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Abstract

This comment discusses Kolesar and Plagbord-Mgller (2025) finding that the stan-
dard linear local projection (LP) estimator recovers the average marginal effect (AME)
even in nonlinear settings. We apply and discuss a subset their results using a simple
nonlinear time series model, emphasizing the role of the weighting function and the

impact of nonlinearities on small-sample properties.

1 Introduction

Kolesar and Plagbord-Mgller (2025) (hereafter, KP) is an exciting, important advance in
the literature on the estimation of dynamic causal effects in the context of local projections
(LPs) (see Jorda (2005)). The paper establishes that the “standard” linear LP of an outcome
Yr+n onto a shock z; (and possibly a vector of controls) estimates an average marginal effect
(AME) of the shock on the outcome. This result holds under suitable assumptions even—
and perhaps especially—in the case of a nonlinear data generating process for ;. Deriving
the result requires connecting and extending a large literature in microeconometrics.

This comment aims to provide an accessible discussion of some of the results reported
in KP that is tailored to macroeconomists. We begin by considering some of the theoreti-
cal results in KP under common assumptions in the macroeconomics literature. We devote
particular attention to the weighting function, w, that is used to compute the average in the
AME. We then analyze the AMFE and its LP estimation in the context of the quadratic au-
toregressive model (QAR(1,1)) model of Aruoba et al. (2017). This is a stationary, nonlinear
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time series model designed to mimic the statistical structure of a second-order approximation
to the solution of a dynamic stochastic general equilibrium (DSGE) model. In the context
of the QAR(1,1) model, we relate the population AME to a population nonlinear impulse
response function (NIRF) defined in Koop et al. (1996). We also discuss small-sample prop-
erties of the LP estimator of the AM E with a focus on how nonlinearities in the QAR(1,1)

model affect those properties.

2 What does the standard LP estimate?

In this section, we discuss the LP estimator of the AMFE. To establish notation, let y;,, be
the observed outcome of interest at time t 4+ h, and let x; be the observed shock of interest
at time ¢. Collect all other variables that determine ¥4, into a vector Uy s4p, which may
include past values of y;, past (and future) values of z;, and other controls. We require that
the vector Uy, sy, is independent of z;. A representation of vy, based on z; and Uj 4, is

called the structural function and is given by

Yirn = V(T Unin)- (1)

The representation that is used to define the notion of dynamic causal effect used in KP is

the average structural function, which is given by

Ui (2:) = E[n(ze, Unirn)] = Elyenlad] = gn(z). (2)

This function describes the expected outcome y;., given a specific value of the shock x,
integrating out all other sources of randomness. Note that because we have assumed that
x; is independent of all other factors affecting y,., the average structural function is equal
to—and hence can be recovered from—the conditional expectation of vy, given z;. This
quantity can in principle be estimated from the data.

In macroeconomics, it can be difficult to estimate the average structural function due to
small sample sizes. One approach is to impose strong assumptions about the data-generating
process for y;. For example, a researcher could assume that y; follows an AR(1) process.

Another option in nonlinear time series analysis is to estimate the AM FE, defined as

Op(w) = /w(xt)llf;l(xt)dxt. (3)

Here W} (z;) represents the derivative of the average structural function. This derivative

captures the effect of an infinitesimal change in z; on y;,5. The weighting function, w(z;),



determines how different values of z; contribute to the AME, defining the sense in which the
AME is an average.
KP study local projections that are indexed by h and given by

Yern = Bre + VWi + €n i (4)

Here, (3, is a parameter, w; is a vector of controls, v is a vector of parameters, and e, ¢y5
is an error term. If x; and w, have zero covariance, then under standard assumptions 3 is

given by

~ Covlgn(w), 4]
Bn = Var[z] (%)

where g, is as defined in equation (2). KP show that

Br = /w(ﬂft)gﬁ(xt)dl’ta (6)

where the weighting function, w(z;), is given by

Cov[1{X > z:}, X]
Var[X] ' (")

w(xy) =
Here, x; is a realization of the random variable X and 1{-} is the indicator function.

