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Discussion of “Dynamic Causal Effects in a Nonlinear
World: the Good, the Bad, and the Ugly”

Edward P. Herbst and Benjamin K. Johannsen∗

March 2025

Abstract

This comment discusses Kolesár and Plagbord-Møller (2025) finding that the stan-
dard linear local projection (LP) estimator recovers the average marginal effect (AME)
even in nonlinear settings. We apply and discuss a subset their results using a simple
nonlinear time series model, emphasizing the role of the weighting function and the
impact of nonlinearities on small-sample properties.

1 Introduction

Kolesár and Plagbord-Møller (2025) (hereafter, KP) is an exciting, important advance in
the literature on the estimation of dynamic causal effects in the context of local projections
(LPs) (see Jordà (2005)). The paper establishes that the “standard” linear LP of an outcome
yt+h onto a shock xt (and possibly a vector of controls) estimates an average marginal effect
(AME) of the shock on the outcome. This result holds under suitable assumptions even—
and perhaps especially—in the case of a nonlinear data generating process for yt. Deriving
the result requires connecting and extending a large literature in microeconometrics.

This comment aims to provide an accessible discussion of some of the results reported
in KP that is tailored to macroeconomists. We begin by considering some of the theoreti-
cal results in KP under common assumptions in the macroeconomics literature. We devote
particular attention to the weighting function, ω, that is used to compute the average in the
AME. We then analyze the AME and its LP estimation in the context of the quadratic au-
toregressive model (QAR(1,1)) model of Aruoba et al. (2017). This is a stationary, nonlinear
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Reserve Board.
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time series model designed to mimic the statistical structure of a second-order approximation
to the solution of a dynamic stochastic general equilibrium (DSGE) model. In the context
of the QAR(1,1) model, we relate the population AME to a population nonlinear impulse
response function (NIRF ) defined in Koop et al. (1996). We also discuss small-sample prop-
erties of the LP estimator of the AME with a focus on how nonlinearities in the QAR(1,1)
model affect those properties.

2 What does the standard LP estimate?

In this section, we discuss the LP estimator of the AME. To establish notation, let yt+h be
the observed outcome of interest at time t + h, and let xt be the observed shock of interest
at time t. Collect all other variables that determine yt+h into a vector Uh,t+h, which may
include past values of yt, past (and future) values of xt, and other controls. We require that
the vector Uh,t+h is independent of xt. A representation of yt+h based on xt and Uh,t+h is
called the structural function and is given by

yt+h = ψh(xt, Uh,t+h). (1)

The representation that is used to define the notion of dynamic causal effect used in KP is
the average structural function, which is given by

Ψh(xt) = E[ψh(xt, Uh,t+h)] = E[yt+h|xt] = gh(xt). (2)

This function describes the expected outcome yt+h given a specific value of the shock xt,
integrating out all other sources of randomness. Note that because we have assumed that
xt is independent of all other factors affecting yt+h, the average structural function is equal
to—and hence can be recovered from—the conditional expectation of yt+h given xt. This
quantity can in principle be estimated from the data.

In macroeconomics, it can be difficult to estimate the average structural function due to
small sample sizes. One approach is to impose strong assumptions about the data-generating
process for yt. For example, a researcher could assume that yt follows an AR(1) process.
Another option in nonlinear time series analysis is to estimate the AME, defined as

θh(ω) =

∫
ω(xt)Ψ

′
h(xt)dxt. (3)

Here Ψ′
h(xt) represents the derivative of the average structural function. This derivative

captures the effect of an infinitesimal change in xt on yt+h. The weighting function, ω(xt),
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determines how different values of xt contribute to the AME, defining the sense in which the
AME is an average.

KP study local projections that are indexed by h and given by

yt+h = βhxt + γ′hwt + eh,t+h. (4)

Here, βh is a parameter, wt is a vector of controls, γh is a vector of parameters, and eh,t+h

is an error term. If xt and wt have zero covariance, then under standard assumptions βh is
given by

βh =
Cov[gh(xt), xt]

Var[xt]
, (5)

where gh is as defined in equation (2). KP show that

βh =

∫
ω(xt)g

′
h(xt)dxt, (6)

where the weighting function, ω(xt), is given by

ω(xt) =
Cov[1{X > xt}, X]

Var[X]
. (7)

Here, xt is a realization of the random variable X and 1{·} is the indicator function.

