
Finance and Economics Discussion Series

Federal Reserve Board, Washington, D.C.
ISSN 1936-2854 (Print)

ISSN 2767-3898 (Online)

Scenario Synthesis and Macroeconomic Risk

Tobias Adrian, Domenico Giannone, Matteo Luciani, and Mike West

2025-036

Please cite this paper as:
Tobias Adrian, Domenico Giannone, Matteo Luciani, and Mike West (2025). “Sce-
nario Synthesis and Macroeconomic Risk,” Finance and Economics Discussion Se-
ries 2025-036. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2025.036.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Scenario Synthesis and Macroeconomic Risk
Tobias Adrian,1 Domenico Giannone,2 Matteo Luciani,3 Mike West4

May 9, 2025

Abstract

We introduce methodology to bridge scenario analysis and model-based risk forecasting, leveraging
their respective strengths in policy settings. Our Bayesian framework addresses the fundamental
challenge of reconciling judgmental narrative approaches with statistical forecasting. Analysis eval-
uates explicit measures of concordance of scenarios with a reference forecasting model, delivers
Bayesian predictive synthesis of the scenarios to best match that reference, and addresses scenario
set incompleteness. This underlies systematic evaluation and integration of risks from different
scenarios, and quantifies relative support for scenarios modulo the defined reference forecasts.
The framework offers advances in forecasting in policy institutions that supports clear and rigor-
ous communication of evolving risks. We also discuss broader questions of integrating judgmental
information with statistical model-based forecasts in the face of unexpected circumstances.
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1 Introduction

Macroeconomic policy institutions such as central banks rely heavily on forecasting methods. Mon-
etary policymakers are regularly briefed on the economic outlook, alternative policy paths, and the
balance of risks around the central forecast. Central bank staff rely on a combination of structural
macroeconomic models, reduced-form empirical models, and judgmental approaches to prepare
such monetary policy briefings. The central forecast is used as a basis for alternative policy path
discussions, and the balance of risks is discussed more loosely based on scenario analysis.

The Bank of England pioneered communication of risk with fan charts in 1993; the Inflation Re-
ports show central projections of inflation with charts that reflect uncertainty. Uncertainty intervals
are derived from judgmental assessments of risk around the baseline (Britton et al., 1998). Since
1995, the U.S. Federal Reserve’s Tealbook (TB) has presented scenarios as perturbations around
baseline forecasts. Most major central banks now use some variant of these approaches. Fan charts
and scenario analysis pose practical challenges as they require frequent updating and quantification
of risks based on judgment. Hence central banks are relying more often on statistical methods to
forecast macroeconomic risk. The density forecasting approach of “Growth-at-Risk” (GaR: Adrian
et al., 2016, 2019; Plagborg-Moller et al., 2020; Adrian et al., 2022) is increasingly popular. The
Tealbook has included GaR measures together with scenarios since 2017; other central banks have
also implemented GaR approaches in addition to the more judgmental scenario methods (e.g.,
Figueres and Jarociński, 2020; Lenza et al., 2023; Aikman et al., 2019; Eguren-Martin et al., 2024;
Anesti et al., 2023; Jondeau et al., 2022; Alessandri et al., 2019).

Our focus here is on a formal statistical approach to integrating scenario-based balance of risk
discussions with statistical forecasts. The methodology defines a synthesis of the baseline and
scenarios that best match the statistical reference forecast distribution, the latter typically from
GaR and/or a quantile regression model. The scenario synthesis assigns weights to each scenario,
quantifying their relative concordance with the reference and so providing explication of why a
certain set of scenarios is particularly relevant. The analysis also incorporates a synthetic “backstop”
scenario designed to address potential incompleteness of the defined scenario set. In practice,
uncertainty measures are usually published only for the baseline; alternative scenarios are typically
represented only in terms of point forecasts. We use extensions of the Bayesian decision analysis
method of entropic tilting (e.g. Robertson et al., 2005; Tallman and West, 2022) to define full
scenario forecast distributions as perturbations the baseline.

Analysis further addresses scenario information beyond a single point forecast, specifically to
use scenario tail percentiles that reflect measures of scenario risk. This links to the desirability
of scenario hypotheses that represent more radical perturbations of the baseline than has been
typical (e.g., Justiniano and Primiceri, 2008; Fernández-Villaverde et al., 2011; Adrian and Bo-
yarchenko, 2012; He and Krishnamurthy, 2012; Brunnermeier and Sannikov, 2014; Fernández-
Villaverde et al., 2023, 2024 with structural models, and Adrian et al., 2021; Caldara et al., 2021;
Carriero et al., 2024 with reduced-form models). That scenarios considered by policy institutions
often represent only modest perturbations of the baseline is also partly addressed by our use of the
synthetic backstop scenario. This can serve as a “red flag” when the scenario set fails to account for
risks– especially tail risks– supported under the statistical reference.

Relating baseline and scenario forecasts to the statistical reference exploits Bayesian predictive
synthesis (e.g. McAlinn and West, 2019; Johnson and West, 2025) to motivate a discrete mix-
ture (linear pool) of baseline and scenario distributions as a proxy for scenario-based forecasting.
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The “match” of such a mixture with the statistical reference distribution uses a central measure of
concordance between distributions, namely the expected misclassification rate (EMR). Identifying
mixture weights to optimize EMR is then a formal Bayesian decision problem. Relative scenario
probabilities based on this scenario:reference optimization guide evaluation and interpretation of
the roles of scenarios. The analysis includes explicit statistical measures of scenario set incomplete-
ness reflecting aspects of lack-of-concordance the scenario synthesis with the reference. This aids in
the policy setting on the question of whether the baseline and chosen scenarios adequately reflect
all the risks captured by the reference.

The case study draws on published versions of the TB. We use data from reports prepared for the
December FOMC meetings in 2007 and 2018, giving predictions for 2008 and 2019, respectively.
Following the TB, we focus on risks to real growth. Reanalysis incorporating other variables, such
as inflation and unemployment at risk (Adams et al., 2021; Kiley, 2022; López-Salido and Loria,
2024) is straightforward but beyond our main scope here. Our detailed examples highlight the
generation of scenario weights reflecting aspects of concordance with the reference, and also the
questions of scenario set incompleteness. One example of that latter highlights the lack of a very
negative, “downside risk scenario” in both the 2007 and 2018 TB. This relates to the particular
interest in our analysis when economic uncertainty is high so that defining an adequate baseline
forecast is challenging. Then, listing and discussing a range of plausible scenarios, each with an
assigned probability derived from the reference match, offers a richer perspective on informed
decision-making under uncertainty.

Our analysis takes baseline and scenarios (as well as the reference) as given. In policy practice,
of course, the back-and-forth between changes to statistical forecast distributions and the evolving
narrative of scenarios provides a rich ground to rigorously examine shifts in the balance of risks.
This was noted by Bernanke (2023) and is germane to the TB, where scenario-based approaches to
the balance of risk and statistical forecast distributions are discussed separately. As Federal Reserve
Chair Jerome Powell noted during the Press Conference following the January 2025 FOMC meeting,
“One of the things our staff does is they look at a range of possible outcomes. [...] There’ll be baseline,
and then they’ll show six or seven alternative scenarios, including really good ones and not so good
ones. And what those do is they spark [...] the policymakers to sort of think and understand about
[...] the uncertainties that surround us.” Our methodology provides formal cross-talk that can aid
macroeconomic staff in policy institutions: it combines the communicative strength of narrative
scenarios with the statistical rigor of predictive models, identifying the most relevant risks with
easy-to-understand stories and quantifying the relevance of these stories.

Section 2 discusses foundations and overviews methodology. Section 3 addresses partial sce-
nario information. Section 4 introduces expected misclassification rates as distributional concor-
dance metrics, with foundational insights. Section 5 develops the embedding of scenario analy-
sis in a fully Bayesian framework, with core theoretical summaries and aspects of computational
implementation. Section 6 summarizes key aspects of the detailed case study. Section 7 links to
broader questions of combining judgmental information with statistical model-based forecasts. The
Appendix adds technical and methodological details. Summary comments define Section 8.
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2 Setting, Foundations and Perspective

2.1 Context and Goals

Interest lies in forecasting a vector outcome y, such as a path of several macroeconomic indicators
over multiple future time periods, based on the following ingredients.

• A policy-based analysis produces a predictive density p0(y), referred to as the baseline density.

• Relative to the baseline, the policy analysis considers each of a set of alternative scenarios; sce-
nario j, labeled Sj , generates a predictive density pj(y). These are regarded as hypothetical
scenarios to be assessed relative to the baseline.

• The baseline is a given forecast distribution in the policy setting, so not an hypothetical
scenario; that understood, we use S0 and the index j = 0 to designate the baseline.

• Separately, a statistical model (e.g., the statistical GaR analysis) produces a full predictive
density p(y), referred to as the reference predictive density.

