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Abstract
This paper compares inflation in true price indices to inflation in fixed-weight price indices.
We construct model-based inflation measures in time-dependent pricing models that are anal-
ogous to measures of inflation in the data, e.g., the Consumer Price Index. In the standard
new Keynesian model, when inflation rises rapidly, the differences between inflation in those
indices and true price indices are increasing in the degree of price stickiness and the elasticity
of substitution across goods. For commonly used parameter values, those differences are large

and persistent for increases in inflation of the size seen after 2020 in the U.S.

*The analysis and conclusions set forth are those of the authors and do not indicate concurrence by the Board
of Governors or anyone else associated with the Federal Reserve System. Christiano: Northwestern University and
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Johannsen: Federal Reserve Board: benjamin.k.johannsen@frb.gov. A previous version of this paper was circulated
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1 Introduction

This paper compares true price indices to fixed-weight price indices.! True price indices fully reflect
consumers’ substitution across goods in response to relative price changes. Fixed-weight indices,
e.g., Laspeyres indices, do not. Understanding the difference between true price indices and fixed-
weight price indices is important for empirically understanding the welfare costs of shocks to the
economy and for assessing the empirical plausibility of macro models.

Researchers often compare model-based inflation in the true price index with data-based inflation
measures constructed from fixed-weight indices, like the Consumer Price Index (CPI) (see, for
example, Christiano et al. (2011), Nakamura et al. (2018), and Blanco et al. (2024)).2 The first part
of this paper studies this mismatch using a relatively general specification of consumer preferences
over a fixed continuum of differentiated goods. We assume those preferences are monotone, strictly
quasi-concave, and linearly homogeneous in the continuum of underlying consumption goods. We
show that under two conditions, the difference between inflation in the true price index and inflation
in fixed-weight indices can be unbounded. The first condition is that any strict subset of goods is
inessential in the sense that a consumer can reach positive consumption levels without purchasing
those goods. The second condition is that a subset of firms cannot change prices. This condition
is satisfied in time-dependent pricing models.> When these conditions are satisfied, consumers
can substitute entirely to goods whose relative price is low. When the growth rate of inflation is
high, this substitution can drive a significant wedge between inflation in the true price index and
fixed-weight inflation measures.

In the second part of the paper, we focus on the standard new Keynesian (NK) model with
Calvo (1983) style price rigidities and constant-elasticity-of-substitution (CES) preferences. That
model is of interest because it is widely used in the macroeconomics literature. The standard NK
model satisfies the two conditions mentioned above. We construct model analogs to fixed-weight

inflation indices and show that when the growth rate of inflation is high, the differences between

!See Koniis (1924) for a seminal analysis of true price indices.

2Christiano et al. (2011) match inflation in the true price index in the NK model to core CPI inflation. Nakamura
et al. (2018) match inflation in the true price index in the Calvo model to CPI inflation excluding shelter in their
figures VIII and XIII. Blanco et al. (2024) follow Nakamura et al. (2018) in matching inflation in the true price index
to CPI inflation excluding shelter.

30ur usage of “time-dependent pricing” follows the Klenow and Kryvtsov (2008), who use that term to mean that
the ability of firms to update their prices is based on an exogenous process.



inflation in those indices and inflation in the true price index are increasing in price stickiness, the
elasticity of substitution across goods, and the level of inflation.

We then ascertain how large these differences are for inflation increases of the size seen since 2020
in the U.S. Setting the model analogs of inflation in fixed-weight indices equal to observed core CPI
inflation, we recover values for inflation in the true price index implied by the model. For parameter
values widely used in the literature, the differences between the inflation in fixed-weight indices and
the true price index are large and persistent during the past five years when U.S. inflation rose
rapidly and then declined. In the decade before this period when inflation was low and stable the
differences are small.

Taken as a whole, our results suggest that researchers should use model-based inflation measures
that are consistent with how inflation is measured in the data. Doing so is particularly important

when using time-dependent pricing models to analyze data in a period of rapid growth in inflation.

1.1 Related literature

Our results are related to the large literature on biases in measured price indices. See, for example,
Boskin et al. (1996). More recent work includes Redding and Weinstein (2020), Braun and Lein
(2021), and Redding and Weinstein (2024). These papers focus on developing measured price indices
that take substitution effects and other shocks into account. Our analysis focuses on developing
model-based inflation measures in time-dependent pricing models that are consistent with measures
of inflation in the data, e.g., the CPI. In addition, we recover model-implied levels of inflation in
the true price index.

