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outperform ML and linear models, especially when predictors are limited. These models
also deliver more accurate risk forecasts and higher realized utility. While ML models cap-
ture some nonlinear patterns, they offer no consistent advantage over simpler, interpretable
alternatives. Our findings highlight the importance of modeling regime changes through
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ability is sparse and model interpretability is critical for risk management and portfolio
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1 Introduction

Accurate volatility forecasting is vital for assessing systemic risk, asset pricing, portfolio allo-

cation, and risk management. Since the foundational work of Engle (1982), Bollerslev (1986),

and Taylor (1982), volatility modeling has evolved significantly but remains a challenging task,

as discussed in Bauwens et al. (2012) and Takahashi et al. (2023).

Recently, machine learning (ML) methods have gained traction in financial econometrics as

tools for modeling complex, nonlinear dynamics in volatility—particularly during episodes of

clustering or regime shifts. Empirical studies have explored whether ML models can outperform

traditional approaches like the heterogeneous autoregressive (HAR) model (Corsi , 2009).1

However, the evidence remains mixed: while ML models can capture flexible interactions and

high-dimensional predictors, they do not always yield consistent gains over linear benchmarks.

The recent literature on realized volatility (RV) forecasting reveals substantial heterogeneity

over modeling approaches, data environments, and findings (see, Section 2). A wide array of ML

models has been explored, including regularized regressions (e.g., LASSO, Elastic Net), tree-

based methods (Random Forests, Gradient Boosted Trees), and neural networks—both feed-

forward and recurrent, such as LSTM and NARX architectures. Studies also vary considerably

in their use of data, spanning low-frequency monthly RV series with rich macroeconomic and

sentiment predictors (Mittnik et al. , 2015; Bucci , 2020), to high-frequency RV measures at

daily or intraday intervals (Christensen et al. , 2023; Rahimika and Poon , 2024). Forecasting

targets range from firm-level RV to aggregate index volatility, and from short (1-day) to longer

(monthly) horizons. Despite this diversity, the comparative performance of ML models relative

to traditional econometric approaches—particularly the linear HAR model—remains mixed.

While some studies report modest gains from ML models when additional predictors or cross-

sectional information are leveraged (Christensen et al. , 2023; Zhang etal. , 2023), others find

that well-specified and frequently re-estimated HAR-lineage of models remain difficult to beat

(Audrino etal. , 2020; Branco et al. , 2024).

Notably, aside from Bucci (2020)—who, unlike our study, relies on monthly data—recent

studies have not systematically compared ML models to nonlinear econometric models, partic-

ularly those incorporating regime-switching dynamics such as threshold or smooth-transition

HAR variants. This represents a critical gap in the literature, as many ML methods are de-

signed to capture structural nonlinearities that are also explicitly modeled by such econometric

frameworks. Our study addresses this gap by being the first to evaluate the relative performance

of a broad suite of ML models against both linear and nonlinear econometric models—including

regime-switching HAR variants—using high-frequency RV data. In addition to established lin-

ear models such as ARFIMA (Baillie , 1996; Andersen et al. , 2001) and HAR (Corsi , 2009),

1For an overview of these developments, see Section 2 and Gunnarsson et al. (2024) for a detailed review of
this growing literature.
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we examine three nonlinear HAR extensions: the Markov-switching HAR (MSHAR), threshold

HAR (THAR), and smooth-transition HAR (STHAR), all of which are designed to capture po-

tential regime-dependent dynamics in volatility. For ML models, we include tree-based methods

such as Extreme Gradient Boosting (XGB) (Hastie et al. , 2009), deep feed-forward neural net-

works (DNNs), and several recurrent neural network (RNN) architectures—basic RNN (BRNN),

gated recurrent unit (GRU) (Chung et al. , 2014), long short-term memory (LSTM), and LSTM

with attention (LSTM-A) (Goodfellow et al. , 2016; Lipton et al. , 2015). Importantly, our em-

pirical framework spans the period from 1996 through recent years, enabling us to assess model

performance across distinct states of the economy and financial markets—including the Global

Financial Crisis (GFC), the COVID-19 shock, and the post-pandemic normalization and mon-

etary tightening. This allows for a robust and systematic comparison of models under varying

volatility regimes, structural dynamics, and predictor environments.

By juxtaposing relatively complex ML algorithms with intuitive nonlinear econometric mod-

els, this study offers fresh perspectives on whether the additional complexity of ML methods

yields meaningful forecasting improvements—particularly compared to simpler and intutive

nonlinear econometric alternatives, an area that remains under explored in the literature. The

findings aim to assist both researchers and practitioners in selecting appropriate forecasting

tools for realized volatility, where the trade-offs between model interpretability, accuracy, and

complexity are crucial.

We adopt a yearly rolling training and testing approach, beginning with an initial period

from 1996 to 2005 and testing through various market conditions, including the Global Financial

Crisis (GFC), the COVID-19 shock, and the recent interest rate hike. This framework allows

for comprehensive model evaluation over different volatility regimes. We assess performance

across three dimensions: statistical accuracy, Value at Risk (VaR) forecasting, and realized

economic utility. We use mean squared prediction error (MSPE) and quasi-likelihood (QLIKE)

of Patton (2011), and the model confidence set (MCS) procedure of Hansen et al. (2011).

Diebold and Marioano (1995) (DM) tests are employed for equal predictive ability testing, and

VaR accuracy is evaluated using the DM and coverage tests of Kupiec (1995) and Christoffersen

(1998).

Our analysis yields six key findings. First, under the baseline scenario—where only past

values of realized volatility (RV) are used as predictors—nonlinear regime-switching models,

particularly THAR and STHAR, consistently outperform both the linear HAR model and

a broad class of ML models, across both tranquil and volatile periods such as the Global

Financial Crisis and the COVID-19 shock. Second, while ML models are capable of capturing

certain nonlinear patterns in the data, they do not demonstrate consistent superiority over

econometric models in forecasting RV. Third, STHAR also performs best in Value-at-Risk

(VaR) forecasting, achieving statistically accurate coverage across nearly all periods, both under
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the baseline and when augmented with additional macro-financial predictors. Fourth, although

the inclusion of additional predictors narrows the gap in predictive accuracy across models, ML

approaches still fail to consistently outperform nonlinear econometric models—especially THAR

and STHAR. Fifth, STHAR yields the highest realized utility under the baseline scenario, with

performance differences across models diminishing when the predictor set is expanded. Finally,

taken together, our results indicate that ML models are not a one-size-fits-all solution to the

challenges of RV prediction. They reinforce recent evidence in the literature (Branco et al. ,

2024) showing the competitiveness of linear HAR-type models and further demonstrate the

strong performance of simple, interpretable nonlinear regime-switching models. Notably, our

results show that regime-switching models outperform a broad set of ML approaches ranging

from XGB to DNNs as well as several RNNs, particularly during periods of extreme market

conditions—when RV spikes or settles into calm regimes—as they more effectively capture shifts

in underlying volatility dynamics. These findings underscore the practical value of explicitly

modeling structural shifts in volatility through econometric specifications, as opposed to relying

solely on flexible but opaque ML architectures. In particular, when the predictor set is sparse—

a common setting in real-world risk management applications—nonlinear econometric models

such as THAR and STHAR offer a robust and effective alternative to more complex machine

learning methods.

The remainder of the paper is organized as follows. Section 2 presents a short overview of the

recent literature on volatility prediction using machine learning. Section 3 describes the dataset.

Sections 4 and 5 introduce the linear, nonlinear econometric, and ML models, respectively.

The main empirical results under the baseline scenario—where predictors include only the

past history of realized volatility—are presented in Section 6. Section 7 concludes. Details of

our estimation, training, cross-validation, and hyper-parameter tuning approaches, as well as

performance evaluation metrics, are discussed in Appendix A. The robustness checks, including

results with additional predictors and an extended analysis of recurrent neural networks with

longer time steps for realized volatility, are provided in Appendices B and C, respectively.

2 Related Literature

This paper is closely related to the literature on forecasting aggregate stock index volatility and

specifically the recent papers that explore capability of various ML algorithms in forecasting

RV. The literature on volatility modeling and prediction is large and goes back to Engle (1982),

Bollerslev (1986), and Taylor (1982), who developed GARCH and stochastic volatility models

for conditional volatility which provide forecasts of daily volatility from daily return. As high-

frequency data has become available, measures based on quadratic variation, such as RV has

heavily been used in modeling and predicting market volatility. Numerous models have been
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proposed over the years (Bauwens et al. , 2012; Takahashi et al. , 2023). With the rise of

applications of ML techniques, an increasing number of papers in the recent years, has been

offering new set of tools in the context of volatility prediction. Gunnarsson et al. (2024) provide

an excellent survey of this recent and growing literature. Our work relates and contributes to

this recent line of research that investigates the performances of a number of econometric models

and ML models in predicting market volatility and specifically RV that is constructed using

high-frequency data on aggregate market index returns. In the following we summarize key

results from this recent literature.

We use two benchmark econometric models, namely ARFIMA and HAR models. Andersen

et al. (2003) showed that ARFIMA model outperforms GARCH and related models in pre-

dicting daily RVs. HAR model as proposed by Corsi (2009) is a parsimonious alternative to

ARFIMA which can capture the long-memory and perform well-in forecasting daily RV. Given

the relatively simpler framework the HAR model is based on and its’ success in modeling and

forecasting RV, it has become a “benchmark” (see, for example Hansen and Lunde , 2005).

Several extensions of HAR model have also been introduced including extensions to capture

leverage effects, (see, for example Corsi and Renó , 2012; Patton and Sheppard , 2015) among

others. More recently Izzeldin et al. (2019) showed that ARFIMA and HAR models models

perform equally well in predicting RV. In this paper, we use the original HAR model and a sim-

ple ARFIMA specification when features set includes only the past values of RV and consider

extensions of HAR and ARFIMA models when set of features include additional predictors

measuring financial and macroeconomic conditions.

The recent literature primarily compares the performance of linear econometric models

against ML models, especially when the predictor set includes features beyond past values of

RV. Some studies use low-frequency monthly data to increase the number of predictors, despite

a few recent exceptions leveraging daily or higher frequency data. Hamid and Iqbal (2004) is

one of the early works that studies the forecasting performance of neural networks using implied

volatility and realized volatility of S&P 500 index prices at daily frequency, showing that neural

networks outperform implied volatility forecasts and perform on par with RV.

Fernandes etal. (2014) extends the HAR model with additional predictors in the context

of a neural network. Mittnik et al. (2015) demonstrates that a Random Forest (RF) approach

with several macroeconomic predictors, such as VIX and TED spread, outperforms GARCH-

family models at monthly horizons ranging from one to six months. Similarly, Audrino and

Knaus (2016) applies the least absolute shrinkage and selection operator (LASSO) for RV

prediction and shows that although HAR and LASSO suggest different lag structures, both

perform similarly in terms of out-of-sample forecasting accuracy.

Audrino etal. (2020) extends LASSO by including additional features derived from economic

variables and investor attention and sentiment measures, showing improved forecast accuracy
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compared to the HAR model. Liu etal. (2018) report that simple RNNs can improve fore-

cast accuracy of RV when the training sample is small, while the HAR model outperforms

RNNs when the training sample increases. Bucci (2020) investigates the performance of lin-

ear, ARFIMA, HAR, and Logistic Smooth Transition Autoregressive (LSTAR) models against

several neural network models (both feed-forward and recurrent), including long short-term

memory (LSTM) networks and nonlinear autoregressive models with exogenous input (NARX)

networks to forecast the monthly RV (estimated using daily returns) of the S&P 500 index.

His results demonstrate that recurrent neural networks (RNNs), including LSTM and NARX,

outperform econometric models in forecasting monthly volatility of the S&P 500 index.

Christensen et al. (2023) report significant gains using several feed-forward neural network

models in predicting RV of the Dow Jones Industrial Average Index constituents. They com-

pare ML models, including regularization approaches, regression trees, and feed-forward neural

networks, to the HAR lineage of models and report that ML models outperform the HAR

lineage, both when predictors are daily, weekly, and monthly lags of the RV, and when addi-

tional firm-level, macroeconomic, and financial predictors are included, especially over longer

horizons.

Zhang etal. (2023) compare the HAR model with a wide range of ML models, including

LASSO, Elastic Net, Partial Least Squares, random forests (RFs), stochastic gradient boosting

(SGBs), and feed-forward deep neural networks (DNNs). They employ both single time series

forecasting and panel data forecasting using the same ML methods to improve short-term fore-

casting accuracy, finding that panel-data-based ML methods outperform other models. Zhang

etal. (2023) on the other hand, show that NNs dominate linear regressions and tree-based

models in their ability to forecast intraday RV.

Rahimika and Poon (2024) compares the performances of the HAR and LSTM models

for forecasting RV of 23 NASDAQ stocks using a very large predictor set, including variables

extracted from limit order books and news, and reports superior performance of the LSTM

model, especially when actual volatility is not extreme. By focusing on the fitting scheme in

terms of training window and re-estimation frequency for the HAR model, Audrino etal. (2020)

compares the forecasting performance of the HAR model against ML techniques, including

Lasso, Random Forest (RF), Gradient Boosted Trees (GBT), and feed-forward NNs, using

high-frequency data for 1,445 stocks between 2015 and 2023. They report that despite extensive

hyperparameter tuning, ML models fail to surpass the linear benchmark set by the HAR model

when a refined fitting approach is used for HAR. Their findings highlight the importance of

fitting scheme, particularly re-estimation frequency and training window size, in driving the

performance of the HAR model against ML algorithms.

Branco et al. (2024) provide a recent and methodologically relevant contribution. They

compare linear HAR and HARX models against various ML models—including neural networks
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and tree-based ensembles—for ten global stock indices. Their findings suggest that nonlinear

ML models do not statistically outperform linear HAR variants, especially when additional

predictors are used. However, their analysis is limited to linear HARX-type baselines and fixed

NN architectures.

Relative to this literature, our paper offers six key advances. First, we benchmark ML

models not only against linear HAR and ARFIMA but also against nonlinear HAR variants

(THAR, MSHAR, STHAR), an area not explored in recent studies including Branco et al.

(2024). The only study that explore nonlinear regime-switching models is Bucci (2020), which

however, uses monthly data and focuses on a smooth transition model only.

Second, while most studies—including Christensen et al. (2023), Branco et al. (2024), and

Rahimika and Poon (2024)—use fixed ML architectures, we dynamically select network struc-

tures over time. We train, validate, and test our models annually since 2006, allowing for

performance tracking over distinct market conditions. This approach requires retraining and

validation over time but enables a more dynamic comparison across different market environ-

ments, and hence assessment of performances of ML and econometric models in a comprehensive

manner.

Third, the set of ML models we consider in this paper, includes an example from tree-based

model and feed-forward neural networks as well as four RNNs that are primarily designed for

sequential data with persistence. In this sense, our work is closely related to Audrino etal.

(2020) and Rahimika and Poon (2024) as these papers also include RNNs. Differently from

these papers, in addition to LSTM, we use three additional RNNs including LSTM with an

attention mechanism, a basic RNN, and a simplified LSTM, called gated RRN, (GRU). Fourth,

we focus on high-frequency RV forecasting for a single aggregate index—the S&P 500—which

enables a more detailed analysis of within-series dynamics and facilitates sharper inference over

an extended period that spans a wide range of volatility regimes.

Fifth, in terms of findings, our results suggest that relatively simple econometric models

incorporating regime-switching dynamics can outperform machine learning models and more

complex RNNs across several performance measures. While Branco et al. (2024) closely aligns

with our study, our results emphasize the superior performance of nonlinear threshold and

smooth transition HAR models, which consistently outperform both linear and nonlinear ML

models when using only HAR variables as predictors. Even with an extended feature set, non-

linear econometric models such as THAR and STHAR remain highly competitive. These results

highlight the critical importance of benchmarking ML models against nonlinear econometric

alternatives to accurately assess the benefits of ML algorithms in realized volatility (RV) pre-

diction and market risk measurement. Our findings suggest that, especially when compared to

relatively simple and intuitive regime-switching nonlinear models, the incremental gains from
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complex ML approaches may not justify their use in practical applications of RV prediction

and risk management.

Finally, in most practical applications of RV modeling and forecasting, market practitioners

often lack access to long time series of auxiliary predictors and must rely primarily on a few

key risk factors. This constraint underscores the relevance of models that use sparse predictor

sets and highlights the importance of our baseline findings—where ML models offer limited

performance gains—relative to studies that rely on large sets of predictors to demonstrate

marginal improvements.

3 Data: Realized Volatility and Predictors

Our objective is to explore the performances of linear and nonlinear econometric and machine

learning (ML) models in predicting the daily realized variance, RVt which can be thought to

be an estimator for the integrated variance or the quadratic variation (IVt) as defined in

IVt =

∫ t

t−1
σ2
sds, (1)

where t is the day, σs is the instantaneous stochastic volatility (see, Andersen et al. , 2001;

Barndorff et al. , 2002, for the details of the definition and underlying price process for an

asset). An estimator of IV is given by the realized variance:

RVt =
n∑

s=1

r2s (2)

where n is the number of intraday logarithmic returns, and rs = log
(

Ps
Ps−1

)
.

In this paper, the realized volatility measure used is based on five-minute logarithmic price

return with Ps and Ps−1 denoting the first and the last price within the five-minute interval.2

We construct daily RV estimates by using 5-minute intraday data on open and close prices

of S&P 500 index which are obtained from Bloomberg. The sample period for the RV data

covers the period from January 1996 to December 2023, and therefore include several periods

of increased volatility and market stress, including the Global Financial Crisis (2007–2008), the

European sovereign debt crisis (from 2009 to late 2010s, peaking in 2012), the Chinese stock

market bubble (2015–2016), Brexit (2016–2020), the COVID-19 pandemic from 2020, and the

monetary policy tightening period since early 2022.

2Andersen et al. (2001) and Barndorff et al. (2002) showed that the above sum of squared returns is
a consistent estimator of the unobserved IV. Using 5-minute sub-sampling frequency is widely accepted time
interval in the literature. For example, Liu et al. (2015) show that 5-minute sub-sampling frequency significantly
outperforms other sub-sampling intervals in forecasting daily RVs.
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In terms of set of predictors, we conduct our evaluation of models under two scenarios, one

that only uses past values of RV and another where we include additional predictors. Under the

first scenario, our baseline for the purpose of model comparison, we include the three moving

averages of past RV used in the HAR model of Corsi (2009) and its nonlinear extensions, which

correspond to horizons of 1, 5, and 22 days. The auto-regressive fractionally integrated moving

average (ARFIMA) model of Andersen et al. (2003) essentially uses the past values of RV. In

the threshold and smooth transition nonlinear extensions of HAR model (i.e., referred in the

paper by THAR and STHAR, respectively), we use d− day lagged relative RV for d = 1, · · · , 5
as candidates for the threshold/transition variable. This variable essentially captures episodes

of deceleration and acceleration of market volatility depending on the size of the deviation of

past relative change in RV from the estimated threshold values in the context of THAR and

STHAR models.3

Under this scenario, all models are estimated and trained by using past values of RV as

there are no additional information used apart from the past history of RV itself. This baseline

scenario is useful and important for the purpose of assessing the relative performance of linear

and nonlinear econometric and ML models in predicting RV as some uses of RV, such as

estimating market risk by using historical simulation Value at Risk (VaR) approach by market

participants typically rely only on the past historical information on risk factors such as equity

price returns.