2.1 The weighting function

As KP explain, the function w(x;) has several desirable properties that make it suitable for
computing an average. In particular, w(z;) > 0 for all x; and fol w(xy)dxy = 1. From the
properties of the indicator and covariance functions in equation (7), limg, oo w(xy) = 0
and w(z,;) is weakly increasing for z; < E[X]. Additionally, lim,, s w(z;) = 0 and w(z;)
is weakly decreasing for z; > E[X]. Taken together, these facts imply that w(z) is hump-
shaped and that it gives most of the weight to values of x; near the mean of X. As discussed
in the paper, if X follows a Normal distribution, then w(x;) = ¢(x;) where ¢(-) denotes the
(appropriately parameterized) probability density function of the Normal distribution.

It is worth emphasizing that w(x;) depends only on the properties of the random variable
X. It does not depend on the outcome 1;,5, on the distribution of other random variables
that may go into the construction of y;,,, or on nonlinear dependence of y,,, on past
realizations of ;.

We can also deduce some additional properties of w if we assume that X has a continuous



density function with full support on the real line, even if X is not Normally distributed.
These are common assumptions about identified shocks in the macroeconomics literature.
For simplicity, set E[X] = 0 and Var[X] = 1 so that

w(z) =E[1{X > z}X]. (8)

We will focus on contrasting w with fy, the density function associated with X, and thus, the
AME with the expected marginal effect (EMFE). The EMFE is given by 6(fx), which uses
the true probability density function fx(z;) as the weight function. Here are two additional

properties of w not shown in the paper.

Claim. If the distribution of X has heavy tails in the sense that as |z;| — oo, for some
a>2andC >0

lim fx(x1) =1 and lim M =1
Tt—>00 % Tt—r—00 %

t Ty

then w(x;) has heavier tails than fx(x;).

To see this, for large x;, substitute the tail approximation into the definition of w

00 00 —(a—1)
w(x)z/ s dt:O/ todt = 02 -

t1+a o —

We deduce that

w(x) - a?

fx(z) Ta-1

For sufficiently large x this object is greater than 1.

Claim. Assume that X has finite moments of order j+2 and limgﬁﬁoow(az:t)gnfrl =0. Then

/OO Pw(z)dr = #E[Xj“].
oo J+1
The result of this claim follows from integration by parts.

In summary, when X is normally distributed, the LP estimator aligns exactly with the
EME, making w(z) = fx(x) a convenient theoretical benchmark. For distributions with
skewness or heavy tails, the AME estimated by the local projection will differ from the
EME, potentially biasing the interpretation of results. However, this difference also reflects
the robustness of the local projection estimator in capturing effects relevant in the tails of
the distribution.

To illustrate the weighting function, Figure 1 shows fx and w for four distributions. All

of the distributions are normalized to have mean zero, so w peaks at zero in each panel. The
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Figure 1: w(z) and fx(x) for four distributions
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upper-left panel shows that fx and w coincide for the standard Normal distribution. The
upper-right panel and the lower-left panel show that if fx has heavy tails, then w has heavier
tails. The lower-right panel shows that if fx is a skew distribution, then fy and w do not

peak at the same point.

3 AME in Action: Quadratic Autoregressive Model

In this section we analyze the AM E and its estimation using a simple nonlinear, time series
model—the first-order quadratic autoregressive model or QAR(1,1) model—that was devel-
oped in Aruoba et al. (2017). This class of time series models was developed to identify
nonlinearities in macroeconomic data and to evaluate DSGE models. This model is partic-

ularly useful because it nests the familiar AR(1) model, which is a common benchmark.
The QAR(1,1) is given by

Y = G0+ G1(Yim1 — do) + dasi_y + (14 ys1)owy (9)
5 = P18+ \/ 1 — ¢y (10)

Here, y; is the observed scalar variable of interest, s; is an unobserved state variable, and x;
is an observed shock with mean zero and variance unity. We assume that the third moment
of x; is finite. The scalar parameters ¢, and + control the degree of nonlinearity in the
model. Very roughly speaking, v is associated with conditional heteroskedasticity in y;, and
@9 is associated with asymmetry and more general state dependence. When ¢ = v = 0, the
model collapses to the AR(1) model.