Our results also relate to Kocherlakota (2024), who analyzes short-run differences between
Laspeyres and true price indices in the standard NK model. As in our analysis, these differences
arise because of consumers’ desire to substitute towards goods whose relative prices are low. By
short-run, Kocherlakota (2024) means that people’s expectations about future inflation and real
marginal costs are fixed at their steady-state values. In contrast, our analysis does not depend on
assumptions about people’s expectations or many of the details of the standard NK model. Kocher-
lakota (2024) focuses on the shape of the short-run Phillips curve. We focus on differences between
measured price indices and the model-implied true price index, particularly during periods when

inflation rises rapidly.



Moulton (1996) argues that substitution bias is not necessarily larger at higher inflation lev-
els. Hausman (2003) argues that substitution bias from an individual price change leads to a
second-order difference between the true price index and Laspeyres fixed-weight indices. We pro-
vide conditions under which these differences can be large. In addition, we derive expressions for the
differences between inflation in fixed-weight price indices and inflation in the true price index implied
by the standard NK model, and show how these differences can appear in log-linear approximations
of solutions to that model.

Our analysis highlights the importance of price dispersion across goods during a period when
inflation rises rapidly, as well as the importance of consumers’ willingness to substitute across goods.
During periods when inflation rises rapidly, the extent of price dispersion increases in time-dependent
pricing models where some firms cannot change their prices. This feature of time-dependent models
has been called into question (for related discussion, see Nakamura et al. (2018) and Montag and
Villar (2022)). Still, these types of models are widely used to analyze U.S. data. Price dispersion
is lower in menu-cost models like the one studied by Golosov and Lucas Jr. (2007). So, in those
models, there are fewer opportunities for consumers to substitute across goods.*

Our empirical example focuses on inflation during and after the COVID-19 pandemic. Our
analysis allows for supply shocks and demand shocks that do not affect the relative demand for
different goods. However, we abstract from demand shocks that cause shifts in consumption patterns
across sectors (see Redding and Weinstein (2020)). There were likely such shocks during the COVID-
19 pandemic (see, for example, Eichenbaum et al. (2022), Ferrante et al. (2023), and Cavallo (2024)),
which could have important implications for measured inflation. For example, Cavallo (2024) finds
that CPI inflation during the COVID-19 pandemic understated inflation in 2020 relative to measures
that take into account shifts in consumption across sectors. These results are consistent with the
view that it is important to use model analogs of measured price indices when assessing the empirical
plausibility of models.

The remainder of this paper is organized as follows. Section 2 discusses the relationship between
inflation rates based on true price indices and fixed-weight price indices. Section 3 applies the

analysis of Section 2 to the standard NK model. Section 4 compares the quantitative relationships

“Blanco et al. (2024) consider a Calvo-style model in which the number of prices that are reoptimized evolves
endogenously. The amount of price dispersion in their model is lower than in a standard Calvo-style model.



between true price indices and fixed-weight price indices using post-2010 U.S. data. Section 5

contains concluding remarks.

2 Substitution bias and fixed-weight price indices

In this section, we consider true price indices that emerge from consumers’ expenditure choices.
We compare inflation computed with these price indices to inflation computed from fixed-weight

indices.

2.1 Consumer demand

We allow for relatively general demand systems. A representative consumer derives utility from
an aggregate consumption good, Cy, that is produced using a continuous, strictly increasing, and
strictly quasi-concave function that is homogeneous of degree one, which we denote by C, that
aggregates a continuum of underlying consumption goods, z;¢ for i € [0, 1].5 We denote such a
continuum by {z;}. Because the aggregate consumption good is produced using a function that is
homogeneous of degree one, the true price index, F;, is independent of the level of Cy. Therefore,

the value of P; is the expenditure required to produce one unit of Cy:

1
P = {II]III}/ P, 1z ydisubject toC ({z4}) > 1. (1)
Xit 0

Here, P;; is the price of good 7. Let {w;"t} denote the solution to this problem. We suppose, for
simplicity, that for all ¢ and ¢, 27, and P;; are positive and finite. Note that P; is constructed using

the values {wft} that change each period as {P;;} changes.

2.2 Arithmetic fixed-weight price indices

Define an arithmetic fixed-weight price index as

1
Zt:/ Pi,twidi. (2)
0

®We do not consider product entry and exit.