To asses the robustness of our key findings under the baseline scenario, we consider a second

scenario, motivated by the empirical literature (see, for insatnce, the recent studies Bucci , 2020;

Christensen et al. , 2023; Zhang etal. , 2023; Branco et al. , 2024; Rahimika and Poon , 2024).

Under this scenario we use a relatively large set of variables as potential predictors. Details of

the extended set of predictors with our main findings are reported and discussed in Appendix

B for the sake of brevity.

4 Econometric models

Given our objective of understanding the performances of pure time series econometric models

and ML models in predicting RV, we consider econometric models that are specifically capable

of characterizing temporal dynamics, long-range-dependence and possible extensions of such

models to capture potential nonlinear dynamics. In this section, we provide an overview of

these econometric models and refer readers to the key references for details.

3We explored using d−lagged RV itself as a transition or threshold variable but found that nonlinear least
squares (NLS) algorithm converges consistently both THAR and STHAR models under the d−day lagged RV
over each model training/estimation period.
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4.1 Linear models

4.1.1 Auto-regressive Fractionally Integrated Moving Average Model

To this end, the first model we use is the Autoregressive Moving Average Fractionally Inte-

grated, ARFIMA(1, d, 1), model which allows for joint modeling of short term dynamics via

autoregressive (AR) and moving average (MA) terms while capturing long-memory with the

fractional integration parameter d (see, Andersen et al. , 2003).4 The ARFIMA(1, d, 1) model

is given by

(1− ϕL)(1− L)dRVt = (1 + θL)ut (3)

where 1−ϕL) is the first order autoregressive polynomial in the lag operator L, 1+θL) is the first

order moving-average lag polynomial, −0.5 < d < 0.5 is the fractional integration parameter,

and ut+1 is the error term. Baillie (1996) provides an excellent discussion of the model, its’

properties, autorrelation functions, estimation Maximum Likelihood Estimation (MLE), and

forecasting.

4.1.2 Heterogeneous Auto-regressive model

Although ARFIMA models are capable of characterizing long-memory features observed in

the time series of RV, their relatively poor performance led to the development and successful

implementation of a class of models called Heterogeneous Autoregressive (HAR) models by

Corsi (2009). In fact, relatively parsimonious structure and its success in modeling persistence

in volatility and prediction (see, Patton and Sheppard , 2015; Izzeldin et al. , 2019) makes HAR

model the default choice for a benchmark (see, also Christensen et al. , 2023). The HAR model

is essentially a restricted AR(22) model as such

RVt = β0 + βdRVd,t−1 + βwRVw,t−1 + βmRVm,t−1 + ut, (4)

where RVd,t−1 is the daily RV in the past day, and RVw,t−1 = 1
5

∑5
i=1RVd,t−i and RVm,t−1 =

1
22

∑22
i=1RVd,t−i are the weekly and monthly lagged RV, respectively. The inclusion of daily,

weekly, and monthly lags of RV aims to capture the long-memory dynamic typically observed in

the RV time series. Since HAR model is linear in parameters, it is estimated via Least Squares.

4Although one can determine AR and MA orders by using information criteria such as Bayesian Information
Criterion (BIC), in this paper, we use AR and MA orders of one as this simplifies the estimation over each period.
Our exploration with different AR and MA orders in the initial estimation sample covering 1996 and 2005 and
in the full sample generally suggests the sufficiency of an ARFIMA(1,d,1) specification.
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4.2 Nonlinear HAR Models

Since ML algorithms in general are known to model nonlinear relationship and dynamics con-

siderably well (see the discussion in Hastie et al. , 2009; Goodfellow et al. , 2016, and references

therein), it is important to consider nonlinear econometric models in order to better understand

and evaluate the performances of both time series and machine learning models in a compre-

hensive manner. To this end, in this paper, we consider relatively simpler extensions of HAR

model to capture potential nonlinear temporal dynamics along with long-range dependence.

More specifically, we introduce nonlinearity into the HAR model in Equation (4) by using mod-

els where nonlinear regime or state-dependence is determined by an observable variables as well

as models where state-dependence is driven by a latent variable and follows a Markov process.

Under the first class of models, we consider two widely used regime-switching models one where

nonlinearity in RV follows and on-and-off dynamics via an indicator function that defines the

specific prevailing regime at a date t based on the deviation of a threshold variable from an

estimated threshold value and another where such dynamics is modeled by the help of a smooth

transition function. Under the second class of models, we consider a Markov switching dynamic

regression model to capture potential nonlinearity in the HAR coefficients.

4.2.1 Threshold HAR model

The simple extension we consider is threshold type nonlinear dynamic effects. Threshold regres-

sions, also known as threshold models or regime-switching models, are a type of econometric

modeling technique that allows for a more flexible representation of relationships between vari-

ables compared to traditional linear regression models. These models are particularly useful

when relationships are nonlinear and can change at certain threshold values or switching points.

The key idea relative to the HAR model in Equation (4) is that the specific HAR equation pa-

rameters that characterize the temporal dynamics of RV may differ depending on the value of

an additional variable, often referred to as the ”threshold variable.” This threshold variable

acts as a signal or switch that triggers a change in the regression relationship and hence, the

volatility dynamics. An excellent survey of threshold regressions is given by Hansen (2011).

In a single threshold model there is one critical threshold value of the threshold variable

(zt−d). When the threshold variable crosses this value (i.e., θ), it triggers a change in the

regression coefficients, leading to different regression relationships in different regimes. This

simple nonlinear dynamic can be characterized by writing down;

RVt = [β0 + βdRVd,t−1 + βwRVw,t−1 + βmRVm,t−1]I(zt−d ≤ θ)

+ [β∗
0 + β∗

dRVd,t−1 + β∗
wRVw,t−1 + β∗

mRVm,t−1]I(zt−d > θ) + ut,
(5)
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where the HAR equation parameters are changes whether an appropriate threshold variable

zt−d, d = 1, · · · , dmax is below or above the threshold value θ. d is a discrete delay parameter

value that dictates the past values of z from t in driving the threshold effects. For the purpose

of this paper, we do not conduct a comprehensive search for potential threshold variable but

consider the relative change in RV, zt−d =
∆RVt−d

RVt−d
for d = 1, · · · , 5 as the candidate threshold

variable. In a multiple THAR model, there can be several critical threshold values. Each

of these thresholds can trigger a change in the RV dynamics, resulting in multiple regimes

with distinct HAR regression coefficients. Our exploratory analysis suggested either a single

threshold model or a double-threshold model be the most relevant model in describing the

threshold effects.5

We follow the procedure suggested by Gonzalo and Pitarakis (2002) for estimation and

selection of the number of thresholds for each estimation sample in our data. Under this

approach thresholds are estimated sequentially. We assume that up to two thresholds would

be sufficient to characterize any threshold type nonlinear dynamics in RV. For a given delay

d, the first threshold θ1 is estimated assuming a model with two regions as in Equation 5

by minimizing the sum of squared errors (SSE). Conditional on the first threshold, the second

threshold is estimated as the value that yields the minimum SSR over all observations excluding

the first threshold. Gonzalo and Pitarakis (2002) show that thresholds estimated sequentially

are asymptotically consistent. We implement this approach for d = 1, · · · , 5 and choose the d

that minimizes SSE (see, Hansen , 2011).

4.2.2 Smooth Transition HAR Model

STHAR model we consider is largely similar to the THAR model in Equation (5) with the key

difference that a Logistic transition function drives the regime-switching dynamics. The model

can be written as

RVt = [β0 + βdRVd,t−1 + βwRVw,t−1 + βmRVm,t−1](1− F (γ, θ, zt−d))

+ [β∗
0 + β∗

dRVd,t−1 + β∗
wRVw,t−1 + β∗

mRVm,t−1]F (γ, θ, zt−d) + ut,
(6)

with the transition function, F (.) = 1
1+exp{−γ[zt−d−θ]} . The parameter θ similar to Equation (5)

can be interpreted as the threshold between the two regimes corresponding to F (γ, θ, zt−d) = 0

and F (γ, θ, zt−d) = 1, in the sense that the logistic function changes monotonically from 0 to

1 as zt−d increases, while F (γ, θ, zt−d = θ) = 0.5. The parameter γ is also called the slope

parameter for the transition function, determines the smoothness of the transition dynamics

5Note that there are different approaches one may consider to introduce threshold effects into the HAR
model. In this paper, we use a simple and possibly a ’naive’ approach with relatively well-known framework
in the established nonlinear econometrics literature. See, for example Motegi etal. (2020) which introduces a
Moving average threshold HAR model which allows time-variation in the threshold parameter θ.

12



from one regime to the other with large values indicating faster and potentially abrupt shift

dynamics as in THAR model.

Following Leybourne etal. (1998), we use nonlinear least squares (NLS) by minimizing the

concentrated sum of squares function with respect to γ and θ and similar to THAR model,

use zt−d =
∆RVt−d

RVt−d
for d = 1, · · · , 5 as the candidate transition variable and choose d with the

lowest SSE from each NLS as the delay parameter. For detailed discussions of smooth transition

regression and autoregressions and estimation of the model see, Granger and Terasvirta (1993),

Terasvirta (1994), Leybourne etal. (1998), and Franses and van Dijk (2000).

4.2.3 Markov Switching HAR Model

Markov-switching models are another nonlinear time series models to model transition over a

finite set of unobserved states. Markov switching calls of models allow the time series process

to evolve differently in each state where the transitions occur according to a Markov process.

The time of transition from one state to another and the duration between changes in state is

random. For example, these models can be used to understand the process that governs the

time at which RV transitions between episodes of high and low volatility and the duration of

each episode. Detailed discussions and applications of models can be found in Quandt (1972),

Goldfeld and Quandt (1973), Hamilton (1989) and Hamilton (1994). Here we provide a

high-level overview in the context of extending the HAR model in Equation (4). See, Wang et

al. (2020) which provides an overview of different Markov Switching HAR models proposed in

the recent literature and an extension of MSHAR model with time-varying transition probabil-

ities. Here we use a relatively simple version which essentially makes HAR parameters and the

constant term to switch between two states(i.e., s = 0, 1 according to a Markov process:

RVt = β0st + βdstRVd,t−1 + βwst
RVw,t−1 + βmst

RVm,t−1 + ust , (7)

where β0st is the state-dependent intercept, βdst , βwst
, andβmst

are the state-dependent coeffi-

cients, and ust is an independent and identically distributed (i.i.d) error term with mean 0 and

state-invariant variance σ2.

If we were to know the specific state, then the MSHAR model in Equation (7) can be

estimated by Least Squares by introducing st as a dummy variable. This is almost similar to

the THAR model with the difference that the specific state is known and hence, is not driven

by the deviation of a threshold variable zt−d from a threshold value θ. Under MSHAR model,

we assume that we do not know the specific state at any time t and hence, st is not observed.

The state transition probabilities, pst,st+1 along with the model parameters are estimated via

likelihood methods. We follow Stata’s Dynamic Markov Switching Regression model routine

in estimating the MSHAR model. The estimation and prediction of transition probabilities are
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based on the Expectations Maximization (EM) algorithm as developed by Hamilton (1989)

and Kim (1994), and discussed in Hamilton (1994).

5 Machine Learning Models

ML models we entertain in this paper consist offeed-forward neural network (NN), recurrent

neural networks (RNNs), as well as a tree-based model, Extreme Gradient Boosting (XGB).

Our training, hyper-parameter tuning, and cross-validation approach allows us to consider NNs

between a shallow network (i.e., a Multilayer Perceptron, MLP) with only one input layer to a

deep neural network (DNN) with multiple hidden layers in between the input and the output

layers. The specific class of RNN models we consider are neural networks that are directly

suitable for modeling sequences of data in which each value is assumed to be dependent on

previous values. In this class of models, we entertain four architectures allowing for a simple

basic RNN (BRNN) unit to more complex architectures including Long-Short-Term Memory

(LSTM), LSTM with an Attention mechanism (LSTM-A), and Gated Recurrent Unit (GRU).

Excellent discussions of NN and RNN models can be found in Goodfellow et al. (2016) while

Friedman (2001) provides an in-depth discussion of Gradient Boosting. Here we provide an

outline of the specific architecture of each of the models used in the paper.

5.1 XGBoost

The tree-based model we use is the Extreme Gradient Boosting (XGB) which builds an ensemble

of weak decision trees sequentially, where each tree corrects the errors of its predecessor. As

suggested by Hastie et al. (2009) XGB is an efficient and scalable ML algorithm that can capture

the potential non-linear relationships between the dependent variable and a set of predictors. It

belongs to the family of gradient boosting algorithms Chen and Guestrin (2016). XGB builds

an ensemble of weak learners, typically decision trees, in a sequential manner, where each new

learner is trained to correct the errors made by the existing ensemble. The final prediction is

obtained by aggregating the predictions of all weak learners.

XGB uses decision trees as base learners. Each decision tree is grown sequentially, optimiz-

ing a differentiable loss function such as Mean Squared Error (MSE). Trees are added to the

ensemble until a predefined stopping criterion is met, such as reaching the maximum number

of trees or achieving minimal improvement in the loss function, an aspect called Boosting (see,

Friedman , 2001).6

As discussed in Chen and Guestrin (2016) XGB is trained in an additive manner, with each

new tree being trained to minimize the residual errors of the ensemble. The training process

6Boosting means that new models are added to minimize the errors made by existing models, until no further
improvements are achieved.
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involves the following key steps: (i) initialize the ensemble with a simple model, typically

a constant prediction or a small tree; (ii) train trees iteratively as such for each iteration,

compute the negative gradient of the loss function with respect to the current predictions and

then fit a decision tree to the negative gradients, optimizing a differentiable loss function; (iii)

apply regularization techniques to prevent over-fitting, such as limiting the depth of trees,

adding penalties to the tree weights, or subsampling the training data and features; (iv) stop

adding new trees when a predefined stopping criterion is met, such as reaching the maximum

number of trees or no further improvement in the loss function on a validation set; and (v)

make predictions by summing the predictions of all trees in the ensemble:

R̂V t+1 =
K∑
k=1

fk(xt) (8)

where K is the number of trees in the ensemble (a hyper-parameter that is determined via time

series five fold cross validation), fk(xt) is the prediction of the kth tree in the ensemble for the

input sample vector xt.

Each tree contributes a weighted prediction to the ensemble, where the weights are deter-

mined during training and cross-validation process based on the optimization of the MSE loss

function. In our grid search, we tune a number of hyper-parameters including K, learning rate,

maximum depth of each decision tree as well as a number of other parameters by using a five-fold

time series cross validation for each training and validation period. Our aim is to conduct a grid

search that exhaustively searches through the specified parameter grid to find the combination

of hyperparameters that yields the best performance, evaluated using cross-validation.

5.2 Feed-Forward Neural Networks

A feed-forward neural network (FNN) is one of the simplest types of artificial neural networks,

where information moves in one direction—from input to output—without loops or feedback

connections. The architecture includes an input layer, a number of hidden layers, and an output

layer. The FNN learns by applying transformations at each layer using weights, biases, and ac-

tivation functions. The input layer simply forwards the input features, xt = [x1t, x2t, · · · , xnt]
′
,

to the hidden layers (l = 1, 2, ..., L) by means of an activation function, gl(.). Letting wl, bl and

z
[l]
t be the weight matrix, bias vector and the output of the lth hidden layer, respectively the

output of the first hidden layer or input layer is given by the dot product of the input matrix

with the initial weight matrix w1 and the initial bias term b1:

z1t = g1(xtw1 + b1). (9)
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Output of subsequent hidden layers are given by

zlt = gl(z
l−1
t wl + bl) for i = 2, 3, ...,L. (10)

Given the output of the last hidden layer L, the output layer gives the direct prediction of our

target variable as we a linear activation function for predicting the h−step ahead RV in the

output layer,

R̂V t+h = z
[L]
t woutput + boutput. (11)

During training, model learns the weights wl and biases bl by minimizing mean squared

error (MSE) loss function using Adaptive Moment Estimation (Adam) optimizer (see, Kingma

et al. , 2014). For the activation function, after some exploration of various alternatives, we

use Leaky Rectified Linear Unit (L-ReLU) as it is able to infer when the activation is zero via

gradient-based methods (see, Christensen et al. , 2023). The L-ReLU is defined as

σ(x) = α · x, ifx < 0

x, otherwise

where α ≥ 0. We follow the literature and set α = 0.01.

As the discussion above suggests, a NN essentially applies a number of functional trans-

formations to build a forecast in the output layer. The Universal Approximation Theorem of

Cybenko (1989) implies that a single hidden layer with a large enough number of units and an

appropriate activation function should be sufficient to approximate any continuous function. In

contrast, state of the art NNs structures considers adding extra hidden layers than to arbitrarily

increasing the number of neurons in a layer. Our model training, hyper-parameter tuning and

cross validation approach as discussed in Appendix A allows the data decide/choose the main

network structure in terms number of layers and number of units within each layer, ranging

from only one layer with relatively large number of neurons to deep networks with multiple

layers and neurons in each layer.

5.3 Recurrent neural networks

Given that the temporal dynamics and the persistence in realized volatility time series data,

a potentially more relevant class of neural networks is the RNNs which are designed to model

sequential data in which each value is assumed to be dependent on previous values. More

specifically, RNNs similar to NNs are feed-forward networks augmented by a feedback loop (see,

Goodfellow et al. , 2016). As explained in Chung et al. (2014) and Goodfellow et al. (2016),

RNNs introduce the notion of time to the otherwise standard feed-forward NNs and hence,
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should be able to model temporal dynamics. In this paper, we consider four RNNs including a

basic RNN unit (referred as BRNN in the paper), Long Short-Term Memory (LSTM), LSTM

with an Attention mechanism (LSTM-A), and a simplified version of LSTM, called Gated

Recurrent Unit (GRU). See, Chung et al. (2014), and Lipton et al. (2015) for a comprehensive

review and comparison of different RNN architectures. Here we provide a short overview of the

four models we entertain in the paper.

5.3.1 Basic RNN

BRNN is a simple RNN unit and allows model’s output from the previous period to be an an

additional input to the model at time step t. More specifically, under a BRNN unit, output

of the model at period t in a given layer is a function of the previous output and the current

input and can be described by

zt = tanh(xtw1 + zt−1w2 + b) (12)

where zt is the output at time t, xt is the model’s input time series consisting of T samples,

with w1, w2 and b are the model’s parameters (weights), and tanh(x) = ex−e−x

ex+e−x is the hyperbolic

tangent function. As the Equation (12) illustrates, the output from the previous period t−1 zt−1

is an additional input to the model at time t, along with the current input xt. The hyperbolic

tangent activation function essentially allows the basic RNN unit to model nonlinear relationship

between the past value of the output, the current input and the output of the model.

