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Abstract
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Most importantly, however, cities differ in productivity: large cities produce
more output per capita than small cities do. This urban productivity pre-
mium may occur because of locational fundamentals, because of agglomer-
ation economies, because more talented individuals sort into large cities, or
because large cities select the most productive entrepreneurs and firms.

Behrens and Robert-Nicoud, Handbook of Regional and Urban Economics, 2015

1 Introduction

It is striking that roughly 80% of the U.S. population lives on just 5% of the country’s
land. Such extreme spatial concentration of people and industry suggests that cities con-
fer significant advantages. A natural explanation is that agglomeration — the clustering
of firms and workers — boosts productivity. Indeed, dense urban regions are observed to
be more productive, on average, than less dense ones, but why this "urban productivity
premium” exists has been a subject of debate. Economists have proposed several mech-
anisms: true agglomeration economies, whereby proximity yields external benefits such
as labor pooling, knowledge sharing, and quicker, cheaper access to intermediate goods
and services (Combes and Gobillon 2015); selection effects, where only high-productivity
tirms survive the tough competition of cities (Combes et al. 2012); and sorting, in which
inherently more-productive firms and workers choose to locate in big cities (Combes et
al. 2012). Disentangling these forces is crucial for understanding the benefits of city size.
Are big cities productive because they make firms more efficient or because they attract
the most efficient firms? This paper tackles that question with new evidence from U.S.
manufacturing.

While agglomeration economies and selection effects have been extensively studied
in the urban literature, the role of firm sorting has received far less empirical atten-
tion. If high-productivity firms systematically sort into dense regions, then the observed
productivity advantage of cities might be a composition effect rather than a pure ag-
glomeration effect. Conversely, if lower-productivity firms benefit more from being in
clusters, it would mean that agglomeration acts to narrow productivity gaps, casting
doubt on sorting as the primary explanation. This paper fills that gap in the literature
by examining whether agglomeration benefits vary across establishments in a way that
could induce sorting.

To answer this question, I develop an empirical framework that allows agglomera-

tion’s effect on productivity to differ for each establishment. Specifically, I propose a



model of establishment productivity that includes an interaction between local agglom-
eration intensity and the firm’s unobserved productivity. In essence, the production
function is specified such that agglomeration economies can depend on a plant’s indi-
vidual efficiency. This flexible, heterogeneous approach permits me to identify whether
more-efficient firms experience larger or smaller productivity boosts from being in a
dense manufacturing region. For example, if agglomeration benefits were higher for
more-productive establishments, those firms would have a stronger incentive to locate
in areas with greater industry density — a pattern I would interpret as evidence of pos-
itive sorting. On the other hand, if the benefits of agglomeration are greater for less-
productive plants, it would imply an opposite sorting pattern (or perhaps no sorting),
where high-productivity firms are not disproportionately drawn to clusters by produc-
tivity advantages.

Identifying sorting effects is challenging because firms’ underlying productivity is
not directly observable to the researcher. I tackle this challenge by extending the control
function approach of Olley and Pakes (1996) to my setting. In practice, this means I
use a production function estimation method that controls for unobserved productivity
shocks while allowing those shocks to interact with agglomeration intensity. By doing
so, I correct for the fact that more-productive firms might endogenously choose higher
inputs and favorable locations. This approach allows me to recover each establishment’s
intrinsic productivity and to estimate the elasticity of output with respect to local ag-
glomeration for firms at different points in the productivity distribution. In short, my
empirical strategy disentangles genuine agglomeration economies from the sorting of
tirms by productivity, using panel data on manufacturing plants and modern economet-
ric techniques to address bias.

Using confidential microdata on U.S. manufacturing establishments from the U.S.
Census Bureau, I find clear evidence of heterogeneous agglomeration benefits. In my
estimates, agglomeration boosts productivity more for low-productivity plants than for
high-productivity plants. Quantitatively, when moving from a plant at the 25th per-
centile of the productivity distribution to one at the 75th percentile, the output elasticity
with respect to local agglomeration declines by about 10 to 40 percentage points. In
other words, a relatively less-efficient factory sees a much larger productivity gain from
being located in a dense manufacturing cluster than a highly efficient factory does. I
interpret this finding as evidence against strong positive sorting being the driver of the
urban productivity premium. If anything, the pattern suggests that density levels the
playing field: It helps weaker firms catch up more than it helps the superstar firms.
This casts doubt on firm sorting as the primary explanation for the positive correlation



between density and productivity observed in U.S. manufacturing.

