood insurance. Map updates only impact
the support of the integrals by changing the cut-off values kω,·, while the willingness-to-pay for
insurance and the expected annual costs of flooding remain constant through the map update.

39These welfare definitions are net of any administrative costs of providing the contract.
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6.2 Model calibration

Estimating the model requires several additional assumptions. I assume that individuals max-
imize expected utility, and that their preferences are captured by a Constant Absolute Risk
Aversion utility function. This assumption is reasonable when changes in premiums are small
relative to individuals’ income, and this allows to ignore income effects associated with price
changes (Einav et al., 2010). The functional form allows to numerically compute the cut-off
values kω above which the homeowner purchases insurance and provide an expression for the
willingness-to-pay of homeowner ω.

Households perceive their probability of flooding from the (official) FEMA flood maps,
consistent with the results in the previous sections. When there is a map update, this potentially
changes the cut-off value above which they purchase insurance, from kω,pre to kω,post. I further
assume that the First Street Foundation model provides a good proxy of the probability of
inundation depths and the property-specific flood damages at these depths.40 To recover the
price of the insurance contract for all households, I use neighborhood-, floodplain-, and time-
specific premium averages from the insurance data. I also assume that risk aversion parameters
follow a Fréchet distribution within each census tract. Finally, the calibration focuses on
homeowners directly impacted by map updates, and ignores the spatial spillover effects. I also
compute welfare assuming that the mandatory purchase requirement constraint is not binding.
Both assumptions are rejected by the analysis above, but they allow to provide transparent
back-of-the-envelope estimates of the impacts of map updates nation-wide. These assumptions
can be relaxed by assuming a specific shape for spatial spillover effects and the distribution of
homeowners constrained by the insurance mandate within each census tract. Additional details
of the estimation procedure are provided in the appendix (Section F.1).

Overall, 17.4 million unique properties have a non zero perceived flooding probability and
contribute to at least one of the welfare measures.41 Computing expected welfare at the prop-
erty level can be done sequentially and independently for all properties: first compute the
homeowner-specific threshold values kω,·, then integrate out the risk aversion parameters.

40The assumption of correctly estimated flood damages in the FSF model is strong, as it requires the depth-
damage functions to be correctly specified. These damage estimates lack the validation of inundation depth
estimates due to issues arising in the insurance claims data (low take-up of insurance and large adverse selection
in particular).

41Welfare estimates focused on communities for which I can assign a probability of flooding pre-map update
comprise 12 million unique properties.
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6.3 Structural estimates

Figure 10 presents several welfare metrics under a range of assumptions. Figure 10.A presents
the empirical cumulative distribution functions of relative changes in social welfare over census
tracts between the paper-based and digital maps, for three different expected value for the risk
aversion parameters. A total of 20,276 census tracts experience a non-zero change in social
welfare. The map updates decrease welfare in almost exactly half of these census tracts, while
the other half experiences gains. These relative estimates are not sensitive to the choice of
risk aversion parameters. Looking at this figure, a policy maker with distributional concerns
might hope that the gains are concentrated in more disadvantaged neighborhoods, or that the
welfare gains are large enough to potentially compensate the welfare losses that occur in other
neighborhoods.42 Unfortunately, the next figure reveals this is not the case.

Figure 10.B depicts the relative social welfare impacts of the map update, aggregated by
neighborhood income decile. The pink line presents the welfare changes that occurred, com-
puted at the actual prices before and after the map update, while the black line presents the
welfare changes that would have occurred if insurance premiums had been actuarially fair.
First, note that for all income groups, the map updates decreased welfare: the relative changes
vary between -2% and -10% (pink line), with no clear pattern in relation to the income group.
Second, correcting insurance premiums to reflect actuarially fair prices would have mitigated
some of these losses, but would not have led to substantial welfare gains. This reveals that
insurance pricing is not the main driver behind the welfare losses – incorrect risk mapping is.

To assess the potential gains from improving flood risk mapping, Figure 10.C presents the
welfare impacts of correcting the floodplain boundaries pre-map update using the First Street
Foundation Flood Model, aggregated by African American neighborhood decile. The solid
lines depict changes in social welfare while dashed lines depict changes in consumer welfare.
Amounts are reported for three different expected values of the risk aversion distribution.

Figure 10.C shows that welfare gains would have been substantial if the map update had
followed correct floodplain boundaries and had updated premiums to reflect actuarially fair
prices. Using a plausible parameter of 10−5 for the expected value of the risk aversion dis-
tribution, updating the maps pre-digitization to the FSF floodplain boundaries would have
yielded annual gains exceeding $20 billion, with the largest gains concentrated in white and
wealthy neighborhoods. Note that while the relative changes in welfare are not sensitive to
positive values of risk aversion parameters, the absolute changes in welfare strongly depend on
risk preferences and increase with risk aversion. For all three risk aversion parameters, con-

42Although Sallee (2019) shows that the potential compensation criterion is problematic, as the lack of
information about who loses from a given policy often makes compensation impractical.
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Figure 10: Welfare impacts of updating flood maps

A: Cumulative distribution of social welfare changes over census tracts between the paper-based and digital map
updates. Census tracts with a change of 0 are excluded, and the empirical cumulative distribution function is
shown on [-100%,+100%] for clarity. B: Social welfare impacts of updated flood maps aggregated by neighbor-
hood income deciles, assuming an expected risk aversion value of 10−5. The pink line depicts relative welfare
changes using true insurance premiums (pre and post map updates), while the black line assumes actuarially
fair premiums before and after the map updates. C: Potential welfare gains of updating pre-modernization
flood maps following the 100-year and 500-year floodplains as estimated in the FSF model, aggregated by
African American neighborhood decile and assuming actuarially fair insurance pricing in corrected floodplain
boundaries. Estimates for three different values of the expected risk aversion parameters are represented, along
with both social and consumer welfare measures. D: Spatial distribution of the potential social welfare gains
of updating post-modernization flood maps following the 100-year and 500-year floodplains as estimated in
the FSF model, assuming actuarially fair insurance pricing in corrected floodplain boundaries and an expected
risk aversion value of 10−5. Dollar amounts are expressed per household experiencing any change in floodplain
boundaries (in log and bounded at 0 for clarity).

sumer welfare closely tracks social welfare. At very low expected value of risk aversion (10−4),
consumer welfare changes becomes negative, highlighting that more risk neutral homeowners
would stand to lose the most from correcting floodplain boundaries and insurance pricing.
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Finally, Figure 10.D shows the spatial distribution of welfare gains that would arise if we
moved from the current maps and premiums to corrected floodplain boundaries and actuarially
fair premiums, with the welfare gains expressed per rezoned household and assuming an ex-
pected risk aversion parameter of 10−5. While flood-prone neighborhoods on the Atlantic coast
are predicted to realize substantial welfare gains, households rezoned to a different floodplain
in California, Oregon, and Washington State, as well as households residing inland near the
Mississippi, Ohio and Tennessee rivers would also experience large gains in welfare.

7 Conclusion

This paper investigates the public provision of flood risk information and its impacts on flood
insurance take-up in the United States. I compile novel data on the evolution of floodplain
boundaries contained in the official flood maps, which represent the largest disaster risk mapping
and information provision effort ever undertaken by a national government. I compare these
flood maps with independent risk estimates provided by a state-of-the-art model, and estimate
their impacts on residential flood insurance take-up.

I first document that since Hurricane Katrina, new flood maps rezoned more than one mil-
lion properties outside of the high-risk floodplains. This nominal decrease in flood risk was
caused by the drawing of more floodplain boundaries, which predominantly occurred in neigh-
borhoods with greater Black and Hispanic populations. Comparing official flood maps with
independent risk estimates, I find that more than five million properties were incorrectly omit-
ted from the high-risk floodplains during the map updates. These omissions are primarily due
to the continued ignorance of rain-based flood risk in the official maps, and they predominantly
occurred in minority neighborhoods.

Leveraging the staggered updating of flood maps, I find that they are a crucial driver of
flood insurance uptake: removing properties from the 100-year floodplain decreases insurance
take-up, while rezoning properties inside the 100-year floodplain increases flood insurance take-
up, both inside and outside of the 100-year floodplain. These spillover effects suggest that
information plays a substantial role in the demand for flood insurance. In contrast, digitizing
previously existing floodplain boundaries has insignificant impact on the demand for flood
insurance, suggesting that information access costs were not limiting insurance demand. These
results are robust to alternative estimation strategies based on local and clustered synthetic
controls. Overall, I estimate that map updates caused 40,000 additional properties to be covered
by flood insurance after two-years in areas where the 100-year floodplain was expanded, but
caused more than 100,000 households to drop their flood insurance coverage in areas where
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the 100-year floodplain was shrunk. Effects are larger in census tracts with a higher share of
Black and Hispanic residents, which exacerbated disparities in flood risk coverage. Although
removing properties from the high-risk floodplains reduced flood insurance premiums in these
neighborhoods, declines in insurance coverage raise concerns regarding the vulnerability of
communities already suffering from under-investments.

