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Abstract

Payment fraud has been high in recent years, and as criminals gain access to
capability-enhancing generative Al tools, there is a growing need for innovative
fraud detection research. However, the pace, diversity, and reproducibility of
such research are inhibited by the dearth of publicly available payment
transaction data. A few payment simulation methodologies have been developed
to help narrow the payment transaction data gap without compromising
important data privacy and security expectations. While these simulation
approaches have enabled research advancements, more work is needed to
generate datasets that reflect diverse and evolving fraud tactics. This paper
introduces CardSim, a flexible, scalable payment card transaction simulation
methodology that extends the small but emerging body of simulators available
for payment fraud modeling research. CardSim is novel in the extent to which
it is calibrated to publicly available data and in its Bayesian approach to
associating payment transaction features with fraud. The simulator’s modular
structure, which is operationalized in a corresponding software package, makes
it easy to update based on new evidence about payment trends or fraud patterns. '
After laying out the simulation methodology, I show how outputs can be used to
test and evaluate machine learning workflows, modeling approaches, and
interpretability frameworks that are relevant for payment card fraud detection.

Keywords: payment cards, fraud detection, Bayesian analysis, simulation,
machine learning
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1 Introduction

Payment card fraud is a perennial concern for consumers, merchants, financial institutions, and
policymakers. Fraud statistics show significant growth in payment card fraud in the United States
since the COVID-19 pandemic. Survey data from the Federal Reserve Bank of Atlanta found that
in 2023, 11.5 percent of credit card owners and 9.4 percent of debit card owners experienced card-
related theft or fraud (Foster, Greene, and Stavins, 2024). These figures were more than double the
rates before the pandemic. Similarly, the number of credit card fraud reports filed by consumers
with the Federal Trade Commission (FTC) and the number of debit- and credit card-related
suspicious activity reports filed by depository institutions with FinCEN were, respectively, 113
and 75 percent higher in 2023 than in 2019 (FTC, 2020, 2024; FinCEN, 2024).! Fraud was also
the top operational risk concern cited by a plurality of financial institution risk officers (49 percent
of respondents) in a 2023 Federal Reserve Financial Services (FRFS) survey, above cyber security,

business disruptions, and third-party risk (FRFS, 2024).?

Developments in artificial intelligence (Al) complicate the fraud picture. On the one hand,
easily accessible generative Al tools could augment malicious actors’ ability to perpetuate fraud in
payment systems by helping them to develop and deploy more convincing fraud schemes (FSSCC,
2024; FSB, 2024; U.S. Treasury, 2024). On the other hand, financial institutions and authorities
use Al extensively for fraud detection, prevention, and response (FSB, 2017; Board of Governors
and others, 2021; FSOC, 2023; OECD, 2023). Over the last two years, payment service providers
have announced a wide array of Al-related fraud detection initiatives (for examples, see:

Mastercard, 2024; Visa, 2024).

Academic research on payment card fraud detection has also grown. A Web of Science
search shows 316 published studies on payment card fraud detection in the past 10 years.®> A major
constraint on the pace and diversity of fraud detection research is the lack of publicly available
payment data. Payment transaction data are highly sensitive and economically valuable. The
widespread use of transaction data for fraud detection research is understandably inhibited by data

privacy imperatives and economic incentives. Some published studies use slices of data provided

"' The FTC data did not capture debit card fraud reports in 2019.
2 As of this writing, year-end 2024 data were not available for the sources cited here.
3 Based on the following search string: ("payment card" OR "debit card" OR "credit card") AND "fraud detection".
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by financial institutions or central banks under strict privacy and security controls. The inability to
publish underlying data in these studies hampers reproducibility and research extensions. Many
other studies use a core set of publicly available datasets. While these datasets have enabled
significant innovation and knowledge sharing in the fraud detection discipline, they tend to be
dated, small samples that are highly masked. These challenges can make it difficult to thoroughly

compare machine learning (ML) approaches in the face of constantly evolving fraud patterns.

Simulations have emerged as a way to overcome some data gaps in this area. Although
they are imperfect representations of reality and have their own limitations, simulations can help
mitigate privacy and competitive concerns. Well-designed simulators can quickly generate very
large samples and can be modified to reflect changing payment behaviors and fraud techniques. In
recent years, researchers have introduced payment-related simulation methodologies to support
research in payment fraud detection and related areas, such as anti-money laundering (AML) (Le
Borgne and others, 2022; Lopez-Rojas, Elmir, and Axelsson, 2016; Suzumura and Kanezashi,
2021; Altman and others, 2023). While these simulators have enabled a wide range of researchers
to test ML models for payment fraud detection, more work is needed to build methods that reflect

the varied dynamics of fraud in payment systems.

This paper extends the small but emerging body of simulation methodologies geared
toward fraud detection research by introducing CardSim, a flexible, scalable payment card
transaction simulator that has three important features. First, most aspects of the simulator are
calibrated to publicly available survey and economic data.* Second, the simulator embeds complex
relationships between payment transaction features and fraud using Bayes’ theorem. Third, the
simulator is highly modular. Nearly every parameter can be easily adapted to capture changing
payment and fraud trends. Collectively, these properties facilitate testing the strengths and
weaknesses of ML models for fraud detection. The methodology is operationalized in a software

package that has been published alongside this paper for public use.

The remainder of this paper proceeds as follows. In section 2, I review related work that
seeks to address the payment transaction data gap. Section 3 lays out the simulation methodology

in detail, which involves three key phases: developing payer and payee characteristics, running a

4 Calibration sources include the Diary of Consumer Payment Choice (Foster, Greene, and Stavins, 2024), the Federal
Reserve Payment Study (Board of Governors, 2024), and Gerdes, Greene, and Liu’s (2018) payment fraud study.
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transaction simulator, and using Bayes’ theorem to generate a fraud flag. Next, section 4 walks
through the results of a representative simulation. In section 5, I show how simulator outputs can
be used to test and evaluate ML workflows and modeling approaches that are relevant for fraud
detection. Section 6 concludes by summarizing the implications of this work and identifying areas

for future research.

2 Related work

Data privacy standards and competitive economic pressures prevent the dissemination of sensitive
payment transaction data for research purposes (Altman and others, 2023; BIS, 2023). While some
researchers have access to slices of transaction data from financial institutions under tight controls,
many use a limited set of published datasets. Grover and others (2022) catalogue the most used
datasets for fraud detection and related issues. Four of nine datasets they identify relate to retail
payments. One dataset published by the Machine Learning Group at the Universite libre de
Buxelles (ULB) in collaboration with the payment processing firm Worldline on the Kaggle
machine learning website (Dal Pozzolo, 2016) is a popular choice for fraud detection research.’

The IEEE-CIS payment transaction dataset (Howard and others, 2019) is also widely used.

Even when researchers use real transaction data, challenges often remain. Published
samples are typically small, non-current, and masked. These properties are evident in the ULB-
Worldline data, which contain a relatively small number of highly redacted records that were
carried out more than a decade ago. The feature variables are reduced to principal components to
completely mask what they represent. Another important challenge is dealing with inconsistent or
entity-specific labeling practices that limit generalizability. For example, fraud flags may reflect
what happens after fraud is detected rather than the occurrence of fraud specifically.® The IEEE-
CIS data has a fraud labeling framework that involves labeling all transactions associated with an
account as fraudulent after fraud is first reported until the account is terminated or 120 days

elapse.” While fraud detection research has benefitted tremendously from the publication of these

5 As of this writing, the ULB- Worldline dataset is the second most upvoted dataset on Kaggle out of 434,571. Source:
Kaggle (2025), “Datasets,” https://www.kaggle.com/datasets?sort=votes, accessed February 16, 2025.
¢ Labeling can also be affected by jurisdiction-specific policies. For example, some jurisdictions may allow more
widespread use of personally identifiable information, such as unique customer identifiers. This can enable customer
transaction history to persist after certain account details, such as card number, have been terminated.

7 For a discussion, see https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203#589276.
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datasets, their limitations can pose challenges for thoroughly assessing ML models that thrive on

big datasets, investigating evolving fraud patterns, and testing emerging interpretability methods.