This paper contributes to and expands the small but growing literature on firm sort-
ing and agglomeration. There are only a few empirical papers that directly examine
sorting, and their findings have differed. Forslid and Okubo (2014), for example, de-
velop a theoretical model of spatial sorting with heterogeneous firms and two regions,
and they find a non-monotonic sorting pattern: Firms with very high productivity (and
high capital intensity) and firms with very low productivity (low capital intensity) tend
to relocate to the larger region. In contrast, Gaubert (2018) estimates a richer general
equilibrium model using French firm-level data and finds evidence of a positive interac-
tion between agglomeration and firm productivity, meaning that more-productive firms
gain more from locating in big cities. My results for U.S. manufacturing suggest the
opposite interaction — high-productivity firms appear to gain less — thereby providing
a new perspective on this question. Methodologically, my approach, which is based on
a partial equilibrium production function model, requires fewer structural assumptions
than the general equilibrium models used in prior work. In particular, I am able to let
the data speak on how inputs and productivity jointly determine output in clustered ver-
sus non-clustered settings rather than imposing calibrated parameters. Unlike Gaubert
(2018), who computes total factor productivity (TFP) as a residual and calibrates certain
elasticities before assessing agglomeration effects, I jointly estimate productivity and
agglomeration elasticities within a unified framework. This approach avoids potential
biases from misspecification and provides a direct, data-driven estimate of the extent of
sorting.

The findings have important implications for urban economic policy and industrial
location decisions. Policymakers often promote local "cluster” development or offer in-
centives for firms to locate in their city, aiming to harness agglomeration spillovers to
boost regional growth. My results suggest that such place-based policies should con-
sider the types of firms they target. If smaller or less-productive manufacturers reap
the largest productivity gains from clustering, then policies that support the formation
of industrial hubs — for instance, providing shared infrastructure, facilitating supplier
networks, or establishing industrial parks — could disproportionately raise the produc-
tivity of those firms and help lagging regions. On the other hand, if highly productive
tirms experience little additional boost from being in an already dense area, expensive
tax breaks to attract a superstar firm might yield fewer spillover benefits than expected.
Understanding the sorting dynamic also guides individual firms’ location decisions: A
moderately productive plant might see substantial gains from moving into a major in-

dustrial center, whereas a very productive plant may find that it can operate nearly as



efficiently in a smaller city or peripheral area without losing much in terms of agglomer-
ation benefits. In summary, recognizing who benefits most from agglomeration can lead
to more targeted and efficient urban economic policies, ensuring that efforts to stimu-
late local manufacturing yield the maximum possible improvement in productivity and
competitive advantage.

The remainder of the paper is organized as follows. Section 2 describes the empirical
model and identification strategy. Section 3 introduces the data used in the estimation.
Finally, section 4 presents the empirical results and discusses their implications for ag-

glomeration and sorting in manufacturing.

2 Empirical model

The production function of an establishment takes the following form in logs:
v = Po+ Brlie + Prkir + Tir + €ir, (1)

where i refers to the establishment, ¢ is time, v;; is value added, [;; is labor, kj; is capital,
Tt is TFP, and € is an i.i.d shock not observed by the establishment before making input
decisions in time t and never observed by the econometrician. I assume that TFP is a
function of the agglomeration intensity of the location where the establishment is based,
aj;, and establishment-specific raw efficiency, w;;. More specifically, I assume the follow-
ing: Ty = Baay + wi + yajwj. wi represents the current and past productivity shocks
that the establishment observes before making input decisions in t; the econometrician
never observes wi;.!

I measure agglomeration intensity as the number of employees of other establish-
ments in the same sector that are within 10 kilometers from establishment i; more pre-
cisely, a;; is the logarithm of agglomeration intensity plus one.? There is evidence in the
literature that agglomeration delivers economically and statistically significant benefits
to productivity. I am interested in testing whether such agglomeration benefits vary with

the establishment’s raw efficiency.

IThe assumption that agglomeration benefits are Hicks neutral is consistent with the literature; see
Rosenthal and Strange (2004).

2Since taking the logarithm of a variable plus one has been shown to create bias in several estima-
tion models, as a robustness check I estimated an alternative production function model that is a simple
Cobb-Douglas when agglomeration intensity is zero and is the baseline model, equation (1), when ag-
glomeration intensity is strictly higher than zero; in this alternative robustness model, a;; is equal to the
logarithm of agglomeration intensity instead of the logarithm of agglomeration intensity plus one, as in
the baseline model. The results are qualitatively and quantitatively very similar.
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As shown by the algebra in (2), Bp and B, are not separately identified from the level
of w. I replace w with @ — ¢, where @ = w + ¢, and I obtain an identical equation with

@, Bo, and B, replacing w, By, and B,, where By = Bp — c and B, = B; — ¢7.