There are important limitations to this study. In particular, my analysis does not quantify
the contributions of the different mechanisms that underlie the effect of public risk informa-
tion on insurance take-up. I find that beliefs about flood risks and the mandatory purchase
requirement both matter, but further understanding their relative contributions nation-wide is
necessary to design policies that efficiently promote insurance coverage.

In addition, the welfare estimates computed in the paper are based on the assumption the
FSF model is a decent proxy for true flood risk. This is a relatively innocuous assumption in
the context of pluvial flood risk, which is systematically missing from official flood maps, but
a stronger assumption in the context of fluvial and coastal flooding. The FSF does provide
state-of-the-art estimates of flood risk, but the art of flood risk modelling evolves quickly. As
more models become available to predict flood risk, additional work is needed to optimally
combine risk assessments from various scientific sources.

A reconciliation bill approved by the House Financial Services Committee in September 2021
aims to provide three billion dollars to improve flood maps throughout the U.S (House Financial
Services Committee, 2021). Such investment has the potential to benefit consumers through
improved flood risk information and increased insurance take-up, but incorrect map updates
could increase vulnerability to flood risk further. Given the substantial costs of risk mapping
and concerns about the scientific validity of official floodplain boundaries, a promising avenue
to produce official risk maps is to leverage newly available and independent models of risks
as baselines for the new flood maps. Local deviations from these models could be warranted
and included in official products where communities have relevant knowledge about risk or
newly developed infrastructure. But as climate change further increases the importance of
accurate risk information, governments can benefit from grounding official climate risk products
in models that reflect the current science.
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Appendix for Online Publication

A Data preparation

A.1 Timing and content of the flood map updates

The flood insurance rate maps are provided at the community level. The community is usually
a county, but can also be a city, a town, a borough or a parish. Previous work focused on
flood maps relied on the “Community Status Book” maintained by FEMA,43, which records
the effective dates of the communities’ first FIRM (paper-based flood map) and current FIRM
or DFIRM (where the D stands for Digital, i.e., post map update). However, because the
Community Status Book only records the date of the first FIRM and current (D)FIRM, it
cannot be used to identify transitions from a FIRM to a DFIRM, and from a DFIRM to a more
recent DFIRM, unless the community only ever received one DFIRM – and these communities
are not identified in the Community Status Book. In addition, although most census tracts can
be easily assigned to an NFIP community (in particular when the community is a county which
received a unique county-wide map), several census tracts are instead covered by a community-
specific DFIRM and cannot be directly assigned a map update dates.

To circumvent these issues, I use new data on digital yearly snapshots of the National
Flood Hazard Layer since 2012 to assign DFIRM effective dates at the census tract level.
Finding, assembling, and cleaning these files was a substantial undertaking: most files were
not maintained by FEMA and were retrieved from the GIS archives of contractors who worked
with FEMA to produce these maps. I intersect the census tracts polygons with the DFIRM
effective dates polygons and record the effective date indicated at the census tract centroid. I
then compare the intersected DFIRM identification code with the census tract FIPS code: if
the DFIRM was issued for an entire county, then the DFIRM ID and the first five-digits of the
census tract FIPS code must match. For communities that are not entire counties (for instance
independent Virginian cities), I only match on the State FIPS code and confirm the effective
dates obtained with the Community Status Book. This procedure induces some measurement
error on treatment timing for census tracts that are not entirely included in an NFIP community,
since the effective date at the centroid of the census tract might differ from the date at which
other parts of the census tract received their (D)FIRM. However, this measurement error only
affects a minority of census tracts in sparsely populated communities, which themselves account
for a minority of NFIP insurance purchases. Omitting these census tracts from the analysis
do not noticeably impact the model estimates. Finally, for census tracts covered by a digital

43https://www.fema.gov/flood-insurance/work-with-nfip/community-status-book
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flood map in the 2012 National Flood Hazard Layer, I manually check that this was indeed
the community’s first digital flood map by comparing the digitization date with FEMA’s Map
Service Center repository44. This platform maintains a collection of pdf files depicting historical
mapping products.

To investigate the evolution of floodplain boundaries throughout the map update process,
I use the Q3 data product, which depicts the floodplain boundaries of the paper-based in
2005. As described in the main text, the Q3 maps were designed to aid floodplain managers
and city officials with disaster response activities, but were not widely available to the public.
They however provided a digital version of floodplain boundaries as shown on the historical
(paper-based) flood maps.

A.2 Note on intersecting floodplains and census tracts polygons

Intersecting the different flood zones within each census tract involves the pair-wise intersection
of hundreds of thousands of polygons. This process is computationally expensive, but perfor-
mance can be dramatically improved by first cropping the flood zone polygons at the county
level and then run on parallel cores the intersections between the cropped polygon and the
census tracts located within this county.

Unless a sufficient buffer is used, flood zones that barely “touch” the boundary of a census
tract will induce additional intersections that are computationally costly. On the flip side, using
a large buffer will induce measurement error in the computed areas. Using a minimal buffer
and post-processing the intersected polygons resulted in the best performance overall. On a
virtual machine with 48 vCPUS and 512 GB of RAM, all intersections can be ran within two
days.

A.3 Tract-level population and property count changes within differ-

ent flood zones

Each census tract covers between 1,200 and 8,000 inhabitants. In very-densely populated areas,
the spatial extent of a census tract is typically small, and the (spatial) share of the census tract
in different flood zones is a good approximation of the share of the census tract population that
lives within each flood zone. This is not necessarily true in medium-sized or large census tracts,
where population can often be located completely outside of any floodplains. To properly
estimate population exposure to flood risk, it is therefore crucial to account for the spatial
distribution of population within census tracts. I do so in three different ways.

44https://msc.fema.gov/portal/advanceSearch
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Figure A.1: Share of properties located in the 100-year floodplain

A: Census tract share of residential properties located in the 100-year floodplain based on the Q3 product. B:
Census tract share of residential properties located in the 100-year floodplain 2019.

First, I use the entire repository of 132 millions geolocalized residential properties main-
tained by the First Street Foundations and downloaded from their API in April 2021.45 This
measure of population distribution presents three advantages: (i) it captures residential prop-
erties only, which makes it a suitable measure of flood risk exposure to study how flood zone
changes impact the demand for residential flood insurance, (ii) it is consistent with the other
variables that I use from First Street to estimate flood risk exposure and expected annual aver-
age losses, and (iii) its coverage is more comprehensive than the often-used ZTRAX data (for
comparison, I was only able to geolocalize 95 million residential properties from ZTRAX —
I discuss the ZTRAX data below). I then intersect these residential properties with the Q3
flood maps, the 2012 DFIRMs, and the 2019 DFIRMs. I then aggregate the relevant changes
in properties counts at the census tract level, based on the effective date of the first DFIRM:
for instance for a tract in Broward County (FL) that received its first (and unique) digital flood
map in 2014, I compute the tract-level number of properties in each flood zone in the Q3 data
as well as in the NFHL 2019 data, and take their difference to get the change in the number of
properties located within this flood zone. I consider three different flood zones: the 100-year
floodplain (or SFHA), which comprises all A and V flood zones; the 500-year flood zone (part

45Due to the rate limitations of the API, the full download takes about 3 weeks of un-interrupted running
time.
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of the X zones), and the levee-protected flood zone.
Because the First Street Foundation residential properties data is obtained from local tax

assessors offices, coverage in some specific areas can be limited. When the number of residential
FSF-properties in a given census tract is too low to be representative,46 I use the 2010 dasymetric
allocation of population provided by EPA’s EviroAtlas. This product uses land use cover and
terrain slopes to reallocate the 2010 census tract population within census tracts at the 30m
pixel level.47 The dasymetric layer covers the entire contiguous US, but does not differentiate
well between residential properties and businesses. To transform the dasymetric-population
count in a flood zone into a property count, I divide the population count by 2.5 (the average
number of people living in an American household).

Figure A.2 plots the changes in the number of FSF residential properties zoned in the 100-
year floodplain (relative to the census tract number of properties) against the changes in the
population in the 100-year zone using the dasymetric allocation, showing a large correlation
between the two measures.

Figure A.2: Comparison of the relative change in the number of properties in the 100-year
floodplain using the FSF residential properties and the dasymetric population layer

46I do not use the FSF data to compute flood risk exposure changes in census tracts where the number
of FSF-properties is less than 40 and where the American Community Survey estimates of the population is
greater than 4 times the number of properties. In practice, this concerns less than 1,500 census tracts out of
73,745.