This paper builds on recent simulation methodologies that are meant to help narrow the
payment transaction data gap and support fraud and money laundering detection research. Lopez-
Rojas, Elmir, and Axelsson’s (2016) PaySim generates synthetic mobile money transactions using
a baseline dataset of real payment transactions from an African mobile money service provider.
Suzumura and Kanezashi’s (2021) AMLSim is a well-known graph-based simulation methodology
for embedding complex money laundering typologies in payment transaction data. Building on
AMLSim, Altman and others (2023) introduced AMLW orld, which includes more complex agent
interactions than its predecessor. Much like CardSim, all transaction patterns in AMLWorld are

based on statistical distributions.

Many precedent simulators are agent-based models. Cardsim has some features in
common with agent-based models in that payers and payees interact. Ultimately, though, the
methodology is more consistent with stochastic microsimulation models that assume constant
behavior (Orcutt, 1957; Birkin and Wu, 2011). The payers and payees in Cardsim do react to
constraints like account balances, and their behavior does not change over time. In contrast to

many microsimulation applications, Cardsim is not geared toward public policy analysis.

CardSim builds most heavily on the methodology developed by Le Borgne and others
(2022). As in their simulator, CardSim focuses on payment card transactions and uses payer and
payee profiles to develop and run a daily transaction simulator. However, the core of CardSim
differs in important ways. Notably, most of the key simulation parameters are derived from
publicly available survey and economic data, and the corresponding parameters used in the two
approaches differ significantly. Additionally, Le Borgne and others (2022) embed three types of
fraud typologies in their simulator.® CardSim does not use typologies, which tend to be
deterministic, to capture fraud. Rather, it uses Bayes’ theorem and known properties of fraudulent

transactions to associate payment transaction features with fraud. To my knowledge, Cardsim is

8 The typologies are: (1) High value: transactions above a certain value are labeled as fraud; (2) Compromised
merchant: all transactions from randomly drawn merchants are labeled as fraud for a period of time; and (3)
Compromised credentials: a fraction of payments made by a random selection of payers are labeled as fraudulent for
two weeks, and corresponding payment amounts are scaled up by a factor of five.
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the first Bayesian payment card fraud simulator, and it is more heavily dependent on publicly

available survey data than related alternatives.

3 Simulation methodology

CardSim focuses on generating synthetic transaction data and fraud patterns consistent with
consumer-to-business (C2B) non-prepaid debit and credit card payments and unauthorized, third-
party fraud.” The simulation proceeds in three phases. First, I develop payer and payee
characteristics that establish geographic locations, typical payment patterns, and the ratio of payers
to payees. Second, I run the core transaction simulator, which establishes the number of payments
payers make each day and develops five transaction attributes. Finally, I generate a fraud label
using Bayes theorem. Every parameter the simulator uses is adjustable. This modularity can enable
researchers and practitioners to experiment with different parameters and simulate evolving

payment and fraud trends. Sections 3.1-3.3 explain the three simulator phases in detail.

3.1 Payer and payee characteristics

The first phase of the simulator involves developing payer and payee characteristics. Focusing first
on the payers, each is assigned an average number of daily card transactions, an average value and
dispersion of debit and credit card payment amounts, and x,y coordinates. I derive the payer-
specific payment characteristics using the Diary of Consumer Payment Choice (DCPC) (Foster,
Greene, and Stavins, 2024). To generate the average number of daily card transactions, I draw m
samples of size n from the weighted number of daily debit and credit card transactions reported
by individuals in the 2022 and 2023 DCPC surveys.'? In the simulator run underlying this paper,

m = 2,500 and n = 100. I only retain individuals who have adopted a debit or credit card.

Next, I find the distribution of sample averages, which is depicted in Figure 1. The
distribution’s centrality is consistent with the average number of daily debit and credit card
transactions from the DCPC, which stood at 0.76 in 2022 and 0.92 in 2023. For each payer, I draw
a random value with replacement from the distribution of sample averages. As discussed later in

section 3.2, the transaction simulator draws the daily number of card transactions for an individual

° For discussions of different fraud typologies, see Federal Reserve (2023) and Gerdes, Greene, and Liu (2018).
1T use the DCPC’s day-of-week weights to adjust the number and value of payment transactions used in the simulator.
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from a Poisson distribution, which only takes a mean parameter. Thus, I do not generate a

dispersion component for the number of daily transactions.

Number of debit and credit card transactions per day
Density

2.5

0.4 0.6 0.8 1.0 1.2 1.4 16 1.8 2.0
Distribution of sample averages

Figure 1. Distribution of card transaction sample averages. Figure depicts the distribution
of sample averages of the daily number of card transactions for 2,500 samples of 100
observations drawn from the 2022 and 2023 DCPC surveys. The distribution is centered
around 0.86 transactions per day.

Generating the payer-specific average value and dispersion of debit and credit card
payment amounts is similar to, but slightly more complex than, finding the average daily
transactions. As in the latter, I draw m samples of size n from the weighted debit and credit card
transaction values, separately, from the combined 2022 and 2023 DCPCs, where m = 5,000 and
n = 200 in this simulator run. Figure 2 shows the distribution of card payment amounts (left
panel), zeroing in on those below $500, sample means (middle panel), and sample medians (right
panel), with debit card distributions on the bottom row and credit card distributions on the top row.
Unsurprisingly, the raw distributions of payment amounts are heavily skewed. The distributions of
sample means are centered at approximately $62-72, while the distributions of sample medians are
centered around $18-21. The latter appear more realistic as representative payment amounts for
the payer-specific characteristics. Thus, I draw random values for each payer from the distributions

of medians to serve as the payer’s average payment amount for debit and credit card transactions.



Diary Simulations: Distribution of Payment Amounts and Sample Metrics
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Figure 2. Distribution of payment amounts and sample metrics from the diary data and simulations.
Figure depicts distributions of credit (top row) and debit (bottom row) card transactions and sample
metrics. Left column captures the distribution of card payment amounts from the 2022 and 2023
DCPC surveys, zooming in on values below $500. The distributions are skewed heavily right. Middle
column captures the distributions of sample means for 5,000 samples of size 200 drawn from the
DCPC transactions. The credit card distribution is roughly normal, with some right skew, and centered
around $72, while the debit card distribution, which is centered around $62, has more kurtosis. Right
panel captures the distribution of sample medians for the same simulation parameters. Distributions
are approaching normality and centered around $18-21.

In the transaction simulator (see section 3.2), I draw payment transaction values from a
lognormal distribution, which requires a dispersion parameter. Because I am using the distribution
of sample medians to draw average amounts, I draw a payer’s representative payment amount
dispersion from the distribution of scaled median absolute deviations (MAD) as a proxy for the

standard deviation.!! Figure 3 captures the distribution of scaled MAD for the debit and credit card

samples, which are roughly normal and centered around $21-24.

' The scaled MAD multiplies the MAD by 1.4826 to better approximate the standard deviation (Rousseeuw and
Croux, 1993).



Diary Simulations: Distribution of Sample Median Absoclute Deviations (Scaled)
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Figure 3. Distribution of sample median absolute deviations from the diary simulations. Figure
depicts the distribution of scaled median absolute deviations for debit (left) and credit (right) card
payment amounts from 5,000 samples of size 200 drawn from the 2022 and 2023 DCPC surveys.
The distributions are roughly normal and centered around $21-23.

Turning to geography, payers and payees reside in square, n x n, grid, where each payer
and payee is assigned x, y coordinates that are randomly drawn from a uniform distribution with a
range of [0,n), consistent with Le Borgne and others (2022). For this paper, I use n = 200.
Geographic coordinates are the only payee-specific characteristics. The lack of payee-specific
characteristics is a limitation of the methodology, and section 4.3 discusses this in more detail. |
also assume a payer-to-payee ratio of 10:1. The ratio is based on estimates of the number of
cardholding adults and businesses in the United States, for which I estimate a ratio of 7:1.'2
Because the number of business establishments used in the estimate includes non-retail
establishments, 7:1 should be thought of as a lower bound on the ratio of cardholders to merchants.
In the simulator, I assume a more conservative ratio of 10:1. Figure 4 captures the distribution of

payers and payees in the grid.

121 calculate the percentage of consumers who have a debit or credit card from the 2023 survey of consumer payment
choice (Foster, Greene, and Stavins, 2024) as 96.3 percent. I use the U.S. adult population of 262 million as of July 1,
2023 (U.S. Census Bureau, 2024a) to derive the number of cardholding adults as roughly 252 million. Finally, I use
the total number of employer and non-employer business establishments in the United States of roughly 37 million in
2022 (U.S. Census Bureau, 2024b), the most recent data as of this writing, to calculate a cardholding adult to business
establishment ratio of roughly 7:1.
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Figure 4. Payer and payee locations. The figure depicts the 200 X 200 grid in which

payers and payees reside. There are 10,000 payers (light blue circles) and 1,000
payees (black x marks).