vit = Bo+ BLlit + Bxkit + Battit + wit + yawis + €t 2)
= Po+ BLlit + Pxkit + Baait + (wit + ¢ — ¢) + yai(wis + ¢ — c) + €t
= Bo—c+ Brlit + Bxkit + (Ba — cv)ais + (wir +¢) + yay(wi +¢) + €
= Bo+ Bilit + Brckit + Batit + @ + 123 @ + €t

Since By, Ba, and the level of w are not separately identified, I replace w;; with @;; =
wit + Bo and B, with B, = (B, — vBo). The production function I estimate is then

vy = PBrlis + Bxkis + Patit + @it + Ya;@it + €. 3)

Before going into the details of the estimation, it is useful to provide the intuition be-
hind the estimation approach and why it is needed. Estimating the production function
with an agglomeration term — equation (3) — poses a classic identification challenge:
More-productive firms may choose higher inputs and potentially different locations,
which can bias naive estimates of agglomeration benefits. To address this, I employ
a control function approach in the spirit of Olley and Pakes (1996) and Levinsohn and
Petrin (2003). This semiparametric estimator uses a firm’s decision on intermediate in-
put purchases as a proxy for its unobserved productivity shocks. The intuition is that,
given certain regularity conditions, a more-productive establishment will employ more
intermediate inputs, so observed intermediate input use can reveal the establishment’s
current productivity level to the econometrician.

I extend the traditional control function method to allow unobserved productivity
to interact with an observed agglomeration measure. Practically, this means that total
productivity — including unobserved productivity, local agglomeration intensity, and
their interaction — is assumed to be a function of intermediate input choices. By doing
so, I account for the possibility that firms may invest differently in intermediate inputs,
depending on the external economies they experience in their location.

Under the reasonable assumptions I discuss next, I can recover the unobserved pro-
ductivity term as a function of observable inputs and agglomeration intensity. This
yields an estimated production function that includes the following: (i) conventional
input elasticities for labor and capital, (ii) an agglomeration elasticity term, and (iii) an

interaction term capturing how agglomeration’s effect varies with firm productivity (the



parameter oy in my model). I verify that the conditions for identification discussed in
the literature hold in my setting, lending credibility to my estimation of the interaction
effect.

I will now go into the specifics of the estimation procedure, starting with the assump-

tions I make.

Assumption 1 Information Set: The establishment’s information set at t — that is, I;; — includes
current and past raw efficiency {wir }%_, but does not include future raw efficiency {wir }
The transitory shocks €;; satisfy Elej; | 1;y] = 0.

[e9)
T=t41"

Assumption 2 First-Order Markov: Raw efficiency evolves according to a first-order Markov
process. This distribution is known to firms and is stochastically increasing in raw efficiency:

p(wit1|Iir) = p(wits1|wir).

Assumption 3 Timing of Input Choices: Firms accumulate capital according to kjy =« (kjs—1|ij—1),
where investment i1 is chosen in period t — 1. Labor input is flexible and chosen in period t.

Assumption 4 Timing of Location Choices: Location choices by establishments are made when
the establishment is set up. Establishments do not move. Establishments enter a location as start-
ups and exit when they shut down. Location choices need to be made a period in advance and are

therefore based on the previous-period information set Ij;_1.

Assumptions 1 through 3 are standard in the literature. Assumption 4 on location
choices is driven by the data I use; in the Census” Longitudinal Business Database (LBD),
the establishment identity is defined by its geographical location, so establishments do
not change location.> Gaubert (2018) only relies on data from one year for the structural
estimation — specifically, 2000; consequently, she also does not exploit location changes

resulting from firms endogenously relocating to identify the sorting parameter.
Assumption 5 Firms’ intermediate input demand is given by mj = f (ki lit, Tit).
Assumption 6 Strict Monotonicity: f(ki;, Ly, Tjt) is strictly increasing in Ty.

I assume that establishments decide what level of intermediate input to use based on
their capital and productivity levels and that the intermediate input demand is strictly
increasing in productivity. It should be noted that the non-separability between raw ef-
ficiency w and agglomeration a implies that the intermediate input choice in this model

3As I identify the location of an establishment with its ZIP Code, it is important to note that ZIP Code
boundaries can change over time. Therefore, while changes in location within the data are possible, they
should not be driven by the establishment’s endogenous choices.
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is not necessarily strictly increasing in w, as assumed in the previous literature. How-
ever, it seems reasonable to assume that it is strictly increasing in overall productivity T;
in other words, I am assuming, like Levinsohn and Petrin (2003), that more-productive
tirms, conditional on capital, use more intermediate inputs. The conditions for Assump-
tion 6 are the same as in Levinsohn and Petrin (2003), with T instead of w. Following
Assumption 6, I can invert f and express productivity T as a function of capital and

intermediate input use:

Oit = ,50 + ﬁllzt + ,Bkkzt + f ( it Lit mzt) + €it (4)
= D(ky, iy, mis) + €t 5)

where
D (kit, Lis, mir) = Bilis + Brkis + Patis + @it + ;@i (6)

I can estimate ®(kj;,l;;,m;;) in (5) by replacing ®(kj, 1, m;;) with a third-order polyno-
mial in kj, l;;, and m;;. To avoid the identification issues raised by Ackerberg et al. (2015)
and Gandhi et al. (2020), I take advantage of the firm’s first-order condition with respect
to labor to identify ;. It can be shown that

Wthzt e it

thzt it€ €it’

B = (7)

where % is the labor share. Estimating (5) produces an estimate of €;;, which I use to
1 1

estimate ,@1 using (7). Raw efficiency can then be derived from (6) as

@ (ki Ly, mir) — Bilis — Bikis — Badis
1+ yay '

(8)

Wit =

Assumptions 2 and 3 imply that I can decompose raw efficiency into its conditional

expectation at time t — 1 and an innovation term #:
@it = E(@it| ;1) + 1ir- )

E(@jt|I;—1) in (9) can be estimated non-parametrically with a third-order polynomial to
retrieve the innovation term €;;. €;; and #;; are orthogonal to the information set in period

t —1, I_1: E[(5i + €it)|I;—1] = 0. This can be used to derive moment conditions and



estimate the model parameters with GMM. I use as instruments variables determined in
t — 1: capital and agglomeration from period ¢, labor and materials from period t — 1,
and interactions between them. The moment conditions are then as follows:

1
kit
ajt
M1
lit1
kisait
kitlit—1
E | (Dit(Brs Basy) + €it (B, Bary)) @ Kiettiea = 0. (10)
aitlit 1
aitMit 1
lit_1mit 1
kitaigmip 1
kitaitlis 1
kigmis_1liz 1

aigMie_1lip_q

kirazmip_qli—q

In Appendix A, I perform a brief Monte Carlo study, using a similar setup to Acker-
berg et al. (2015), and find that my algorithm performs well.

3 Data description

The main data sources are the U.S. Census Bureau’s Annual Survey of Manufacturers
(ASM) and Census of Manufactures (CM). The model is estimated separately on seven
four-digit sectors: 3111 (Animal Food Manufacturing), 3113 (Sugar and Confectionery
Product Manufacturing), 3116 (Animal Slaughtering and Processing), 3118 (Bakeries and
Tortilla Manufacturing), 3141 (Textile Furnishings Mills), 3152 (Cut and Sew Apparel
Manufacturing), and 3162 (Footwear Manufacturing).* The sample period is 1991 to

4Since the estimation is very time consuming, I ran the model only on four-digit sectors within the
NAICS 31 sector, with the exception of sectors ending in 9, which are residual groups that combine
different types of establishments. I was not able to achieve identification for the sectors not included in
Table 2, as some bootstrap simulations, or in a few cases the point estimates themselves, were economically
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2019. I include in my sample only establishments that were included in the ASM with
certainty during at least one survey year. Moreover, I drop observations with labor
share below the 2.5th percentile and above the 97.5th percentile. After the cleaning, the
resulting samples cover most of the value added in the original ASM samples.

I follow Foster et al. (2016) and Cunningham et al. (2023) in the computation of value
added and the production function inputs: Nominal output is measured as total ship-
ments and deflated using an industry-level measure from the NBER-CES Manufacturing
Industry Database, capital is computed with a perpetual inventory method, labor is mea-
sured as total hours, materials are measured separately for physical materials and energy
and each is deflated by an industry-level deflator, and, finally, value added is computed
as output minus materials. I measure agglomeration intensity as the number of employ-
ees in the same four-digit sector within 10 kilometers. I merged the ASM-CM sample
with the LBD to compute agglomeration intensity, as the LBD provides the location of
all establishments in the United States during my sample period. The distances among
establishments are computed as Euclidean distances among the ZIP Code centroids.

Table 1: PRELIMINARY EVIDENCE

My dataset 2012 CM
Log density 0.025 0.024
(0.002) (0.002)
Log total employment 0.016 0.025
(0.002) (0.003)
N. Obs. 28,500 28,500 2,900 2,900
R? 0.005  0.002 0.036  0.032

Notes: Standard errors are reported in parentheses. N. Obs. is the rounded number
of observations.