2.1 The weighting function

As KP explain, the function ω(xt) has several desirable properties that make it suitable for
computing an average. In particular, ω(xt) ≥ 0 for all xt and

∫ 1

0
ω(xt)dxt = 1. From the

properties of the indicator and covariance functions in equation (7), limxt→−∞ ω(xt) = 0

and ω(xt) is weakly increasing for xt < E[X]. Additionally, limxt→∞ ω(xt) = 0 and ω(xt)

is weakly decreasing for xt ≥ E[X]. Taken together, these facts imply that ω(x) is hump-
shaped and that it gives most of the weight to values of xt near the mean of X. As discussed
in the paper, if X follows a Normal distribution, then ω(xt) = ϕ(xt) where ϕ(·) denotes the
(appropriately parameterized) probability density function of the Normal distribution.

It is worth emphasizing that ω(xt) depends only on the properties of the random variable
X. It does not depend on the outcome yt+h, on the distribution of other random variables
that may go into the construction of yt+h, or on nonlinear dependence of yt+h on past
realizations of yt.

We can also deduce some additional properties of ω if we assume that X has a continuous
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density function with full support on the real line, even if X is not Normally distributed.
These are common assumptions about identified shocks in the macroeconomics literature.
For simplicity, set E[X] = 0 and Var[X] = 1 so that

ω(x) = E[1{X > x}X]. (8)

We will focus on contrasting ω with fX , the density function associated with X, and thus, the
AME with the expected marginal effect (EME). The EME is given by θ(fX), which uses
the true probability density function fX(xt) as the weight function. Here are two additional
properties of ω not shown in the paper.

Claim. If the distribution of X has heavy tails in the sense that as |xt| → ∞, for some
α > 2 and C > 0

lim
xt→∞

fX(xt)
C

x1+α
t

= 1 and lim
xt→−∞

fX(xt)
C

x1+α
t

= 1

then ω(xt) has heavier tails than fX(xt).

To see this, for large xt, substitute the tail approximation into the definition of ω

ω(x) ≈
∫ ∞

x

t
C

t1+α
dt = C

∫ ∞

x

t−αdt = C
x−(α−1)

α− 1
.

We deduce that
ω(x)

fX(x)
≈ x2

α− 1
.

For sufficiently large x this object is greater than 1.

Claim. Assume that X has finite moments of order j+2 and limxt→∞ ω(xt)x
j+1
t = 0. Then∫ ∞

−∞
xjω(x)dx =

1

j + 1
E[Xj+2].

The result of this claim follows from integration by parts.
In summary, when X is normally distributed, the LP estimator aligns exactly with the

EME, making ω(x) = fX(x) a convenient theoretical benchmark. For distributions with
skewness or heavy tails, the AME estimated by the local projection will differ from the
EME, potentially biasing the interpretation of results. However, this difference also reflects
the robustness of the local projection estimator in capturing effects relevant in the tails of
the distribution.

To illustrate the weighting function, Figure 1 shows fX and ω for four distributions. All
of the distributions are normalized to have mean zero, so ω peaks at zero in each panel. The
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Figure 1: ω(x) and fX(x) for four distributions
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upper-left panel shows that fX and ω coincide for the standard Normal distribution. The
upper-right panel and the lower-left panel show that if fX has heavy tails, then ω has heavier
tails. The lower-right panel shows that if fX is a skew distribution, then fX and ω do not
peak at the same point.

3 AME in Action: Quadratic Autoregressive Model

In this section we analyze the AME and its estimation using a simple nonlinear, time series
model—the first-order quadratic autoregressive model or QAR(1,1) model—that was devel-
oped in Aruoba et al. (2017). This class of time series models was developed to identify
nonlinearities in macroeconomic data and to evaluate DSGE models. This model is partic-
ularly useful because it nests the familiar AR(1) model, which is a common benchmark.