3.2 Transaction simulator

After establishing payer and payee characteristics, I run a transaction simulator that determines the
number of daily payments, P, each payer makes and generates five features for each payment,
which are defined in Table 1. The feature types or values are drawn from baseline distributions.
The distributions for the number of daily payments, card type, location type, and payment amount
are calibrated to real-world data, while the distributions for distance and time depend more heavily

on assumptions about payment patterns, which are discussed in detail below.

Table 1. Payment transaction features

Feature Description

Card type (C) Debit or credit card

Location type (L) In-person or remote

Amount (4) Payment amount

Distance (D) Distance between payer’s home and payee
Time (T) Time of day when transaction occurs

I assume that the daily number of payments a payer makes follows a Poisson distribution,
which is a common assumption for simulating count data over a given unit of time. For each payer

and for each day in the user-defined date range, I find the number of card payments, P, as

P ~ Poisson(A), (1)
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where A is the payer-specific average number of daily transactions derived from the DCPC.

Next, I draw the card type, C, and location type, L, where C € {debit, credit} and L €
{in person,remote}, from the following Bernoulli distributions, which are derived from the

Federal Reserve Payment Study (FRPS) (Board of Governors, 2024)"*:
Pr(C = debit) = 0.62, Pr(C = credit) = 0.38, (2a)

Pr(L = in person) = 0.64, Pr(L = remote) = 0.36. (2b)

I then draw the payment amount, 4, from a lognormal distribution, which is bound at zero

and skewed right, similar to the real-world payment amounts captured in Figure 2:
A ~ Lognormal(u, o), 3)

where u, o are transformed versions of the payer-specific debit and credit card payment amount

averages and dispersion parameters derived from the DCPC.!'

Simulating distance and time is more complex. Starting with distance, for each transaction,
a payer pays a payee in the grid depicted in Figure 4. I assume that payers are more likely to make
in-person payments closer to home. I assume that payers still make many remote payments at close
distances (for example, takeout food orders), but many others (for example, online shopping
payments) are made to payees that are farther away. I operationalize the distance framework
through several steps. First, I calculate the Euclidean distance between each payer and payee.
Second, for each payer, I sort the payees by distance in ascending order. Third, for each transaction,
I select a distance index, D;, from D = (Dy, D,, ..., D,,), where n is the number of payees in the

system, from a triangular distribution:
D ~ Triangular(a,b,c), 4)

where a = Dy, b = Dy, ¢ = Dy, - Q, Q is a quantile that depends on L, and Q;n—person < Qremote-

13 The data come from the FRPS Networks, Processors, and Issuers Payments Surveys (NPIPS), released in November
2024. The data are from calendar year 2022 and are based on non-prepaid debit and credit card transactions. The
probabilities captured in equations 2a and 2b are equal to the proportion of card transactions belonging to a given
category. For example, with 89.1 and 55.3 billion non-prepaid debit and credit card transactions reported in the NPIPS,

I calculate the debit card probability as: Pl —0.62.
89.1+55.3

2
14 Specifically, given the average amount (m) and dispersion (s), 4 = In (\/m——z) ando = |ln (1 + (;—2))
m

2+s
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In words, the distance index maps to the sorted payees. The minimum (a) and maximum
(b) are constant for all transactions. They simply represent the first and last distance indices. The
mode (c), or peak, of the triangular distribution varies based on whether the transaction is in-
person or remote. It is controlled by an index quantile, @, which is chosen such that in-person
payments are more likely to occur at closer distances than remote payments. The modal quantiles
default to 0.01 for in-person payments and 0.5 for remote payments (Figure 5).!° The default
settings are arbitrary but configurable. Users can experiment with alternative parameters. Finally,

after drawing a quantile and finding the distance index, I look up the associated payee and distance.

Payee Distance Triangular Distributions

Density

- ~ 12.0
/ \ —— In-person
’ . ——- Remote

T T T T T
0.00 0.25 0.50 0.75 1.00
Payee distance quantile

Figure 5. Payee distance triangular distributions. The figure depicts the quantiles
associated with the triangular distributions underlying the payee distance simulation
separately for in-person (blue solid line) and remote (black dashed line) payments. The
minimum and maximum are constant for all observations. The mode, or peak, of the
distribution is 0.01 and 0.5 for in-person and remote payments, respectively.

In simulating the transaction time, T, | assume that payments can occur any time of day,
but they are more likely to occur during certain windows. Specifically, I assume there are
significant spikes in payment activity during three windows: (1) around the morning commute as
consumers pay for coffee and breakfast items; (2) lunchtime; and (3) early evening and dinnertime.
I operationalize this by constructing a theoretical mixture distribution for transaction times
throughout the day. I begin with a continuous probability density function (PDF) that is a weighted

sum of component densities:

15 The triangular distribution works well in simulating distance for several reasons. First, the underlying distribution
is not known. Second, payers can, in principle, make payments at any distance within fixed boundaries. Finally, it is
straightforward to shift the mode such that it reflects assumptions about payment distance patterns.
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T~ WpasetineTTiangular(0,12,24) + Y, w, Uniform(starty, endy) , (5)

where, Wy gsetine + 2 Wi = 1 and k € {breakfast, lunch, dinner}.

The first component in equation 5 is a triangular distribution over the 24-hour period,
peaking at noon, which captures the baseline daily transaction pattern. The remaining components
are uniform distributions over the peak time windows. The weights and time windows are

configurable, but they default to

baseline = 0.4
breakfast (7a.m.—9a.m.) =0.2
lunch (11a.m.—1p.m.) =0.2
dinner (6p.m.—9p.m.) = 0.2.

w =

In practice, evaluating the mixture PDF at each specific timestamp is computationally
expensive, so I simplify the process by evaluating it for each hour and normalizing the results to a
0-1 interval, creating a discrete probability mass function (PMF) over the 24 hours of the day
(Figure 6). I use the hourly probabilities to randomly select an hour for each transaction. Within
each hour, I randomly select minutes and seconds from a uniform distribution to produce a final
transaction time. While this approach is computationally efficient and a strong approximation, it
sacrifices meaningful intra-hour variation, which could be valuable in modeling transactions that
occur in quick succession.

Hourly Probability Mass Function Probability

r 0.15
Hour of day

F 410.12

F 410.09

r 10.06

r 10.03

0.00

012345678 91011121314151617 181920212223

Figure 6. Hourly probability mass function. Figure depicts the probability that a payment
transaction takes place in each hour of the day. The distribution has a baseline triangular
shape that peaks at noon. It also has significant spikes in probability around breakfast,
Iunch, and dinner.
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3.3 Fraud flag

The final phase of the simulation leverages Bayes’ theorem to generate a ground truth fraud flag.
The ability to label fraudulent transactions is not a given. Some financial institutions and payment
systems have more established processes for labeling fraudulent transactions than others. The
publicly available credit card fraud detection data posted by Dal Pozzolo (2016) includes a fraud
flag, as does the simulation methodology developed by Le Borgne and others (2022). Importantly,
the assumption that I can generate a fraud flag enables testing supervised learning classification
approaches. Practitioners using real world data that do not have a fraud flag are largely confined
to unsupervised anomaly detection approaches. With these considerations in mind, sections 3.3.1-

3.3.2 discuss the two-step labeling process.

3.3.1 Marginal and conditional distributions

Using Bayes’ theorem to produce a fraud flag requires having marginal and conditional
distributions for each feature. For the binary variables, x;,, where b € {C,L}, this is
straightforward. The marginal probabilities, P(x;), were introduced in equations 2a and 2b and
are derived from Board of Governors (2024). The conditional probabilities, P(xj|F), are derived
from Gerdes, Greene, and Liu (2018) (“the payment fraud study”).!® Table 2 summarizes the card
and location type probabilities that I use in applying Bayes’ rule.

