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Abstract
This paper estimates a time-varying reaction function of the median participant

of the Federal Open Market Committee, using a Taylor rule with time-varying co-
efficients estimated on one- to three-year ahead median forecasts of the federal funds
rate, inflation, and the unemployment rate from the Summary of Economic Projections
(SEP). We estimate the model with Bayesian methods, incorporating the effective lower
bound on the median federal funds rate projections. The results indicate that the mon-
etary policy rule has become significantly more persistent after the pandemic than in
the years prior, and it currently reacts strongly to inflation, at more than twice the
responsiveness estimated prior to 2020. Our proposed policy rule produces accurate
predictions of the median federal funds rate projections in real time for given SEP fore-
casts of inflation and the unemployment rate, suggesting that the median participant’s
reaction function is well-represented by our assumed Taylor rule with time-varying co-
efficients. Our results show that the median participant’s reaction function becomes
less persistent and less responsive to inflation yet more responsive to the output gap in
anticipation of tighter monetary policy conditions, measured by a steeper yield curve.
We also find that labor market activity, inflation, and macroeconomic uncertainty
correlate significantly with the evolution of the time-varying coefficients of the rule.
Finally, we show that in times of a less persistent policy rule or more responsiveness
to inflation, markets perceive nominal bonds as better macroeconomic hedges.
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1 Introduction

How can the public infer in real time the strength of the response of the Federal Reserve

(Fed) toward each of the goals of its dual mandate of low and stable inflation and maximum

employment? For instance, could the Fed be reacting more strongly to inflation pressures

and less to increases in the unemployment rate at a given point in time? In this paper,

we assess changes in the Fed’s policy responses to inflation and economic activity through a

time-varying reaction function estimated with economic projections made by the participants

of the Federal Open Market Committee (FOMC).

Bernanke (2016) and Faust (2016) advocate for the FOMC to make its monetary policy

reaction function public to increase the transparency of Fed communications. In the spirit

of offering clearer communications, the FOMC started releasing the Summary of Economic

Projections (SEP) in which (since 2012) each participant projects a corresponding path for

the federal funds rate “under appropriate monetary policy,” in addition to other macroeco-

nomic projections such as inflation and the unemployment rate consistent with that path.

We use the information provided in the SEP to propose and estimate a monetary policy

reaction function that private agents, especially firms and financial market participants, can

use to gauge, for instance, the path of future interest rates.

We posit an inertial Taylor (1999) rule with time-varying coefficients as a reaction func-

tion of the FOMC. Some variants of this rule are a common way of modeling the Fed’s

reaction function (see Judd and Rudebusch, 1998, for example). In fact, the release of

historical FOMC materials from 2017 shows that the Fed staff projection used an inertial

Taylor (1999) rule as the interest-rate reaction function.1 However, in contrast with several

papers in the literature about Taylor rules with time-varying or Markov-switching coeffi-

cients (see Boivin, 2006; Kim and Nelson, 2006; Murray, Nikolsko-Rzhevskyy and Papell,

1See the “Monetary Policy” section of the “Key Background Factors” in the December 2017 Tealbook
here: https://www.federalreserve.gov/monetarypolicy/files/FOMC20171213tealbooka20171201.

pdf, and this memo from June 2016 to the FOMC: https://www.federalreserve.gov/monetarypolicy/
files/FOMC20160603memo04.pdf.
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2015; González-Astudillo, 2018, for example), we do not use historical/realized data on in-

terest rates, inflation, and the output gap to estimate the rule.

Because we aim to measure how the median FOMC participant would respond to devi-

ations of macroeconomic outcomes from the mandate of the Fed, we use the SEP forecasts

of the federal funds rate, inflation, and the unemployment rate to estimate our Taylor rule

with time-varying coefficients. These forecasts consider the end of the current year and the

next two years (when the projections are made in March or June), or the end of the next

three years (when they are made in October or December). In particular, we use the median

SEP forecasts of these variables to inform the estimates of the persistence, inflation, and out-

put gap coefficients of the monetary policy rule each period, with a sample from June 2012

to March 2023. Moreover, given that our sample covers two effective lower bound (ELB)

episodes for the federal funds rate, we account for censoring in the monetary policy rule as

otherwise the estimates of policy rule coefficients would be biased (see Kahn and Palmer,

2016; Morris, 2017; Arai, 2023, for censored estimations with SEP data).

Our state-space model (SSM) considers a Taylor rule equation across forecast horizons in

which each time-varying coefficient is a latent variable that follows random walk dynamics

and is the same across horizons. Because we consider three forecast horizons, our model

has a factor structure in which the relationship among the median forecasts of the federal

funds rate, inflation, and unemployment gaps over those horizons informs the evolution of

the latent variables, i.e., the time-varying coefficients of the rule. Our Bayesian estimation

results indicate that the persistence of the monetary policy rule has increased significantly

since 2020 and the inflation coefficient has more than doubled compared with estimates

obtained with information prior to the pandemic. These results suggest that the most recent

monetary policy response of the median FOMC participant is to aggressively counteract

inflation deviations from the Committee’s target.

As a way to validate our proposed reaction function, we check if our monetary policy

rule specification with time-varying coefficients is useful to predict the median SEP forecasts
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given inputs of the rule also taken from the SEP. We perform that prediction exercise in

real time to find that our specification matches very well the federal funds rate median

forecast at the three horizons and that it produces much smaller forecast errors than a

monetary policy rule with constant coefficients. In particular, our specification is able to

deliver median predictions at the ELB during the pandemic and is almost on point with

the median SEP forecast in March 2023. These results indicate that the median FOMC

participant’s projections could be adequately estimated with a monetary policy rule whose

coefficients magnitudes change over time. As a byproduct of our estimation technique that

takes into account the ELB, we produce a shadow federal funds rate at the end of each year

that reaches about -2% during each of the two ELB episodes in our sample.

We go one step further and examine what incoming macroeconomic data may be corre-

lated with changes in the evolution of the time-varying policy rule coefficients, in an attempt

to find determinants of variability in the conduct of monetary policy. The results suggest

that the persistence of the rule and the reactions of the median participant of the FOMC

to inflation and the output gap change during monetary policy tightening and easing cycles.

In particular, at the onset of a tightening cycle or when tighter monetary conditions are ex-

pected in the future, the policy rule becomes less persistent and less responsive to inflation,

but its responsiveness to the output gap increases, as this latter variable may be the focus of

policy makers at this stage of the monetary policy cycle. Once in the tightening cycle, the

rule increases its persistence and, as monetary policy eventually eases, the responsiveness

to inflation and the output gap decline, perhaps indicating the inclination of the FOMC

to have insurance cuts available. Moreover, if the federal funds rate ends up at the ELB,

the rule becomes significantly more persistent as monetary policy could be operating under

“Odyssean” forward guidance in these instances.

In addition, when the inflation rate increases, particularly above the 2% inflation target,

the attention to inflation increases as well as the persistence of the reaction function. Also,

weaker current labor market conditions make the policy rule more responsive to the output
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gap. However, a declining indicator of future labor market conditions leads the reaction

function to become less sensitive to inflation and the output gap, signalling the ability to cut

rates quickly in case of a downturn. Lastly, elevated macroeconomic uncertainty increases

the responsiveness to inflation, possibly indicating a more hawkish stance of monetary policy

to prevent losing control over inflation, perhaps through a reputation channel.

As a final exercise, we analyze if the evolution of the time-varying coefficients of the as-

sumed monetary policy rule influence Treasury bond market returns in an attempt to justify

our motivation that our estimation results can be useful to financial market participants.

