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Soft Landing or Stagflation? 

A Framework for Estimating the Probabilities of Macro Scenarios  

2025 

Federal Reserve Board1 
 

Introduction 

Recent changes in trade policy and ongoing global economic developments have introduced new 

sources of uncertainty into the U.S. macroeconomic outlook. These developments—ranging from 

shifts in tariff schedules to geopolitical conflict—may affect both inflation dynamics and the 

trajectory of real economic activity. Against this backdrop, forecasters and policymakers may find 

it useful to assess the probabilities of various macroeconomic scenarios. Two salient scenarios at 

the time of this writing are a soft landing, in which inflation declines to target levels of around 2 

percent while growth remains positive, and a stagflationary episode, characterized by elevated 

inflation alongside subdued or negative output growth. 

This paper uses a quasi-structural framework to quantify the relative likelihood of these two 

scenarios over a four-quarter horizon. The analysis builds on the approach developed by Bekaert, 

Engstrom, and Ermolov (2025, BEE henceforth)2, which generates joint density forecasts for key 

macroeconomic variables by modeling the underlying structural supply and demand shocks. This 

methodology is particularly well suited to the present environment for several reasons. First, it 

enables a decomposition of observed macroeconomic variation into supply-driven and demand-

driven components, allowing a clearer interpretation of inflation and output risks. Second, the 

model incorporates time-varying, asymmetric risks, capturing important features such as fat tails 

and skewness that are often present during periods of heightened uncertainty. Third, the model 

delivers joint predictive distributions—rather than just point forecasts—allowing for probabilistic 

assessments of scenarios such as stagflation or soft landings. 

 
1 The views expressed in this document do not represent those of the Federal Reserve System, its Board of 

Governors, or staff. 
2 Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. "Uncertainty and the Economy: The Evolving 

Distributions of Aggregate Supply and Aggregate Demand Shocks." AEJ: Macroeconomics forthcoming. 
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These distributional forecasts may be informative for both financial market participants and 

policymakers. Market participants can use them to better understand the balance of risks around 

inflation and growth, with implications for pricing interest rate derivatives, inflation-linked assets, 

and macro-sensitive equities. Policymakers, particularly those operating under dual mandates, may 

benefit from tools that clarify whether risks to inflation and growth mandates are aligned, or in 

conflict. In that sense, this framework helps quantify potential policy tradeoffs under evolving 

macroeconomic conditions. 

The main results of this paper are estimates of the relative probabilities of a stagflationary 

scenarios versus a soft landing in the U.S., and how those probabilities have evolved over time. To 

preview, the model estimates that the probability of a stagflation scenario was substantially 

elevated coming out of the pandemic. For instance, at the end of 2022 after inflation had reached 

peak levels and the Federal Reserve had begun an aggressive path of raising interest rates, the 

probability of at least mild stagflation –defined as inflation exceeding 3 percent while real GDP 

growth registers below 1 percent on a four-quarter basis—is estimated to have been about 35 

percent. At the time, the probability of a soft landing over the coming four quarters–defined as 

inflation returning to near 2 percent while growth remained solid— was estimated to be low, 

below 5 percent. Over the next couple of years as growth remained solid and inflation slowly 

declined towards the Federal Reserve’s 2 percent goal, the model-implied probability of stagflation 

is estimated to have fallen steadily by the end of 2024 to about 5 percent, while the probability of a 

soft landing rose to about 30 percent. By mid-2025, however, that trend had reversed, with the 

probability of at least mild stagflation rising precipitously and the probability of a soft landing 

declining notably. The shift in 2025 can be attributed mostly to the uncertain effects of tariffs on 

the outlooks for inflation and growth. However, the probability of severely stagflationary scenarios 

did not increase materially.  

Summary of Methodology 

A detailed description of the methodology, data, estimation, and validation techniques used in this 

analysis is provided in the appendix. A brief summary is presented here for readers who may not 

require the full technical detail. 
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The methodology aims to produce predictive distributions for key U.S. macroeconomic 

variables—specifically, four quarter headline and core inflation, four quarter real GDP growth, and 

the unemployment rate—at a four-quarter horizon. The approach combines time series forecasting, 

structural economic identification, and non-Gaussian modeling of uncertainty. The method follows 

and extends the framework of BEE, proceeding in three primary steps. 

Step 1: Forecasting Means and Identifying Reduced-Form Shocks 

The first step estimates the conditional mean forecasts for the four macro variables using ordinary 

least squares (OLS) regressions. These models incorporate two predictors for each macro series: (i) 

the four-quarter lag of the dependent variable, and (ii) the corresponding Survey of Professional 

Forecasters (SPF) forecast. This design thus leverages both historical data and forward-looking 

expectations.3 In addition to providing conditional mean forecasts, the OLS residuals from these 

projections represent reduced-form forecast errors, which capture unexpected deviations from 

predicted paths. 

Step 2: Identifying Underlying Structural Shocks  

The second step maps the reduced-form shocks into four structural shocks using Keynesian sign 

and exclusion restrictions. The identified shocks include aggregate supply shocks, demand shocks, 

and two idiosyncratic shocks: one for headline inflation and one for the unemployment rate. 

Consistent with Keynesian intuition, supply shocks are assumed to move inflation and growth in 

opposite directions (e.g. oil price shock), while demand shocks affect both in the same direction 

(e.g. financial crisis). The model assumes a linear structure where reduced-form shocks load onto 

the underlying structural shocks. The loading parameters are estimated using a classical minimum 

distance (CMD) estimator, matching second-moment statistics (variances and correlations) of the 

reduced-form shocks. 

 

 
3 As documented in the appendix, SPF forecasts tend to be very significant predictors for macro variables.  Moreover, the 

mean predictions in our framework rarely deviate substantially from the corresponding raw SPF forecast.  To the extent that the 
model’s mean forecasts coincide with the SPF, one could regard the value-added of our framework as its ability to estimate time-
varying and non-Gaussian distributions around the SPF forecasts.     
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Step 3: Modeling the Conditional Distributions of Structural Shocks 

The third step models the conditional distribution of each structural shock using the Bad 

Environment–Good Environment (BEGE) distribution, which allows for time-varying volatility, 

skewness, and kurtosis. The BEGE framework assumes that each structural shock is composed of 

two asymmetric components—a “good” and a “bad” shock—each drawn from a centered gamma 

distribution. The variance and skewness of the shocks depend on time-varying shape parameters 

for the gamma distribution, which evolve according to GARCH-type dynamics.4 The model’s 

structure allows for dynamic asymmetries in the risks to all the structural shocks, with persistent 

variation in both upside and downside risk. 

To evaluate model fit and select between specifications, the framework relies on a combination of 

in-sample and out-of-sample criteria. The final model generates full multivariate predictive 

distributions for inflation, growth, and unemployment by integrating the forecast means from step 

1 with the time-varying distribution of structural shocks. These distributions are used to compute 

not only central forecasts but also the probability of outcomes falling into specific macroeconomic 

scenarios—such as stagflation or a soft landing. 

 

Results 

The results from the estimation of the model, including parameter estimates, inference and model 

validation are relegated to the appendix. Here we present summary results from the model 

regarding the evolution of the outlooks for real GDP growth and inflation over the past two and a 

half years.  

