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Abstract

In heavy-tailed cases, variance targeting the Student’s-t estimator proposed in Bollerslev (1987)
for the linear GARCH model is shown to be robust to density misspecification, just like the popu-
lar Quasi-Maximum Likelihood Estimator (QMLE). The resulting Variance-Targeted, Non-Gaussian,
Quasi-Maximum Likelihood Estimator (VTNGQMLE) is shown to possess a stable limit, albeit one that
is highly non-Gaussian, with an ill-defined variance. The rate of convergence to this non-standard limit
is slow relative v/n and dependent upon unknown parameters. Fortunately, the sub-sample bootstrap
is applicable, given a carefully constructed normalization. Surprisingly, both Monte Carlo experiments
and empirical applications reveal VTNGQMLE to sizably outperform QMLE and other performance-
enhancing (relative to QMLE) alternatives. In an empirical application, VTNGQMLE is applied to VIX
(option-implied volatility of the S&P 500 Index). The resulting GARCH variance estimates are then used
to forecast option-implied volatility of volatility (VVIX), thus demonstrating a link between historical
volatility of VIX and risk-neutral volatility-of-volatility.

Keywords: GARCH, VIX, VVIX, heavy tails, robust estimation, variance forecasting, volatility,
volatility-of-volatility. JEL codes: C13, C22, C58.

The analysis and conclusions presented herein are those of the author and do not indicate concurrence by either the Federal Reserve Board or
the Federal Reserve System. | owe thanks to seminar participants at the 9th International Workshop on Financial Markets and Nonlinear Dynamics
for helpful comments and discussions. | additionally owe thanks to Dong Hwan Oh for (many) detailed discussions and reviews.

2Federal Reserve Board; (202) 510-2398, todd.a.prono@frb.gov.



1 Introduction

The linear GARCH model of Bollerslev (1986) remains a workhorse for conditional volatility modelling in
financial economics, its applications spanning portfolio formation, derivative pricing, and risk management.

For a sequence {Y;}, the most popular version of this model states

Y; — O'tEt, et ~ i.i.d. _D (0, ].) P (1)

o} =w+aY? |+ Bo} . 2

where D is an unknown distribution with probability density function g. The most common method for
estimating (1) and (2) involves likelihood methods, which require specification of a proxy density function
f,where, itis likely that f # ¢. This paper treats D and, therefore, ¢ as latent. In order to increase efficiency
in the GARCH model parameter estimates, ex-ante attempts are made to better match the selected f with the
heavy-tailed features of data commonly modeled. The intent of these attempts, however, is not to identify g,
and, therefore, achieve the Cramer-Rao lower bound. Rather, the intent is to select an f that is "closer" to g
than a Gaussian density but that (like a Gaussian density) also maintains robustness in the model parameter
estimates, in the (likely) case where f = g. The desired result is a non-Gaussian GARCH estimator that is
robust to density misspecification and more efficient than the Gaussian alternative.

By far, the most popular choice for f is the Gaussian density, in which case, the estimator for (1)
and (2) is the quasi-maximum likelihood estimator (QMLE). Explaining this popularity is the robustness
of QMLE to density misspecification. Early demonstrations of QMLE as a robust estimator include Lee
and Hansen (1994) as well as Lumsdaine (1996), with more recent (and more general) demonstrations
including Berkes, Horvéath, and Kokoszka (2003), Francq and Zakoian (2004), and Straumann and Mikosch
(2006). These more recent demonstrations also identify £ (ef) < oo as (close to) necessary for QMLE to
be asymptotically normal.

It is well known that while robust, QMLE is not particularly efficient, especially in cases of a heavy-
tailed D. Engle and Gonzalez-Rivera (1991) show, for instance, that a semi-parametric estimator for (1) and
(2) bests the efficiency of QMLE by up to 50%. The evidenced wide gap between QMLE and (infeasible)
full maximum likelihood estimation has encouraged a literature on GARCH estimators that aims to improve
upon the efficiency of QMLE, while maintaining robustness. Examples of this literature include Francq et

al. (2011a), Fan et al (2014), and Preminger and Storti (2017). Figures 5 and 11 show tail index estimates for



{?t}z;l from daily S&P 500 (log) returns and V1X levels.® By the end of the, respective, data samples, point
estimates no longer support £ (ef) < oo for S&P 500 (log) returns, while there is no evidence supporting
E (e}) < oo for VIX levels. From Hall and Yao (2003), when E (e}) = oo, QMLE has a non-Gaussian
limit with a reduced rate of convergence (relative to \/n). In current times, therefore, the efficiency gap
for QMLE (when applied to S&P 500 returns and VIX levels, at least) appears even wider than what the
literature documents.

In light of the empirical evidence in Figures 5 and 11, selecting f as the (standardized) Student’s-t
density of Bollerslev (1987) seems like an intuitively appealing choice. In the case where g is (very) heavy
tailed but f is Gaussian, the parameter « in (2) has to, in some sense, work doubly-hard controlling for the
heavy-tailed features of {Y },.,, unconditionally. That is, when f is Gaussian, « is the only model parameter
capable of capturing these heavy-tailed effects, where those effects source to either "reactivity" in {af} ez
to the previous period’s shock or to static features of {¢,},.,. If, instead, f is the (standardized) Student’s-
t density, then the additional degree-of-freedom parameter can capture the static tail features of {¢,},.,,
allowing « to focus on the dynamic features of {a%}tez. The trouble with selecting f as the (standardized)
Student’s-t density, however, is that the resulting Non-Gaussian, Quasi-Maximum Likelihood Estimator
(NGQMLE) is not robust to density misspecification (see; e.g., Newey and Steigerwald, 1997, and Fan et al.,
2014). Specifically, from Fan et al. (2014, Proposition 1), bias in NGQMLE sources to under-identification
of the scale of {¢,},., when f # g.%

This paper investigates Variance-Targeted NGQMLE (VTNGQMLE) for the model of (1) and (2), where
f is the (standardized) Student’s-t density of Bollerslev (1987).> When g is (relatively) thin tailed such that
E (Yt4) < 00, VTINGQMLE is shown to be biased, just like NGQMLE, whenever f # g. In heavy-tailed
cases when E (Y;*) = oo, however, the asymptotic limit of VTNGQMLE becomes dominated by prop-
erties of the sample variance (the VT part). Explaining this dominance are different rates of convergence;
specifically, the sample variance converges slower than does the likelihood function. As a result, effects

from the likelihood function disappear as the sample gets large, rendering VTNGQMLE consistent, even

®For a regularly varying random variable, the tail index . > 0 is a moment supremum; meaning, if ¢, is regularly varying, then
E &P < ocoifand only if p < ¢ (see; e.g., Resnick, 1987, for an introduction to regular variation).

*In the model of (1) and (2), scale of the innovations is given by w. When f is Gaussian, w is identified in cases where f # g.
When f is non-Gaussian, identification of w is no longer guaranteed in these same cases. Moreover, since « can be shown to
depend on scale, (potential) lack of identification of w also impacts «.

%See Engle and Mezrich (1996) for the initial proposal of variance-targeted estimation and Francq et al. (2011b) for an investi-
gation into the theoretical properties of VTQMLE.



when f # g, s0 long as {07}, _, is mean stationary.%” Consequently, in heavy-tailed cases, VTNGQMLE
is robust to density misspecification, making it a member of the class of robust estimators like Francq et al.
(2011a), Fan et al. (2014), and Preminger and Storti (2017).

Vaynman and Beare (2014) show that when E (Y;*) = oo, the limit of VTQMLE is analogously domi-
nated by properties of the sample variance. This paper (i) extends that result to a non-Gaussian likelihood,
one that produces inconsistent GARCH parameter estimates in the absence of variance targeting, and (ii)
considers additional (very) heavy-tailed cases that are empirically relevant. Specifically, the distributional
limit of VTNGQMLE is determined in cases where E (o) = oo and E (e}) = oo but the distribution of
{07},c5 and {€7},_,, respectively, remain in the domain of attraction of a normal law. Additionally, cases

where E (o) = oo and E (¢}) = oo but the distribution of {07}, , and {¢7 respectively, is in the

Yeez
domain of attraction of a stable law are also considered. In this heaviest-tail case, the distributional limit of
and {7

E (0}) = oo but E (¢}) < oo, in contrast, the distributional limit singularly depends on extremes from

VTNGQMLE is shown to jointly depend on extremes from both {o7 In the case where

}tGZ }tEZ'

{o?}tez. Consistent with the logic stated above favoring NGQMLE over QMLE (bias issues aside), sim-
ulation results, while confirming both VTQMLE and VTNGQMLE to be consistent in heavy-tailed cases
and more efficient than QMLE, even when f # g, also (strongly) favor VTNGQMLE over VTQMLE, on
efficiency grounds, in these same cases.

The distorting properties of the sample variance on VTQMLE are considered a cost, since these prop-
erties can prevent VTQMLE from achieving a Gaussian limit. Complicated estimators aimed at dampening
the tails of {Yt}tez are, thus, proposed so that VTQMLE can retain such a limit (see; e.g., Hill and Renault,
2012). This paper, in contrast, views the distorting properties of the sample variance as a benefit, since those
properties enable variance-targeted estimation, generally, and VTNGQMLE, specifically, to be robust to
density misspecification. Counter-balancing the non-Gaussian limit of VTNGQMLE in heavy-tailed cases
are (iii) beneficial effects from the Student’s-t likelihood (effects that are retained in large, though still finite,
samples, owing to a relatively slow rate of convergence), and (iv) QMLE also having a non-Gaussian limit
of similar, qualitative form, in these same cases (see Hall and Yao, 2003, Theorem 2.1).

Despite its non-Gaussian limit, Monte Carlo experiments reveal VTNGQMLE to perform surprisingly
well against the competing robust estimators of both Fan et al. (2014) (hereafter FAN) and Preminger

and Storti (2017) (hereafter LSE) . In fact, VTNGQMLE is shown to outperform both estimators in terms

®In this case, "large" is relative, in the sense that, owing to a slower rate of convergence, effects from the likelihood function
will tend to remain, even in finite samples that are quite "large," by standard convention. This tendency is shown to be a benefit,
not a cost, however.

7«[1/;}tEZ in (1) and (2) needs to be covariance stationary, meaning {a?}tez cannot follow an IGARCH (1, 1) process.



of root-mean-squared and mean-absolute-error in samples as large as 10, 000 observations. Moreover, in
empirical, out-of-sample forecasting exercises using S&P 500 (log) returns and VIX levels, VTNGQMLE
is shown to outperform both QMLE and FAN.8

Empirical applications involve forecasting the volatility of S&P 500 (log) returns and VIX levels. The
former represents a standard application in financial econometrics. The latter, however, is more nuanced
and leverages a characteristic unique to the S&P 500 Index. That is, for the S&P 500 Index, the following
three features are directly observable: (v) the return; (vi) option-implied volatility of the return (V1X); (vii)
option-implied volatility of the volatility (VVIX). Using features (vi) and (vii) robust estimation of the model
in (1) and (2) on VIX demonstrates that the variance of VIX (viii) evidences rich GARCH effects and (viv)
these effects are useful at forecasting option-implied volatility of volatility (VVI1X), thus establishing a link

between historical VIX variance and risk-neutral volatility-of-volatility.

2 Preliminaries

Define . as a measure on a locally compact, second countable Hausdorff space F, and let M, (E) denote
a collection of Radon measures on E. For R = R U { —00, ©0 } consider the bounded set R” \ {0},
where bounded here means bounded away from zero. Also, B € B (@d \ {0}) denotes a Borel o-field
defined on this bounded set. Lastly, the unit sphere is denoted by S¢—1 = {:n cRY: |z| = 1}.

For an R%-valued random vector X,

Definition 1 X is multivariate regularly varying with tail index x, € ( 0, oo ) if 3 a sequence {a,, } —

oo and a nonnull i € M (Rd \ {0}) such that
nP(a;'X €)= p() as n — oo,

where "v" denotes "vague convergence,"

1(sB) = s ou(B),

Vs > 0 and a relatively compact B € B <@i \ {0}).

