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Introduction

Recent changes in trade policy and ongoing global economic developments have introduced new
sources of uncertainty into the U.S. macroeconomic outlook. These developments—ranging from
shifts in tariff schedules to geopolitical conflict—may affect both inflation dynamics and the
trajectory of real economic activity. Against this backdrop, forecasters and policymakers may find
it useful to assess the probabilities of various macroeconomic scenarios. Two salient scenarios at
the time of this writing are a soft landing, in which inflation declines to target levels of around 2
percent while growth remains positive, and a stagflationary episode, characterized by elevated

inflation alongside subdued or negative output growth.

This paper uses a quasi-structural framework to quantify the relative likelihood of these two
scenarios over a four-quarter horizon. The analysis builds on the approach developed by Bekaert,
Engstrom, and Ermolov (2025, BEE henceforth)?, which generates joint density forecasts for key
macroeconomic variables by modeling the underlying structural supply and demand shocks. This
methodology is particularly well suited to the present environment for several reasons. First, it
enables a decomposition of observed macroeconomic variation into supply-driven and demand-
driven components, allowing a clearer interpretation of inflation and output risks. Second, the
model incorporates time-varying, asymmetric risks, capturing important features such as fat tails
and skewness that are often present during periods of heightened uncertainty. Third, the model
delivers joint predictive distributions—rather than just point forecasts—allowing for probabilistic

assessments of scenarios such as stagflation or soft landings.

! The views expressed in this document do not represent those of the Federal Reserve System, its Board of
Governors, or staff.

2 Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. "Uncertainty and the Economy: The Evolving
Distributions of Aggregate Supply and Aggregate Demand Shocks." AEJ: Macroeconomics forthcoming.
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These distributional forecasts may be informative for both financial market participants and
policymakers. Market participants can use them to better understand the balance of risks around
inflation and growth, with implications for pricing interest rate derivatives, inflation-linked assets,
and macro-sensitive equities. Policymakers, particularly those operating under dual mandates, may
benefit from tools that clarify whether risks to inflation and growth mandates are aligned, or in
conflict. In that sense, this framework helps quantify potential policy tradeoffs under evolving

macroeconomic conditions.

The main results of this paper are estimates of the relative probabilities of a stagflationary
scenarios versus a soft landing in the U.S., and how those probabilities have evolved over time. To
preview, the model estimates that the probability of a stagflation scenario was substantially
elevated coming out of the pandemic. For instance, at the end of 2022 after inflation had reached
peak levels and the Federal Reserve had begun an aggressive path of raising interest rates, the
probability of at least mild stagflation —defined as inflation exceeding 3 percent while real GDP
growth registers below 1 percent on a four-quarter basis—is estimated to have been about 35
percent. At the time, the probability of a soft landing over the coming four quarters—defined as
inflation returning to near 2 percent while growth remained solid— was estimated to be low,
below 5 percent. Over the next couple of years as growth remained solid and inflation slowly
declined towards the Federal Reserve’s 2 percent goal, the model-implied probability of stagflation
is estimated to have fallen steadily by the end of 2024 to about 5 percent, while the probability of a
soft landing rose to about 30 percent. By mid-2025, however, that trend had reversed, with the
probability of at least mild stagflation rising precipitously and the probability of a soft landing
declining notably. The shift in 2025 can be attributed mostly to the uncertain effects of tariffs on
the outlooks for inflation and growth. However, the probability of severely stagflationary scenarios

did not increase materially.

Summary of Methodology

A detailed description of the methodology, data, estimation, and validation techniques used in this
analysis is provided in the appendix. A brief summary is presented here for readers who may not

require the full technical detail.
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The methodology aims to produce predictive distributions for key U.S. macroeconomic

variables—specifically, four quarter headline and core inflation, four quarter real GDP growth, and
the unemployment rate—at a four-quarter horizon. The approach combines time series forecasting,
structural economic identification, and non-Gaussian modeling of uncertainty. The method follows

and extends the framework of BEE, proceeding in three primary steps.
Step 1: Forecasting Means and Ildentifying Reduced-Form Shocks

The first step estimates the conditional mean forecasts for the four macro variables using ordinary
least squares (OLS) regressions. These models incorporate two predictors for each macro series: (i)
the four-quarter lag of the dependent variable, and (ii) the corresponding Survey of Professional
Forecasters (SPF) forecast. This design thus leverages both historical data and forward-looking
expectations.? In addition to providing conditional mean forecasts, the OLS residuals from these
projections represent reduced-form forecast errors, which capture unexpected deviations from

predicted paths.
Step 2: Identifying Underlying Structural Shocks

The second step maps the reduced-form shocks into four structural shocks using Keynesian sign
and exclusion restrictions. The identified shocks include aggregate supply shocks, demand shocks,
and two idiosyncratic shocks: one for headline inflation and one for the unemployment rate.
Consistent with Keynesian intuition, supply shocks are assumed to move inflation and growth in
opposite directions (e.g. oil price shock), while demand shocks affect both in the same direction
(e.g. financial crisis). The model assumes a linear structure where reduced-form shocks load onto
the underlying structural shocks. The loading parameters are estimated using a classical minimum
distance (CMD) estimator, matching second-moment statistics (variances and correlations) of the

reduced-form shocks.

3 As documented in the appendix, SPF forecasts tend to be very significant predictors for macro variables. Moreover, the
mean predictions in our framework rarely deviate substantially from the corresponding raw SPF forecast. To the extent that the
model’s mean forecasts coincide with the SPF, one could regard the value-added of our framework as its ability to estimate time-
varying and non-Gaussian distributions around the SPF forecasts.
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Step 3: Modeling the Conditional Distributions of Structural Shocks

The third step models the conditional distribution of each structural shock using the Bad
Environment—Good Environment (BEGE) distribution, which allows for time-varying volatility,
skewness, and kurtosis. The BEGE framework assumes that each structural shock is composed of
two asymmetric components—a “good” and a “bad” shock—each drawn from a centered gamma
distribution. The variance and skewness of the shocks depend on time-varying shape parameters
for the gamma distribution, which evolve according to GARCH-type dynamics.# The model’s
structure allows for dynamic asymmetries in the risks to all the structural shocks, with persistent

variation in both upside and downside risk.

To evaluate model fit and select between specifications, the framework relies on a combination of
in-sample and out-of-sample criteria. The final model generates full multivariate predictive
distributions for inflation, growth, and unemployment by integrating the forecast means from step
1 with the time-varying distribution of structural shocks. These distributions are used to compute
not only central forecasts but also the probability of outcomes falling into specific macroeconomic

scenarios—such as stagflation or a soft landing.

Results

The results from the estimation of the model, including parameter estimates, inference and model
validation are relegated to the appendix. Here we present summary results from the model
regarding the evolution of the outlooks for real GDP growth and inflation over the past two and a

half years.