The first set of results that we present is the evolution of the multivariate predictive distribution of 

inflation and real GDP growth. In Figure 1 we plot bivariate distributions for real GDP growth and 

headline inflation. Each panel depicts predictions from the model at different points in time. In 

each panel, forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for 

four-quarter real GDP growth rate are on the vertical axis. The asterisk denotes the model’s mean 

 
4 The two time-varying shape parameters of the BEGE distribution govern time-variation in the variance, skewness, kurtosis 

and all higher-order moments of the shocks. This restriction implies some dependence in time-variation across the moments.  
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point forecast and the square denotes the mode of the distribution. The yellow area indicates the 

most likely outcomes, with 50 percent of all outcomes expected to fall within it. The green area 

depicts the next most likely 40 percent of outcomes, which we interpret as a region of material 

risk.5 For reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth. 

The model-implied probabilities of outcomes in each of the four resulting quadrants are listed in 

the corner of each quadrant.  

We begin in the upper left panel, at the end of 2022 when the economy was still suffering from the 

aftereffects of the pandemic. Much higher than expected readings on headline inflation had 

prevailed for several quarters, with a peak rate of over 7 percent earlier in the year. Economic 

growth had remained solid but the Federal Reserve had embarked on an aggressive campaign of 

increases in the target range for the federal funds rate in order to bring demand and supply into 

better balance and to attempt to move inflation toward the Fed’s 2 percent goal. As indicated by 

the hollow square, the model’s modal expectation at the time was for inflation to moderate over the 

next four quarters, but only to around 4 percent, and for real GDP growth to remain around 2 

percent. To a large extent, the model’s modal predictions reflect survey expectations at the time. 

However, uncertainty was extremely elevated, with the model seeing substantial risk of stagflation 

scenarios, as indicated by the long green tail in the southeast quadrant, where inflation outcomes 

are greater than 2 percent and real GDP growth is below 2 percent. Although not all outcomes in 

that quadrant may be considered severe enough to merit the label of stagflation, the probability of 

landing in the southeast quadrant was estimated to be 54 percent. What is going on here is that, 

based on recent expereince of adverse supply shocks and the historical tendency for large shocks to 

be followed by additional large shocks, the model saw elevated risk of further adverse supply 

shocks that could push up on inflation and down on real activity. At the same time, the model had 

also observed recent large positive demand shocks, which it interpreted as indicating increased risk 

of demand shocks going forward. To see this, note the more modest but still notable green tail of 

the distribution in the southwest quadrant. The model does not offer economic narratives to go 

along with its worrisome predictions but it is easy to imagine that a worsening of supply chain 

 
5 There are an infinite number of ways to partition a distribution to isolate a fixed probability mass. We use the partition that 

encloses a fixed probability mass (e.g. 50 percent) in the smallest possible region, sometimes called the highest density region.  
This partition is unique under certain regularity conditions (e.g., a unimodal and continuous pdf).      
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disruptions or a resurgence of Covid may have been top of mind at the time, which could be 

compounded by large demand shocks. 

We now fast forward one year to the end of 2023, with the model implied results for that period 

illustrated in the upper right panel of Figure 1. For background, inflation had indeed moderated 

over the year but remained nearly 3 percent. Real GDP growth had accelerated a bit, registering 

nearly 3 percent. As indicated by how the yellow portion of the distribution is centered near the 

“cross hairs” of the axes, both inflation and real GDP growth were expected to register around 2 

percent looking forward under the model. However, the uncertainty bands were still wide. A still-

notable tail extended deep into the southeast quadrant characterized by stagflation, with the 

predicted probability of landing in that quadrant in four quarters’ time around 33 percent. What is 

going on here is that both recent economic data and survey data pointed to inflation and real GDP 

growth registering around 2 percent, and the large supply and demand shocks of 2021 and 2022 

were further in the rear view mirror, so the model estimated that the probabiltiy of large shocks 

going forward had declined somewhat but remained elevated. 

We now skip forward once again to the end of 2024, with the model-implied distribution for that 

period illustrated in the lower left panel. Over the year, inflation had continued to moderate, on 

net, registering 2.5 percent, still somewhat above the Fed’s target. Real GDP growth had remained 

solid, registering around two percent. The model expected those benign conditions to maintain, 

with both real GDP growth and inflation expected to register around 2 percent over the subsequent 

four quarters. It had been quite some time since the period of large supply and demand shocks, and 

the model reacted by seeing reduced uncertainty in the outlook; the confidence bands by the end of 

2024 had shrunk to relatively subdued levels by historical standards. The probabilities of landing 

in each of the four quadrants were roughly balanced, around 20-30 percent.     

The outlook shifted once again by mid 2025. The model’s modal expectation was for inflation to 

register around 3 percent, a reacceleration relative to recent data, and for growth to fall to around 1 

percent. This shift reflects survey respondents lowering their forecasts for growth and increasing 

their forecasts for inflation, with the prevailing narrative from private sector forecasters pointing 

the to the expected effects of increases in tariff rates. Market commentary also focused on the large 

amount of uncertainty accompanying the potential effects of tariffs. However, the width of the 
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model’s uncertainty bands remained modest; Since large shocks to “hard" data regarding inflation 

or GDP had not occurred recently, the model saw no reason to anticipate higher uncertainty going 

forward. Still, the probability of landing in the southeast “stagflation” quadrant moved up to 59 

percent, higher even than the level at the end of 2022. That said, much of the mass of the 

distribution is near the crosshairs of the axes, suggesting that extreme stagflation scenarios with 

very high inflation and/or very low growth may not be particularly likely under the model. We 

refine our estimates of the probabilities of mild versus severe stagflation scenarios using Figure 2. 

 

Figure 1: Conditional Bivariate Distribution for Real GDP Growth and Inflation 

 
Notes: Estimated predictive distribution of headline inflation and real GDP outcomes using the model developed in 
Step1-3 in the appendix. Each panel depicts predictions from the model at different points in time. In each panel, 
forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth 
rate are on the vertical axis. The asterisk denotes the model’s mean point forecast, and the square denotes the mode. 
The yellow area indicates the most likely outcomes, with 50 percent of all outcomes expected to fall within it. The 
green area depicts the next most likely 40 percent of outcomes, which we interpret as a region of material risk. For 
reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied 
probabilities of outcomes in each of the resulting four quadrants are listed in the corner of each quadrant. 
 
 

Figure 2 depicts the probabilities of some specific scenarios using the same four quarter ahead 

probability distributions that are shown in Figure 1. We formally define a “soft landing” scenario 

as four-quarter inflation registering between 1½ percent and 2½ percent while real GDP growth 

registers greater than 1 percent. We define the scenario “severe stagflation” as four-quarter 
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inflation registering over 4 percent and four quarter real GDP growth registering less than 0 

percent. We define “mild stagflation” as four-quarter inflation registering over 3 percent and four 

quarter real GDP growth registering less than 1 percent but excluding severe stagflation 

scenarios. As shown by the green bars, the probability of a soft landing within four quarters was 

very small in late 2022 –less than 5 percent. However, amid a continuing recovery of supply 

conditions and better balance between supply and demand, that probability of a soft landing grew 

steadily through the end of 2024 to about 30 percent. However, the probability of a soft landing 

fell notably through the first half of 2025 amid concerns about the effects of tariffs on inflation 

and real activity. The probabilities of severe and mild stagflation are shown by the brown and red 

bars, respectively. These probabilities moved opposite to those of a soft landing, falling steadily 

from high levels at the end of 2022 to very low levels at the end of 2024. Interestingly, though 

the probability of a mild stagflation rose sharply in 2025 to levels even higher than were seen at 

the end of 2022, the probability of a severe stagflation rose by comparatively less. This pattern is 

consistent with a notable but modest shift in modal expectations for inflation and real activity as 

a result of the tariffs, and the fact that “hard” data have thus far shown no signs of elevated 

volatility that would indicate, in the context of the model, a sharp increase in downside supply 

shock risk. 