Table 2. Marginal and conditional probabilities of card and location type

Probability type: Debit Credit In-person Remote
Marginal: P(x) 0.62 0.38 0.64 0.36
Conditional: P(x|fraud) 0.43 0.57 0.37 0.63

Notes: marginal probabilities derived from Board of Governors (2024); conditional probabilities derived
from Gerdes, Greene, and Liu (2018); figures are based on non-prepaid debit and credit card transactions.

According to the FRPS, there are more debit than credit card transactions in the U.S. By
contrast, the payment fraud study shows that among fraudulent payment card transactions, more
are made with credit cards than debit cards. Location type has a similarly complex pattern. More

payment card transactions are made in-person than remotely, but remote transactions account for

16 Data from Gerdes, Greene, and Liu (2018) used to derive the conditional probabilities include: number of fraudulent
credit card transactions (pg. 26, figure 19); number of fraudulent non-prepaid debit card transactions (pg. 27, figure
21); and distribution of fraudulent in-person and remote payments (pg. 29, figure 25).
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a decisive majority of fraudulent transactions. This pattern owes, in part, to greater adoption of
more secure payment methods for point-of-sale transactions, such as EMV chip cards and

compatible card readers.

For the continuous variables, x., where x. € {4, D}, the marginal density, pdf,_(u), is the
PDF of x. evaluated for each realized simulation value, u. I find the densities for payment amount
and distance using the PDFs of the lognormal and triangular distributions defined in equations 3
and 4. The process for finding the conditional densities of these features, pdfy r(u), is similar. I
calculate the density at point u assuming that the value came from the fraud distribution, which is
the baseline distribution shifted by a fraud factor. The assumed distribution of fraudulent payment

amounts is
Af ~ Lognormal(uy, o), (6)
where u is a transformed version of the payer-specific average payment amounts scaled up by a

fraud multiplier. I derive the multiplier from Gerdes, Greene, and Liu (2018, p. 27-28), who find
that the average value of fraudulent non-prepaid debit and credit card payments are, respectively,

2 and 1.45 times the value of legitimate payments.

Similarly, the assumed distribution of fraudulent payment distances is
Dy ~ Triangular(a, b, cf), (7)
where I set the modal quantile for ¢ to 0.75. Recall that the modal quantiles for in-person and
remote payments are 0.01 and 0.5, respectively (see Figure 5). As in the marginal distribution, the

fraudulent modal quantile is not empirically derived. It reflects the assumption that fraudulent

payments are, on average, made to payees at farther distances from a payer’s home.

Finally, for the transaction times, recall that a continuous mixture distribution (see equation
5) drives the underlying simulation process, but I discretize the distribution into an hourly PMF to
improve computational performance (see Figure 6). The marginal probability of observing a
transaction in a given hour is defined by the hourly PMF. I derive the conditional hourly
distribution using the same process described in equation 5 and Figure 6, but I use different peak

windows and mixture weights. In defining these elements, I assume that many fraudulent
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transactions are likely to occur late at night and in the early morning. As with the marginal windows

and weights, the precise settings are configurable, but they default to!’

baseline = 0.6
wy =1 latenight (10p.m.—12a.m.) = 0.3
early morning (12 a.m.—5a.m.) = 0.1.

3.3.2 Bayesian estimation strategy

Given the marginal and conditional distributions of the five features, Bayes’ theorem stipulates

that we can derive the probability of fraud as

P(C,L,A,D,T|F) - P(F)
P(C,L,A,D,T)

P(F|C,L,A,D,T) = (8)

Cardsim uses a naive Bayes process to generate a fraud flag, which assumes conditional
independence between predictor variables (Rish, 2001). In the present context, the assumption
implies that the payment features are unrelated outside of their connection through fraud.
Conditional independence is typically an unrealistic assumption, as it is in this case. Despite the
strength of the assumption, naive Bayes is a widely used classification algorithm, and the effect of
assuming conditional independence often has a limited impact on performance (Zhang, 2004). Its
scalability and capacity to generate probabilities based on priors and marginal and conditional
distributions, without necessarily using pre-labeled data, which we do not have here, make it a
good fit for the current use case. Using conditional independence and letting P (x|F) represent the
product of the conditional probabilities and densities for the five features, we can find the

probability of fraud by expanding the numerator and denominator of equation 8:

P(x|F) - P(F)
P(x|F) - P(F) + P(x|=F) - P(=F) "

P(F|x) = ©)

17 In contrast to the marginal distribution, deriving the default weights for the distribution of fraudulent transaction
times was an iterative process. I calibrated the weights defined in wy to balance out the distribution of fraudulent
payments across certain transaction windows. At 0.6, the baseline window is larger than one might expect if the goal
is to concentrate fraudulent transactions late at night and in the early morning. However, because the marginal
distribution includes significant spikes during certain windows and the Bayesian process discriminates between the
marginal and conditional features in generating fraud probabilities, I found that using a relatively high weight during
the baseline period was necessary to prevent unrealistic gaps in fraudulent payments during certain windows.
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We do not initially have the complement, P(x|—F), but the simulator derives it by

rearranging the law of total probability for each feature x;:

P(x;) = P(x;|F) - P(F)

P(xi|=F) = =,

(10)
where all the elements on the right-hand side of equation 10 are available.

Ultimately, I use the odds form of Bayes’ theorem (Gelman and others, 2014, p. 8; Hastie,
Tibshirani, and Friedman, 2009, p. 234), which, at a high level, is: Posterior Odds =
Prior Odds + Likelihood Ratio. In the present case, the odds form is given by

P(Flx) _ P(F) P(xIF)
P(=F|x) P(=F) P(x|-F)’

(11

The odds form facilitates operationalizing the labeling methodology. I generate fraud labels
using a naive Bayes ranking approach, wherein I rank each record by posterior odds in descending
order and label the top n% as fraud. Ranking is a very common application of naive Bayes. It is
motivated, in part, by the fact that the precise probabilities generated by Bayes’ rule with multiple
features are often poorly calibrated, but the relative magnitude of the predictions are meaningful
(Zhang and Su, 2004). Further, the rank order of the posterior odds is equivalent to that of the
posterior probabilities, and it is easier to generate odds in a computational setting. The odds form
enables splitting out the prior odds (see equation 11) and breaking down the likelihood ratio into
individual likelihood ratios for each feature (see equation 12). This modular approach simplifies
the calculation considerably, is easy to update, and facilitates the use of fast, array-based
programming methods.

P(CIF) P(T|F)

—P(Cl—.F) v X "'—P(T|—|F) (12)

Likelihood ratio = LR; ... X ...LR; =

4 Results

This section presents the characteristics of an example CardSim dataset based on the following
high-level simulation parameters: 10,000 payers, 1,000 payees, and 365 days. With these
parameters, the simulator produced 3.16 million records. The output includes eight primary fields

that are summarized in Table 3. Section 4.1 examines feature distributions in the example dataset,
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and 4.2 explores how computational performance varies with the number of payers and the number

of days. Section 4.3 addresses some limitations of the simulation methodology.

Table 3. Simulator output fields

Field Description

date time The transaction datetime; transactions are sorted chronologically
payer id A unique identifier for the payer

payee id A unique identifier for the payee

amount The payment amount

credit _card 1 if the payment is made using a credit card and 0 if using a debit card
remote 1 if the payment is made remotely and 0 if in-person

payee distance The Euclidean distance between the payer’s home and the payee
fraud 1 if the payment is fraudulent and 0 if it is legitimate

Importantly, in the example simulator run, I assume both a prior fraud probability and a
fraud ranking threshold of one percent. These parameters are separate in the simulator, but they
both default to one percent. As discussed in 3.3.2, I use a ranking approach to label fraud
transactions. A one percent fraud ranking threshold guarantees that one percent of transactions will
be labeled as fraud. This assumption is high by many official sector and industry estimates (Gerdes,
Greene, and Liu, 2018; EBA and ECB, 2024; Australian Payments Network, 2023). However,
publicly available fraud statistics likely underestimate fraud because they often focus on fraudulent
transactions that have cleared and settled. This means that they may not capture attempted fraud
that did not clear and settle, including denied transactions and those in which the payment amount
was returned to the payer before settlement (Gerdes, Greene, and Liu, 2018). Furthermore, some
fraudulent payment card transactions occur without a cardholder’s knowledge, and some victims,
especially in vulnerable elderly segments, choose not to report fraud. The one percent rate also
preserves the challenges of modeling with extreme class imbalance. Nevertheless, as with other

parameters in the simulator, the prior fraud rate and ranking threshold can be tuned.