The first set of results that we present is the evolution of the multivariate predictive distribution of
inflation and real GDP growth. In Figure 1 we plot bivariate distributions for real GDP growth and
headline inflation. Each panel depicts predictions from the model at different points in time. In
each panel, forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for

four-quarter real GDP growth rate are on the vertical axis. The asterisk denotes the model’s mean

4 The two time-varying shape parameters of the BEGE distribution govern time-variation in the variance, skewness, kurtosis
and all higher-order moments of the shocks. This restriction implies some dependence in time-variation across the moments.
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point forecast and the square denotes the mode of the distribution. The yellow area indicates the
most likely outcomes, with 50 percent of all outcomes expected to fall within it. The green area
depicts the next most likely 40 percent of outcomes, which we interpret as a region of material
risk.> For reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth.
The model-implied probabilities of outcomes in each of the four resulting quadrants are listed in

the corner of each quadrant.

We begin in the upper left panel, at the end of 2022 when the economy was still suffering from the
aftereffects of the pandemic. Much higher than expected readings on headline inflation had
prevailed for several quarters, with a peak rate of over 7 percent earlier in the year. Economic
growth had remained solid but the Federal Reserve had embarked on an aggressive campaign of
increases in the target range for the federal funds rate in order to bring demand and supply into
better balance and to attempt to move inflation toward the Fed’s 2 percent goal. As indicated by
the hollow square, the model’s modal expectation at the time was for inflation to moderate over the
next four quarters, but only to around 4 percent, and for real GDP growth to remain around 2
percent. To a large extent, the model’s modal predictions reflect survey expectations at the time.
However, uncertainty was extremely elevated, with the model seeing substantial risk of stagflation
scenarios, as indicated by the long green tail in the southeast quadrant, where inflation outcomes
are greater than 2 percent and real GDP growth is below 2 percent. Although not all outcomes in
that quadrant may be considered severe enough to merit the label of stagflation, the probability of
landing in the southeast quadrant was estimated to be 54 percent. What is going on here is that,
based on recent expereince of adverse supply shocks and the historical tendency for large shocks to
be followed by additional large shocks, the model saw elevated risk of further adverse supply
shocks that could push up on inflation and down on real activity. At the same time, the model had
also observed recent large positive demand shocks, which it interpreted as indicating increased risk
of demand shocks going forward. To see this, note the more modest but still notable green tail of
the distribution in the southwest quadrant. The model does not offer economic narratives to go

along with its worrisome predictions but it is easy to imagine that a worsening of supply chain

5 There are an infinite number of ways to partition a distribution to isolate a fixed probability mass. We use the partition that
encloses a fixed probability mass (e.g. 50 percent) in the smallest possible region, sometimes called the highest density region.
This partition is unique under certain regularity conditions (e.g., a unimodal and continuous pdf).
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disruptions or a resurgence of Covid may have been top of mind at the time, which could be

compounded by large demand shocks.

We now fast forward one year to the end of 2023, with the model implied results for that period
illustrated in the upper right panel of Figure 1. For background, inflation had indeed moderated
over the year but remained nearly 3 percent. Real GDP growth had accelerated a bit, registering
nearly 3 percent. As indicated by how the yellow portion of the distribution is centered near the
“cross hairs” of the axes, both inflation and real GDP growth were expected to register around 2
percent looking forward under the model. However, the uncertainty bands were still wide. A still-
notable tail extended deep into the southeast quadrant characterized by stagflation, with the
predicted probability of landing in that quadrant in four quarters’ time around 33 percent. What is
going on here is that both recent economic data and survey data pointed to inflation and real GDP
growth registering around 2 percent, and the large supply and demand shocks of 2021 and 2022
were further in the rear view mirror, so the model estimated that the probabiltiy of large shocks

going forward had declined somewhat but remained elevated.

We now skip forward once again to the end of 2024, with the model-implied distribution for that
period illustrated in the lower left panel. Over the year, inflation had continued to moderate, on
net, registering 2.5 percent, still somewhat above the Fed’s target. Real GDP growth had remained
solid, registering around two percent. The model expected those benign conditions to maintain,
with both real GDP growth and inflation expected to register around 2 percent over the subsequent
four quarters. It had been quite some time since the period of large supply and demand shocks, and
the model reacted by seeing reduced uncertainty in the outlook; the confidence bands by the end of
2024 had shrunk to relatively subdued levels by historical standards. The probabilities of landing

in each of the four quadrants were roughly balanced, around 20-30 percent.

The outlook shifted once again by mid 2025. The model’s modal expectation was for inflation to
register around 3 percent, a reacceleration relative to recent data, and for growth to fall to around 1
percent. This shift reflects survey respondents lowering their forecasts for growth and increasing
their forecasts for inflation, with the prevailing narrative from private sector forecasters pointing
the to the expected effects of increases in tariff rates. Market commentary also focused on the large

amount of uncertainty accompanying the potential effects of tariffs. However, the width of the
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model’s uncertainty bands remained modest; Since large shocks to “hard" data regarding inflation
or GDP had not occurred recently, the model saw no reason to anticipate higher uncertainty going
forward. Still, the probability of landing in the southeast “stagflation” quadrant moved up to 59
percent, higher even than the level at the end of 2022. That said, much of the mass of the
distribution is near the crosshairs of the axes, suggesting that extreme stagflation scenarios with
very high inflation and/or very low growth may not be particularly likely under the model. We

refine our estimates of the probabilities of mild versus severe stagflation scenarios using Figure 2.

Figure 1: Conditional Bivariate Distribution for Real GDP Growth and Inflation
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Notes: Estimated predictive distribution of headline inflation and real GDP outcomes using the model developed in
Step1-3 in the appendix. Each panel depicts predictions from the model at different points in time. In each panel,
forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth
rate are on the vertical axis. The asterisk denotes the model’s mean point forecast, and the square denotes the mode.
The yellow area indicates the most likely outcomes, with 50 percent of all outcomes expected to fall within it. The
green area depicts the next most likely 40 percent of outcomes, which we interpret as a region of material risk. For
reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied
probabilities of outcomes in each of the resulting four quadrants are listed in the corner of each quadrant.

Figure 2 depicts the probabilities of some specific scenarios using the same four quarter ahead
probability distributions that are shown in Figure 1. We formally define a “soft landing” scenario
as four-quarter inflation registering between 1 percent and 2/ percent while real GDP growth

registers greater than 1 percent. We define the scenario “severe stagflation™ as four-quarter
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inflation registering over 4 percent and four quarter real GDP growth registering less than 0
percent. We define “mild stagflation” as four-quarter inflation registering over 3 percent and four
quarter real GDP growth registering less than 1 percent but excluding severe stagflation
scenarios. As shown by the green bars, the probability of a soft landing within four quarters was
very small in late 2022 —less than 5 percent. However, amid a continuing recovery of supply
conditions and better balance between supply and demand, that probability of a soft landing grew
steadily through the end of 2024 to about 30 percent. However, the probability of a soft landing
fell notably through the first half of 2025 amid concerns about the effects of tariffs on inflation
and real activity. The probabilities of severe and mild stagflation are shown by the brown and red
bars, respectively. These probabilities moved opposite to those of a soft landing, falling steadily
from high levels at the end of 2022 to very low levels at the end of 2024. Interestingly, though
the probability of a mild stagflation rose sharply in 2025 to levels even higher than were seen at
the end of 2022, the probability of a severe stagflation rose by comparatively less. This pattern is
consistent with a notable but modest shift in modal expectations for inflation and real activity as
a result of the tariffs, and the fact that “hard” data have thus far shown no signs of elevated
volatility that would indicate, in the context of the model, a sharp increase in downside supply

shock risk.