47Dasymetric mapping has a long history in geographical sciences (Wright, 1936) but remains mostly under-
appreciated by economists. See (Mennis, 2017) for a review of this technique.
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A.4 ZTRAX construction year robustness check

To ensure that my measures of changes in the number of properties inside and outside the
100-year floodplain are not driven by new properties being built in rezoned areas, I use Zil-
low’s ZTRAX Assessment data. These data contain a large number of variables on individual
structures, including their construction date. I restrict the data to geolocalized residential
properties that have a non-missing construction year variable. As shown in Table A.1 in the
“Unconditional” panel, the number of residential properties that satisfy these criterion is only
67 million properties, almost half the number of geolocalized residential properties in the FSF
dataset. While necessarily smaller than when using the more complete FSF properties registry,
counts obtained with the ZTRAX data in Table A.1 show a similar decrease in the number of
properties located inside the 100-year floodplain following the map updates. Importantly, the
decline remains when restricting the counts to properties built prior to 2005 (third panel).

Table A.1: Property counts inside and outside the 100-year floodplain using Zillow’s ZTRAX

Floodzone 2005 NFHL19

Unconditional:
Inside 100-year floodplain 4,043,702 3,294,151
Outside 100-year floodplain 45,241,341 57,872,115
Not mapped 17,841,103 5,959,880

Conditional on Q3 and NFHL19:
Inside 100-year floodplain 3,509,070 2,672,160
Outside 100-year floodplain 43,250,294 44,087,204

Conditional on Q3 and NFHL19, built prior to 2005:
Inside 100-year floodplain 3,121,840 2,371,970
Outside 100-year floodplain 38,854,800 39,604,670

The sample is restricted to the ZTRAX Assessment tables that (i) can be geocoded and have a non-missing
“building construction year” variable. The conditional counts include only properties in census tracts that are
mapped in both the Q3 and NFHL19 data products.

A.5 Panel of insurance policies at the census tract level

I use records on insurance policies obtained from FEMA through Freedom of Information Act
requests for the period 1983-2019. After multiple quality checks, I found that records prior to
2008 were missing a wide number of insurance policies – given the implausibility of the missing-
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at-random assumption in this context, my analysis focuses on 2008-2019 period. Insurance
records in California and Minnesota contained substantial errors, and I excluded records from
these states from the analysis.

Because the smallest geographical unit reported in the NFIP data is the census tract, I use
this level as the panel cross-sectional unit. The choice of temporal unit, however, implies an
important trade-off between granularity and effective variation. Policies can be started and
terminated at any time during the year, but the distribution of the starting dates is far from
being uniform within a year: in fact, policies tend to start during the summer months. As a
result, keeping track of only the year in which a policy was started would induce substantial
measurement error. On the other hand, the majority of policies are active for exactly 12 months,
and most owners decide whether or not to renew their policy only once every 365 days. As
a result, creating a panel at the daily level would generate a large amount of auto-correlation
between observations. Finally, flood map updates occur on specific months; I therefore choose
this level as the temporal unit of the panel.

The distribution of the starting dates of insurance policies is not perfectly uniform within
a month: more insurance policies tend to start on exactly the 1st, the 15th/16th, or on the
very last day of the month. To account for these variations, I specify the first month of activity
of a policy either as the month in which it becomes effective if the policy became effective
before the 15th, or the next month if the policy became effective after the 16th. For policies
that become effective exactly on the 15th or 16th of the month, I assign their first month of
activity based on the results of Bernouilli draws. I use a similar procedure for the last month
of activity. In practice, these data cleaning steps do not impact the sign or magnitude of the
main estimates, but help reduce variations that arise purely out of measurement error.

Figure A.3: Section of New Orleans’ (LA) FIRM effective in 1984
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Figure A.4: Successive definition of the floodplains in South-Eastern Broward County (FL).

A: Flood map that was effective in 1992 (using the Q3 data).B: New flood map after modernization in August
2014. Black dots show the location of residential properties. C: Changes in the 100-year floodplain classification
computed at the property level. D: Aggregated changes and classification of the change at the tract level.
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Figure A.5: Summary of the different datasets used
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B Polygon complexity table

Table B.2: Gerrymandering metrics for the 100-year floodplain

State Perimeter Q3 (km) Area Q3 (km2) Perimeter NFHL 2019 (km) Area NFHL 2019 (km2) Change Polsby-Popper (%)

Alabama 31757.9 6129.8 46967.8 5983.4 -55.4
Arizona 42811 6121.1 61035.3 7245.3 -41.8
Arkansas 36669.7 10274.6 40736.9 10307.7 -18.7
California 91326.8 23341.4 105136.3 26269.3 -15.1
Colorado 10625.1 1025.2 11878.5 1067.5 -16.7

Connecticut 11204.5 811.2 11896.1 851.7 -6.9
Delaware 4845.9 991 7181.8 904.4 -58.4

District of Columbia 210.1 26.1 227 29.9 -1.7
Florida 152581.8 45730.1 290274.8 51778.4 -68.7
Georgia 33234.6 7486.1 50370.3 7622.4 -55.7
Idaho 5450.7 817.2 5601 915.7 6.1
Illinois 21639.9 2757.9 24663.6 2778.3 -22.4
Indiana 20242.6 3253.9 23767.1 3260.3 -27.3
Iowa 10556.9 1489.2 13591 1793.8 -27.3

Kansas 12605.9 2075.5 21991.9 2237.4 -64.6
Kentucky 44434.3 6092 69047.3 6843.9 -53.5
Louisiana 35298.8 25788.5 57047.1 26797.7 -60.2
Maine 14696 1622.5 17125.4 1580.5 -28.3

Maryland 21009.9 3559.4 26738.1 3094.3 -46.3
Massachusetts 22154.8 1930 24337.5 2107.8 -9.5

Michigan 15673.3 1518.5 18643.2 1531.6 -28.7
Minnesota 19665.1 3735.4 30587.1 4038.6 -55.3
Mississippi 32299.9 10203.8 50676.1 10534.6 -58.1
Missouri 16287.7 2572.5 21919.8 2475 -46.9
Montana 6491.8 1236.9 7421.8 1375.7 -14.9
Nebraska 8003.2 1874.7 10111.8 1918.1 -35.9
Nevada 167 15.9 149.6 7.3 -42.6

New Hampshire 5993.2 475 6148 493.6 -1.2
New Jersey 23598.9 3498.8 31624.6 3247.5 -48.3
New Mexico 5616.3 506.9 5968.7 573.7 0.2
New York 35580.3 3647.2 51098.6 3835.4 -49

North Carolina 56975.7 14072 77695.4 13366.1 -48.9
North Dakota 12033.4 1972.9 18390.6 2497 -45.8

Ohio 26016.6 2583.9 31764.3 2687.4 -30.2
Oklahoma 24750.4 3609 30049.6 3782.7 -28.9
Oregon 25129.5 3524.9 27656.3 3606.1 -15.5

Pennsylvania 67654.7 4378.7 90668.6 4496.4 -42.8
Rhode Island 4235.2 363.3 4504.2 375.9 -8.5
South Carolina 11136.1 2947.4 17596.2 2773.7 -62.3
South Dakota 13417.4 1418.5 14585.9 1555.7 -7.2
Tennessee 25049.7 6381.2 34414.4 6370.7 -47.1
Texas 129249.6 23367.3 156263.6 24349.3 -28.7
Utah 961 256.4 941.7 248.4 0.9

Vermont 4958.6 317 5062.9 326.5 -1.2
Virginia 29161.8 2589.1 33316.1 2518.6 -25.5

Washington 22450.3 2382.1 26308.5 2351.8 -28.1
West Virginia 24394.2 1576.1 27528.2 1544.1 -23.1
Wisconsin 18669.3 2949.1 24840.8 3217.7 -38.4
Wyoming 589.1 104.2 700.7 109.5 -25.7

a

aThe Polsby-Popper metric of a district D is defined as PP (D) = 4πA(D)
P (D)2 , with A(D) and P (D) the area

and perimeter of district D, respectively.
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C Additional descriptive statistics and robustness checks

C.1 Rezoning at the tract-level

Figure C.6: Change in residential properties located in the 100-year floodplain during the map
update

Changes in the number of properties zoned inside the 100-year floodplain are expressed relative to the total
number of residential properties in each census tract. The figure depicts changes bounded between -0.2 and 0.2
to improve color contrasts.
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C.2 Additional results on removed and ignored properties

Table C.3: Characteristics of properties removed from 100-year floodplain during map updates

Dependent Variable: Removed from Q3 100-year
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Constant 0.2649∗∗∗ 0.4254∗∗∗ 0.2807∗∗∗ 0.4885∗∗∗

(0.0079) (0.0131) (0.0079) (0.0122)
Black or AA 25-50% 0.0978∗∗∗ 0.0514∗∗∗ 0.0750∗∗∗ 0.0475∗∗∗

(0.0134) (0.0092) (0.0114) (0.0089)
Black or AA 50-75% 0.1910∗∗∗ 0.0972∗∗∗ 0.1638∗∗∗ 0.0955∗∗∗

(0.0149) (0.0112) (0.0122) (0.0111)
Black or AA 75-100% 0.2270∗∗∗ 0.0983∗∗∗ 0.2349∗∗∗ 0.1121∗∗∗

(0.0137) (0.0126) (0.0126) (0.0134)
Coastal -0.3468∗∗∗ -0.2540∗∗∗ -0.3411∗∗∗ -0.2586∗∗∗