5.3.2 Long-short-term memory

Although basic RNN architecture is suitable to model temporal dynamics, it may not capture

the long-range dependence especially when the time series data is long enough as it uses data

from recent history to forecast (see, Hochreiter and Schmidhuber , 1997). In other words, BRNN

model may not carry relevant information from earlier periods in the sequence to later ones, such

as specific patterns from the same week in past year. LSTM networks mitigate this so called,

”short-term memory” problem by introducing gates that enable the preservation of relevant

information from the past and hence, holding the long-term memory and combining it with the

most recent data (Hochreiter and Schmidhuber , 1997). In other words, in an LSTM, layers

receive their input from both the input layer of the current time step and the layer from the

previous time step, thereby allowing the network to have a memory of past events. The LSTM

and LSTM-A models have been successfully implemented in applications spanning handwriting

recognition, speech recognition, handwriting generation, machine translation, image captioning,

and parsing (see, Graves et al. , 2013; Graves and Jaitly , 2014; Graves , 2013; Sutskever et al. ,

2014; Xu et al. , 2015; Vinyals etal. , 2014).
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At a high level, an LSTM network (and hence also, an LSTM with attention mechanism)

consists of one or more LSTM layers stacked together. One of the key layers is the input layer

which receives sequential data, organized into sequences with multiple time steps where each

time step may contain multiple features. Each LSTM layer processes the sequential input data

and captures temporal dependencies. To achieve this, typically each LSTM layer consists of

multiple LSTM cells or units arranged along the time axis. At each time step, an LSTM cell

processes the input and updates internal states, including memory cell state (ct) and hidden

state ht. Computations within an LSTM cell involves input, forget, and output gates (or

vectors), and memory cell updates. The output layer receives the final hidden states or outputs

from LSTM layers and may consists of one or more dense layers for further processing or directly

outputs the model’s prediction.

By construction, an LSTM cell has the ability to ’memorize’ or ’forget’ information through

the use of a special memory cell state, carefully regulated by three gates: an input gate, a forget

gate, and an output gate. The gates regulate the flow of information into and out of the memory

cell state. These gates regulate the flow of information as such input gate regulates the flow

of new information into the memory cell ct, forget gate regulates the retention or forgetting of

information from the previous memory cell state (ct−1, and output gate regulates the exposure

of information from the current memory cell state (ct) as the output of the LSTM cell.

The transformation in each cell of the LSTM layer can be defined as follows. The input

gate takes the current input time series data xt, the previous hidden state vector ht−1 as inputs

and computes how much of the new information (it) should be stored in the current memory

cell sate (ct) via the equation using

it = σ(xtw
i
1 + ht−1w

i
2 + bi), (13)

where it is the input cell/gate output, wi
1, andw

i
2 are the weight parameters corresponding to

the input time series data at time step t and the hidden state from the previous time step,

(h[t − 1]), respectively and bi is the bias vector. The activation function, σ(.) = 1
1+ex is the

sigmoid activation function to produce values between 0 and 1. These values represent how

much of the new information should be stored in the memory state.

The forget gate takes the current input data and the previous hidden state and produces

values between 0 and 1 indicating how much of the previous memory cell state should be

retained in the current time step t;

ft = σ(xtw
f
1 + ht−1w

f
2 + bf ), (14)

where ft is the forget gate output vector and wf
1 , w

f
2 , and b

f are corresponding weight and bias

parameters. The output gate is defined similarly and provides how much of the memory cell
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should be exposed as the output of the LSTM cell.

ot = σ(xtw
o
1 + ht−1w

o
2 + bo), (15)

where ot is the output gate’s output with the corresponding weight and the bias parameters

as in the previous equations. Together these gates allow LSTM cells to selectively process and

retain relevant information over time, enabling effective long-term dependency modeling in time

series data.

In addition to above equations characterizing the flow of information in input, forget, and

output gates, an important component of LSTM cell is called the candidate cell state or can-

didate activation for the cell state which is determined by the current time data input xt and

the previous period’s hidden state via the equation:

c̃t = tanh(xtw
c
1 + ht−1w

c
2 + bc), (16)

where tanh(.) is the hyperbolic tangent function which ensures that the new candidate state

is bounded between -1 and 1 and carries information from the current input data and the

information from the previous hidden state. In the LSTM cell, the input gate determines how

much of this candidate cell state should be incorporated into the memory cell state, allowing

the LSTM cell to learn long-term dependencies while mitigating the vanishing gradient problem

(see, Goodfellow et al. , 2016). Given the memory cell state and the candidate cell states at

time step t, the new memory cell state at the current time step t is obtained via

ct = ft ◦ .ct−1 + it ◦ c̃t (17)

where ◦ is the element-wise product operator (Hadamard product). This equation essentially

indicates how the outputs of input and forget gates define the current cell state as the input

gate it determines which parts of the candidate c̃ should be used to modify/update the memory

cell state, and forget gate ft determines which parts of the previous memory ct−1 should be

discarded in forming the current cell state. Given this recently updated cell state ct, it is

’squashed’ through the nonlinear hyperbolic tangent function first and then the output gate

ot determines which parts of it should be presented in as the output of the hidden state ht at

time-step t via

ht = ot ◦ tanh(ct). (18)

5.3.3 LSTM with Attention

The third RNN model we consider is an LSTM model with an attention mechanism (LSTM-

A). The foundational work for understanding and implementing LSTM models with attention
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mechanisms is Bahdanau etal. (2015). The LSTM-A model architecture we implement and

the associated LSTM cell processing equations are the same as in Equations 13 through 18

above. The key difference between this model and the LSTM model above is that we include

an attention mechanism with the objective to improve LSTM’s ability to focus on relevant parts

of our time series data in making predictions. The attention mechanism takes the outputs of

the LSTM layers as input and it computes the attention scores between the LSTM output and

itself. The resulting attention weights are used to compute the weighted sum of the LSTM

output, which serves as the attention output. We also include a dense layer after the attention

mechanism with the Leaky ReLU activation function to provide additional flexibility and ex-

pressiveness to the model, allowing it to learn more complex relationships between the features

and our target; potentially improving its performance. Additionally, similar to DNN and LSTM

models, we add a dropout layer for the purpose of regularization. The final output layer uses

linear activation function in computing the model’s forecast as in DNN and LSTM models.

5.3.4 Gated Recurrent Unit

The fourth RNN model we use is the Gated Recurrent Unit (GRU) which potentially improves

the LSTM model by dropping the cell state in favor of a more simplified architecture that

requires fewer learn-able parameters (Dey and Salemt , 2017). The key difference between

LSTM models and GRUs is that GRUs employ only two gates instead of three to control the

flow of information, namely the update gate and the reset gate. Since GRUs are parsimonious

relative to LSTM and LSTM-A models, they are considered to be faster and more efficient,

especially when training data are limited (see, Dey and Salemt , 2017). Broadly in line with

the equations for an LSTM cell, the following set of four equations define a GRU unit:

ut = σ(xtw
u
1 + ht−1w

u
2 + bu) (19)

rt = σ(xtw
r
1 + ht−1w

r
2 + br)

vt = tanh(xtw
v
1 + (ht−1 × rt)w

v
2 + bv)

ht = ut ◦ vt + (1− ut)ht−1, (20)

where wu
1 , w

u
2 , and b

u are the weight and bias parameters that control the update gate u and

wr
1, w

r
2, and b

r are the parameters that control the reset gate r. The update and reset gate

equations in 21 determine the flow of information to be fed into the candidate activation at

time-step t, vt, and subsequently to the hidden-state output ht. The candidate activation vt

is a function of the input data at time-step t xt and the output of ht−1 and is controlled
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by parameters, wv
1 , w

v
2 , and b

v. The outputht combines the candidate activation vt and the

previous output state ht−1 as controlled by the update gate ut.

5.4 Training, validation, and testing approach

Our model training, validation, and testing approach follows splitting the data into training

and validation and testing samples starting with the initial training and validation sample of

the first ten years of sample for the period 01/02/1996 and 12/31/2005 and using the subse-

quent year of sample for out-of-sample testing. We repeat this by expanding the training and

validation sample by one year and moving the out-of-sample testing period accordingly. We

use a time series cross validation procedure which divides the training/validation sample into

five contiguous train and test folds (i.e. each training set grows in size by adding previous folds

with each split) while using a grid search for hyper-parameter tuning. In addition to several key

hyper-parameters, we also use this approach in letting the data deciding the model architecture

in terms of number of layers and neurons within each layer. For econometric models, we use

the training and validation sample to estimate the parameters and use the estimated models

for prediction in the out-of-test sample.7

For the purpose of evaluating the performance of models and comparing their performances

in the out-of-sample periods since 2006, we use Mean Squared Prediction Error (MSPE), Quasi-

likelihood of Patton and Sheppard (2009) as our loss measures. We utilize the model confidence

set of Hansen et al. (2011) in conjunction with DM test of equal predictive ability of Diebold and

Marioano (1995). We use the realized utility approach of Bollerslev et al. (2018) to evaluate

the economic benefit of using predictions under a model. Finally, we use likelihood ratio tests

for unconditional and conditional coverage tests to assess models in their ability to predict

market risk in terms of Value at Risk (VaR) under a filtered historical simulation. We also

compare the accuracy of VaR predictions under a loss function proposed by Gonzalez-Rivera

et al. (2004). The detailed discussions of our training, validation, hyper-parameter tuning, and

testing are provided in Appendix A. As discussed in Appendix A, our training, validation, and

hyper-parameter tuning approach allows the data for each training and validation sample period

to define the specific architecture of each ML models in addition to key hyper-parameters for

ML models.

6 Empirical Results

For brevity, we report and discuss our main empirical findings in this section based on the

baseline scenario, where the predictor set includes only the past history of realized volatility (i.e.,

7Given the constraints in terms of re-training and validating ML models, we follow this annual re-training
and validation and testing approach 2006 on-wards instead of more frequent training and validation and testing.
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Table 1: ML models key architecture parameters over each training/validation sample

Sample end XGB DNN BRNN GRU LSTM LSTM-A

2005 3[50], 3[50] 4, 1 4, 1 1, 1 5, 1 1, 5
2006 3[50], 3[50] 1, 1 1, 5 5, 1 5, 1 4, 1
2007 3[50], 3[50] 5, 1 1, 5 1, 1 1, 1 1, 1
2008 3[50], 3[50] 4, 1 1, 5 1, 1 4, 1 4, 1
2009 3[200], 3[100] 5, 1 5, 1 1, 1 5, 1 1, 5
2010 3[200], 3[50] 1, 1 1, 1 5, 1 1, 1 5, 1
2011 3[50], 3[50] 5, 1 1, 5 1, 1 5, 1 4, 1
2012 3[50], 3[100] 5, 1 1, 5 1, 1 4, 1 5, 1
2013 3[50], 3[100] 1, 1 1, 1 1, 1 5, 1 1, 5
2014 3[50], 3[200] 5, 1 1, 1 1, 1 4, 1 5, 1
2015 3[200], 3[100] 4, 1 5, 1 1, 1 5, 1 1, 1
2016 3[100], 3[100] 4, 1 5, 1 1, 1 5, 1 4, 1
2017 5[50], 3[50] 1, 1 1, 1 1, 1 1, 1 4, 1
2018 3[50], 3[50] 5, 1 5, 1 1, 1 1, 1 1, 1
2019 3[50], 3[200] 5, 1 1, 1 3, 1 1, 1 1, 1
2020 3[50], 3[200] 5, 1 1, 1 1, 1 1, 1 1, 1
2021 3[50], 3[50] 4, 1 1, 1 1, 1 5, 1 1, 5
2022 3[50], 3[100] 5, 1 1, 1 1, 1 1, 1 1, 1

Notes: The sample end column reports the training and validation sample ending at the given year end since
1996. The values for XGB column are the selected maximum tree depth and the number of decision trees or
boosting rounds (in squared brackets) while values for DNN and RNNs are the number of hidden layers and
the corresponding number of neurons selected by our training/validation and hyper-parameter tuning approach.
For XGB, the potential maximum tree depth and the number of boosting rounds considered are 3, 5, 7, 10 and
5, 10, 25, 50, 100, 200, 300, respectively. For DNN and RNNs, the possible choices of number of layers and neu-
rons considered are 1 : [32], 2 : [4, 2], 3 : [8, 4, 2], 4 : [16, 8, 4, 2], 5 : [32, 16, 8, 4, 2]. First values under each model
column are the selected key elements under the baseline scenario with HAR set of predictors while the second
are under the additional set of predictors.

the set of predictors suggested by the HAR model). Findings based on the extended predictor

set—which includes additional macroeconomic and financial market variables alongside the

HAR predictors—are presented in Appendix B.

Additionally, results for recurrent neural networks (RNNs), including BRNN, GRU, LSTM,

and LSTM-A, trained with a longer predictor set (i.e., 22 lags of RV) are provided in Appendix

C as robustness checks. Contrary to our expectations, these results indicate that extending

the predictor set to include up to 22 lags of past RV generally leads to poorer performance

compared to using only the HAR set of predictors. Given this, we focus our main analysis on

the baseline scenario, where only the HAR predictor set is used.

Before delving into a detailed discussion of our findings, Table 1 presents the specific ar-

chitecture of the ML models selected through our data-driven training, validation, and hyper-

parameter tuning approach, which is described in detail in Appendix A. As outlined in the
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appendix, our approach treats key elements of ML model architecture as hyper-parameters and

conducts a grid search over a predefined set of values. For DNN and RNN models, these hyper-

parameters include the number of hidden layers and the number of units within each layer. For

XGB, they include the maximum depth of each tree and the total number of decision trees.

For each training and validation sample leading up to the out-of-sample test period, Table 1

reports these key architecture elements for both predictor sets: (i) the HAR predictor set (first

entries under each model column in the table) and (ii) the HAR predictor set plus additional

macroeconomic and financial market predictors (second entries under each model column).

An inspection of the results reveals that, unlike the common practice in recent RV litera-

ture of fixing model architecture, our data-driven approach identifies significant variations in

architecture both across training and validation samples for a given model and across models.

Interestingly, model architectures appear relatively more uniform when additional predictors

are included. Nevertheless, the results highlight the importance of a data-driven approach, as

evolving information arrival can influence the optimal architecture of ML models.8

In presenting our empirical results in this Section, we first discuss performance of models

in predicting one-day ahead RV, then the economic utility of using such forecasts in portfolio

allocation, and then finally the performance of models in predicting VaR.

6.1 Predicting realized volatility

Panels A and B of Table 2 present average prediction errors as measured by MSPE and QLIKE,

respectively for each model across all test years since 2006 and the entire test sample period,

between 2006 and 2023. Results in the last rows of Panel A and B for the entire test period

indicate that the top five models in terms of attaining the lowest prediction errors under both

MSPE and QLIKE are STHAR, HAR, THAR, MSHAR, and DNN. The clear winner in terms

of achieving the lowest MSPE and QLIKE is the STHAR model. MCS procedure finds STHAR

as the only model in the MCS in the entire test sample period while none are excluded under

QLIKE.9

Careful inspection of reported MSPE and QLIKE across test periods in the Table and the

displayed plots in Figure 1 reveal that HAR and especially its nonlinear variants, THAR and

STHAR tend to have lower or similar average prediction errors across test periods under both

loss measures compared to ML models. ARFIMA model tends to perform the worst across all

test periods with the exception of test period 2008. Inspection of reported results in Table 2

8The findings on model architecture warrant further investigation, which we leave for future research. Ad-
ditionally, for brevity, we do not report parameter estimates for ARFIMA, HAR, and its nonlinear extensions
(THAR, MHAR, and STHAR), though these results are available upon request.

9As discussed in Hansen et al. (2011), when the MCS procedure leads outcomes where all models are in the
MCS, this may imply that the procedure is not informative and hence, a complementary predictive accuracy
testing approach could be used which we also undertake by using DM tests.
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Table 2: One-day ahead MSPE and QLIKE over test periods

Panel A. One-day ahead MSPEs
YEAR HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTAM-A

2006 0.012 0.013 0.013 0.012 0.018 0.013 0.012 0.013 0.012 0.012 0.013
2007 0.047 0.047 0.054 0.049 0.063 0.050 0.049 0.048 0.048 0.048 0.075
2008 0.313 0.354 0.415 0.322 0.446 0.588 0.374 0.556 0.541 0.492 0.512
2009 0.041 0.045 0.061 0.040 0.058 0.044 0.042 0.047 0.044 0.043 0.049
2010 0.073 0.065 0.076 0.072 0.088 0.074 0.075 0.073 0.074 0.074 0.072
2011 0.082 0.069 0.088 0.082 0.098 0.089 0.079 0.073 0.081 0.080 0.076
2012 0.019 0.018 0.020 0.019 0.027 0.020 0.019 0.019 0.019 0.019 0.019
2013 0.022 0.022 0.022 0.020 0.031 0.022 0.022 0.023 0.021 0.021 0.022
2014 0.023 0.020 0.025 0.023 0.030 0.026 0.023 0.025 0.023 0.024 0.024
2015 0.088 0.076 0.090 0.079 0.110 0.067 0.087 0.086 0.087 0.085 0.081
2016 0.028 0.028 0.032 0.026 0.040 0.028 0.028 0.029 0.029 0.028 0.029
2017 0.008 0.008 0.009 0.008 0.011 0.010 0.009 0.008 0.009 0.011 0.010
2018 0.059 0.053 0.065 0.061 0.075 0.067 0.058 0.061 0.058 0.059 0.058
2019 0.026 0.026 0.027 0.025 0.038 0.028 0.026 0.026 0.027 0.027 0.028
2020 0.177 0.221 0.215 0.173 0.265 0.242 0.191 0.183 0.182 0.224 0.203
2021 0.044 0.042 0.045 0.042 0.055 0.043 0.042 0.043 0.043 0.044 0.043
2022 0.073 0.069 0.084 0.071 0.100 0.073 0.076 0.075 0.075 0.073 0.080
2023 0.022 0.027 0.024 0.021 0.034 0.022 0.022 0.022 0.022 0.022 0.022
06-23 0.064 0.067 0.076 0.045 0.089 0.085 0.070 0.079 0.079 0.078 0.080

Panel B. One-day ahead QLIKE

2006 0.006 0.006 0.007 0.006 0.009 0.006 0.006 0.007 0.006 0.006 0.007
2007 0.025 0.025 0.032 0.026 0.036 0.026 0.026 0.026 0.026 0.026 0.042
2008 0.330 0.552 0.774 0.332 1.008 2.267 0.583 1.563 1.447 1.237 1.296
2009 0.022 0.023 0.037 0.021 0.032 0.024 0.021 0.023 0.022 0.022 0.023
2010 0.057 0.050 0.071 0.057 0.098 0.059 0.063 0.066 0.059 0.058 0.065
2011 0.044 0.038 0.059 0.044 0.065 0.045 0.045 0.043 0.045 0.045 0.045
2012 0.010 0.009 0.011 0.010 0.014 0.010 0.010 0.010 0.010 0.010 0.010
2013 0.011 0.011 0.012 0.010 0.016 0.011 0.011 0.012 0.011 0.011 0.011
2014 0.012 0.010 0.013 0.012 0.016 0.013 0.012 0.013 0.012 0.012 0.012
2015 0.130 0.093 0.173 0.112 0.280 0.070 0.134 0.139 0.130 0.148 0.127
2016 0.015 0.015 0.018 0.014 0.022 0.015 0.015 0.015 0.015 0.015 0.015
2017 0.004 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004 0.005 0.005
2018 0.034 0.030 0.042 0.035 0.047 0.037 0.032 0.032 0.032 0.032 0.032
2019 0.014 0.014 0.015 0.013 0.020 0.014 0.014 0.014 0.014 0.014 0.014
2020 0.127 0.228 0.218 0.118 0.279 0.180 0.119 0.132 0.124 0.203 0.172
2021 0.022 0.022 0.025 0.022 0.030 0.022 0.022 0.022 0.022 0.022 0.022
2022 0.042 0.038 0.053 0.040 0.061 0.041 0.041 0.041 0.041 0.041 0.046
2023 0.012 0.014 0.013 0.011 0.018 0.011 0.012 0.012 0.011 0.011 0.011
06-23 0.051 0.066 0.088 0.038 0.117 0.162 0.066 0.123 0.115 0.109 0.111

Notes: The table reports the 1-day ahead out-of-sample Mean Squared Prediction Error (MSPE) and Quasi-
Likelihood (QLIKE)loss for each model for each of the test samples over the period 2006 and 2023. The last
row reports MSPE and QLIKE for the entire test period of 2006-2023. Values in blue indicate models that are
included in the MCS at the 5% significance level. Years in which all models are in MCS are indicated in red.
Values in black indicate models that are not in the MCS.
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and the plots in Figure 1 demonstrate both ML and econometric models tend to have higher

MPSE and QLIKE during the market volatility episode of 2008 and periods of elevated RV

such as 2010, 2015, 2020, and 2022 with larger increases in MSPE and QLIKE relative to the

initial test year of 2006. As models trained with additional data, MSPE and QLIKE decline

especially from the levels reached in 2008 despite episodes of elevated volatility in the recent

test periods. The decline in MSPE and especially in QLIKE is more pronounced among the

ML models as sharper declines in MSPE and QLIKE are observed especially if one compares

the market turbulent periods of 2008 to 2020. For example, the average QLIKE declines from

1.447 to 0.124 between 2008 and 2020 for GRU, roughly a 12-fold decline as can also be glanced

from the inspection of Figure 1.