The over-arching goal is to identify “closeness” of each scenario to the reference p(y), and rank
them relative to that assessment. The methodology we introduce addresses this, building on foun-
dational statistical concepts and model developments now discussed.

2.2 Scenario Mixtures and Bayesian Predictive Synthesis

A Bayesian decision-maker in the policy setting can regard the set of scenario p.d.f.s pj(y) as “in-
formation” to use in forming a policy-relevant overall forecast. This involves some form of pooling
of the predictions across the baseline and alternative scenarios. Here the foundational theory of
Bayesian predictive synthesis (BPS)– and the specific class of “mixture BPS” models (McAlinn and
West, 2019, section 2.2; Johnson and West, 2025)– applies. Under BPS, a valid Bayesian predictive
analysis can be based on a scenario mixture, i.e., a distribution with p.d.f. f(y|α) that is a linear
pool of the pj(y) with respect to probability weights αj in a vector α, namely f(y|α) ∝

∑
j αjpj(y).

A key theoretical aspect of mixture BPS is that it can address the broad question of “scenario set
(in-)completeness”. That is, a setting in which the baseline S0 and all of the the alternative scenar-
ios Sj considered are discordant with the reference p(y). This relates to the “model set incomplete-
ness” issue widely discussed in Bayesian econometrics. BPS theory addresses this by requiring an
additional p.d.f. to extend the initial set and to use in the mixture. This has been exploited in BPS
applications– and in its generalization to decision-guided settings (BPDS: Tallman and West, 2023;
Chernis et al., 2024)– by structuring the additional p.d.f. as a backstop that can be expected to
be supported by future data that is not so well-predicted by the initial model set. Examples in the
above studies use an over-dispersed average of the initial mixture of model p.d.f., and this strategy
can be adopted for scenario analysis. The specific construction of such a backstop scenario in the
case study in Section 6 provides an example of this modelling strategy.

Index the alternative scenarios from the policy setting by j = 1 : J − 1 with the baseline j = 0
and now with j = J for the chosen backstop p.d.f. The latter is labeled SJ though it is a purely
synthetic scenario chosen for the above purposes. Then the overall scenario mixture p.d.f. is

f(y|α) =
∑
j=0:J

αjpj(y). (1)
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2.3 Incomplete Specification of Scenario Forecast Distributions

Scenario p.d.f.s pj(y) are typically only partially specified. A common setting is that Sj defines
point forecasts such as means or medians, with or without uncertainty measures such as a few
other percentiles. The foundational concept is that the alternative scenarios represent economically
relevant “what-if?” perturbations of the baseline. Hence receiving such partial information on Sj

indicates a modification of p0(y) to match that partial information. Our approach aims to identify
pj(y) that is “closest to” the baseline p0(y) subject to being consistent with that partial scenario
information. The theoretical basis for methodology to do this, detailed in Section 3.2, is that of
entropic tilting (ET: Tallman and West, 2022). Since its introduction by Robertson et al. (2005),
ET–based methodology has seen increasing use in forecasting in econometrics, finance and related
areas (e.g. Krüger et al., 2017; Metaxoglou et al., 2018; Koop et al., 2019; Antoĺın-D́ıaz et al., 2021;
Clark et al., 2022; West, 2024; Crump et al., 2025). The current setting is different, though use
here of ET is close in spirit and goals to its original use in imposing constraints on a given– here
the baseline– forecast distribution.

2.4 Scenario-Reference Concordance

The goal of measuring concordance of scenarios with the statistical reference is now that of relat-
ing f(y|α) in eqn. (1) to the reference p.d.f. p(y). This is addressed by identifying the probability
vector α = (α0, . . . , αJ)

′ such that the scenario mixture is “closest to” p(y). This requires specifica-
tion of a utility function to characterize and quantify “close” in comparing densities, and then the
resulting methodology to evaluate α and thus define both scenario-specific weights and the over-
all mixture synthesis. Section 4.1 introduces a foundational metric for this– based on a measure
of concordance of f(y|α) and p(y) from traditional statistical classification. With some new and
relevant theoretical results and motivating examples, this underlies its use in scenario synthesis.

3 Partial Scenario Information and Entropic Tilting

3.1 Partial Scenario Information

As noted in Section 2.3 the common setting is that for each scenario only partial information
relative to the fully specified baseline is provided. In many examples, the partial information can
be represented as expectations of functions of y, and this is the setting we adopt. Often, only the
perturbed central tendency is reported. If taken as a mean, it would be a constraint on the expected
value directly. If taken as the median, then it is formally defined as the expectation of an indicator
function. Similar reasoning applies to other percentiles. Our analysis below addresses multiple
scenario features simultaneously, such as a set of percentiles.

Suppose that Sj provides partial information on pj(y) in terms of mj = E[sj(y)|Sj ] where sj(y)
is a qj−vector of scenario scores; call the given vector mj the target score for Sj . In general, the
definition of scores can be scenario-specific, but here we assume that qj = q and sj(y) = s(y) for
all j = 1:J . A main case of interest has elements of s(y) as indicator functions in one or more of the
univariate dimensions; then mj is a given vector of percentiles of pj(y) in those dimensions. With
Sj regarded as a perturbations of the baseline, methodology aims at identifying that pj(y) closest
to the baseline p0(y) subject to being consistent with the forecast information mj . Entropic tilting
(ET) results if we choose to define “close to” in a Küllback-Leibler (KL) sense.
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3.2 Entropic Tilting and Scenario-Baseline ET Weights

ET–based methodology, recently exploited in new ways in Bayesian predictive decision synthe-
sis (e.g. Chernis et al., 2024; Tallman and West, 2023, 2025), was originally used in imposing
constraints on forecast distributions; that is the context here. In our setting, ET aims to identify
pj(y) to minimize the KL divergence of the baseline p0(y) from pj(y) subject to mj = E[sj(y)|Sj ] =∫
y sj(y)pj(y)dy. ET theory (Tallman and West, 2022) yields

pj(y) = kje
τ ′
jsj(y)p0(y) where k−1

j =

∫
y

eτ
′
jsj(y)p0(y)dy, (2)

in which τj is the (provably unique) tilting vector such that the expectation constraint is satisfied.
The implied identity 0 =

∫
y{sj(y) − mj}exp{τ ′

jsj(y)}p0(y)dy is typically efficiently solved for τj
using simple Newton-Raphson.

In practice, it is typical that the baseline is represented in terms of a Monte Carlo (MC) sample,
i.e., defined as a discrete distribution {yi, wi

0}i=1:n with support points yi having weight (probabil-
ity) wi

0. This is particularly key in our setting as we will later use importance sampling to evaluate
p0(y) relative to the statistical reference p(y). Then expectations defining the ET tilting vectors τj
are trivially evaluated via simple Monte Carlo integration.

ET analysis can be regarded as using p0(y) as an importance sampling proposal with respect to
a target p.d.f. pj(y). This was recognized by Robertson et al. (2005) and provides useful numerical
checks on consistency of the scenario-specific moment constraints with the baseline. On sample
values yi, the implied normalized IS weights for MC integration in eqn. (2) are wi

j ∝ uijw
i
0 where

uij ∝ pj(y
i)/p0(y

i) = exp{τ ′
jsj(y

i)}. The uij are called ET weights. The standard expected sample
size (ESS) can be evaluated on the ui. ESS– the reciprocal of the sum of squared uij over i = 1:n–
provides an overall assessment of concordance of the Sj constraints with the baseline (Tallman and
West, 2022, sect. 1.6). This relates closely to the minimized KL divergence (e.g., Gruber and West,
2016, sect. 3.3; Gruber and West, 2017, sect. 5.4) but on an interpretable scale.

4 Predictive Concordance

4.1 Predictive Concordance and Misclassification Rates

Predictive concordance mooted in Section 2.4 is presented here in a general setting comparing two
density functions p(y) and f(y). The scenario mixture setting then arises with f(y) replaced by
f(y|α) of eqn. (1) for any given α. Assume that p(y) and f(y) have the same support.

Suppose a random draw y is made from either f(y) or p(y) with equal probabilities. It is not
disclosed which distribution generates the outcome y. Write Hp for the hypothesis that y ∼ p(y),
and Hf for the hypothesis that y ∼ f(y). Since the choice is made with Pr(Hp) = Pr(Hf ) = 0.5, the
resulting posterior probabilities conditional on the observed y are P(Hp|y) = p(y)/{p(y) + f(y)}
and Pr(Hf |y) = 1− P(Hp|y).

Now assume that y is actually a draw from p(y), i.e., condition on Hp. Before learning y, the
expected posterior probability on Hf is then

πpf ≡ E[P(Hf |y)|Hp] =

∫
y

P(Hf |y)p(y)dy =

∫
y

f(y)p(y)

{f(y) + p(y)}
dy. (3)
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By symmetry, if y is actually from Hf , the expected posterior probability πfp = E[P(Hp|y)|Hf ] is
obviously the same, πfp = πpf .