We find that when the reaction function of the median FOMC participant becomes less per-

sistent or more focused on inflation, bond excess returns decline, indicating that Treasury

bonds become better macroeconomic hedges. This feature is a reflection that when demand

shocks hit the economy, the procyclicality of the federal funds rate (and countercyclicality

of bond valuations) increases when policymakers pay more attention to inflation, or their

policy prescriptions are less persistent.

2 Contacts With The Literature

Previous studies that estimated the FOMC’s reaction function with SEP data did so in

two ways: (i) with constant coefficients and (ii) with time-varying coefficients. Studies with

constant coefficients often include a censored specification to take into account the ELB in

the federal funds rate projections. To the best of our knowledge, there are no studies in the

existing literature that estimate time-varying coefficients taking into account the censoring

problem caused by the ELB.

Kahn and Palmer (2016) use, like us, median forecasts from the SEP at different hori-

zons for the federal funds rate, headline and core inflation, and the unemployment rate to

estimate a constant-coefficient reaction function akin to a Taylor (1993) rule with inflation

and unemployment gaps, but without persistence in the interest rate projections. The esti-
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mation with data from January 2012 to March 2016 incorporates censoring in the reaction

function and obtains a core inflation coefficient around 3.8 (1.6 with headline inflation) with

an unemployment coefficient around -1.5 (-1.6 with headline). The results using headline

inflation are relatively close to those obtained using real-time historical data from 1987:Q1 to

2007:Q4. Moreover, a counterfactual exercise that uses the coefficients of the reaction func-

tion estimated with SEP and real-time data on inflation and the unemployment rate shows

that the projected federal funds rate closely mirrors the actual federal funds rate target from

roughly 2001 to 2015.

Morris (2017) estimate a monetary policy rule à la Taylor with average SEP projections

for the federal funds rate, inflation, and the unemployment rate from January 2012 to De-

cember 2016, incorporating censoring due to the ELB. The results show a headline inflation

coefficient close to 3.1 and a coefficient on -2 times the unemployment gap (to mimic for the

output gap, using Okun’s law) of about 0.8. In addition, controlling for financial risk (mea-

sured by the 10-year versus 2-year Treasury yield spread) indicates that the federal funds

rate reacts negatively to it and that the inflation coefficient is substantially lower, around

0.6. A consideration of breaks in the reaction function shows that there is statistical evi-

dence of different coefficients before and after December 2014. In fact, rolling nine-meeting

estimates show an inflation coefficient that declined steadily from about 1.5 in December

2014 to 0.5 two years later whereas the activity coefficient (that measures the reaction of the

federal funds rate to the average of the output and unemployment gaps) is less noisy, but

also declines from about 1 to about 0.2 in the same period. The author concludes that the

change in policymaking over this period may be characterized as substituting responsiveness

to financial risk for responsiveness to inflation.

In a different attempt to determine if there have been changes in the reaction function of

the FOMC over time, Knotek (2019) estimates a time-invariant monetary policy rule using

rolling windows of the median SEP forecast of the federal funds rate, inflation, and the

unemployment rate for the period December 2015 to March 2019. The findings suggest that
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the policy rule coefficients have changed, as the federal funds rate projections have become

less responsive to the unemployment gap. Apart from Knotek’s model having constant

coefficients estimated on rolling windows of data and ours having truly time-varying ones, a

key difference with respect to our approach is that his estimation is of a quarterly rule, using

linearly interpolated missing quarterly forecasts from the SEP combined with nowcasts of

the variables, whereas our rule is specified at an annual frequency in which no interpolation

is needed (but still estimated with quarterly releases from the SEP). Additionally, the author

does not include the ELB period from the Great Recession.

Kalfa and Marquez (2021) analyze the FOMC’s projections, focusing on release dates,

delays in release, the forecast process, and forecast assessment, using the median SEP. In the

absence of an official reaction function, the authors estimate the coefficients of an inertial rule

similar to Taylor’s (specified at an annual frequency) that includes chairmanship dummies

for Ben Bernanke and Janet Yellen, in the period 2012-2019, using quarterly SEP releases.

The results of the final model specification show that (i) the estimated annual persistence of

the median federal funds rate projection is 0.36 (0.77 if converted to quarterly frequency),

(ii) a one-percentage-point increase in the median inflation projection increases the median

federal funds rate projection by 0.45 pp, (iii) a one-percentage-point increase in the median

unemployment rate forecast decreases the median interest rate projection by 0.42 pp, and

(iv) the coefficient for Yellen’s tenure is significantly negative, equivalent to an almost 0.7 pp

lower federal funds rate projection, on average. Their paper does not take into account the

ELB on the median federal funds rate projection during the Great Recession when estimating

the model.

Lastly, among the studies with constant coefficients in the FOMC’s reaction function

using a censored specification, Arai (2023) estimates a Taylor rule that depends on the

inflation and unemployment gaps but does not have persistence because of the difficulty

to track past projections. This difficulty occurs because Arai uses individual participant’s

projections at different horizons instead of median or average statistics. The results with a
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sample from 2012 to 2017 (1471 individual projections) with core PCE inflation in the rule,

including horizon dummies, yield an inflation coefficient around 1.3 and an unemployment

gap coefficient around -0.6.

To the best of our knowledge, Bauer, Pflueger and Sunderam (2023) is the only study

that considers time-varying coefficients in the perceived or assumed reaction function of the

FOMC. The authors are interested in the perception of monetary policymaking because

of its importance for policy effectiveness. They estimate a time-varying coefficient Taylor

rule, relying on a forecaster-by-horizon monthly panel based on data from the Blue Chip

Financial Forecasts. The authors use (pooled and fixed effects) panel regressions for each

survey and estimate time series of the persistence, inflation, and output gap coefficients of

the rule, assuming that each of the coefficients follows a martingale and, therefore, that they

are uniform over forecast horizons (and forecasters). In an additional exercise, the authors

estimate the same panel regressions with data from 16 to 19 FOMC participants in the

period 2012-2016, using the SEP forecasts for the current and the following years.

The authors focus on the output gap coefficient throughout their discussion in the paper

because they argue that an estimation of the inflation coefficient during periods of stable

general price increases could lead to the mistaken conclusion that the Fed is not aggressively

fighting inflation, as noted by Clarida, Gali and Gertler (2000). Although their estimated

inflation coefficient increased significantly at the end of the sample (April 2023), the output

gap coefficient would still be a summary statistic of the Fed’s overall responsiveness to

economic conditions as long as inflation is expected to move up and down a stable Phillips

curve. Three distinctions are apparent with the approach in our paper. First, we use

FOMC participants’ information instead of private sector forecasters’ projections. Because

our intention is to gauge the FOMC reaction function through a Taylor rule with time-

varying coefficients in real time yet the individual participants’ forecasts are released with a

delay of five years, we use the median SEP forecasts. Second, Bauer, Pflueger and Sunderam

(2023) do not take into account the ELB when estimating their model. That omission could
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influence their results, especially those that indicate that the output gap coefficient was close

to zero through 2014 when using the SEP data. Third, we obtain and discuss the evolution

of the time-varying persistence, inflation, and unemployment (output) gaps coefficients of

the rule, not only the last, so that we can shed more light on the monetary policy reaction

function of the FOMC.