These shifts in scenario probabilities may have useful implications for both policymakers and 

financial market participants. For policymakers—particularly those operating under dual 

mandates—an elevated probability of stagflation could underscore the potential for conflicting 

objectives, where efforts to support growth could exacerbate inflation pressures, and vice versa. 

In such an environment, a flexible approach to policy setting and communication may be 

preferred. For market participants, the reemergence of stagflation risk alters the perceived 

distribution of future macro-outcomes, which may warrant repricing of assets sensitive to 

inflation and growth conditions, such as nominal and inflation-linked bonds, equity sectors with 

exposure to inflation, and interest rate derivatives. The lower probability of a soft landing 

reinforces the asymmetry in current macro risks, suggesting that hedging strategies and forward-

looking risk assessments should account for a tail risk environment in which inflation remains 

elevated even as growth softens. 
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Figure 2: Probabilities of Macroeconomc Scenarios 

 
Notes: Estimated probabilities of macroeconomic outcomes at the four-quarter horizon using the model developed in 
in the appendix. The scenario “soft landing” is defined as four-quarter, four-quarter ahead headline inflation registering 
between 1½ percent and 2½ percent while four quarter four quarter ahead real GDP growth registers greater than 1 
percent. The scenario labeled “severe stagflation” is defined as four-quarter inflation registering over 4 percent and 
four quarter real GDP growth registering less than 0 percent. The scenario labeled “mild stagflation” is defines as four-
quarter inflation registering over 3 percent and four quarter real GDP growth registering less than 1 percent, excluding 
severe stagflation scenarios. The dates on the horizonal axis correspond to when the forecast is made, predicting 
outcomes four quarters hence.  
 
There are some important caveats to these results in particular and the modeling approach more 

generally. First, given the small sample sizes of macroeconomic time-series data, it is challenging 

to be precise about the likelihood of low-probablity events, and the results are certainly sensitive to 

various modeling assumptions governing the estimation of uncertainty. In particular, because the 

assessment of uncertainty is grounded in the historical behavior of reduced-form shocks, the model 

cannot detect an increase in forward-looking risk unless it is reflected in recent large forecast 

errors. Like all GARCH-based approaches, it assumes a stable relationship between past shocks 

and the conditional uncertainty about future outcomes. This assumption may be violated during 

periods of structural change, leading to potentially misleading projections. In addition, the 

identification of structural shocks in the model relies on fixed loading parameters of reduced-form 

shocks onto structural shocks; if the true economic structure evolves—such that, for example, the 

effects of a given policy shift are misattributed to a supply shock—the model’s decomposition and 

forecasted risk profile could be distorted. As with any empirical model, these limitations 

underscore the importance of complementing statistical forecasts with judgment and real-time 

contextual analysis.  
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Appendix: Methodology and Data 

Our primary goal is to estimate the predictive multivariate distribution for several macro variables. 

This task is accomplished in three steps. The first step uses OLS to identify the time series of 

predictive means of the four variables, and to identify a series of reduced-form shocks relative 

each of those mean predictions –measured as the OLS regression residuals. The predictive means 

in the OLS regressions are informed by macro variables and survey data. The second and third 

steps, together with the predictive means from the first step, assemble estimates for the full 

multivariate predictive density of the four variables. In particular, the second step identifies 

structural shocks that underlie the reduced-form OLS shocks, using simple Keynesian intuition. In 

addition to providing a realistic treatment of the interdependence of the reduced-form shocks, the 

structural model with Keynesian intuition adds a bit of economic context to the exercise. This step 

yields time series estimates for four structural shocks. The third step models the conditional 

distribution of the structural shocks. Armed with (a) time series forecasts of the mean of the 

economic variables, (b) time series forecasts of the conditional distribution of the structural shocks, 

and (c) a mapping between the structural shocks and the reduced-form shocks, we can construct 

density forecasts for the macroeconomic variables of interest. Much of the methodology follows 

Bekaert, Engstrom and Ermolov (2025, BEE henceforth), to which readers are referred for more 

details.6 First, we describe the data used in this exercise 

Data 

The data we employ for this study include realized outcomes for four macroeconomic time series 

as well as survey forecasts of those four variables. The four macroeconomic series are cumulative 

four-quarter headline PCE inflation 4
tπ , cumulative four-quarter core PCE inflation, 4

tcπ , 

cumulative four-quarter real GDP growth, 4
tg and the average quarterly level of the unemployment 

rate, 𝑢௧. Historical data for these series are gathered from Fred, a data provision service of the 

Federal Reserve Bank of St. Louis.7 The survey data are from the Survey of Profession Forecasters 

 
6 Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. "Uncertainty and the Economy: The Evolving 

Distributions of Aggregate Supply and Aggregate Demand Shocks." AEJ: Macroeconomics forthcoming. 
7 See https://fred.stlouisfed.org/ 



 

Page 11 of 32 

NONCONFIDENTIAL // EXTERNAL 

(SPF), with data taken from the website of the Federal Reserve Bank of Philadelphia.8 We use SPF 

forecasts for four-quarter cumulative headline inflation, core inflation, real GDP growth and the 

four-quarter ahead level of the unemployment rate. For example, standing in 2024Q4, the 

measured four quarter ahead SPF forecast for inflation covers the period 2025Q1-2025Q4. Our 

data sample is quarterly. The SPF data is the limiting factor for the start of our sample. Although 

some series in the SPF are available from 1968Q4, our sample period (after accounting for the 

need to calculate multiperiod lags for each variable) extends from 1971Q3-2025Q2.9 For all 

estimation steps, we exclude data from 2020Q1-2021Q4 so that the extreme variation in the data 

from the Covid-19 pandemic era and its immediate aftermath, which may not be representative of 

the rest of the sample, does not dominate parameter estimates and model selection criteria. (We do 

still report results for that period.)   

Step 1 

We begin by using regressions to estimate time series for predictive means of the macroeconomic 

variables, as well as reduced-form historical shocks for four macroeconomic time series, all at the 

four-quarter prediction horizon. To do so, we use simple forecasting regressions with OLS 

estimation of the equations: 

4
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     (1) 

Notice that the explanatory variables (denoted by “x’s”) are lagged four quarters so that we 

identify shocks to the variables at the four-quarter horizon. As explanatory variables, each 

regression includes the lagged dependent variable as well as the ex-ante forecast of the 

corresponding variable from the SPF. By including survey-based expectations as explanatory 

variables, we leverage the wide set of information that is available to survey respondents. As can 

be seen from Equation (1), the four-quarter ahead reduced-form shocks for four-quarter inflation, 

 
8 See https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-

forecasters 
9 SPF forecasts for headline and core PCE inflation are available starting only in 2007.  Prior to that date, we 

use SPF forecasts for headline GDP inflation to stand in for SPF forecasts of headline and core PCE inflation.  
Forecasts for GDP inflation are available starting from 1968Q4.  