We assume that {w;} o {x;‘T} for some 7 < ¢ or that the values of w; are set to be proportional
to the unconditional mean of expenditure weights over time. We normalize this index so that
Zy1 = P,_1. The relationship between inflation rates in period ¢ constructed using P; and Z; is

given by

r (" P, di
T — T = o (a:i,t—wi) i (3)

where, m; = P;/P;_1 and 7th = 7 /Zt_l.6 For large increases in the prices of a subset of goods
relative to all other goods, 27, could be much lower than w; for those goods. In that case, m — 77{
could be large and negative. So, the features of preferences that govern the degree of substitutability

of different goods play a large role in determining the difference between m; and ﬂ{ .

2.3 Substitutability, time-dependent pricing, and the difference between infla-

tion rates

In this subsection, we make assumptions about C, which relate to consumers’ willingness to substi-
tute between goods, and the way that firms update prices to analyze the difference between m; and
o

We assume that one unit of the composite consumption good can be produced using any strict
subset with positive measure of the underlying continuum of consumption goods. That is, for any

strict subset of the unit interval with positive measure, €, if z;; > 0 for ¢ € 2 and z;; = 0 for all

other 4,then

C ({zit}) > 0. (4)

We refer to this assumption as the “inessentiality” of any subset of consumption goods.”

Because C is homogeneous of degree one, there exists some finite Mg > 0, so that
C({Mawit}) = 1. (5)

In general, Mq depends on the values {x;;}.

Macroeconomists often assume that some nominal prices are sticky. Time-dependent models of

5The right-hand side of equation (3) would be a covariance between P;;/P;—1 and x}, —w; if fol (atft — w,') di = 0.
TOur use of “inessentiality” is similar to the use of the term “inessential” in Matsuyama (2023). But, we use the
term with reference to a measure of goods.



nominal rigidities, like those of Calvo (1983) and Taylor (1979, 1980), assume that a subset of prices
cannot change in any given period. We now analyze the relationship between m; and 7th when that
assumption holds.

Let ©; be the set of firms that can update their prices at time ¢, and let ©f be the complement
of that set in the unit interval. We assume Of has positive measure. Given our inessentiality

assumption

1
Po= [ Pusidi< [ Pl Mogds (6)
0 b

where Mege is the finite scalar such that if z;; = 0 for i € ©; and z;; = MG,?fo,t—l for i € ©F,
C ({Mecwir}) = 1. Recall our assumption that P;;_1 and xj,_; are positive and finite. So,

equation (6) implies P; and 7 are bounded in period t. Moreover,

P
- < — widi +/ vl (Meea;, | —w;) di. (7)

If the prices chosen by firms that update their prices are high relative to P;_1, the first term on
the right-hand side of the inequality is negative, large, and increasing in magnitude in the prices
set in period t. The second term is a constant. So, under our assumptions, 771{ can be arbitrarily
larger than 7;. The exogenous selection of which firms adjust prices is the key to understanding
this result. It leads to higher price dispersion as inflation increases and more opportunities for
consumers to substitute to goods whose relative price is low. So, the extent to which 7 and 71'{
differ depends critically on the extent of price dispersion across goods caused by recent price changes

and consumers’ willingness to substitute between goods.

2.4 Geometric mean fixed-weight price indices

Define a geometric mean fixed-weight index as

Gy = exp ( /0 ' ilog (Por) dz’) , (8)

where w; > 0 and fol w;di = 1. If preferences are Cobb-Douglas across goods, then Gy is the true
price index. More generally, the more substitutable goods are, the more G; should differ from

P,. The Cobb-Douglas case aside, because the weights, w;, are fixed, G} does not fully reflect



substitutability induced by relative price changes.
As in the previous sub-section, let ©; be the set of firms that can update their prices at time ¢,
let ©f be the complement of that set in the unit interval, and let ©f have positive measure. To see

that G; can meaningfully differ from P; in time-dependent pricing models, we write G; as

log (Gy) = / wj log (P; ;) di + / wj log (P 1—1) di. 9)
o o¢

If the prices chosen by firms that update their prices are high, the first term on the right-hand side
of equation (9) is positive and large. Moreover, that term is increasing in the prices set in period ¢.
The second term is a constant. So, under our assumptions, 7 = G¢/G¢_1 can be arbitrarily large,
even when 7; is bounded.

In sum, in this section, we showed that the difference between inflation rates computed using a
true price index versus a fixed-weight arithmetic or geometric mean price index can be arbitrarily
large. In both cases, the degree to which consumers are willing to substitute across goods is a

critical determinant of the difference between inflation rates.