(0.0095) (0.0109) (0.0097) (0.0109)
Inland fluvial -0.2771∗∗∗ -0.2581∗∗∗ -0.2791∗∗∗ -0.2587∗∗∗

(0.0103) (0.0074) (0.0103) (0.0074)
Inland pluvial -0.2407∗∗∗ -0.2106∗∗∗ -0.2370∗∗∗ -0.2109∗∗∗

(0.0071) (0.0060) (0.0075) (0.0060)
Income 25-50% 0.0344∗∗∗ 0.0300∗∗∗ -0.0035 0.0208∗∗

(0.0125) (0.0093) (0.0125) (0.0092)
Income 50-75% 0.0726∗∗∗ 0.0407∗∗∗ 0.0248∗ 0.0275∗∗∗

(0.0135) (0.0109) (0.0138) (0.0106)
Income 75-100% 0.1447∗∗∗ 0.0680∗∗∗ 0.0791∗∗∗ 0.0462∗∗∗

(0.0137) (0.0127) (0.0133) (0.0121)
Hispanic 25-50% 0.0418∗∗∗ 0.0373∗∗∗ 0.0422∗∗∗ 0.0389∗∗∗

(0.0122) (0.0090) (0.0105) (0.0088)
Hispanic 50-75% 0.1481∗∗∗ 0.0664∗∗∗ 0.1261∗∗∗ 0.0647∗∗∗

(0.0142) (0.0112) (0.0122) (0.0113)
Hispanic 75-100% 0.2187∗∗∗ 0.0842∗∗∗ 0.1603∗∗∗ 0.0722∗∗∗

(0.0145) (0.0149) (0.0129) (0.0155)

Fixed-effects
County FE Yes Yes Yes Yes

Fit statistics
Observations 6,288,904 6,288,904 6,263,881 6,263,881 6,288,904 6,288,904 6,263,881 6,263,881
R2 0.03223 0.26155 0.13326 0.30389 0.03090 0.25955 0.11971 0.30160
Within R2 0.00435 0.06245 0.00165 0.05937

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Yi = αc + βXi + εi, where Yi is a dummy
variable equal to 1 if the property used to be in the Q3 100-year floodplain and was removed during the map
updates. αc are county or tract fixed effects (indicated in the first column), and Xi is a vector of property
and neighborhood-level characteristics. Race come from the Decennial Census while income is taken from the
American Community Survey. For all models, the model is restricted to census tracts mapped in both Q3 and
the NFHL19 product and to properties that were in the Q3 100-year floodplain. “Coastal,” “Inland fluvial” and
“Inland pluvial” refers to the nature of flood risk in the FSF model.
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Table C.4: Characteristics of properties removed from 100-year floodplain during map updates,
by race

Dependent Variable: Removed from Q3 100-year
Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.3761∗∗∗ 0.5169∗∗∗ 0.2534∗∗∗

(0.0107) (0.0125) (0.0080)
AI or AN 25-50% 0.0211 -0.0025

(0.0160) (0.0097)
AI or AN 50-75% 0.0043 -0.0221∗∗

(0.0147) (0.0103)
AI or AN 75-100% 0.0238 -0.0394∗∗∗

(0.0161) (0.0145)
White 25-50% -0.0315∗ 0.0249∗∗

(0.0166) (0.0117)
White 50-75% -0.1374∗∗∗ -0.0029

(0.0167) (0.0124)
White 75-100% -0.2648∗∗∗ -0.0653∗∗∗

(0.0144) (0.0132)
Asian 25-50% 0.0462∗∗∗ 0.0388∗∗∗

(0.0117) (0.0080)
Asian 50-75% 0.2030∗∗∗ 0.1108∗∗∗

(0.0130) (0.0108)
Asian 75-100% 0.3726∗∗∗ 0.2091∗∗∗

(0.0145) (0.0139)

Fixed-effects
County FE Yes Yes Yes

Fit statistics
Observations 6,288,904 6,288,904 6,288,904 6,288,904 6,288,904 6,288,904
R2 0.00044 0.25876 0.04550 0.26100 0.07649 0.26799
Within R2 0.00059 0.00361 0.01303

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Yi = αc + βXi + εi, where Yi is a dummy
variable equal to 1 if the property used to be in the Q3 100-year floodplain and was removed during the map
updates. αc are county or tract fixed effects (indicated in the first column), and Xi is a vector of property
and neighborhood-level characteristics. Race come from the Decennial Census while income is taken from the
American Community Survey. For all models, the model is restricted to census tracts mapped in both Q3 and
the NFHL19 product and to properties that were in the Q3 100-year floodplain. “Coastal,” “Inland fluvial” and
“Inland pluvial” refers to the nature of flood risk in the FSF model.
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Table C.5: Characteristics of FSF 100-year properties incorrectly ignored during map updates

Dependent Variable: FSF 100-year, ignored during update
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Constant 0.5524∗∗∗ 0.2412∗∗∗ 0.5664∗∗∗ 0.2490∗∗∗

(0.0082) (0.0113) (0.0076) (0.0101)
Black or AA 25-50% 0.0231∗ 0.0668∗∗∗ 0.0420∗∗∗ 0.0674∗∗∗

(0.0135) (0.0087) (0.0090) (0.0081)
Black or AA 50-75% 0.0524∗∗∗ 0.1296∗∗∗ 0.0775∗∗∗ 0.1245∗∗∗

(0.0127) (0.0098) (0.0091) (0.0095)
Black or AA 75-100% 0.0633∗∗∗ 0.1723∗∗∗ 0.0881∗∗∗ 0.1629∗∗∗

(0.0114) (0.0102) (0.0079) (0.0110)
Inland fluvial 0.2351∗∗∗ 0.0016 0.2333∗∗∗ 0.0094

(0.0102) (0.0136) (0.0100) (0.0136)
Inland pluvial 0.4795∗∗∗ 0.3033∗∗∗ 0.4830∗∗∗ 0.3133∗∗∗

(0.0082) (0.0124) (0.0083) (0.0124)
Income 25-50% 0.0144 0.0095 -0.0002 -0.0050

(0.0093) (0.0087) (0.0090) (0.0085)
Income 50-75% 0.0050 -0.0141 -0.0130 -0.0345∗∗∗

(0.0100) (0.0095) (0.0097) (0.0090)
Income 75-100% 0.0576∗∗∗ 0.0131 0.0336∗∗∗ -0.0144

(0.0093) (0.0100) (0.0085) (0.0090)
Hispanic 25-50% -0.0077 0.0525∗∗∗ 0.0510∗∗∗ 0.0553∗∗∗

(0.0119) (0.0082) (0.0073) (0.0076)
Hispanic 50-75% 0.0251∗ 0.1021∗∗∗ 0.0679∗∗∗ 0.0962∗∗∗

(0.0135) (0.0105) (0.0089) (0.0100)
Hispanic 75-100% 0.0621∗∗∗ 0.1392∗∗∗ 0.1035∗∗∗ 0.1393∗∗∗

(0.0119) (0.0129) (0.0093) (0.0129)

Fixed-effects
County FE Yes Yes Yes Yes

Fit statistics
Observations 8,979,280 8,979,280 8,959,472 8,959,472 8,979,280 8,979,280 8,959,472 8,959,472
R2 0.00252 0.23326 0.18690 0.29080 0.00279 0.22842 0.18753 0.28738
Within R2 0.01080 0.08652 0.00454 0.08213

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Ignoredi = αc + βXi + εi, where Ignoredi is
a dummy variable equal to 1 when the property should be in the 100-year floodplain based on the FSF model
but was left outside of the FEMA 100-year floodplain during the map update. αc are a county- or tract- fixed
effects, and Xi is a vector of property and neighborhood-level characteristics. Race and income come from the
Decennial Census and the American Community Survey, respectively. The sample is restricted to properties
in the FSF 100-year floodplain in census tracts mapped in both Q3 and the NFHL19 product. “Inland fluvial”
and “Inland pluvial” refers to the nature of flood risk in the FSF model, with coastal flood risk as the omitted
category.
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Table C.6: FSF 100-year properties incorrectly ignored during map updates, by treatment year

Dependent Variable: FSF 100-year, ignored during update
Model: (1) (2)