81n the case of VIX levels, both QMLE and FAN produce implausible estimates, while the estimates from VTNGQMLE remain
"in-line" with economic rationale and empirical observation.
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In addition, 0x denotes the Dirac measure at X; meaning, for some set 4, dx (A) =

C denotes a generic constant that can take-on different values in different places. "L denotes (weak) con-

vergence in distribution.

3 The Model and Background Results

Under consideration is the linear GARCH (1, 1) model of Bollerslev (1986). Results presented herein can
be extended to the general GARCH (p, q) case, where p, ¢ > 1 (see; e.g., Vaynman and Beare, 2014).
Focusing on the special case of p = ¢ = 1, besides being the most practically relevant, also facilitates the
illustration of key concepts and ideas, as well as the verification of important conditions.

For a sequence {Y;},.,, and a o-algebra defined for this sequence as denoted by €2,
Y; == Ut€t7 Et [ad i.i.d. _D (O, ].) 5 (3)

07 = wo + Y2 + Boory, (4)

where D is an unknown probability distribution with associated density function g. w, denotes the true
value of w; w any one of a set of possible values, and & an estimate. Parallel definitions hold for all other

parameter values.

ASSUMPTION 3.1.
w >0, a >0, 58>0, a+p <1

Under Assumption 3.1, the GARCH(1, 1) model being considered nests the the ARCH(1) model as a

special case. Given (3), (4), and Assumption 3.1,

E(Y?) =E(0?) = Jﬁ < o0, 5)

where, for notational convenience, E (o7) = E (c%). As a result, (4) may be re-written as

o;=E (‘72) (1—ag = Bo) + Y21 + Boopy. (6)



!/
Let X, = ( o2, Y2 ) . Again owing to (3)-(4),
X, =AX,_+By, (M
where
[0 w
A, = Bo 0 ’ B, — 0 ’
Boct gt woef

represents a stochastic recurrence equation (SRE) (see; e.g., Mikosch and Starica, 2000, eq. 2.2). As such,

Definition 1 is shown to apply (see; e.g., Mikosch and Starica, 2000, and Basrak et al., 2002).
ASSUMPTION 3.2. The sequence {¢7},_, is regularly varying, with tail index .

Under Assumption 3.2, innovations to the GARCH(1, 1) model are heavy-tailed, in the sense that the
(unknown) distribution for these innovations belongs to the Fréchet class, as opposed to the more commonly
assumed Gumbel class.® Regardless of whether GARCH(1, 1) model innovations are heavy-tailed in a
Fréchet-class sense, or (relatively) thin-tailed in a Gumbel-class sense, X, will be regularly varying (see
Mikosch, 1999, Corollary 1.4.40).

What follows in the remainder of this section is a summary of select (weakly) dependent and heavy-
tailed limit theory results, upon which later sections are based. This summary draws heavily from Davis
and Mikosch (1998) and Mikosch and Starica (2000), both of which, in turn, rely on results from Davis and
Hsing (1995). The intent of this summary is to introduce certain key results; not provide a comprehensive
review. A detailed treatment of these results, as well as additional background information, can be found in

the aforementioned works.

Lemma 1l Given Assumptions 3.1 and 3.2, let {X,} be the unique stationary solution for the SRE in (7).
Then (i) X is regularly varying with tail index =, € (1, ¢,), and (ii) P (|X| > x) ~ Cxz "o for some
C € (0,00).

From Definition 1, let {a,, } satisfy

nP (|X| >a,) — 1, n — 0o (8)

%See McNeil et al. (2015, Chapter 5) for definitions of the Frechét and Gumbel classes of distributions, respectively. As illus-
trations, the Student’s-t distribution with a finite degree of freedom is a member of the Frechét class, while the Normal distribution
is a member of the Gumbel class.



Given (8), Lemma 1(ii) implies that
a, ~ (Cn)Y/"o 9)

and analogously, Assumption 3.2 implies that
b, ~ (Cn)Y" . (10)

ASSUMPTION 3.3. E (¢*) = oo, but the distribution of ¢ remains in the domain of attraction of a

normal law. In this case,
H(a)=E (¢* x I (0® <a)); an:inf{a>0:nH(a)§a2}, (11)

where H is slowly varying at occ.

Compared to (9), Assumption 3.3 offers an alternative characterization of a,,, one that applies in the
borderline case where x, = 2. This condition heralds from Hall and Yao (2003), as do the following two

implications; specifically,
a’P (‘02 —F (02)‘ > a)

T (a) — 0, a — o0 (12)

(see; e.g., Feller, 1996, (8.5), p. 303), and

aB (|0 ~ B (0%)] 1 (o ~ B (%)] > a)

T (a) — 0, a — 00. (13)

Consider the following sequence of point processes defined from the normalized process (X,).
N,=> 0%,a,, neN, (14)
t=1

where {a,, } is defined in (8) and (9).

Lemma 2 Given Lemma 1 and the sequence of point processes in (14),

4 0o oo
Ny — N = ZZéPiQij’

i=1j=1



o0
where (iii) > 6 p. is a Poisson process on ( 0, oo ) with absolutely continuous intensity measure
=1

v (dy) = yorey " dy,

oo
Ky € < 1, ¢ ) and~, € (0, 1] (iv) ];5(% for i« € Nis ani.i.d. sequence of point processes on

@i \ {0} taking values in the set
=2
{M e M, (R+ \ {0})} cuz:lz)>1) =0 and  u(S) >0,
and (v) > 0p and ZJQU for ¢+ € N are mutually independent.
i=1 j=1

Remark 1 From Basrak et al. (2002, Remark 2.12.), the points ( P, Qi ) correspond with the ra-
dial and spherical parts, respectively, of the limiting points X, /a,,, where the spherical part accounts for

clustering behavior in the limiting point process.

Remark 2 Consider the sequence of point processes

n
N2 =D _Oxz/az:
t=1

Given Lemma 2 and the continuous mapping theorem,

oo o0
d
i i
i=1j5=1

In words, Lemma 2 details a convergence result from point process theory that can be used to establish

the distibutional limit of the vector sequence
n
SF=> X7, k=12, (15)
t=1

in the case where

!
E (Xf) =00 for I>1.
To illustrate, consider the function 7, : Mp (@i\ {0}) — R? such that
a Sk =1 (N/j) .

9



Given Lemma 2 and Remark 2,
T, (N,’f) i>T6 (Nk>, n — 00.
In addition, given Davis and Mikosch (1998, Proposition 3.3),
T (N’“) gk o,

where S is a vector of (k,/k)-stable random variables expressed in terms of the P;’s and Q;;’s in Lemma
2. The end result

a,Fsk L sk, (16)

is a limiting distribution for S* with an ill-defined variance. The univariate analog to (16) was determined
by Davis and Hsing (1995, Theorem 3.1). Both (16) and its univariate analog factor prominently in the

limiting results developed in Section 5.

4 Estimation

For the purpose of estimating (3) and (4), assume (potentially incorrectly) that the probability density func-

tion of D is given by f, where

—(n+1)
2

; n>2,

2

f()((l—l-n_2

in which case, the non-Gaussian likelihood based upon the standardized ¢, -distribution of Bollerslev (1987)

applies. In this case, let

9:(w, a, B 77)2(% v, 77):<“’ ”)'

Given Assumption 3.1 and its implication in (5), consider the alternative parameter vector

o= x)

10



such that
c(v) + aY?2, + Boi_ (v) if 1<t<n

52 if t<1
where ¢ (v) = s? (1 — a — 3). Then, for
o 1L
0721 = EZY?’
t=1

the log likelihood function under consideration is given by

log L, (52, = )=t (3 )
t=1

where

lt ( 3%, s ) = lngn (et | Qt—l) )

as defined in Bollerslev (1987, eq. 1), and 7,, is the solution to

logLn( 372” 7, ) = argnﬁaxlogLn( 33” T ) , a7
S

a Variance-Targeted, Non-Gaussian, Quasi-Maximum Likelihood Estimator (VTNGQMLE) for 4,. The
FOC from (17) is

) . " 9L, (v,)
= loe L - t\7n/ 18
0= 5_logLy, (v,) ;:1 . (18)

Let
Vg = ( O'%, 190, ﬁo >7
where 0% = E (0?), and 7, is interpreted as a "pseudo™ truth.
ASSUMPTION 4.1.
Qw,n) =—Inw+tE [mf( s )}
has a unique maximum at either w, and 7, when f = g or w, and n, when f # g.
Assumption 4.1 is a generic identification condition for the scale and shape of f. It is the same as

Newey and Steigerwald (1997, Assumption 2.4). When f = g, this assumption holds naturally. When

f # g, Assumption 4.1 follows from identification of the scale and shape parameters of g.

1 the (likely) case where f # g, there is no "true” . Nevertheless, in this case, 7j converges to something, and that something
is defined as a "pseudo” truth.

11



Taking a first-order Taylor Expansion of (18) around v = v, produces

- — [0l (vg) | 8%y (vy) _
V= ; { o mow (n ) (19)
— - alt (UO) 82lt (U,L) ~2 2 82lt (Uz) ~ M N _

t=1

where v, lies on the line segment between ¥, and v,,. Letting

1 &8l (v,) 1 ¢ 821, (v,) 1 <821, (v,) 1 <0, (vg)
— - DA L A A U VA iy = - )
J ; ooy’ " né ondo?’ n ne= Omdn oon ntz or '

(19) becomes

ASSUMPTION 4.2.

2 2 2
Jn(ﬁ'JEE<alt(U0)>, Kna'—%'KEE<8lt(UO)>, Mntg.MEE(a lt(“o)>.

ooy’ ondo? ondn

When n = oo, Assumption 4.2 follows from Vaynman and Beare (2014, Lemma 1). Given Assumption

4.2, rearranging (20) and substituting population moments for sample moments produces

na;,! (@n - ﬁo) = —J " {Kna;' (6% — 02) + Mnay" (3, — 7o) + na, ' Z,} . (21)

5 Asymptotics

This section considers the large-sample implications of (21) in six cases ranging from (relatively) thin-
tailed to (very) heavy-tailed. To preview the results, the large-sample properties of VTNGQMLE look very
different depending on whether a thin-tailed or thick-tailed case applies.

5.1 Casel: k; > 2; 7, = o0.

In this case, the likelihood used in estimation is Gaussian, so the second term on the right-hand-side of (21)

drops out. In addition, a,;' = n~1/2 so that

Vi (2 —03) ~L N (0,V,.), (22)

n

12



by a CLT for weakly dependent data, and
VnZ, -4 N(0,V,), (23)
by, for instance, Hall and Yao (2003, Theorem 2.1(a)). Moreover,
Vi (9, = 90) 5 N (0,Vy), (24)

by Francq et al. (2011, Theorem 1.1); in which case, given (22) and (23), V,, is seen to depend upon both
V_» and V,. Moreover, given Francq et al. (2011, Corollary 2), the VTQMLE cannot be asymptotically
more efficient than QMLE.

511 Case2: ky>2;7 € ( 2, oo )

In this case, all three terms on the right-hand-side of (21) matter. a;* = n—1/2 continues to hold, as do both
(22) and (23), except that the latter now follows from Fan et al. (2014, Theorem 2). Given Assumption 4.1,

we can posit that

Vi (@, =) =5 N (0,75). (25)

In (25), Fan et al. (2014, Section 5.3) establishes the rate of convergence as /n and the limit as Gaussian,
both so long as ¢, > 1.