Predictive concordance of f(y) with p(y) is inherently measured by the expected misclassification
rate (EMR) πpf . Higher values indicate that it is difficult to discriminate f(y) from p(y)– indicating
that draws from f(y) are more likely to be misclassified as coming from p(y)– and vice-versa. This
is a natural, interpretable metric to assess concordance– or discordance– of the two distributions.

In traditional classification in statistics and machine learning, the optimal Bayesian classifier
judges y as coming from f(y) with probability P(Hf |y). Averaging across y ∼ p(·), and using
standard terminology, 1− πpf is then both the population sensitivity and (due to the comparison of
just two distributions and the implied symmetry) the population sensitivity of the optimal Bayesian
classifier. It follows that 1−πpf is the traditional overall accuracy of the test comparing f(·) and p(·),
and so EMR πpf = 1 − accuracy is the traditional error rate. Increasing EMR indicates decreased
discrimination of f(·) from p(·). Judging f(·) to be “close to” p(·) at higher values of πpf is thus
theoretically fundamental and practically interpretable.

It is immediate that πpf ≤ 0.5 with equality only when f(·) ≡ p(·), defining the absolute scale
for assessment of concordance. To prove this, note that πpf = E[r(y)/{1 + r(y)}|Hp] where r(y) =
f(y)/p(y) with E[r(y)|Hp] = 1. Now, r/(1 + r) is concave on r > 0 so that πpf ≤ E[r(y)|Hp]/{1 +
E[r(y)|Hp]} = 1/2. The upper bound is achieved when f(y) ≡ p(y), i.e., r(y) = 1 for all y.

Now consider a decision setting where f(·) is to be chosen to be “close to” p(y), and when
y ∼ p(·). Choosing f(·) to maximize πpf subject to relevant constraints is the optimal decision with
respect to the implied constrained version of utility function P(Hf |y). This defines the Bayesian
foundation of use of EMR in the scenario synthesis development in Section 5.

4.2 Relationships to Küllback-Leibler Divergence

Note that πpf = E[1/[1 + exp{k(y)}]|Hp] where k(y) = log{p(y)/f(y)}. Under Hp, the scalar
random quantity k(y) has expectation KL(p∥f) ≡ E[k(y)|Hp] =

∫
y log{p(y)/f(y)}p(y)dy, the

Küllback-Leibler divergence of f(·) from p(·). Assuming this expectation is finite, the delta approx-
imation yields πpf ≈ 1/[1 + exp{KL(p∥f)}]; thus choosing f(·) to maximize πpf is approximately
the KL divergence minimizing solution. In many cases of practical relevance, this also provides a
strict lower bound on πpf , i.e., πpf ≥ 1/[1 + exp{KL(p∥f)}]; see Appendix A.1. Both the direct
approximation and the lower bound are accurate in cases of higher concordance. Then, the sym-
metry of EMR in f(·) and p(·) implies that the same results hold with the two densities exchanged.
With KL(f∥p) the divergence of of p(·) from f(·), this immediately refines the lower bound to
πpf ≥ 1/[1 + exp(κpf )] where κpf = min{KL(p∥f),KL(f∥p)}, with equality as the direct delta ap-
proximation. KL divergence always raise the question of directional definition. This does not arise
in using πpf due to its symmetry, and this link to KL indicates the relevant “symmetrization” of KL
as κpf . In cases of relatively good concordance, the two directional measures will also be close.
Additional aspects of the relationship are discussed and exemplified in Appendix A.

EMR is fundamental for reasons discussed above; we have presented these connections to KL
as it is a well-known measure. A major caveat is that it assumes KL measures are finite. There are
important practical contexts where this is not so. An example has f(y) Gaussian and p(y) log T
with any degrees of freedom; then p(y) has no moments at all (e.g. West, 2024, Supplementary
Material, Appendix B) and KL(p∥f) is infinite. In contrast, πpf ∈ (0, 0.5] always.
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5 Scenario Synthesis

5.1 EMR and Optimizing Scenario Mixture Probabilities

The predictive concordance concept applies to the scenario mixture setting with f(y) replaced by
f(y|α) =

∑
j=0:J αjpj(y) at any chosen probability vector α = (α0, . . . , αJ)

′. Making dependence
on α explicit, eqn. (3) is now

πpf (α) =

∫
y

f(y|α)p(y)

{f(y|α) + p(y)}
dy. (4)

Values of α yielding high values of πpf (α) define mixtures of baseline and scenarios “close to” to the
reference p(y) in terms of probabilistic concordance. Suppose α̂ maximizes πpf (α) with maximum
value π̂pf = πpf (α̂). Each element α̂j of α̂ quantifies the extent to which Sj is concordant with
the reference relative to the other Si for i ̸= j. The summary π̂pf is a concrete measure of the
concordance of the set of predictions from the baseline and the scenarios combined. A low value of
π̂pf indicates that none of the Sj nor their mixture are really concordant with the reference, relating
to the scenario set incompleteness discussion of Section 2.2. Thus π̂pf measures how “discordant”
the scenario set is with the reference statistical predictions. The weight α̂J on the backstop provides
additional information.

The framework addresses selection of α as a decision problem that maximizes πpf (α) with
regularization to penalize very small αj . This is based on deeper foundational and theoretical de-
velopment in the next subsection, and leads to choosing α∗ to maximize the objective function

λ(α) = log{πpf (α)}+ ϵ
∑
j=0:J

log(αj), subject to αj > 0 (j = 0:J) and
∑
j=0:J

αj = 1, (5)

where ϵ > 0 is a very small regularization parameter. As we now show, eqn. (5) is in fact the log of
a formal posterior distribution so that the optimization seeks the posterior mode.

5.2 Bayesian Foundation

5.2.1 EMR is a Likelihood Function

Suppose that the economic reality y is generated from the reference p(y) and consider an hypothet-
ical/synthetic binary outcome z generated from the Bernoulli distribution with success probability
Pr(z = 1|y,α) = f(y|α)/{p(y) + f(y|α)}. Then

p(z = 1,y|α) = Pr(z = 1|y,α)p(y|α) = Pr(z = 1|y,α)p(y) = f(y|α)p(y)/{p(y) + f(y|α)}.

Now suppose you observe z = 1 but not y; EMR emerges via expectations over the “missing data”
y, viz., p(z = 1|α) = πpf (α). Thus, πpf (α) is in fact a likelihood function for the parameter α based
on an hypothetical observation z = 1 that classifies a random draw from p(y) as coming from f(y)
under a 50:50 prior. The connection with the foundation of EMR in Section 4.1 is immediate.

It follows that EMR-maximizer α̂ is a maximum likelihood estimate (MLE). Evaluating α̂ is
probability simplex constrained convex optimization problem with a unique solution, the convexity
and hence uniqueness being shown here in Appendix C. The solution will typically be a sparse
mixture of scenarios, with some zeros in α̂. This follows from general results of optimization of
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convex functions over the probability simplex (e.g. Boyd and Vandenberghe, 2004). For some
integer k ∈ {0 : J} a subset of k of the α̂j can be zero. There are cases when k = 0 but k > 0–
defining a sparse optimizing vector– is more usual, especially with larger J and diversity among
the pj(y). This relates to general features of optimization over the simplex; simplex constraints
operate to shrink weights to the boundaries, effectively as ℓ1 shrinkage for sparsity (e.g. Brodie
et al., 2009). This underlies the notion of scalability of the analysis to larger numbers of scenarios.

However, sparsity in α̂ is unstable since it is not a genuine feature but is induced by the implicit
prior ℓ1 penalty; its values are typically very sensitive to small changes in the input scenario and
reference p.d.f.s. This pathology of sparsity inducing penalties was identified and documented in
the context of forecasting by Giannone et al. (2021). In the current setting, take an example with
two very similar scenario p.d.f.s; one of these scenarios will have a zero value in α̂, the other
non-zero. Then, a very small change in either of the p.d.f.s– or of the reference p.d.f.– will flip
the zero/non-zero pattern. At each of these extremes– and for ranges of the αj on these two
scenarios bridging the extremes– the resulting scenario mixture f(y|α̂) will be almost unchanged.
This sensitivity is undesirable; it is desirable to have similar probabilities on the two scenarios. The
key point is that a uniform prior on α favors overly sparse models when the likelihood function
has modes at the simplex boundaries. This can be addressed by imposing additional constraints or,
more foundationally, with a minimally informative “regularizing” prior over α.

5.2.2 Priors and Penalties

The natural priors are Dirichlet, α ∼ Dir(a) having p.d.f. p(α) ∝
∏

j=0:J α
aj−1
j over the simplex.