Variables
Constant 0.7375∗∗∗

(0.0217)
Update year 2001 -0.0557 -0.0830

(0.1091) (0.1432)
Update year 2002 -0.1238∗∗∗ -0.0382

(0.0476) (0.1193)
Update year 2003 -0.4053∗∗∗ -0.1656

(0.0443) (0.1129)
Update year 2004 -0.2257∗∗∗ -0.0684

(0.0694) (0.1252)
Update year 2005 -0.3184∗∗∗ -0.0391

(0.0399) (0.1219)
Update year 2006 -0.2152∗∗∗ -0.0747

(0.0312) (0.1231)
Update year 2007 -0.0198 -0.1217

(0.0251) (0.1186)
Update year 2008 -0.0455∗ -0.1380

(0.0253) (0.1197)
Update year 2009 -0.1641∗∗∗ -0.0579

(0.0257) (0.1183)
Update year 2010 -0.0749∗∗∗ -0.0444

(0.0238) (0.1195)
Update year 2011 -0.1018∗∗∗ -0.1423

(0.0242) (0.1202)
Update year 2012 -0.1622∗∗∗ -0.0944

(0.0315) (0.1202)
Update year 2013 -0.0941∗∗∗ -0.2243∗

(0.0254) (0.1191)
Update year 2014 -0.2297∗∗∗ -0.1867

(0.0252) (0.1198)
Update year 2015 -0.1818∗∗∗ -0.1581

(0.0259) (0.1183)
Update year 2016 -0.1527∗∗∗ -0.2271∗

(0.0258) (0.1195)
Update year 2017 -0.1993∗∗∗ -0.1029

(0.0294) (0.1202)
Update year 2018 -0.2176∗∗∗ -0.2042∗

(0.0285) (0.1200)
Update year 2019 -0.1865∗∗∗ -0.1686

(0.0386) (0.1211)

Fixed-effects
County FE Yes

Fit statistics
Observations 8,983,650 8,983,650
R2 0.02807 0.22695
Within R2 0.00273

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level. The outcome is a dummy variable equal to 1 when the
property should be in the 100-year floodplain based on the FSF model but was ignored during the map update.
The sample is restricted to properties in the FSF 100-year floodplain in census tracts mapped in both Q3 and
the NFHL19 product. The regressors include dummies for each year of the flood map modernization, with the
baseline coded as 1995-2000.
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Table C.7: FSF 100-year properties incorrectly ignored during map updates, by treatment year

Dependent Variable: FSF 100-year, ignored during update
Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.5520∗∗∗ 0.6839∗∗∗ 0.5282∗∗∗

(0.0076) (0.0078) (0.0087)
AI or AN 25-50% -0.0012 0.0049

(0.0123) (0.0076)
AI or AN 50-75% 0.0295∗∗ 0.0197∗∗

(0.0118) (0.0081)
AI or AN 75-100% 0.1146∗∗∗ 0.0097

(0.0142) (0.0113)
White 25-50% -0.0420∗∗∗ -0.0116

(0.0112) (0.0078)
White 50-75% -0.1080∗∗∗ -0.0625∗∗∗

(0.0129) (0.0083)
White 75-100% -0.1806∗∗∗ -0.1642∗∗∗

(0.0112) (0.0100)
Asian 25-50% -0.0086 0.0416∗∗∗

(0.0129) (0.0079)
Asian 50-75% 0.0809∗∗∗ 0.0878∗∗∗

(0.0114) (0.0095)
Asian 75-100% 0.2236∗∗∗ 0.1279∗∗∗

(0.0113) (0.0107)

Fixed-effects
County FE Yes Yes Yes

Fit statistics
Observations 8,979,280 8,979,280 8,979,280 8,979,280 8,979,280 8,979,280
R2 0.00831 0.22506 0.01864 0.23395 0.02882 0.22866
Within R2 0.00021 0.01168 0.00486

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Ignoredi = αc + βXi + εi, where Ignoredi is a
dummy variable equal to 1 when the property should be in the 100-year floodplain based on the FSF model but
was left outside of the FEMA 100-year floodplain during the map update. αc are a county- or tract- fixed effects,
included in some regressions only. The race and ethnicity variable from the Decennial Census 2010, focusing
on single-race/ethnicity individuals (using the race / ethnicity alone variables). The sample is restricted to
properties in the FSF 100-year floodplain in census tracts mapped in both Q3 and the NFHL19 product.
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Table C.8: FSF 100-year properties incorrectly ignored during map updates, quantiles condi-
tional on mapping

Dependent Variable: FSF 100-year, ignored during update
Model: (1) (2) (3) (4) (5) (6) (7)

Variables
(Intercept) 0.3091∗∗∗ 0.5499∗∗∗ 0.2440∗∗∗

(0.0081) (0.0079) (0.0110)
Inland fluvial 0.2273∗∗∗ 0.0231∗ -0.1800∗∗∗ 0.2337∗∗∗ 0.0024

(0.0104) (0.0138) (0.0117) (0.0102) (0.0134)
Inland pluvial 0.4788∗∗∗ 0.3216∗∗∗ 0.1988∗∗∗ 0.4780∗∗∗ 0.3038∗∗∗

(0.0085) (0.0127) (0.0107) (0.0082) (0.0122)
Black or AA 25-50% (c) 0.0434∗∗∗ 0.0748∗∗∗ 0.0496∗∗∗ 0.0733∗∗∗

(0.0136) (0.0086) (0.0099) (0.0082)
Black or AA 50-75% (c) 0.0554∗∗∗ 0.1265∗∗∗ 0.0729∗∗∗ 0.1228∗∗∗

(0.0126) (0.0099) (0.0085) (0.0097)
Black or AA 75-100% (c) 0.0658∗∗∗ 0.1594∗∗∗ 0.0853∗∗∗ 0.1548∗∗∗

(0.0114) (0.0100) (0.0082) (0.0107)
Income 25-50% (c) 0.0184∗∗ 0.0149∗

(0.0088) (0.0081)
Income 50-75% (c) 0.0101 -0.0087

(0.0099) (0.0093)
Income 75-100% (c) 0.0684∗∗∗ 0.0221∗∗

(0.0094) (0.0100)

Fixed-effects
County FE Yes Yes Yes Yes
Tract FE Yes

Fit statistics
Observations 8,983,650 8,983,650 8,983,650 8,979,280 8,979,280 8,959,472 8,959,472
R2 0.18197 0.28450 0.51331 0.00299 0.23290 0.18713 0.29074
Within R2 0.07696 0.06517 0.01033 0.08645

Clustered (Tract FE) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear probability regressions at the property level of the form Ignoredi = αc + βXi + εi, where Ignoredi is
a dummy variable equal to 1 when the property should be in the 100-year floodplain based on the FSF model
but was left outside of the FEMA 100-year floodplain during the map update. αc are a county- or tract- fixed
effects, included in some regressions only. The race and ethnicity variable from the Decennial Census 2010,
focusing on single-race/ethnicity individuals (using the race / ethnicity alone variables), and with quantiles
defined conditional on the tracts observed in Q3 and NFHL19. The sample is restricted to properties in the
FSF 100-year floodplain in census tracts mapped in both Q3 and the NFHL19 product.
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C.3 Selection into treatment and event studies

Table C.9: Census tracts summary statistics by year of the Digital Flood Insurance Rate Map.

Treatment year N Policies 2010 SFHA share 2010 Policies 2010 per property Med. income Relative change in 100-year Area Density Share Black Has Q3 data

2005 6067 58 (181) 0.35 (0.34) 0.04 (0.11) 33939 (12511) -0.01 (0.06) 47 (231) 1209 (1212) 0.13 (0.21) 0.89
2006 3384 48 (224) 0.36 (0.34) 0.02 (0.08) 34689 (14599) -0.01 (0.04) 43 (161) 1265 (2370) 0.14 (0.21) 0.74
2007 6303 58 (170) 0.25 (0.31) 0.04 (0.1) 33242 (15038) 0 (0.04) 45 (227) 5105 (8570) 0.22 (0.28) 0.66
2008 5855 48 (173) 0.36 (0.34) 0.03 (0.12) 32302 (12426) -0.01 (0.09) 64 (274) 1573 (2583) 0.15 (0.24) 0.72
2009 7547 62 (194) 0.37 (0.35) 0.04 (0.13) 32265 (12265) -0.01 (0.14) 75 (372) 1386 (2156) 0.14 (0.21) 0.74
2010 6431 25 (93) 0.36 (0.34) 0.02 (0.09) 32182 (13876) 0 (0.04) 135 (603) 1074 (1837) 0.12 (0.21) 0.64
2011 4356 24 (82) 0.42 (0.36) 0.03 (0.11) 28920 (10417) -0.01 (0.08) 126 (360) 718 (1101) 0.11 (0.19) 0.55
2012 4124 42 (136) 0.42 (0.35) 0.03 (0.1) 30283 (10989) 0 (0.08) 101 (337) 1049 (1512) 0.15 (0.27) 0.68
2013 1233 37 (98) 0.37 (0.34) 0.02 (0.07) 32295 (13018) -0.01 (0.04) 99 (295) 765 (1377) 0.11 (0.19) 0.59
2014 2149 207 (396) 0.47 (0.37) 0.12 (0.21) 31496 (11985) -0.14 (0.31) 58 (208) 1205 (1327) 0.14 (0.21) 0.8
2015 1408 75 (178) 0.48 (0.34) 0.06 (0.14) 30024 (10123) -0.1 (0.24) 102 (488) 819 (1072) 0.15 (0.26) 0.75
2016 1146 68 (183) 0.38 (0.36) 0.05 (0.13) 32909 (11571) -0.02 (0.08) 80 (450) 1122 (1134) 0.23 (0.3) 0.87
2017 1042 223 (373) 0.39 (0.36) 0.16 (0.25) 31864 (10253) -0.09 (0.23) 70 (229) 1124 (1029) 0.13 (0.2) 0.81
2018 432 88 (216) 0.35 (0.34) 0.05 (0.11) 28982 (9626) -0.01 (0.06) 103 (257) 785 (872) 0.05 (0.12) 0.74
2019 767 65 (286) 0.37 (0.35) 0.09 (0.25) 35066 (11671) -0.01 (0.07) 77 (495) 1162 (1008) 0.08 (0.15) 0.82