 

Page 12 of 32 

NONCONFIDENTIAL // EXTERNAL 

core inflation, the unemployment rate and real GDP growth are labeled 𝑢௧ାସగ ,  𝑢௧ାସగ௖ ,𝑢௧ାସ௨ , and 𝑢௧ାସ௚ , respectively. In addition, each regression model in Equation (1) 

provides a time series of the conditional mean for each variable. For example, 
4

4 0 ,ˆ ˆ ,c
t c ct tE xc π πππ β+ + = where hats denote OLS estimates for parameters. Because our data are 

overlapping, comprising for instance quarterly observations for four-quarter growth, OLS standard 

errors are likely to be biased. We instead use bootstrapping techniques to calculate standard errors. 

Table A1: OLS forecasts of macro variables at the four-quarter horizon 

 
Note: OLS parameter estimates for models described by Equation (1). Standard errors, in parentheses, are from a block 
XY bootstrap routine with block length of 20 quarters. The sample period for estimation corresponds to realizations in 
1971Q3-2025Q2 excluding the period 2020Q1-2020Q4. 
 
As can be seen from Table A1, SPF forecasts are quite informative for all four variables with 

positive coefficients that are statistically distinct from zero and in most cases near unity, while the 

lagged dependent variables generally contribute with smaller coefficients and less statistical 

significance. The R-squared statistics across the four variables range from 0.20-0.80 but should be 

interpreted with caution due to the overlapping nature of the data. 

Figure A1 depicts the regression model-implied mean forecasts for the four macroeconomic series. 

These will be used as the means for the predictive distributions. Unsurprisingly, expected GDP 

growth is relatively low during recessions, and the expected unemployment rate is higher than 

normal in recessions. Expected headline and core inflation have generally declined over the sample 

period. 

 
 
 

const -0.03 0.33 0.05 0.20
(0.27) (0.72) (0.48) (0.44)

SPF forecast (t) 0.74 0.85 1.23 0.49
(0.31) (0.26) (0.22) (0.28)

lagged dependent (t) 0.25 0.02 -0.21 0.43
(0.25) (0.10) (0.21) (0.19)

0.80 0.20 0.72 0.64

4
4tg +

4
4tπ +

2R

4
4tcπ + 4tu +
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Figure A1: Estimated conditional means from predictive regressions 
 

 
Notes: OLS estimates for the conditional mean of macro variables as described by the model in Equation (1). The 
sample period for estimation corresponds to realizations from 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4. 
NBER recession periods are shaded in blue. 
 

Figure A2 depicts the regression model-implied reduced-form shocks to the four series. Deeply 

negative shocks to GDP are evident for all recessions, while the inflation shocks are sometimes 

negative and sometimes positive during recessions. These distinct patterns highlight the need to 

distinguish between supply driven and demand driven risk to the outlook, which are modeled 

explicitly in the next step.  

Figure A2: Reduced-form shocks from predictive regressions 

 
Notes: OLS estimates of reduced-form shocks for the model described by Equation (1). The sample period for 
estimation corresponds to realizations from 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4. NBER recession 
periods are shaded in blue. 
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Step 2 

Step 1 provides time series estimates of the conditional means of our four variables as well as time 

series estimates for the reduced-form shocks to the variables. Our ultimate goal is to generate 

multivariate predictive densities for the four macro variables. If the reduced-form shocks were 

drawn from simple i.i.d. distributions, we could produce simple static error bands around our 

forecasted means, by bootstrapping or a similar methodology. However, as we will see, a more 

elaborate model is able to fit the data substantially better. In particular, there are rich patterns of 

time-varying volatility, skewness, and correlation among the macro variables that can be matched 

to produce more accurate predictive densities. 

In this step we use Keynesian intuition to model the interdependence of the reduced-form shocks. 

In particular, we assume that the reduced-form shocks are simple functions of deeper structural 

supply and demand shocks, among other structural shocks. Concretely for this step, we identify a 

mapping between the reduced form shocks and “structural” supply and demand shocks. The point 

of establishing this mapping is that once we have estimated its parameters, we can recover times 

series for the structural shocks. To begin, we assume a linear mapping between reduced-form and 

structural shocks as follows: 

 

(2) 

Above s
tε are d

tε defined as “supply” and “demand” structural shocks, respectively. As part of our 

minimalist strategy to identify structural shocks, we use only sign restrictions and zero restrictions 

to define supply and demand shocks in a manner consistent with Keynesian intuition. Specifically, 

all the “σ” parameters are assumed to be positive. For example, supply shocks are defined so that 

they push inflation and real activity in the opposite direction. A positive supply shock reduces core 

inflation (as governed by the parameter ,c sπσ ) but increases real GDP growth (via ,g sσ ). A 

quintessential example of a (negative) supply shocks is the onset of stagflation caused by an oil 

price shock. Such a shocks would push up on inflation and down on real activity. Conversely, 

demand shocks push core inflation and real GDP growth in the same direction: A positive demand 
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shock increases core inflation (via ,c dπσ ) and increases real GDP growth (via ,g dσ ). A 

quintessential example of a (negative) demand shock is a financial crisis, which may push down 

both inflation and real activity. 

As can be seen in the bottom two rows of Equation (2), similar sign restrictions are imposed for the 

relationships between supply and demand shocks and shocks to headline inflation and the 

unemployment rate. We also allow for idiosyncratic shocks to affect headline inflation and the 

unemployment rate, t
πε are ,u

tε  respectively. These are intended to accommodate variation in 

headline inflation that may not affect core inflation, and shocks to the unemployment rate which 

may be specific to the labor market and orthogonal to aggregate supply and demand shocks, 

respectively. As is common in the literature identifying structural shocks, the four structural shocks 

are assumed to be independent, and without loss of generality, the structural shocks as assumed to 

all have unit unconditional variance.  

Naturally, we must estimate the σ parameters in Equation (2), of which there are 10. To do so we 

use a classical minimum distance (CMD) approach. Similar to the perhaps more familiar 

generalized method of moments methodology, CMD works by choosing parameters to best match 

a set of sample statistics. For our case, we utilize information in the estimated reduced form shocks 

from Equation (1), estimates of which are plotted in Figure A2. For each series, we calculate the 

unconditional second-order moment statistics: the four unconditional standard deviations the 

reduced-form shocks and the six pairwise correlations among them. Notice that under Equation 

(2), the 10 σ parameters exactly determine these 10 unconditional standard deviations and 

correlations for the reduced-form shocks. This can be seen as follows. Let the 4x4 matrix in 

Equation (2) be called M. Then the covariance matrix, Ω , of the reduced-form shocks is equal to 

MM’ (recalling that the structural shocks all have unit variance and are uncorrelated). The 10 

second-order statistics to be fit are all nonlinear functions of the 10 unique elements of Ω . It 

follows that that estimated Ω can be used identify the σ parameters. Furthermore, once we have 

estimated the σ parameters in M, we can use Equation (2) to invert the structural shocks from the 

estimated reduced-form shocks. We simply calculate the inverse of M and multiply that inverse by 

the vector reduced-form shocks. To be concrete, the statistics to be fit in this estimation procedure 

are shown in Table (2). As shown in the table, the unconditional standard deviations of the shocks 

are rather precisely estimated, with standard errors that are small relative to the point estimates. Of 
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the six correlations reported in Table A2, two are strongly distinct from zero: the correlation of 

shocks to real GDP growth and the unemployment rate are strongly negatively correlated, as 

expected. And the shocks to headline inflation and core inflation are strongly positively correlated. 