Here aj > 0 for all j and, with precision a =
∑

j=0:J aj , the means are aj/a and prior joint
mode has elements max{0, (aj − 1)/(a − J − 1)}. A prior with each aj = 1 + ϵ for a very small
ϵ > 0 is “minimally informative” subject to the joint prior mode being positive on each scenario.
Modifications to aj = 1 + ϵj to differentially favor scenarios a priori are obviously of interest,
but for this paper the symmetric prior is adopted. For given ϵ, the prior joint mode and mean
are then each 1/(J + 1), i.e., favoring a uniform set of scenario probabilities though with high
uncertainty since ϵ is taken as very small. Under this prior α ∼ Dir(1(1 + ϵ)), the log posterior is
λ(α) in eqn. (5), up to an additive constant. The prior is zero at simplex boundaries, hence so is
the resulting unimodal posterior. The posterior mode– denoted by α∗– maximizes EMR modified
by the prior-based penalty that explicitly acts to move from the boundary zero MLE values in α̂ to
small but non-zero values. This leads to more stable and robust results and addresses the issues
discussed in the previous section.

Analysis requires choice of a (small) value of the regularizing hyper-parameter ϵ. Based on the-
ory in Appendix B, the default recommendation is ϵ = c/(J+1), where c = 0.005. The value of c can
be modified somewhat up/down with minimal impact, while the scaling with number of scenarios
is important in more heavily penalizing the MLE-based analysis in higher dimensions. Given ϵ > 0,
evaluation of the posterior mode α∗ to maximize eqn. (5) trivially modifies the probability simplex
constrained convex optimization problem with a unique solution. See Appendix C.

It is also of interest to consider analyses with additional constraints on α. A key example is to
require α0 ≥ αj for j = 1:J, consistent with the view that the baseline is the “modal” scenario.
In general it is of interest to run comparative analyses with and without such constraints. Such a
constraint simply modifies the Dirichlet prior by the indicator of the constraint; this does not impact
the convexity of the optimization problem and is trivially implemented.

8



5.3 Monte Carlo Importance Sampling

Analysis prima facie relies on evaluating the p.d.f.s p(y) and each pj(y), and then performing the
integration in eqn. (4). Analytic approximations to the integral may be explored. Specific approx-
imations relate to measures of discriminatory information in classification using mixtures (e.g. Lin
et al., 2016). In practice, however– and as already noted in Section 3.2– forecasts will typically be
“available” in terms of Monte Carlo (MC) samples, so direct evaluation of πpf by MC integration is
a priority (and avoids concerns of assessing the quality of analytic approximations).

The analysis is implemented with the values of the p.d.f.s p(y) and the pj(y) available only on
a (large) sample of MC draws from the reference p(y), a reference random sample. The random
sample yi, (i = 1:n), is drawn from p(y) and at the first step this defines an importance sample
(IS) for the baseline p0(y) with normalized IS weights wi

0 ∝ p0(y
i)/p(yi). The discrete distribu-

tion {yi, wi
0}i=1:n defines the MC approximation to the baseline for evaluation of expectations in

the downstream analysis. A proviso is that p(y) is a relevant importance sampling proposal; in
particular, it should be heavier-tailed than p0(y). As in all applications of IS, monitoring efficiency
measures such as the % effective sample size ESS = n−1100/

∑
i=1:n(w

i
0)

2 provides guidance; ini-
tial analysis generating a relatively low ESS guides choice of a larger sample size. This IS analysis
then underlies evaluation of scenario-specific ET parameters as in Section 3.2, yielding ET weights
uij ∝ exp{τ ′

jsj(y
i)} on sample yi defining pj(·) relative to the baseline. Scenario-specific ESS mea-

sures using the uij weights are then relevant. In (rare) cases of a scenario that is really discordant
with the baseline, a very low ESS indicates such. Refined but much more computationally de-
manding adaptive IS methods may be considered, but are outside our current scope. In any case,
encountering such discordance would indicate that such a scenario might better be considered
separately and its full distribution directly assessed.

This ET analysis leads to compound weights wi
j ∝ uijw

i
0 relating Sj to the reference; these are

called the ET−IS weights. ESS measures can now also be evaluated on the wi
j to provide direct

overall assessment of each pj(·) relative to the reference p(·). Note that there can be cases where
a scenario is more concordant with the reference than the baseline as some of our examples show.
The reference sample and compound ET−IS weights are then ingredients in the direct evaluation
of eqn. (4) via MC integration.

6 Case Study

The case study draws from the Risk and Uncertainty analyses in the December 2007 and 2018 Teal-
books (Federal Reserve Board, 2007, 2018). The scenarios specify point forecasts for GDP growth,
inflation, the unemployment rate, and other variables. The methodology applies to multiple vari-
ables and horizons, but this first application restricts attention to one-year ahead GDP growth,
namely y = y, now scalar. Analysis follows the processes discussed in the previous sections; Ap-
pendix D gives a summary of the flow of analytic and computational details.

6.1 Reference Distribution

Among recent statistical approaches to risk assessment, Adrian et al. (2019) develop quantile re-
gression models of conditional predictive distributions and show that financial markets provide
useful risk information. This approach has influenced practice, being adopted for conditional
one-year ahead forecasts of GDP growth, unemployment rate, and inflation, for example, by the

9

https://www.federalreserve.gov/monetarypolicy/files/FOMC20071211gbpt120071205.pdf
https://www.federalreserve.gov/monetarypolicy/files/FOMC20181219tealbooka20181207.pdf


Federal Reserve Board (Engstrom and Gonzalez-Astudillo, 2017) in the “Time-Varying Macroeco-
nomic Risk” exhibit in the Risk and Uncertainty section of Tealbook A, and the New York Federal
Reserve (Boyarchenko et al., 2023) in Outlook-at-Risk. Other central banks and international fi-
nancial institutions have also adopted GaR approaches (examples include Figueres and Jarociński,
2020; Lenza et al., 2023; IMF, 2017; Eguren-Martin et al., 2024; Anesti et al., 2023; Jondeau et al.,
2022; Alessandri et al., 2019; Pujadas et al., 2022; Hafemann, 2023).

Table 1: Reference percentiles

NY Fed Tealbook
2007 2018 2018

P10: −1.7 0.0 P5 0.7
P25: 0.2 1.1 P15 1.3
P50: 1.8 2.1 P50 2.5
P75: 3.3 3.0 P85 3.6
P90: 4.8 4.0 P95 4.3

The NY Fed Outlook at Risks gives point forecasts for one-
year ahead GDP growth. The Tealbook Time-Varying Macroe-
conomic Risk gives one-year ahead Tealbook forecast errors
in the December 2018 Tealbook, which provides GDP growth
point forecasts once the baseline forecast is added.

The Federal Reserve Board started produc-
ing the Tealbook Time-Varying Macroeconomic
Risk forecasts in 2017 but do not provide past
values. The NY Fed started producing the
Outlook-at-Risk forecasts only in 2023 but pro-
vides past values starting in 1989. As a re-
sult, our case study constructs and compares
reference distributions from both the NY Fed
and the Fed Board. In practice, both the NY
Fed and the Tealbook give five predictive per-
centiles (Table 1). To construct the reference
distribution, we fit skew-t distributions (Azza-
lini and Capitanio, 2003) on these percentiles.
Following Adrian et al. (2019), the four param-
eters of the skew-t minimize the squared distance between the given reference quantiles and those
of the resulting skew-t. Table 3 reports resulting parameters.

6.2 Baseline Distribution

Table 2 shows baseline and alternative scenario projections. The Tealbook provides the point fore-
cast and 70% intervals for the baseline. To construct the baseline distribution, we take the point
forecast as the median and extremes of the 70% confidence interval as the 15th and 85th per-
centiles, respectively. We fit a skew-t with 50 degrees of freedom to these percentiles– the choice
of degrees of freedom allows some modest tail-weight beyond normal but effectively represents a
“close to normal” distribution.

Table 2: Tealbook Baseline and Scenarios

DECEMBER 2007 DECEMBER 2018
j Scenario S P50 P15 P85 j Scenario S P50 P15 P85
0 Baseline 1.3 0.1 2.5 0 Baseline 2.4 1.2 3.9
1 Greater housing correction 1.0 1 Financial-based recession −0.7
2 Credit crunch −0.4 2 Stronger supply side 3.1
3 Stronger domestic demand 1.7 3 Greater interest rate sensitivity 1.5
4 With better export performance 1.9 4 Foreign slowdown 1.6
5 Greater cost pressure 1.2
6 Market-based federal funds rate 1.6

December 2007 TB: The baseline projection for 2008 is on page I-21, while the alternative scenarios are on page I-17—the scenarios for
2008 are obtained by averaging the values for 2008:H1 and 2008:H2. December 2018 TB: The baseline projection for 2019 is on page
88, while the alternative scenarios are on page 84.
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Figure 1: Reference and baseline with scenario point forecasts

2007 2018
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Solid black line is baseline p.d.f, and dashed black line is reference p.d.f. estimated from the NY Fed Outlook-at-Risk; solid gray line is
the reference estimated from the Tealbook Time-Varying Macroeconomic Risk. Diamonds show point forecasts from scenarios.