These shifts in scenario probabilities may have useful implications for both policymakers and
financial market participants. For policymakers—particularly those operating under dual
mandates—an elevated probability of stagflation could underscore the potential for conflicting
objectives, where efforts to support growth could exacerbate inflation pressures, and vice versa.
In such an environment, a flexible approach to policy setting and communication may be
preferred. For market participants, the reemergence of stagflation risk alters the perceived
distribution of future macro-outcomes, which may warrant repricing of assets sensitive to
inflation and growth conditions, such as nominal and inflation-linked bonds, equity sectors with
exposure to inflation, and interest rate derivatives. The lower probability of a soft landing
reinforces the asymmetry in current macro risks, suggesting that hedging strategies and forward-
looking risk assessments should account for a tail risk environment in which inflation remains

elevated even as growth softens.
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Figure 2: Probabilities of Macroeconome Scenarios
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Notes: Estimated probabilities of macroeconomic outcomes at the four-quarter horizon using the model developed in
in the appendix. The scenario “soft landing” is defined as four-quarter, four-quarter ahead headline inflation registering
between 1Y percent and 2'; percent while four quarter four quarter ahead real GDP growth registers greater than 1
percent. The scenario labeled “severe stagflation” is defined as four-quarter inflation registering over 4 percent and
four quarter real GDP growth registering less than 0 percent. The scenario labeled “mild stagflation” is defines as four-
quarter inflation registering over 3 percent and four quarter real GDP growth registering less than 1 percent, excluding
severe stagflation scenarios. The dates on the horizonal axis correspond to when the forecast is made, predicting
outcomes four quarters hence.

There are some important caveats to these results in particular and the modeling approach more
generally. First, given the small sample sizes of macroeconomic time-series data, it is challenging
to be precise about the likelihood of low-probablity events, and the results are certainly sensitive to
various modeling assumptions governing the estimation of uncertainty. In particular, because the
assessment of uncertainty is grounded in the historical behavior of reduced-form shocks, the model
cannot detect an increase in forward-looking risk unless it is reflected in recent large forecast
errors. Like all GARCH-based approaches, it assumes a stable relationship between past shocks
and the conditional uncertainty about future outcomes. This assumption may be violated during
periods of structural change, leading to potentially misleading projections. In addition, the
identification of structural shocks in the model relies on fixed loading parameters of reduced-form
shocks onto structural shocks; if the true economic structure evolves—such that, for example, the
effects of a given policy shift are misattributed to a supply shock—the model’s decomposition and
forecasted risk profile could be distorted. As with any empirical model, these limitations
underscore the importance of complementing statistical forecasts with judgment and real-time

contextual analysis.
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Appendix: Methodology and Data

Our primary goal is to estimate the predictive multivariate distribution for several macro variables.
This task is accomplished in three steps. The first step uses OLS to identify the time series of
predictive means of the four variables, and to identify a series of reduced-form shocks relative
each of those mean predictions —measured as the OLS regression residuals. The predictive means
in the OLS regressions are informed by macro variables and survey data. The second and third
steps, together with the predictive means from the first step, assemble estimates for the full
multivariate predictive density of the four variables. In particular, the second step identifies
structural shocks that underlie the reduced-form OLS shocks, using simple Keynesian intuition. In
addition to providing a realistic treatment of the interdependence of the reduced-form shocks, the
structural model with Keynesian intuition adds a bit of economic context to the exercise. This step
yields time series estimates for four structural shocks. The third step models the conditional
distribution of the structural shocks. Armed with (a) time series forecasts of the mean of the
economic variables, (b) time series forecasts of the conditional distribution of the structural shocks,
and (c) a mapping between the structural shocks and the reduced-form shocks, we can construct
density forecasts for the macroeconomic variables of interest. Much of the methodology follows
Bekaert, Engstrom and Ermolov (2025, BEE henceforth), to which readers are referred for more

details.® First, we describe the data used in this exercise
Data

The data we employ for this study include realized outcomes for four macroeconomic time series

as well as survey forecasts of those four variables. The four macroeconomic series are cumulative
four-quarter headline PCE inflation ﬁf, cumulative four-quarter core PCE inflation, 7rcl4 ,
cumulative four-quarter real GDP growth, g*and the average quarterly level of the unemployment

rate, u,. Historical data for these series are gathered from Fred, a data provision service of the

Federal Reserve Bank of St. Louis.” The survey data are from the Survey of Profession Forecasters

¢ Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. "Uncertainty and the Economy: The Evolving
Distributions of Aggregate Supply and Aggregate Demand Shocks." AEJ: Macroeconomics forthcoming.
7 See https://fred.stlouisfed.org/
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(SPF), with data taken from the website of the Federal Reserve Bank of Philadelphia.® We use SPF
forecasts for four-quarter cumulative headline inflation, core inflation, real GDP growth and the
four-quarter ahead level of the unemployment rate. For example, standing in 2024Q4, the
measured four quarter ahead SPF forecast for inflation covers the period 2025Q1-2025Q4. Our
data sample is quarterly. The SPF data is the limiting factor for the start of our sample. Although
some series in the SPF are available from 1968Q4, our sample period (after accounting for the
need to calculate multiperiod lags for each variable) extends from 1971Q3-2025Q2.9 For all
estimation steps, we exclude data from 2020Q1-2021Q4 so that the extreme variation in the data
from the Covid-19 pandemic era and its immediate aftermath, which may not be representative of
the rest of the sample, does not dominate parameter estimates and model selection criteria. (We do

still report results for that period.)
Step 1

We begin by using regressions to estimate time series for predictive means of the macroeconomic
variables, as well as reduced-form historical shocks for four macroeconomic time series, all at the
four-quarter prediction horizon. To do so, we use simple forecasting regressions with OLS

estimation of the equations:

Cul (1)