It is worth noting that GRU, LSTM and LSTM-A models tend to display larger average

prediction errors in 2008 compared to DNN, possibly due to their retention of more past RV

information, similar to ARFIMA, and consequently failing to capture rapid RV shifts. This

contrasts with nonlinear time series models like THAR and STHAR, which adjust relatively

quickly to regime shifts. Note also that STHARmodel performs better than THAR and MSTAR

models across all test periods and in the full sample, as possibly due to the fact that it bet-

ter captures the gradual and smooth shifts in RV than these other nonlinear models. HAR

model performs generally the second best model after the STHAR model with its’ parsimo-

nious structure allowing it better reflect the movements in RV compared to both ML models

and its nonlinear versions of THAR and MSHAR. Note also that MSHAR model does not

display the same degree of performance as the threshold and smooth transition extensions of

HAR model possibly due to the fact that THAR and STHAR utilizes information relatively

quickly as relative shifts (acceleration or deceleration of RV beyond certain threshold values)

in the RV provide useful information about the regime changes and hence, the improvement in

the predictive ability. We also note that GRU quickly learns and improves its performances in

2015 and 2020 as it enables ‘memorization’ of relevant information patterns with significantly

fewer parameters compared to LSTM and LSTM-A.

The MCS procedure indicates that STHAR model is the only model to remain in confidence

set across all test periods. Indeed, for several of the test years, STHAR is the only model in

MCS including 2007, 2016-2019, and 2021-2023 under MSPE and 2006, 2007, 2014, 2017-2019,

and 2022 under QLIKE. The procedure leads to outcomes where all models are part of the MCS

in test periods with usually elevated volatility such as 2008, 2010, 2015, and 2020. Although

this outcome might possibly due to the insufficiency of the information in periods of heightened

volatility in distinguishing models, the discussion below on the results from DM predictive

accuracy tests provide additional clarity in these heightened volatility periods. Despite some

variation across remaining test years, the same set of models, including HAR, THAR, STHAR,

MSHAR, XGB, DNN, GRU, and LSTM, usually remain in the final MCS. Models with long-
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range dependence including ARFIMA, LSTM, and LSTM-A tend to exhibit larger prediction

errors across most test years, despite the fact that they remain within MCS for most test years

with the exception of 2008, 2015, and 2020.

Figure 1: Average MSPE and QLIKE across test periods for each model

A. Average MSPE over test periods

B. Average QLIKE over test periods

This figure displays average MSPE and QLIKE over each test year since 1996. See, the main text for
description and calculation of MSPE and QLIKE.
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To gain further insights into the relative performance of models, Tables 3 and 4 report pair-

wise DM test results by using MSPE and QLIKE as loss functions, respectively for selected test

years and for the full-test period between 2006 and 2023. Each cell in these tables corresponds

to the DM test between the model in that row and the model in the column. The null hypothe-

sis, H0 : ℓi = ℓj , for models i and j is tested against the one-sided alternative H1 : ℓi > ℓj , where

ℓ represents the loss metric (MSPE or QLIKE). A star in each entry indicates rejection of the

null hypothesis, and a positive DM statistic suggests that the column model’s loss measure is,

on average, statistically significantly higher than that of the row model. Conversely, a negative

entry indicates the opposite.

Reported DM test results in panel G of Table 3 reveal that STHAR is the clear out-

performer, boasting not only smaller MSPEs than all other models but also statistically superior

performance in terms of achieving the lowest MSPE in the entire test sample. Additionally,

HAR and THAR models outperform MSHAR and ARFIMA and all ML models. DNN al-

though tends to have higher average MSPE compared to HAR and THAR, statistically it

performs equally well vis a vis with THAR and outperforms MSHAR. XGB performs poorly

relative to all neural networks and all econometric models except for ARFIMA under MSPE in

the full-test sample. ML models that are suitable for long-range memory, outperforms XGB,

and especially ARFIMA model and display a similar performance overall.

Upon examining the DM test results under QLIKE in Panel H of Table 4, notable differences

in statistical significance emerge compared to the results under MSPE in panel G of Table 3.

While the signs of the test statistics remain consistent with the results under MSPE, the sta-

tistical significant differences between pair of models largely disappear. For instance, although

HAR and STHAR models still exhibit lower QLIKE against all models, the DM test results

do not reveal any meaningful statistical differences in QLIKE across models especially between

HAR and THAR and any of the ML models. This result in a way confirms our finding from

the MCS procedure in the full-test period under QLIKE which found no statistically mean-

ingful differences among models and hence, all models were found to be in the MCS. STHAR

model continues to pioneer in terms of its’ performance and displays statistically significant

lower average QLIKE against all other econometric models as well as against DNN, LSTM, and

LSTM-A. Interestingly enough, performances of XGB and GRU are statistically indistinguish-

able from that of STHAR under QLIKE under 5 percent significance level. Additionally DM

tests do not suggest dominance of any ML model over others under the QLIKE, contrary to the

reported results under MSPE in panel G of Table 3 in Panel A of the Table. Overall, DM tests

under MSPE and QLIKE show that HAR model and specifically STHAR model outperforms

competitors with generally statistically significant prediction errors under both measures of

loss functions with some variation in the relative performances of ML models across these two

measures.
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Table 3: Diebold-Mariano statistics under MSPE over selected test periods

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

A. Test Period 2008

HAR -0.94 -1.99* -0.53 -1.98* -3.02* -2.47* -2.52* -2.63* -2.94* -2.49*

THAR -1.80 -0.09 -2.16* -3.28* -2.37* -2.61* -2.81* -3.22* -2.67*

MSHAR 1.18 -0.83 -3.37* -2.50* -3.62* -3.67* -3.88* -3.04*

STHAR -1.75 -3.45* -1.57 -2.12* -2.47* -3.13* -2.38*

FI -3.32* 0.05 -1.16 -1.97* -3.15* -1.96

XGB 3.02* 3.03* 2.91* 2.22* 3.18*

DNN -2.35* -2.73* -3.31* -2.15*

BRNN -3.32* -3.75* -1.55

GRU -3.93* -0.13

LSTM 3.46*

B. Test Period 2010

HAR 1.16 -0.45 2.14* -0.92 -0.22 -0.48 -0.01 -0.54 -0.35 0.15

THAR -1.28 2.11* -1.24 -1.17 -1.74 -1.04 -1.73 -1.59 -0.87

MSHAR 1.94 -1.09 0.41 0.23 0.96 0.29 0.37 1.14

STHAR -1.76 -2.21* -2.13* -1.89 -2.23* -2.24* -1.84

ARFIMA 0.98 0.84 1.19 0.83 0.86 1.24

XGB -0.34 0.09 -0.22 -0.05 0.27

DNN 0.55 0.33 0.51 0.73

BRNN -0.24 -0.12 0.76

GRU 1.05 0.41

LSTM 0.30

C. Test Period 2015

HAR 1.04 -0.18 1.42 -0.89 1.23 0.10 0.36 0.58 0.32 0.77

THAR -0.74 1.53 -1.00 1.06 -1.05 -0.86 -1.01 -0.70 -0.53

MSHAR 1.17 -1.28 0.90 0.23 0.48 0.32 0.79 0.87

STHAR -1.25 -1.48 -1.39 -1.31 -1.40 -1.19 -1.24

ARFIMA 1.07 0.94 1.07 0.96 1.23 1.19

XGB -1.18 -1.04 -1.18 -0.89 -0.84

DNN 0.53 0.93 0.40 0.90

BRNN -0.15 0.27 0.87

GRU 0.22 0.80

LSTM 0.72

D. Test Period 2020

HAR -1.53 -1.62 2.07* -2.75* -1.85 -1.27 -0.91 -0.77 -1.92 -1.62

THAR 0.32 2.21* -2.19* -0.44 0.93 1.47 1.35 -0.11 0.94

MSHAR 2.35* -2.74* -0.67 0.76 1.39 1.25 -0.48 0.74

STHAR -2.84* -2.48* -2.30* -2.22* -2.17* -2.74* -2.46*

Continued on next page
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Table 3: (continued)

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

ARFIMA 0.57 2.03* 2.74* 2.54* 1.72 2.90*

XGB 1.54 1.79 1.82 0.47 1.12

DNN 0.74 1.26 -1.11 -0.57

BRNN 0.21 -1.77 -1.45

GRU -1.60 -1.22

LSTM 1.91

E. Test Period 2022

HAR 1.40 -2.44* 3.56* -4.54* 0.33 -0.93 -0.86 -0.81 -0.14 -1.68

THAR -2.47* 3.26* -4.01* -0.93 -1.90 -1.97* -1.96 -1.57 -2.34*

MSHAR 3.92* -3.31* 2.24* 1.40 1.66 1.64 1.94 0.70

STHAR -4.88* -3.57* -3.79* -3.79* -3.82* -3.71* -3.70*

ARFIMA 4.79* 3.87* 3.98* 3.93* 4.26* 2.94*

XGB -1.40 -1.06 -1.00 -0.49 -1.93

DNN 0.72 0.72 1.51 -1.42

BRNN 0.18 2.68* -1.51

GRU 2.45* -1.44

LSTM -1.79

F. Test Period 2023

HAR -1.46 -0.94 1.75 -5.42* 0.69 -0.52 0.25 1.59 0.80 1.10

THAR 0.79 2.30* -1.70 1.58 1.39 1.46 1.56 1.54 1.61

MSHAR 1.75 -6.04* 0.98 0.73 1.09 1.22 0.96 1.07

STHAR -5.05* -1.57 -1.92 -1.68 -1.58 -1.69 -1.57

ARFIMA 5.21* 5.42* 5.55* 5.61* 5.22* 5.21*

XGB -1.16 -0.47 -0.06 -0.44 0.17

DNN 0.59 1.42 1.01 1.49

BRNN 1.07 0.36 0.71

GRU -0.49 0.29

LSTM 1.09

G. Full Test Period 2006-2023

HAR -0.90 -3.67* 6.96* -5.60* -2.89* -1.82 -2.18* -2.69* -2.81* -3.08*

THAR -3.11* 6.13* -5.72* -2.85* -0.15 -0.65 -2.38* -2.63* -2.94*

MSHAR 7.38* -5.10* -1.58 3.60* 3.06* -0.54 -0.50 -1.08

STHAR -8.10* -5.84* -7.10* -7.23* -6.26* -6.48* -6.78*

ARFIMA 0.84 5.68* 5.51* 2.73* 3.39* 2.81*

XGB 2.94* 2.85* 2.00* 1.86 1.50

MLP -2.49* -2.85* -2.88* -3.30*

DNN -2.75* -2.69* -3.21*

GRU 0.28 -0.89

Continued on next page
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Table 3: (continued)

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

LSTM -1.68

Notes: The table reports DM test for the equality of MSPE between the model on the row and the model on

the column over selected test periods and the full test period between 2006 and 2023. The null hypothesis

being tested is H0 : E(ℓRVi) = E(ℓRVj ) against H0 : E(ℓRVi) > E(ℓRVj ), where model i is the label of the

selected row, whereas model j is the label of the selected column. A * indicates rejection of the null against the

one-sided alternative under the 5% significance. A positive value indicates that the average QLIKE over the

test period of the model on the row is greater than the model on the column.
To understand if models’ predictive ability differs across episodes of heightened and benign

market conditions and in test periods where MCS procedure did not provide a clear subset of

models to be the superior performers, we present DM test results under MSPE for 2008, 2010,

2011, 2015, 2020, and the most recent test years of 2022, and 2023. Clearly test periods of

2008 and 2020 marked by significant market upheaval, 2010 and 2011, and 2022 with relatively

elevated volatility periods and 2023 with relatively benign market conditions.10 Inspection

of the results in Panel A of Table 3 show that HAR and its nonlinear variants, THAR and

STHAR, outperform ML models by producing statistically lower average MSPE during this

period of extreme market volatility. Specifically, STHAR model beats all models by achieving

statistically lower average MSPE in 2008. Among the ML models, XGB performs the worst

while DNN outperforms other ML models and LSTM beats GRU and LSTM-A.

Learning from the experience of market volatility of 2007-2008, ML models display improve-

ment in 2020 as statistical significance of DM statistic disappears when HAR and THAR models

are compared with any of the ML models as can be seen by comparing the DM test results in

panels A and D of Table 3. STHAR again stands out as the top performer, achieving statis-

tically lower MSPE in both 2008 and 2020 against all models. This suggests that despite the

significant improvements made by the ML models, a nonlinear HAR model still can beat ML

models as it potentially captures the time series dynamic well with a relatively parsimonious

structure when the set of predictors include only the HAR variables. During 2020, ML models

generally perform the same against each other despite the fact that GRU achieves much smaller

MSPE compared to other ML models. Pairwise DM predictive accuracy test results for 2008

and 2020 under MSPE also show that DM test can provide useful insights in distinguishing

model’s predictive accuracy even in periods of elevated volatility, a result in contrast to MCS

procedure which tend to include all models in the confidence set.

Pair-wise DM tests in Table 3 for test years 2010 and 2015, two test years MCS procedure

included all models in the MCS, shows that STHAR model attains statistically lower MSPE

compared to majority of the models in 2010 while none of the models statistically stand out

10Results for all other test periods under both MSPE and QLIKE are available in an online Appendix.
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in 2015. In 2010, relatively high volatility period spanning the European Sovereign Crisis,

STHAR achieves statistically significant smaller MSPE than all ML models at 5% or 10%

significance levels. Interestingly enough STHAR has statistically lower MSPE than HAR and

THAR models in 2010 but statistically indistinguishable from MSHAR and ARFIMA models

at 5% significance level.

Inspection of the reported results for 2022 in Table 3, a period of elevated volatility, shows

that similar to 2020, STHAR model outperforms all models by attaining statistically lower

MSPE against all models. ARFIMA model remains the worst performer against all models in

this period. Similar to 2020, THAR model outperforms HAR and MSHAR models in 2022. In

contrast to 2020, THAR now achieves statistically lower MSPE against BRNN and LSTM-A but

continue to have average MSPE statistically indistinguishable from those of XGB, DNN, GRU

and LSTM. Similar to 2020, the performance of DNN generally remains to be indistinguishable

from that of RNN models in 2022.

In the test period 2023, where overall market is relatively calmer compared to 2008 and

2020, the differences in the performances of models diminish and almost disappear as in 2015

with a few exceptions, despite the fact that STHAR continues to produce lower MSPE albeit

non-significant DM test results. This result is potentially driven by the continued improvements

in the ability of ML models with the expansion of the data sample covering the period between

1996 and 2022 in the training stage as these models presumably foster in terms of predictive

performance in data-rich environments. Results under MSPE generally suggest that in calmer

market conditions, the statistical significance of predictive accuracy test tends to disappear

as most models tend to perform equally well with the exception of ARFIMA. The differences

between models sharpen as market volatility increases with larger and sudden increases in

RV and THAR and especially STHAR outperform most models. In test periods where MCS

procedure includes all models in the MCS, we find that pair-wise DM test provides additional

insights into the performance of models either by narrowing down the set as in 2011 or by

confirming the outcome of MCS as in 2015. This latter observation might be driven by how

elevated the volatility in the period under investigation.

Reported results in Table 4 under QLIKE loss although qualitatively similar in terms of the

sign of the DM statistics across model pairs, the statistical differences between models diminish

and in many cases disappear especially in 2008 and 2020. Notably STHAR model outperform

statistically DNN model in 2008 while ARFIMA model outperforms statistically LSTM and

LSTM-A models. Despite some differences in QLIKE, pair-wise DM tests confirm results of

MCS procedure for 2008. This confirmation continues to hold for 2010 as none of the models

stand out statistically. These results are different from the findings we have under MSPE,

underscoring the importance of loss function used under DM tests.
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In 2011, again a period of relatively elevated volatility, pair-wise DM tests provide relatively

strong results. For example, statistically THAR model outperforms MSHAR, but outperformed

by HAR which is beaten by STHAR. Inspection of results in Panel C in the Table reveals that

2011 is a year where STHAR achieves statistically significant lower average QLIKE compared

to most models at 5% significance level. In 2015, however, results are similar to the ones we

have under MSPE as no model stands out in terms of achieving statistically significant lower

QLIKE, confirming the findings from MCS procedure.