3 Application to the NK model with a CES consumption aggrega-

tor

It is common in the NK literature to use the CES consumption aggregator of Dixit and Stiglitz

C({zsr}) = (/Ol:rtdz)_ (10)

Here € > 1 and the x;; are differentiated goods produced by monopolists. The CES consumption

(1977) given by

aggregator has the property that any strict subset of the unit interval is inessential.® Equation (10)

and cost minimization imply that the ideal price index is given by

1
1 T—¢
Pt—</ P;;Sdi) : (11)
0

8Some NK models use a consumption aggregator as in Kimball (1995). There are parametric versions of the
Kimball (1995) consumption aggregator that have the property that for given parameters a small enough subset of
the unit interval is inessential (see, for example, Klenow and Willis (2016)).




The standard NK model assumes Calvo-style frictions in price setting.? Specifically, in each period,
a measure 0 < 0 < 1 of randomly selected monopolists cannot re-optimize their price and set
P+ = Pi;—1.1% The complementary measure, 1 — @, of monopolists can re-optimize their price. A
standard feature of NK models is that all of the reset prices, P;, chosen by re-optimizing firms are

the same. Equation (11) implies

Ptl_6 =(1-9) ptl_e + gptl_—f’ (12)

1

and equation (12) implies Pt/Pt = (17—9);

1797r571

3.1 The upper bound on 7; in the NK model

Consistent with equation (6), there is an upper bound on 7; in the standard NK model. To derive
the bound in the NK model, notice that equations (5) and (10), along with the random selection
from the Calvo-style price friction, imply that there exists a finite, positive value M such that if

z; = 0 for goods whose prices change and x;¢ = Mx7,_, for all other goods then

1 e1 E—Ll 1 e—1 E_Ll €
1= </ (w0 M) = di) =M (0/ (x,1) © dz‘) = MO=—1. (13)
0 0

€

So, M = 6~ =1. It follows from the inequality in equation (6) that

1
Pt S M9/ -Pi,t—lx;it_ldi = Q_H%Pt_l (14)
0

and

1

m < 0 1. (15)

This upper bound on 7 is the same as the one in Andreasen and Kronborg (2022), who use equation

(12) directly to derive the bound. Consumers’ ability to substitute entirely to the goods produced

9An alternative that is sometimes used in the NK literature is to assume Rotemberg-style costs of adjusting prices
(see Rotemberg (1982)). It is well known that the Calvo- and Rotemberg-style frictions are equivalent up to a first-
order approximation. However, Rotemberg-style frictions imply that all prices change every period. This implication
is at odds with existing evidence about price changes (see Nakamura et al. (2018)). Because all prices change every
period with Rotemberg-style costs of adjustment, the substitution effects that we are stressing are absent.

107t would be straightforward to extend our results to account for models in which monopolists that cannot re-
optimize change their price using steady-state inflation or past inflation.



by firms that do not re-optimize their prices delivers the bound on m;. The bound depends on the
parameter €, which governs the degree to which consumers are willing to substitute across goods.
Larger values of € imply higher degrees of substitutability and a smaller upper bound on ;. The
bound also depends on 6, which governs how many monopolists cannot re-optimize their prices.
The higher is 6, the smaller is that bound. The reason is that the higher is 6, the larger is the
subset of firms that cannot re-optimize their price. So, consumers can substitute to the goods of a

larger subset of firms whose price is not re-optimized.'!

3.2 The difference between 7, and W{ in the NK model

Define the arithmetic fixed-weight price index Z; = fol P, jw;di where fol widi = 1. In the standard

NK model Z; evolves according to
Zi=(1—-0)P+07Z;_4. (16)

Define z; = Z;/ P, and 71{ = Zi/Z;—1. Equations (12) and (16) imply

1
1-46 e-1 Zt—1
=1-0) ——— + 60—, 17
2t ( )(1_971_?1) T ( )
B O B Sl A R .y 1
T — T ( )<1_0ﬂ—t€_1 zt,1+(7rt ) - (18)

Equation (18) shows how m; — 7rtf varies with the level of 7 in the NK model. As P, becomes large,

1-6
1-6rs 1

1
1 ~ =—1
m¢ approaches its upper bound, " =1, P,/P, = ( )E ' becomes unboundedly large, and 77{

becomes much larger than 7;. The reason is that consumers substitute toward goods produced by

firms that have not re-optimized their prices, and this substitution effect is not reflected in ﬂ{ .
Assuming zero or positive steady-state inflation in the true price index, Z;/P; has a finite steady-

state value and the steady-state levels of inflation implied by these indices are the same. Intuitively,

the distribution of prices does not change over time in a steady state, so substitution bias is not

systematically better or worse. In a log-linear approximation of equations (17)-(18) around a zero

" The bound on 7¢ in equation (15) also applies to steady-state inflation. King and Wolman (1996), Ascari (2004),
and Ascari and Sbordone (2014) also argue that the standard NK model has an upper bound on steady-state price
inflation. Ascari and Sbordone (2014) show that steady-state inflation, 7, satisfies 807° < 1 and 807°~! < 1, where
0 < B < 1 is the rate of time discounting. The bound in equation (15) may be a tighter bound on steady state
inflation, depending on parameter values.