Table 3: Reference and baseline skew-t parameters
Distribution Type lc sc sk df

20
07 Reference NY Fed 2.7 2.2 −0.5 3.4

Baseline 1.3 1.1 0.0 50.0

20
18

Reference NY Fed 2.5 1.3 −0.3 3.0
Reference Tealbook 2.1 1.1 0.5 50.0
Baseline 1.2 1.9 2.1 50.0

The skew-t parameters are those for location (lc), scale (sc), skewness (sk)
and degrees of freedom (df).

Table 3 shows parameters of the
baseline and reference skew-t distri-
butions; Figure 1 shows the p.d.f.s.
The baseline is much more precise
than the NY Fed reference, with a
lower scale and higher degrees of
freedom. This raises questions for
economic forecasting and policy de-
sign. In a world with a known “true
model” of the economy, the baseline
and reference would be identical; as they differ in practice, interpreting the scenarios is the chal-
lenge. By comparison, the baseline is roughly as precise as the Tealbook reference, the latter having
50 degrees of freedom as a result of the optimization process in fitting the skew-t. This suggests
that the Tealbook reference may underestimate risk. As Federal Reserve Chair Jerome Powell said
during the Press Conference following the January 2025 FOMC meeting, we should not be sur-
prised as “it is human nature, apparently, to underestimate [...] how fat the tails are.[...] We think of
things in a normal distribution. And in the economy, it’s not a normal distribution.”

Given reference and baseline distributions, our analysis proceeds based on Monte Carlo sam-
pling from the reference. In developments below, the MC sample size is 106 and resulting MC
analysis summaries stable and robust across reanalyses with such a large sample size.

6.3 Scenarios

TB scenarios in Table 2 provide only point forecasts. In the Dec. 2007 (2018) TB, we have 6 (4)
alternative scenarios.1 Figure 1 shows scenarios on the baseline, indicating their concentration
around the baseline median but with some indication of downside risk in the left tail.

1We exclude “More room to grow” scenario in 2007, and both “Supply constraints” and “Lower oil prices” scenarios
in 2018. These had GDP point forecasts identical to either the baseline or another scenario. If included in our synthesis,
they would receive equal weight with either the baseline or one other scenario.
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Our first analysis treats the scenario point forecasts as medians2 of the pj(y), and the ET con-
struction maps the baseline to each scenario p.d.f. constrained to its specified median only; see the
P50s in Table 2. While the TB provides no measures of uncertainty around the scenario projections,
such information could be useful and available in other applications. Section 6.5 explores analyses
with P15 and P85 constructed for each scenario.

As discussed in Section 2.2, we augment the scenario set with a backstop located at the center of
the scenarios while being relatively over-dispersed. Since the scenario information here is restricted
to the median point forecasts, we first construct pj(y), j = 1, . . . , J , using ET as in Section 3,
then use the implied percentiles to define those of the backstop. Specifically, the backstop has
P50B = medianj=1,...,JP50j , P15B = minj=1,...,J P15j , and P85B = maxj=1,...,J P85j , respectively.
Numerical details are in Table 4.

Figure 2: Examples of Tilted Distributions of Alternative Scenarios
December 2007 Tealbook
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S5: Greater cost pressure S7: Backstop
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Figure 2 shows the resulting pj(y) for four of the 2007 TB scenarios. Table 4 shows correspond-
ing ET–based ESS measures. When a scenario is close to the baseline (e.g., S1 and S5), the tilted
distribution remains close and slightly asymmetric; otherwise, the tilted distribution can exhibit
skewness and multimodality due to the mismatch between the scenario forecasts and baseline. The

2TB and other point forecasts might alternatively be treated as modes of scenario distributions. Our analysis can
address that, based on new theoretical results (not reported here) showing why and how entropic tilting can be applied
when point forecasts are modes. We use medians, however, based on fundamental concern for deeper representation of
the probability distributions of scenarios, and embedding in more detailed analyses with multiple percentiles.
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Table 4: Synthesis based on P50 information: NY Fed reference

TB j Scenario S P15j P50j P85j ETj% ISj% π∗
j α̂j α∗

j

D
ec

.
20

07

0 Baseline 0.1 1.3 2.5 100.0 62.6 0.41 0.31 0.27
1 Greater housing correction −0.1 0.9 2.3 94.3 57.4 0.40 0.00 0.02
2 Credit crunch −1.0 −0.4 2.0 28.7 30.9 0.36 0.08 0.08
3 Stronger domestic demand 0.3 1.7 2.7 92.6 65.4 0.42 0.00 0.04
4 Better export performance 0.4 1.9 2.9 84.3 65.2 0.42 0.31 0.27
5 Greater cost pressure 0.0 1.2 2.5 99.5 61.3 0.41 0.00 0.02
6 Market-based Fed Funds rate 0.2 1.6 2.6 97.1 64.8 0.41 0.00 0.03
7 Backstop −1.0 1.4 2.9 56.4 67.2 0.43 0.31 0.27

f(y|α̂) −0.2 1.4 2.7 71.5 0.43
f(y|α∗) −0.2 1.4 2.7 71.2 0.43

D
ec

.
20

18

0 Baseline 1.2 2.4 3.9 100.0 88.5 0.47 0.74 0.64
1 Financial-based recession −1.0 −0.6 3.1 0.6 8.4 0.35 0.04 0.04
2 Stronger supply side 1.4 3.1 4.4 84.6 67.5 0.45 0.00 0.04
3 Greater interest rate sensitivity 0.7 1.5 3.4 69.4 70.3 0.45 0.13 0.11
4 Foreign slowdown 0.8 1.6 3.5 75.3 74.5 0.46 0.02 0.10
5 Backstop −1.0 1.6 4.4 2.1 37.9 0.43 0.07 0.08

f(y|α̂) 0.9 2.2 3.8 91.4 0.48
f(y|α∗) 0.9 2.2 3.8 90.9 0.48

P15 and P85 for Sj , j = 1 : J − 1, are for the ET–based pj(y); the other percentiles are inputs to the analysis. ETj is the ET-based
ESS of pj(y) relative to the baseline p0(y) while ISj denotes that for ET–IS implied relative to the reference p(y). π∗

j is the EMR of the
reference and scenario j alone. α∗

j and α̃∗ are the probabilities on Sj in the optimal mixture synthesis in analyses with and without the
backstop scenario, respectively. The optimization constraints α0 ≥ αj , j = 1:J, apply in both cases.

emergence of interesting shapes and multimodality in scenario distributions indicates the hypoth-
esized state of the economy in the scenario is in regions poorly supported by the baseline. This is
also related to the concept of modest policy intervention of Leeper and Zha (2003), i.e. that we
can analyze policy effects using the baseline as long as entertained policy interventions are small
enough that economic agents would not change their behavior in response to the intervention.
Related considerations are those of formally down-weighting extreme conditional assumptions in
conditional forecasting (e.g. Antoĺın-D́ıaz et al., 2021; Chernis et al., 2024, sect. 3).

6.4 Scenario Synthesis based on Medians

Table 4 shows optimal scenario mixture weights and other summaries from analyses. There is
strong concordance between the mixture synthesis and the reference in the case of the 2018 TB
(EMR=0.48), while the concordance is weaker in the 2007 Tealbook (EMR=0.43). Figure 3 pro-
vides insights via comparison of p.d.f.s. For TB 2008, the mixture synthesis is light-tailed relative to
the reference, as all scenarios lack probability on downside GDP ranges that the reference meaning-
fully supports. For the 2018 example, the scenario mixture supports positive GDP values– partly as
the baseline is already right skewed– but assigns relatively limited support to negative GDP growth.

In the 2007 TB analysis, the baseline, S4 and backstop are roughly equally weighted, followed
by S2. The two more extreme scenarios S2 and S4 get weight as they help to capture the spread of
the reference, while the other scenarios get small weights– they sit in the center of the reference
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Figure 3: p.d.f. and c.d.f of scenario synthesis and NY Fed reference
DECEMBER 2007 DECEMBER 2018
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Upper: p.d.f.s of the reference and scenario synthesis.Lower: c.d.f.s of the reference, baseline and scenario synthesis including results
synthesis c.d.f.s based on both α̂ and α∗; note that the latter are effectively indistinguishable.

and are very similar to the baseline, as shown by the ET ESS measures. In contrast, in the 2018 TB
example the reference is more precise and the baseline is heavier weighted than other scenarios.
Here the EMR of the baseline alone is quite high, so the alternative scenarios add small but limited
value in contributing to approximating the reference.