To get a first taste of the data, I ran regressions relating the density of an area to its
productivity. Such regressions are popular in the literature; see Combes and Gobillon
(2015). More precisely, I ran a regression of the mean log TFP of the establishments
in a ZIP Code on either the log density of the ZIP Code or its log total manufacturing
employment.® I ran the regressions on the dataset described above (including all seven
four-digit sectors) and on the 2012 CM sample. As shown in Table 1, the agglomeration
elasticity is estimated to be around 2.5%, on the lower end of the range of estimates in
the literature. It must be noted that the R? statistics are low compared to similar models

nonsensical and the confidence intervals too large to make a precise inference possible. For sectors 3116
and 3162, I had to re-run a few bootstrap simulations to achieve identification.
5TFP is computed as in Foster et al. (2016) and Cunningham et al. (2023).
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in other studies.

4 Empirical results and discussion

4.1 Main findings: heterogeneity in agglomeration benefits

Table 2 presents parameter estimates for two models: a simple Cobb-Douglas produc-
tion function with only capital and labor (Column "CB”), and the full model (1) (Column
"Full"). The table displays for each four-digit sector the coefficients on capital, By, labor,
B1, and the interaction between unobserved raw productivity and agglomeration inten-

sity, 7.

Table 2: ESTIMATES

Panel A
3111 3113 3116 3118
CB Full CB Full CB Full CB Full
Bk 0.661 0.648 0.682 0.787 0.591 0.705 0.651 0.675
0.029) (0.207) (0.022) (0.072) (0.016) (0.037) (0.010) (0.037)
Bi 0.203 0.203 0.248 0.248 0.299 0.299 0.303 0.303
(0.004) (0.004) (0.006) (0.006) (0.004) (0.004) (0.004) (0.004)
0% -0.146 -0.473 -0.476 -0.667
(0.121) (0.183) (0.358) (0.128)
N. Obs. 11,500 4,800 17,000 16,000
N. Estab. 1,400 550 1,700 2,400
Panel B
3141 3152 3162
CB Full CB Full CB Full
Bk 0.535 0490 0433 0534 0.542 0.987
(0.026) (0.055) (0.016) (0.049) (0.049) (0.220)
Bi 0.345 0345 0434 0434 0415 0415
0.007)  (0.007) (0.005) (0.005) (0.012) (0.012)
0% -0.470 -0.618 -0.409
(0.124) (0.124) (0.205)
N. Obs. 4,800 14,000 1,800
N. Estab. 700 3,700 250

Notes: The table shows the parameter estimates for 7 four-digit industries. CB stands for Cobb-Douglas, and
Full refers to model (1). Bootstrapped standard errors are reported in parentheses. N. Obs. is the rounded
number of observations. N. Estab. is the rounded number of unique establishments.

As shown in Table 2, the estimates of capital elasticity are a touch higher in the
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tull model than in the Cobb-Douglas model for most sectors. However, the confidence
intervals are wide enough that the difference is not statistically relevant for most sectors.
The elasticity of labor is, by construction, identical under the two models and is around
30%. The estimated interaction term () between local agglomeration intensity and firm-
level productivity is negative in virtually all specifications. This means that higher-
productivity plants experience a smaller marginal gain from agglomeration than lower-
productivity plants.®

To analyze the agglomeration side of the production function, I combine the estimates
of B, and 7 with the distribution of raw productivity @. This analysis is presented in
Table 3, where I calculate the average output elasticity with respect to agglomeration,
Avg. = E(B; + yw), and its interquartile range, IQR = (w75 — wys). Notably, the terms
involving Bo cancel out when computing both Avg. and IQR, allowing me to express
them as functions of B, and w instead of their normalized counterparts 3, and @.

The average agglomeration benefits ("Avg." in Table 3) appear to be quite small, as
they are close to zero and statistically insignificant for most sectors. This contrasts with
findings from Table 1 and the existing literature, which reports agglomeration externali-
ties ranging from 1% to 12%; see Rosenthal and Strange (2004) and Combes and Gobillon
(2015) on urbanization economies and Greenstone et al. (2010) for a similar production
function setting. Even though the average agglomeration benefits appear modest, the
IQR estimates in Table 3 reveal a broad variation, indicating that many firms derive
substantial advantages from agglomeration. These findings serve as a caution against
estimating agglomeration benefits without carefully identifying productivity and con-

sidering the interactions between productivity and agglomeration intensity.

Table 3: AGGLOMERATION ELASTICITY

3111 3113 3116 3118 3141 3152 3162

Avg. -0.652 0.003 -0.002 -0.012 0.000 0.000 0.013
(0201) (0.027) (0.024) (0.089) (0.026) (0.036) (0.107)

IQR -0.419 -0.155 -0.112 -0.086 -0.184 -0.130 -0.322
(0.107) (0.060) (0.024) (0.039) (0.022) (0.050) (0.196)

Notes: Avg. is equal to E(B, + yw). IQR is equal to y(wys — wys). Bootstrapped standard
errors are reported in parentheses.