10



inflation steady state, the difference between 7['{ and m; is zero.'? This observation suggests that

using linear approximations to analyze inflation in the NK model may lead to misleading inferences
in periods when inflation rises rapidly. It also suggests that equation (18) may be useful for assessing

the accuracy of linear approximations.

3.3 The difference between 7, and 7/ in the NK model

Define the geometric mean fixed-weight price index Gy = exp ( fo log (P +) wldz) where fo widi = 1.

In the standard NK model G; evolves according to
log (G¢) = (1 —6)log (1—2) + 0log (G¢—1) . (19)

Define g; = G¢/P; and 7} = G¢/G;—1. Equations (12) and (19) imply

log (g¢) = (1 —0)log ( ) + 0log (gi—1/7) s (20)

( 1-6 1
T A - aﬂt (21)

Equation (21) shows how m; — 7J varies with the level of 7; in the NK model. As P, becomes large,

_1
7 approaches its upper bound, §7 =1, P, /P, = (1675) *! becomes unboundedly large, and 7
i
becomes much larger than m; as consumers substitute away from the goods with the high reset price.

This substitution effect is not fully reflected in 7/ as long as ¢ > 1.13

2Let #; = log (x¢/x), where z is the non-zero steady-state value of x;. Log-linearized versions of equations (17)-
(18) around a zero inflation steady state are Z; = 602;—1 and frt =7t — (1 — 0) 2¢—1. Setting zo = 0, or assuming that
many periods have passed prior to the first period of a simulation gives the result that 7rt = 7Tt ‘When log-linearized
around other steady-state values for inflation, there are first order differences between 7rt and 7.

13 As was the case for 7rtf , in a log-linear approximation of equations (20)-(21) around a zero inflation steady state
the difference between 7 and m; is zero (see footnote 12). Additionally, the steady-state levels of 7} and m; are the

same.
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4 Measured inflation

4.1 Model-based measures of inflation that correspond to the CPI

Measured price indices do not correspond to the model-implied true price index. Measured price
indices like the CPI are fixed-weight indices. Those weights are updated periodically based on
expenditures in prior years (see U.S. Bureau of Labor Statistics (January 30, 2025)). So, over short
periods, the weights on different goods in the CPI are effectively fixed. During a period when
inflation rises rapidly, our analysis in section 2 indicates that inflation rates implied by fixed-weight
price indices could be meaningfully different from inflation in the true price index. To the extent
that is true, it is important for quantitative analysis to use a model-based measure of inflation that
corresponds to how inflation is measured in the data.

Here, we focus on the CPI to construct a model-based measure of inflation. Roughly, the CPI
is constructed in two stages (see U.S. Bureau of Labor Statistics (January 30, 2025)). First, prices
within most categories are combined using a geometric average (see Dalton et al. (1998)). The
weights in this geometric average come from expenditures in previous periods. Second, categories
are combined across sectors using a modified Laspeyres index. The latter price index is an arithmetic
fixed-weight index whose weights come from previous-period expenditures across sectors. We expect
more substitutability within a sector than across sectors (see, for example, Atkeson and Burstein
(2008)).

The standard NK model does not have a rich enough industry structure to mimic the two-
stage construction of the CPI. We can think of the different P;;’s as denoting either prices from
monopolists within a sector or from monopolists across sectors. So, the analog of core CPI inflation
in the model can be thought of as either 7th or m{. One would adopt different values of ¢ depending
on which interpretation one adopts. Below, we investigate different values of ¢.

We do not periodically update the weights of the indices in our calculations for two reasons.
First, we are particularly interested in the rapid rise in inflation after 2020. Over such a short period,

the weights in the CPI would not change to reflect changes in expenditure patterns across goods.

Second, our results are not sensitive to choosing different starting dates for z;—1 =1 or gs—1 = 1.