We can further posit that
N ((?9” n 6n> - 190) N (0, Vg) , (26)

using (22) and results from Fan et al. (2014, Theorem 2). In (26), however, and in contrast to (24),5n 2,
C # 0, thus rendering 5n from (17) generally inconsistent. The presence of a non-asymptotically-vanishing
én follows from Fan et al. (2014, Proposition 1). Specifically, for our chosen f, VINGQMLE fails to
identify the scale of the true model innovations, whenever f # g (see, additionally, Newey and Steigerwald,
1997). This issue of under-identification impacts 3,1, generally, because it impacts «,,, specifically. Conse-
quently, f?n from VTNGQMLE is inconsistent because the scale of the GARCH(1, 1) model’s innovations
is not identified.

It is well known that NGQMLE is inconsistent whenever f = g. It turns out that in this case, VT-

NGQMLE inherits this same undesirable property.

13



512 Case3:rg=27¢€ (2, oo ).
In this case, apply Assumption 3.3. In addition, let
U, = a,;lzn: (Y2 - E(Y?)) (27)
t=1
= a;li (o7 +W,) —E(Y?); W,= (¢ 1) xo}

t=1
= a,jlzn:Wt + a;lzn: (o7 — E (0?))
t=1 t=1

= I(a)+ II(a)
Following notation from Mikosch and Starica (2000), for a random variable X, let
1 n—h
Vn,x (h) = EZXtXt+h'
t=1
Given (6),

(@) = a,"y (Y21 —E(Y?)+ By (071 — E(0?)) (28)

Plugging (28) back into (27) produces
1-— 60 ) -1 &
U,=(—5)a, W, (29)

Theorem 3 Given Assumptions 3.1 and 3.3,
1(~2 2\ d 1-8, \°
na, (0, —o5) — N |0, | ————— | V; (30)
( O) <1 — Gy — 50) v

where a,, is given by (11), and V3 is defined in (65) of the Appendix.

Proof. Unless otherwise stated, all proofs appear in Appendix A. =
Motivated by results in Hall and Yao (2003), Theorem 3 establishes 52 as asymptotically normal in the

borderline case where x, = 2. In this case, (23) continues to hold as in Case 2, as does (25). Moreover,

14



given Assumption 3.3,

1/2

n a

in which case, from (21),
na;l (@n — 190) =—J! {Kna;l (3% — 03) + M+/n (W, — 1) + \/ﬁZn} .
As aresult, VTNGQMLE remains an inconsistent estimator of @L, owing to the (asymptotic) effects of Z,,.

5.2 Cased: k€ ( 1, 2 );L0>2.

Given Figure 5, this case has been empirically relevant for SPX (log) returns, at least, in the past

Theorem 4 Given Lemma 1, (9), Assumption 4.2, and (21), if E (Y;*) = oo; o7 is in the domain of attrac-

tion of a k-stable law, and E (e}) < oo, then
na, ! (5,1 - 190) = —J 1Kna,! (82 — o) + 0, (1). (31)

When E (Y*) = oo because x, < 2, and E (e}) < oo (or, equivalently, ¢, > 2), the distributional
limit of f?n becomes dominated by the limit of 8% (an analogous result is reported in Vaynman and Beare,
2014, for VTQMLE). This dominance sources to a slower rate of convergence for ai compared to either 7,
or the score of the likelihood function. Since 52 -~ o2, an effect of this dominance is that VTNGQMLE
becomes a consistent estimator for f?n. As such, VTNGQMLE is a robust estimator like QMLE and the

multi-step estimators aimed at improving QMLE, like Fan et al. (2014) and Preminger and Storti (2017).

Theorem 5 Given Lemma 1 and (9), if E (Y;*) = oo; o7 is in the domain of attraction of a r,-stable law,
and E (ef) < oo, then

1 qa d 1-p
nanl (0'721 —O'%) e <10400[30> UO.Z, (32)

where U, is the k-stable random variable given in (72).

Remark 3 The method of proof behind Theorem 5 borrows from both Davis and Mikosch (1998) and
Mikosch and Starica (2000). Theorem 5 is also closely related to Vaynman and Beare (2014, Theorem
4).

Remark 4 The limit in (32) relates to the P;’s and Q;;’s in Lemma 2.
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Established in Theorem 5 is a stable limit for 8721 that is highly non-Gaussian. Convergence to this non-
Gaussian limit is also slower than the usual \/n rate and dependent upon the tails of {c7}. In this case,
while both {7} and {€?} are allowed to be heavy tailed, only the tail properties of the former impact the
limit in (32).1

Given (31) and (32), establishing the limit of 5n requires a straight-forward application of Slutsky’s

Theorem to produce

~ 1-3
na,* (9, — 9 4, <0> J KU, (33)
( 0) 1 —ag— By

5.3 Caseb5: k € ( 1, );L0:2.

This second borderline case was first introduced and studied in Hall and Yao (2003). Given Figure 6, this
case appears to be empirically relevant for SPX (log) returns in contemporaneous times. For analyzing this

case, the following Condition is important.

ASSUMPTIONS.1. FE (64) = 00, but the distribution of €2 remains in the domain of attraction of a normal

law. In this case,
Hb) =E(*xI(<b));  b,=inf{b>0: nH(b) <b*},

where H is slowly varying at oc.

Remark 5 Assumption 5.1 parallels Assumption 3.3 but for €2 and is identical to Hall and Yao (2003, eq.

2.8). It controls the rate of tail decay in the distribution of ¢2.

In this borderline case, (31) continues to hold, in which case, the asymptotic properties of @L remain
dominated by those of 2. Establishing the stable limit of 52, however, becomes more complicated com-
pared to Theorem 5, since it is now the case that E (e*) = co. Nevertheless, with the aid of Assumption
5.1 and its associated implications (see 12 and 13, appropriately modified for €2), (32) continues to hold, as

established by the following Theorem.

Theorem 6 Given Lemma 1, (9), and Assumption 5.1, if E (Y;*) = oo, and o7 is in the domain of attraction

of a k-stable law, then (32) continues to hold.

1Just as the impact of the likelihood function vanishes in (31), the impact of extremes in {ef} vanish in determining the limit
of 2. The notation for the limiting variable U, > emphasizes this singular impact.
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Under Theorem 6, despite €2 being a heavier-tailed process compared to Case 4, its tail properties
continue to exercise no effect on the asymptotic limit of 52. Moving from Case 1 to Case 2, the rate of
convergence changes but the distributional limit remains (generally) the same. Moving from Case 4 to Case
5, in contrast, both the rate of convergence and the distributional limit remain unaltered. Explaining this
difference between borderline cases are the dual results that (1) the rate of convergence implied by {b,,} is
faster than the rate of convergence implied by {a,, }, causing any effects related to the former to vanish, and
(2) extremes in o2 continue to dominate the asymptotic behavior of in.

t=1
An immediate consequence of (31) and (32) continuing to hold is that (33) also continues to hold.

54 Caseb: k, € ( 1, ¢ );LO < 2.

There is strong empirical evidence supporting this very heavy-tailed case as being relevant for VIX (see Fig-
ures 11 and 12). In addition, empirical relevance of this case even for SPX (log) returns, in contemporaneous

times, cannot be dismissed (see Figures 5 and 6).

Theorem 7 Given Lemma 1, (9), (10), (20), and Assumption 4.2, if E (Y;*) = oo; o7 is in the domain of

attraction of a -stable law; E (e}) = oo, and €2 is in the domain of attraction of a ¢,-stable law, then
na,, ‘b, (5,1 - 190) = —J 'Kna,'p? (Ei — o) + 0,(1). (34)

In this case, the analog to (27) is
Uy =a, ', (Y2~ E(Y?),
t=1

in which case,

1 -8, > i
U, = < oS, (35)
1 —ag— By ; !

following the steps outlined in (27)-(29). Given (34), analysis of a., 'b.-1 >~ W, then determines the asymp-
t=1

totic limit of J,,.

Theorem 8 Given Lemma 1, (9) and (10), if E (Y;*) = oo; o7 is in the domain of attraction of a ,-stable

law; E (e}) = oo, and €? is in the domain of attraction of a . -stable law, then

—13—1 (~2 2y d 1 -5y
b — — | — 36
na, oy, (Un 00) <1 —a, — BO) Ue2, o2 ( )
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where U,z 2 is the r-stable random variable given in (86).

Under Theorem 8, and for the first time, tail properties of both {07} and {7 } matter in determining the

asymptotic limit in (36).

Remark 6 In the proof of Theorem 8, when establishing the asymptotic variance of certain sums as negligi-
ble, it appears insufficient to rely solely on the normalizing constants {«,, }, since doing so implies explosive
(as opposed to dampened) behaviour in the affected sums, as n grows large. Joint reliance on the normal-
izing constants {a,,} and {b,,}, however, enables the variance of these affected sums to smoothly vanish.
Moreover, the asymptotic limit of the remaining sum is seen to depend on both {a,, } and {b, }, as opposed

to just {a,,} alone.

Remark 7 The limits in (32) and (36) are not the same, but they are similar in a qualitative sense (see; e.g.,
Davis and Mikosch, 1998, Remark 3.2). That is, Ue ,2 can be expressed in terms of quantities that are

qualitatively similar to the P;’s and Q;;’s in Lemma 2.

The limit of VTNGQMLE in (36) appears (qualitatively) similar to the limit of QMLE, as determined
by Hall and Yao (2003, Theorem 2.1(c)). Under Case 6, consequently, it is unclear which estimator (VT-
NGQLME or QMLE) dominates the other, on efficiency grounds. A similar statement appears to hold
true when comparing VTNGQMLE to the multi-step estimator of Preminger and Storti (2017) that as-
sumes E (Yf) < oo (hereafter LSE), since /n asymptotic normality of this estimator also depends on
E (€}) < oo, just as in the QMLE case.'? The multi-step estimator of Fan et al. (2014), on the other hand,
(hereafter FAN) should be more efficient (asymptotically) than VTNGQMLE, since the former should be
v/n asymptotically normal, so long as ¢, > 1.

Lastly, given (34) and (36), Slutsky’s Theorem establishes

—1;-1 (3 d 1- 50 > -1
na, b, (9, -0 — — ( J T TKUg 4. (37)
( 0) 1 —ag—fy '

6 Bootstrap Inference

Troubles with the results in (33) and (37) are twofold:

2|n the case of QMLE, E (ef}) < oo is necessary for y/n asymptotic normality. Still in the case of QMLE, Hall and Yao (2003)
show that when E/ (ef) = oo, the asympotic limit is a-stable with a slower rate of convergence that depends upon the tail properties
of {7 }. Owing to this result, it seems reasonable to conclude that when E (e} ) = oo, LSE, too, would have an a-stable limit and
a rate of convergence slower than +/n. This conclusion, however, has not been formally established.
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1. the precise form of the distributional limits is awkward, rendering how to construct asymptotic confi-

dence bands unclear;

2. the rate of convergence depends upon distributional characteristics that are unknown.

Owing to these twin troubles, it is equally unclear the practical relevance of (33) and (37). To help dispel

these troubles, consider
n n 2
Ta=nT) Y- (nlzyﬁ> : (38)
t=1 t=1
which is analogous to a finite-sample variance for 32, if the true variance were well defined.

Theorem 9 Under Case 6 and the assumptions of Theorem 8,
na; 26,272 L U, (39)

where U, 4 is a (r/2)-stable random variable determined by the extremes of both {7} and {o7} (see

the proof of Theorem 9 for additional details).

Remark 8 Hall and Yao (2003) consider a statistic analogous to (38) that is based on ¢,, as opposed to Y.
Denote the Hall and Yao (2003) statistic 72 (e, ), so that the statistic in (38) can be denoted 72 (Y;). Because
{e,} isi.i.d., an appropriately scaled version of 72 (¢,) can be shown to have a stable limit using results from
Feller (1971) and Lepage et al. (1981), even when E (e?) = oo. Complicating an analgous demonstration

for 72 (V;), in the case where E (Y;!) = oo, is dependence in {Y;} that sources to {7 }. Theorem (9)

2
n

establishes a stable distributional limit for 7;, (Y,) by relying upon the convergence results summarized in

Section 3.
Corollary 10 Under Case 4 and the assumptions of Theorem 5,

222 4.y, (40)

na, “7,
where U, is a (/2)-stable random variable determined by the extremes of {57 }.