4.1 Feature distributions

Figure 7 depicts the simulation results for the distributions of card (left panel) and location (right
panel) types across payment class. The distributions of features for the legitimate transactions are
identical to the marginal probabilities presented in Table 2. This is unsurprising given the low fraud
rate and over three million records in the simulator output. The distributions of fraudulent

transactions are more skewed toward the feature with the higher conditional probability. For
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example, as captured in Table 2, P(C = credit|F) = 0.57, while the realized proportion of
fraudulent transactions made with a credit card in the simulator is 0.69. A similar pattern holds for

the location type.

Distribution of card types Proportion of payments Distribution of location types Proportion of payments
r 11.0 r 11.0
B Credit B In-person
[ Debit [ Remote
F 10.8 F 10.8
r 10.6 r 10.6
F 10.4 F 10.4
F 10.2 F 10.2
0.0 0.0
Fraudulent Legitimate Fraudulent Legitimate

Figure 7. Feature distributions: card and location types. Left panel captures the distribution of

card type (credit, debit) across payment class. Credit card payments (blue bars) account for 69

percent of fraudulent transactions and 38 percent of legitimate transactions. Debit card payments

(gray bars) account for 31 percent of fraudulent transactions and 62 percent of legitimate

transactions. Right panel captures the distribution of location type (in-person, remote) across

payment class. In-person payments (blue bars) account for 25 percent of fraudulent transactions

and 64 percent of legitimate transactions. Remote payments (gray bars) account for 75 percent of

fraudulent transactions and 36 percent of legitimate transactions.

There are at least two explanations for why the naive Bayes approach favors feature types
with higher conditional probabilities in predicting fraud. The first revolves around the strength of
the conditional independence assumption. Naive Bayes uses each feature in isolation, but the
features are likely correlated outside of their relationship through fraud. Thus, the model puts too
much weight on certain feature outcomes, when in reality, at least part of the signal from those
features is redundant information. A second reason may be due to ranking with incomplete
predictive power. The simulator ranks transactions based on posterior odds, but we do not have a
complete set of features that are relevant for predicting fraud. Thus, naive Bayes may be giving
too much weight to the features that are present in the model. This pattern is easiest to see with
card and location types because it is straightforward to compare outcomes using simple

proportions, but there is evidence that the skew persists with the other features as well.

Figure 8 focuses on the payment amounts generated by the simulator. The top panel

captures the distributions of debit (left) and credit (right) card payments, zooming in on those
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below $200. The distributions are lognormal and skewed right. The global average debit and credit
card payment amounts are $18.15 and $20.90, respectively. The bottom panel plots kernel densities
of legitimate and fraudulent payment amounts separately for debit (left) and credit (right) card
payments. For both card types, the distribution of legitimate payment amounts is much more
concentrated at lower values than fraudulent payments. The difference in the distributions of
legitimate and fraudulent debit card payment amounts is more extreme than that of credit card

payments, consistent with the higher debit card fraud value multiplier discussed in 3.3.1.

Debit card payment amounts Density 0.06 Credit card payment amounts Density 0.06
r I T . r I T .
1 1
- ' 40.05 - ' 40.05
| Mean = 18.15 | Mean = 20.9
1 10.04 1 10.04
1 1
1 1
: 10.03 : 10.03
1
1 0.02 1{0.02
4{0.01 4{0.01
; ; — 0.00 ; T — 0.00
0 50 100 150 200 0 50 100 150 200
- 10.06 r 10.06
= |egitimate = |egitimate
B ==+ Fraudulent 70.05 i ===+ Fraudulent |0.05
- 10.04 - 10.04
- 10.03 - 10.03
- 1 0.02 - 1{0.02
- 4{0.01 - 4{0.01
e . 0.00 : ; A SR 0.00
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Dollars (below 200) Dollars (below 200)

Figure 8. Feature distributions: payment amount. Top panel depicts the distribution of simulated
debit (left) and credit (right) card transaction amounts, zooming in on payments below $200. The
global means for debit and credit card transactions are $18.15 and $20.90, respectively. Bottom
panel depicts kernel density estimates for the distributions of payment amounts for legitimate
(solid blue line) and fraudulent (dotted black line) transactions separately for debit (left) and credit
(right) card payments. The difference in the legitimate and fraudulent payment amount distribution
is more extreme for debit than for credit card payments.

Turning to distance, Figure 9 depicts kernel densities for the distributions of Euclidean
distances between a payer’s home and the payee for legitimate and fraudulent transactions
separately for in-person (left) and remote (right) payments. The distribution of legitimate in-person

payments is more concentrated at closer distances than legitimate remote payments. For both types

20



of payments, fraudulent payments tend to occur at farther distances, but the gap is more
pronounced for in-person payments. These results are consistent with the modal quantiles selected

for the triangular distributions associated with the marginal and conditional distance distributions.

In-person payment distances Kernel density Remote payment distances Kernel density
r 10.014 r . h
= Legitimate Euclidean
distances
F ==+ Faudulent RELN 10.012 - 10.012
- 10.010 - 10.010
- {0.008 [ 4 0.008
- 10.006 - 10.006
- {0.004 4 0.004
- 10.002 - 10.002
T U T T T U 0.0DO U T T T T U 0.000
0 50 100 150 200 250 0 50 100 150 200 250

Figure 9. Feature distributions: payee distances. Figure depicts kernel density estimates for the

distributions of payee distances for legitimate (solid blue line) and fraudulent (dotted black line)

transactions separately for in-person (left) and remote (right) payments. The distribution of
legitimate in-person payments is more concentrated at closer distances than legitimate remote
payments. For both types of payments, fraudulent transactions are more widely distributed.

Finally, Figure 10 captures the proportion of legitimate (left) and fraudulent (right)
payments occurring within each hour. For both payment classes, transactions occur throughout the
day. The distribution of legitimate payment times mirrors the hourly PMF presented in Figure 6.
There is a baseline daily transaction pattern following a triangular distribution that peaks at noon
and significant intraday seasonality, with spikes in payment activity around breakfast, lunch, and
dinner. Fraudulent payments peak late at night and early in the morning, as expected, but the
relative balance of transactions in these windows differs from the conditional mixture distribution

weights, which were higher for the late-night window. The reason is that there are more payments

overall in the early hours, and that effect overpowers the window weights.
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Figure 10. Feature distributions: transaction time. The figure captures the distributions of
simulated payment times within each hour for legitimate (left) and fraudulent (right) transactions.
Legitimate and fraudulent transactions occur throughout the day, but the former peak around
breakfast, lunch, and dinner, while the latter peak late at night and in the early morning.

4.2 Computational performance

Cardsim uses an array-based programming approach (Oliphant, 2007; Harris and others, 2020)
that supports scalability and computational efficiency. The simulation underlying the results
discussed in 4.1, which produced 3.16 million records, ran in about 10 seconds.'® Figure 10 shows
how the simulator’s performance varies with the number of payers and the number of days a user
specifies. Performance is much more sensitive to the number of payers (top left) than the number
of days (top right). Holding the number of days and payer-to-payee ratio constant at 365 and 10:1,
respectively, the runtime grows from 3 seconds with 5,000 payers to 171 seconds with 45,000
payers, and the relationship is non-linear. The runtime only grows from 7 seconds with 180 days
to 27 seconds with 1,620 days, holding the number of payers constant at 10,000. New payers and,
by connection, payees introduce more complexity into the environment, which enriches the

simulation but comes at a higher computational cost.

Meanwhile, the number of records the simulator produces grows linearly with both the
number of payers (bottom left) and the number of days (bottom right). For both parameter ranges,
the number of records grows from roughly 1.6 million to 14 million at a constant rate. A good
strategy for increasing the complexity and size of the simulation output would be to use both the

number of payers and days in concert.

18 All performance tests were carried out on a cloud-based analytics instance that had the equivalent of about 34
Gigabytes of memory and eight CPUs.
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Figure 11. Simulator performance. Figure illustrates how simulator performance varies with the
number of payers and number of days. Left column focuses on the number of payers, ranging from
5,000 to 45,000 in increments of 5,000. Right column focuses on the number of days, ranging
from 180 to 1,620 in increments of 180. The top row illustrates how runtime, in seconds, reacts to
varying the parameters. The runtime grows non-linearly from 3 to 171 seconds over the payers
range, while it only grows from 7 to 27 seconds over the days range. The bottom row illustrates
how the number of records grows in response to the parameters. There is a linear relationship
between the number of records and both parameters. The records grow from roughly 1.6 to 14
million. Tests were carried out on a cloud-based analytics instance that had the equivalent of about
34 Gigabytes of memory and eight CPUs.