3 The Empirical Model

Assuming we have a sample of forecasts indexed by t = 1, 2, . . . , T , the shadow interest

rate projection for horizon h, where h = 1, 2, 3 years ahead (possibly including the current

year as h = 1), is given by the following modified Taylor rule (the modification uses the

unemployment gap to proxy for the output gap):

R∗h = ρ�R∗h−1 +(1− ρ)�
(
RLR +απ � (πh − 2) +αy � 2(uLR − uh)

)
+γh+ψ+εh, (1)

where εh ∼ N(0, σ2
εIT ); and R∗h is a T × 1 vector with the shadow federal funds rate

projection for horizon h, as we assume each element of the T × 1 vector of actual federal

funds rate projections, R, is the maximum between an effective lower bound (ELB),
¯
R, and

the corresponding element of R∗h. In addition, R∗h−1 is a T × 1 vector with the shadow rate

projected for the previous horizon; RLR is a T × 1 vector with the long-run federal funds

rate projection; πh is a T × 1 vector with the core inflation rate projection for horizon h (we

assume the inflation target is 2 percent in our Taylor rule, as defined by the Statement on

Longer-Run Goals and Monetary Policy Strategy of the FOMC);2 uLR is a T ×1 vector with

the long-run unemployment rate projection; and uh is a T×1 vector with the unemployment

rate projection for horizon h. Notice that 2(uLR−uh) proxies for a T ×1 vector of projected

output gaps in horizon h, where “2” is implied by usual estimates of Okun’s law in the

literature (see Ball, Leigh and Loungani, 2017, for instance). The coefficients of the rule

2See https://www.federalreserve.gov/monetarypolicy/files/FOMC_LongerRunGoals.pdf.
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are time varying and, hence, ρ, απ, and αy are also T × 1 vectors. Here, � denotes the

Hadamard or element-wise product. Because we allow the projections to have horizon-

specific idiosyncratic components, we add a T × 1 vector of constants, γh.
3 In addition, we

capture seasonality with a quarterly dummy variable, ψ, also of dimension T × 1 that we

exclude in what follows to save on notation. Finally, εh is a T × 1 vector of errors to the

period h projection which should not be interpreted as a monetary policy shock, but as an

error term reflecting that the modified Taylor rule (1) is an imperfect representation of the

true reaction function of the median FOMC participant.

For a particular period t in which a projection h periods ahead is made, the Taylor rule

for the expected shadow federal funds rate is as follows (here, Et denotes the expectation

conditional on the information available in period t, so that Etxt+h is the h-period-ahead

projection of variable xt):

EtR
∗
t+h = ρtEtR

∗
t+h−1 + (1− ρt)

(
EtR

LR
t + απt (Etπt+h − 2) + αyt 2(Etu

LR
t − Etut+h)

)
+ γh + εt+h, (2)

with

ρt = ρt−1 + ηρt , ηρt ∼ i.i.d. N(0, σ2
ηρ) , ρ0 ∼ N(µρ0 , σ

2
ρ0

) , (3)

απt = απt−1 + ηα
π

t , ηα
π

t ∼ i.i.d. N(0, σ2
ηα
π ), απ0 ∼ N(µαπ0 , σ

2
απ0

), (4)

αyt = αyt−1 + ηα
y

t , ηα
y

t ∼ i.i.d. N(0, σ2
ηα
y ), αy0 ∼ N(µαy0 , σ

2
αy0

) . (5)

In our setup, the frequency of the projections is quarterly, but the Taylor rule specification

in equation (2) is at an annual frequency. That is, the lagged shadow rate for the projection

in t + h corresponds to the shadow rate projection one year prior. As a consequence, the

size of the persistence coefficient, ρt, has to be interpreted accordingly.

3This idiosyncratic component plays the role of a fixed effect in a panel structure in which the cross
section variability is given by the forecast horizons. We assume there are potentially unobserved components
that may be correlated with the arguments of the Taylor rule in its right hand side, which gives rise to these
fixed effects.
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We postulate the following SSM to estimate the system in equations (2)-(5):


EtR

∗
t+1 − EtRLRt

EtR
∗
t+2 − EtRLRt

EtR
∗
t+3 − EtRLRt

 =


R∗
t − EtRLRt Etπt+1 − 2 2(Etu

LR
t − Etut+1)

EtR
∗
t+1 − EtRLRt Etπt+2 − 2 2(Etu

LR
t − Etut+2)

EtR
∗
t+2 − EtRLRt Etπt+3 − 2 2(Etu

LR
t − Etut+3)



ρt

α̃πt

α̃yt

+


γ1

γ2

γ3

+


εt+1

εt+2

εt+3

 ,

ρt

α̃πt

α̃yt

 =


ρt−1

α̃πt−1

α̃yt−1

+


ηρt

ηα̃
π

t

ηα̃
y

t

 ,

where ρt ∈ [0, 1), α̃πt = απt (1− ρt), α̃yt = αyt (1− ρt) ∀t, and


ηρt

ηα̃
π

t

ηα̃
y

t


∣∣∣∣∣∣∣∣∣∣
Ft−1 ∼N

03×1,


σ2
ηρ −απt−1σ2

ηρ −αyt−1σ2
ηρ

−απt−1σ2
ηρ σ2

t,ηα̃π
απt−1α

y
t−1σ

2
ηρ

−αyt−1σ2
ηρ απt−1α

y
t−1σ

2
ηρ σ2

t,ηα̃
y


 ,

ρ0 ∼N(µρ0 , σ
2
ρ0

),

α̃π0 ∼N
(

(1− µρ0)µαπ0 , σ
2
ρ0
σ2
απ0

)
,

α̃y0 ∼N
(

(1− µρ0)µαy0 , σ
2
ρ0
σ2
αy0

)
,

with σ2
t,ηα̃i

= (1− ρt−1)2 σ2
ηαi

+αi2t−1σ
2
ηρ+σ2

ηαi
σ2
ηρ for i = π, y, where Ft−1 is the σ-field with the

information through period t−1. Notice that the error terms ηα̃
i

t = (1− ρt−1) ηα
i

t −αit−1η
ρ
t −

ηα
i

t η
ρ
t for i = π, y no longer have a conditional (on Ft−1) normal distribution. Nevertheless,

we assume a misspecified model in which ηα̃
i

t is still normally distributed.4

4 The Data

This section describes the details of the data set we use to estimate the assumed monetary

policy reaction function. Our data sources are the SEP releases from January 2012 through

March 2023, which the Fed typically releases on a quarterly basis. It is a summary of FOMC

4The specification of the quarterly seasonal factors is such that ψ1,t+1 = −ψ1,t−ψ2,t−ψ3,t+ωt, ψ2,t+1 =
ψ1,t, ψ3,t+1 = ψ2,t, ωt ∼ i.i.d. N(0, σ2

ω), as in Commandeur and Koopman (2007).
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participants’ economic projections. Each participant makes projections in the context of their

individual view of appropriate monetary policy, which is the policy path that would deliver

economic activity and inflation outcomes that best serve the dual mandate of maximum

employment and price stability as interpreted by the individual participant.5

The SEP currently provides annual forecasts of the change in real gross domestic product

(GDP), the unemployment rate, personal consumption expenditure (PCE) inflation, core

PCE inflation, and the federal funds rate for each FOMC participant. We focus on the

federal funds rate, core PCE inflation, and the unemployment rate. Our measure of the

federal funds rate is the forecast of the midpoint of the appropriate target range or level at

the end of the specified year. The unemployment rate is projected for the average civilian

unemployment rate in the fourth quarter of the specified year. The projections for headline

inflation are percent changes from the previous year’s fourth quarter PCE price index to

the fourth quarter of the specified year; and the core PCE price index excludes food and

energy. The SEP also provides long-run projections for the federal funds, unemployment,

and headline inflation rates, but not for core inflation, for which we use the 2 percent inflation

target.

In addition to participants’ projections of the change in real GDP, the unemployment

rate, headline and core PCE inflation, projections for the appropriate interest rate were

included in 2012, and the medians of the forecasts distributions of these variables have been

reported since 2015. Figure 1 shows the date of the SEP release along the vertical dimension

and the forecast horizon along the horizontal dimension. The cells shaded blue indicate that

a forecast is made on the date in the vertical axis for the quarter in the horizontal axis.