4 _
7Z'Ct+4 - ﬂ'CO +Xx t+4

et

4 _ g
8a=8 T xg,tIBg TU Ly

u

”t+4 = uO + xu,tﬁu + ut+4

4 z
7[t+4 - ”0 + xﬂ,tﬁ;r + Uy

€ .2 9

Notice that the explanatory variables (denoted by “x’s”) are lagged four quarters so that we
identify shocks to the variables at the four-quarter horizon. As explanatory variables, each
regression includes the lagged dependent variable as well as the ex-ante forecast of the
corresponding variable from the SPF. By including survey-based expectations as explanatory
variables, we leverage the wide set of information that is available to survey respondents. As can

be seen from Equation (1), the four-quarter ahead reduced-form shocks for four-quarter inflation,

8 See https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-
forecasters

° SPF forecasts for headline and core PCE inflation are available starting only in 2007. Prior to that date, we
use SPF forecasts for headline GDP inflation to stand in for SPF forecasts of headline and core PCE inflation.
Forecasts for GDP inflation are available starting from 1968Q4.
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core inflation, the unemployment rate and real GDP growth are labeled

Ul 4, Ufs,, uf,, and u‘tq +a» Tespectively. In addition, each regression model in Equation (1)
provides a time series of the conditional mean for each variable. For example,

E, [ﬂcf+4] =Ry +X,, ... where hats denote OLS estimates for parameters. Because our data are

overlapping, comprising for instance quarterly observations for four-quarter growth, OLS standard

errors are likely to be biased. We instead use bootstrapping techniques to calculate standard errors.

Table A1l: OLS forecasts of macro variables at the four-quarter horizon

4 4 4
ﬂ'ct+4 gt+4 ut+4 7z.t+4
const -0.03 0.33 0.05 0.20
(0.27) (0.72) (0.48) (0.44)
SPF forecast () 0.74 0.85 1.23 0.49
(0.31) (0.26) (0.22) (0.28)
lagged dependent (t) 0.25 0.02 -0.21 0.43

0.25)  (0.10)  (0.21)  (0.19)

R2
0.80 0.20 0.72 0.64

Note: OLS parameter estimates for models described by Equation (1). Standard errors, in parentheses, are from a block
XY bootstrap routine with block length of 20 quarters. The sample period for estimation corresponds to realizations in
1971Q3-2025Q2 excluding the period 2020Q1-2020Q4.

As can be seen from Table A1, SPF forecasts are quite informative for all four variables with
positive coefficients that are statistically distinct from zero and in most cases near unity, while the
lagged dependent variables generally contribute with smaller coefficients and less statistical
significance. The R-squared statistics across the four variables range from 0.20-0.80 but should be

interpreted with caution due to the overlapping nature of the data.

Figure A1 depicts the regression model-implied mean forecasts for the four macroeconomic series.
These will be used as the means for the predictive distributions. Unsurprisingly, expected GDP
growth is relatively low during recessions, and the expected unemployment rate is higher than
normal in recessions. Expected headline and core inflation have generally declined over the sample

period.
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Figure A1: Estimated conditional means from predictive regressions
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Notes: OLS estimates for the conditional mean of macro variables as described by the model in Equation (1). The
sample period for estimation corresponds to realizations from 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4.
NBER recession periods are shaded in blue.

Figure A2 depicts the regression model-implied reduced-form shocks to the four series. Deeply
negative shocks to GDP are evident for all recessions, while the inflation shocks are sometimes
negative and sometimes positive during recessions. These distinct patterns highlight the need to
distinguish between supply driven and demand driven risk to the outlook, which are modeled

explicitly in the next step.

Figure A2: Reduced-form shocks from predictive regressions
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Notes: OLS estimates of reduced-form shocks for the model described by Equation (1). The sample period for
estimation corresponds to realizations from 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4. NBER recession
periods are shaded in blue.
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Step 2

Step 1 provides time series estimates of the conditional means of our four variables as well as time
series estimates for the reduced-form shocks to the variables. Our ultimate goal is to generate
multivariate predictive densities for the four macro variables. If the reduced-form shocks were
drawn from simple i.i.d. distributions, we could produce simple static error bands around our
forecasted means, by bootstrapping or a similar methodology. However, as we will see, a more
elaborate model is able to fit the data substantially better. In particular, there are rich patterns of
time-varying volatility, skewness, and correlation among the macro variables that can be matched

to produce more accurate predictive densities.

In this step we use Keynesian intuition to model the interdependence of the reduced-form shocks.
In particular, we assume that the reduced-form shocks are simple functions of deeper structural
supply and demand shocks, among other structural shocks. Concretely for this step, we identify a
mapping between the reduced form shocks and “structural” supply and demand shocks. The point
of establishing this mapping is that once we have estimated its parameters, we can recover times
series for the structural shocks. To begin, we assume a linear mapping between reduced-form and

structural shocks as follows:

0 [0 s 0 0] @
us O,. Ogz 0 0 f¢g

-0, -0, o, 0] e

e | |-0.. 0., 0 o.|&]

Above ¢’ are £’ defined as “supply” and “demand” structural shocks, respectively. As part of our

minimalist strategy to identify structural shocks, we use only sign restrictions and zero restrictions
to define supply and demand shocks in a manner consistent with Keynesian intuition. Specifically,
all the “0” parameters are assumed to be positive. For example, supply shocks are defined so that

they push inflation and real activity in the opposite direction. A positive supply shock reduces core

inflation (as governed by the parameter o, ) but increases real GDP growth (via o, ). A

quintessential example of a (negative) supply shocks is the onset of stagflation caused by an oil
price shock. Such a shocks would push up on inflation and down on real activity. Conversely,

demand shocks push core inflation and real GDP growth in the same direction: A positive demand
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shock increases core inflation (via o, , ) and increases real GDP growth (via o, ,). A

quintessential example of a (negative) demand shock is a financial crisis, which may push down

both inflation and real activity.

As can be seen in the bottom two rows of Equation (2), similar sign restrictions are imposed for the
relationships between supply and demand shocks and shocks to headline inflation and the

unemployment rate. We also allow for idiosyncratic shocks to affect headline inflation and the

unemployment rate, € are &', respectively. These are intended to accommodate variation in

headline inflation that may not affect core inflation, and shocks to the unemployment rate which
may be specific to the labor market and orthogonal to aggregate supply and demand shocks,
respectively. As is common in the literature identifying structural shocks, the four structural shocks
are assumed to be independent, and without loss of generality, the structural shocks as assumed to

all have unit unconditional variance.