The interquartile range of the elasticity with respect to agglomeration intensity ("IQR"

in Table 3) is always negative and statistically significant. The data strongly supports a

%Since interpreting B, is challenging because of the identification issue discussed in Section 2, I did
not include it in Table 2.

12



negative interaction between establishment-level raw productivity and agglomeration
benefits. Quantitatively, moving from a relatively low-productivity establishment (at the
25th percentile of the productivity distribution) to a high-productivity establishment (the
75th percentile) is associated with a decline in the agglomeration elasticity of output on
the order of 10 to 40 percentage points. In other words, the establishments benefiting the
most from a dense industrial environment tend to be the least productive ones, whereas
the most-productive firms enjoy more modest gains from local agglomeration.

This finding is illustrated in Table 3 by the consistently negative estimates I obtain for
the IQR difference in agglomeration elasticity across productivity levels. The negative
and statistically significant IQR effect confirms that the production function is not log-
supermodular in density and productivity, contrary to what one would expect if only
the most productive firms reaped the largest external gains, as in Gaubert (2018). From
an economic standpoint, this result is somewhat surprising: It suggests that smaller
or less-efficient manufacturers rely more heavily on external economies of scale (e.g.,
shared suppliers and local knowledge) to improve their performance, whereas the in-
dustry leaders do so to a lesser extent. A possible explanation is that highly productive
firms may already be operating near the technological frontier or have better internal
processes, leaving less scope for external factors to further raise their productivity. In
contrast, firms with lower innate productivity have more to gain from the networking,
learning, and input-sharing opportunities that agglomeration provides. As a result, the
productivity boost from the local industrial environment exhibits diminishing returns as
a firm’s own efficiency rises.

It is important to note that my evidence casts doubt on firm sorting by productivity as
the primary explanation for the well-documented positive correlation between density
and productivity. If the most productive firms were endogenously sorting into dense
regions because they gain the most from those environments, I would expect to find a
positive interaction term (higher agglomeration elasticity for higher-productivity firms).
I find the opposite. Thus, while more-productive firms are indeed found in denser areas,
on average, my results imply this pattern is not because those firms derive outsized
productivity benefits from agglomeration. Other mechanisms must be at play to explain
why high-productivity firms tend to be in cities.

4.2 Robustness checks

I now consider the robustness of these findings. I subject the core result — that ag-

glomeration’s benefits decline with firm productivity — to a variety of robustness checks.
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These checks verify that my findings are not an artifact of a particular measurement
of “agglomeration” or driven by specific modeling assumptions. First, I alter the geo-
graphic scope used to define agglomeration intensity. My baseline measure considers
employment in the same four-digit NAICS industry within a 10-kilometer radius. I re-
estimate the models using a narrower radius of 5 kilometers and a much wider radius of
50 kilometers. Intuitively, a 5-kilometer radius captures very localized clusters, while a
50-kilometer radius extends to a broader regional scale, where spillovers might dissipate.

Second, I change the industry definition of the agglomeration measure: Instead of
counting only same-four-digit NAICS neighbors, I use a coarser three-digit NAICS clas-
sification (grouping more-related industries together) to define nearby activity. This
addresses whether my results are sensitive to using a tight industry definition (localiza-
tion economies) versus a slightly broader industry grouping (which might incorporate

some cross-industry externalities).

Table 4: ROBUSTNESS ON IQR ESTIMATES

3111 3113 3116 3118 3141 3152 3162

Five Kilometers ¥ - - A & + -
Fifty Kilometers - + + ¥ * + *
Three-digit agglom. - n.c. _* * ¥ _x% _

Notes: ** denotes statistical significance at the 1% level, and * denotes statistical significance at the
5% level. “n.c.” stands for not converged.

Table 4 reports the results of these robustness exercises. Because of data confiden-
tiality constraints, I report only the sign and significance of some estimates rather than
the exact magnitudes. Across these alternative specifications, the pattern remains con-
sistent. The estimated interaction effect (expressed again as the difference in agglomera-
tion elasticity between higher- and lower-productivity plants) stays negative in almost all
cases. In the majority of industries and alternative definitions, the less-productive estab-
lishments continue to show higher returns to local density than their more-productive
counterparts. The only notable deviations occur under the 50-kilometer radius defini-
tion, where the interaction effect is positive, albeit not statistically significant, in three
sectors. This attenuation is expected — a very wide radius likely dilutes the true local
externalities by including relatively distant activity that offers limited direct interaction
or spillovers. In contrast, using the broader three-digit industry aggregation yields the
same sign and significance of the productivity-agglomeration interaction as in the base-

line specification.
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4.3 Implications for theory and policy

These empirical findings carry important implications for theories of urban agglomer-
ation and the interpretation of past results. The evidence suggests that the production
function for manufacturing establishments is not supermodular in firm productivity and
local agglomeration intensity. In theoretical terms, I do not observe the complementar-
ity that would make high-productivity firms benefit disproportionately from being in
a dense cluster. Such complementarity is a key assumption in models where “the best
firms end up in the best places” through endogenous sorting. By rejecting this assump-
tion, my results indicate that one should be cautious in attributing the productivity
advantages of cities to a matching of inherently more-efficient firms with richer external
environments.