4.3 Limitations

Contrary to some existing simulation methodologies, the simulator does not attempt to capture
fraud typologies, such as spending sprees and compromised merchants. Payment class draws are
independent events. Whether or not a given payment is flagged as fraudulent has no effect on
subsequent transactions. Rather, the simulator focuses on correlating important payment properties
with fraud via Bayes’ theorem. Integrating fraud patterns based on typologies tends to be more
deterministic and rule based. An advantage of the Cardsim approach is that ML models are
generally better at uncovering probabilistic relationships than deterministic patterns. Therefore,
the simulation methodology could help researchers and practitioners gain a better understanding
of model strengths and weaknesses. The disadvantage is that certain types of common feature

engineering approaches in fraud detection focused on recency and frequency of payments make

23



no difference in testing models with the simulator output. Cardsim is meant to complement, not

replace, other methodologies.

The focus on unauthorized fraud and use of a simplified set of payer and payee
characteristics also limit the ability to test several relevant modeling and feature engineering
approaches. For example, the complexity of authorized fraud schemes may shift the focus to
identifying fraudulent payee networks, rather than fraudulent transactions. Additionally, financial
institutions and payment system operators typically have access to a richer set of demographic and
economic indicators for payers and payees within a payment network. In the real world, fraud
detection models might create profiles of payers and merchants based on certain economic and

demographic factors, such as the payer’s age or income and the merchant’s size or retail category.

More broadly, any simulator is an imperfect representation of reality. While the parameters
selected in the simulator are chosen carefully and are meant to be plausible, some are not based on
real world data or economic theory. As discussed throughout, the parameters used in the simulator
can be modified. Indeed, the simulation methodology can be used to test models under a wide
range of fraud patterns. The main goal of the simulator is to enable researchers and practitioners
to test the mechanics of important fraud detection modeling approaches. Section 5 demonstrates

that CardSim outputs can be used to accomplish this.

5 Using the data for machine learning

Having generated payment transaction data, I show how the data can be used to test and evaluate
ML models and workflows for fraud detection. This section demonstrates data processing, model
training and testing, and tuning methodologies on the simulator output. As discussed in 3.3, the
simulator assumes that a fraud flag is available for model training. This assumption enables testing
supervised learning-based classification approaches, which are the primary focus of the model

testing. The section concludes by interpreting feature importance using the SHAP framework.

5.1 Data processing

It is straightforward to apply common ML data partitioning strategies to the simulated data. In this
paper, [ use a proportional split approach to divide the data into training and testing sets, where the
training set contains 70 percent of the 3.16 million transactions produced by the simulator, and the

test set contains the remaining 30 percent. In some ML settings, it may be appropriate to randomly
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sample records for the training and testing splits, but payment transactions are temporal in nature.
Thus, it is more realistic to split the data chronologically to ensure that the testing data are both

out of sample and out of time. '’

The simulator output enables carrying out common feature engineering approaches that
can have a meaningful impact on predictive accuracy. Researchers can use the timestamp to create
various intraday seasonality indicators. In the model testing, I use four time-of-day features defined
in table 4. Additionally, transformations are commonly applied to skewed variables to compress
their distribution. The simulated payment amounts are skewed right. The model tests use the
natural log of payment amounts as a predictor. Because I use a lognormal distribution to draw
payment values, the log of the raw distribution will be normally distributed. Indeed, this is the
definition of a lognormal distribution. In practice, the natural log of payment card transaction

values may not be precisely normal, but the transformation is likely to behave similarly.?

Table 4. Time-of-day features

Feature Definition

late 1 if a transaction occurs between 10 p.m. and 5 a.m., 0 otherwise
breakfast 1 if a transaction occurs between 7 a.m. and 9 a.m., 0 otherwise
lunch 1 if a transaction occurs between 11 a.m. and 1 p.m., 0 otherwise
dinner 1 if a transaction occurs between 6 p.m. and 9 p.m., 0 otherwise

It is also possible to create some behavioral analytics predictors for the payment amount
variable. For example, I create an indicator that captures deviations of log payment amounts from
payer-card type averages. In contrast to the payment amount feature, the deviation feature is
personalized for individual payers. Figure 12 depicts the distribution of the deviation variable for
credit and debit card payments in the training dataset. Crucially, when using aggregate metrics,
such as means and medians, in developing features, one should only use the aggregation metric
calculated in the training data to transform variables in both the training and test sets. In the real
world, forecasters will only have access to training data metrics ex ante. Using global aggregations

inclusive of the test data would be considered data leakage in a model testing context.

19 One can also apply k-folds cross-validation, which involves training and testing the model k times, leaving out a
different slice of the data as the test set at each iteration. While this approach is generally more rigorous than the
proportional split method, it is difficult to enforce chronology and may not be appropriate in the fraud detection
context. I also tested the models using 5-folds cross-validation. The results are very similar.

20 The distribution of the log of raw payment values from the DCPC data used in the simulation are bell shaped but
have a good bit more kurtosis than the distribution of the log of simulated transaction values.
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Deviations of Log Payment Amounts from Payer-Card Type Averages (Training Data Distribution)
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Figure 12. Distribution of the payment amount deviations feature by card type. The figure depicts
distributions for deviations of log payment amounts from payer-card type averages separately for
debit (left) and credit (right) card transactions. The distributions are normal.

5.2 Evaluation metrics

Fraud detection is a class imbalance challenge—that is, there are usually far more observations in
the majority class of the target variable than in the minority class. In other words, fraud is rare.
The simulator captures this through a default 99:1 ratio of legitimate to fraudulent transactions
(Figure 13). Class imbalance makes it difficult for ML models to learn the distinguishing
characteristics of minority class observations. This is a common challenge in machine learning.

Some techniques can help mitigate the issue, including various re-sampling and asymmetric

misclassification cost methods. Section 5.4 illustrates an implementation of the former.

Proportion of legitimate and fraudulent transactions
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Figure 13. Distribution of transaction class in the simulator output. The figure
captures the proportion of legitimate and fraudulent transactions generated by the
simulator. There is a 99:1 ratio of legitimate to fraudulent transactions.
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All the metrics I use to judge the model results presented in section 5.3 are derived from
the confusion matrix. Figure 14 illustrates a common form of the confusion matrix. Perhaps the
most important implication of class imbalance is that some evaluation metrics are more meaningful
than others in the presence of imbalance. Table 5 summarizes the four metrics I use to judge the

relative performance of the competing models that I test.

Predictions
Actuals 0 1
0 True negatives (TN) | False positives (FP)
1 False negatives (FN) | True positives (TP)

Figure 14. The confusion matrix. Figure depicts a common form of the confusion matrix,
which captures the intersection of actual and predicted classes.

Table 5. Accuracy metrics used to evaluate model performance

Metric Description

Precision Otherwise known as “positive predicted value.” Captures the
share of fraud predictions that were fraudulent. Calculated
as: TP/ (TP + FP).

Recall Otherwise known as “sensitivity” or “true positive rate.”
Captures the share of fraudulent transactions correctly
identified by the model. Calculated as: TP/ (TP + FN).

F1 score A metric that summarizes precision and recall. Calculated as
the harmonic mean of precision and recall.

Area under the precision-  Represents the area under the curve that plots pairs of
recall curve (AUPRC) precision and recall for a range of classification thresholds.

In 5.3, T show results for four other performance metrics that are uninformative or
controversial in the class imbalance context. First, overall accuracy represents the proportion of
correctly classified records. A model can achieve 99 percent accuracy in this dataset by simply
predicting the majority class (legitimate) every time. Such a model would be considered highly
accurate in a strict sense, but it is worthless in fraud detection because it picks up on no fraudulent
transactions. Second, the false positive rate (FPR), which is calculated as FP/ (FP + TN) (see figure
14), is typically very low with extreme class imbalance because true negatives are usually the most
dominant modeling outcome, leading to a very large denominator. Third, specificity is calculated
as TN / (TN + FP), or, equivalently, 1 — FPR. For the same reasons that FPR is typically very low,
specificity is usually very high. Finally, the area under the receiver operating characteristics (ROC)
curve is frequently used in judging classifier performance. It is similar to the AUPRC (see Table

5), but the ROC curve represents pairs of true and false positive rates for various classification
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thresholds. A considerable body of research shows that the area under the ROC (AUROC) curve
can be highly inflated in the presence of class imbalance, in part because the FPR is often extremely
low (Davis and Goadrich, 2006; Jeni, Cohn, and De La Torr, 2013; Saito and Rehmsmeier, 2015;
Sofaer, Hoeting, and Jarnevich, 2019).