The QAR(1,1) is given by

yt = ϕ0 + ϕ1(yt−1 − ϕ0) + ϕ2s
2
t−1 + (1 + γst−1)σxt (9)

st = ϕ1st−1 +
√

1− ϕ2
1xt. (10)

Here, yt is the observed scalar variable of interest, st is an unobserved state variable, and xt
is an observed shock with mean zero and variance unity. We assume that the third moment
of xt is finite. The scalar parameters ϕ2 and γ control the degree of nonlinearity in the
model. Very roughly speaking, γ is associated with conditional heteroskedasticity in yt, and
ϕ2 is associated with asymmetry and more general state dependence. When ϕ2 = γ = 0, the
model collapses to the AR(1) model.

3.1 The NIRF and the AME in the QAR(1,1)

As KP note, in a nonlinear time series setting there are a variety of notions of impulse
response. Here, we briefly touch on a nonlinear impulse response function (NIRF )—see
Koop et al. (1996)—as a definition familiar to most macroeconomists, and later we describe
its connection to the objects studied in KP.

In the context of the QAR(1,1) model, the NIRF is given by

NIRF(h, xt, yt−1, st−1) = E [yt+h|xt, yt−1, st−1]− E [yt+h|yt−1, st−1] .
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This object can be expressed as

NIRF(h, xt, yt−1, st−1) = ϕh
1 (1 + γst−1)σxt + ϕ2ϕ

h−1
1

1− ϕh
1

1− ϕ1

δ(st−1, xt), (11)

where δ(st−1, xt) = 2ϕ1st−1

√
1− ϕ2

1xt + (1− ϕ2
1)(x

2
t − 1).

Notice that the NIRF depends on st−1 but not on yt−1. That is, the NIRF is state
dependent and the relevant state is st−1. The analytical expression for the NIRF makes
clear that the model is asymmetric in the sense that

NIRF (h, xt, yt−1, st−1) +NIRF (h,−xt, yt−1, st−1) ̸= 0.

That is, adding the NIRF from a positive shock to the NIRF from a negative shock
of the same size does not equal zero. Allowing for asymmetry is important for analyzing
the transmission of macroeconomic shocks—see, for example, Kilian and Vigfusson (2011).
Additionally, the analytical expression for the NIRF makes clear that the model displays
heteroskedasticity in the sense that if xt ̸= 0 and κ ̸= 1 then

NIRF (h, κxt, yt−1, st−1)− κNIRF (h, xt, yt−1, st−1) ̸= 0.

That is, the NIRF is not homogeneous of degree one in xt. Interestingly, these nonlinearities
do not depend on the level of st−1 even though the NIRF is affected (linearly) by st−1.

Recall that KP focus on the representation of yt+h given by equation (1), where yt+h =

ψ(xt, Uh,t+h), and that the variables in the vector Uh,t+h are independent of xt. Taking
expectations over Uh,t+h, we are left with the average structural function

Ψh (xt) = E [ψh (xt, Ut)] = E[yt+h|xt].

This concept is different from the NIRF , in that Ψh averages both future and past shocks,
while the NIRF defined above explicitly conditions on past information. That is, unlike the
NIRF , Ψh does not feature any state dependence on st−1. A motivation for focusing on Ψh

instead of the NIRF is that in most applications, such as the setup for the QAR(1,1) model
that we consider here, st−1 is unobserved.

Although distinct, Ψh and the NIRF are related in that

Ψh(xt) = E [NIRF (h, xt, yt−1, st−1)|xt] + E [yt] .
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From the parametric expression for the NIRF in the QAR(1,1) model, we then have that

Ψh(xt) = ϕ0 +
ϕ2

1− ϕ1

+ ϕh
1σxt + ϕ2ϕ

h−1
1 (1− ϕh

1)(1 + ϕ1)(x
2
t − 1). (12)

Notice that the asymmetry and heteroskedasticity of the model are apparent from Ψh. How-
ever, an indication of the information lost in Ψh relative to the NIRF because of the aver-
aging is that γ does not affect Ψh even though it contributes importantly to the nonlinearity
in the model and appears in the NIRF .