It is useful to contrast my findings with those of Gaubert (2018), one of the few
other empirical studies on firm sorting. Gaubert (2018) develops a general equilibrium
model of heterogeneous firms across cities and, using French data, finds evidence of a
positive interaction between firm productivity and agglomeration benefits. In her frame-
work, more-productive firms see larger gains from locating in big cities, which in turn
reinforces their incentive to sort into those locations. By contrast, my results for U.S.
manufacturing show a negative interaction — implying that, in my data, highly produc-
tive firms do not enjoy larger marginal external benefits. How can we reconcile these
differences? One explanation may be methodological. Gaubert’s approach entails cali-
brating certain parameters (e.g., factor elasticities), computing productivity as a residual,
and then matching moments in a structural model. If productivity is mismeasured or
if input adjustments are not fully accounted for, one might mistakenly infer a positive
sorting effect. My estimation, by directly controlling for input choices and jointly esti-
mating productivity, avoids relying on pre-calculated TFP measures. This could lead to
a more accurate (and in this case, lower) estimate of the productivity—density interaction.
Another reason could be country differences: The industrial structure and spatial config-
uration in the United States might differ from France in ways that affect agglomeration
economies.

The finding that agglomeration benefits decline with firm productivity has practical
implications for regional economic policy, especially place-based development programs.
As shown by Bartik (2020), governments at the federal, state, and local levels increasingly
invest in place-based policies — spending on the order of $60 billion per year — to spur job
creation and productivity growth in specific areas. Examples include enterprise zones,
relocation incentives, cluster development grants, and infrastructure investments tar-

geted at lagging regions. A common rationale behind these policies is the expectation of
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agglomeration spillovers: By attracting firms (ideally high-performing ones) to a region,
policymakers hope to create self-reinforcing cycles of growth through clustering effects.

My results offer a more nuanced perspective that can improve the design and evalu-
ation of such policies by underscoring the importance of considering firm heterogeneity
in policy implementation. If policymakers aim to maximize local productivity spillovers,
they should recognize that attracting the most-productive firms may not yield the largest
external benefits per firm. Instead, policies that support a mix of firms, especially those
that can gain the most from density, may be more effective in fostering overall economic
growth. A superstar manufacturing plant, while certainly beneficial for many reasons,
might not experience a large productivity jump just from being in a given location if
it is already very efficient. In contrast, a moderately productive plant could substan-
tially improve its performance when placed in a dense industrial cluster by leveraging
knowledge transfers, skilled labor pools, or supplier networks that it did not have access
to before. This suggests that policies that are purely focused on luring marquee firms
(for example, offering large tax breaks to big multinationals to locate in a depressed area)
might not fully capitalize on agglomeration economies — their presence might not diffuse
as much additional efficiency to themselves or others as one would hope. Meanwhile,
supporting a critical mass of small and medium enterprises or slightly less-productive
tirms to co-locate and interact could potentially generate more substantial productivity
improvements collectively because these firms are more responsive to the agglomeration

stimulus.
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A Online Appendix: Monte Carlo simulations

I now posit a data generating process to simulate data and test the estimation algorithm

described in Section 2.

A.1 Data generating process

It is well outside the scope of this paper to develop a general equilibrium model of firm
location choices with dynamic capital investment. Thus, I will replace agglomeration
with an AR(1) process. Following Ackerberg et al. (2015), the production function is

Leontief in materials:

Qi = min{eP KPXLPLeTit, By My, }eSit (11)

where i refers to the establishment, ¢ to time, L is labor, K is capital, M is materials, €;;
is an unobservable shock to production, and Tj; is productivity. I assume €;; ~ N(0,02)
and constant returns to scale, fx + fr = 1. I assume that productivity is a function
of both agglomeration, a;;, and idiosyncratic establishment-specific raw efficiency, wj;.
More specifically, I assume: T = Bqaj + wjr + yajw;;. The firm observes productivity
at time t before making labor decisions. Capital is not flexible and evolves according to
Kit11 = (1 —6)Kj + I;. I also assume that firms” wages follow the process .