Proof. The general method of proof follows the same arguments in the proof of Theorem 5 immediately

below (71) and through to the end. Establishing

T.(N?) LU, -0
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for an appropriately defined 7. (-) and the N2 in Remark 2 follows from Davis and Hsing (1995, Theorem

3.1(31). m
2

Theorems (8) and (9) demonstrate that individually na;*b,;* (62 — 03) and naj, b, 272 have proper

limiting distributions. The following theorem and corollary establish that these (weak) marginal convergence

results are also joint.
Theorem 11 Under Case 6 and the assumptions of Theorem 8,
( na, b1 (3% —03), na;?b 272 ) 4, ( U2 52, Uda, g4 ) ; (41)
where the, respective, marginal limits are those from (36) and (39).
Corollary 12 Under Case 4 and the assumptions of Theorem 5,
( na, ! (82—0%), na; %72 ) i’( Ug2, Ugya )7 (42)
where the, respective, marginal limits are those from (32) and (40).

Proof. The method of proof follows that of Theorem (11) (see Appendix A). Alternatively, let

—1 (52 2 222 ) — ( 1)
( na,* (65 —03), na,*7; ) = ( Upner Vine >7

and note that UnE is a special case of U, . in Vaynman and Beare (2014, eq. 35). Then (42) can be
established by following the steps outlined in Vaynman and Beare (2014, proof of Theorem 4). =
With the aid of the continuous mapping theorem and Slutsky’s Theorems, from (41) follows that

@n — Yy d 1 -5y —1 U, 5
A (i) (e) e

n

The power of (43) is that the left-hand-side has a proper limiting distribution, and the rate of convergence is
known. Moreover, given (42), it is evident that the left-hand-side of (43) has a proper limiting distribution
under Cases 3-6. In fact, the left-hand-side of (43) has a proper limiting distribution under all of the cases
considered in Section 5. In Cases 1 and 2, the result is trivial, since 7,, has a degenerate limit, with the stan-
dard \/n rate of convergence. In Case 3, 7,, maintains a degenerate limit; however, the rate of convergence

to that degenerate limit is now unknown. Fortunately, the rate of convergence to a non-degenerate limit for
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@n — 190) is also unknown and happens to depend upon the same latent factor in such a precise way that
the effect of this (common) latent factor cancels out. In Cases 4-6, the limit of 7,, becomes non-degenerate,

but the rate of convergence to that non-degenerate limit remains precisely aligned with the rate of conver-

gence in (@n — 190> in such a way that the normalized statistic (19"?—”90> converges at the standard /n rate.

n

19n*,l?()

n

Owing to this result, ( ) can be bootstrapped using the re-sampling scheme described in Hall and Yao
(2003, Section 3.2), which then approximates the limiting result in (43), as demonstrated by Hall and Yao

(2003, Theorem 3.2).

7 Monte Carlo Experiments

The sequence {e,} is drawn from the skewed student’s-t density of Hansen (1994). This density has two
parameters, A and n, with the former governing skewness, the latter governing the tails, and up to the nth

moment of the distribution being well defined. Values for these parameters are

Ao = ( 0.00, 0.40, 0.80, 0.99 ); no = ( 8.5, 4.5, 4.0, 3.5 )

As X increases, so, too, does skewness, while as 1 decreases, tail thickness increases. n, = 8.5 is a (rel-
atively) thin-tailed case, while the remaining values for n, correspond with heavy-tailed cases. When
1o = 4.5, QMLE is asymptotically normal (AN). When n, = 4.0, AN of QMLE is preserved, but with
a convergence rate slower than \/n, while when n, = 3.5, QMLE is no longer AN, instead converging to a
limit that appears qualitatively similar to the one discovered for VTNGQMLE.

Non-zero skewness levels are considered for two reasons. First, A # 0 introduces a density misspeci-
fication, since f is symmetric. Second, non-zero skewness is an empirical feature of both SPX log returns
and VIX levels, especially, in recent times (see Figure 16), where the former tends to be negative and the
latter strongly positive.r® Unreported results indicate no material differences between positive and negative
values for \,; consequently, only results for positive values are reported.'4

Across the different parameterizations of the innovation density, the different GARCH(1, 1) model pa-
rameters are given in Table 1. The estimators under study are QMLE, NGQMLE, VTNGQMLE, FAN, and
LSE. NGQLME is the Student’s-t estimator of Bollerslev (1987), while FAN and LSE are the estimators of
Fan et al. (2014) and Preminger and Storti (2017), respectively. Away from the case A = 0, NGQMLE is

not robust, while FAN, LSE, and QMLE are all robust estimators. Samples sizes for the simulations range

3The positive skewness in VIX levels is "natural," in the sense that VIX > 0 because it is a volatility.
“simulation results using negative values of \, are available upon request.
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from 500 — 100, 000, with all simulations conducted over 10, 000 trials.'®> Summary statistics for the sim-
ulations include mean bias and inter-decile range. Also reported are ratios of the root-mean-squared- and
mean-absolute-error (each measured with respect to the true parameter value) divided by the corresponding
measure for QMLE. Termed "efficiency ratios,” values less than one indicate improved efficiency of the

given estimator over QMLE. Figures 17-24 depict results for Specification IlI.

7.1 Bias

For @, as A, increases, NGQMLE displays a growing bias that can be quite severe, particularly in large
samples (see Figure 17). Bias in VTNGQMLE (relative to NGQMLE), in contrast, behaves quite differ-
ently, tending to decrease (rather sharply) as the sample size increases. At very large samples (> 10, 000),
VTNGQMLE appears to retain a small amount of bias. Large sample results in Section 5 are based on
a first-order approximation to the score of the likelihood function. This residual bias, then, is consistent
with higher-order effects. Since this residual bias is (1) orders-of-magnitude smaller than the bias affecting
NGQMLE and (2) additionally materially smaller than the bias displayed by VTQMLE, the latter being
a consistent estimator (see Francq et al., 2011, Theorem 1.1), any retained bias in VTNGQMLE, and the
higher-order terms causing it, appears to be only of secondary importance. Consequently, simulation results
confirm VTNGQMLE to be a consistent estimator, comparable to FAN, LSE, and QMLE.

For Bn bias in NGQMLE decreases sharply with the sample size, indicating NGQMLE to be a consistent
estimator for 3, (see Figure 18). In fact, for Bn NGQMLE tends to display the least bias of all the estimators
being studied and under all the simulation designs considered. This result confirms the theoretical prediction
in Fan et al. (2014) that bias in NGQMLE sources to under-identification of scale. Bn is unaffected by scale,
in which case, NGQMLE is a robust estimator for g,. VTNGQMLE of Bn tends to be close to NGQMLE
in terms of bias and, consequently, tends to display among the least bias of the estimators being studied,
except under very large sample sizes. Parallel to &,,, any retained bias in Bn from VTNGQMLE sources to

higher-order effects, which, owing to results that follow, are of (decidedly) second-order importance.

7.2 Dispersion

For @,,, except in the largest samples, NGQMLE and VTNGQMLE tend to be noticeably less disperse

than the other estimators. Under all simulation designs considered, the rate of convergence for FAN and

5The first 200 observations within each trial are dropped in order to avoid initialization effects. Very large samples are considered
because of the slow convergence rates identified under Cases 4 and 6 (see, also, Hall and Yao, 2003, Theorem 2.1(b)—(c), for
QMLE).
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NGQMLE should be y/n. The rate of convergence for VTNGQMLE, however, should always be less than
v/n and should be the slowest in the case where 1, = 3.5. Consistent with these predictions, the rate of
reduction in dispersion appears muted for VTNGQMLE compared to both FAN and NGQMLE (see Figure
19). Moreover, the difference between rates of reduction in dispersion appears most apparent in the case
where 7, = 3.5.

For Bn, NGQMLE and VTNGQMLE are consistently the least disperse estimators, followed by FAN
and LSE (see Figure 20). QMLE and VTQMLE are the bottom-two, in terms of dispersion, and appear
(effectively) indistinguishable.

7.3 Efficiency

For a,,, as A, increases, the bias in NGQMLE grows in importance and eventually dominates both efficiency
ratios, causing NGQMLE to become the least efficient estimator (see Figures 21 and 23). This dominance,
however, takes a surprisingly long while to set in, only severely and adversely impacting the very largest
sample sizes. For empirically-relevant sample sizes (i.e., T € [ 500, 2,500 |), NGQMLE beats all other
estimators except VTNGQMLE in terms of RMSE (see Figure 21), with a similar result holding for MAE
(see Figure 23). The source of this outperformance appears to be (despite the materially higher bias) the
material reduction in dispersion that the Student’s-t likelihood affords (specifically, estimation of a degrees-
of-freedom parameter) relative to the competing estimators. Moreover, except in the largest samples consid-
ered (> 50, 000), NGQMLE sizably outperforms QMLE, in terms of both RMSE and MAE. Consequently,
as a practical matter, in heavy-tailed cases, and despite the presence of material bias, NGQMLE appears
preferable to QMLE.

For &,, and A, > 0, VTNGQMLE consistently beats NGQMLE (see Figures 21 and 23). Moreover, and
surprisingly, in these same cases, VTNGQMLE consistently beats both FAN and LSE in samples as large
as T = 2,500, generally. In the heaviest-tailed case of n, = 3.5, specifically, VTNGQMLE beats FAN and
LSE in samples as large as T' = 10, 000. Consequently, gains in VTNGQMLE over FAN and LSE appear to
be finite-sample phenomena; however, in heavy-tailed cases, these gains (1) are rather sizable and (2) extend
into finite samples that are (very) common to empirical applications.

Still for &,,, in the (relatively) thin-tailed case of n, = 8.5, VTNGQMLE is never more efficient (under
either efficiency ratio) than QMLE in the largest sample size, making gains in VTNGQMLE over QMLE
also a finite-sample phenomena; albeit, one that similarly persists into surprisingly large samples. In cases

where 7, < 4.5, however, material efficiency gains in VTNGQMLE over QMLE begin appearing even in
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the largest sample size, when Ay > 0. When 1, = 4.0, VTNGQMLE is more efficient than QMLE across
all sample sizes considered, with this tendency preserved in the heaviest-tailed case of n, = 3.5. From Hall
and Yao (2003, Theorem 2.1(b)—(c)), the large sample properties of QMLE change when 7, < 4.0. In these
same cases, the relative large sample properties between VTNGQMLE and QMLE appear to change as well.

For @, using RMSE, Francq et al. (2011, p. 630) reports that when the true ARCH (1) innovations
are heavy-tailed, VTQMLE "performs remarkably well and even outperforms QMLE." The sample size
upon which this result is based is 7" = 500. Results in Figures 21 and 23 show that this outperformance
of VTQMLE over QMLE (1) extends to the GARCH (1, 1) case and (2) covers sample sizes much larger
than 7' = 500. For instance, when n, < 4.0, VTQMLE bests QMLE (in terms of either RMSE or MAE)
in samples as large as 7" = 10,000. However, across all samples considered, VTNGQMLE always bests
VTQMLE (and by large amounts), and in the heaviest-tailed cases of n, < 4.0, VTQMLE tends not to
outperform QMLE in the largest sample size, while VTNGQMLE does.

For Bn overall, VTNGQMLE and NGQMLE tend to be the most efficient estimators, with NGQMLE
performing the best across all specifications considered (see Figures 22 and 24). Only at samples larger
than T' = 10, 000 does there appear any appreciable difference between NGQMLE and VTNGQMLE, with
that difference favoring NGQMLE. In these same (very) large sample cases (> 50, 000), both FAN and LSE
outperform VTNGQMLE but neither outperforms NGQMLE. Consequently, not only is Bn from NGQMLE
robust to density misspecification (as further explored in the next section), NGQMLE is the best estimator
for 3, out of all the estimators considered.