In contrast, in 2022, the DM test under QLIKE indicates statistically significant differences

among several models. For example, HAR, THAR and STHAR models as well as most ML

models outperform MSHAR and ARFIMA models and STHAR is the only model beating all

ML models in 2022, this is despite the relatively notable improvements in prediction errors

noted in ML models in 2022 compared to say 2008 as reported in Table 2. Results in the last

panel of Table 4 show that the noted differences among models tend to diminish under QLIKE

in 2023, a test year with relatively low levels of RV.

Table 4: Diebold-Mariano statistics under QLIKE over selected test periods

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

A. Test Period 2008

HAR -1.05 -1.43 -0.06 -1.23 -1.21 -1.64 -1.37 -1.41 -1.38 -1.41

THAR -2.09* 1.48 -1.33 -1.24 -0.38 -1.46 -1.53 -1.53 -1.55

MSHAR 1.78 -0.96 -1.16 1.21 -1.34 -1.39 -1.33 -1.38

STHAR -1.38 -1.26 -2.51* -1.48 -1.53 -1.53 -1.55

ARFIMA -1.20 1.06 -1.58 -1.78 -2.02* -2.02*

XGB 1.16 1.00 1.01 1.09 1.06

DNN -1.31 -1.35 -1.30 -1.34

BRNN 1.06 1.33 1.25

GRU 1.52 1.41

LSTM -1.92

B. Test Period 2010

HAR 0.85 -1.21 1.41 -1.06 -0.97 -1.27 -1.10 -0.88 -0.48 -1.07

THAR -1.14 1.56 -1.04 -0.90 -1.25 -1.09 -1.18 -1.12 -1.11

MSHAR 1.35 -0.98 1.21 1.00 1.23 1.09 1.11 1.11

STHAR -1.18 -1.39 -1.45 -1.35 -1.48 -1.48 -1.36

ARFIMA 1.06 0.98 1.01 1.01 1.02 1.00

XGB -0.89 -1.04 0.08 0.37 -0.96

DNN -0.75 1.22 1.25 -0.69

BRNN 0.97 1.01 0.64

GRU 1.32 -0.95

Continued on next page
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Table 4: (continued)

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

LSTM -1.00

C. Test Period 2011

HAR 2.02* -1.66 3.00* -1.75 -0.07 -0.08 0.62 -0.60 -0.19 -0.04

THAR -2.03* 2.80* -2.03* -1.17 -2.18* -1.52 -2.26* -2.18* -2.08*

MSHAR 2.49* -1.23 1.29 1.68 2.02* 1.63 1.67 1.77

STHAR -2.39* -2.92* -3.00* -2.78* -3.06* -3.02* -3.05*

ARFIMA 1.38 1.76 2.01* 1.72 1.75 1.81

XGB 0.05 0.29 0.00 0.05 0.06

DNN 0.77 -0.46 -0.08 0.02

BRNN -0.88 -0.80 -1.34

GRU 1.34 0.22

LSTM 0.05

D. Test Period 2015

HAR 0.99 -0.97 1.06 -1.01 1.02 -0.96 -0.91 -0.57 -0.91 1.04

THAR -0.98 1.13 -1.00 1.05 -0.99 -0.98 -0.99 -0.97 -0.95

MSHAR 1.03 -1.02 1.00 0.97 0.99 0.98 1.02 1.01

STHAR -1.03 -1.26 -1.06 -1.05 -1.06 -1.03 -1.04

ARFIMA 1.01 1.01 1.02 1.01 1.02 1.02

XGB -1.02 -1.00 -1.01 -0.99 -0.99

DNN -0.87 1.04 -0.89 1.16

BRNN 0.93 -0.91 1.04

GRU -0.92 1.14

LSTM 0.99

E. Test Period 2020

HAR -1.58 -2.08* 1.55 -1.90 -1.07 0.82 -0.74 0.39 -1.75 -1.62

THAR 0.42 1.76 -1.31 0.75 1.57 1.61 1.60 0.96 1.49

MSHAR 2.08* -1.40 0.76 1.96 2.12* 2.07* 0.88 2.32*

STHAR -1.89 -1.32 -1.19 -1.51 -1.33 -1.96 -1.78

ARFIMA 1.76 1.92 1.96 1.96 1.45 1.94

XGB 1.31 1.08 1.24 -0.41 0.19

DNN -1.23 -0.93 -1.68 -1.59

BRNN 1.50 -1.74 -1.70

GRU -1.73 -1.69

LSTM 1.57

F. Test Period 2022

HAR 1.87 -3.45* 3.44* -3.63* 0.38 0.19 0.82 1.01 1.32 -1.66

THAR -3.21* 3.30* -3.37* -1.17 -1.34 -1.61 -1.52 -1.39 -2.33*

Continued on next page
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Table 4: (continued)

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

MSHAR 3.89* -2.23* 3.18* 2.80* 3.01* 3.00* 3.18* 1.93

STHAR -4.01* -3.43* -2.56* -3.13* -3.19* -3.33* -2.77*

ARFIMA 3.76* 3.01* 3.03* 3.02* 3.02* 1.91

XGB -0.92 1.08 1.04 1.00 1.03

DNN -3.15* -3.00* -3.13* -3.15*

BRNN -2.04* -3.29* -3.01*

GRU 3.18* 2.04*

LSTM 3.17*

G. Test Period 2023

HAR -1.36 -1.58 1.69 -5.01* 0.78 -0.67 -0.29 0.75 1.08 0.94

THAR 0.44 2.18* -1.52 1.51 1.26 1.33 1.40 1.46 1.49

MSHAR 1.93 -5.63* 1.48 1.28 1.72 1.71 1.55 1.55

STHAR -4.55* -1.50 -1.95 -1.64 -1.60 -1.61 -1.56

ARFIMA 4.71* 5.02* 5.16* 5.14* 4.82* 4.76*

XGB -1.51 -0.71 -0.58 -0.44 -0.23

DNN 0.52 1.17 1.40 1.60

BRNN 0.77 0.81 0.79

GRU 0.55 0.71

LSTM 0.47

H. Full Test Period 2006-2023

HAR -1.19 -2.07* 2.17* -1.96* -1.21 -1.62 -1.40 -1.40 -1.52 -1.51

THAR -2.84* 2.89* -2.21* -1.21 0.15 -1.42 -1.43 -1.61 -1.60

MSHAR 3.15* -1.77 -0.99 2.36* -1.01 -0.93 -0.97 -0.99

STHAR -2.50* -1.42 -3.71* -1.78 -1.84 -2.05* -2.02*

ARFIMA -0.75 2.03* -0.29 0.10 0.79 0.49

XGB 1.17 0.97 1.02 0.99 0.98

DNN -1.34 -1.34 -1.48 -1.47

BRNN 1.30 1.04 1.02

GRU 0.79 0.69

LSTM -0.88

Notes: The table reports DM test for the equality of QLIKE between the model on the row and the model on

the column over selected test periods and the full test period between 2006 and 2023. The null hypothesis being

tested is H0 : E(ℓRVi) = E(ℓRVj ) against H0 : E(ℓRVi) > E(ℓRVj ), where model i is the label of the selected row,

whereas model j is the label of the selected column. A * indicates rejection of the null against the one-sided

alternative under the 5% significance. A positive value indicates that the average QLIKE over the test period of

the model on the row is greater than the model on the column.
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Table 5: Realized Utility over test periods

Year HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

2006 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2007 0.039 0.039 0.039 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2008 0.031 0.023 0.016 0.030 0.007 -0.039 0.022 -0.012 -0.008 -0.001 -0.003
2009 0.040 0.040 0.039 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.040
2010 0.039 0.039 0.038 0.039 0.037 0.039 0.038 0.038 0.039 0.039 0.038
2011 0.039 0.039 0.039 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2012 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2013 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2014 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2015 0.036 0.037 0.035 0.039 0.031 0.038 0.036 0.036 0.036 0.035 0.036
2016 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2017 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2018 0.039 0.039 0.039 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2019 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2020 0.037 0.034 0.034 0.038 0.032 0.036 0.037 0.037 0.037 0.035 0.036
2021 0.040 0.040 0.039 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.040
2022 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2023 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
06-023 0.039 0.038 0.038 0.039 0.037 0.035 0.038 0.036 0.037 0.037 0.037

Notes: The table reports the realized utility benefit of using forecasts of volatility based on different models
under the assumptions of a constant conditional Sharpe ratio equal to 0.40 and a coefficient of risk aversion
γ = 2. The maximum utility benefit in this setting using the future realized volatilities, is equal to 4

6.2 Realized utility

The previous section illustrated that HAR, particularly its nonlinear extension using a transi-

tion function like an indicator or a ‘smooth’ logistic function, generally outperforms ML models

in terms of attaining lower prediction errors, especially during periods of heightened market

volatility. In this subsection, we assess to what extent econometric and ML models’ RV predic-

tions are useful in informing an investor forming a portfolio as captured by the realized utility

approach described by Bollerslev et al. (2018). Recall that under this approach a perfect model

delivers a realized utility of 4% and estimated realized utility values below 4% would indicate

less accurate prediction by a given model.

Table 5 reports realized utility measures for each model across each test period and in the

entire test period between 2006 and 2023. Reported results in the last row for the entire test

period show that none of the models delivers exact 4% realized utility but econometric models,

namely HAR and STHAR achieves a realized utility of 3.9% while THAR, MSHAR, and DNN

delivers 3.8% estimated realized utility. Among the eighteen test periods investigated, STHAR

model delivers the perfect realized utility in thirteen test periods, while HAR, THAR and all

ML models in ten test periods. MSHAR and ARFIMA models deliver perfect realized utility

estimates in only eight of the test periods. Generally models fail to deliver 4% realized utility

in periods where the realized volatility is elevated. Notably in 2008, all models result in smaller
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than 4% realized utility with all ML models resulting in negative realized utility. These results

are broadly in line with the predictive accuracy test results and the reported average prediction

errors in the previous section.

6.3 Predicting VaR

Volatility forecasting serves various purposes, including informing the prediction of return dis-

tribution in portfolios and quantifying tail risk, crucial for risk management, regulatory report-

ing, and determining initial margins. In this section, we assess linear and nonlinear econometric

models and ML models’ performance in predicting 1-day ahead VaR by using the FHS method

discussed in Section A.2. To this end, we use two approaches one that assesses predicted VaRs

under each model in terms of their backtesting performance and two that evaluates predictive

accuracy of model pairs via DM test under the loss criteria in Equation 26.

We first present the exceedance/failure rate, the ratio of log returns falling below predicted

VaR relative to the number of VaR days in a test sample, and test results for correct uncon-

ditional and conditional coverage rates. The Kupiec test (Kupiec , 1995) assesses whether the

failure rate for a given model matches the VaR confidence level, testing unconditional coverage.

The second test, by Christoffersen (1998), evaluates whether exceedances in a VaR period are

independent and have correct coverage. We calculate VaR at both 95 and 99 confidence levels

but report results at 99 percent level for brevity.

Table 6 presents results from the first approach, reporting exceedance rates under each

model across test years from 2006 to 2023 and the entire sample period, 1996-2023. An asterisk

indicates the rejection of the null of correct coverage rate and a dagger that of correct condi-

tional coverage at five percent significance level. Reported failure rates in the last row for the

entire sample period show that all models fail to achieve expected coverage rates, with STHAR

displaying the lowest failure rate at 1.4 percent.

Looking at the test periods individually shows that STHAR consistently achieves both

conditional and unconditional coverage, with exceedance rates statistically indistinguishable

from the one percent VaR confidence level. Only exception to this result is 2007, where STHAR

model displays a higher failure rate of 2.8 percent. Failure rates by all models increase during

periods of heightened volatility, including the GFC of 2007-2008, and test periods of 2011,

2015, and the recent volatility episodes of 2020 and 2022. HAR, THAR, and MSHAR models,

perform overall similarly in terms of attained exceedance rates and periods of incorrect coverage.

ARFIMA performs the worst among both all models, with ten test periods of statistically

significant incorrect unconditional and conditional coverage results.

ML models generally perform similarly in terms of failure rates and coverage capabilities

over time, with roughly around five to six periods of statistically significant test periods of

incorrect conditional and/or unconditional coverage. As the training sample covers data from
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Table 6: VaR Exceedance Rates & Kupiec and Christoffersen Tests over test periods and the entire test sample

Year HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

2006 0.016 0.024 0.016 0.008 0.020 0.012 0.016 0.016 0.020 0.012 0.028*†
2007 0.040*† 0.044*† 0.048*† 0.028* 0.048*† 0.048*† 0.048*† 0.044*† 0.040*† 0.040*† 0.028*
2008 0.028* 0.040*† 0.051* 0.020 0.036*† 0.032*† 0.040*† 0.056*† 0.056*† 0.052*† 0.056*†
2009 0.016 0.012 0.020 0.012 0.028* 0.016 0.016 0.020 0.016 0.016 0.016
2010 0.028* 0.032*† 0.036*† 0.016 0.040*† 0.032*† 0.028* 0.036*† 0.020 0.028* 0.036*†
2011 0.036*† 0.036*† 0.044*† 0.020 0.048*† 0.036*† 0.036*† 0.036*† 0.036*† 0.036*† 0.036*†
2012 0.016 0.016 0.016 0.016 0.020 0.016 0.016 0.016 0.016 0.016 0.016
2013 0.028* 0.024 0.028* 0.020 0.032*† 0.028* 0.028* 0.032* 0.028* 0.028* 0.028*
2014 0.032*† 0.028* 0.036*† 0.020 0.036*† 0.032*† 0.032*† 0.036*† 0.032*† 0.028* 0.032*†
2015 0.036*† 0.032*† 0.032*† 0.008 0.036*† 0.028*† 0.036*† 0.036*† 0.036*† 0.028*† 0.028*†
2016 0.016 0.012 0.012 0.008 0.016 0.008 0.016 0.016 0.012 0.012 0.012
2017 0.016 0.012 0.016 0.012 0.016 0.016 0.016 0.016 0.016 0.016 0.016
2018 0.028*† 0.024 0.024 0.004 0.028*† 0.024 0.024 0.024 0.020 0.024 0.024
2019 0.016 0.020 0.024 0.012 0.024 0.008 0.012 0.012 0.012 0.012 0.008
2020 0.036*† 0.036*† 0.044*† 0.020 0.040*† 0.032*† 0.028*† 0.028*† 0.028*† 0.032*† 0.032*†
2021 0.016 0.016 0.028 0.000 0.028* 0.020 0.020 0.020 0.016 0.016 0.016
2022 0.036*† 0.028*† 0.036*† 0.016 0.032*† 0.028* 0.024 0.032*† 0.028* 0.028* 0.036*†
2023 0.017 0.017 0.021 0.008 0.021 0.017 0.017 0.017 0.017 0.017 0.017
06-23 0.025*† 0.025*† 0.029*† 0.014*† 0.030*† 0.024*† 0.025*† 0.027*† 0.025*† 0.024*† 0.026*†

Notes: The table reports VaR Exceedance Rates over each test year and in the entire test period between
2006 and 2023 across models/ The exceedance rate is defined to be the number of days in a test period where
log returns falls below the predicted VaR divided by the number of VaR days in a period. A * indicates the
rejection of the null hypothesis of correct unconditional coverage (i.e.., rejection of the null by the Kupiec test)
at 5 percent significance level that the exceedance rate equals to 1 percent (i.e., the VaR confidence level of
99 percent) against the one-sided alternative that it is more than 1 percent. A †indicate the rejection of the
correct conditional coverage rate at 5% significance level. The last row gives results for the entire test period,
2006-2023.
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volatility episodes, both econometric and ML models’ performance in achieving correct coverage

rates generally improves with enhanced predictive ability of RV. For instance, DNN, and GRU

exhibit lower exceedance rates with fewer rejections of correct unconditional and conditional

coverage, especially in 2020 and 2022 compared to earlier such episodes.

Table 7 reports the results of the DM test for pairs of models under the loss function

described in Equation 26, aimed at evaluating the predictive accuracy of VaR forecasts. We

reports results for a selected test periods in addition to the the entire test sample period for

brevity as results are qualitatively similar acros majority of the test periods examined. Analysis

of the results in the last panel, Panel E of the Table, indicates that while the HAR model

achieves lower loss compared to all ML models, its predictive accuracy does not show statistical

distinction from any of the ML models. THAR demonstrates a similar performance, except for

outperforming XGB at five percent level. MSHAR outperforms only ARFIMA model in terms

of achieving lower VaR loss while outperformed by all other models. STHAR emerges as the

clear front-runner again, exhibiting significantly lower VaR loss compared to all other models.

XGB exhibits statistically higher VaR loss relative to all neural networks. Despite its’ poorer

performance against all ML models, XGB outperforms MSHAR, and ARFIMA models with

statistically significant lower VaR loss. DNN achieves lower VaR loss albeit insignificant DM

test against all other ML models. The performances of GRU, LSTM, and LSTM-A show no

statistically distinguishable differences among them.