5.3 Model training and performance

I train three classification models on the training data that are commonly used in supervised
learning: logistic regression, XGBoost, and a multilayer perceptron (MLP). I refer to these as the
candidate models. Table 6 summarizes these approaches, which represent three different types of
models. I compare the candidate models’ performance to a Gaussian Naive Bayes (Gaussian NB)
model, a common benchmark for classification. The benchmark model is very similar to the naive
Bayes approach used to construct the data in the first place but with two important differences.
First, it uses a normal distribution for the continuous variables—in this case, distance and payment
amount—which differs from the lognormal and triangular distributions used to simulate these
variables. Second, the benchmark model has access to the engineered variables—specifically, the

time-of-day features (see Table 4) and the payment amount deviations (see Figure 12).

Table 6. Overview of candidate models

Model (type) Description
Logistic regression Widely used method for modeling binary response variables. Involves
(linear) estimating the probability of an event as a linear function of a set of predictor

variables after applying non-linear transformations to the response and
predictor variables to ensure predictions are probabilities ranging from 0-1.
Advantages of logistic regression include speed, relative simplicity, and
interpretability. The main drawback is typically lower predictive accuracy than
more advanced ML approaches.

XGBoost A scalable gradient boosting machine that fits a sequence of decision trees,

(tree-based ensemble)  where each tree focuses on the errors of the ensemble of previous trees.
XGBoost is a widely deployed ML approach for business use cases because of
its predictive and computational performance. It is generally more
interpretable than neural networks but less so than logistic regression.

Multilayer perceptron A fully connected feed-forward neural network that involves connecting an

(neural network) input layer with several nodes (the predictors) to an output layer (the
outcomes) through one or more hidden layers with several nodes, which apply
activation functions to transform the input data. The model is often quite
accurate and capable of capturing complex relationships, but it is less
interpretable, slower, and may be more prone to overfitting than the logistic
regression and XGBoost.
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After training the models, I evaluate their predictive accuracy over the testing set. Table 7
summarizes model performance across the key metrics defined in Table 5 above. For robustness,
I measure the average performance of the models over five different training and testing sets using
the same parameters but different reproducibility seeds. The candidate models display 76-81
percent precision and 57-65 percent recall. That is, 76-81 percent of the fraud predictions the
models make are fraudulent, and the models pick up on 57-65 percent of fraudulent transactions.
Overall, the XGBoost and MLP neural network outperform the logistic regression. The neural
network demonstrates the best precision, while XGBoost has the best recall by a decisive margin.
The candidate models are much more balanced than the benchmark Gaussian NB, which sacrifices
a lot of precision for very high recall.

Table 7. Summary of model performance

Model Precision Recall F1 AUPRC
Gaussian NB 0.183 0.832 0.300 0.512
Logistic 0.756 0.569 0.650 0.750
XGBoost 0.774 0.647 0.705 0.816
MLP 0.807 0.585 0.676 0.807

Note: average performance across five simulator runs.

The F1 score and AUPRC summarize performance across precision and recall. The
candidate models have much higher summary scores than the benchmark model. Among the
candidate models, the XGBoost has the highest overall summary scores, but its AUPRC is
comparable to that of the neural network. It is helpful to visualize the AUPRC through a precision-
recall plot, which captures precision-recall pairs for various classification thresholds (Figure 15).
The areas under the XGBoost (blue dashed line) and neural network (black dotted line) curves are

comparable and greater than the area under the logistic regression curve (orange solid line).
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Figure 15. Precision-recall plot. Figure captures precision-recall pairs for various
classification thresholds for the logistic regression (orange solid line), XGBoost (blue dashed
line), and MLP neural network (black dotted line). The AUPRC for the XGBoost and neural
network are comparable and greater than that of the logistic regression.

Speed is an important consideration in addition to predictive accuracy. Table 8 summarizes
the candidate models’ computing time, in seconds, for inference and training. The former captures
the time it takes to make predictions for the roughly 947,000 records in the test set. The latter
represents the time needed to fit the models to the roughly 2.2 million records in the training set.
The logistic regression is the fastest on the inference dimension, while the XGBoost and neural
network are comparable. In some ML applications, inference time matters more than training time
because models may not be trained very often. Because fraud patterns are constantly changing,
fraud models are likely to be re-trained frequently. In terms of training time, XGBoost is the most
performant, while the neural network shows considerable performance overhead. It was about 5.5

and 14.1 times slower than the logistic regression and XGBoost, respectively.

Table 8. Inference and training time (in seconds)

Model Inference Training
Logistic 0.12 20.65
XGBoost 0.84 8.11
MLP 0.88 114.32

Notes: average of five model runs; average testing
and training set records: 947,314 and 2,210,401.

As introduced in 5.2, several metrics are uninformative or can be problematic in a class

imbalance setting. Table 9 captures the overall accuracy, FPR, specificity, and AUROC metrics for
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the three candidate models, the benchmark model, and a dummy model, which simply predicts the
majority class (zero) every time. The dummy model achieves 99 percent accuracy, but it identifies
no fraudulent transactions. The models have extremely low FPR and high specificity. When it
comes to AUROC, the candidate models show very strong and indistinguishable performance. The
ROC curve plots pairs of true and false positive rates for various classification thresholds. In this

case, it appears that the AUROC is inflated because of the extremely low FPR.

Table 9. Uninformative or problematic metrics in the class imbalance context

Model Accuracy FPR Specificity AUROC
Dummy 0.990 0.000 1.000 0.500
Gaussian NB 0.961 0.038 0.962 0.970
Logistic 0.994 0.002 0.998 0.996
XGBoost 0.995 0.002 0.998 0.997
MLP 0.994 0.001 0.999 0.997

It is easier to see the drivers of the metrics listed in Table 9 by reviewing a confusion matrix
for one of the models. Figure 16 shows the MLP confusion matrix. TN are by far the most common
modeling result, over 160 times bigger than the nearest class.?! This derives from the dominance

of legitimate transactions in the data.

Predictions
Actuals 0 1
0 TN: 936,278 FP: 1,590
1 FN: 3,649 TP: 5,755

Figure 16. MLP confusion matrix. Figure depicts the confusion matrix results for the
MLP neural network. The matrix illustrates the dominance of true negatives.

5.4 Tuning and re-sampling

Practitioners can pursue various methods to refine fraud detection models and calibrate them to
specific objectives. I show how to implement two types of model refinements using XGBoost as
context. First, | perform a grid search to optimize several hyperparameters. Grid search involves
fitting models with various combinations of hyperparameters and finding the set that yields the
best performing model for a given objective. I use recall as the performance objective. Table 10

identifies and describes the four hyperparameters that I include in the grid search. The table also

21 The MLP also has very few false positives, which helps explain the high precision captured in table 7.
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captures the defaults for those parameters and the value the search selects as optimal. The routine

selects the default parameter for boosting rounds and the max tree depth.

Table 10. Hyperparameters for the XGBoost grid search

Hyperparameter Choice set Description
Boosting rounds {50, 100, 200} How many trees to build.
Max depth {3, 6, 10} Maximum number of splits per tree.

Fraction of features to randomly sample and use as
Subsample {0.6, 0.8, 1} predictors for each tree. Random feature sampling can help
protect against overfitting.

Step size at each iteration in minimizing the loss function.

{0.1,0.3, 0.6} Bigger values speed up the model but risk stepping over the

= best minimization path. Smaller values slow the model but
are more likely to find optimal pathways.

Learning rate

Note: Bold indicates parameter was selected during grid search. Underlined indicates default parameter.