KP focus on the estimation of the AME given in equation (3). From the parametric
expression for Ψh in the QAR(1,1) model

Ψ′
h(xt) = ϕh

1σ + 2ϕ2ϕ
h−1
1 (1− ϕh

1)(1 + ϕ1)xt. (13)

Applying the results related to ω(xt) when xt is continuously distributed gives

θh(ω) = ϕh
1σ + ϕ2ϕ

h−1
1 (1− ϕh

1)(1 + ϕ1)E[x3t ]. (14)

Here, we have used our second claim, discussed above. Notice that if xt is symmetric then
θ(ω) = ϕh

1σ and the AME in the QAR(1,1) model is the same as in the AR(1) model. From
equation (14), it is also clear that when ϕ2 = 0 the AME is the same in these models even if
xt is not symmetric. More generally, in a linear model—that is, a model in which the NIRF
is linear in xt—Ψh is linear in xt. In this case, if xt follows a standard Normal distribution,
then the NIRF for a one standard deviation shock and the AME are equivalent.

3.2 Estimation with small samples

Here we analyze the estimation of the AME in the QAR(1,1) model. With an observed
set of outcomes and shocks {yt, xt}Tt=1, the estimation of the set of regressions given by
equation (4) is straightforward. However, as emphasized in Herbst and Johannsen (2024),
even in this idealized setting, finite sample issues can be important, particularly for sample
sizes commonly seen in the macroeconomics literature.

Here, we consider how nonlinearities interact with finite sample issues. We simulate the
QAR(1,1) model 1, 000, 000 times with ϕ0 = 0, ϕ1 = 0.95, and σ = 1.1 We think of the
model as a quarterly model and use a sample size of 100, which Herbst and Johannsen (2024)
argue is typical in the related macroeconomics literature.

We vary ϕ2 and γ to see how different values—and their associated nonlinearities—affect
1We initialize y−1000 and s−1000 to zero and simulate forward. We begin our sample at y0 and s0.
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the finite sample properties of the estimator of the AME. We specify the local projection
as

yt+h = βhxt + γ′h[1, yt−1]
′ + eh,t+h.

We focus on the case where h = 6, which is a relatively short horizon for an impulse response
in macroeconomics. We denote the estimator of the AME by β̂h.

As a baseline case, we use a standard Normal distribution for xt. To understand the
effects of heavy tails or asymmetries in the distribution of xt, we also consider the cases
where xt has a (standardized) t distribution with ν = 3.1 degrees of freedom and when xt

has a (standardized) skew-Normal with skew parameter α = 5. Note that when xt follows a
Normal distribution or a t distribution the AME in the QAR(1,1) model coincides with that
in the AR(1) model with ϕ1 as the autoregressive parameter. When xt has a skew-Normal
distribution, the AME differs because of the non-zero third moment of xt, unless ϕ2 = 0.

We compare the small-sample average value of β̂h to βh (the bias). We know βh in closed
form from the derivations above. The results are shown in Figure 2. When ϕ2 = 0 and γ = 0,
the QAR(1,1) model reduces to the AR(1) model. At that point on the graphs, the bias is
the same for each of the three distributions. For different values of ϕ2 and γ, the bias of the
AME estimator depends on the distribution. Interestingly, introducing nonlinearities does
not necessarily increase or decrease bias. That is, nonlinearities have unpredictable effects
on the small-sample average of β̂h

To further explore the small-sample properties of β̂h, Figure 3 shows the root-mean-
squared-error (RMSE) of β̂h, and Figure 4 shows the coverage probability of nominal 95%
confidence intervals constructed using β̂h and associated Huber-White standard errors. No-
tably, as the nonlinearities of the QAR(1,1) model increase (ϕ2 and γ increase in magnitude)
the RMSE grows. This increased volatility of β̂h is not fully captured by the standard errors.
As a result, the coverage probabilities fall as nonlinearities of the QAR(1,1) model increase.

We conclude that although the AME is robust to an array of nonlinearities in population,
those nonlinearities may have important implications for the small sample properties of
estimators and associated test statistics.
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Figure 2: Bias Estimates for the AME in the QAR(1,1) model with h = 6 and T = 100
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Figure 3: RMSE for the AME in the QAR(1,1) model with h = 6 and T = 100
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Figure 4: Coverage of 95% CIs for the AME in the QAR(1,1) model with h = 6 and T = 100
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