Panels A-D of Table 7 further illustrate model performance during heightened volatility

periods in 2008, 2020, 2022 and in recent calmer period of 2023. These results indicate that

econometric models, specifically HAR and its’ two nonlinear variants although generally achieve

lower average loss compared to ML models in the high volatility episode of 2008, DM test does

not suggest statistically significant lower loss between these models and ML models. STHAR

remains the best performing model in terms of achieving lower average loss differential relative

to all models and larger DM test (in absolute value) outcomes in both volatility episodes of 2008

and 2020. Consistent with the improvement in their ability to predict RV, ML models improve

especially in 2020 compared to 2008 episodes as evidenced by the change in the sign of the DM

statistic against HAR model and statistically significant DM test results against MSHAR and

ARFIMA models in 2020 relative to 2008. Despite the overall improvement in predictive ability

of all models, STHAR model outperforms all models especially in 2020 relative to 2008. In the

relatively elevated volatility period of 2022, THAR model performs equally well compared to

HAR and STHAR and outperforms ML models with generally statistically significant lower

average VaR loss. In the most recent year with relatively calmer volatility, pairwise-DM tests

suggest no statistically significant loss differential across any of the models. Similar results

hold for other periods of low vs. high volatility episodes. Full results are available in an online

Appendix.
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Table 7: DM tests of predictive accuracy of VaR over selected test periods

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

A. Test Period 2008

HAR -0.09 -1.71 1.16 -1.57 -0.88 -1.21 -1.47 -1.62 -1.42 -1.53

THAR -1.18 0.77 -1.07 -0.79 -0.77 -1.26 -1.47 -1.25 -1.37

MSHAR 1.88 -0.15 0.03 1.22 -0.57 -0.99 -0.56 -0.83

STHAR -1.9 -1.21 -1.62 -1.92 -1.99* -1.86 -1.93

ARFIMA 0.07 1.05 -0.43 -0.83 -0.42 -0.67

XGB 0.25 -0.44 -0.83 -0.4 -0.6

DNN -1.18 -1.45 -1.11 -1.36

BRNN -1.68 -0.11 -1.05

GRU 2.19* 1.62

LSTM -2.43*

B. Test Year 2020

HAR -0.50 -1.96 2.17* -1.98* -1.5 1.04 -0.05 0.26 -0.65 -0.79

THAR -1.60 1.9 -2.2* -1.72 0.72 0.6 0.62 0.05 -0.05

MSHAR 2.62* -1.86 0.23 1.99* 2.02* 1.98* 2.06* 2.13*

STHAR -2.61* -2.42* -2.18* -2.18* -2.21* -2.18* -2.27*

ARFIMA 2.21* 2.03* 2.06* 2.03* 2.35* 2.31*

XGB 1.62 1.64 1.61 2.08* 1.99*

DNN -1.06 -1.26 -0.94 -1.11

BRNN 0.72 -0.84 -1.04

GRU -0.84 -1.02

LSTM -0.40

C. Test Year 2022

HAR 1.94 -1.74 1.83 -1.19 0.42 0.67 0.89 0.94 1.16 -2.10*

THAR -1.97* 1.44 -1.69 -1.95 -2.3* -2.31* -2.42* -2.01* -2.27*

MSHAR 2.04* 0.38 1.68 1.61 1.65 1.66 1.74 1.22

STHAR -2.05* -1.84 -1.95 -1.95 -1.95 -1.92 -2.0*

ARFIMA 1.31 1.38 1.33 1.37 1.39 0.46

XGB 0.66 0.69 0.91 0.95 -1.72

DNN 0.09 0.68 0.45 -1.55

BRNN 0.5 0.57 -1.71

GRU 0.15 -1.69

LSTM -1.82

D. Test Year 2023

HAR 1.18 -0.11 1.91 -1.2 -1.14 -0.39 1.94 -0.38 0.04 -0.58

THAR -0.70 1.39 -1.22 -1.40 -1.12 -0.83 -1.18 -1.27 -1.27

MSHAR 1.40 -1.45 -0.43 -0.16 0.46 -0.07 0.11 -0.32

STHAR -1.95 -1.85 -1.57 -1.81 -1.63 -1.70 -1.57

ARFIMA 1.01 0.98 1.29 1.09 1.08 0.96

XGB 0.40 1.54 1.05 1.09 0.16
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Table 7 continued from previous page

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

DNN 0.88 0.31 0.69 -0.41

BRNN -1.02 -0.91 -0.99

GRU 0.56 -0.86

LSTM -0.89

E. Full Test Period 2006-2023

HAR 0.86 -4.97* 6.71* -5.65* -1.75 -0.95 -1.64 -1.38 -1.16 -1.44

THAR -4.70* 5.72* -5.86* -2.34* -1.21 -1.89 -1.67 -1.75 -1.93

MSHAR 7.10* -3.99* 2.36* 4.59* 3.13* 3.02* 3.8* 3.19*

STHAR -7.63* -6.13* -6.9* -7.09* -6.59* -6.51* -6.64*

ARFIMA 4.54* 5.32* 4.54* 4.32* 5.13* 4.71*

XGB 1.30 0.65 0.62 0.99 0.56

DNN -1.50 -1.23 -0.85 -1.26

BRNN 0.06 0.57 -0.20

GRU 0.61 -0.26

LSTM -1.13

Notes: The table reports Diebold-Mariano test of equal predictive accuracy of predicted VaR under V aR

loss function for the test year 2008. The null hypothesis being tested is H0 : E(ℓV aRi) = E(ℓV aRj ) against

H0 : E(ℓV aRi) > E(ℓV aRj ), where model i is the label of the selected row, whereas model j is the label of the

selected column. A * indicates rejection of the null against the one-sided alternative under the 5% significance.

A positive value indicates that the average loss under the model on the row is greater than the model on the

column.

7 Conclusions

In this paper, we have examined the predictive performance of both traditional econometric

models and machine learning (ML) algorithms in forecasting realized volatility (RV) for the

S&P 500 index using high-frequency data. Specifically, we compared benchmark econometric

models, including ARFIMA and HAR, with a set of advanced ML models such as Extreme

Gradient Boosting (XGB), deep neural networks, and recurrent neural networks (RNNs), in-

cluding BRNN, LSTM, GRU, and LSTM with attention mechanisms (LSTM-A). Our analysis

aimed to assess whether the nonlinearity inherent in financial time series can be more effectively

captured by ML techniques or through regime-switching extensions of econometric models, such

as THAR, MSHAR, and STHAR.

Our results provide several key insights. First, we show that simple yet robust econometric

models, when extended to incorporate regime-switching dynamics, can compete with and often

surpass more complex ML models in terms of forecasting accuracy. This finding challenges the
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assumption that ML models inherently outperform econometric models, particularly when pre-

dictor sets are limited to past volatility values. The success of threshold and smooth transition

HAR models highlights the importance of accounting for regime changes in financial markets,

which can have significant implications for predicting market volatility across varying economic

conditions.

Second, while many recent studies have emphasized the benefits of large-scale predictor sets

and sophisticated ML architectures, our results suggest that careful model specification and

fitting schemes, such as retraining and re-estimation frequency, play a crucial role in enhanc-

ing model performance. In fact, the HAR model and its’ nonlinear extension when applied

with refined fitting strategies, remains highly competitive against more computationally inten-

sive models like RNNs. This reinforces the value of econometric models for practitioners and

researchers seeking parsimonious yet effective tools for volatility forecasting.

Third, we extend the literature by employing a dynamic training and validation process

that allows the architecture of the neural networks to be selected by the data, ensuring that

the models evolve over time as new data and information become available. This approach

contrasts with the more static architectures typically used in the existing literature, adding a

novel dimension to how ML models can be applied in financial forecasting.

Finally, our study offers important practical implications for the application of ML and

econometric models in financial markets. While ML techniques are powerful tools, they require

careful consideration of hyperparameters, fitting schemes, and predictor sets, especially when

applied to persistent time series data like RV. Moreover, our findings indicate that nonlinear

extensions of econometric models, such as regime-switching HAR variants, can serve as strong

contenders, offering a more interpretable and parsimonious approach to modeling volatility

dynamics.

Future research could extend our framework by exploring alternative high-frequency datasets,

other volatility measures, and different market environments to assess the generalizability of

our findings. Additionally, investigating hybrid models that combine the strengths of econo-

metric and ML approaches may yield further improvements in volatility forecasting, especially

in capturing the nonlinearities and regime dependencies present in financial markets.
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Appendices

A Training, regularization, model evaluation, and testing

A.1 Training, validation, parameter tuning and regularization

Our training, validation, and testing approach is relatively straightforward and involves splitting

data into two sets one for training and validation and another for out-of-sample testing. We
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start with the initial training and validation sample, call it training sample for brevity, covering

the first ten years of data for the period 01/02/1996 and 12/31/2005 and the initial test period

of 01/02/2006-12/31/2006. After the initial split of the data, we extend the training window by

one year and move out-of-sample test period to next year. The second training period becomes

01/02/1996-12/31/2006 with out-of-sample test period of 01/02/2007-12/31/2007. We follow

this expanding window approach until all data are exhausted with the last training period ending

on 12/31/2022 and out-of-sample testing period on 12/31/2023. Essentially this means that

both linear and nonlinear econometric models and ML models are trained and validated on an

annual basis as new information arrives with the out-of-sample forecasting analysis conducted

in the following year.

We use the training and validation sample as the training set for econometric models as there

is no need for cross-validation and/or hyper-parameter tuning. We tune the hyper-parameters

of ML models using a five-fold time series cross validation with a grid search over a set of hyper-

parameter values. The procedure begins by dividing the training/validation sample into five

contiguous train and test folds or splits where each successive training set is a superset of the

previous one (i.e., each training set grows in size by adding previous folds with each split), with

the validation set being the next slice of the training set (i.e., the section immediately following

the training set).11 For a given training/validation and test period, each ML model is trained

five times for a given set of hyper-parameter values and tested in the following validation slice.

For each iteration, the model’s predictive performance is evaluated using the mean squared

prediction error on the validation split.

We conduct this procedure over a grid of hyper-parameter values for each model and in

each training/validation period. This implies that if say there are k-different hyper-parameter

combinations for a model, then the model is trained for each k-different combinations of hyper-

parameter values over five splits and the specific hyper-parameter combination that gives the

lowest average squared prediction errors on a validation set is selected to be the ’optimal’ set of

hyper-parameters and hence, the model. The model with the selected hyper-parameter values

is then re-trained in the entire training sample and used in calculating forecasts in the out-

of-sample test period. This procedure ensures that the model’s performance is evaluated in

a realistic forward-looking manner while retaining the dependence structure of the time series

data. Importantly, the procedure helps identify the specific value of hyper-parameters that

yield the best average performance across all training/test splits, resulting in a more robust

model for forecasting, new, unseen time series data. We repeat this procedure for each training

and out-of-sample test period since 2005 by expanding the training period one year and moving

the out-of-sample test period next year forward.

11We use model selection library from Sklearn and utilize TimeSeriesSplit and GridSearch algorithms with
number of splits equals to 5.
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Since a standard and accepted method for determining the number of layers and number

of neurons within each layer does not exist, we use a data-driven approach to determine the

optimal architecture of ML models we use in this paper. Specifically, in determining the optimal

architectures for DNN and RNN models in terms of the number of hidden layers and the number

of units within each layer as well as some of the key hyper-parameter values, we follow the grid

search with a 5-fold time series cross-validation approach discussed. This approach allows us

to consider a range of network architectures ranging from a shallow network with one layer

and a relatively large number neurons to a deep network with up to five layers with number

of neurons in successive layers is reduced geometrically by a fixed factor of 0.5. This approach

is similar to the the geometric pyramid rule suggested by Masters (1993). In other words, in

addition to some of key hyper-parameters such as learning rate, drop-out rate, or the number of

epochs, we let the data and our training and cross-validation approach to determine the main

architecture of the model in terms of number of hidden layers and neurons within each layer

over each training sample. The grid search essentially allows to consider the number of layers

and units within each layer as hyper-parameters and search for the best architecture across a

reasonable large set.12

In training DNN and RNN models, we use the ADAM optimization algorithm with Mean

Squared Error as the objective function. ADAM is an adaptive learning rate optimization al-

gorithm based on stochastic gradient descent (Kingma et al. , 2014). Other hyper-parameters

tuned via the five fold time-series cross validation over the following grid values: learning rate ∈
{0.1, 0.001, 0.0001}, batch size ∈ {128, 512}, epochs ∈ {100, 250}, and dropout rate ∈ {0, 0.5, 0.8}.
In the case of XGBoost, we tuned the following hyper-parameters: trees ∈ {5, 7, 10, 50, 100, 200},
depth ∈ {3, 5, 7}, learning rate ∈ {0.1, 0.01, 0.001}, and subsample fraction ∈ {0.5, 0.9, 1.0}.

When the predictor set includes additional variables, we follow the same cross-validation

and hyper-parameter tuning approach above with the exception that we first identify set of

relevant predictors for each training period. To this end, we select the variables through Elastic

Net (EN) regularization (Zou and Hastie , 2005) by using HAR model with set of additional

predictors as surrogate. The EN uses a penalized loss function,

ℓ̃(β0, β) = argminβ0, β

(∑
t

(
RVt − β0 − β

′
Xt−1

)2
+ λ

(
α

K∑
i=1

β2
i + (1− α

K∑
i=1

|βi|

))
(21)

where the first part of the penalized loss function,
∑

t

(
RVt − β0 − β

′
Xt−1

)2
is the usual Least

Squares loss function and the penalized part is the second expression with hyper-parameters

λ ≥ 0 and α ∈ [0, 1] which are determined via cross-validation and a grid search. The EN

12Specifically, the search is done over the layer/neuron set: {l, {u}} =
{{1, {32}}, {2, {32, 16}}, {3, {32, 18, 8}}, {4, {32, 16, 8, 4}}, {5, {32, 16, 8, 4, 2}}} where l is the number of
layers and u is the number of neurons for each hidden layer.
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regularization performs variable selection based on the penalty coefficients λ and α and hence,

combines L1, Least Absolute (LA) and L2, Ridge, regularization. LA helps with variable

selection by shrinking some coefficients to zero while Ridge helps handling multicollinearity

by distributing the coefficient values among predictors. By combining LA and Ridge, EN

allows controlling the balance between two types of regularization: as higher λ will lead more

sparse model while higher α to smaller coefficient values without necessarily making them

zero. In this paper, instead of selecting a specific set of values a prior for λ and α, we use

again a grid search over these hyper-parameters with a five-fold time series cross validation in

the training and validation sample in selecting the optimal λ and α values for each training

period.13 This allows us to determine optimal regularization parameters and hence, the set

of predictors for each training period. This approach, despite considerably different optimal λ

and α values generally selected all predictors except for NEWS variable for majority of the

training/validation samples. For three training/validation sample periods (ending 2016, 2017,

and 2018), the approach eliminated size premium factor, SMB and for the first sample period

ending in 2005, it removed short term interest rate change, ∆it.

Although choosing the set of predictors across several training/validation sample through

this surrogate method may not be relevant for ARFIMA, THAR, STHAR, and MSHAR as well

as ML models, our experimentation with different sets of predictors resulted in very similar

model performance outcomes. Moreover, since our objective is to assess performances of linear

and nonlinear models relative to ML models, using the same set of predictors for a given

training/validation sample period across the same set of models over time may alleviate the

drawback of this approach. Additionally, to decrease the amount of over-fitting, we also use

dropout which essentially works by removing some randomly selected units and their incoming

and outgoing connections during the training process for DNN and RNNs (see, Srivastava etal. ,

2014).14

A.2 Testing: Model evaluation approaches

Following the recent literature (see,for example Bucci , 2020; Christensen et al. , 2023; Zhang

etal. , 2023; Branco et al. , 2024; Rahimika and Poon , 2024), we asses the performance of models

by using statistical accuracy tests, Value at Risk (VaR) forecasting, and realized utility benefits.

In terms of statistical accuracy and related tests, we use three approaches. First to assess each

model’s relative predictive performance in the out-of-sample forecasts, following Patton (2011),

we compute mean squared prediction error (MSPE) and quasi-likelihood (QLIKE) for each out-

of-sample test period since 2006 and for the whole test period between 2006 and 2023. Patton

13We used grid of values of λ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10} and α =
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Note that EN nests LA for α = 0, and Ridge for α = 1.

14Note also that in both scenarios, predictor variables are standardized by subtracting the sample average and
dividing by the sample standard error under the ML models across each training and test samples.
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(2011) indicates that the MSE and QLIKE loss functions are among the family of robust

and homogeneous loss functions for volatility forecasting comparison and are robust to noisy

volatility proxy. Patton and Sheppard (2009) also demonstrate that QLIKE has the highest

power in the Diebold-Mariano (DM) test. We focus on both of these measures in order to assess

performance of models under more than one measure. These loss measures are given by

MSPE =
1

Ttest

Ttest∑
t=1

(
RVt − R̂Vt

)2
(22)

QLIKE =
1

Ttest

Ttest∑
t=1

[
exp(RVt)

exp(R̂Vt)
−
(
RVt − R̂Vt

)
− 1

]
(23)

where R̂Vt represents the one-day ahead predicted value of RVt, Ttest is the number of days in

a given test period. Note that equations (22) and (23) are average values of squared prediction

error and QLIKE in a out-of-sample period.

Second, we use model confidence set (MCS) proposed by Hansen et al. (2011) to identify a

subset of models, M∗ with significantly superior performance from all eleven model candidates

M0 at a given level of confidence. The MCS procedure us based on iterative elimination of

models by sequentially testing

H0 : E(dij,t) = ℓi,t − ℓj,t = 0 for all i, j ∈ M∗, (24)

where dij,t is the loss differential between models i and j at day t in terms of a specific loss

function, such as MSPE and QLIKE. We use TR statistic with stationary block bootstrap

of 5000 re-samples in computing the test statistic and the associated p-values. For details of

the procedure, see Hansen et al. (2011). The MCS procedure allows us to make statements

about the statistical significance from multiple pairwise comparisons across each test period

since 2006.

Third approach we use in assessing the statistical accuracy and relative performance of

models, we conduct pair-wise DM tests both in the full test period between 2006 and 2023

and each test year since 2006 by using both MSPE and QLIKE measures above. The DM

test (Diebold and Marioano , 1995) evaluates the null hypothesis of equal forecasting accuracy

between two models of interest and can be useful especially in cases where MCS procedure is

not informative about the superior set of models.

One approach that is used in some of the recent papers in order to evaluate the economic

benefit from a volatility forecasting model is to compute realized utility under some assumptions

as proposed by Bollerslev et al. (2018). Since the approach is widely discussed in the recent

papers (see, for example Branco et al. , 2024; Dı́az et al. , 2024, for excellent descriptions of the
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approahc), we do not elaborate the details of the approach for brevity. Following the literature

and assuming a conditional Sharpe ratio γ = 0.40 and a coefficient of relative risk aversion = 2

(which implies the investor targets an annualized volatility of 20%) and assuming she uses a

volatility model to define her risky position, the realized utility of using a given model denoted

by RU
model

is given by

RU
model

=
1

Ttest

Ttest∑
t=1

8%

√
RVt√
R̂V t

− 4%
RVt

R̂V t

 , (25)

where Ttest is the number of days in a test period under the assumption that the investor re-

balances her portfolio at the end of each day. As shown by Bollerslev et al. (2018) a perfect

predictive model for RV delivers a realized utility of 4% and estimated realized utility values

below 4% would indicate less accurate forecasting by the model.

Given some studies argue that the RV may be useful in forecasting daily VaR (see, for

example, Giot and Laurent , 2014; Wong et al. , 2016) and the importance of VaR for market

participants and regulators, we build 1-day ahead VaR forecast based on the RV forecasts from

different models. We use filtered historical simulation (FHS) approach (see, Barone-Adesi et

al. , 1999; Alexander , 2009). To estimate VaR for day t+1 in a test period, we first normalize

returns by dividing sample standard deviation by using the sample up to day t and the re-scale

these normalized returns by the forecasted RV for day t+1 in the test period. Then we calculate

the α-percentile of the re-scaled returns as the estimate for VaR for t + 1 in the test period.

We expand the window by one day and calculate the VaR for day t+2 until we exhaust all the

days in a test period for each model.

More specifically, VaR estimates for the first day in the test period 01/02/2006-12/31/2006

is calculated as follows: Calculate normalized returns by dividing returns in the historical

window between 01/02/1996-12/31/2005 by dividing the sample standard deviation of returns

for the above period. This gives roughly 2500 days of normalized returns. Then re-scale each

of these returns by multiplying with the predicted RV from a given model for the first day (i.e.,

01/02/2006) and use the distribution of re-scaled returns in calculating α percentile which gives

an estimate of VaR at the 1 − α confidence level. For the second day, normalize returns for

the period 01/02/1996-01/02/2006 by dividing the sample standard deviation of returns in this

1-day expanded historical window size and then re-scale them by multiplying with the forecast

of RV for the second day (i.e., 01/03/2006) from the model under consideration and use this

distribution to compute the α-percentile. This will give an estimate of VaR for day t+2 in the

53



sample period. Continue this for each model in each out-of-sample test period.15 We calculate

VaR at 1− α = 0.99 and 1− α = 0.95 levels.