The darker the shading, the farther away the forecast is from the release date of the SEP.

5The FOMC consists of twelve members–the seven members of the Board of Governors of the Federal
Reserve System; the president of the Federal Reserve Bank of New York; and four of the remaining eleven
Reserve Bank presidents, who serve one-year terms on a rotating basis. The rotating seats are filled from the
following four groups of Banks, one Bank president from each group: Boston, Philadelphia, and Richmond;
Cleveland and Chicago; Atlanta, St. Louis, and Dallas; and Minneapolis, Kansas City, and San Francisco.
Nonvoting Reserve Bank presidents attend the meetings of the Committee, participate in the discussions,
and contribute to the Committee’s assessment of the economy and policy options. See “About the FOMC”
here: https://www.federalreserve.gov/monetarypolicy/fomc.htm
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Figure 1: SEP Schematic
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Note: The March 2020 SEP release did not happen because of the pandemic.

Two situations are noticeable: First, prior to June 2012, the SEP was not released quarterly.

Second, the SEP that would have been released on March 18, 2020 was not because of the

pandemic.

The SEP provides three or four annual projections and a long-run projection of the value

to which each economic variable would converge given appropriate monetary policy, without

further economic shocks. In general, the March and June releases have forecasts for the end

of the current and the next two years, whereas the September and December releases have

forecasts for the current year and the subsequent three years. We consider three forecast

horizons from each SEP release as follows: In any given year, we take the one-, two-, and

three-year ahead forecasts made in September and December of each year (that do not

include the current year) in addition to the one-, two-, and three-year ahead forecasts made

in March and June of the following year as the forecasts one, two, and three years ahead for

12



the given year. This choice of a structure is relevant to determine what we should use as the

lagged federal funds rate in the Taylor rule.

The lagged value of the September and December federal funds rate projections one

year ahead is taken to be the projection provided in the December SEP for the current

year and, because the one-year ahead forecast horizons are the same for the subsequent

March and June releases, the September-December-March-June window shares the same

previously mentioned lagged value for the forecast one year ahead. In fact, this window of

releases also shares the same lagged value for the federal funds rate forecast two and three

years ahead. In these cases, the lagged values correspond to the one- and two-year ahead

projections, respectively, made at the time of the two- and three-year ahead federal funds

rate projections.

Regarding the information provided by the SEP for each variable, we use the median fore-

casts as opposed to the individual projections. Faust (2016) reflects that the median SEP

might be very far from unanimously supported monetary policy because of the disagreement

among policymakers about how the economy is working. In order to incorporate the fore-

casters’ disagreement mentioned by Faust, we believe the optimal data setup to estimate our

model would have been a panel of forecasts of the federal funds, unemployment, and inflation

rates in which the cross-sectional dimension is indexed by each FOMC participant. Bauer,

Pflueger and Sunderam (2023) follow this approach with data on 16-19 Fed forecasters over

21 SEP releases from 2012 to 2016 to estimate the time-varying coefficients of a Taylor rule

similar to ours. Unfortunately, because individual projections are published with a lag of

five years, this approach is not useful to gauge the monetary policy reaction function in real

time, which is the main focus of our paper.

Kalfa and Marquez (2021) show that, despite the dispersion of participants’ views on the

appropriate policy rate, the current-year SEP median tends to be close to the actual rate.

Moreover, they find that there exists at least one econometric model that predicts well the

FOMC forecasts for the current and the following years which would diminish Faust (2016)’s

13



Figure 2: SEP Median federal funds rate forecasts
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critique. Hence, because of the timely information provided by the median SEP and the

evidence that it may well represent unanimously supported policy, we resort to this statistic

as our data choice. As indicated by Bauer, Pflueger and Sunderam (2023), the SEP forecasts

reflect what the participants think the policy rate should be, not what it is most likely to

be, for which we believe the median SEP forecast still provides information in line with our

intended use of this database to estimate the time-varying coefficients of the monetary policy

rule.

In our model setup in equations (2)-(5), we have three shadow rate equations for each

period t, one for each forecast horizon, h = 1, 2, 3. Hence, we use the SEP data in a

panel manner to inform, in each period, the common factor structure of the time-varying

coefficients across the three equations. To the best of our knowledge, the use we give to this

data structure in the SEP is the first in the literature. Figure 2 shows the federal funds rate

forecasts in the SEP for the three forecast horizons.

Two things stand out from that figure. First, the period June 2020 to March 2021 is the

only one in which the forecasts of the federal funds rate at all horizons were at the ELB.

During the previous ELB episode, at least one forecast horizon had the median forecast

above the bound. Second, since September 2022, there is an inversion of the “yield curve”
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associated with the federal funds rate in which the rate projected three years ahead is below

the two-year ahead forecast and, in turn, the latter is below the one-year ahead projection.

All in all, we use a sample that spans SEP releases between June 2012 and March 2023.6

5 Estimation

We estimate the model with Bayesian methods, using the Gibbs sampler to alternate

sampling between coefficients and latent states.7 For the latter, we use the Durbin and

Koopman (2002) simulation smoother. To obtain the shadow federal funds rate that allows

us to keep the state-space model linear (conditional on the lagged values of the time-varying

coefficients), we embed data augmentation in the Gibbs sampler, as in Chib (1992), which

is included to deal with the censored specification of the Taylor rule. This is the approach

followed by González-Astudillo and Laforte (2020) to estimate the natural rate of interest

when the Taylor rule is subject to censoring. However, we need to make a modification to

that approach because our data set starts during the ELB period that prevailed in the Great

Recession, with no history of projected rates above the bound, as we describe below.

Because the Taylor rule is specified at an annual frequency, we need a lagged shadow

federal funds rate to estimate the rule at any point in time when the federal funds rate

was at the ELB the prior year. For instance, for the projections made in the first half

of 2012, which correspond to December of that year, we need a shadow rate prevailing in

December 2011, but our data set starts in 2012. We treat that value as a parameter sampled

with a Metropolis-Hastings step within the Gibbs sampler in which the proposal density is

centered at the value obtained by Wu and Xia (2016) for December of 2011 and published

by the Federal Reserve Bank of Atlanta.8 Then, for the projections made past the first

half of 2012, we take two approaches. In the first one, we assume that the shadow federal

6In the estimations, we linearly interpolate the data on the federal funds rate, inflation, and the unem-
ployment rate for 18-March-2020 using the SEP releases of 11-Dec-2019 and 10-Jun-2020.

7For details on the sampler, see Appendix A.
8See https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate.
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funds rate prevailing in December of a year when the ELB was binding—i.e., the lagged

shadow interest rate for the projection of December of the following year—is the shadow

rate projection made in June of the year when the ELB was binding in December. This

projection is obtained with the data augmentation step we previously mentioned. This is

our baseline approach. In the second approach, we employ the Wu and Xia values for each of

the years when the ELB was binding in December to center a proposal density used by the

Metropolis-Hastings steps within the Gibbs sampler in order to obtain the lagged shadow

federal funds rate that will enter the Taylor rule specification. This second approach yields

results similar to those from our baseline, but we prefer said baseline because of the internal

consistency of the forecasts.

The prior distributions of the coefficients of the model follow an independent normal

inverse-gamma scheme and appear in the second column of table 1. The horizon-specific

fixed effects, γ1, γ2, and γ3, are centered at zero with relatively large uncertainties. We

choose prior means of the initial values of the parameters, µρ0 , µαπ0 , and µαy0 , in accordance

with the values of an inertial Taylor rule, such as those found in Board of Governors of

the Federal Reserve System (2018) and Bernanke (2015), with relatively low uncertainties.