A key feature of analysis is that 100−ESS for the synthesis is an absolute measure of scenario set
incompleteness relative to the reference. In TB 2007, the ESS of f(y|α∗) is about 71-72%; we can
say that the scenario set is about 28-29% incomplete. In contrast, in TB 2018 the ESS of f(y|α∗)
is about 91%, which indicates that the TB scenarios much more adequately represent the risk and
uncertainty in the economy as defined by the reference than in 2007. A hint of the inability of
TB 2007 scenarios to properly capture the risks in the reference comes also from the substantial
weight on the backstop; in contrast, in TB 2018, the backstop receives low weight. As a general
point looking ahead, a backstop p.d.f. that is over-dispersed has general benefits, but in application
other choices are possible and may be preferred. These examples highlight this, indicating that
scenarios reflecting increased support in the upper and lower tails of the– anticipated– reference
distribution are most relevant. Future applications might address this.
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Table 5: Synthesis based on P50 information: TB 2018, Tealbook reference

j Scenario S P15j P50j P85j ETj% ISj% π∗
j α̂j α∗

j

0 Baseline 1.2 2.4 3.9 100.0 77.7 0.49 1.00 0.89
1 Financial-based recession −1.0 −0.6 3.1 0.6 0.8 0.33 0.00 0.01
2 Stronger supply side 1.4 3.1 4.4 84.7 51.0 0.47 0.00 0.05
3 Greater interest rate sensitivity 0.7 1.5 3.4 69.6 56.3 0.44 0.00 0.02
4 Foreign slowdown 0.8 1.6 3.5 75.4 61.3 0.45 0.00 0.02
5 Backstop −1.0 1.6 4.4 2.1 3.2 0.40 0.00 0.01

f(y|α̂) 1.2 2.4 3.9 77.7 0.49
f(y|α∗) 1.2 2.4 3.9 76.1 0.49

Details as in Table 4.

Table 5 summarizes 2018 analysis using the reference distribution based on percentiles from
the Tealbook Time-Varying Macroeconomic Risk to compare with the NY Fed-based details above.
Again the synthesis here uses only the scenario medians. In this case, the baseline is as precise as the
reference and has similar tail-weight in terms of the skew-t degrees of freedom. The main point,
however, is that the baseline dominates the scenarios, indicating that the hypothesized median
shifts they represent add little to no value in predictive discrimination relative to the reference.

On modeling strategy, consider an example of “normal” economics times as represented by
2018. In such settings, (i) the reference can be expected to be relatively light-tailed, (ii) scenarios
can be expected to be modest in terms of varying from backstop, and (iii) the resulting scenario
synthesis will be be close to the reference. There is limited scenario set incompleteness and the
backstop will play a limited role. Contrast this with periods of higher uncertainty, such as in the
2007 context here where the reference distribution should have appropriately fatter tails. Then the
synthesis of the baseline and the scenarios can substantially under-represent the reference unless
the scenario set includes more extreme considerations. This mandates admitting extreme scenario
considerations as a rational response to increased uncertainty in very uncertain economic times.

6.5 Scenario Synthesis based on P15, P50 and P85

As earlier noted, the methodology admits specification of multiple features of the scenarios so
long as they can be represented as expectations under implicit scenario distributions. The case of
multiple percentiles is practically key, and we visit this setting with summaries of further analysis
in the TB 2007 context.

Figure 4 and Table 6 report the results when scenario p.d.f.s are tilted versions of the baseline
that match the scenario-specific P15, P50, and P85. Here the scenario P15 and P85 are computed
assuming distances of tail percentiles from median agree with the baseline: P15j = P50j − (P500−
P150) and P85j = P50j+(P850−P500). The P15 and P85 for the scenarios in Table 6 are similar to
those in Table 4 when the scenario is close to the baseline; they are naturally more discordant with
increasing departure of the scenario percentiles from those of baseline (e.g., S2). Then, optimal
weights and EMR result are quite similar to those in Table 4. Other specifications of the P15 and P85
uncertainties– specifications that are founded in scenario considerations– may be quite different
than the synthetic choices here, of course, and can be expected to lead to different results. A main
point is that the methodology is open to– and trivially applied to– scenario specifications in terms
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of multiple percentiles, with negligible analytic and computational burden. Such specifications are
increasingly common in application, and to be encouraged in policy research moving forward.

Figure 4: p.d.f. and c.d.f of scenario synthesis and NY Fed reference
Tilted scenario distributions obtained using three percentiles — December 2007 Tealbook
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Left: p.d.f. of the reference and scenario synthesis. Right: c.d.f. of the reference, baseline and scenario synthesis, the latter comparing
results using α̂ and α∗ for the synthesis; again, the latter are effectively indistinguishable.

Table 6: Synthesis based on P15, P50 and P85 information: TB 2007, NY Fed reference

j Scenario S P15j P50j P85j ETj% ISj% π∗
j α̂j α∗

j

0 Baseline 0.1 1.3 2.5 100.0 62.6 0.41 0.30 0.26
1 Greater housing correction −0.2 1.0 2.2 92.3 57.2 0.39 0.00 0.01
2 Credit crunch −1.5 −0.3 0.9 20.0 31.6 0.32 0.10 0.11
3 Stronger domestic demand 0.5 1.7 2.9 90.1 65.9 0.42 0.00 0.07
4 Better export performance 0.7 1.9 3.1 79.3 66.1 0.42 0.30 0.26
5 Greater cost pressure 0.0 1.2 2.4 99.4 61.2 0.40 0.00 0.01
6 Market-based Fed Funds rate 0.4 1.6 2.8 96.0 65.0 0.42 0.00 0.03
7 backstop −1.5 1.4 3.1 27.7 62.4 0.43 0.30 0.26

f(y|α̂) −0.3 1.4 2.8 73.0 0.44
f(y|α∗) −0.3 1.4 2.8 72.7 0.44

Details as in Table 4.

7 Distributional Forecasts and Judgment

At a general level, our focus is on use and reconciliation of information from statistical models
and judgmental sources. Analysis is directional in that the specific goals are to assess judgmentally
derived scenarios against a statistical reference distribution. In the broader context, the reverse is
also of interest; that is, investigation of how a statistical forecast distribution may be “tilted” in a
direction deemed important from a judgmental point of view. The latter can often be proxy for
information external to that underlying the statistical model.

A key context is that of unique, unexpected events and shifts in the structure of the economy
that go well beyond existing model structure and assumptions. While structural economic models
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may provide a formal basis for longer-term adaptation, fully modeling the implications of regime
shifts on the structure of the economy takes time. Short-term, judgmental adjustments can be most
valuable for real-time decision making. Indeed, judgment plays a dominant role in decision making
in other areas, such as among investment professionals in macroeconomic trading. In monetary
policy settings, quantitative macroeconomic models provide a firmer basis, but undesirable policy
recommendations from models are often attributed to persistent forecast errors. A “good” policy
maker would intervene to input judgment to address this.

Subjective information sources include surveys, market intelligence, and stress test outputs.
Some comments on each are germane.

i. Surveys. Perhaps the key example is the US Survey of Professional Forecasters (SPF) a well-
established source of community-wide forecast information. SPF now collates probabilistic fore-
casts on predefined bins for outcomes (Croushore, 1993; Del Negro et al., 2023). Similar regular
surveys are conducted by ECB, the Bank of England, and other institutions.

ii. Market Intelligence. Large and detailed information sets are commonly collected by central
banks in order to inform policy makers on many dimensions of economic and financial market
developments outside the scope of well-adopted structural macroeconomic models. Such models,
aiming to reduce complexity and lead to openness and interpretation in economic terms, inevitably
lack the ability to reflect the full complexity of structural changes or nonlinear dynamics that be-
come practically relevant in more unusual circumstances. More complex economic and financial
market intelligence– in the form of summary external forecast information and judgment– can then
add real value, if recognized and appropriately integrated with the model-based forecasts.

iii. Stress testing. Initially developed by the IMF in the 1990s to assess financial system re-
silience, stress testing was later broadly adopted to assess macroeconomic risks from banking dis-
tress following the Great Financial Crisis (Adrian et al., 2020). All major financial regulators now
design and publish macroeconomic stress scenarios and assess financial stability relative to those
scenarios. This typically includes scenarios of major downturns in macroeconomic aggregates such
as real activity, inflation, and financial conditions. Scenario design emphasizes extreme economic
and financial circumstances; the resulting outputs can provide a basis for judgmental modification
of forecasts from the established reference econometric models that are not designed or customized
to quickly and easily address such circumstances.

The overall question is that of intervention in the statistical model to incorporate such external
information. The concept is long recognized and much methodology exists and is used in other
areas of forecasting, such as commercial and financial applications (e.g., West and Harrison, 1986;
West and Harrison, 1989; Black and Litterman, 1991; West and Harrison, 1997, chap. 11; West,
2024). However, emphasizing and formalizing the question with respect to policy applications is
highlighted and of renewed interest here.

Beyond contextual connections with the main theme of the current paper, key technical fea-
tures of our scenario synthesis methodology relate directly to these complementary interests. From
Section 5 and generalizing the notation there, each of the constructed scenario p.d.f.s has the
form pj(y) ∝ wj(y)p(y) based on the statistical reference p.d.f. p(y) and scenario-specific weight–
or tilting– function wj(y). The latter is wj(y) ∝ w0(y) exp{τ ′

jsj(y)} involving: (i) the ET term
exp{τ ′

jsj(y)} used to define pj(·) using the baseline and partial scenario information; and (ii) the
baseline-reference IS weight function w0(y) ∝ p0(y)/p(y). The Monte Carlo methodology uses the
discrete versions over the reference random samples yi, i.e., wi

j = wj(y
i) for j = 0:J.