Consequently, in the family of robust GARCH estimators, VTNGQMLE appears tough to beat. Com-
pared to both FAN and LSE, VTNGQMLE is also the simplest to implement, requiring the fewest compu-

tational steps.

8 Explaining the Results

Let
o7 =L, (44)

Conditional on (44), the model of (3) and (4) can be re-cast as

Y, = Jwyo€, (45)
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_ (0% _
ot =1 (20) ¥2, 4 ot (e
0

From (45), the constant parameter w, can be seen as the scale of the model’s innovations. From (46),
"reactivity" of the conditional variance to the previous period’s innovation is seen to depend on scale.’® Also
from (46), the portion of the previous period’s conditional variance affecting the current period’s conditional
variance is seen to be invariant to scale. Consequently, difficulties in estimating w, have the potential
to adversely impact the estimation of «,, while such difficulties should not impact the estimation of 3.
Conversely, improvements in the estimation of w, have the potential to benefit the estimation of «, as
shown; e.g., by Fan et al. (2014).

Consider, next, the following generalization to the model of (3),

Y, = 05004 (47)
= étet

where

N0 = argmaxk | —logn, + log f < , (48)

ny>0 "y

with the expectation is taken under g, and

.2 5 9 9 .2

o, = (fowo) + (nF000) Yiia + Boory (49)

.2
= 2
= Wyt gVl + Booi_1-

(47) and (48) herald from Fan et al. (2014, eq. 6), where n o actsas a scale adjustment parameter.t’
The model of (47) and (48) compliments the finding from Newey and Steigerwald (1997) that GARCH-
style models require additional parameters for correcting discrepancies between f and g, so as to ensure
identification of NGQMLE.'® When either f = g or f e_TZQ, Ngo =1 (see Fan et al., 2014, Proposition
1), in which case, the baseline model of (3) and (4) applies. As a result, no adjustment factor is necessary
for the scale estimate from QMLE. However, when f = g and f o 6%62 does not hold (as is the case here),
nso 7 1. Inthis case, owing to (49), incorrectly assuming that n, , = 1 results in a biased estimate of scale.
Moreover, the same bias impacting scale will also (and equally) impact "reactivity."

Consider estimation of (47) and (49) ignoring the presence of M0 and, therefore, implicitly assuming

%That is, GARCH "reactivity" is the ARCH parameter normalized by the (unconditional) scale of the model’s innovations.
1gpecifically, 1,0 Measures the "distance” between f and g.
¥Those discrepancies relate to location and scale.
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17, = 1.1 The following two cases are considered: £ (Y;*) < oo (the thin-tailed case); £ (Y,*) = oo (the
heavy-tailed case). Let & denote the NGQMLE estimate of @, and &' the VTNGQMLE estimate, with

parallel definitions holding for other parameters in (49).

ASSUMPTION 8.1 Under both the thin- and heavy-tailed cases,
plim <5n> =wp; plim (@l) =aqp; plim (Bn) = Bo- (50)

Under Assumption 8.1, neither w,, nor «, are identified, owing to the distorting presence of Mo What
are identified, however, are @, and &, which can be interpreted as reduced-form parameters. Consequently,
NGQMLE (minus any scale correction) consistently estimates the reduced-form conditional variance in
(49). The mistake, then, is treating @,, and @, as structural estimates. When f #%gand f e%ﬁdoes not
hold, NGQMLE under-identifies the (structural) GARCH model.

Monte Carlo results support Assumption 8.1. In (50), bias in &, and @, as estimates of wy and a,
respectively, is precisely the same, as it stems from the same distorting property introduced by n £.0° This
prediction is confirmed by comparing Figures 17 and 25. In large samples, the size and sign of the bias in
NGQMLE estimates for w, and o, respectively, are identical across all simulation designs considered for
which f # g. In addition, no (asymptotic) bias is detected for the NGQMLE estimates for j3,,.

Under both the thin- and heavy-tailed cases, 5}? is given by
VT 9 A~ ~ ~VT =
Wp = n?”,nw’ﬂ = n?c,n {O-i (1 -, = /Bn)} )

in which case, the scale of the GARCH model innovations is, in turn, a scaled version of the uncon-
ditional variance of Y}, where the scaling coefficients are the parameters governing short-term, conditional

variance dynamics. Under the thin-tailed case, the probability limit of @/T is

. ~VT _
plim (Wn ) = 77?0,0 {Ug (1—ap— /Bo)} (51)
= n7owo — aoognto (M0 — 1)

= plim (G) — agadndo (o — 1),

where the second equality follows from p lim (ﬁfcn) = 77?20 by Fanetal. (2014, Theorem 1) and p lim (ﬁx T) =

®Fan et al. (2014), in contrast, accounts for the presence of 14 o by estimating (48) in a preliminary step, using {€} from QMLE.
Unlike in Newey and Steigerwald (1997), it is not possible to jointly estimate 7 ; , along with the other GARCH parameters, since
14,0 IS not separately identified.
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@, by the discussion under Case 2. In this case, ﬁxT is also a biased estimator of scale, but the form of the
bias differs from that affecting @,,.

Under the heavy-tailed case, the probability limit of ﬁxT becomes

. ~VT
plim (5, ) = w0 {od (1 - ag—fo)} (52)
= 773‘,0‘*’0
= plim (ﬁn),

where the first equality follows from plim <§ZT> = o by Theorem 4 or 7. In this case, @YT

remains a
biased estimator of scale, but the form of the bias is now precisely the same as that affecting @,,.

Monte Carlo results support the prediction in (52). Biases in 5}? and &,, tend to be right on top of each
other, in cases where f # g (see Figure 25). Differences in these biases tend to be minor and, consequently,
source to p lim (3}?) = 0, being true to a first-order approximation.

Section 5 discovers that VTNGQMLE is a biased estimator for «, in the thin-tailed case (including the
borderline case of Assumption 3.3) but a consistent estimator in the heavy-tailed case. (51) and (52) reveal
that in neither case is VTNGQMLE a consistent estimator of scale. Fan et al. (2014) shows that accounting
for the scale correction parameter in (47) and, therefore, solving the identification problem evident in (49),
results in a more efficient estimator than QMLE, consistent with the argument put forth in Section 1. That is,
in heavy-tailed cases, a heavy-tailed likelihood can distinguish heavy-tailed effects that are static in nature
from heavy-tailed effects that arise due to short-run fluctuations in the conditional variance. A Gaussian
likelihood, in contrast, cannot make this distinction. Holding heavy-tailed likelihoods back, however, is
their inability to identify (and consistently estimate) scale, when those likelihoods depart from the truth.
Fan et al. (2014) removes this impediment and shows that the resulting efficiency gains (relative to QMLE)
can be substantial. Section 7 shows that VTNGQMLE can be a materially more efficient estimator for o,
than FAN, LSE, and QMLE. But VTNGQMLE does not solve the identification problem associated with
scale, whenever f # g. So what is going on? Results presented in Section 7 hint at an answer.

From Section 7, NGQMLE is shown (consistent with popular belief) to be a biased estimator away from
the true innovation density. Despite being a biased estimator for «,;, NGQMLE is also shown (contrary to
popular belief) to perform surprisingly well against robust alternatives in finite samples of surprisingly large
sizes. The reason behind this surprisingly strong performance is the reduction in dispersion afforded by
NGQMLE (see Figure 17). Analogous reductions in dispersion tend also to be afforded to the NGQMLE

estimates of w, (see Figure 26), where these reductions (relative to robust alternatives) tend to grow as 7,
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shrinks. Moreover, these reductions in dispersion tend to be so great as to overwhelm the presence of bias,
resulting in estimates of wy, that tend to be more efficient (in terms of either RMSE or MAE) than robust
alternatives in finite samples as large as 7" = 2, 500 (see Figures 27 and 28). From (52) and confirmed in
Figure 25, NGQMLE and VTNGQMLE for w,, are closely linked in terms of bias. It turns out, NGQMLE
and VTNGQMLE for w, are also closely linked in terms of dispersion (see Figure 26) as well as in terms of
efficiency (see Figures 27 and 28). Consequently, VTNGQMLE tends to produce a more efficient estimate
of scale, in heavy-tailed cases, than does either FAN, LSE, or QMLE in sample sizes as large as 7' = 2, 500.
In these same cases, the outperformance of the VTNGQMLE estimates of o, over those from FAN, LSE,
or QMLE is at its highest (compare Figures 21 and 27 as well as Figures 23 and 28). As a result, efficiency
gains in VTNGQMLE over FAN, LSE, and QMLE can be attributed to the same factor identified in Fan et
al. (2014): improvements in the estimate of scale for the GARCH model innovations. In contrast to Fan et
al. (2014), however, in the case of VTNGQMLE, this improvement is being afforded by a biased estimator.

Further departing from Fan et al. (2014), improvements in the estimation of w, do not appear to be the
only factor contributing to the outperformance of VTNGQMLE over FAN, LSE, and QMLE: the very act
of variance targeting itself appears to be a second contributing factor. Why? VTQMLE estimates of w,, are
never more efficient than the QMLE alternatives in any of the simulation designs considered (see Figures
27 and 28). Despite this fact, VTNGQMLE estimates of «,, nonetheless deliver sizable efficiency gains
over QMLE alternatives in heavy-tailed cases (as also reported in Francq et al., 2011), where these gains
tend to increase as the tails grow thicker. Explaining the difference in gains earned using VTNGQMLE
over VTQMLE links to the former’s improvements in estimating scale over the latter’s. Both estimators,
however, also appear to enjoy a boost afforded from the very act of VT. Supporting the existence of this
shared boost is the fact that efficiency gains in the VTNGQMLE estimates of «, tend to persist into larger
sample sizes even after the efficiency gains in the VTNGQMLE estimates of w,, have disappeared (again,

compare Figures 21 and 27 as well as Figures 23 and 28).

9 S&P 500 Index-Related Volatility Estimation and Forecasting

The S&P 500 Index is a unique financial instrument in that the following three quantities are each directly
observed daily: (i) the return on the index; (ii) option-implied volatility on the index (VIX); (iii) option-
implied volatility on VIX, or option-implied volatility of volatility (VVI1X). Using a historical time series
of (i), it is standard to apply the model of (3) and (4) for the purpose of forecasting return variance and

comparing out-of-sample results against the realized (return) variance (see; e.g., Andersen and Bollerslev,
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1998). Following this convention, Section 9.0.1 compares @L from QMLE, VTNGQMLE, and FAN, using
the results for each, respective, estimator to generate out-of-sample volatility forecasts 1-, 5-, 10-, and 21-
days-ahead to determine which estimator produces the best forecasts at each horizon. Aiding these forecast
comparisons are the loss functions RMSE and QLIKE, since both are "robust” in the sense discussed by
Patton (2011).

Applying the model of (3) and (4) to the historical time series of (ii), though less standard, produces
estimates of the historical volatility of VIX. Given that (iii) is directly observable, it is feasible to ask
whether estimates of the historical volatility of VIX are useful in forecasting VVIX. In this sense, VVIX
acts analogously as the realized (return) variance in that both (potentially) can be used to compare the
efficacy of competing volatility forecasts, despite the fact that VVVIX is not an unbiased measure (or proxy)
of the realized volatility of V1X.?% Section 9.1 proposes a forecasting model for VVIX that takes GARCH
volatility of VIX forecasts as inputs.?! 1-day-ahead VVIX forecasts are then constructed using 1-day-ahead
volatility forecasts of VIX from QMLE, VTNGQMLE, and FAN, and the performance of these competing
VVIX forecasts are compared using the RMSE and QLIKE loss functions.