We consider a Laspeyres index in which the weights are updated every period, as in Kocherlakota (2024), in our
Appendix.

12



Recall that those variables are the initial ratio of the fixed weight index to P;_;. Updating the
weights in the price indices corresponds to setting a new value for z;_1 or g;—1. The robustness
of our results to different starting dates reflects that m, 7r{ , and 7r{ are very similar in the decade

before the COVID-19 pandemic.

4.2 Model-implied substitution bias since 2011

We assume that core CPI inflation corresponds to 7rtf or {. We use equations (17)-(18) or (20)-(21)
to calculate the quarterly values of 7; implied by the model.!?

Panel (a) of Figure 1 displays the core CPI inflation rate for 2011:Q1 through 2024:Q4 (U.S.
Bureau of Labor Statistics 1957-2024 via FRED).!6 Panel (b) displays 7 — 7th for different values of
€ under the assumption that ﬂg is the model analog to core CPI inflation. In that panel, 8 is fixed
at 0.75. The values of € = 4, 7, and 10, correspond to the values used in Nakamura et al. (2018),
Coibion et al. (2012) and Atkeson and Burstein (2008), respectively. As discussed in Atkeson and
Burstein (2008), higher values of ¢ are more relevant for thinking about substitution within sectors
than across sectors. During the low and stable inflation period from 2011 through 2019, m; and
7th are similar for the different values of €. During the post-2020 period, there are substantial and
persistent differences between m; and 7['{ . For example, when ¢ = 7, the maximal difference between
m and 7rf is roughly one percentage point. Consistent with the discussion above, the differences
between m; and 7T{ increase in e, which governs the degree of substitutability among goods.

Panel (c) displays 7 — 7rgc for different values of § assuming that ¢ = 7. The values of § = 0.65,
0.75, and 0.85 correspond roughly to the point estimates in Smets and Wouters (2007), Christiano
et al. (2014), and Justiniano et al. (2013), respectively. Consistent with the discussion above, the
differences between m; and 7th can be substantial and persistent. The difference is increasing in 6,
which governs the degree of price stickiness and is the measure of firms that do not re-optimize their
prices to which consumers can substitute.

Panels (a) and (b) in Figure 2 display the analogs of panels (b) and (c¢) in Figure 1 when we

replace Trtf by m{. Notably, the results for 77{ and 7{ are very similar. At least for increases in

15We set 2z, = 1 in 2010:Q4 and g; = 1 in 2010:Q4. Our results are robust to different starting dates for z, and g;.
If a researcher had a series for m;, equations (17)-(18) and (20)-(21) could be used to calculate values for 7/ and 77.

16We average the core CPI index to obtain a quarterly index, and then compute annualized quarterly inflation
rates.

13



inflation of the size experienced after 2020, none of our conclusions regarding the standard NK
model depend upon whether we think of the CPI as an arithmetic or geometric mean fixed-weight

price index.

5 Conclusion

We compare inflation in true price indices to inflation in fixed-weight price indices. As is well
known, the differences between these indices depend on the degree to which consumers are willing
to substitute across goods. We show that those differences can be unbounded. We apply our
analysis to the NK model and show that in the post-2020 period, inflation in model-based fixed-
weight price indices differ markedly from the model-based measure of inflation in the true price
index. Those differences are increasing in price stickiness and the degree to which consumers are
willing to substitute across goods. There may be a smaller mismatch between true price indices and
superlative price indices constructed in the model. We leave this issue to future research.

We conclude that researchers should use model-based measures of inflation that are consistent

with the way inflation is measured in the data, especially in periods when inflation rises rapidly.
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Appendix

In the context of the standard NK model considered in section 3, define a Laspeyres measure of
inflation as in Kocherlakota (2024) as
L Jo Puxi,di (L= 0) P [y @, di+ 0P

Ty = - = =1 -0)ar_1ptm + 0 (22)
fol Pipaxi, di Fi-1

where p; = P, /P, and

_ ! * o gs ! R,t - . ~ e e
ap = | xj4di= di=(1-6)p;°+ 0nfa,_1. (23)
0 0

In steady state

T—1

L
=1 1-0)———
m +( )1—97r5’

(24)

where 7 is the steady-state value of 7; and 7% is the steady-state value of 7rtL. When 7 > 1 there
is a steady-state difference between 7/ and m;, and that difference is increasing in 7. The reason
that there is a steady-state difference between 7 and m;, but not between Trtf and 7, is that 7/

has updated weights in every period. The weights in 7rgr are fixed.
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