The normalized scenario p.d.f.s are then pj(y) = cjwj(y)p(y) where the cj are just normalizing
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constants. Thus, explicitly, the partial judgmental information that Sj encodes leads to a weighted
modification of the statistical reference; on Sj alone, this can be regarded as the scenario-tilted
version of the model-based forecast. This indicates that the overall question of conditioning a
model-based forecast on what may be quite distinct forms of judgmental information is intimately
addressed within our framework. It also follows that the BPS-justified scenario mixture p.d.f. is
f(y|α) = w(y|α)p(y) where w(y|α) =

∑
j=0:J αjcjwj(y). This is true for any α, not just the

EMR-optimized value central to our scenario synthesis goals. In other contexts, such as the above
settings of modifying the reference p(y) with judgment-based information summaries, this allows
for context-specific specification of relative scenario weightings. Importantly, scenarios can ad-
dress multiple aspects of the forecast distribution, including location shifts, scale and skewness
perturbations– both within any one scenario and with diversity across a scenario set. This may be
particularly important to extension and evaluation of this approach in areas such as stress testing.

8 Summary Comments

The formal assessment and integration of partial scenario information with statistical forecast dis-
tributions is of interest in a range of policymaking settings. Our approach has been motivated by
the monetary policy process, where policy decisions are firmly rooted in macroeconomic forecasts
that involve not only the baseline forecast, but also alternative risk scenarios. The methodology
offers a concrete and straightforward approach to evaluating baseline and judgmental scenario
assessments– with their intuitive and easily communicated bases– against more formal statistical
density forecasts of risk. Applications to the monetary policy process are highlighted, and offer a
new frontier for practical yet rigorous policy making.

We believe the methodology will have broad appeal in other applications. For example, the IMF
continuously monitors global financial stability, and publishes a formal biannual GaR-based global
financial stability assessment in its Global Financial Stability Report. The statistical approach can
be compared directly– and in a quantitatively meaningful manner– with the scenario-based risk
assessment of the IMF’s World Economic Outlook, published on the same schedule as the GFSR.

The approach can also be readily applied to other areas of institutional risk management and
contexts such as portfolio choice applications. In risk management, as in financial institution super-
visory stress testing, both scenario-based approaches and more statistical approaches are commonly
deployed. Our framework and methodology offers a novel way to evaluate and integrate those two
avenues in a concrete fashion. In portfolio allocation decision making, the role of priors is funda-
mental and features commonly in allocation decisions, yet the bridge between intuitive scenario
based approaches and statistical modeling of return forecasts has received little attention. Again
our framework offers steps ahead in this regard. Beyond these areas, there are also opportunities
in commercial revenue and supply chain forecasting where ranges of forms of external/subjective
information are often assessed in the context of formal models with a view to eventual decisions.

Forms of scenario information that may feed-into new applications are information sets with
more than a few candidate percentiles of forecast distributions under any assumed scenario. If a
scenario is specified in terms of a larger number of percentiles, then analysis begins to approximate
that given a fully-specified scenario p.d.f. pj(y). This is certainly of methodological interest, and
may represent applied interests in settings where the scenarios are effectively replaced by forecast
distributions from alternative/competing models. This latter setting is closer to the existing setting
of BPS where multiple predictive distributions are considered by a Bayesian decision maker, and
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define analogue information to condition an initial reference forecast distribution. Some of the
technical developments here are rather different– and complementary– to the general setting of
BPS, but open up new questions for potential development and exploitation in forecast model com-
parison and synthesis. There are also questions of extension of the technical approach to address
synthesis based on other forms of scenario information, e.g., point forecasts that are regarded as
subjectively assessed modes or means rather than medians, and uncertainty in scenario informa-
tion, e.g., percentiles provided with some notational ± uncertainties. The general ET framework in
principle applies to such contexts, though details are to be developed for exploitation in any new
applied context in which such scenario information sets arise.

We have noted that the methodology is applicable with y in several dimensions. Elements of y
can include multiple economic indicators (real growth, inflation, unemployment, etc.,) as well as–
anchored at a current time period, such as the end of the current quarter– multiple time periods
ahead, such as the coming eight quarters. Scenario information to define (uncertain) constraints
on forecasts of the state of the macroeconomy over multiple future time periods can than generate
a range of scenarios. Technically and computationally, the methodology here extends immediately.
We have experience with such extensions, and recognize questions that arise due to increasing di-
mension of y. In technical essentials, the main questions there are not new, but have to do with
scalability of importance sampling methodology with dimension, and of its close technical ally en-
tropic tilting with increasing dimension of the underlying Bayesian decision-analytic utility (a.k.a.
score) functions. These questions are addressed in all applications of these general approaches,
and will need to be addressed in context– in specific applied settings of scenario synthesis.
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Appendix A Relating KL Divergences to EMR

A.1 Lower Bounds on EMR

As noted in Section 4.2, the bound πpf ≥ 1/[1 + exp{KL(p∥f)}] has empirical support in specific
examples. This is, of course, not true in general, though seems suggested under certain, practically
relevant conditions on y ∼ p(y). The implied distribution of k(y) = log{p(y)/f(y)} has mean
E[k(y)|Hp] = KL(p∥f) ≥ 0 with equality only when k(y) = 0 for all y. The bound is conjectured to
hold when the distribution of k(y) has finite, positive mean, is unimodal with Pr[k(y) > 0] > 0.5,
and has p.d.f. tail decay on k(y) < 0 no heavier than that on k(y) > 0. An exact proof for more
restricted cases is available, as follows.

Simplifying notation, the real-valued quantity k replaces k(y). The focus is on πpf = Ek[π(k)]
where π(k) = 1/{1+exp(k)} and k has some p.d.f. g(k) with finite mean m > 0. Here Ek[·] denotes
expectation with respect to k ∼ g(k). The following theory draws on standard results concerning
scale mixtures of normals (Andrews and Mallows, 1974; West, 1987).

Suppose that g(k) is continuous, symmetric and unimodal with mode and finite mean m. Then
g(k) is a normal scale mixture: g(k) = Ev[v

−1ϕ{v−1(k − m)}] where ϕ(·) is the standard normal
p.d.f., v is a random scale parameter and Ev[·] denotes expectation with respect to its distribution.

Then, recognize that π(k) = 1/{1 + exp(k)} is the survival function of the standard univariate
logistic distribution for real-valued k. The logistic distribution is also a normal scale mixture, so
π(k) = 1 − Eu[Φ(u

−1k)] where Φ(·) is the standard normal c.d.f., u is the random scale parameter
and Eu[·] denotes expectation with respect to its distribution. Thus π(m) = 1− Eu[Φ(u

−1m)].
The above theory of the normal scale mixture structure g(k) and π(k) further implies that

πpf = 1 − Ev,u[
∫
k Φ(u

−1k)v−1ϕ{v−1(k − m)}dk] with expectation over v, u (in which, implicitly,
u ⊥⊥ v). Routine normal theory yields πpf = 1 − Ev,u[Φ(w

−1m)] where w =
√
v2 + u2. Hence

Ek[π(k)]−π(m) = Ev,u[Φ(u
−1m)−Φ(w−1m)]. Now, m ≥ 0 and w > u so that Φ(u−1m)−Φ(w−1m) ≥

0 implying that Ek[π(k)] ≥ π(m), as required. This inequality is strict unless k = v = 0.
The analysis above may extend to more general cases when g(k) is not symmetric. Suppose, for

example, that g(k) is a scale mixture of skew-normal distributions (Azzalini and Capitanio, 2013).
This is a rich class of unimodal distributions with ranges of asymmetries; it includes the above
symmetric distributions as special cases. Convolutions of skew-normals with normals are skew-
normals, so it is reasonable to ask if the above development generalizes. There may be broader
generalization so long as g(k) is unimodal with m > 0 and/or Pr(k ≥ 0) > 0.5. This is an aside and
beyond current scope, but suggests further theoretical study. Importantly, the above discussion does
not extend at all to cases– including many practical cases– when the expectation of k (defining the
KL divergence) does not exist and when the distribution of k is less regular and even multimodal.

As another aside note, this also provides interpretation of KL on the probabilistic concordance
scale in cases when the bound is assured; in such cases, κpf , κfp ≤ log{(1− πpf )/πpf}.