We center the prior distribution of the variance of the error of the policy rule, σ2
ε , at 0.25

following the results in Kahn and Palmer (2016) with very large uncertainty. Regarding

the time-varying coefficients, their shock variances, σ2
ηρ , σ

2
ηαπ

, and σ2
ηα
y have prior means

with masses close to zero and low uncertainty, implying that our prior beliefs are that the

coefficients are nearly constant over time, as we do not expect the FOMC to make large

changes every time there is an SEP release.9

9We also center the prior distribution of the variance of the quarterly seasonal effects, σ2
ω, at 1 with very

large uncertainty around.
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6 Results

We estimate the posterior moments of the parameters and states of the model with 6,000

draws from the posterior distribution, after 50,000 burn-in draws and thinning every 50th

draw out of a total of 350,000. The results appear in the third and fourth columns of table

1. The posterior medians of the fixed effect coefficients, γh, indicate that the interest rate

projection tends to be upward sloping beyond what is implied by the inputs of the Taylor

rule; on average, the federal funds rate projected three years ahead is 22 bps higher than that

projected one year ahead. The posterior medians of the initial values of the time-varying

policy rule coefficients are what would be expected, at 0.48 (0.83 in the usual quarterly

frequency) for ρt, 1.61 for απt , and 0.88 for αyt . The posterior median of the variance of the

error to the policy rule is much lower than its prior mean. Despite the low uncertainty around

the prior variances of the shocks to the time-varying coefficients, the posterior median of the

variance of the shock to the inflation coefficient is significantly higher than its respective prior

mean. Finally, the value of the shadow rate in December of 2011 has a posterior median

equal to -2.5%.10

Figure 3 shows the estimated time-varying Taylor rule coefficients plotted against the

date of the SEP release dates. Figure 3a plots the persistence coefficient and indicates that

the half-life of a shock to the federal funds rate, keeping the inputs of the rule constant, is

about one year during the first ELB period and thereafter through the end of 2016. This

estimated persistence coefficient between 0.8 and 0.85 is very close to those seen in the

practitioners’ literature (see Brayton et al., 2014; Board of Governors of the Federal Reserve

System, 2018). The coefficient begins to increases beyond this range with the advent of

the monetary tightening cycle at the end of 2016. Its value reaches 0.89 in 2018, 0.91 in

2019, and 0.93 in 2020, during the pandemic ELB period. The coefficient peaks in early

2021 and declines thereafter, reaching 0.89 at the end of the sample, as the most recent

10The posterior mean of σ2
ω is estimated to be 0.09 with a 68% credible set between 0.07 and 0.12.
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Table 1: Estimates of the model coefficients

Prior Distribution Posterior Median 68% Credible Set

γ1 N(0,2) −0.35 [−0.44,−0.26]

γ2 N(0,2) −0.25 [−0.33,−0.18]

γ3 N(0,2) −0.13 [−0.19,−0.07]

ρ0 N(0.5,0.2) 0.48 [0.42,0.53]

απ0 N(1.5,0.5) 1.61 [1.31,1.92]

αy0 N(1,0.5) 0.88 [0.78,0.98]

σ2
ε IG(0.52,∞) 0.242 [0.212,0.282]

σ2
ηρ IG(0.012,0.005) 0.022 [0.022,0.032]

σ2
ηαπ

IG(0.012,0.005) 0.142 [0.092,0.222]

σ2
ηα
y IG(0.012,0.005) 0.022 [0.012,0.052]

R∗2011:12 N(−1.47,1.1) −2.50 [−4.73,−0.69]

Note: “N” stands for normal distribution and “IG” stands for inverse gamma distribution. In both distributions,
the first parameter is the mean and the second is the standard deviation. For the shadow interest rate in December
of 2011, we report the proposal distribution under the prior distribution column.

monetary policy tightening cycle took place. All in all, the results evidence that the conduct

of monetary policy has become significantly more persistent in the past three years than in

the years prior.

Figure 3b plots the inflation reaction coefficient of the rule. As could have been inferred

from the size of the estimated variance of its shock, σ2
ηαπ

, in table 1, this coefficient shows

substantially more variability than that associated with the persistence of the rule. It starts

around 1.6 and ends around 3.6. Uncertainty around the estimate increases at the end of the

first ELB period, peaking during the post-pandemic ELB episode and subsiding thereafter.

One possibility for the increase in the uncertainty around the second ELB period is the

difficulty of the model to identify time-varying coefficients when the dependent variable

(the federal funds rate projections, in this case) is censored, as shown by González-Astudillo

(2018). Summarizing, the increase in the inflation reaction coefficient would be an indication

of the strong response of the FOMC to fight inflation in the recent past.

Finally, figure 3c shows the evolution of the output gap coefficient of the rule. This

coefficient is estimated to be much more stable and less uncertain than that of inflation.
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After starting around 0.88, it consistently stays between 0.8 and 1 through the end of the

sample. These values are also mostly consistent with those found in the literature. We point

out, however, that our estimate of the output gap is significantly more stable than that found

by Bauer, Pflueger and Sunderam (2023) for the period 2012-2016. Possible reasons for the

difference are that we incorporate the ELB explicitly in our estimation technique whereas

they did not and that we use the median SEP whereas they use individual participant data.

A byproduct of our estimation technique is the generation of a shadow rate. As we

mentioned before, the shadow rate prevailing in December of every year when the ELB is

binding is taken to be the rate forecast one year ahead in June of the ELB year. Figure 4

shows this SEP forecast when it is not at the ELB and the estimated shadow rate during the

ELB periods for December of each year in the sample. As can be seen, the shadow federal

funds rate reached about -2% during each ELB period. This value is very close to that

estimated by Wu and Xia (2016) for 2013, but much lower than their estimate (at -0.29%)

for 2020; for 2021, our estimate is very close to theirs.

6.1 Is the Taylor rule with time-varying coefficients adequate to

model the forecasts of the median FOMC participant?

Both Bernanke (2016) and Faust (2016) argue that it would be convenient and pertinent

for the public to understand monetary policy if the central bank made its reaction function

known. In this paper, we have argued that a Taylor rule with time-varying coefficients (and

forecast horizon-specific fixed effects) could help gauge the monetary policy reaction function

through the values its reaction coefficients take over time. One way to determine if what

is behind the monetary policy determination of the median FOMC participant is a reaction

function such as the one we propose is to evaluate how well this rule fits the released forecasts

in real time, given SEP forecasts of the arguments of the rule (interest and unemployment

rates in the longer run, and inflation and the unemployment rate in the medium term).

To that end, we estimate the model in equations (2)-(5) sequentially, starting with data
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Figure 3: Time-varying Coefficient Estimates

(a) Persistence coefficient

(b) Inflation coefficient

(c) Output gap coefficient
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Figure 4: SEP and shadow federal funds rate forecast
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December federal funds rate projected in June of each year

from June 2012 to December 2017. We produce an estimate of EtR
∗
t+h, for h = 1, 2, 3, using

arguments of the rule released in the SEP for each horizon and our Taylor rule specification

with time-varying coefficients. We do the same for each December from 2017 to 2019,

adding information one year at a time. Starting in June 2020, we follow this procedure

every six months through December 2022. Finally, we add the March 2023 release. Our

sequential Bayesian estimation produces federal funds rate predictions from their posterior

distributions, which are depicted in figure 5. The panels show the distribution of model

predictions for each horizon (cyan box plots) in conjunction with the SEP forecasts (black

dots).

As can be seen from the three panels, the inter-quartile ranges of the model predictions

capture well the actual SEP forecasts, and, when they are captured, the median predictions

are very close to the actual forecasts, in particular for the two-year ahead horizon (figure

5b). Of note are the median predictions when the SEP forecasts are at the ELB: our model

predicts very well those instances in real time, especially one and two years ahead (figures 5a

and 5b, respectively). For March 2023, the median predictions from our model are almost

on point with the actual SEP forecasts (that was also the case in December 2022).