To evaluate the performance of each model in terms of VaR predictive ability, we compute

the percentage of failures (exceptions) by comparing the estimated VaR for day t + 1 (i.e.,

V aRt+1(α) with the realized return rt+1 for each day in each of the yearly out-of-the-sample

test periods since 2006 and in the entire test period between 2003 and 2023. We use likelihood

ratio tests of Kupiec (1995) and Christoffersen (1998) to asses the unconditional coverage and

independence property of VaR forecasts. The unconditional coverage test or the Kupiec (1995)

test inspects whether the empirical failure rates are statistically equal to the theoretical value

of α on average by checking if the exceptions occur as expected under the assumption that the

model is correct. The second test checks if the exceptions are both independent over time and

occur at the expected rate. If the model passes this conditional coverage test, it implies that

both the frequency and the timing of the exceptions are on average correct.

We evaluate the VaR forecasts using the asymmetric loss function proposed by Gonzalez-

Rivera et al. (2004),

ℓV aR =
1

Ttest

Ttest∑
t=1

(α− dt+1)
(
rt+1 − V̂ aR

α

t+1

)
, (26)

where dt+1 = 1
rt+1<V̂ aR

α

t+1
is the ‘’hit” function. This loss function assigns a weight of 1 − α

to observations for which the daily log-return is below the VaR forecast and a weight of α for

returns above the VaR forecast and hence, penalizes observations for which the daily log return

falls below the forecasted VaR more heavily. In order to assess the statistical accuracy of VaR

forecasts, we also use DM tests and compare relative performance of models in predicting VaR

under the loss function in Equation (26). See, Christensen et al. (2023) and Audrino etal.

(2020) for a similar implementations.

B Results with additional predictors

Given generally the stronger performance results recorded by THAR and especially STHAR

relative to other econometric models and specifically the ML set of models considered under the

scenario where the predictor set included only the HAR variables, to what degree such results

continue to hold under a scenario where additional predictors are included is an important

question as ML models tend to pioneer in data rich environments. We repeat our empirical as-

15We also considered a fixed window sizes of 5 and 10 years with window size moving forward one-day as new
information arrives. Since results were found to be qualitatively similar, we report and discuss results from the
expanding historical window size in the paper in the following sections.
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sessment of models under this second scenario by using the set of additional predictors reported

in Table 8.

B.1 Set of predictors

In addition to HAR variables, this set includes features that may contain information about the

state of the markets, such as the negative and positive components of 1-day, 5-day, and 22-day

moving average of daily log index return, r
−/+
t . To capture the monetary policy conditions,

we use daily changes in U.S. Treasury securities at 3-month constant maturity. To measure

overall market appetite for risk, we use log VIX (log(V IXt) and use log of Economic Policy

Uncertainty index of (Baker etal. , 2016) (log(EPUt)). We also use a measure of news sentiment

index (NEWSt) due to Buckman etal. (2020) and a measure of general business conditions

index due to Aruba etal. (2009). Our predictor set also includes three market factors as

suggested by Fama and French (1993), including the U.S. market excess return (Rm Rft),

size premium factor, (i.e., average return on small stocks minus big stocks, SMBt), and value

factor (i.e, average return on value stocks minus average returns on growth stocks, HMLt). We

also include relative change in RV to ensure that all models including linear HAR, ARFIMA,

Markov Switching HAR (MSHAR) and ML models leverage similar information as THAR and

STHAR which use the relative change in RV as threshold/transition variable.16

B.2 Predicting realized volatility

Table 9 reports MSPE and QLIKE in panels A and B, respectively. Results in the last rows

of Panel A and B for the entire test period indicate that the top five models include HAR and

its nonlinear extensions under MSPE and HAR, THAR, STHAR, and DNN and BRNN under

QLIKE. MCS procedure includes all models in the confidence set under QLIKE includes all but

ARFIMA under MSPE in the entire full test sample. Despite slight differences, these results

are broadly in line with the results reported in Table 2.

Comparison of MSPE and QLIKE results between Tables 2 and 9 reveals that consistent with

the expanded information with the additional predictors, all models achieve smaller prediction

errors both in the full test period and over majority of the separate test periods. While the

prediction error gains are generally across the board for all models, HAR, THAR, and STHAR

models tend to achieve lower MSPE and QLIKE compared to other models and especially ML

models. Overall, differences in prediction errors among models become smaller especially under

QLIKE as the careful inspection of Tables 2 and 9 would reveal. It worth also noting that the

difference between STHAR and HAR and THAR model becomes smaller and we note more test

periods with similar error performance among these three models. This is likely driven by the

16We lag all predictor variables apart from the HAR variables by one day.
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Table 8: List of predictors used

Variable Description Source

RVd,t 1-day moving average of RV Bloomberg
RVw,t 5-day moving average of RV Bloomberg
RVm,t 22-day moving average of RV Bloomberg
∆RVt/RVt−1 Daily relative change in RV Bloomberg

r
−/+
d,t 1-day moving average of negative/positive index return Bloomberg

r
−/+
w,t 5-day moving average of negative/positive index return Bloomberg

r
−/+
m,t 22-day moving average of negative/positive index return Bloomberg
∆it Daily change in U.S. 3M Treasury FRED
log(V IXt) Log VIX index FRED
ADSt Business Conditions Index (Aruba etal. , 2009) FRB Philadelphia
log(EPUt) Log Economic Policy Uncertainty Index (Baker etal. , 2016) FRED
NEWSt News sentiment index (Buckman etal. , 2020) FRB San Francisco
Rm Rft US market excess return K. French’s webpage
SMBt Size premium factor K. French’s webpage
HMLt Value factor K. French’s webpage

The underlying daily RV estimates are constructed using 5-minute intraday data on open and close prices of
S&P 500 index which are obtained from Bloomberg. S&P 500 index returns are based on the daily open and
close prices from Bloomberg. Data on the ADS index, news sentiment index, EPU, and Fama-French factors
are available at https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/ads,
https://www.frbsf.org/research-and-insights/data-and-indicators/daily-news-sentiment-index/,
https://fred.stlouisfed.org/categories/33201, and https://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/Data_Library/f-f_factors.html, respectively. For each variable the source indicates the source
of the undelrying rwa data. All transformations are author’s own calculation.

fact THAR and specifically STHAR model is over parameterized compared to the HAR model

under extended predictor set and hence, the difference in the prediction error as measured by

MSPE and QLIKE diminishes in many of the test periods.

Above observations in terms of reduced differences in prediction errors are reflected them-

selves in the MCS procedure results as now the procedure includes more models in the confidence

set for majority of test periods. Nevertheless, despite being over-parameterized, THAR and

STHAR models continue perform well and compete or outperform ML models in several test

periods where MCS procedure leads to a narrow set of models in the confidence set. Potentially

as a function of improvements in the prediction errors, the MCS procedure includes all models

in the MCS in 2008, 2010, 2011, 2013, 2015, and 2020. In the remaining test years, the MCS

procedure eliminates generally ARFIMA and occasionally one or two of the ML models.17

Tables 10 and 11 present pairwise DM test results for selected test periods and the entire

test sample in the last panels. Inspection of the results show that HAR and THAR attain

statistically significant lower MSPE in the full test period sample against all models except for

STHAR. HAR and THAR outperform all but STHAR by achieving statistically significantly

17Such expanded MCS might be also due to the fact that all models now have more parameters to estimate and
learn and hence, the data might have become less informative due to extended prediction set compared to the
scenario where only past values of RV are included in the features set. Further exploration of this phenomenon
in the context of nonlinear and ML models are left for future work.
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Table 9: One-day ahead MSPE and QLIKE over test periods with additional predictors

Panel A. One-day ahead MSPEs
YEAR HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTAM-A

2006 0.011 0.011 0.012 0.010 0.015 0.011 0.012 0.011 0.011 0.012 0.011
2007 0.039 0.040 0.044 0.040 0.047 0.042 0.040 0.041 0.040 0.042 0.045
2008 0.290 0.316 0.378 0.280 0.399 0.626 0.399 0.432 0.458 0.528 0.460
2009 0.041 0.046 0.056 0.040 0.057 0.045 0.044 0.044 0.049 0.044 0.043
2010 0.057 0.053 0.059 0.058 0.066 0.053 0.059 0.059 0.058 0.058 0.059
2011 0.057 0.051 0.064 0.058 0.064 0.058 0.057 0.056 0.056 0.059 0.053
2012 0.017 0.017 0.018 0.017 0.025 0.016 0.018 0.019 0.019 0.019 0.018
2013 0.018 0.019 0.018 0.016 0.024 0.018 0.018 0.017 0.018 0.017 0.017
2014 0.017 0.015 0.017 0.016 0.020 0.016 0.020 0.020 0.018 0.019 0.017
2015 0.060 0.056 0.066 0.060 0.069 0.051 0.061 0.058 0.062 0.058 0.060
2016 0.022 0.021 0.024 0.022 0.033 0.019 0.022 0.022 0.022 0.022 0.027
2017 0.007 0.007 0.007 0.007 0.012 0.008 0.007 0.010 0.009 0.009 0.007
2018 0.035 0.034 0.042 0.039 0.040 0.043 0.038 0.039 0.038 0.040 0.047
2019 0.019 0.020 0.020 0.020 0.026 0.019 0.020 0.020 0.021 0.021 0.021
2020 0.126 0.147 0.159 0.114 0.179 0.243 0.156 0.137 0.132 0.133 0.133
2021 0.032 0.031 0.033 0.030 0.037 0.031 0.034 0.033 0.032 0.032 0.034
2022 0.064 0.066 0.073 0.066 0.080 0.063 0.069 0.069 0.069 0.068 0.067
2023 0.021 0.022 0.023 0.020 0.028 0.022 0.022 0.022 0.022 0.022 0.023
06-23 0.052 0.054 0.062 0.059 0.069 0.078 0.062 0.063 0.064 0.068 0.064

Panel B. One-day ahead QLIKE

2006 0.005 0.006 0.006 0.005 0.008 0.006 0.006 0.005 0.006 0.006 0.006
2007 0.021 0.022 0.026 0.022 0.025 0.023 0.022 0.022 0.022 0.023 0.024
2008 0.287 0.434 0.655 0.280 0.785 1.836 0.658 0.825 0.944 1.265 0.985
2009 0.022 0.024 0.033 0.021 0.031 0.024 0.024 0.023 0.028 0.024 0.022
2010 0.040 0.037 0.052 0.040 0.056 0.040 0.045 0.043 0.047 0.048 0.047
2011 0.031 0.028 0.044 0.032 0.038 0.030 0.034 0.033 0.033 0.039 0.029
2012 0.009 0.008 0.009 0.008 0.013 0.008 0.009 0.010 0.010 0.010 0.009
2013 0.009 0.010 0.010 0.009 0.013 0.009 0.009 0.009 0.009 0.009 0.009
2014 0.008 0.007 0.009 0.008 0.011 0.008 0.010 0.010 0.009 0.010 0.009
2015 0.069 0.061 0.101 0.067 0.097 0.053 0.078 0.068 0.083 0.071 0.072
2016 0.011 0.011 0.014 0.012 0.018 0.010 0.012 0.012 0.012 0.012 0.014
2017 0.003 0.004 0.004 0.004 0.006 0.004 0.004 0.005 0.005 0.005 0.004
2018 0.019 0.019 0.026 0.022 0.022 0.022 0.021 0.022 0.021 0.022 0.029
2019 0.010 0.010 0.011 0.010 0.013 0.010 0.011 0.011 0.011 0.011 0.011
2020 0.075 0.117 0.123 0.065 0.143 0.133 0.087 0.090 0.079 0.081 0.077
2021 0.016 0.016 0.018 0.015 0.019 0.015 0.017 0.017 0.017 0.017 0.018
2022 0.035 0.035 0.044 0.035 0.046 0.034 0.039 0.038 0.041 0.040 0.038
2023 0.011 0.011 0.013 0.011 0.015 0.011 0.011 0.012 0.011 0.012 0.012
06-23 0.038 0.048 0.067 0.056 0.077 0.078 0.062 0.063 0.064 0.068 0.064

Notes: The table reports the 1-day ahead out-of-sample Mean Squared Prediction Error (MSPE) and Quasi-
Likelihood (QLIKE)loss for each model for each of the test samples over the period 2006 and 2023. The last
row reports MSPE and QLIKE for the entire test period of 2006-2023. Values in blue indicate models that are
included in the MCS at the 5% significance level. Years in which all models are in MCS are indicated in red.
Values in black indicate models that are not in the MCS.
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lower MSPE in the full sample while STHAR beats ARFIMA, XGB, and LSTM models under

MSPE. Under QLIKE, results are less pronounced despite HAR, THAR, and STHAR models

continue to achieve lower QLIKE loss relative to most models with statistically lower QLIKE

against some of the ML models including DNN, BRNN, GRU, and LSTM-A models at %5

significance level. Results for the full test period in the last row of Table 11 are in-line with

the MCS procedure as no model statistically dominates in terms of attaining statistically lower

QLIKE.

Reported pair-wise DM test results for 2008 in Panel A of Table 10 show HAR and THAR

display superior performance by achieving statistically lower MSPE against all but STHAR

model which statistically outperforms all ML models except for DNN. DM test results in Panel

A of Table 11 show no statistically meaningful difference in average QLIKE between most

model pairs with especially the exception of the statistically lower QLIKE attained by STHAR

against BRNN, GRU, and LSTM-A. We also note that THAR attains statistically significant

lower QLIKE than DNN. In 2020, despite HAR and THAR models attain lower MSPE and

QLIKE, DM tests distinguish their better performance only against MSHAR, ARFIMA, XGB,

and DNN both in terms of MSPE and QLIKE differences as can be seen from Panel B of each

table. In 2022, HAR generally obtains statistically lower MSPE and QLIKE than most models

with majority of the models not performing better than each other. Similar results generally

follows for 2023 where prediction error differences diminish among models. These observations

suggest that as new data covering periods of elevated volatility introduced in the training

and validation of models, the difference in performance between linear HAR and its nonlinear

versions, THAR and STHAR and ML models tend to diminish, leading no statistically different

prediction error differentials.

Table 10: DM test under MSPE with extended predictors over selected test periods and the entire test period

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

A. Test Period 2008

HAR -0.94 -1.99* -0.53 -1.98* -3.02* -2.47* -2.52* -2.63* -2.94* -2.49*

THAR -1.80 -0.09 -2.16* -3.28* -2.37* -2.61* -2.81* -3.22* -2.67*

MSHAR 1.18 -0.83 -3.37* -2.50* -3.62* -3.67* -3.88* -3.04*

STHAR -1.75 -3.45* -1.57 -2.12* -2.47* -3.13* -2.38*

FI -3.32* 0.05 -1.16 -1.97* -3.15* -1.96

XGB 3.02* 3.03* 2.91* 2.22* 3.18*

DNN -2.35* -2.73* -3.31* -2.15*

BRNN -3.32* -3.75* -1.55

GRU -3.93* -0.13

LSTM 3.46*

B. Test Period 2020
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Table 10 continued from previous page

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

HAR -1.20 -1.98* -1.03 -2.36* -2.70* -3.27* -1.46 -1.19 -1.22 -1.44

THAR -0.76 0.06 -2.02* -2.31* -0.39 0.77 0.98 0.94 0.85

MSHAR 0.51 -1.79 -1.94 0.16 1.94 1.68 1.67 1.47

STHAR -1.12 -1.94 -0.37 0.45 0.68 0.62 0.64

FI -1.46 0.98 2.62* 2.32* 2.36* 2.12*

XGB 2.15* 2.53* 2.69* 2.67* 2.64*

DNN 1.87 3.32* 2.99* 3.34*

BRNN 0.95 0.81 0.58

GRU -1.07 -0.58

LSTM 0.07

C. Test Period 2022

HAR -0.94 -1.75 -2.00* -3.08* 0.46 -2.32* -3.16* -1.28 -1.19 -1.17

THAR -1.04 -1.56 -2.02* 1.07 -0.65 -0.87 -0.47 -0.37 -0.09

MSHAR -0.56 -1.72 1.64 1.11 0.85 1.82 1.97* 1.74

STHAR -0.21 2.02* 1.28 1.21 1.16 1.26 1.54

FI 2.81* 2.60* 2.30* 2.90* 3.14* 3.21*

XGB -1.75 -2.04* -1.23 -1.16 -1.08

DNN -0.52 -0.02 0.28 2.03*

BRNN 0.13 0.38 1.83

GRU 1.80 1.16

LSTM 0.96

D. Test Period 2023

HAR -1.34 -1.35 -2.25* -4.29* -1.14 -1.72 -2.30* -1.64 -2.23* -1.91

THAR -0.53 -1.57 -2.70* 0.35 0.18 -0.35 0.23 -0.30 -0.70

MSHAR -1.24 -2.35* 0.89 0.53 0.23 0.59 0.26 -0.14

STHAR -0.86 1.81 1.56 1.30 1.65 1.32 1.27

FI 3.38* 3.83* 3.72* 3.78* 3.84* 2.55*

XGB -0.24 -0.69 -0.20 -0.66 -1.18

DNN -1.95 0.12 -1.68 -1.19

BRNN 1.21 0.62 -0.61

GRU -1.05 -1.25

LSTM -0.67

E. Full Test Period: 2006-2023

HAR -1.10 -3.47* -1.69 -4.51* -3.69* -3.52* -3.07* -3.11* -3.31* -3.02*

THAR -3.24* -1.19 -5.21* -3.90* -2.93* -2.88* -2.97* -3.37* -2.91*

MSHAR 1.09 -3.35* -3.04* 0.62 0.05 -0.85 -2.17* -0.86

STHAR -2.85* -3.21* -0.87 -1.10 -1.44 -2.21* -1.48

FI -1.94 3.18* 3.08* 2.17* 0.24 1.88

XGB 3.28* 3.47* 3.34* 2.79* 3.47*

DNN -0.80 -1.75 -2.75* -1.55
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Table 10 continued from previous page

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

BRNN -2.21* -3.55* -1.58

GRU -3.66* -0.35

LSTM 2.93*

Notes: The table reports Diebold-Mariano test for the equality of MSPE between the model on the row and

the model on the column over selected test periods under the scenario where predictor set includes additional

variables A * indicates rejection of the null against the one-sided alternative under the 5% significance. A positive

value indicates that the MSPE of the model on the row is greater than the model on the column.