A.2 Approximation and Bounds

The link of EMR to KL is further illuminated in the 1st-order Taylor series approximation of the
function 1/{1 + exp(k)} at k = 0, namely 1/{1 + exp(k)} ≈ (2 − k)/4. This is an exact lower
bound on 1/{1 + exp(k)} for k ≥ 0 and an exact upper bound for k ≤ 0. See this as follows. First,
π(k) − (2 − k)/4 is positive on k > 0 if, and only if, g(k) > 0 where g(k) = k + 2− (2 − k) exp(k).
Calculus shows that g(k) is strictly increasing for all k, and, of course, g(0) = 0, hence the lower

24



bound arises for k > 0. Second, π(k) − (2 − k)/4 is negative on k < 0 if, and only if, g(k) < 0, so
the upper bound is implied on that range. This approximation is very accurate over |k| ≤ 0.5 where
1/{1 + exp(k)} ≥ 0.38, i.e., in cases of relatively close concordance; the absolute error is less than
0.68% on |k| ≤ 0.5. Hence, if y ∼ p(y) and the implied distribution of k(y) heavily favors such
ranges, then πpf ≈ {2−κpf}/4. On this basis, choosing f(·) to maximize πpf is again approximately
the (symmetrized) KL divergence minimizing solution. In the following example highlights values
of πpf ≥ 0.4 as practically relevant, as lower values are strong indications of lack of concordance.

A.3 A Simple Example

A simple example relates the range of πpf to the familiar, interpretable measure of expected sample
size (ESS) from Monte Carlo (MC) analysis using importance sampling (IS), in addition to KL. Take
y = y to be scalar with p(y) = N(0, 1), standard normal, and f(y) = N(a, 1) for some mean a ≥ 0. IS
with proposal p(y) and target f(y) as target leads to MC integration based on the resulting weighted
average approximations. A random sample yi ∼ p(y), (i = 1:n), leads to IS weights wi ∝ f(yi)/p(yi)
subject to summing to 1. The resulting MC approximation to EMR is πpf ≈

∑
i=1:nwi/(1+nwi). The

IS effective sample size as a percentage is ESS = n−1100/
∑

i=1:nw
2
i . Also, in this simple example

KL(p∥f) = KL(f∥p) = κpf = a2/2.
Figure 5 comes from an example with n = 106 and across a range of values of a > 0. For

a ≤ 1, ESS ≥ 40%, πpf ≥ 0.40 and is roughly linear in ESS up to its maximum of 0.5. For practical
purposes and extrapolating from this interpretable example– also supported by other empirical
examples– πpf ≥ 0.4 or so is expected unless f(·) and p(·) are quite substantially discordant. From
Section 4.2, πpf ≥ 0.40 links to the accurate approximation πpf ≈ 1/{1+exp(κpf )} with κpf ≤ 0.4.

Figure 5: Predictive Concordance Example: EMR, ESS and KL-based lower bound when p(y) =
N(0, 1) and f(y) = N(a, 1) for a range of values of a.

Appendix B Prior/Regularization Parameter Specification

We have prior α ∼ Dir(1(1+ϵ)) and aim to calibrate the choice of small ϵ. We discuss this by analogy
with canonical setting for Dirichlet prior/posterior distributions, i.e., multinomial sampling. With
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α representing scenario probabilities, the least informative multinomial sample is just one draw
from one of the scenarios; the implied Dirichlet posterior then has parameter updated by +1 in
one element only. With no loss of generality, suppose a single outcome is known to come from the
baseline; this single draw posterior is then Dir(1(1+ϵ)+e) where e = (1, 0, . . . , 0)′. Now, to reflect a
minimally informative setting, suppose the posterior is modified to Dir(1(1+ ϵ)+xe) for some very
small, positive x. This can be regarded as the posterior under an imaginary fractional observation;
for example, x = 0.01 says the information content of the posterior relative to the prior is 1% of
that arising on observing a single multinomial draw.

Under this posterior with specified x, the prior mode 1/(J + 1) increases to posterior mode
α∗
0 = (ϵ+ x)/{(J + 1)ϵ+ x} on S0, and decreases to α∗

j = ϵ/{(J + 1)ϵ+ x} on the other scenarios
j > 0. In this minimal information context it is rationale to limit this latter “shrinkage towards
zero” and we reflect this by asking that α∗

j ≥ p/(J+1) for some fractional reduction p ∈ (0, 1). This
implies ϵ ≥ cx/(J+1) where c = p/(1−p). Here c is explicitly a lower bound on the reduction from
prior to posterior odds on Sj for j > 0 given the minimal information of a single outcome under
S0. For example, the choice c = 0.5 limits this odds reduction to no more than 50%. The choices
x = 0.01 and c = 0.5 imply ϵ ≥ 0.005/(J + 1), and this value is recommended as a default.

Appendix C Optimization of Scenario Mixtures

For any y define the (J + 1)−vector p(y) = [p0(y), . . . , pJ(y)]
′. It is then easily shown that deriva-

tives of EMR in eqn. (4) are

h(α) ≡
δπpf (α)

δα
=

∫
y
p(y)h(y|α)dy and H(α) ≡

δ2πpf (α)

δαα′ = −2

∫
y
p(y)p(y)′H(y|α)dy

where h(y|α) = p(y)2/{p(y) + f(y|α)}2 and H(y|α) = h(y|α)/{p(y) + f(y|α)}. At any α the
Hessian matrix is H(α) = −2E[p(y)p(y)′a(y|α)] where a(y|α) = p(y)/{p(y) + f(y|α)}3 and the
expectation is with respect to y ∼ p(·). Since a(y|α) > 0 for all y,α the expectation is a positively
weighted average of rank-one matrices p(y)p(y)′. Whether y is continuous or discrete (the latter
with at least J + 2 support points) H(α) is full rank and strictly negative definite for all α.

It follows that maximizing πpf (α) over the simple is a convex optimization problem with a
unique maximizing value α̂; standard constrained optimization algorithms then apply. Further, the
modification to add the prior penalty and define the log posterior objective function in eqn. (5)
maintains convexity and ensures a unique posterior mode α∗ given any specified value of ϵ. Then,
standard constrained, non-linear optimization methods (e.g., the default interior-point algorithm
in the fmincon function in Matlab, 2024) apply and are fast and efficient.

As an aside but of some broader interest, the same approach shows that minimizing KL(p∥f)
or KL(f∥p) (when finite) with respect to α are also convex optimizations with unique solutions
and similar characteristics. This also applies with any value of ϵ in the fully Bayesian version that
adds the prior penalty based on a very diffuse but proper Dirichlet prior that supports non-zero
αj with probability one. This links to an existing literature on sparsity and stability of KL-optimal
mixtures in the context forecast combination (e.g. Conflitti et al., 2015; Diebold et al., 2023; Crump
et al., 2024; De Mol, 2024). Then, relative to EMR, the KL analysis typically leads to more zeros
among the optimizing values of α i.e., a sparser mixture more aggressively favoring just one or a
small number of scenarios. This arises since KL involves expectations of the unbounded function
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log{p(y)/f(y|α)} and is very dependent on behaviour of the tails of the two p.d.fs. This also relates
to the caveat that, as noted in Section 4.2, KL divergence may simply be undefined in important
practical contexts depending on the relative tail behavior of p(y) and f(y|α).

In contrast, EMR is more conservative (and numerically more robust) in discounting scenarios
that are less concordant with the reference though not extremely so; this arises as EMR is based on
expectations of the bounded function 1/{1+ p(y)/f(y|α)} in eqn. (4). That said, the full shrinkage
to boundaries of the simplex still arises and requires modest regularization as provided by the
penalty induced under the minimally informative prior in the foundational Bayesian setting of
Section 5.2.

Appendix D Summary of Computational Flow

1. Generate a large random sample yi, (i = 1:n), from the reference p(y), to define an impor-
tance sample for Monte Carlo evaluation of the baseline p0(y) and the scenarios pj(y).

2. Evaluate baseline IS weights wi
0 ∝ p0(y

i)/p(yi), subject to normalization.

3. Evaluate the scenario p.d.f.s pj(y) for j > 0.

(a) If the scenario p.d.f.s are completely specified and can be evaluated, this is as in Step
2 above now applied to scenario p.d.f.s pj(y) instead of the baseline p0(y). For each Sj

this delivers normalized IS weights wi
j on the reference sample values.

(b) If the scenarios are only partially specified, proceed as follows.

i. Compute the scenario distributions using a random sample xi, (i = 1:n), drawn from
the baseline p0(x). Use this for MC evaluations of the integrals required to deliver
tilting parameters for each Sj to minimally distort the baseline to match specified
scenario medians, percentiles, etc.

ii. Compute the implied tilting weights uij on each of the reference sampled values yi.

iii. Compute the implied ET-IS weights for each pj(y
i) at the reference random sample

values yi, namely the normalized weights wi
j ∝ wi

0u
i
j , (i = 1:n), for each Sj .

4. Compute synthesis weights by optimizing eqn. (5) over α; this is modified with constraint
α0 ≥ maxj=1:J αj if the baseline is required to be the modal scenario as used in our examples.
At each value of α in iterations of a numerical optimization routine, direct MC integration
evaluates EMR in eqn. (4). This is just the average over i = 1:n of sampled EMR values
wi
f (α)/{wi

f (α) + wi
p} with implied scenario synthesis IS weights wi

f (α) =
∑

j=0:J αjw
i
j and

uniform reference weights wi
p = 1/n for all i = 1:n.
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