We perform an additional exercise to determine if our assumed time variation is a better

representation of the median FOMC participant’s reaction function compared with an alter-
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Figure 5: Federal Funds Rate Real-time Model Prediction versus SEP
Median Forecast
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(a) Interest rate forecast one year ahead
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(b) Interest rate forecast two years ahead
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(c) Interest rate forecast three years ahead

Note: The box plot shows in cyan the median, the inter-quartile range, and the range of the model prediction
distributions. The red dots are considered outliers, defined as those points outside the (roughly) middle 99.3% of
the distribution. The black dots are the SEP forecasts, and the blue diamonds are the median forecasts of the model
with time-invariant coefficients.
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native with constant coefficients. Figure 5 also shows in each panel the real-time forecast

of the same model we consider in this paper but with constant coefficients (blue diamonds).

Two features are worse in this case. First, the predictions one year ahead at the end of the

sample are off, being significantly lower than the SEP forecasts, as seen in figure 5a. Second,

the constant-coefficient model predicts rates above the ELB when the forecasts were at the

lower bound in the two- and three-year-ahead forecasts, as shown in figures 5b and 5c.11

These results suggest that our proposal of a Taylor rule with time-varying coefficients is a

good approximation to the reaction function of the median SEP participant of the FOMC.

6.2 Real-time gauging of the monetary policy reaction function

The values of the estimated coefficients shown in figure 3 correspond to their smoothed

counterparts. As a result of the backward induction in those estimates, it is not possible

to assess in real time what the monetary policy reaction function was at a given point in

time. If our proposed setup is meant to be useful to provide information about how strongly

the FOMC is responding to inflation, for instance, we should look at how it performed in

the past regarding the estimated policy rule coefficients in real time. Figure 6 contrasts the

smoothed estimates of the policy rule coefficients with those obtained following the same

sequential estimation procedure described in section 6.1, which are in fact the one-sided or

filtered estimates (as opposed to the two-sided or smoothed estimates).

The results in figure 6a indicate that the persistence coefficient was estimated between

0.75 and 0.8 through the end of 2019, started to increase in mid-2020, reached 0.9 by mid-

2021, and remained around there since then. The smoothed estimate tries to iron out the

sudden increase in the real-time estimate during 2020, hence the significant discrepancy

between the two estimates from late 2017 to late 2020. All in all, at least since mid-2021,

11The root-mean-squared forecast error (RMSFE) of the model with time-varying coefficients for these 10
predictions is 0.19 pp, 0.08 pp, and 0.19 pp for the one-, two-, and three-years ahead forecasts, respectively,
compared with 0.46 pp, 0.33 pp, and 0.50 pp for the model with constant coefficients. We do not perform a
Diebold and Mariano (2002) test of forecast accuracy because of the very low number of forecasts for each
model-horizon.
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Figure 6: Real-time Time-varying Coefficient Estimates
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(b) Real-time inflation coefficient
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the results indicate that the median FOMC participant would prescribe significantly more

persistent monetary policy.

As can be seen in figure 6b, the inflation reaction coefficient also shows relatively large

differences between the real-time and smoothed estimates: most of the former falls below

the credible set around the latter. After evolving just below the typical value of 1.5 from

the end of 2017 until mid-2021, the coefficient begins to rise rapidly, reaching almost 2 by

the end of 2021, just below 3 by mid-2022, and about 3.5 by the end of the sample in March

2023. Hence, at least since late 2021, one could conclude that the median FOMC participant

would have been prescribing monetary policy to more actively fight inflation than before. As

a side note, it is once again evident how the two-sided estimate smooths out the variation

in the real-time one.

Finally, the output gap coefficient does not show significant differences between its

smoothed and real-time counterparts, suggesting that the median FOMC participant has

not changed the weight put on output (or unemployment) deviations from target in the past

five years.

7 Explaining Changes in the Monetary Policy Reac-

tion Function

In this section, we seek to obtain some of the variables that correlate with the changes

in the evolution of the time-varying coefficients characterizing our assumed policy rule. We

intend to shed light on the macroeconomic indicators that may influence the decision making

of the median FOMC participant.

Bauer, Pflueger and Sunderam (2023) perform a similar analysis of cyclical shifts for the

perceived monetary policy output gap coefficient estimated with Blue Chip data, arguing

that anecdotal evidence suggests that the Fed’s monetary policy rule experiences cyclical

variation. They indicate that monetary policy tightening is usually characterized as data-
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dependent whereas monetary policy easing tends to be quick and unpredictable, as the Fed

uses “insurance” cuts to manage the risk concerns of economic outcomes.12 For these reasons,

monetary policy may be less dependent on incoming data, and less strongly connected to

macroeconomic forecasts, during monetary easing episodes. While Bauer et al. focus only on

the output gap coefficient to understand this perceived monetary policy cyclical variation,

we analyze the persistence, inflation, and output gap coefficients, offering a more exhaustive

view on such variation for actual monetary policymaking (because our estimates are obtained

from SEP rather than Blue Chip data).

Our regression analysis relies on monthly observations of macroeconomic variables avail-

able at the time of the SEP release to explain time-variation in the coefficients of the es-

timated monetary policy rule.13 Table 2 shows that the expectation of a monetary policy

tightening cycle arising or strengthening (measured by the spread between the 10-year Trea-

sury yield and the 3-month Treasury rate, which also contains a term premium) affects all

the coefficients of the Taylor rule, making it less persistent and less responsive to inflation

but more sensitive to the output gap. More specifically, the rule becomes more persistent

mainly when the economy is at the ELB, and it reacts more strongly to inflation when the

labor market gains momentum, macroeconomic uncertainty increases, monetary policy is

not currently easing, or inflation is high, especially above the 2% target. Also, the rule’s

responsiveness to the output gap increases when current labor market conditions worsen,

but decreases when monetary policy is easing or the labor market loses momentum.

Putting the results together, one can see that the monetary policy cycle is related to

changes in the reaction function of the median participant of the FOMC. When a tightening

12See also the Transcript from Chair Powell’s Press Conference May 3, 2023 here: https://www.

federalreserve.gov/mediacenter/files/FOMCpresconf20230503.pdf.
13In this and the following sections, we use the filtered estimates of the time-varying coefficients obtained

with the Kalman filter, in which the SSM matrices are constructed with the median posterior estimates of
the parameters of the model shown in table 1. Appendix B shows the evolution of the filtered time-varying
coefficients used in these regressions. We use the filtered estimates instead of the smoothed ones because
we are interested in evaluating the real-time response of the median participant of the FOMC to changes in
their information set (in this section) and how changes in the monetary policy reaction function in real time
affect bond valuations (in the next section).
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Table 2: Determinants of time-varying coefficient estimates

100× ρt απt αyt
(1) (2) (1) (2) (1) (2)

Labor Level 0.39 0.27 0.14 0.14 −0.04∗∗ −0.04∗∗

Labor Momentum 0.21∗ 0.24∗ 0.08∗∗∗ 0.08∗∗∗ 0.01∗∗∗ 0.01∗∗∗

Macro Uncertainty −0.04 0.19 0.30∗∗∗ 0.29∗∗∗ 0.02 0.02
Financial Uncertainty 0.64 0.63∗ 0.01 0.01 −0.01 −0.01

ELB 3.07∗∗∗ 3.56∗∗∗ −0.08 −0.09 −0.02 −0.02
Tightening 1.09∗ 1.55∗∗ −0.15 −0.16 −0.01 −0.02