Table 11: Diebold-Mariano under QLIKE with extended predictors over selected test periods and the entire test
sample

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

Panel A. Test Period 2008

HAR -1.09 -1.49 -0.94 -1.26 -1.43 -1.61 -1.47 -1.45 -1.42 -1.46

THAR -1.87 -0.79 -1.34 -1.48 -2.22* -1.68 -1.59 -1.50 -1.59

MSHAR 0.92 -0.84 -1.41 -0.02 -1.43 -1.39 -1.38 -1.42

STHAR -1.83 -1.61 -0.82 -2.51* -2.16* -1.75 -2.07*

ARFIMA -1.53 0.75 -0.76 -2.35* -1.63 -2.26*

XGB 1.38 1.40 1.41 1.42 1.40

DNN -1.23 -1.27 -1.32 -1.31

BRNN -1.33 -1.36 -1.39

GRU -1.37 -1.20

LSTM 1.32

Panel B. Test Period 2020

HAR -1.51 -2.39* -0.78 -1.98* -2.25* -1.88 -1.64 -1.02 -1.16 -0.60

THAR -0.50 1.15 -2.05* -0.94 1.22 1.39 1.55 1.55 1.54

MSHAR 1.84 -1.21 -0.55 2.01* 2.75* 2.53* 2.58* 2.42*

STHAR -1.73 -1.78 -0.30 -0.53 0.32 0.15 0.59

ARFIMA 0.61 1.83 2.09* 2.07* 2.08* 2.03*

XGB 2.14* 2.34* 2.39* 2.41* 2.34*

DNN -0.49 1.74 1.20 2.10*

BRNN 1.87 1.88 1.74

GRU -1.50 1.27

LSTM 1.40

Panel C. Test Period 2023

HAR -0.26 -2.81* -1.54 -3.09* 0.76 -3.29* -3.85* -2.55* -2.45* -2.40*

THAR -2.24* -1.40 -2.35* 0.71 -1.70 -1.74 -1.76 -1.63 -1.25

MSHAR 0.77 -0.57 2.71* 2.21* 2.06* 2.20* 2.49* 2.55*

STHAR -0.99 1.73 0.35 0.45 -0.16 -0.02 0.50
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Table 11 continued from previous page

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

ARFIMA 3.09* 2.35* 2.28* 2.08* 2.36* 2.75*

XGB -2.71* -2.78* -2.48* -2.38* -2.21*

DNN 0.79 -1.50 -1.16 1.27

BRNN -1.38 -1.11 0.41

GRU 3.28* 2.38*

LSTM 2.10*

Panel D. Test Period 2023

HAR -1.06 -1.82 -2.32* -4.20* -1.53 -1.72 -2.25* -1.72 -2.20* -2.26*

THAR -1.14 -1.73 -2.68* -0.16 -0.09 -0.54 -0.02 -0.52 -1.18

MSHAR -0.64 -1.72 1.34 1.10 0.82 1.20 0.85 0.26

STHAR -1.07 1.66 1.57 1.29 1.71 1.28 1.00

ARFIMA 3.28* 3.69* 3.60* 3.66* 3.70* 2.30*

XGB 0.12 -0.36 0.19 -0.35 -1.35

DNN -1.85 0.18 -1.72 -1.71

BRNN 1.11 0.14 -1.10

GRU -1.03 -1.72

LSTM -1.14

Panel E. Full test sample: 2006-2023

HAR -1.28 -2.04* -0.99 -1.68 -1.47 -1.79 -1.56 -1.55 -1.48 -1.52

THAR -2.64* -0.70 -1.86 -1.49 -2.22* -1.68 -1.63 -1.52 -1.59

MSHAR 1.95 -1.02 -1.28 2.64* -0.45 -0.91 -1.14 -0.92

STHAR -2.82* -1.64 -1.03 -2.58* -2.28* -1.81 -2.12*

FI -1.33 1.48 1.65 -0.40 -1.17 -0.56

XGB 1.37 1.41 1.40 1.42 1.41

DNN -1.15 -1.29 -1.32 -1.27

BRNN -1.48 -1.39 -1.38

GRU -1.34 -0.68

LSTM 1.36

Notes: The table reports Diebold-Mariano test for the equality of QLIKE between the model on the row

and the model on the column over three test periods with additional predictors. A * indicates rejection of the

null against the one-sided alternative under the 5% significance. A positive value indicates that the QLIKE of

the model on the row is greater than the model on the column.

B.3 Realized utility with extended set of predictors

Reported results on realized utility benefits from using each model for predicting volatility in

Table 12 is similar to the reported results in Table 5 as generally most models provide similar

realized utility benefits in the full test period and in most periods except for periods with
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Table 12: Realized Utility over test periods

Year HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

2006 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2007 0.040 0.040 0.039 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.040
2008 0.032 0.027 0.020 0.022 0.015 -0.022 0.020 0.014 0.010 -0.001 0.008
2009 0.040 0.040 0.039 0.039 0.039 0.040 0.040 0.040 0.039 0.040 0.040
2010 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2011 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2012 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2013 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2014 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2015 0.038 0.038 0.037 0.039 0.037 0.039 0.038 0.038 0.038 0.038 0.038
2016 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2017 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2018 0.040 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.039
2019 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2020 0.038 0.037 0.037 0.038 0.036 0.037 0.038 0.038 0.038 0.038 0.038
2021 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
2022 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2023 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
06-03 0.039 0.039 0.038 0.039 0.038 0.036 0.038 0.038 0.038 0.037 0.038

Notes: The table reports the realized utility benefit of using forecasts of volatility based on different models
under the assumptions of a constant conditional Sharpe ratio equal to 0.40 and a coefficient of risk aversion
γ = 2. The maximum utility benefit in this setting using the future realized volatilities, is equal to 4

elevated volatility. For example, in 2008, HAR continues to provide the highest realized utility

(3.2%) compared to the relatively dismal performances of ML models. In 2020, the difference in

realized utility benefit between econometric and ML models diminish, a result consistent with

the improvements in the predictive errors of all models.

B.4 Predicting VaR with additional predictors

Table 13 reports the failure rates across each test period and in the entire test sample since

2006 with unconditional and conditional coverage test results. A striking difference between the

results under the scenario with additional predictors is that the coverage rates for all models

display a significant improvement compared to the case where only HAR variables are included

in the predictor set. This marked difference can be observed by comparing the reported VaR

exceedance rates and Kupiec and Christoffersen test results in Tables 6 and 13. Results in

the latter table clearly demonstrate the benefits of using more information by including more

variables in the estimation of linear and nonlinear econometric models as well as ML models.

Kupiec test rarely rejects the null of correct unconditional coverage at 5% significance level of

VaR across each test sample since 2006 for nearly all models. Only exceptions are STHAR

model in 2017 and LSTM model in 2008. Christoffersen test never reject its null hypothesis,

suggesting statistically correct conditional coverage by all models in each test periods since
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Table 13: VaR Exceedance Rates & Kupiec and Chiristoffersen Tests over test periods and the entire test sample

Year HAR THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

2006 0.004 0.008 0.004 0.016 0.004 0.004 0.008 0.008 0.004 0.004 0.004
2007 0.016 0.016 0.016 0.028* 0.020 0.016 0.016 0.012 0.024 0.008 0.004
2008 0.008 0.012 0.016 0.020 0.012 0.016 0.024 0.024 0.024 0.028* 0.012
2009 0.004 0.004 0.004 0.008 0.000 0.004 0.004 0.004 0.004 0.000 0.000
2010 0.008 0.004 0.016 0.012 0.016 0.008 0.012 0.012 0.016 0.016 0.016
2011 0.016 0.016 0.024 0.012 0.020 0.012 0.020 0.016 0.016 0.024 0.020
2012 0.008 0.008 0.012 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000
2013 0.008 0.004 0.004 0.016 0.016 0.004 0.012 0.004 0.012 0.004 0.004
2014 0.004 0.004 0.008 0.016 0.012 0.000 0.004 0.004 0.008 0.004 0.008
2015 0.004 0.008 0.008 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.008
2016 0.008 0.008 0.008 0.008 0.008 0.004 0.008 0.012 0.012 0.012 0.012
2017 0.012 0.012 0.012 0.012 0.016 0.008 0.012 0.012 0.012 0.012 0.012
2018 0.008 0.008 0.012 0.000 0.012 0.004 0.012 0.012 0.012 0.012 0.020
2019 0.000 0.008 0.008 0.012 0.008 0.000 0.004 0.000 0.008 0.004 0.000
2020 0.012 0.016 0.012 0.008 0.008 0.004 0.012 0.012 0.012 0.012 0.012
2021 0.004 0.004 0.004 0.008 0.004 0.000 0.004 0.004 0.004 0.004 0.000
2022 0.004 0.004 0.008 0.012 0.008 0.004 0.004 0.004 0.016 0.016 0.016
2023 0.000 0.000 0.004 0.009 0.008 0.000 0.000 0.000 0.000 0.000 0.004
06-23 0.007* 0.008 0.010 0.011 0.010 0.005*† 0.009 0.008 0.010 0.009 0.008

Notes: The table reports VaR Exceedance Rates over each test year and in the entire test period between 2006
and 2023 across models with additional predictors. The exceedance rate is defined to be the number of days in
a test period where log returns falls below the predicted VaR divided by the number of VaR days in a period.
A * indicates the rejection of the null hypothesis of correct unconditional coverage (i.e., rejection of the null
by the Kupiec test) at 5 percent significance level that the exceedance rate equals to 1 percent (i.e., the VaR
confidence level of 99 percent) against the one-sided alternative that it is more than 1 percent. A †indicate
the rejection of the correct conditional coverage rate at 5% significance level. The last row gives results for the
entire test period, 2006-2023.

2006. In the full test period between 2006 and 2023, correct unconditional coverage is rejected

under HAR and XGB while all other models remain to attain correct coverage rates.

Inspecting the results in Tables 6 and 13 clearly demonstrate that STHAR is the only model

with nearly perfect unconditional and conditional coverage irrespective of whether we include

more predictors or simply rely on past values of RV. This outcome gives a strong reason for

practitioners and market participants to consider such nonlinear alternatives as they may not

require the additional cost and burden of retaining data on a large number of predictors.
DM test results for selected test periods and the entire test sample are reported in Table 14.

Inspection of the results in this table reveals a number of striking results especially compared
to the results in Table 13 and DM test results when only the past RV are included in the
prediction set. First, in the full test period reported in Panel E of the Table, MSHAR model
attains statistically lower VaR loss relative to all models except for HAR and THAR. In this
sense, it outperforms all ML models and ARFIMA and STHAR model in the full test sample.
With the few exceptions, all remaining models perform relatively equally in terms of VaR
predictive accuracy under the asymmetric VaR loss function considered.
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Table 14: DM tests of predictive accuracy of VaR over selected test periods with additional predictors

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

A. Test Period 2008

HAR -0.91 -0.5 -1.52 -1.53 -1.22 -1.17 -1.22 -1.23 -1.34 -0.77

THAR 0.59 -1.66 0.08 -1.25 -1.11 -1.2 -1.21 -1.37 -0.55

MSHAR -2.15* -0.41 -1.40 -1.80 -1.76 -1.70 -1.77 -1.04

STHAR 1.48 -0.12 2.31* 2.40* 2.33* 0.34 3.62*

ARFIMA -1.09 -1.01 -1.10 -1.12 -1.27 -0.50

XGB 0.88 0.70 0.60 0.27 1.32

DNN -1.55 -1.44 -1.57 1.85

BRNN -1.22 -1.42 2.40*

GRU -1.33 2.30*

LSTM 2.23*

B. Test Year 2020

HAR 1.25 0.81 1.63 1.02 1.08 0.48 1.33 0.77 0.81 0.87

THAR -0.26 1.43 0.41 0.93 -0.19 0.3 -0.03 0.06 0.19

MSHAR 1.07 0.51 0.85 0.02 0.43 0.16 0.21 0.29

STHAR -0.94 0.59 -1.78 -1.36 -1.38 -1.35 -1.42

ARFIMA 0.97 -1.15 -0.55 -0.93 -0.87 -0.62

XGB -1.28 -1.00 -1.14 -1.14 -1.14

DNN 1.09 0.59 1.08 3.96*

BRNN -0.83 -0.56 -0.12

GRU 1.02 0.84

LSTM 0.68

C. Test Year 2022

HAR 0.62 5.55* -0.77 -0.49 0.92 8.86* 5.35* -0.94 -0.88 -0.78

THAR 6,67* -0.95 -0.63 1.07 2.82* 2.84* -0.94 -0.89 -0.78

MSHAR -2.37* -1.95 -2.26* -3.70* -4.36* -1.96 -2.08* -2.68*

STHAR 0.008 1.35 1.45 1.37 -0.24 -0.15 0.40

ARFIMA 0.96 0.98 0.93 -0.37 -0.24 0.11

XGB 0.20 0.04 -1.02 -0.99 -0.92

DNN -1.97* -1.37 -1.39 -1.66

BRNN -1.29 -1.29 -1.47

GRU 1.14 0.94

LSTM 0.79

D. Test Year 2023

HAR 0.28 2.60* -1.34 -0.81 1.12 -0.77 0.70 -0.14 0.21 2.17*

THAR 2.53* -1.35 -0.88 0.73 -0.81 0.23 -0.37 -0.11 1.84

MSHAR -1.84 -3.98* -2.37* -2.8* -2.30* -2.59* -2.45* -1.86

STHAR 1.31 1.41 1.32 1.37 1.33 1.36 1.58

ARFIMA 1.08 0.72 0.94 0.80 0.86 2.02*

XGB -1.44 -0.47 -1.01 -0.78 1.47
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Table 14 continued from previous page

Models THAR MSHAR STHAR ARFIMA XGB DNN BRNN GRU LSTM LSTM-A

DNN 3,10* 1.34 2.09* 2.67*

BRNN -1.41 -4.39* 1.84

GRU 0.56 2.44*

LSTM 2.07*

E. Test period between 2006 and 2023

HAR -0.89 0.6 -1.93 -3.76* -0.15 -1.41 -1.32 -1.68 -1.78 -1.73

THAR 1.72 -1.97* -2.72* 0.11 -1.24 -1.16 -1.63 -1.77 -1.58

MSHAR -2.74* -4.39* -0.37 -2.85* -2.56* -2.92* -2.9* -2.97*

STHAR 0.19 1.94 1.66 1.56 0.9 0.37 0.72

ARFIMA 1.94 1.31 1.07 0.5 0.1 0.48

XGB 1.22 -0.87 -1.29 -1.74 -1.18

DNN -0.82 -1.79 -2.11* -1.19

BRNN -0.42 -2.41* -1.05

GRU -1.28 -0.03

LSTM 1.73

Notes: The table reports Diebold-Mariano test of equal predictive accuracy of predicted VaR under V aR

loss function for the test years 2008, 2020, 2022, and 2023. The null hypothesis being tested is H0 : E(ℓV aRi) =

E(ℓV aRj ) against H0 : E(ℓV aRi) > E(ℓV aRj ), where model i is the label of the selected row, whereas model j is

the label of the selected column. A * indicates rejection of the null against the one-sided alternative under the

5% significance. A positive value indicates that the average loss under the model on the row is greater than the

model on the column.

Second, moving to individual test periods reveals that MSHAR display a strong performance

by beating most or all of the models in 2022 and 2023 as pairwise DM test strongly supports the

performances of MSHAR against all models. This strong performance by MSHAR disappear

in 2008 and 2020 as volatility reaches extremely high values during these test periods and the

difference between models diminish. Yet a third result is noted in Panel A of Table 14, ML

models including DNN, BRNN, GRU, and LSTM-A beats STHAR model in 2008.

C Additional results for RNNs under long time steps

To ensure consistency between econometric and ML models in terms of the information set

used, we presented results based on HAR predictors in the main paper and extended these with

additional predictors in Appendix B. While HAR predictors, particularly RVw,t and RVm,t,

inherently encode some historical information, using sequences of past observations can enable

RNN models to capture more complex, nonlinear dynamics over time. This raises the question

of whether RNN performance improves with longer time steps, allowing these models to better

capture temporal dependencies.
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Table 15: One-day ahead MSPE and QLIKE over test periods with 21 day-time-steps for RNNs

MSPE QLIKE
YEAR BRNN GRU LSTM LSTM-A BRNN GRU LSTM LSTM-A

2006 0.018 0.018 0.018 0.018 0.009 0.009 0.009 0.009
2007 0.073 0.074 0.071 0.068 0.040 0.039 0.038 0.038
2008 0.680 0.633 0.800 0.557 2.196 2.090 3.441 1.758
2009 0.056 0.052 0.056 0.057 0.031 0.028 0.029 0.029
2010 0.102 0.100 0.095 0.094 0.107 0.112 0.107 0.108
2011 0.104 0.099 0.096 0.103 0.062 0.061 0.062 0.065
2012 0.027 0.027 0.027 0.027 0.014 0.014 0.014 0.014
2013 0.034 0.030 0.031 0.038 0.017 0.016 0.016 0.019
2014 0.030 0.031 0.031 0.032 0.016 0.016 0.017 0.017
2015 0.120 0.121 0.114 0.115 0.293 0.298 0.295 0.301
2016 0.271 0.034 0.034 0.034 0.085 0.019 0.019 0.019
2017 0.035 0.019 0.014 0.017 0.017 0.009 0.007 0.008
2018 0.085 0.084 0.081 0.079 0.053 0.051 0.049 0.049
2019 0.037 0.038 0.038 0.037 0.020 0.021 0.021 0.020
2020 0.259 0.296 0.280 0.316 0.196 0.350 0.304 0.373
2021 0.054 0.051 0.051 0.052 0.028 0.027 0.027 0.027
2022 0.099 0.097 0.096 0.097 0.063 0.058 0.057 0.058
2023 0.029 0.030 0.031 0.030 0.016 0.016 0.016 0.016

Notes: See, Table 2 for explanations.

RNNs, including LSTM and LSTM with Attention architectures, are particularly well-

suited for modeling how patterns in realized volatility evolve over time, potentially uncovering

dynamics beyond those captured by moving averages. Given the persistence and clustering often

observed in realized volatility, longer sequences may allow RNNs to better learn these effects,

even when they span several weeks or months. To evaluate the robustness of our findings for

RNNs with long time steps, we extend the time step to 22 days (roughly a month) and present

the results in Table 15.

A comparison of the average MSPE and QLIKE results for RNNs in Table 15 with those

in Table 2 reveals that RNNs with longer time steps yield higher average MSPE and QLIKE

values. This is in contrast to results for RNNs under the baseline scenario where the predictor

set includes RVd,t, RVw,t and RVm,t across test periods since 2006. These findings suggest

that the HAR predictors, particularly the weekly and monthly averages, already capture the

dynamics of realized volatility sufficiently. Consequently, RNN models with time steps of 22

days do not gain additional insights into nonlinear dynamics beyond those encoded in the HAR

predictors.

This is an important result, as training and validating RNNs, especially LSTM and LSTM-A

models, with long time steps is considerably more complex and time-consuming. By demon-
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strating that the simpler HAR predictors without time steps beyond 1-day are adequate, this

finding supports the robustness of our conclusions regarding the performance of econometric

and ML models, including RNNs, relative to linear HAR and its nonlinear extensions.18

18While these results are striking, further investigation is warranted to fully understand their implications for
RV modeling. We leave this exploration for future research.
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