To help address class imbalance, I also test randomly re-sampling the training data such
that there is a 25:1, rather than 99:1, ratio of legitimate to fraudulent transactions. Table 11 captures
the accuracy metrics for the for the XGBoost models using grid search (Tuned) and re-sampling
(Down sampled) compared to the default model. The tuned model performance is virtually
identical to that of the default model, with a very modest gain in recall. The re-sampling results
are more compelling. The model shows considerable gains in recall to the detriment of precision.
If practitioners have a higher tolerance for false positives and have prioritized identifying
fraudulent transactions, re-sampling could be a promising strategy. In some cases, multiple models

that target different objectives may be deployed, and an ensemble of predictions could be used.

Table 11. Model performance for the tuned and down sampled models

Model Precision Recall F1 AUPRC
Default 0.775 0.643 0.703 0.813
Tuned 0.773 0.646 0.703 0.816
Down sampled 0.569 0.856 0.683 0.805

5.5 Interpretability

Recent years have seen advancements in research on “explainable AI” or “interpretable machine
y

learning,” which revolves around summarizing how ML models transform inputs into outputs
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(Molnar, Casalicchio, and Bischl, 2020; Linardatos, Papastefanopoulos, and Kotsiantis, 2021).%?
The SHapley Additive exPlanations (SHAP) interpretability framework (Lundberg and Lee, 2017),
which is based on a game theoretic approach to allocating the marginal contribution of each
predictor to model outcomes, has become widely used in supervised learning approaches, such as
tree-based ensembles and neural networks. The framework is attractive because it enables global
and local estimates of predictor importance. The former involves summarizing the overall effect
of a predictor, while the latter revolves around interpreting the influence of predictors on individual
predictions. Another useful property of the SHAP framework is that it addresses both directionality
and magnitude. Like many other novel ML interpretability approaches, SHAP does not quantify

the uncertainty of predictor importance estimates.

I show how SHAP values can be used to interpret global and local predictor importance for
the XGBoost model. I also demonstrate some of the challenges of SHAP’s application to XGBoost.
Critically, the results presented here are sensitive to the CardSim calibrations and should not be
interpreted for any substantive significance. The purpose is to demonstrate the mechanics of the
SHAP approach, rather than specific insights about the nature of fraud. SHAP values can actually
serve as a guide for tuning the simulator’s parameters. If they show that a given predictor is driving
model outcomes more than would be expected under specific circumstances, end-users can adjust

the default parameters accordingly.

Figure 17 displays a SHAP swarm plot that summarizes, in log-odds, how each feature
moves a prediction from a base value, which represents the expected value of the prediction in the
absence of any feature variables (Lundberg and Lee, 2017, p. 5). The summary plot lists predictors
in order of importance. The payer-specific payment amount deviations variable has the biggest
overall effect on predictions, while the location type indicator has the smallest effect. Each point
on the plot represents a SHAP value for an instance of the predictions. I calculate the SHAP values
over the test set. Therefore, each predictor has one SHAP value point for each of the records in the
test set. The relative value of each point is represented on a color scale, where blue captures lower

values, and orange captures higher values. SHAP values greater than zero increase the predicted

22 There is some disagreement over whether explainability and interpretability are synonymous. Some authoritative
accounts treat the terms interchangeably (for example, Molnar, 2020), while others treat interpretability as broader
than explainability (for example, Linardatos, Papastefanopoulos, and Kotsiantis, 2021)
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probability in the direction of fraud. Values lower than zero decrease the predicted probability

toward legitimacy.

Tying these elements together, the summary plot shows that higher payment amount
deviations generally increase the predicted probability and thus push the prediction toward fraud.
To take another example, recall that the late indicator is a binary variable that takes on a value of
one when transactions occur between 10 p.m. and 5 a.m. and zero otherwise. Falling outside of the

late window tends to put downward pressure on the predicted probability toward legitimacy.
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Figure 17. SHAP summary plot. Figure captures SHAP values for each predictor for every
record in the test data. Features are listed in order of global importance on the left-hand y-axis.
The feature value scale is on the right-hand side of the plot. Blue represents lower values of a
feature. Orange represents higher values of a feature. The x-axis is a SHAP value scale that
ranges from about -6 to 6 in log-odds. Payment amount deviation is the most important predictor
according to the SHAP summary. Higher payment amount deviations are associated with higher
SHAP values—that is, they increase the predicted probability in the direction of fraud. Lower
payment amount deviations tend to decrease the predicted probability in the direction of
legitimacy. The location type indicator is the least important by the SHAP metrics.

SHAP also enables local interpretation for individual predictions through force plots.
Figure 18 captures two force plots. The top panel is a force plot for a low predicted probability
(legitimate), and the bottom panel represents a high predicted probability (fraud). Directionality is
captured by the arrows, where arrows pointing left force the prediction down, and arrows pointing

right force the prediction up. The size of the arrows represent magnitude. Recall that payment

amounts and deviations are in log terms. In the top panel, the below average payment amount
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deviation, close distance, and breakfast indicator are important in forcing the prediction downward.
In the bottom panel, the far distance, late indicator, and high payment amount deviation are the

most important variables forcing the prediction upward toward fraud.
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Figure 18. SHAP force plots. Figure captures two force plots, which enable local interpretability.
The top panel is a force plot for a test set record that has a low predicted probability and is classified
as legitimate. The bottom panel captures a fraud prediction. Left pointing (orange) arrows force the
prediction downward, while right pointing (blue) arrows force the prediction upward. The size of
the arrows corresponds to the magnitude of predictor importance. In both cases, payment amount
deviations, distance, and time-of-day flags play an important role in driving the prediction.
Interpreting the SHAP base value is challenging with XGBoost. As discussed above, the
base value should approximate the expected value in the absence of any feature variables. With

one percent fraudulent transactions in the training data, the expected value should be about .01, or,
in log-odds: log (%) = —4.6. As depicted in Figure 18, the base value for the XGBoost is

—5.444. The discrepancy arises from how SHAP and XGBoost are operationalized in software.
The SHAP base value is calculated directly from the fitted model structure. XGBoost weighs
samples traveling down tree branches differently than many other tree-based ML approaches and
does not internally store the count of samples that traversed each branch.?* Thus, the base value
calculated from a fitted XGBoost may differ from what is expected.?* It is hard to say what impact
this issue has on interpreting SHAP for XGBoost models, but practitioners should consider the

nuance when leveraging this popular interpretability method for fraud detection.

23 The discrepancy is described by Lundberg, one of the creators of SHAP, on a GitHub issues board here:
https://github.com/shap/shap/issues/29#issuecomment-388121951.

24 As a comparison, I fit another tree-based ML model, the random forest, to the training data, and the SHAP base
value, in probability terms, is about 0.01, in line with my expectation.
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6 Conclusion

High levels of fraud in payment systems and concerns about the potential for Generative Al to
augment malicious actors’ fraud capabilities point to a need for more diverse and creative fraud
detection research. But researchers’ ability to test fraud detection models and disseminate findings
are constrained by the lack of publicly available payment transaction data. Due to their sensitivity
and economic value, it is unlikely that payment transaction data will become widely available for
testing and research. In recent years, simulation methodologies have helped narrow the payment

transaction data gap without comprising important privacy and security imperatives.

This paper seeks to advance fraud detection research by introducing a new simulation
methodology and corresponding software package, CardSim. The methodology embeds
probabilistic relationships between payment transaction features and fraud propensity using
publicly available data and Bayes’ theorem. It is also highly modular, and its parameters can be
calibrated to changing payment behaviors and fraud trends. As demonstrated in this paper, the
simulator can be used to test and evaluate important types of ML workflows, models, and

interpretability approaches that are relevant for fraud detection.

As in all simulators, CardSim makes a range of necessary simplifications. These
simplifications and several of the limitations identified in section 4.3 point to areas for future
research and development. From a methodological standpoint, future payment card simulation
methodologies could bring together the types of fraud typologies embedded in Le Borgne and
others’ (2022) simulator and the probability-based calibration approach underlying CardSim.
Additionally, as in most other payment fraud simulation approaches, CardSim assumes that a
fraud label can be generated, but these labels are not available to some practitioners. Thus, another
relevant extension would be to build a simulation methodology geared toward unsupervised
anomaly detection approaches. This could involve simulating a richer set of payment features that
might be available in a modern payment message, while forgoing the fraud label. Finally, one of
the most obvious limitations of CardSim is that it only focuses on the payment card system. Future
simulation methodologies could focus on enabling fraud detection research in other important

electronic payment systems, such as ACH, wire, and instant payments.
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