3.1 The NIRF and the AME in the QAR(1,1)

As KP note, in a nonlinear time series setting there are a variety of notions of impulse
response. Here, we briefly touch on a nonlinear impulse response function (NIRF)—see
Koop et al. (1996)—as a definition familiar to most macroeconomists, and later we describe
its connection to the objects studied in KP.

In the context of the QAR(1,1) model, the NIRF is given by

NIRF(h, Ty Yt—1, St—l) =K [yt+h|$t, Yi—1, St—l] —-E [yt+h|yt—1a St—l] .



This object can be expressed as

1— h
NIRF(h, x4, Y1—1, S1-1) = ¢}f (14 ysi—1) oxy + ¢2¢?71 1 ¢1 d(St—1, ), (11)
— 1

where §(si_1, ) = 2¢15,-11/1 — iz, + (1 — ¢3) (2] — 1).

Notice that the NIRF' depends on s, ; but not on y;_;. That is, the NIRF is state
dependent and the relevant state is s;_;. The analytical expression for the NITRF' makes

clear that the model is asymmetric in the sense that
N]RF(h7 Ly Yi—1, 5t—1> + N]RF(ha —T¢, Yp—1, St—l) 7£ O

That is, adding the NIRF from a positive shock to the NIRF from a negative shock
of the same size does not equal zero. Allowing for asymmetry is important for analyzing
the transmission of macroeconomic shocks—see, for example, Kilian and Vigfusson (2011).
Additionally, the analytical expression for the NIRF makes clear that the model displays
heteroskedasticity in the sense that if x; # 0 and x # 1 then

NIRF (h, kxy,y—1,81-1) — KNIRF (h, x4, yi 1, 81-1) # 0.

That is, the NI RF is not homogeneous of degree one in x;. Interestingly, these nonlinearities

do not depend on the level of s;_; even though the NTRF is affected (linearly) by s;_;.
Recall that KP focus on the representation of y,,j given by equation (1), where vy, =

Y(z¢, Upgtn), and that the variables in the vector Up:yy, are independent of z;. Taking

expectations over Uj, 144, we are left with the average structural function

Uy (2¢) = E [¥n (21, Ur)] = Elyen| 2.

This concept is different from the NIRF, in that ¥, averages both future and past shocks,
while the NI RF' defined above explicitly conditions on past information. That is, unlike the
NIRF, ¥, does not feature any state dependence on s;_;. A motivation for focusing on ¥,
instead of the NIRF is that in most applications, such as the setup for the QAR(1,1) model
that we consider here, s;_; is unobserved.

Although distinct, W), and the NIRF' are related in that

‘I’h(ft) =K [N]RF(ha Tty Yi—1, 3t—1)|$t} +E [?Jt] .



From the parametric expression for the NTRF in the QAR(1,1) model, we then have that

i) = oo+ 22+ ooz + dal (1= o)1+ 1) (0 — 1) (12)

Notice that the asymmetry and heteroskedasticity of the model are apparent from ;. How-

ever, an indication of the information lost in ¥, relative to the NIRF because of the aver-

aging is that v does not affect ¥, even though it contributes importantly to the nonlinearity
in the model and appears in the NIRF'.

KP focus on the estimation of the AMFE given in equation (3). From the parametric

expression for ¥y, in the QAR(1,1) model

U (z0) = ¢lo 4 20200 (1 — @) (1 + 1), (13)

Applying the results related to w(z;) when z; is continuously distributed gives

On(w) = $10 + G2~ (1 = G1)(1 + 61)E[}]. (14)

Here, we have used our second claim, discussed above. Notice that if x; is symmetric then
0(w) = ¢%o and the AME in the QAR(1,1) model is the same as in the AR(1) model. From
equation (14), it is also clear that when ¢o = 0 the AM F is the same in these models even if
x; is not symmetric. More generally, in a linear model—that is, a model in which the NIRF
is linear in x;—W¥), is linear in z;. In this case, if x; follows a standard Normal distribution,
then the NIRF for a one standard deviation shock and the AMFE are equivalent.