Naturally, we must estimate the o parameters in Equation (2), of which there are 10. To do so we
use a classical minimum distance (CMD) approach. Similar to the perhaps more familiar
generalized method of moments methodology, CMD works by choosing parameters to best match
a set of sample statistics. For our case, we utilize information in the estimated reduced form shocks
from Equation (1), estimates of which are plotted in Figure A2. For each series, we calculate the
unconditional second-order moment statistics: the four unconditional standard deviations the
reduced-form shocks and the six pairwise correlations among them. Notice that under Equation
(2), the 10 o parameters exactly determine these 10 unconditional standard deviations and
correlations for the reduced-form shocks. This can be seen as follows. Let the 4x4 matrix in
Equation (2) be called M. Then the covariance matrix, €, of the reduced-form shocks is equal to
MM (recalling that the structural shocks all have unit variance and are uncorrelated). The 10
second-order statistics to be fit are all nonlinear functions of the 10 unique elements of Q. It
follows that that estimated € can be used identify the o parameters. Furthermore, once we have
estimated the o parameters in M, we can use Equation (2) to invert the structural shocks from the
estimated reduced-form shocks. We simply calculate the inverse of M and multiply that inverse by
the vector reduced-form shocks. To be concrete, the statistics to be fit in this estimation procedure
are shown in Table (2). As shown in the table, the unconditional standard deviations of the shocks

are rather precisely estimated, with standard errors that are small relative to the point estimates. Of
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the six correlations reported in Table A2, two are strongly distinct from zero: the correlation of
shocks to real GDP growth and the unemployment rate are strongly negatively correlated, as

expected. And the shocks to headline inflation and core inflation are strongly positively correlated.

Table A2: CMD estimation: statistics to be fit

e g u i
Uiy U’y U, 4 Uiy

std dev 0.99 1.85 0.91 1.52
(0.21) (0.22) (0.14) (0.24)
correlation with...

uf., -0.19
(0.23)
u , -0.06 -0.69
(0.22)  (0.08)
T
Uiy 0.88 -0.06 -0.20

0.02)  (021)  (0.17)

Note: Sample statistics for OLS residuals from the model described in Equation (1) and parameter estimates in Table
Al. Standard errors, in parentheses, are from a block bootstrap routine with block length of 20 quarters. The sample
period for estimation corresponds to realizations in 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4.

Table A3 shows the results for the CMD estimation step with estimated parameters corresponding
to those in Equation (2).

Table A3: CMD estimated loadings

s, -0.76 0.63 0 01| &
022)  (0.11)
us, 1.45 115 0 o |é&’,

= (0.24)  (0.26)

u, -0.36 -0.56 0.62 0 e
0.11)  (0.16)  (0.07)

u’, -0.89 1.03 0 0.69 e”
022)  (0.18) (0.08)

Note: Loadings estimated from the CMD estimation of the model described by Equation (2). Standard errors, in
parentheses, are from a block bootstrap routine with block length of 20 quarters. The sample period for estimation
corresponds to realizations in 1971Q3-2025Q2 excluding the period 2020Q1-2020Q4.

Consistent with our identification assumptions, all the signs in Table A3 match those in Equation

(2). The top row shows that shocks to core inflation ufy, load materially onto both shocks to

supply and demand, £’,, are £’ ,, respectively, with slightly greater loading onto supply shocks.

Page 16 of 32



NONCONFIDENTIAL // EXTERNAL

Shocks to real GDP growth, uf +4 load positively onto demand shocks and supply shocks, also
with slightly more loading on supply shocks. Shocks to the unemployment rate load negatively
onto both supply and demand shocks, which is intuitive since “good” news of either type lowers
the unemployment rate, but with a relatively larger loading on demand shocks, consistent with the
intuition that the unemployment rate reflects the cyclical position of the economy with respect to
demand conditions. The unemployment rate also has a large exposure the idiosyncratic component,

loading onto &/,

more strongly than it does to either supply or demand shocks. Finally, headline
inflation loads with the expected signs onto supply and demand shocks, more strongly so than core

inflation does. This is to be expected because headline inflation is more volatile than core inflation.

In addition, headline inflation loads meaningfully onto an idiosyncratic component, &, . This is

likely capturing idiosyncratic variation in food and energy inflation, which are stripped out of the
core inflation measure. In results not shown, the CMD model-implied statistics corresponding to
those in Table A2 suggest a near perfect fit of those statistics, consistent with the exactly identified

nature of the CMD exercise.

Figure A3: Estimated supply and demand structural shocks
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Note: Supply and demand shocks inverted using Equation (2), the reduced-form shocks from Figure A2 and the
parameter estimates in Table (2). NBER-defined recessions are shaded in blue.

Figure A3 shows the estimated structural supply and demand shocks inverted from the reduced-
form shocks using the parameter estimates from Table A3. Both supply and demand shocks tend to

register negative values during recessions, with particularly pronounced negative supply shocks
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during the recession in the early 1970s and the Covid period and its aftermath. Most other

recession feature predominant negative demand shocks.

Figure A4: Estimated idiosyncratic inflation and unemployment rate structural shocks
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Note: Idiosyncratic shocks to headline inflation and the unemployment rate inverted using Equation (2), the reduced-
form shocks depicted in Figure 2 and the parameter estimates in Table A2. NBER-defined recessions are shaded in
blue.

Figure A4 shows idiosyncratic shocks to the unemployment rate and inflation. The idiosyncratic
shocks to the unemployment rate were particularly large during the peak of the Covid period while
the largest peaks for the idiosyncratic inflation component were registered during the 1970s and

1980s and the Covid period.

Step 3

The final and most complex step involves estimating the time-varying conditional distributions of
the structural shocks identified in the previous step. Exploiting the assumption that the structural
shocks are independent, we estimate univariate processes for each of them. To flexibly
accommodate potentially time-varying volatility, skewness and kurtosis of the structural shocks,

we use the BEGE distribution developed by Bekaert and Engstrom (2017)'° and the BEGE-

° Bekaert, G. and E. Engstrom, 2017, “Asset Return Dynamics under Habits and Bad Environment-Good
Environment Fundamentals,” Journal of Political Economy, vol 125.3.

Page 18 of 32



NONCONFIDENTIAL // EXTERNAL

GARCH framework of Bekaert, Ermolov and Engstrom (2015).!! Concretely, consider a generic

structural shock, €, (e.g., a supply or demand shock) to be realized at time (t + 4). We model the
shock as ¢,,, ~ BEGE ( D, Gp,an) where BEGE denotes the distribution. To unpack the BEGE

distribution a bit, the BEGE model assumes thate,,, has two components:

e ., =00, -0 (3)

t+4 p o t+4 n-t+4

and @’

where A

- are individual component shocks. The volatility parameters ¢, and o, are

restricted to be positive. The component shocks are independent and distributed as centered
gamma:

o, Nf(p;sl); a., Nf(”t’l) (4)
Figure AS provides some examples to illustrate features of the BEGE distribution. The upper right

panel shows that the probability density function of @’,,, which we label the “good” component. It

t+4 2
is bounded from the left and has an unbounded right tail. The volatility, skewness and kurtosis of

the good component are governed by the shape parameter, p,. Similarly, as shown in the upper

left panel, the probability density function of —@", (the “bad” component) is bounded from the

right and has an unbounded left tail. The lower panel illustrates examples of possible shapes of the

overall BEGE distribution for &

.. in Equation (3), which could arise as a result of different

configurations of the shape parameters p, and n,. In particular, the BEGE probability density

function may be positively or negatively skewed, or symmetric and may have excess kurtosis
depending on the shape parameters. The Gaussian distribution is a special case of the BEGE

distribution (as the shape parameters tend to infinity).