The establishment chooses labor maximizing revenues minus labor costs, where the

price of output is set to 1:
max Er{Qit — LitWit} (12)
The first order condition is
Er(BoBrKEXLEM Tetiesiny — Wy =0 (13)

which provides the optimal labor choice:

1 2
1 -8 Bk Tt 05 o
-8 ﬁL L 1-8 - SZErmY)
L=p,"" (—i ) K, "etFLe " (-PL) (14)

where I use that E(e%¢) = 057

The investment choice is an intertemporal choice. The establishment maximizes the
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discounted stream of profits. The discount factor is B and there are investment adjust-

912
ment costs equal to % I5.

maxEr Y B'{Qu — 213} (15
it t=0

subject to the production function and the capital accumulation dynamics. Following

Van Biesebroeck (2007), the first order conditions are as follows

0Qit+1 ol 1

—¢liy + Et,B[——CP i1, ]=0 (16)
ﬁL I S AT pro?
o — PELST “(wﬁ L) g R ) g1 - oy
it+
- ‘5 1t+1 5 lVlWlt+1+05 B 2+€1t+1
oLy = PPy LﬁKﬁ Effe™fL P (-fr) |+ (1= 90)BE[¢ili1]  (18)

Forward substituting the optimal investment choice in equation (18) I get

T-pL ﬁL B pro?
Iit _ ﬁﬁKﬁ ﬁi .BL Etz 1_ S[ lltirll;Lrs %Llnwt+1+5+05( AL )2+€lt+l+s] (19)

Pi

Since 7; does not have a simple dynamic progression, the expectation in (19) will have to
be numerically computed.

I will consider two cases. In Case A, a;; and w;; evolve according to unrelated autore-
gressive processes:

wit = pPowi—1+Cif (20)
ajp = Pait—1 + Gy (21)

where ¢ ~ N(O, aéw) and ¢ ~ N(0,c gu) In Case B, a;; is influenced by the previous

period shock to raw productivity:

wit = Powi—1+Cif (22)
iy = Palj—1 + “aéﬁfl + é?t (23)

where &, measures the responsiveness of a;; to the productivity shock.
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A.2 Simulation results

I simulate 20,000 firms over 10 periods for 500 times.” The parameters of the model are
calibrated similarly to Ackerberg et al. (2015). Bo =2, B = 0.6, Bx = 0.4, B, = 0.3, and
v = 0.2. The depreciation rate = 0.2, the discount rate p = 0.95, the standard deviation
of the optimization error in labor 0z, = 0.37, the variation in the capital adjustment cost
¢ is such that Std(¢) = 0.6, the standard deviation of € is 0.1, the AR parameters for raw
productivity omega are p, = 0.7 and 0z, = 0.2142. In both Case A and B, p, = 0.3 and

0z, = 0.7, and in Case B a, = 0.5.

Table 5: Monte Carlo simulation results

DGP Statistic BL Bk v
Case A Mean 0.6000 0.4003 0.2005
St. Dev 0.0002 0.0028 0.0269
Case B Mean 0.6000 0.4000 0.1990
St. Dev 0.0002 0.0032 0.0344
Truth 0.6 04 0.2

Notes: The table shows the mean and standard deviation of the pa-
rameter estimates obtained simulating 20,000 firms over 10 periods

for 500 times.

Table 5 shows the mean and standard deviation of the parameter estimates in the 500
Monte Carlo simulations; B, is not shown because it cannot be identified as explained in
Section 2. In both Case A and Case B, the estimation procedure is able to correctly and

precisely estimate the elasticities f; and Bk, and the agglomeration parameter 7.

Table 6: v with equation (25)

DGP Statistic 0%
Case A Mean 0.2005
St. Dev 0.0270
Case B Mean 0.1989
St. Dev 0.0344

Notes: See Table 5.

The firms are simulated for 100 periods and then the first 90 periods are removed as burn-in.
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Since T = Baais + wir + yaw;js, the distribution of TFP, T, conditional on agglomera-
tion, a, depends on the parameters B4 and 7. If B 4 is different from zero, the conditional
distribution will be shifted depending on the level of agglomeration, but its variance will
not be influenced. If -y is different from zero, both the mean and variance of the condi-
tional distribution of TFP will change depending on agglomeration. The way agglomer-
ation impacts the conditional distribution of TFP can help understand the identification
of the two agglomeration parameters.

For instance, taking the variance of TFP conditional on agglomeration I obtain
V(tila) = (1+7a)*V(wjla) (24)

Equation (24) can be used to obtain -y as

_ Std(Ti|a) — Std(wjs|a)
~ ax Std(wy|a)

(25)

Table 6 shows the <y estimates obtained with equation (25) after estimating T and w
with the moment condition in (10); the agglomeration parameter -y is identified by its
role in determining the distribution of TFP conditional on agglomeration. This is not
an alternative way to estimate the agglomeration parameters, as the GMM estimation
to obtain T and w also delivers the agglomeration parameters, but I find it useful to

understand how the agglomeration parameters are identified within the model.
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