9.0.1 Returns

Figures 1 and 2 depict rolling window estimates of a,, from daily S&P 500 returns, first over a lengthy
period beginning 12/27/1999, and then over a shortened period immediately following the worst (financially
speaking) of the COVID crisis. In the GARCH (1, 1) model, the parameter «, measures the "reactivity™ of
return variance to the previous period’s return shock. Evident in Figure 1, return variance has become an
increasingly reactive process through time, and in a statistically significant way. Evident in Figure 2, when
reactivity is at its highest, o,, from QMLE is the largest, followed by FAN and then by VTNGQMLE. Oh
and Patton (2024) document a tendency for QMLE-based GARCH volatility forecasts to "overshoot" their
target (the realized return variance) following a large return shock. Figure 1 suggests this tendency to be the
most acute in recent times. VTNGQMLE is the least impacted by this tendency (compared to both QMLE
and FAN), however, making VTNGQMLE (in some sense) comparable to the local maximum likelihood
estimator of Oh and Patton (2024).

In the GARCH (1, 1) model, ¢ = o + B, measures persistence in the variance process. Evident in

2The realized volatility of VIX is determined under the historical measure, while VVIX is determined under the risk-neutral
measure. Consequently, the latter contains a variance-of-the-variance risk premium not present in the former (see; e.g., Huang et
al., 2019).

ZThis model provides reduced-form scale corrections for the variance-of-variance risk premium, and so can be interpreted as
internalizing the bias in VVIX as a proxy for the (latent) realized volatility of VIX.
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Figure 3, variance persistence has been on the decline in recent years and in a statistically significant way.
This decline is the most acute under QMLE. Evident in Figure 4, VTNGQMLE and FAN, in contrast, both
indicate more modest declines in variance persistence. A variance process that is more reactive and less
persistent is harder to forecast. The fact that both VTNGQMLE and FAN dampen these trends, (potentially)
foreshadow their tendency to produce more stable and, thus, more reliable variance forecasts.

Figure 5 depicts 2 x ¢, estimates from the Hill (1975) estimator, together with one-sided 95% confidence
bands, constructed using the standard error estimator in Hill (2010).2? In the middle of the sample, these
estimates provide no evidence in favor of

HO T < 2, (53)

thus indicating QMLE to be \/n asymptotically normal. Under Cases 4-6, in contrast, VTNGQMLE has a
non-Gaussian limit, to which convergence is slower than y/n. Collectively, these results imply that, in the
middle of the sample (when GARCH volatility was relatively less reactive and relatively more persistent),
QMLE performed better than VTNGQMLE. Towards the end of the sample, however, there is now evidence
favoring (53); in fact, evident in Figure 5,7,, < 2. From Hall and Yao (2003, Theorem 2.1), when ¢, < 2,
QMLE also has a non-Gaussian limit, with a slower rate of convergence compared to /. At the end of the
sample, therefore, it is less apparent that QMLE should outperform VTNGQMLE.

Table 2 summarizes out-of-sample comparisons of the GARCH volatility forecasts produced by QMLE,
VTNGQMLE, and FAN, respectively, using the RMSE and QLIKE loss functions and the standard "RV5"
proxy for the latent variance. Comparisons are conducted over two forecast evaluation samples, one begin-
ning on 5/1/2020 and one on 1/3/2022 (the approximate date where the difference between &,, from QMLE
and VTNGQMLE gaps out and remains wide through to the end of the sample; see, Figure 2). Over these
samples, k-period-ahead forecasts are generated each day, where k € ( 1, 5, 10, 21 ) By RMSE,
QMLE is the best; although, VTNGQMLE is fairly close behind. FAN, interestingly, tends to noticeably lag
both QMLE and VTNGQMLE. By QLIKE, however, a different story emerges. In this case, VTNGQMLE

is the consistent winner, while FAN continues to lag behind.

9.1 VIX

It is standard convention to model SPX log returns, since the underlying index levels appear (at least) to
be well approximated as an I (1) process. VIX levels, on the other hand (precisely because they measure

volatilities), should be both strictly stationary and ergodic (see; e.g., Nelson, 1990, and Lumsdaine, 1996).

22gpecifically, depicted in Figure 5 are tail index estimates for {|€t|}tT:1 as determined using VTNGQMLE.
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Consequently, it should be not only feasible, but also preferable, to extract the conditional variance of VIX
directly from VIX levels, rather than from VI1X log returns, with one important caveat. When modeling daily
SPX log returns, it is also standard to ignore the conditional mean, since it is small and doing so exercises
(very) little impact on ﬁn. The VIX series, however (again, because it is a series of volatilities), clusters, and
the degree of this clustering indicates that conditional mean dynamics are important. Andersen et al. (2003)
study the realized return variance series and find it to display long-memory properties. The model of Corsi
(2009) uses lower-frequency covariates as proxies for long-memory properties. Motivated by these results,

consider the following extension of the model in (3) and (4).

p(L)(1=L)"Y, =0(L)e, (54)
€ = ¢ M ~ it.d. D (0’ 1) ) (55)
07 = wy + oger_1 + Boot1, (56)

where p (L) = (1 —PxoL); 0(L) = (1—0.0L), and L is the lag operator. (54) is an ARFIMA
( 1, d, 1 ) model for {Yt}tez, where d € ( 0, 0.50 ) governs long-memory dynamics. The esti-
mator for (54) is full maximum likelihood (see Sowell, 1992). Using this estimator, {?t}thl is obtained and
from which (55) and (56) are estimated in a second step.

Table 3 summarizes estimation results of (54) on a lengthy VIX sample (see the Notes to Table 3 for
additional details). The estimate d is inside of, but near, it’s upper bound, indicating the VIX series to be a
covariance stationary and (strongly) long-memory process. As a benchmark, parameter estimates including
the constraint d = 0 are also summarized in Table 3, where this constraint forces the conditional mean of
VIX to display only short-memory properties. Notice that py- is significantly different in the two cases, with
py being much closer to 1 in the case where d = 0, compared to the case where d is (jointly) estimated.
When d = 0, py is forced to perform "double-duty," controlling for both short- and long-run dynamics.
When d is freely estimated, on the other hand, py- only governs short-run dynamics, while d determines
long-run dynamics. In the case of VIX, at least, allowing for long-run dynamics results in less persistent
short-run dynamics.

Figures 7 and 8 depict rolling window estimates of a,, from VIX (see the Notes to Figures7-10 for
additional details). Analogous to the case for return variance in Figures 1 and 2, VIX variance "reactivity"
has been increasing through time. The level of VIX variance "reactivity," however, is higher than that

of return variance "reactivity," and in a statistically significant way (compare Figure 8 against Figure 2).
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Differences in &,, between QMLE, VTNGQMLE, and FAN also appear accentuated in the VIX variance
case, compared to the return variance case. Specifically, evident in Figure 8, &,, from VTNGQMLE appears
materially muted compared to either QMLE or FAN. Since heightened values of «,, tend to be associated
GARCH volatility forecast "overshoot,” VTNGQMLE appears (far) less prone to this difficulty than either
QMLE or FAN.

Figures 9 and 10 track persistence in VIX variance through time. In contrast to the case for return vari-
ance (see Figures 3 and 4), where all three estimators tend to indicate a declining trend in persistence, in the
case of VIX variance, only VTNGQMLE signals a declining trend; QMLE and FAN both imply increas-
ing trends, occurring at the end of the sample. What’s more, towards the end of the sample, %n > 1 for
both QMLE and FAN, indicating the variance of VIX to be either "integrated"” or even explosive, while for
VTNGQMLE, @n remains (comfortably) inside of the unit boundary. VVIX (owing to it being observable)

23 |t seems counterintuitive, then,

appears to be, not only mean stationary, but also covariance stationary.
for implied vol-of-vol to appear covariance stationary, while historical vol-of-VIX appears (under QMLE
and FAN, at least) either "integrated” or explosive. Regardless, for QMLE, VTNGQMLE, and FAN, ma-
terial differences between in-sample estimates foreshadow accentuated differences between out-of-sample
volatility forecasts, compared to the return variance case.

Figures 11 and 12 depict rolling 2 x ¢, estimates for GARCH (1, 1) model innovations to VIX (see the
Notes to Figures 11 and 12 for additional details). Consider the one-side null of ., > 2. The full sample
offers (very) little support for this null (see Figure 11), and emerging from the COVID crisis, there is no
support for this null (see Figure 12). Monte Carlo results under Case 6 evidence material efficiency gains of
VTNGQMLE over both QMLE and FAN. Figures 11 and 12 support Case 6 as being empirically relevant
for the variance of VIX. Additionally, notice that if ., < 2 (as is strongly supported by Figures 11 and
12), then QMLE has a non-Gaussian limit and a convergence rate slower than /n (see Hall and Yao, 2003,
Theorem 2.1), comparable to the findings for VTNGQMLE in Section 5.

LetG, |, denote the out-of-sample GARCH volatility forecast for VIX from (56). Figure 13 compares
0y | t—1 from VINGQMLE to VVIX on date ¢. Visually, out-of-sample GARCH volatility forecasts for
VIX display similar dynamics compared to VVIX. These visual similarities are confirmed by a correlation
coefficient of 0.53 between {Et | t_l}thl and {VVIXt}tT:1 for the full forecast evaluation sample (see the
Notes to Figures 13—-15 for additional details). Also visually apparent in Figure 13 is that the two series are

not on the same scale. This visual dissimilarity should not be that surprising, since VVIX is anticipated to

ZBEstimating (54) on VVIX produces d < 0.50 and Py,o < 1. These results are not reported herein but are available upon
request.
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contain a vol-of-vol risk premium that should not be present in the historical volatility of VIX (see; e.g.,
Huang et al., 2019). This scale difference needs to be addressed, however, if {Gt | t,l}thl is to serve as a
forecasting instrument for {VVIXt}thl. Towards that end, consider the following model for adjusting the
scale of o | ,_; for the purpose of forecasting a target variable U,. Let

U,

V=, (57)

O

where o, is given in (56).

V.= CU + PV,()Vt—l + 9U70Vt—1 + v, (58)

where {v;},.,. are i.i.d. innovations and Z € Z*, so that
Vilt—1=Co+ pyoVie1 + 0, ovi—1

and

Uijt-1 =V | t-1 X 0¢ | 41 (59)

In the current application, U, = VV1.X,. Dynamics in (58) are limited to being short-memory. Rolling
estimates of Pv.0 (not reported here, but available upon request) are all comfortably inside of the unit bound-
ary, indicating that short-run dynamics (at least as a proxy), are not a bad fit; especially, since only short-run
forecasts are being made.

(57)-(58) control for the vol-of-vol risk premium in VVIX, allowing that risk premium to exercise both
constant and time-varying effects on scale. This time-varying scale factor is then forecast out-of-sample, and
the resulting out-of-sample forecast is combined with an out-of-sample GARCH volatility of VIX forecast
to produce the forecast of VVIX in (59). The complete model of (54)—(59), then, produces a forecast of
VVIX that uses the GARCH volatility of VIX as its principle input.

The dynamic scale factor model of (57)—(59) additionally, however, has a more general interpretation.
Consider U, as an observable proxy for the true (and latent) volatility that o, | ,_ is intended to forecast.
For illustrative purposes, suppose o | ,_; is the GARCH return volatility from the previous section, so that
a good candidate for U, is the realized return volatility.?* In this case, (, = 1 and pvo = 01in (58),
since the realized return volatility is an unbiased estimator for the true (and latent) return volatility (see;

e.g., Barndorff-Nielsen and Shephard, 2004). Consequently, o, | ,_; can be used as an unadjusted forecast

21n other words, U, = \/RV5,.
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for the realized return volatility, consistent with standard practice. With this illustrative example in mind,
consider VVIX, not as the target variable of interest directly, but rather as an observable proxy for the true
(and latent) volatility of VIX. Owing to the presence of a vol-of-vol risk premium, VVIX can be anticipated
to be a biased proxy for the volatility of VIX. The model of (57)-(59), then, can be seen as correcting for this
bias, thus allowing VVIX to be used as the predicted variable in an evaluation of the GARCH volatility of
VIX forecasts, where that evaluation looks to examine the efficacy of the GARCH volatility of VIX forecasts
as predictive instruments for the true (and latent) volatility of VIX.