I Bekaert, G., Engstrom, E, and A. Ermolov, 2015, “Bad environments, good environments: A non-Gaussian
asymmetric volatility model,” Journal of Econometrics, vol. 186.1, ppg. 258-275.
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Figure AS: Illustrations of BEGE densities
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Note: Examples of gamma distribution and the BEGE distribution under various parameter configurations.

We assume that each of our structural shocks follow a potentially time-varying BEGE distribution
in that the shape parameters may evolve over time. Taking the example of the supply structural

shock, we assume that

e\, ~ BEGE(p},n;0,,0,,) (%)
where p; and n} are time-varying shape parameters for the BEGE distribution for supply shocks,
and oy, and o, are static parameters. As above, p; governs the level of “good variance” for
supply shocks and nigoverns the level of “bad” variance. Specifically, under this formulation of

the BEGE distribution, the conditional variance of &;,, follows

VAR | €, |= 05 p} +oun; ©)

So that both p; and n} increase the variance of the supply shock. However, under the BEGE

distribution p; and n; have opposite effects on skewness

SKW, [ &, |=20,p, —20%,n; (7)

Clearly, p; increases skewness while nj decreases skewness. For this reason, p;is referred to as

“good variance” while nj is referred to as “bad variance.”

To complete the model, we must specify the dynamics of the time-varying good and bad volatility

variables, p; and n{. To do so, we use a simple GARCH specification:
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In a nutshell, p; has autoregressive dynamics, with shocks proportional to the magnitude of

realized shocks to supply, through the term ¢” |&/ " We explore j=1,2 to allow for either the

absolute value of shocks or squared shocks to drive the future distribution. The dynamic BEGE

model is estimated for all four of the structural shocks. Estimation is carried out by MLE, and we

test a number of restricted models including distributions with p; and/or n;, being constant.

Inference and specification tests for our data is complicated by the fact that we are using
overlapping quarterly observations. To deal with this complication, we use tests and criteria that
account for our use of overlapping data, focusing mostly on out-of-sample techniques. In contrast
to in-sample model selection criteria, out-of-sample techniques for model selection are generally
robust to overlapping data. We use an “expanding window” out-of-sample procedure in which the
sample period is sequentially extended in blocks of five years. For each iteration, we re-estimate
the model and then calculate an out-of-sample log likelihood for the five years of data subsequent
to the end of each window.™ This technique provides blocks of true out-of-sample log likelihoods,
which we sum for all the out-of-sample periods and then compare across various specifications.
For model selection, we also consider the in-sample Akaike criterion modified to account for small
samples, AICc. Alas, the AICc is not designed for overlapping observations because it assumes
conditionally independent likelihood observations, whereas sequential observations are strongly
dependent in our case due to overlapping data. To be conservative, albeit informal, we introduce a
modification in which we reduce the number of effective observations in the AICc calculation by a

factor of four to account for the four-quarter overlap.

12 In the expanding window estimations, the initial, minimum sample uses the first half of the full sample, so
that we examine out-of-sample results for only the second half of the sample.
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Table A4: BEGE model selection results

structural shock pconst  pvary pconst  pvary
n const  n const nvary nvary

supply insmp AICc 522.0 520.1 498.2 503.6
oos loglike -1145  -115.9 -94.0 -102.2
demand insmp AICc 525.3 529.6 517.7 524.1
oos loglike -108.0  -108.1 -101.1 -100.9
idiosyncratic unemp  insmp AICc 556.5 555.8 557.0 559.8
oos loglike -136.6  -139.3 -140.2  -139.7
idiosyncratic infl insmp AICc 583.7 579.1 581.9 584.0
oos loglike -126.4  -125.1 -126.7  -126.4

Note: In-sample and out-of-sample model selection criteria for the general model described by Equation (8) and
estimated by MLE, as described in the test. The four specifications are estimated for each of the structural shocks that
were identified in previous steps. For the AICc statistic, we use an effective number of observations of 54, which is the
total number of quarterly observations, 216, divided by 4.

Table A4 summarizes the results of these specification tests for each of the structural shocks. For
each shock, we compare the in-sample AICc criteria (the minimum being optimal) and the out-of-
sample loglikelihoods (the maximum being optimal). The in-sample and out-of-sample criteria

agree for the supply shock, the optimal model has a constant p, but a time-varying #», . This

suggests that the level of “bad variance” for supply shocks (largely governing the lower tail of the
distribution) varies significantly over time, “good variance” (largely governing the upper tail) is
adequately modeled as being constant. For demand shocks, the in-sample criterion prefers the n-
only specification, while the out-of-sample criterion mildly prefers a model in which both good
and bad volatility. We use the more parsimonious and conservative p-only specification. For
idiosyncratic shocks to the unemployment rate, a simple static model with constant shape
parameters is preferred on an out of sample basis, whereas a p-only specification is preferred by

the in-sample criterion. We use the former, again for parsimony. Finally, for the idiosyncratic

shock headline inflation, the optimal specification has p, varying, but », constant by both the in-

sample and out-of-sample criteria. Of course, for the case of inflation, positively skewed variance

governed by p, may not be regarded as “good”. Overall, these results suggest that accommodating
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time-varying upside and downside risks to the structural shock generally helps improve the

performance of the density forecasts.

Table AS: BEGE parameter estimates

S

d

£, £, 2 £,

Do 13.13 3.12 0.93 0.01
[1.03,20.0]  [1.77,10.52] [0.30,4.61] [0.01,5.70]

o, 0.15 0.34 1.01 1.02
[0.05, 0.41] [0.19,0.45]  [0.45,1.90]  [0.14,1.51]

P, - - - 0.25
- - - [0.01,6.38]

P, - - - 0.64
- - - [0.01,0.82]

", 0.01 0.02 19.99 2.94
[0.01,4.84] [0.01,0.15]  [0.49,20.0] [0.71,15.2]

o, 1.99 1.84 0.11 0.42
[0.05, 3.78] [0.68,3.60]  [0.02,0.41]  [0.09,0.72]

P, 0.29 0.11 - -
[0.08,7,98] [0.01,0.29] - -

o3 0.01 0.50 - -
[0.01,0.77] [0.07,0.73] - -

Notes: Parameter estimates for BEGE model described by Equations (5) and (8) with restrictions as selected by
specification criteria shown in Table A4. Bootstrapped 90 percent confidence intervals are shown in square brackets.

All parameters are bounded below by 0.01 and p, and 7,, are bounded from above at 20.0.