Table A2: CMD estimation: statistics to be fit 

 
Note: Sample statistics for OLS residuals from the model described in Equation (1) and parameter estimates in Table 
A1. Standard errors, in parentheses, are from a block bootstrap routine with block length of 20 quarters. The sample 
period for estimation corresponds to realizations in 1971Q3-2025Q2 excluding the period 2020Q1-2021Q4. 
 
Table A3 shows the results for the CMD estimation step with estimated parameters corresponding 
to those in Equation (2).  

Table A3: CMD estimated loadings 
 

 
 
Note: Loadings estimated from the CMD estimation of the model described by Equation (2). Standard errors, in 
parentheses, are from a block bootstrap routine with block length of 20 quarters. The sample period for estimation 
corresponds to realizations in 1971Q3-2025Q2 excluding the period 2020Q1-2020Q4. 
Consistent with our identification assumptions, all the signs in Table A3 match those in Equation 

(2). The top row shows that shocks to core inflation  𝑢௧ାସగ௖  load materially onto both shocks to 

supply and demand, 4
s
tε + are 4

d
tε + , respectively, with slightly greater loading onto supply shocks. 

std dev 0.99 1.85 0.91 1.52
(0.21) (0.22) (0.14) (0.24)

correlation with…

-0.19
(0.23)

-0.06 -0.69
(0.22) (0.08)

0.88 -0.06 -0.20
(0.02) (0.21) (0.17)

4
g
tu +4
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tuπ
+ 4
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tu + 4tuπ

+
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4tuπ
+

-0.76 0.63 0 0
(0.22) (0.11)

1.45 1.15 0 0
= (0.24) (0.26)

-0.36 -0.56 0.62 0
(0.11) (0.16) (0.07)

-0.89 1.03 0 0.69
(0.22) (0.18) (0.08)
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Shocks to real GDP growth, 𝑢௧ାସ௚ , load positively onto demand shocks and supply shocks, also 

with slightly more loading on supply shocks. Shocks to the unemployment rate load negatively 

onto both supply and demand shocks, which is intuitive since “good” news of either type lowers 

the unemployment rate, but with a relatively larger loading on demand shocks, consistent with the 

intuition that the unemployment rate reflects the cyclical position of the economy with respect to 

demand conditions. The unemployment rate also has a large exposure the idiosyncratic component, 

loading onto 4
u
tε + more strongly than it does to either supply or demand shocks. Finally, headline 

inflation loads with the expected signs onto supply and demand shocks, more strongly so than core 

inflation does. This is to be expected because headline inflation is more volatile than core inflation. 

In addition, headline inflation loads meaningfully onto an idiosyncratic component, 4t
πε + . This is 

likely capturing idiosyncratic variation in food and energy inflation, which are stripped out of the 

core inflation measure. In results not shown, the CMD model-implied statistics corresponding to 

those in Table A2 suggest a near perfect fit of those statistics, consistent with the exactly identified 

nature of the CMD exercise.  

Figure A3: Estimated supply and demand structural shocks 

 
Note: Supply and demand shocks inverted using Equation (2), the reduced-form shocks from Figure A2 and the 
parameter estimates in Table (2). NBER-defined recessions are shaded in blue. 
Figure A3 shows the estimated structural supply and demand shocks inverted from the reduced-

form shocks using the parameter estimates from Table A3. Both supply and demand shocks tend to 

register negative values during recessions, with particularly pronounced negative supply shocks 
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during the recession in the early 1970s and the Covid period and its aftermath. Most other 

recession feature predominant negative demand shocks. 

Figure A4: Estimated idiosyncratic inflation and unemployment rate structural shocks 

 
Note: Idiosyncratic shocks to headline inflation and the unemployment rate inverted using Equation (2), the reduced-
form shocks depicted in Figure 2 and the parameter estimates in Table A2. NBER-defined recessions are shaded in 
blue. 
 

Figure A4 shows idiosyncratic shocks to the unemployment rate and inflation. The idiosyncratic 

shocks to the unemployment rate were particularly large during the peak of the Covid period while 

the largest peaks for the idiosyncratic inflation component were registered during the 1970s and 

1980s and the Covid period. 

 

Step 3 

The final and most complex step involves estimating the time-varying conditional distributions of 

the structural shocks identified in the previous step. Exploiting the assumption that the structural 

shocks are independent, we estimate univariate processes for each of them. To flexibly 

accommodate potentially time-varying volatility, skewness and kurtosis of the structural shocks, 

we use the BEGE distribution developed by Bekaert and Engstrom (2017)10 and the BEGE-

 
10 Bekaert, G. and E. Engstrom, 2017, “Asset Return Dynamics under Habits and Bad Environment–Good 

Environment Fundamentals,” Journal of Political Economy, vol 125.3. 
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GARCH framework of Bekaert, Ermolov and Engstrom (2015).11 Concretely, consider a generic 

structural shock, 4tε +  (e.g., a supply or demand shock) to be realized at time (t + 4). We model the 

shock as ( )4 ~ , ;  ,t t t p nBEGE p nε σ σ+  where BEGE denotes the distribution. To unpack the BEGE 

distribution a bit, the BEGE model assumes that 4tε +  has two components: 

    4 4 4
p n

t p t n tε σ ω σ ω+ + += −  (3) 

where 4
p

tω +  and 4
n
tω +  are individual component shocks. The volatility parameters pσ  and nσ  are 

restricted to be positive. The component shocks are independent and distributed as centered 

gamma: 

( ) ( )4 4~ ,1 ;       ~ ,1p n
t t t tp nω ω+ +Γ Γ             (4) 

Figure A5 provides some examples to illustrate features of the BEGE distribution. The upper right 

panel shows that the probability density function of 4
p

tω + , which we label the “good” component. It 

is bounded from the left and has an unbounded right tail. The volatility, skewness and kurtosis of 

the good component are governed by the shape parameter, tp . Similarly, as shown in the upper 

left panel, the probability density function of 4
n
tω +− (the “bad” component) is bounded from the 

right and has an unbounded left tail. The lower panel illustrates examples of possible shapes of the 

overall BEGE distribution for 4tε +  in Equation (3), which could arise as a result of different 

configurations of the shape parameters tp and tn . In particular, the BEGE probability density 

function may be positively or negatively skewed, or symmetric and may have excess kurtosis 

depending on the shape parameters. The Gaussian distribution is a special case of the BEGE 

distribution (as the shape parameters tend to infinity). 