4701 76 (248) 0.43 (0.36) 0.06 (0.18) 29953 (10932) 588 (3477) 584 (956) 0.06 (0.14) 0.6

Census tracts with a flood insurance rate map prior to 2005 re-coded as 2005 for conciseness

C.4 Selection into treatment timing and implementation

While FEMA started to actively modernize flood maps in 2006, the timing and implementation
of the map updates were not completely random. The Map Modernization and then Risk
Mapping programs had concurrent objectives of providing digital flood maps covering the largest
population possible and in areas most vulnerable to flood risk. These objectives can conceivably
conflict with one another. Table C.10 offers a regression-based summary of how these conflicts
were resolved. In the first two columns, the dependent variable is the year in which the census
tract receives its first digital flood map, while in columns 3 and 4 the dependent variable is
the net share of residential properties in the census tract that were rezoned inside the 100-
year floodplain on the updated map (counting rezoning outside of the 100-year floodplain as
negative). All models include fixed effects for each FEMA Region, as the roll-out of digital
flood maps is primarily decentralized at this level.

Columns 1 and 2 reveal that census tracts with greater population density received a digital
flood map earlier on average: a 1% increase in census tract density is associated with a treatment
date that is between 0.1 and 0.2 years earlier, consistent with some targeting of populous
communities in order to comply with policy mandates and deadlines.

To study whether areas more vulnerable to flooding were more likely to receive an updated
flood map earlier, I use a measure of predicted average annual economic loss per property
produced by the First Street Foundation (column 1). Interestingly, the point estimate is positive,
suggesting that more flood-prone areas were treated later, although the effect is small and
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Table C.10: Selection into treatment timing and implementation

Dependent variable:

Treatment year Share rezoned inside 100-year f.p.

(1) (2) (3) (4)

Population density (IHS) −0.204∗∗∗ (0.076) −0.272∗∗∗ (0.055) −0.012∗∗ (0.005) −0.003∗ (0.002)
Median income (IHS) −0.757∗∗∗ (0.288) −0.840∗∗∗ (0.285) −0.014∗ (0.009) −0.002 (0.003)
Share African Americans (IHS) −0.082 (0.720) 0.045 (0.695) −0.017 (0.024) −0.035∗ (0.019)
Disaster declaration prior to treatment 0.019 (0.017) 0.011 (0.011)
Average Annual Loss (IHS) 0.061 (0.049) −0.006∗ (0.003)
Insurance policies/property, 2008 (IHS) 4.624∗∗∗ (1.435) −0.538∗∗∗ (0.157)
Treatment year −0.005∗∗ (0.002) −0.002∗∗ (0.001)
Fixed Effects FEMA Region FEMA Region FEMA Region FEMA Region
Mean outcome 2009.2 2009.2 -0.021 -0.02
Observations 51,892 52,154 28,039 28,039
R2 0.085 0.102 0.073 0.257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All independent variables are transformed using the inverse hyperbolic sine

Standard errors clustered at the county level

noisy. I also estimate a model that captures flood vulnerability through the share of residential
properties within a census tract that are covered by flood insurance in 2008 (column 2). This
proxy for flood vulnerability is not ideal, as the main text of the paper shows that flood maps
have large impacts on insurance take-up. But given that insurance take-up is a metric directly
observable by policymakers, it potentially provides valuable information about where flood
maps might be most used. Contrary to official policy guidelines, places that had higher flood
insurance coverage in 2008 were more likely to receive their digital flood map later : a ten percent
increase in the rate of residential property insurance coverage is associated with a treatment
timing delayed by more than .4 years. Although the previous estimates are correlational, they
suggest that cohorts treated in different years might respond differently to treatment.

To assess the extent of heterogeneity in policy implementation (the intensity of treatment),
I now focus on the rezoning of properties inside or outside of the 100-year floodplain (columns 3
and 4 in table C.10). Interestingly, census tracts with higher predicted flood losses (column 3)
or greater insurance coverage in 2008 (column 4) experienced less rezoning inside the 100-year
floodplain. Census tracts that were treated earlier also saw less rezoning of properties inside
the 100-year flooplain: after accounting for the other census tracts characteristics, a one-year
increase in treatment year implies on average a -0.004 decline in the share of properties rezoned
inside the 100-year floodplain (about 20% of the outcome’s average value in the sample).

Overall, the previous results show that flood maps were first modernized in areas with
slightly higher population density, consistent with the policy mandate to cover most of the
nation’s population with digital flood mapping products, but also in areas less vulnerable to

69



flood risk, which is in contradiction with the policy mandate to focus on flood-prone areas.
Although I cannot provide credibly causal evidence on what caused the delay in flood map
updates in areas more flood-prone, anecdotal evidence and discussions with floodplain managers
suggest that it was due to (i) the complexity of modelling flood risk in these areas, and (ii)
local homeowners lobbying against new flood maps.

Finally, this paper only examines flood map updates mandated by FEMA. Individuals who
disagree with their floodplain designation can petition FEMA with a Letter of Map Changes
(LOMC) to have their property removed from the SFHA, thus leading to additional removals
from the 100-year floodplain. These individual-initiated map changes are outside the scope
of this paper, and lead me to under-estimate the total number of properties removed from
the 100-year floodplain. Such measurement error is limited by the relatively small number of
LOMCs.
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D Additional event-study estimates

D.1 Event-study by cohort and rezoning
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Figure D.7: Cohort-specific event study estimates of the impacts of flood map updates on flood
insurance take-up

ATT estimates obtained using Callaway/Sant’Anna-type regressions. Each facet presents estimates of the
average treatment effect on the treated of the impact of flood map update on insurance demand for a specific
cohort (defined by the year and month of treatment). Within each cohort, the event-study are estimated
separately using census tracts where the updated flood map increased (blue) or decreased (brown) the number
of residential properties in the 100-year floodplain by more than 1% relative to the total number of residential
properties in the census tract. The control groups comprise census tracts that have not yet received a digital
flood map at the time of treatment but will receive one later with the same rezoning as the treated groups
(either increase or decrease in the 100-year floodplain). Error bars represent 95% confidence intervals using the
multiplier bootstrap. For clarity, only the 42 largest cohorts are represented (out of 117 cohorts).
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Figure D.8: Cohort-specific event study estimates of the impacts map updates on take-up, no
change in 100-year floodplain

Each facet presents estimates of the average treatment effect on the treated of the impact of flood map update
on insurance take-up for a specific cohort (defined by the year and month of treatment). Within each cohort,
the event-study are estimated focusing on tracts where the new map did not change the number of properties
in any floodplain. The control groups comprise census tracts that have not yet received a digital flood map at
the time of treatment, but will receive one later with the same direction of 100-year floodplain rezoning. Error
bars represent 95% confidence intervals using the multiplier bootstrap. Small within-treatment cohort can lead
to missing confidence intervals.
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Figure D.9: Cohort-specific event study estimates of the impacts map updates on take-up,
small and large decrease

Each facet presents estimates of the average treatment effect on the treated of the impact of flood map update
on insurance take-up for a specific cohort (defined by the year and month of treatment). Within each cohort,
the event-study are estimated focusing on tracts where the new map removed between 1 and 3% of properties
from the 100-year floodplain (“Small decrease,” in orange), or more than 3% of properties (“Large decrease,” in
dark red). The control groups comprise census tracts that have not yet received a digital flood map at the time
of treatment, but will receive one later with the same direction and intensity of 100-year floodplain rezoning.
Error bars represent 95% confidence intervals using the multiplier bootstrap. Small within-treatment cohort
can lead to missing confidence intervals.