Table A5 report the parameter estimates for each model selected as optimal in Table A4. As shown

in the first two columns, both supply and demand shocks are modeled as having constant p,
dynamics, but time-varying n, dynamics. In contrast, as shown by the third column, the
idiosyncratic shock to the unemployment rate has constant volatility for both p, and n,. As shown

by the right column, idiosyncratic shocks to headline inflation have time-varying p, dynamics by

13 For all specifications, we use j=1 in Equation (8), which is preferred using both in-sample and out-of-sample
selection criteria.
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constant n, dynamics. These parameters are reported for completeness, but few of them have a

straightforward interpretation, so we report more intuitive statistics for each model in Table A6.

Table A6: BEGE parameter-implied statistics

£’ g’ e’ e’

mean (VAR,) 1.10 0.92 1.22 1.19
[0.36,2.10] [0.49,1.94] [0.71,1.78] [0.59,1.54]

std (VAR,) 0.89 0.35 - 0.44
[0.01,1.94] [0.00,0.87] - [0.01,066]

acorr (VAR,) 0.52 0.80 -- 0.90
[0.43,0.93] [0.55,0.92] -- [0.53,0.93]

mean (SKW,) -3.05 -1.75 1.90 0.93
[-11.7,0.17] [-8.82,4.22] [0.57,5.46]  [-0.26,1.86]

std (SKW,) 3.54 1.29 = 0.90
[0.01,13.68] [0.01,4.22] -- [0.01,1.87]

acorr (SKW,) 0.52 0.80 - 0.90
[0.43,0.93] [0.55,0.92] - [0.53,0.93]

Notes: Statistics implied by BEGE model estimates reported in Table AS and described by Equations (5) and (8). The
top panel presents results for conditional variance, VAR,. The top three rows report the unconditional mean, standard
deviation, and first-order autocorrelation for VAR, , respectively, for each shock. The bottom three rows report the
same statistics for conditional skewness, SKW;. Conditional variance and (unscaled) skewness for the BEGE model,
VAR, and SKW, respectively, are derived in Equations (6) and (7). Derived statistics are calculated by simulation with
bootstrapped 90 percent confidence intervals are shown in square brackets.

Table A6 report statistics for the properties of the conditional variance and conditional skewness of
each shock as implied by the parameters in Table AS5. Recall that Equations (6) and (7) derive the
formulas for conditional variance and skewness for the BEGE model, labeled VAR: and SKW;,
respectively. The statistics in Table A6 are calculated by simulation, in part, to account for the
overlapping nature of the data. As shown in the first column, for supply the mean level of
conditional variance is around 1. This is by assumption — all reduced-form shocks were assumed to
have unit variance in population. More interesting is that the unconditional standard deviation of
conditional variance is 0.89, so that V4R; has a substantial degree of variation relative to its mean.
Moreover, the autocorrelation of VAR, for skewness is 0.52 indicating a fair degree of persistence.
The bottom half of the table in the first column shows the statistics for SKW; for supply. The mean
level of SKW; is deeply negative at -3.05, indicating that large supply shocks tend to be negative.
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However, the confidence range for this statistic is fairly wide, spanning from -11.7 to 0.2. SKW;1is
also quite volatile for supply, with an unconditional standard deviation of 3.54. SKW:has the same

persistence as VAR for supply because there is a single factor, n,, driving variation in all the

conditional moments. The second column show results for the demand shock BEGE specification.
The results are similar to those for supply shocks: an appreciable level of variation in both VAR;
and SKW:, deeply negative average levels for SKW;, and even more persistence of these conditional
moments compared to supply shocks, with an autocorrelation for both VAR; and SKW: of 0.80. The
results in the third column are for the idiosyncratic shocks to the unemployment rate. Because the
optimal model for these shocks had no dynamics for either good or bad volatility, both V4AR; and
SKW:; are constant. It is notable however that the mean level for SKW: is substantially positive at
1.90, indicating once again that large shocks tend to be of the unfavorable sort. The fourth column
shock results for the idiosyncratic shock to headline inflation. These tend to be positively skewed

with a large degree of variation and positive autocorrelation in both VAR; and SKW:.

We now turn to the conditional moments that the model implies over our sample period. Figure A6
plots the fitted good and bad variance for each shock variable under the optimal specification for
that variable. The top panel plots the results for supply shocks. Bad variance, the red line, varies
substantially over the business cycle, with bad variance peaking prominently in recessions in the
1970s and again after the Covid-induced recession. Peak in the 1970s are consistent with the large
supply-like shocks and instances of stagflation observed during that period, for example, during
the famous oil price shocks. The high levels of bad variance for supply during the Covid period
and its aftermath are consistent with supply chain disruptions from that period, which pushed up
on inflation and down on real activity. The results for demand shocks are shown in the second
panel. Bad demand variance frequently peaks during recessions, with the Great Financial Crisis of
2008-2009 standing out in particular. Large adverse shocks persistently lowered both inflation and
real activity during that period. The results for the conditional moments of the idiosyncratic
unemployment rate shock are rather uninteresting, because the optimal specification suggests a
constant distribution for these shocks. Consistent with the optimal specification indicated in Table

A4, both good and bad variance for the unemployment rate are constant. Finally, the bottom panel

shows results for the idiosyncratic shock to headline inflation. Here, the p, driven variance, the
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black line, is more reasonably referred to as “bad”, and it shows large peaks during the recessions

of the 1970s and 1980s as well as in the aftermath of the Covid recession.

Figure A6: Estimated predictive variance for structural shocks
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Notes: Estimated “good” and “bad” variance for each structural shock under the optimal specification for that shock as
identified in Table (4) and parameters in Table AS. In each panel, p, and 5, are plotted scaled by their respective

estimated parameters. For example, for supply the plotted series are 0'32,, p. and o’ n’, the two components of

conditional variance for supply shocks. NBER recession periods are shaded in blue. The model employed is described
by Equations (5) and (8).
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To examine the degree of non Gaussianity that is implied by the parameters estimates in Table A5,

Figure A7 plots the model-implied conditional skewness for each of the structural shocks.

Figure A7: Estimated conditional skewness for structural shocks

5 | T T T T T T

Wv‘m N SN

| gl V\ h f‘/” " WV'V\' I
v i A 1

5 -

,10— -

recession

supply

demand
idiosyncratic unemp
idiosyncratic infl

15 1 ! ! ! ! | ! ! ! ! !
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Notes: Estimated conditional unscaled skewness for each shock is calculated as, for the example of supply shocks, as
SKW, [514} = 20-; p! —20.n'- NBER recession periods are shaded in blue. The model employed is described by

Equations (5) and (8), with the relative parameters estimates in Table A5 for each shock.

Evidently, both supply and demand shocks are negatively skewed on average. Skewness typically
reaches negative peaks during recessionary periods. Negative skewness for supply shocks was
particularly pronounced during recessions in the 1970s and 1980s, whereas demand shocks reach
negative peaks in recessions throughout the sample. Idiosyncratic shocks to inflation are positively
skewed, albeit more mildly than for supply and demand shocks. Idiosyncratic shocks to the
unemployment rate are positively skewed, and that degree of skewness is constant, consistent with

the optimal model for that shock.
Putting it all together

Armed with the estimated conditional distribution for the structural shocks, it is straightforward in

light of Equation (2), although computationally cumbersome, to calculate the predictive
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distribution for the four reduced-form shocks, which capture the outlooks for the macroeconomic

variables of interest.