 

 
11 Bekaert, G., Engstrom, E, and A. Ermolov, 2015, “Bad environments, good environments: A non-Gaussian 

asymmetric volatility model,” Journal of Econometrics, vol. 186.1, ppg. 258-275. 
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Figure A5: Illustrations of BEGE densities

  
Note: Examples of gamma distribution and the BEGE distribution under various parameter configurations. 
 
We assume that each of our structural shocks follow a potentially time-varying BEGE distribution 

in that the shape parameters may evolve over time. Taking the example of the supply structural 

shock, we assume that 

4 ( , ; , )~s s s
t t t sp snBEGE p nε σ σ+                   (5) 

where 𝑝௧௦ and 𝑛௧௦ are time-varying shape parameters for the BEGE distribution for supply shocks, 

and σ௦௣ and σ௦௡ are static parameters. As above, 𝑝௧௦ governs the level of “good variance” for supply shocks and 𝑛௧௦governs the level of “bad” variance. Specifically, under this formulation of 

the BEGE distribution, the conditional variance of 4
s
tε + follows 

2 2
4

s s s
t t sp t sn tVAR p nσ σε +  = +                    (6) 

So that both 𝑝௧௦ and 𝑛௧௦ increase the variance of the supply shock. However, under the BEGE 

distribution 𝑝௧௦ and 𝑛௧௦ have opposite effects on skewness 

3 3
4 2 2s s s

t t sp t sn tSKW p nσ σε +  = −                    (7) 

Clearly, 𝑝௧௦ increases skewness while 𝑛௧௦ decreases skewness. For this reason, 𝑝௧௦is referred to as 

“good variance” while 𝑛௧௦ is referred to as “bad variance.” 

To complete the model, we must specify the dynamics of the time-varying good and bad volatility 

variables, 𝑝௧௦ and 𝑛௧௦. To do so, we use a simple GARCH specification: 
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                 (8) 

In a nutshell, 𝑝௧௦ has autoregressive dynamics, with shocks proportional to the magnitude of 

realized shocks to supply, through the term
jps s

tφ ε . We explore j=1,2 to allow for either the 

absolute value of shocks or squared shocks to drive the future distribution. The dynamic BEGE 

model is estimated for all four of the structural shocks. Estimation is carried out by MLE, and we 

test a number of restricted models including distributions with s
tp  and/or s

tn , being constant. 

Inference and specification tests for our data is complicated by the fact that we are using 

overlapping quarterly observations. To deal with this complication, we use tests and criteria that 

account for our use of overlapping data, focusing mostly on out-of-sample techniques. In contrast 

to in-sample model selection criteria, out-of-sample techniques for model selection are generally 

robust to overlapping data. We use an “expanding window” out-of-sample procedure in which the 

sample period is sequentially extended in blocks of five years. For each iteration, we re-estimate 

the model and then calculate an out-of-sample log likelihood for the five years of data subsequent 

to the end of each window.12 This technique provides blocks of true out-of-sample log likelihoods, 

which we sum for all the out-of-sample periods and then compare across various specifications. 

For model selection, we also consider the in-sample Akaike criterion modified to account for small 

samples, AICc. Alas, the AICc is not designed for overlapping observations because it assumes 

conditionally independent likelihood observations, whereas sequential observations are strongly 

dependent in our case due to overlapping data. To be conservative, albeit informal, we introduce a 

modification in which we reduce the number of effective observations in the AICc calculation by a 

factor of four to account for the four-quarter overlap.  

 

 

 

 
12 In the expanding window estimations, the initial, minimum sample uses the first half of the full sample, so 

that we examine out-of-sample results for only the second half of the sample. 
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Table A4: BEGE model selection results 

 
Note: In-sample and out-of-sample model selection criteria for the general model described by Equation (8) and 
estimated by MLE, as described in the test. The four specifications are estimated for each of the structural shocks that 
were identified in previous steps. For the AICc statistic, we use an effective number of observations of 54, which is the 
total number of quarterly observations, 216, divided by 4. 

Table A4 summarizes the results of these specification tests for each of the structural shocks. For 

each shock, we compare the in-sample AICc criteria (the minimum being optimal) and the out-of-

sample loglikelihoods (the maximum being optimal). The in-sample and out-of-sample criteria 

agree for the supply shock, the optimal model has a constant tp but a time-varying tn . This 

suggests that the level of “bad variance” for supply shocks (largely governing the lower tail of the 

distribution) varies significantly over time, “good variance” (largely governing the upper tail) is 

adequately modeled as being constant. For demand shocks, the in-sample criterion prefers the n-

only specification, while the out-of-sample criterion mildly prefers a model in which both good 

and bad volatility. We use the more parsimonious and conservative p-only specification. For 

idiosyncratic shocks to the unemployment rate, a simple static model with constant shape 

parameters is preferred on an out of sample basis, whereas a p-only specification is preferred by 

the in-sample criterion. We use the former, again for parsimony. Finally, for the idiosyncratic 

shock headline inflation, the optimal specification has tp varying, but tn constant by both the in-

sample and out-of-sample criteria. Of course, for the case of inflation, positively skewed variance 

governed by tp may not be regarded as “good”. Overall, these results suggest that accommodating 

structural shock p const p vary p const p vary
n const n const n vary n vary

supply insmp AICc 522.0 520.1 498.2 503.6
oos loglike -114.5 -115.9 -94.0 -102.2

demand insmp AICc 525.3 529.6 517.7 524.1
oos loglike -108.0 -108.1 -101.1 -100.9

idiosyncratic unemp insmp AICc 556.5 555.8 557.0 559.8
oos loglike -136.6 -139.3 -140.2 -139.7

idiosyncratic infl insmp AICc 583.7 579.1 581.9 584.0
oos loglike -126.4 -125.1 -126.7 -126.4
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time-varying upside and downside risks to the structural shock generally helps improve the 

performance of the density forecasts.13  

Table A5: BEGE parameter estimates 

 
Notes: Parameter estimates for BEGE model described by Equations (5) and (8) with restrictions as selected by 
specification criteria shown in Table A4. Bootstrapped 90 percent confidence intervals are shown in square brackets. 
All parameters are bounded below by 0.01 and 0p  and 0n  are bounded from above at 20.0.  
 
Table A5 report the parameter estimates for each model selected as optimal in Table A4. As shown 

in the first two columns, both supply and demand shocks are modeled as having constant tp

dynamics, but time-varying tn dynamics. In contrast, as shown by the third column, the 

idiosyncratic shock to the unemployment rate has constant volatility for both tp and tn . As shown 

by the right column, idiosyncratic shocks to headline inflation have time-varying tp dynamics by 

 
13 For all specifications, we use j=1 in Equation (8), which is preferred using both in-sample and out-of-sample 

selection criteria. 