Easing 0.40 0.17 −0.64∗∗∗ −0.63∗∗ −0.11∗∗∗ −0.11∗∗∗

Slope −3.17∗∗∗ −3.16∗∗∗ −0.24∗∗∗ −0.24∗∗∗ 0.04∗∗∗ 0.04∗∗∗

Inflation 1.37∗∗∗ 0.27∗∗∗ 0.01
Below Target 3.06∗∗ 0.21 0.01
Above Target 1.09∗∗∗ 0.28∗∗∗ 0.01
Adjusted R2 0.89 0.89 0.92 0.92 0.73 0.72

N 44

Note: All regressions include a constant term that has been omitted in the table
and have been checked for the existence of at least one cointegrating relationship.
HAC standard errors are used to calculate statistical significance. Labor Level and
Momentum are the labor market conditions indices produced by the Kansas City Fed.
ELB is a dummy variable that takes the value of one during effective lower bound
periods; Tightening is a dummy variable that takes the value of one during periods of
increasing target federal funds rate; and Easing is a dummy variable that takes the
value of one during periods of declining target federal funds rate. Slope is the spread
between the 10-year Treasury yield and the 3-month Treasury rate, lagged 12 months.
Macro Uncertainty is the Jurado, Ludvigson and Ng (2015) index of macroeconomic
uncertainty 12 months ahead (standardized); and Financial Uncertainty is the VIX
(standardized). Inflation is the 3-month average of the annual core CPI inflation
rate; Below Target is the inflation rate minus 2.3; and Above Target is the inflation
rate minus 2.3. All the variables are lagged to account for publication lags. Sample:
2012:Q2-2023:Q1.
∗ denotes a p-value<0.1, ∗∗ denotes a p-value<0.05, and ∗∗∗ denotes a p-value<0.01.

27



cycle is expected to start or to strengthen—so that current monetary policy conditions are

looser than in the future and the slope of the yield curve increases—the policy rule becomes

less persistent and less sensitive to inflation, but its responsiveness to the output gap increases

as this latter variable may be the focus of policy makers at this stage of the monetary policy

cycle. Once embarked in the tightening cycle, the rule increases its persistence and, as

monetary policy eventually eases, the responsiveness to inflation and the output gap decline,

making the rule less dependent on macroeconomic forecasts and more prone to insurance cuts.

Moreover, if the economy ends up at the ELB, monetary policy would become significantly

more persistent as it could be more calendar-based in these instances, or “Odyssean” in the

terminology of Campbell et al. (2012).

The level of the observed inflation rate may also play a role in shaping the conduct of

monetary policy by the median participant of the FOMC. The results indicate that when the

inflation rate increases, particularly above the 2% inflation target, the attention to inflation

also increases, perhaps indicating the concern of the median FOMC participant that inflation

may enter an upward spiral in both actual and expected inflation rates. We also see that

the persistence of the reaction function increases with higher inflation rates, signalling that

the more hawkish stance of monetary policy may last longer.

Similarly, the state of the labor market could be related to the features of the reaction

function over time. On the one hand, the results suggest that when the labor market activ-

ity level—which is the current-state indicator of the two labor market conditions indicators

constructed by the Kansas City Fed—weakens, the rule becomes more responsive to output

gap projections, implying that an overall weak current labor market leads to greater concern

about economic activity.14 On the other hand, when labor market momentum—which in-

dicates the trajectory of future labor market conditions—declines, the median participant’s

reaction function becomes less persistent and, in general, less reactive to macroeconomic

forecasts, signalling the ability to cut rates quickly if necessary. In fact, Chung et al. (2019)

14For more information on the Labor Market Conditions indicator, see https://www.kansascityfed.

org/data-and-trends/labor-market-conditions-indicators/.
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mention that an asymmetric policy rule with less inertia in bad times is more consistent with

the speed at which the FOMC has cut its main policy rate in past economic downturns than

the usual inertial Taylor rule.

Finally, indicators of macroeconomic and financial uncertainty could explain how the

optimal response of monetary policy changes with respect to the incoming macroeconomic

data because the Fed may consider the full distribution of macroeconomic and financial

outcomes to make decisions. Our results show that when the Jurado, Ludvigson and Ng

(2015) (JLN hereafter) macroeconomic uncertainty index 12 months ahead increases, the

reaction function’s sensitivity to inflation goes up. Cieslak et al. (2021) point out that

higher policymakers’ perceived inflation uncertainty predicts a more hawkish policy stance—

a higher inflation coefficient in our setup—because an important driver of the FOMC’s

decisions is to maintain credibility for inflation control. Even though we do not have a

measure of inflation uncertainty exclusively, the JLN macroeconomic uncertainty index does

contain it, implying that our results point in the direction of Cieslak et al.’s. That is, higher

macroeconomic uncertainty would lead to a more hawkish stance of monetary policy because

of the median FOMC participant’s desire to maintain credibility in inflation control.

All in all, we show macroeconomic factors that correlate with changes in the time-varying

coefficients of the monetary policy rule we assume for the median FOMC participant, in-

dicating that these factors could influence FOMC policymaking. In the next section, we

examine if bond markets perceive changes in the reaction function of the median participant

and how they price in those changes.

8 Predictability of Bond Excess Returns

This section examines if and how nominal bond excess returns respond to changes in the

monetary policy reaction function of the median participant of the FOMC as measured by the

evolution of the time-varying coefficients of the monetary policy rule. As we motivated in the
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introduction, firms and financial market participants may find useful the information about

the degree of persistence of monetary policy decisions and the median FOMC participant’s

responsiveness to inflation and the output gap when trying to infer the path of future interest

rates. For example, Bauer, Pflueger and Sunderam (2023) indicate that the time-varying

output gap coefficient of a Taylor rule should be inversely related to bond excess returns

because a higher perceived output gap coefficient means that interest rates are expected

to fall more—and bond prices are expected to rise more—during recessions, which is what

they find in their results using Blue Chip data. They also find that neither the inflation

nor the persistence coefficients affect bond excess returns once the regression controls for the

principal components of the yields. However, our findings suggest that a more inertial or

less inflation-focused monetary policy predicts higher bond excess returns, and that no effect

is expected from variations in the output gap coefficient. In other words, a less persistent

or more hawkish monetary policy stance implies that bonds become better macroeconomic

hedges.

We define bond excess returns one year ahead, rx
(n)
t+1, as the difference between (i) the

return from holding an n-year bond at time t and selling it as an n − 1 year bond at time

t+ 1 (one year later) and (ii) the yield of a one-year bond at time t, as follows:

rx
(n)
t+1 = ny

(n)
t − (n− 1)y

(n−1)
t+1 − y(1)t , (6)

where y
(n)
t = − 1

n
lnP

(n)
t and P

(n)
t is the price of a bond with maturity n years in period t.

We use Treasury bond yield data from Gürkaynak, Sack and Wright (2007) to construct the

bond excess returns in (6). Then, we regress the excess returns for n = 2, . . . , 10 on their

respective lags, the (standardized) estimated time-varying coefficients (ρt, α
π
t , and αyt ), and

the first three principal components of the yields used to construct the bond excess returns.