74



Figure D.10: Cohort-specific event study estimates of the impacts map updates on take-up,
small and large increase

Each facet presents estimates of the average treatment effect on the treated of the impact of flood map update
on insurance take-up for a specific cohort (defined by the year and month of treatment). Within each cohort,
the event-study are estimated focusing on tracts where the new map added between 1 and 3% of properties
to the 100-year floodplain (“Small increase,” in light blue), or more than 3% of properties (“Large increase,” in
dark blue). The control groups comprise census tracts that have not yet received a digital flood map at the time
of treatment, but will receive one later with the same direction and intensity of 100-year floodplain rezoning.
Error bars represent 95% confidence intervals using the multiplier bootstrap. Small within-treatment cohort
can lead to missing confidence intervals.
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D.2 Event-study robustness

Figure D.11: Aggregated event study estimates of the impacts of flood map updates on flood
insurance take-up, robustness tests using early constructions properties

The outcomes displayed are the number of active insurance policies covering properties that were constructed
prior to 2008 (solid blue line), where the construction date is taken from the insurance data. Each facet represents
average treatment effects for a different treated group, using treated census tracts where the flood map update
increased, decreased, or did not change the number of properties zoned inside the 100-year floodplain (first,
second and third facet respectively). The control groups comprise census tracts that have not yet received
a digital flood map at the time of treatment, but will receive one later with the same direction of 100-year
floodplain rezoning. The outcome variables are transformed using the Inverse Hyperbolic Sine (IHS). Error
bars represent 95% confidence intervals using the multiplier bootstrap.
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D.3 Event-study heterogeneity

Figure D.12: Event-study, race and ethnicity heterogeneity

ATT estimates obtained using Callaway-Sant’Anna type regressions. The outcome variable is the number of
active insurance policies in the tract, transformed using the Inverse Hyperbolic Sine (IHS). Rows represents
average treatment effects for different treatment groups, using treated census tracts where the flood map update
decreased (top row) or decreased (bottom row) the number of residential properties in the 100-year floodplain
by more than 1% relative to the total number of residential properties in the census tract. Vertical facets focus
on different heterogeneity variables. The control groups comprise not-yet-treated census tracts that later receive
a flood map with a similar floodplain rezoning direction as the treated groups and that are within the same
heterogeneity quartile of the variable being investigated. Error bars represent 95% confidence intervals using
the multiplier bootstrap.
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Figure D.13: Event-study, additional heterogeneity

ATT estimates obtained using Callaway-Sant’Anna type regressions. The outcome variable is the number of
active insurance policies in the tract, transformed using the Inverse Hyperbolic Sine (IHS). Rows represents
average treatment effects for different treatment groups, using treated census tracts where the flood map update
decreased (top row) or decreased (bottom row) the number of residential properties in the 100-year floodplain
by more than 1% relative to the total number of residential properties in the census tract. Vertical facets focus
on different heterogeneity variables. The control groups comprise not-yet-treated census tracts that later receive
a flood map with a similar floodplain rezoning direction as the treated groups and that are within the same
heterogeneity quartile of the variable being investigated. Error bars represent 95% confidence intervals using
the multiplier bootstrap.
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E Synthetic controls

E.1 Augmented synthetic controls: methodology

Formally, the synthetic control estimator proceeds in two steps. First, we solve the “standard”
synthetic control program:

min
γ

θx ‖X1 −X ′
0γ‖

2
2 + θz ‖Z1 −Z0 · γ‖22 + ζ

∑
Wi=0

f (γi)

subject to
∑
Wi=0

γi = 1

γi ≥ 0 i : Wi = 0

(8)

where the goal is to find the vector or weights γ in the simplex
∆N0 =

{
γ ∈ RN0 | γi ≥ 0 ∀i,

∑
i γi = 1

}
that minimizes the synthetic control objective

function. This function is made of three parts: (i) the L2-norm (Euclidean distance) between
the pre-treatment outcome of the treated census tract X1 and the control census tracts X0,
(ii) the L2-norm between the pre-treatment covariates of the treated census tract Z1 and the
control census tracts Z0, and (iii) a term that penalizes the dispersion of the weights assigned to
control units (those with Wi = 0), for some function f and a positive hyperparameter ζ.48 The
weights θx and θz govern the relative importance of the deviations between lagged outcomes
and covariates in the minimization program.49

In a second step, we “augment” the synthetic control to estimate the (counterfactual) po-
tential outcome of the treated unit:

Ŷ aug
1T (0) =

∑
Wi=0

γ̂scmi YiT +

(
m̂1T −

∑
Wi=0

γ̂scmi m̂iT

)
= m̂1T +

∑
Wi=0

γ̂scmi (YiT − m̂iT )

(9)

where γ̂scmi are the solutions to the program in equation 8, YiT are the post-treatment
outcomes, and m̂iT is an estimator of the post-treatment control potential outcome for unit
i. In the standard synthetic control case, m̂iT is just a constant. I follow Ben-Michael et al.

48The initial applications of the synthetic control methods did not include this penalty term – it is discussed
in footnote 10 of Abadie et al. (2015) as a way to select weights when the minimization of the other parts
of the objective function has multiple solutions. Different choices of penalty functions exist; see for instance
Doudchenko and Imbens (2016) for a discussion. In this paper I implement the Ridge-Augmented synthetic
control approach, for which Ben-Michael et al. (2021) showed that the penalty term replaces the simplex
constraints with the form f (γi) = (γi − γ̂scmi )

2 (deviations from the standard synthetic control weights are
penalized).

49Following Ben-Michael et al. (2021), in my preferred approach I use θx= θz=1.
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(2021) and use a ridge regression for the outcome model.50

(Augmented) synthetic controls allow for the flexible estimation of treatment effect hetero-
geneity and can uncover whether differences in average treatment effects between groups are
only driven by a small number of units within each group. They also greatly mitigate the short-
coming of the event studies presented above. First, treatment effects are estimated separately
for each census tract that receives a new flood map during our observation window. Under the
standard Stable Unit Treatment Value Assumption, the staggered nature of the treatment does
not contaminate the estimated treatment effect.51

50This choice of estimator has attractive properties, notably an improvement in pre-treatment fit relative to
the standard synthetic control model, and a reduction in estimation error under linear and latent-factor data
generating processes.

51Note that the spillover effects uncovered in Section 4.4 are not inconsistent with the Stable Unit Treatment
Value Assumption, as these spillovers are found within each census tract, and not between different tracts.
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E.2 Additional synthetic control results

Figure E.14: Normalized root-mean squared errors, synthetic controls

Histogram of normalized root mean squared errors between each individual tract and its (augmented) synthetic
control. Synthetic controls were estimated for tracts with at least 20 insurance policies at all time, observed
at least 24 months post-treatment. Matching was performed on pre-treatment outcome, share of post-FIRM
policies in the tract, and share of policies in the 100-year floodplain.
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Figure E.15: Normalized root-mean squared errors and number of units in synthetic control
donor pool

Synthetic controls were estimated for tracts with at least 20 insurance policies at all time, observed at least
24 months post-treatment. Matching was performed on pre-treatment outcome, share of post-FIRM policies in
the tract, and share of policies in the 100-year floodplain.

82



Figure E.16: Treatment effect of the flood map update on flood insurance take-up after two
years, synthetic controls

Synthetic controls were estimated for tracts with at least 20 insurance policies at all time, observed at least
24 months post-treatment. Matching was performed on pre-treatment outcome, share of post-FIRM policies in
the tract, and share of policies in the 100-year floodplain.
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Figure E.17: Synthetic control estimates in Texas and New Orleans

Each dot represents a census tract-specific treatment effect estimate of the impact of the flood map update on
the flood insurance take-up, 24 months after the map update. Red and blue dots show negative and positive
treatment effects, respectively. The size of the dot represents the absolute value of the treatment effect. An
enlarged view of New Orleans is presented. Treatment effects are estimated using synthetic controls augmented
by ridge regression. For each treated unit, the donor pool comprises never-treated census tracts within the same
FEMA region.
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Figure E.18: Synthetic control estimates for insurance take-up in six census tracts

Dynamic treatment effects estimates of the impacts of flood map updates on flood insurance take-up in six
census tracts, estimated by synthetic controls augmented with ridge regression. The solid black line shows the
difference between the census tract outcome (number of active policies) and the synthetic control constructed
for this tract. The vertical bar denotes the end of the pre-treatment optimization period, and the grey ribbon
depicts 90% jackknife+ confidence intervals.
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Figure E.19: Treatment effect of the flood map update on flood insurance take-up after two
years, by disaster declaration history, synthetic controls

Synthetic controls were estimated for tracts with at least 20 insurance policies at all time, observed at least
24 months post-treatment. Matching was performed on pre-treatment outcome, share of post-FIRM policies in
the tract, and share of policies in the 100-year floodplain.
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Figure E.20: Estimated synthetic control treatment effects of the impact of the map update on
demand for insurance, by quartiles of neighborhoods’ share of African Americans.

Each dot represents a census tract-specific treatment effect estimate of the impact of the flood map update
on flood insurance take-up after 24 months. Red and blue dots show negative and positive treatment effects,
respectively. The facets separate census tracts where the flood map update increased or decreased the number
of properties zoned inside the 100-year floodplain by more than 1% (first and second rows respectively). Census
tracts are further separated by quartiles of African American population in the census tract (columns). Treat-
ment effects are estimated using synthetic controls augmented by ridge regression. For each treated unit, the
donor pool comprises never-treated census tracts within the same FEMA region.