13.13 3.12 0.93 0.01
[1.03,20.0] [1.77, 10.52] [0.30,4.61] [0.01, 5.70]

0.15 0.34 1.01 1.02
[0.05, 0.41] [0.19,0.45] [0.45,1.90] [0.14,1.51]

-- -- -- 0.25
-- -- -- [0.01,6.38]

-- -- -- 0.64
-- -- -- [0.01,0.82]

0.01 0.02 19.99 2.94
[0.01,4.84] [0.01, 0.15] [0.49,20.0] [0.71,15.2]

1.99 1.84 0.11 0.42
[0.05, 3.78] [0.68, 3.60] [0.02,0.41] [0.09,0.72]

0.29 0.11 -- --
[0.08,7,98] [0.01,0.29] -- --

0.01 0.50 -- --
[0.01,0.77] [0.07,0.73] -- --

0p

pσ

pφ

pρ

0n

nσ

nφ

nρ

s
tε d

tε u
tε t
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constant tn  dynamics. These parameters are reported for completeness, but few of them have a 

straightforward interpretation, so we report more intuitive statistics for each model in Table A6.  

Table A6: BEGE parameter-implied statistics 

  
Notes: Statistics implied by BEGE model estimates reported in Table A5 and described by Equations (5) and (8). The 
top panel presents results for conditional variance, VARt. The top three rows report the unconditional mean, standard 
deviation, and first-order autocorrelation for VARt , respectively, for each shock. The bottom three rows report the 
same statistics for conditional skewness, SKWt. Conditional variance and (unscaled) skewness for the BEGE model, 
VARt and SKWt, respectively, are derived in Equations (6) and (7). Derived statistics are calculated by simulation with 
bootstrapped 90 percent confidence intervals are shown in square brackets.  
 

Table A6 report statistics for the properties of the conditional variance and conditional skewness of 

each shock as implied by the parameters in Table A5. Recall that Equations (6) and (7) derive the 

formulas for conditional variance and skewness for the BEGE model, labeled VARt and SKWt, 

respectively. The statistics in Table A6 are calculated by simulation, in part, to account for the 

overlapping nature of the data. As shown in the first column, for supply the mean level of 

conditional variance is around 1. This is by assumption – all reduced-form shocks were assumed to 

have unit variance in population. More interesting is that the unconditional standard deviation of 

conditional variance is 0.89, so that VARt has a substantial degree of variation relative to its mean. 

Moreover, the autocorrelation of VARt for skewness is 0.52 indicating a fair degree of persistence. 

The bottom half of the table in the first column shows the statistics for SKWt for supply. The mean 

level of SKWt is deeply negative at -3.05, indicating that large supply shocks tend to be negative. 

1.10 0.92 1.22 1.19
[0.36,2.10] [0.49,1.94] [0.71,1.78] [0.59,1.54]

0.89 0.35 -- 0.44
[0.01,1.94] [0.00,0.87] -- [0.01,066]

0.52 0.80 -- 0.90
[0.43,0.93] [0.55,0.92] -- [0.53,0.93]

-3.05 -1.75 1.90 0.93
[-11.7,0.17] [-8.82,4.22] [0.57,5.46] [-0.26,1.86]

3.54 1.29 -- 0.90
[0.01,13.68] [0.01,4.22] -- [0.01,1.87]

0.52 0.80 -- 0.90
[0.43,0.93] [0.55,0.92] -- [0.53,0.93]

s
tε d

tε u
tε t

πε

( )tmean VAR

( )tstd VAR

( )tacorr VAR

( )tmean SKW

( )tstd SKW

( )tacorr SKW
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However, the confidence range for this statistic is fairly wide, spanning from -11.7 to 0.2. SKWt is 

also quite volatile for supply, with an unconditional standard deviation of 3.54. SKWt has the same 

persistence as VARt for supply because there is a single factor, tn , driving variation in all the 

conditional moments. The second column show results for the demand shock BEGE specification. 

The results are similar to those for supply shocks: an appreciable level of variation in both VARt 

and SKWt, deeply negative average levels for SKWt, and even more persistence of these conditional 

moments compared to supply shocks, with an autocorrelation for both VARt and SKWt of 0.80. The 

results in the third column are for the idiosyncratic shocks to the unemployment rate. Because the 

optimal model for these shocks had no dynamics for either good or bad volatility, both VARt and 

SKWt are constant. It is notable however that the mean level for SKWt is substantially positive at 

1.90, indicating once again that large shocks tend to be of the unfavorable sort. The fourth column 

shock results for the idiosyncratic shock to headline inflation. These tend to be positively skewed 

with a large degree of variation and positive autocorrelation in both VARt and SKWt. 

We now turn to the conditional moments that the model implies over our sample period. Figure A6 

plots the fitted good and bad variance for each shock variable under the optimal specification for 

that variable. The top panel plots the results for supply shocks. Bad variance, the red line, varies 

substantially over the business cycle, with bad variance peaking prominently in recessions in the 

1970s and again after the Covid-induced recession. Peak in the 1970s are consistent with the large 

supply-like shocks and instances of stagflation observed during that period, for example, during 

the famous oil price shocks. The high levels of bad variance for supply during the Covid period 

and its aftermath are consistent with supply chain disruptions from that period, which pushed up 

on inflation and down on real activity. The results for demand shocks are shown in the second 

panel. Bad demand variance frequently peaks during recessions, with the Great Financial Crisis of 

2008-2009 standing out in particular. Large adverse shocks persistently lowered both inflation and 

real activity during that period. The results for the conditional moments of the idiosyncratic 

unemployment rate shock are rather uninteresting, because the optimal specification suggests a 

constant distribution for these shocks. Consistent with the optimal specification indicated in Table 

A4, both good and bad variance for the unemployment rate are constant. Finally, the bottom panel 

shows results for the idiosyncratic shock to headline inflation. Here, the tp driven variance, the 
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black line, is more reasonably referred to as “bad”, and it shows large peaks during the recessions 

of the 1970s and 1980s as well as in the aftermath of the Covid recession.   

Figure A6: Estimated predictive variance for structural shocks 

 
Notes: Estimated “good” and “bad” variance for each structural shock under the optimal specification for that shock as 
identified in Table (4) and parameters in Table A5. In each panel, tp and 

tn are plotted scaled by their respective 
estimated parameters. For example, for supply the plotted series are 2 2 and s s

sp t sn tp nσ σ , the two components of 
conditional variance for supply shocks. NBER recession periods are shaded in blue. The model employed is described 
by Equations (5) and (8). 
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To examine the degree of non Gaussianity that is implied by the parameters estimates in Table A5, 

Figure A7 plots the model-implied conditional skewness for each of the structural shocks.  

Figure A7: Estimated conditional skewness for structural shocks 

 
 Notes: Estimated conditional unscaled skewness for each shock is calculated as, for the example of supply shocks, as 

3 3
4 2 2s s s

t t sp t sn tSKW p nσ σε +  = −  . NBER recession periods are shaded in blue. The model employed is described by 

Equations (5) and (8), with the relative parameters estimates in Table A5 for each shock. 
 
 
Evidently, both supply and demand shocks are negatively skewed on average. Skewness typically 

reaches negative peaks during recessionary periods. Negative skewness for supply shocks was 

particularly pronounced during recessions in the 1970s and 1980s, whereas demand shocks reach 

negative peaks in recessions throughout the sample. Idiosyncratic shocks to inflation are positively 

skewed, albeit more mildly than for supply and demand shocks. Idiosyncratic shocks to the 

unemployment rate are positively skewed, and that degree of skewness is constant, consistent with 

the optimal model for that shock.  