3.2 Estimation with small samples

Here we analyze the estimation of the AMFE in the QAR(1,1) model. With an observed
set of outcomes and shocks {y;,;}L,, the estimation of the set of regressions given by
equation (4) is straightforward. However, as emphasized in Herbst and Johannsen (2024),
even in this idealized setting, finite sample issues can be important, particularly for sample
sizes commonly seen in the macroeconomics literature.

Here, we consider how nonlinearities interact with finite sample issues. We simulate the
QAR(1,1) model 1,000,000 times with ¢y = 0, ¢; = 0.95, and 0 = 1.! We think of the
model as a quarterly model and use a sample size of 100, which Herbst and Johannsen (2024)
argue is typical in the related macroeconomics literature.

We vary ¢, and 7 to see how different values—and their associated nonlinearities—affect

'We initialize y_1900 and s_1ggo to zero and simulate forward. We begin our sample at yo and sg.



the finite sample properties of the estimator of the AME. We specify the local projection

as

Yern = Brae + L yea] + enern-

We focus on the case where h = 6, which is a relatively short horizon for an impulse response
in macroeconomics. We denote the estimator of the AME by Bh.

As a baseline case, we use a standard Normal distribution for x;. To understand the
effects of heavy tails or asymmetries in the distribution of z;, we also consider the cases
where z; has a (standardized) t distribution with v = 3.1 degrees of freedom and when z;
has a (standardized) skew-Normal with skew parameter & = 5. Note that when z; follows a
Normal distribution or a t distribution the AM E in the QAR(1,1) model coincides with that
in the AR(1) model with ¢; as the autoregressive parameter. When z; has a skew-Normal
distribution, the AM E differs because of the non-zero third moment of x;, unless ¢, = 0.

We compare the small-sample average value of Bh to By (the bias). We know £, in closed
form from the derivations above. The results are shown in Figure 2. When ¢ = 0 and v = 0,
the QAR(1,1) model reduces to the AR(1) model. At that point on the graphs, the bias is
the same for each of the three distributions. For different values of ¢, and v, the bias of the
AME estimator depends on the distribution. Interestingly, introducing nonlinearities does
not necessarily increase or decrease bias. That is, nonlinearities have unpredictable effects
on the small-sample average of /éh

To further explore the small-sample properties of Bh, Figure 3 shows the root-mean-
squared-error (RMSE) of Bh, and Figure 4 shows the coverage probability of nominal 95%
confidence intervals constructed using Bh and associated Huber-White standard errors. No-
tably, as the nonlinearities of the QAR(1,1) model increase (¢, and v increase in magnitude)
the RMSE grows. This increased volatility of B, is not fully captured by the standard errors.
As a result, the coverage probabilities fall as nonlinearities of the QAR(1,1) model increase.

We conclude that although the AM E is robust to an array of nonlinearities in population,
those nonlinearities may have important implications for the small sample properties of

estimators and associated test statistics.



Figure 2: Bias Estimates for the AME in the QAR(1,1) model with h = 6 and 7" = 100
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Figure 3: RMSE for the AME in the QAR(1,1) model with h =6 and 7" = 100

Y= 0 ¢2 =0
3.5 3.5
A = Normal /
\ /
3.04 -\ == Student's t / 304
\ = Skew Normal /
\ /
2.5 1
w w 2.0 1
0 )
: :
« 1.5
1.0 A \
o
NS
0.0 T T T

. -10 -05 00 05 1.0
o2 Y
Source: Authors’ calculations.

10



Figure 4: Coverage of 95% CIs for the AME in the QAR(1,1) model with h = 6 and 7" = 100
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