87



Figure E.21: Second-stage regression, race and ethnicity heterogeneity

Each dot represents a census tract-specific treatment effect estimate of the impact of the flood map update
on flood insurance take-up 24 months post-treatment, using synthetic controls augmented by ridge regression.
For each treated unit, the donor pool comprises never-treated census tracts within the same FEMA region.
Large dots are significant treatment effects at the 10% level, using the jackknife+ procedure. Regression lines
represent the marginal effects of a change in the number of properties rezoned inside the 100-year floodplain
on the synthetic control treatment effect estimates, following regression 5. The marginal effects are estimated
separately per quartiles.
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Figure E.22: Second-stage regression, race and ethnicity heterogeneity

Each dot represents a census tract-specific treatment effect estimate of the impact of the flood map update
on flood insurance take-up 24 months post-treatment, using synthetic controls augmented by ridge regression.
For each treated unit, the donor pool comprises never-treated census tracts within the same FEMA region.
Large dots are significant treatment effects at the 10% level, using the jackknife+ procedure. Regression lines
represent the marginal effects of a change in the number of properties rezoned inside the 100-year floodplain
on the synthetic control treatment effect estimates, following regression 5. The marginal effects are estimated
separately for each group.
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F Welfare estimates

F.1 Details on model calibration

Assuming a Constant Absolute Utility Function, and dropping the time subscripts for clarity,
the threshold condition for kω becomes:

−exp
(
− α(ω)(Y (ω)− r(ω))

)
>− p̂ωexp

(
− α(ω)(Y (ω)− L(ω))

)
− (1− p̂ω)exp

(
− α(ω)(Y (ω))

)
⇐⇒ −exp

(
α(ω)r(ω)

)
> −p̂ωexp

(
α(ω)L(ω)

)
− 1 + p̂ω

⇐⇒ α(ω) > kω

(10)

where p̂ω is the perceived probability of flooding, L(ω) are the perceived damages associated
with flooding, r(ω) is the price of the insurance contract, Y (ω) is income, and α(ω) is still the
absolute risk aversion parameter. L(ω), r(ω) and Y (ω) are observed by households and the
econometrician, whereas α(ω) is known by the household only. The cutoff value kω does not
have a closed-form solution but can be computed numerically for each property.

The willingness-to-pay is derived as the price of the insurance contract that makes the
homeowner indifferent between purchasing insurance and being uninsured:

−exp(α(ω)WTPω) =

∫ +∞

0

−exp
(
α(ω)Dd,ω

)
dFd,ω

⇐⇒ WTPω =

ln

(∫ +∞
0

exp
(
α(ω)Dd,ω

)
dFd,ω

)
α(ω)

(11)

where Dd,ω are the (true) expected damages due to flooding that occurs with inundation
depth d for property ω, and Fd,ω is the probability distribution of flooding at each depth for
each ω. Dd,ω and Fd,ω are both taken from the First Street Foundation Flood Model.

Assuming a map-update-invariant and household-specific willingness-to-pay for insurance
allows us to view all improvements in the information provided to households as net welfare
gains, even if the corrected risk information shows the household to be at increased risk of
flooding. To clarify, imagine that Valentina is willing to pay $10,000 for a Marc Chagall
painting, while she would be willing to pay $0 for an imitation of the same painting. If she
purchases the painting for $200 and it is later revealed that the painting is a fake, our theoretical
set-up views this information revelation as (weakly) welfare increasing: Valentina experienced
a net loss from the initial purchase – since all surpluses should be computed in light of her true
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willingness-to-pay – which was zero for a fake Chagall painting. Revealing correct information
does not lead to further losses.

However, assuming that the expected damages due to flooding Dd,ω are constant throughout
the map update explicitly rules out other forms of climate adaptations, such as elevating the
property or constructing flood walls, which the household might undertake in response to
new risk information. Our model therefore provides a lower-bound on the welfare gains from
corrected flood maps.52

Consistent with the empirical evidence presented in Sections 4 and 5, I assume that house-
holds perceived probabilities come from the official FEMA flood maps: households perceive the
probability of flooding to be 1% in the 100-year floodplain, 0.2% in the 500-year floodplain, and
zero outside of it.53 In the normative part of the analysis, I compute the welfare of correcting
the official floodplain boundaries assuming that they are updated to reflect the FSF model.

I further assume that households perceive the costs of flooding based on the expected dam-
ages given by the FSF Flood Model. This is a strong assumption, which will again tend to
under-estimate the impacts of new flood maps. Figure F.23 shows that results are similar if we
assume instead that the perceived damages are given by the average insurance claims in the
neighborhood.

To recover the price of the insurance contract for all households (including for those who
do not purchase insurance), I use neighborhood-, floodplain-, and time-specific premium aver-
ages. To assess the welfare impacts of moving from the current premiums to actuarially fair
premiums, I further estimate welfare changes assuming that insurance prices are provided by
annual expected losses estimates in the FSF model (the expected losses to the property in a
given year).

I integrate out the risk aversion parameters by assuming they follow a Fréchet distribution
within each census tract. This distribution allows for a fat upper tail and is governed by two
parameters for strictly positive support:54

p(α(ω) ≤ kω) = exp
(
− γc(

kω
Ac

)−θc
)

(12)

52In the context of a partial equilibrium analysis only. In a general equilibrium framework that allows
for household sorting and preferences defined over endogenous neighborhood amenities, the welfare effects of
correcting flood risk information are a priori ambiguous.

53This assumption will bias the impacts of new flood maps towards zero, as the analysis above demonstrates
the existence of within-neighborhoods spatial spillover effects of flood maps. An alternative assumption would
be to specify a parametric structure for these spillovers, for instance assuming that households impute their
probability of flooding as linearly or exponentially decreasing based on their location relative to the nearest
floodplain. While such alternative assumptions are plausible, the data do not allow me to estimate these
parametric structures.

54Consistent with the literature, I assume that all homeowners are weakly risk averse.
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where θc and Ac are the shape and scale parameters.
Recent work by Wagner (2022) shows that the observed low level of demand for flood in-

surance cannot be rationalized by risk loving homeowners, but instead reveals the existence
of frictions that limit demand below optimal levels. While the previous sections of this paper
revealed that lack of information and incorrect information about flood risks are among the
decisive frictions that limit demand, my results do not rule out the existence of other frictions.
This poses a challenge for the structural estimation: unless all existing frictions are correctly
specified, one cannot separately estimate frictions and risk preferences. If one were willing
to assume that incorrect information is the only friction limiting demand, then data on flood
insurance transactions, together with the synthetic control estimates and a functional form
assumption for the distribution of risk aversion preferences are sufficient to estimate the pa-
rameters governing the distribution of risk aversion. This approach is presented in Section F.3
in the appendix.

Instead of assuming correct specifications of all the frictions in order to back out risk aversion
parameters, my analysis proceeds by assuming the parameters governing the distribution of
the risk aversion parameters and then estimate the impacts of providing correct information.
Following the literature on insurance demand and Wagner (2022), in my preferred calibration I
assume the distribution of risk aversion parameters has an expected value of 10−5, and I assess
robustness of the findings for values of 10−4 and 10−6.he shape parameter is fixed at 2 to allow
for the existence of very risk averse homeowners.
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F.2 Structural estimation using perceived damages from local claims

Figure F.23: Consumer welfare impacts of updating flood maps, robustness

Consumer welfare impacts of updated flood maps aggregated by neighborhood income deciles, assuming an
expected risk aversion value of 10−5. The pink line with circles depicts relative welfare changes using true
insurance premiums (pre and post map updates), the black line with triangles assumes actuarially fair premiums
before and after the map updates, while the green line with squares assumes that households perceive flood
damages from historical claims.

F.3 Backing out risk aversion parameters from the data

The approach I employ in the paper assumes that the parameters governing the distribution
of risk aversion preferences are known. For instance, my preferred specification fixes the shape
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and scale parameters of the Fréchet distribution such as to obtain an expected risk aversion
value of 10−5, consistent with the literature (with a shape parameter fixed at 2 to allow for
a fat upper tail, although other values are plausible). Here I show that conditional on (i)
knowing the functional form of this distribution and (ii) assuming that information frictions
are the only distortions constraining demand, it is possible to recover the parameters governing
the distribution of risk preferences. While assumption (ii) of “no omitted frictions” seems
implausible in the setting of federally provided flood insurance, it might be credible in other
settings.

Aggregated to the tract level, the share of homeowners who purchase a contract before the
map update is

sc,pre =

∑
ω p(α(ω) > kω,pre)

N
(13)

and the share of individuals who purchase the contract after the map update is

ŝc,post =

∑
ω p(α(ω) > kω,post)

N

ŝc,post = sc,pre + τ̂c

(14)

where N is the number of residential properties in the census tract, and τ̂c is the tract-
specific treatment effect of the updated flood map on insurance demand (previously estimated
with synthetic controls). sc,pre is directly observed from the data, whereas ŝc,post is the predicted
share of individuals purchasing insurance after the map update, and where all changes in
demand relative to sc,pre are caused by the map update.

Together with equations 13 and 6, this gives rise to a collection of systems of two equations
(one system per census tract) which can be numerically solved to obtain {A∗c , θ∗c}, the tract-
specific mean risk aversion and dispersion parameters.
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