Table 3 shows the results. As mentioned before, a decrease in the persistence of the

monetary policy rule (ρt) or an increase in its reaction to inflation (απt ) lower bond excess
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returns, on average, making them less risky than otherwise; we find no significant effect

from changes to the output gap coefficient (αyt ). Our results point to markets perceiving

the median FOMC participant reacting mostly to demand shocks (as opposed to supply

shocks) in their policymaking during the period 2012:Q3 to 2022:Q1 (effectively, we use data

through 2023:Q1 to construct the bond excess returns one year ahead). The reason is as

follows: When demand shocks hit the economy, output and inflation tend to move in the same

direction, and the Taylor rule implies that the federal funds rate will be procyclical, making

bond valuations countercyclical and, hence, good macroeconomic hedges. As the rule reacts

more to inflation, the federal funds rate becomes even more procyclical and bonds become

even better hedges, implying a likely negative covariance between movements in the inflation

coefficient and bond excess returns. In contrast, when the rule becomes more persistent, the

federal funds rate becomes less procyclical than otherwise, making bonds not as good hedges

as before which implies a likely positive covariance between movements in the persistence

coefficient and bond excess returns. Our results point in these directions. Additionally, like

the effects of a higher inflation coefficient, if the rule becomes more sensitive to the output

gap, a negative covariance between the output gap coefficient and bond excess returns would

be expected. We do not find this channel to be significant in our results.15

15A similar analysis in the case of cost-push shocks would indicate the following: As output and inflation
move in opposite directions, and depending on the size of these movements and the coefficients of the
Taylor rule, the federal funds rate likely becomes countercyclical (following inflation), making bonds bad
macroeconomic hedges. As the inflation coefficient increases, the federal funds rate becomes even more
countercyclical, making bonds even riskier than before, and a positive covariance between movements in the
inflation coefficient and bond excess returns is expected. If the output gap or persistence coefficients increase,
the federal funds rate becomes less countercyclical, diminishing the riskiness of bonds and, therefore, negative
or zero covariances between these coefficients and the bond excess returns are expected. In fact, Pflueger
(2023) finds in a counterfactual exercise in which the economy is subject to volatile cost-push shocks that
“nominal bond betas remain negative, even in the presence of shock volatility similar to the 1980s, provided
that the monetary policy framework is more output-focused, less inflation focused and more inertial than
during the 1980s.”
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Table 3: Bond Excess Returns Regressions

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(6)
t+1 rx

(7)
t+1 rx

(8)
t+1 rx

(9)
t+1 rx

(10)
t+1

ρt 5.93∗∗∗

απt −12.14∗∗∗

αyt 0.13
R2 0.94 0.96 0.96 0.95 0.93 0.91 0.89 0.87 0.84

Note: The econometric model is a system of equations of demeaned excess Treasury

bond returns, rx
(n)
t+1, for n = 2, . . . , 10 years, estimated with weighted (nonlinear) least

squares where the weight is at the equation level. Predictor variables are: the esti-
mated time-varying coefficients of the Taylor rule (ρt, α

π
t , and αyt ), the first three prin-

cipal components of the yields, and the lagged excess returns (with equation-specific
coefficients). All predictors, except the lagged excess returns, are standardized. Re-
sults show only the estimated (long-run) coefficients related to the time-varying Taylor
rule coefficients. Sample: 351 observations from 2012:Q3-2022:Q1.
∗ denotes a p-value<0.1, ∗∗ denotes a p-value<0.05, and ∗∗∗ denotes a p-value<0.01.

9 Conclusion

This paper estimated time-varying coefficients of an inertial Taylor rule that we propose

to model the median forecasts in the SEP to convey information about the monetary policy

reaction function of the median FOMC participant in real time. After the pandemic, the

median participant would be reacting more strongly to inflation than before in setting their

federal funds rate, and rate settings would be more persistent. This information can be

useful for the public to determine how strong the Fed’s reaction to inflation is, so that

private decisions can be made with that information in hand.

Additionally, we find evidence that changes in monetary policymaking, as measured by

changes in the time-varying coefficients of the Taylor rule, are correlated with the evolution

of macroeconomic variables such as the state of the labor market, inflation, macroeconomic

uncertainty, and monetary policy cycles. We also find that bond excess returns are correlated

with changes in the monetary policy reaction function.
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Appendix

A Posterior Distribution Sampler

Our posterior distribution sampler works as follows:

1. For a given set of parameter values {γ1, γ2, γ3, ρ0, απ0 , α
y
0, σ

2
ε , σ

2
ηρ , σ

2
ηαπ

, σ2
ηα
y , R∗2011:12}, se-

quences of lagged time-varying coefficients, {ρt−1}Tt=1, {απt−1}Tt=1, {α
y
t−1}Tt=1, and shadow

federal funds rates, use the Metropolis-Hastings algorithm to sample R∗2011:12 from the

independent proposal density N(−1.47, 1.1).

2. With the newly drawn R∗2011:12, the initial set of parameters {γ1, γ2, γ3, ρ0, απ0 , α
y
0, σ

2
ε ,

σ2
ηρ , σ

2
ηαπ

, σ2
ηα
y}, sequences of lagged time-varying coefficients, {ρt−1}Tt=1, {απt−1}Tt=1,

{αyt−1}Tt=1, and shadow federal funds rates, use the Durbin and Koopman (2002) sim-

ulation smoother to draw the latent states ρt, α̃
π
t , and α̃yt . Obtain απt =

α̃πt
(1−ρt) and

αyt =
α̃yt

(1−ρt) .

3. Conditional on the values of the other parameters and latent states in the model,

obtain a draw of the initial value of the latent states, β0, from N
(
µ̄β0 , σ̄

2
β0

)
, where

µ̄β0 = σ̄2
β0

(
¯
µβ0/¯

σ2
β0

+ β1/σ
2
ηρ

)
and σ̄2

β0
= 1/(1/

¯
σ2
β0

+ 1/σ2
ηρ), for β = ρ, απ, αy, where

¯
µβ0 and

¯
σ2
β0

are the prior mean and variance of the initial value of each latent state,

respectively.

4. Conditional on the values of the other parameters and latent states in the model,

obtain a draw of the variance of the shock to each latent state, σ2
β, from an inverse

gamma distribution with shape parameter āηβ =
¯
aηβ + 0.5T and scale parameter b̄ηβ =

¯
bηβ + 0.5η̂β

′
η̂β, where each of the elements of η̂β is η̂βt = βt − βt−1, where

¯
aηβ and

¯
bηβ

are the prior shape and scale parameters, respectively, for β = ρ, απ, αy.

5. Conditional on the values of the parameters and latent states in the model, sample

shadow rates from a truncated (from above, at 0.13) normal distribution with mean
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γh + EtR
LR
t + ρt

(
EtR

∗
t+h−1 − EtRLR

t

)
+ α̃πt (Etπt+h − 2) + 2α̃yt

(
Etu

LR
t − Etut+h

)
and

variance σ2
ε , for h = 1, 2, 3.

6. Conditional on the values of the parameters and latent states in the model, sample

γh, for h = 1, 2, 3, from a normal distribution with mean σ̄2
γh

(
¯
µγh/¯

σ2
γh

+
∑T

t=1 yt,h/σ
2
ε

)
and variance σ̄2

γh
= 1/

(
1/

¯
σ2
γh

+ T/σ2
ε

)
where

¯
µγh and

¯
σ2
γh

are the prior mean and

variance, respectively, of γh, and yt,h = EtR
∗
t+h − EtRLR

t − ρt
(
EtR

∗
t+h−1 − EtRLR

t

)
−

α̃πt (Etπt+h − 2)− 2α̃yt
(
Etut+h − EtuLRt

)
.

7. Conditional on the values of the parameters and latent states in the model, sample σ2
ε

from an inverse-gamma distribution with shape parameter āε =
¯
aε + 0.5 × 3 × T and

scale parameter b̄ε =
¯
bε + 0.5ε̂′ε̂, where each of the elements of ε̂ is ε̂t = [yt,1− γ1, yt,2−

γ2, yt,3 − γ3]′.
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B Filtered Time-varying Coefficient Estimates

This section shows the time-varying coefficient estimates obtained with the Kalman filter,

using the posterior median estimates as the parameters of the state-space model.

Figure B.1: Filtered Time-varying Coefficient Estimates

(a) Persistence coefficient

(b) Inflation coefficient

(c) Output gap coefficient
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