Under the assumed linear structure in Equation (2), the conditional univariate moments for the
macroeconomic shocks map linearly onto the conditional moments for the structural shocks. For
example, the conditional second and third conditional moments for shocks to core inflation are:

VAR [u, |=07, VAR | &, |+ 0%, VAR | £, ] ©)

ze,s t+4 e, d
SKW, [uf:4 ] = _G;E,SSKVVZ [8:+4] + O-ic,dSKW; [8i4 ]
Intuitively, higher supply and demand variance both drive up the variance of core inflation. In
contrast, positive skewness for supply shocks drives down the conditional skewness for core
inflation, whereas higher conditional skewness of demand shocks drives up the conditional

skewness of core inflation shocks.

As depicted in the left-hand panels in Figure A8, all of the endogenous shocks feature conditional
variance estimates that vary strongly over the business cycle, increasing sharply during recessions.
The sharpest peaks in variance for the inflation series occur at the beginning and at the end of the
sample period. In contrast, the conditional variance of real GDP growth and the unemployment
rate rise in a fairly consistent manner during recessions across the full sample. Estimates of the
conditional skewness of endogenous variables are shown in the panels on the right. Once again,
strong variation over the business cycle is evident. Of note, core inflation and especially headline
inflation exhibit sign-switching in their conditional skewness estimates. When supply variance
dominates, such as in the 1970s and 1980s, skewness for inflation tends to be positive — the
balance of risks is to the upside for inflation. However, when demand uncertainty dominates, such
as during the Great Financial Crisis of 2008-2009, the balance of risks to inflation moves sharply

to the downside.
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Figure A8: Univariate conditional moments of endogenous shocks
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Notes: Estimated conditional variance and unscaled skewness for each endogenous shock is calculated as in Equation
(9) using the estimated series of good and bad variance for the structural shocks as reported in Figure A6 and the
parameter estimates in Table A2. NBER recession periods are shaded in blue. The BEGE model employed is described
by Equations (5) and (8), with the relative parameters estimates in Table A5 for each shock.

The conditional moments of the structural shocks also map linearly into cross-moments for the

reduced-form shocks. For example,

Page 29 of 32



NONCONFIDENTIAL // EXTERNAL

cov,uf,,.uf, |=-0, .0, VAR | €, |+0, 0, VAR, £, ] (10)

7.59¢.s
Intuitively, higher supply variance pushes the covariance between inflation and real GDP growth
towards negative territory because inflation and real GDP growth load with opposite signs onto
supply shocks. In contrast, higher demand variance increases the covariance of inflation and real
GDP shocks because both of them load positively onto demand shocks. Figure A9 depicts the time
series for the estimated covariance between real GDP growth and headline inflation. Early in the
sample period when supply shocks dominate, the covariance tends to be negative, especially
during supply-driven recessions such as in the early 1970s. In contrast, the covariance moves
sharply into positive territory during periods of elevated demand volatility such as during the GFC
and early in the pandemic period. This sign-switching behavior should be of keen interest to
monetary policy makers: When the covariance is positive, risks to the Fed’s dual mandate are not
in conflict because in such circumstances the predominant risk is that both inflation and real
activity will fall below the Fed’s goals. In contrast, when the covariance is negative, policy makers
face a situation in which, for example, inflation may be too high while real activity is depressed — a

stagflation scenario.

Figure A9: Conditional covariance between real GDP and inflation shocks
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Notes: Estimated conditional covariance calculated as in Equation (10) using the estimated series of good and bad
variance for the structural shocks as reported in Figure A6 and the parameter estimates in Table A2. NBER recession
periods are shaded in blue.

The final application of this methodology that we present is the multivariate predictive distribution
of the endogenous variables, which uses the conditional mean from Step 1 and the conditional

distribution of shocks from steps 2 and 3. The conditional joint distributions can be generated by
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numerical integration or simulation techniques, as described in BEE. In Figure A10 we plot
bivariate distributions for real GDP growth and headline inflation (although bivariate plots with
any two of the endogenous variables are of course possible and more elaborate graphical
techniques may be able to illustrate three- or four-dimensional distributions). Each panel depicts
predictions from the model at different points in time. In each panel, forecasts for four-quarter
inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth rate are
on the vertical axis. The asterisk denotes the model’s mean point forecast from step 1, and the
square denotes the mode of the distribution. The yellow area indicates the most likely outcomes,
with 50 percent of all outcomes expected to fall within it. The green area depicts the next most
likely 40 percent of outcomes, which we interpret as a region of material risk. For reference, axes
are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied

probabilities of outcomes in each of the four quadrants are listed in the corner of each quadrant.

Figure A10 shows that a wide variety of central locations and shapes for the predicted density have
occurred over the sample period. The top left panel shows a relatively quiescent period in the early
1970s when the distribution of had a relatively small footprint, with the yellow region centered
roughly around 5 percent real GDP growth and 4 percent inflation. In contrast, the distribution had
widened by large amount in both dimensions by late 1973, as shown in the top right panel, amid a
series of adverse supply shocks. The pronounced tail to the southeast indicates an elevated risk of
stagflation — periods of elevated inflation and lackluster or negative GDP growth. The panels on
the second row, in contrast, indicate periods of elevated demand risk, with the predominant tail of
the distribution pointed to the southwest region characterized be low growth and low inflation
indicating increased risk of a deflationary recession. This was true during the Fed-induced
recession in 1982 and the financial crisis in 2009. The third row contrasts the benign distribution in
late 2019 right before the onset of the pandemic, with the very wide distribution and dual
prominent supply and demand risks that persisted even through 2022 in the wake of the pandemic.
The final row shows two recent distributions, at the end of 2024 and the last available distribution
in 2025Q2. The spread of the distributions is relatively modest, indicating a moderate amount of
risk, but the distribution shifted towards the region of stagflation in 2025Q2 amid expectations that

tariff policy may lower growth and increase inflation over the next year.
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Figure A10: Predictive joint distributions for headline inflation and real GDP growth
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Notes: Estimated predictive distribution of headline inflation and real GDP outcomes using the model developed in
Step1-3 in the appendix. Each panel depicts predictions from the model at different points in time. In each panel,
forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth
rate are on the vertical axis. The asterisk denotes the model’s mean point forecast, and the square denotes the mode.
The yellow area indicates the most likely outcomes, with 50 percent of all outcomes expected to fall within it. The
green area depicts the next most likely 40 percent of outcomes, which we interpret as a region of material risk. For
reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied
probabilities of outcomes in each of the resulting four quadrants are listed in the corner of each quadrant.
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