Putting it all together 

Armed with the estimated conditional distribution for the structural shocks, it is straightforward in 

light of Equation (2), although computationally cumbersome, to calculate the predictive 
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distribution for the four reduced-form shocks, which capture the outlooks for the macroeconomic 

variables of interest. 

Under the assumed linear structure in Equation (2), the conditional univariate moments for the 

macroeconomic shocks map linearly onto the conditional moments for the structural shocks. For 

example, the conditional second and third conditional moments for shocks to core inflation are: 

2 2
4 , 4 , 4

3 3
4 , 4 , 4

c s d
t t c s t t c d t t

c s d
t t c s t t c d t t

VAR u VAR VAR

SKW u SKW SKW

π
π π

π
π π

σ ε σ ε

σ ε σ ε
+ + +

+ + +

     = +     
     = − +     

 
                 (9) 

Intuitively, higher supply and demand variance both drive up the variance of core inflation. In 

contrast, positive skewness for supply shocks drives down the conditional skewness for core 

inflation, whereas higher conditional skewness of demand shocks drives up the conditional 

skewness of core inflation shocks. 

As depicted in the left-hand panels in Figure A8, all of the endogenous shocks feature conditional 

variance estimates that vary strongly over the business cycle, increasing sharply during recessions. 

The sharpest peaks in variance for the inflation series occur at the beginning and at the end of the 

sample period. In contrast, the conditional variance of real GDP growth and the unemployment 

rate rise in a fairly consistent manner during recessions across the full sample. Estimates of the 

conditional skewness of endogenous variables are shown in the panels on the right. Once again, 

strong variation over the business cycle is evident. Of note, core inflation and especially headline 

inflation exhibit sign-switching in their conditional skewness estimates. When supply variance 

dominates, such as in the 1970s and 1980s, skewness for inflation tends to be positive – the 

balance of risks is to the upside for inflation. However, when demand uncertainty dominates, such 

as during the Great Financial Crisis of 2008-2009, the balance of risks to inflation moves sharply 

to the downside. 
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Figure A8: Univariate conditional moments of endogenous shocks 

 
Notes: Estimated conditional variance and unscaled skewness for each endogenous shock is calculated as in Equation 
(9) using the estimated series of good and bad variance for the structural shocks as reported in Figure A6 and the 
parameter estimates in Table A2. NBER recession periods are shaded in blue. The BEGE model employed is described 
by Equations (5) and (8), with the relative parameters estimates in Table A5 for each shock. 
 
 

The conditional moments of the structural shocks also map linearly into cross-moments for the 

reduced-form shocks. For example, 
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4 4 , , 4 , , 4, g s d
t t t s g s t t d g d t tCOV u u VAR VARπ

π πσ σ ε σ σ ε+ + + +     = − +       (10) 

Intuitively, higher supply variance pushes the covariance between inflation and real GDP growth 

towards negative territory because inflation and real GDP growth load with opposite signs onto 

supply shocks. In contrast, higher demand variance increases the covariance of inflation and real 

GDP shocks because both of them load positively onto demand shocks. Figure A9 depicts the time 

series for the estimated covariance between real GDP growth and headline inflation. Early in the 

sample period when supply shocks dominate, the covariance tends to be negative, especially 

during supply-driven recessions such as in the early 1970s. In contrast, the covariance moves 

sharply into positive territory during periods of elevated demand volatility such as during the GFC 

and early in the pandemic period. This sign-switching behavior should be of keen interest to 

monetary policy makers: When the covariance is positive, risks to the Fed’s dual mandate are not 

in conflict because in such circumstances the predominant risk is that both inflation and real 

activity will fall below the Fed’s goals. In contrast, when the covariance is negative, policy makers 

face a situation in which, for example, inflation may be too high while real activity is depressed – a 

stagflation scenario.  

Figure A9: Conditional covariance between real GDP and inflation shocks 

 
Notes: Estimated conditional covariance calculated as in Equation (10) using the estimated series of good and bad 
variance for the structural shocks as reported in Figure A6 and the parameter estimates in Table A2. NBER recession 
periods are shaded in blue. 
 

The final application of this methodology that we present is the multivariate predictive distribution 

of the endogenous variables, which uses the conditional mean from Step 1 and the conditional 

distribution of shocks from steps 2 and 3. The conditional joint distributions can be generated by 
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numerical integration or simulation techniques, as described in BEE. In Figure A10 we plot 

bivariate distributions for real GDP growth and headline inflation (although bivariate plots with 

any two of the endogenous variables are of course possible and more elaborate graphical 

techniques may be able to illustrate three- or four-dimensional distributions). Each panel depicts 

predictions from the model at different points in time. In each panel, forecasts for four-quarter 

inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth rate are 

on the vertical axis. The asterisk denotes the model’s mean point forecast from step 1, and the 

square denotes the mode of the distribution. The yellow area indicates the most likely outcomes, 

with 50 percent of all outcomes expected to fall within it. The green area depicts the next most 

likely 40 percent of outcomes, which we interpret as a region of material risk. For reference, axes 

are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied 

probabilities of outcomes in each of the four quadrants are listed in the corner of each quadrant.  

Figure A10 shows that a wide variety of central locations and shapes for the predicted density have 

occurred over the sample period. The top left panel shows a relatively quiescent period in the early 

1970s when the distribution of had a relatively small footprint, with the yellow region centered 

roughly around 5 percent real GDP growth and 4 percent inflation. In contrast, the distribution had 

widened by large amount in both dimensions by late 1973, as shown in the top right panel, amid a 

series of adverse supply shocks. The pronounced tail to the southeast indicates an elevated risk of 

stagflation – periods of elevated inflation and lackluster or negative GDP growth. The panels on 

the second row, in contrast, indicate periods of elevated demand risk, with the predominant tail of 

the distribution pointed to the southwest region characterized be low growth and low inflation 

indicating increased risk of a deflationary recession. This was true during the Fed-induced 

recession in 1982 and the financial crisis in 2009. The third row contrasts the benign distribution in 

late 2019 right before the onset of the pandemic, with the very wide distribution and dual 

prominent supply and demand risks that persisted even through 2022 in the wake of the pandemic. 

The final row shows two recent distributions, at the end of 2024 and the last available distribution 

in 2025Q2. The spread of the distributions is relatively modest, indicating a moderate amount of 

risk, but the distribution shifted towards the region of stagflation in 2025Q2 amid expectations that 

tariff policy may lower growth and increase inflation over the next year.  
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Figure A10: Predictive joint distributions for headline inflation and real GDP growth 

    
Notes: Estimated predictive distribution of headline inflation and real GDP outcomes using the model developed in 
Step1-3 in the appendix. Each panel depicts predictions from the model at different points in time. In each panel, 
forecasts for four-quarter inflation are plotted on the horizontal axis, and forecasts for four-quarter real GDP growth 
rate are on the vertical axis. The asterisk denotes the model’s mean point forecast, and the square denotes the mode. 
The yellow area indicates the most likely outcomes, with 50 percent of all outcomes expected to fall within it. The 
green area depicts the next most likely 40 percent of outcomes, which we interpret as a region of material risk. For 
reference, axes are drawn at 2 percent for inflation and 2 percent for real GDP growth. The model-implied 
probabilities of outcomes in each of the resulting four quadrants are listed in the corner of each quadrant. 
 