Figure 14 shows the results of applying the model in (57)—(59) to adjust (or correct) the GARCH volatil-
ity of VIX forecasts in Figure 13. As is evident, the predicted variable (VVIX) and the out-of-sample fore-
casts are now on the same scale. Moreover, the full-sample correlation between the adjusted forecasts and
VVIX is, essentially, the same (0.51 versus 0.53), indicating that adjusting the forecasts does (practically)
nothing to alter the predictive power of the GARCH volatility of VIX forecasts. Consequently, Figure 14
evidences that GARCH volatility of VIX is, in fact, useful at forecasting implied volatility-of-volatility
(VVIX).

Also evidenced in Figure 14 is a tendency for the forecasts to "overshoot™" their target. Perhaps this
tendency shouldn’t be too surprising, given the heightened levels of GARCH variance "reactivity" observed
across different estimators (see Figure 7). To help mitigate this tendency, the following strategy (motivated
by the “averaged-forecasting” approach used in De Nard et al., 2021) is adopted.?® For any date ¢, it is
possible to generate two forecasts, o, |, and ;| ;. The single point forecast for date ¢ is then given
by
this substitution is evidenced in Figure 15. The effect is a fairly apparent reduction in forecast variability,

Ot | t—11T0¢ | t—2
2

, and this average forecast is substituted for 5, | ,_; in (59). The result of performing

generally, and, more importantly, forecast extremes, specifically. Interestingly, the correlation between these
adjusted average forecasts and VVIX increases to 0.65 (from 0.51). Forecast evaluations performed using
the QMLE, VTNGQMLE, and FAN estimators all substitute Z--=27*1=2 for 5, |, ; in (59).

Table 2 also summarizes out-of-sample comparisons of the GARCH volatility forecasts produced by
QMLE, VTNGQMLE, and FAN, respectively, using the RMSE and QLIKE loss functions and VVIX as

the predicted variable.?® Comparisons are conducted over the same two forecast evaluation samples used

— H=21
B Consider the set of daily forecasts {at+h |t }2:21. The "averaged forecast" from this set is given by H=* 3" oy4p | +- This

h=1
"averaged forecast" is a proxy for the monthly volatility forecast. By analogy, the desired forecast here is a daily forecast. That

daily forecast is proxied by an "averaged forecast" taken over a near neighborhood behind the desired forecast date. That is, the
H=2

"averaged forecast" is H~' 3" o | t—h-
h=1

ZFollowing the discussion_above, VVIX can be interpreted either as the target variable being forecasted of a (biased) proxy for
the true (and latent) volatility of VIX.
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in evaluating the SPX return volatility estimates. Over these samples, only 1-day-ahead forecasts are con-
sidered. By RMSE, VTNGQMLE is now the clear winner, with FAN second and QMLE a close third.
By QLIKE, the rankings remain unaltered. These results are consistent with the conclusions drawn from
the parameter estimates depicted in Figures 7-10. These results further bolster the strong performance of
VTNGQMLE in the Monte Carlo experiments.

Table 4 compares the "average forecasting” method for generating 1-day-ahead VVIX forecasts to the
standard method (both of which are described above). For comparison purposes, out-of-sample results from
the "average forecasting” method are depicted in Figure 15, while results from the standard method are
depicted in Figure 14. Consistent with these figures, the "average forecasting” method beats the standard
method in terms of RSME. Somewhat surprising, the "average forecasting™ method also beats the standard

method in terms of QLIKE.

10 Conclusion

Motivated by the NGQMLE of Bollerlsev (1987), this paper considers the VTNGQMLE, determining its
limiting properties, studying its finite-sample properties, and applying it in a series of empirical investiga-
tions into volatility forecasting. In heavy-tailed cases, VTNGQMLE is shown to be a robust estimator, like
QMLE, FAN, and LSE. In these same cases, when the likelihood function is misspecified, VTNGQMLE is
shown to perform (surprisingly) well, both in simulation and empirically. In fact, VTNGQMLE is shown to
be very hard to beat, both by the popular QMLE and by alternative (robust) estimators aimed at improving
the QMLE result.

Explaining the popularity of QMLE is it being robust and /n asymptotically normal, under fairly gen-
eral conditions. Previous works demonstrate that QMLE loses its Gaussian limit when the model errors
become (very) heavy-tailed (see; e.g., Hall and Yao, 2003). In earlier years, this case, while theoretically
interesting, did not appear empirically relevant. In recent times, however, this case has become empirically
relevant. Moreover, in this case, both QMLE and multi-step estimators aimed at producing more efficient
(relative to QMLE) estimates perform (relatively) poorly. VTNGQMLE, in contrast, performs markedly
better; in part, because of its reliance upon a heavy-tailed (though misspecified) likelihood function that
removes some emphasis from the ARCH parameter as the single model parameter responsible for captur-
ing heavy-tailed features in the unconditional distribution of the random variable being modeled. In recent
times, therefore, VTNGQMLE appears to deserve serious consideration over QMLE and competing esti-

mators because VTNGQMLE (i) is comparable in complexity relative to QMLE but (ii) delivers sizably
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improved results.
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11  Appendix A (Proofs)

Proof of Theorem 3. Let

Iim=1I(lo} —E(c*)|>a,), Jm=1—ILn=1(lo;—E(c?)]<a,).

Then

n

n n
W a, > Wy X I+ ay "y Wy X i,
t=1 t=1 t=1

= I(b) + 1I(b)

a

I0) = a;"y {(& —1) x0f x Ijn — (¢ = 1) x E(0%) x I + (6 = 1) x E (0) x L1}
t=1

n n
= a,"Y (-1 x (67 = E(0%) x In+a,"Y_ (¢ = 1) x E(0?) x I,
t=1 t=1

= I(c)+1I(c)

By Markov’s Inequality,

P(II(c))>C) < C7'E ( aglzn: (e — 1) x E (0?) x Iy, >
t=1
< C'na'E (‘e? — 1|) x B (02) x B (I (‘0‘? —-F (02)| > an))
< Ca;'nP (‘0’% —-F (02)‘ > a,)
_ a%P(‘a?—E(aQH >an)
= o ( {a,) )
— 0

as n — oo, where the fourth inequality follows from (11), and the (weak) convergence result follows
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from (12). Next, and also by Markov’s Inequality,

PO >0) < © ( y E(cf?))xfm)
< O nanlE(\(e?—l) x (0f = E(0%)) x Iin|)
< CaglnE(‘a?— (02)|><I(‘at E( )‘>a))
o @B (of = E(0*)| xI(|of ~ E(0?)] > a,))
B H (ay,)
— 0

as n — oo, where the fourth inequality follows from (11), and the (weak) convergence result follows

from (13). Consequently,

n n
a,"> W, =a, ") Wy X Jin + 0, (1),
t=1 t=1
and

Var (a;let X Jm> = na,’E ((6,52 - 1)2 X of x T (‘af - F (02)‘ < an)) (60)

t=1
= Ca,’nE (a;1 x I (‘af —E(0%)] <a,))

< o (Bltz ot blse)),

E(ofx1(0? <ay))

where the inequality follows from (11). For sufficiently large n,
1 (}U% - F (02)‘ < an) >1 (O‘? < an) (61)
Given (61), because E (%) does not depend on n, 3 a C such that

I (o} —E(o*)| <a,)=1(cf <a,+0) (62)
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Given (62),

a,+C
E (ot xI(|o? - E(0?)] <a,)) { ot f (02) do?
i ? I (63)
Bloi 1 (ot < an)) [of (02) do?
" a,+C
f otf (02) do?
= 14+
Jotf (0?)do?
0
Given (63),
T}E&V&r <a 12Wt X Jtn) =C < o0. (64)
t=1

Given (64), in turn, it is possible to apply a CLT to a,,* ZWt following analogous arguments given

by Hall and Yao (2003, p. 306-307). Let the result of thls appllcatlon be

a, S "W, -5 N (0, Vi) (65)
t=1

(30) then follows from Slutsky’s Theorem.l

Remark 9 An alternative way of establishing that (60) is bounded is to note that, given Assumption 3.3,

E(J?XI(|0%7E(O' )|§an)) . . . . _ .
< Bloixi{e<a,)) is a ratio of slowly varying functions that, as such, has a finite limit.

Proof of Theorem 4. Fori = 1,2, let

‘mn{m% f”l}. (66)
Z ifi=2

n

Under Case 2, it is established that \/n.X (i) converges to a stable limit, so long as ¢, > 1. Consider
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then

na 1X (i) = (nl/Qa,_Ll) X (n1/2X (Z))

= <n1/2 (Cnl/“0)1> X (n1/2X (Z))
= Cx <nn20”02) X (nl/ZX (Z)>

= Cxo,(1)x0,(1)

= 0,(1).

rg—2

where the third equality follows, since n'/2X (i) converges to a stable limit, and n >0 — 0 as
n — 00, since x, < 2.1

H072
Remark 10 n'/2 is increasing at a faster rate than n %o is decreasing. Consequently, n'/2X (i) reaches
m072

its stable limit first and then is driven towards zero by n %o .

Proof of Theorem 5. Starting from (29), forae > 0,

a;let = a;let x I (0t2 > a,e) + a;let x I (O’? < a,e) (67)
t=1 t=1 t=1
= I(d)+1I(d)

Var (II(d)) = na,*Var ((ef —1) x o2 x 1 (af < a,e)) (68)
= na,’FE ((ef - 1)2 x o x I (0} < ane))

= Cna;QE (O’Z1 x I (0‘? < anE)) )

where necessary for the third equality is £ ((e? - 1)2> < oo, which is established by F (e}) < oo.

Since given Theorem 1, o2 is regularly varying with tail index r,, for a function L that is slowly
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varying at oo,

E(of % I(0? < aye)) = / (62)% 7 ((02)) do? (69)

~ C(—kKg) / (02)2_%_1 L (0%)do?

0
~ C(=hg) @ = ko) { ()7L (oY) 15}
~ O (k) (2= ko)~ (a,e)” (a,€) " L (aye)

~ Ca’e’P (02 > a,€)

where the first ~ follows from Mikosch (1999, Theorem 1.2.9), the second ~ from Mikosch (1999,

Theorem 1.2.6), and the last ~ from Lemma 1. Putting (69) and (68) together,

in which case,

Var (I1(d)) ~ Ce*nP (0 > a,¢),

lim Var (IT1(d)) ~ C x 270

n—o0

by Definition 1, and further

lim limVar (I1(d)) ~ 0,

since k, € (1,2). As aresult,

Let

n—o00e—0
a;IZWt = a;let x I (a? > a,e) +o,(1). (70)
t=1 t=1
Upe =an' Y Wy x I (07 > a,e), (71)
t=1

and define the function 7, : M, (@i\ {0}) — Ras

T, (Z(sz) = Z (Xi72 — Xi,l) x I (Xl}l > 5) ,
i=1 i=1

such that, given (14), U,, . = T.(N,,). From Lemma 2, N, 2, N asn — oo, in which case,

n
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T, (N,) <, T. (N) as n — oo by the continuous mapping theorem. Lastly,

T.(N) -5 U,., e—0, (72)

by Davis and Hsing (1995, Theorem 3.1(ii)), where U, is a «-stable random variable that can be

expressed in terms of the P;’s and Q;;’s in Lemma 2. Given (29), (72) then results in

U, 4, <1_50> U,e.
1—oy— By

Remark 11 (71) is a special case of Vaynman and Beare (2014, eq. 35). Consequently, the result in
(72) also follows from the proof of Vaynman and Beare (2014, Theorem 4), starting from equaton 35 and

proceeding to the end.

Proof of Theorem 6. Given (67),

I1(d) = *12 — 1) x I (2 > bye) x 07 x I (07 < a,e)
—12 — 1) x I (e <bpe) x 07 x I (07 <aye)
= I()+II( ).
Var (I1(e)) = ap*nxVar(( —1) xI(ef <bye) x 07 x I (07 <aye))

= B((@-1)"xI(d <be)) xaz?n x B (o} x I (0} < a,¢))

{E (e} x I (] <bne)) +C} xa,*nx E (o} xI(0?7 <aye))

< {binfl—i—C} Xagzan(U?xI(aggane))
< Cxa;%sz(afo(Ufgans))
— 0,

asn — oo and e — 0, where both inequalities follow from Assumption 5.1, and convergence sources
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to (69) and the results that follow.

Var(I(e)) = E ((et2 1) xI(e2> bns)) x ay’n x E (oF x I (02 < a,¢))
= {E(e¢f xI(f >bue)) +C} xa,’nx E(of x I (0} <aye))
= E(ef xI(f >bye)) xay*nx E (o} x (07 <aye))
+C x a,*n x E (o} x I (07 < a,¢e))
= (02n7Y) x (by%n) E (ef x I (€ > b,e)) x ap,’n x E(of x I (07 < a,e))

+C x a;,*n x E (o} x I (07 < a,¢e))

H (b,)
+Cxa’nx E (U;1 x I (O‘% < ans)) ,

< (bin1)><<E(€t><[€t>b5 )xa nx E (o} x I (07 <a,e))
+C x a,, an(ath(at<an5)
< (bnn_l)x (bnE(et XI(Et > bn 8))> X a, an(at xI(at <a z-:))

following from both Assumption 5.1 and (13) adapted for 2. Noting that b,n~! = o(1),

lim Var (I(e)) < o(1) xe? "0 4 C x 2o

n—o0

_>0’

as e — 0, (see, again, (69) and the results that follow). Consequently, (70) continues to hold and,
from which, the result in (33) follows (see the proof of Theorem 5), since the limiting random variable

continues to be determined by (only) the extremes of o7, despite E (e7) = ool

Proof of Theorem 7. Given (66),

na, ‘b X (i) = (nl/Qa,jl) X (b;l) X (nl/QX (z))
= Cx (nzo*’“_j) X (n‘_ol) X <n1/2X (Z)>
= Cxo(l)xo(l)x0Op(1)

= 0,(1),

where the third equality follows since x, < 2, and n/2X (i) converges to a stable limit (see the proof
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of Theorem 4).1

Proof of Theorem 8. Starting from (35), the analog to (67) is

a;lngZWt = aglbglet x I (O’? > a,e) + a;lbglet x I (O’? < a,e)
t=1 t=1 t=1
= I(d)+ 1I(d),

preserving the same notation from the proof of Theorem 5. Consider

I(d) = a,'b,"Y W, x I (& >b,e) x I (0} >a,e)
t=1

ta, b, W, x I (€] <be) x I (07 > a,e)
t=1
= I (di)+1I(dii),

and
I(d) = aglbglet x I (€ > bue) x I (O’% < a,¢)
t=1
+a;1b;12Wt x I (e? < bns) x I (0? < ans)

t=1
— II(di) + IT (dii).

Var (11 (dii)) = ay?b,*nVar ((6 —1) x I (€ <bye) x o7 x I (07 < a,¢))

= () < {ta2n) x B (= 1)" x 1( <b,2) ) b x {(a%n) x B (o x I (0} < a,e)) }

= (n7') x II(diii) x 11 (d iv),

where

I1(diii) = (b,°n) x {E (e x I (& <b,e)) —2E (e x I (6 <b,e)) +E (I (e} <bne))}
= (0a"n) x {B (e x I (e < bu2)) +C}
= (b,%n) x E (e} x I (€] <bye)) +o(1),
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since

1N\ -1
b2n = <C’nL0> n (73)
Lg=2
= (Cx (n ‘0 >
— 0
asmn — oo, given ¢ < 2.
b€
E(dxI(S<bye)) = / () £ () de? (74)
0
b,e
~ Cx (=) X / (62)27%71[/ (¢?) de*
0

~ Cx (i) x 2= 1) x ()T ()
~ O x (bye)* (be) 0 L (bye)

~ Cx (bye)® x P (e > bye),

where the first ~ follows from Mikosch (1999, Theorem 1.2.9), the second from Mikosch (1999,

Theorem 1.2.6), and the final from Lemma 1. Consequently,
11 (diii) = C x () x nP (¢* > bue)

in which case,

lim 17 (diii) = C x ()* "0,

n—oo

which, in turn, implies that

lim lim 7 (diii) ~ 0,

n—o00e—0

since ¢, < 2, and

lim lim 17 (d iv) ~ 0,

n—ooe—0

given (68) and the arguments that (immediately) follow. As a result,

lim limVar (11 (di)) ~ 0. (75)

n—ooe—0
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Next,

II(di) = a;lbglz {ef x I (€ > bue) — I(ef > b,e) } x o7 x I (0} < aye)
t=1

= (niébgl) Z{e? X ](6? > bns) —I(e? > bns)} X {a;l X 2 x o? x ](0’? < ane)}

< Cx(n’%b’)Z{eth (> be) —I(&>b,e)}

< {n%b Zetxlet>be)—b1{n2Zetxlet>bs)}}
=1

< { nab L xf(e§>bne)—o(1)xop(1)}

< n"I x { 12 xIet>b5)}+op(1)

where the first inequality follows from (68) and the results that (immediately) follow, and the third
inequality follows from a central limit theorem for i.i.d. data. Since (1) {¢,},, isi.i.d., and (2) (8)

holds for € and the normalizing constants b,,,
[lim limp,, 12 x I (€ > bye) = Ze, (76)

where Z.» follows a ,-stable law (see; e.g., LePage et al., 1981, Theorem 1). Given (1) and (2),
sufficient for (76) is that the distribution of ¢ has a balanced tail (see, Feller, 1971), as defined in
Davis and Hsing (1995, eq. 1.2)). Given (76),

IT(di) < C x 0(1) x 0, (1) +0, (1) <0, (1),

in which case, given (75), 11 (d) < o, (1). Consequently, the asymptotic limit of a, 'b; ' > W, is
i=1
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determined by I (dz) and I (dii).
I(dii) = a;'by 12 — 1) x I (§ <bpe) x 07 x I (07 > a,e)
= a,;lbglz {e < I (e} <bye) —1I(e <bye)} xo?x1I(a?>a,e)
= a'b; 12 x I (e} <be) x of x I (0} > aye)

a;lbglz:a? x I (O’? > ans) x I (6% < bns)
t=1
= I(e)+1I(e).

11 (e)

IN

{aEIZJ? x I (o} > ans)} X {b;lzl (¢ < bns)}
t=1 t=1

{anlzaf X I(Ut2 > ane)} X (b;ln%) {néz.f (6% < bns)}
t=1
{a;lza? x I (o7 > ane)} x0(1)x 0, (1),
t=1

IN

IN

where the final inequality follows from (73) and a central limit theorem for i.i.d. data. Given Lemma
1 and (8),
lim lima,, Zat x I ( O't > a,€) = Z,e, (77)

n—ooe—0

where Z,2 follows a «-stable law (see Davis and Hsing, 1995, Theorem 3.1.ii). Consequently,

II(e) <0, (1) x 0,(1) < o,(1). (78)

I(e) = (n_%) X {a,jli{(bﬁln;) x €2 x T (ef < bne)} X {a? x I (o’t2 > ans)}}(79)

¢ x (n4) x {anlg{gz (0% > ana)}}

< Cxo(1)x0,(1),

IN

where the first inequality follows from (74) and the results that (immediately) follow, and the third
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inequality follows from (77). Combining (78) and (79) implies that I (dii) < o, (1). What then

remains to consider is
I(di) = *1612 — 1) x I (2 > bpe) x a7 x I (07 > a,¢)
= _1b12 x I (€] >bye) x of x I (07 > a,e)

—a;lbglzaf x I (07 > ae) x I (€ > by,e)
t=1

= I()+I1(f).

First,

11(f)

IN

{a,;lf:af x I (o} > ans)} X {b;lfy (¢ > bns)}

t=1

{afio? x I (o} > ane)} X (n%b#) X {n‘ézn:_f (¢ > bne)}
=1
< I(g)xo(1)xII(g),

IN

where the third inequality follows from (73 ). Moreover, since I (g) — Z,2 (see 77),and IT (g) 4,

N (0, V) given a (standard) central limit theorem for i.i.d. data, 11 (f) < o, (1).

Finally, consider

I(f) = a;lbgli{e? X I(ef > bue)} x {of X I(at2 > a,¢)} (80)
t=1

= U

n,e"

LetY, = €2 and Z, = o2, noting that Y; and Z, are independent. Further, let X, = ( Y,, Z, ),with

the associated polar coordinates (

0 (it) ) where A € B ([ 0, 2 )d—1>, the Borel
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subsets of [ 0, 27 )d—l, for1 <d < 2. Forar > 0, consider

P( ’it‘>ur, 9()@) GA)
P(‘Xt‘ >r>

P( Y] >ur, |Z]>ur, 6(X)cA)

P> 12]>r)

Urir=n )\ pzr=n )

in which case,

. P( ‘it‘ > ur, 9<)~(t) EA)

oo P (’5@‘ - T) = {r o} x {r 7} <oo (81)

Y r, given Assumption 3.2 and Lemma 1. Given (81), in turn, Davis and Mikosch (1988, eq. 2.1) is
satisfied for Xt (see also Resnick, 1986). Moreover, given Carrasco and Chen (2002, Corollary 6),
{f(t} is strong mixing, in which case, Davis and Mikosch (1998, eq 2.3) is also satisfied. Next, note
that time-dependence in {Xt} drives entirely from {Z,}, where

o} = wta¥Y2, +poi, (82)
= wHol, (oaef_l + B)
= o; 1A+ B,
t ,
= [[Aio5+ > 11 A;B;
i=1 i=1j=i+1

_ 2
= It,laO + It,Qa

where the final equality follows from recursive substitution. From Mikosch and Starica (2000), (82)
is a valid stochastic recurrence equation, for which

ay

P (O—% > a,y ’ 0(2] > any) S P (It,lo—g > a,y ‘ Jg > 2

Q,
)+ P (Lo> "0 0d > a)

< I(h)+1I(h).
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Using Markov’s inequality,

I(h) = P( 108> % o8>au )

P (03 > a,y)
P (1, 08 x I (0§ > a,y) > %)
P (03 > a,y)
2% (a,y) ' x E (Ima% x I (cd > a,y))
P (03 > a,y)
2% (a,y) ' x E (Im) x E (03 x1I (03> ayy))
P (03 > a,y)

IN

IN

where
t t
B (1) = £ (114) = T8 () = B () =,
=1 =1
b<1,and
E (02 x1(03 > any)) = /agf (02) do?
any
o0
~ C x (—kyg) / (63) " L (03) do}
any

~ O % (=rg) (—ro+ 1) (ay) ™ L (a,y)
~ O x (any) x (a,y) " L (a,y)

~ Cx(ayy) x P (03 > any) ,
with the first ~ following from Mikosch (1999, Theorem 1.2.9), and the third ~ following from
Mikosch (199, Theorem 1.2.6(b)). As a result,

2 % (a,y) " x bt x C x (a,y) x P (0% > a,y)
P (03 > a,y)

I(h) (83)

< Cxb.
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Next, by independence and Markov’s inequality,

an
I1(h) = P(Im > Ty) (84)
t t a
i=lj=it1 2
< P(Z [1 A;B; > "y>
i=lj=it1
Yy —1 oo 0o
< (&n E A.B,
B ( 2 ) (z;jzlg&-l J )
Y —1 oo 00
i=1j=i+1

since £/ (A) < 1. For a sequence of positive integers {r, }, where r, — oo and = — oo asn — oo,

n

putting together the results in (83) and (84) produces

lim lim sup P \/ o >a,y | ok >a,y

k—)oo?’L—>()O
k<[t|<r,
Tpt+m
o 2 2
< kll_}n(r)lonlLngo sup2(m + 1) ; P (o] > ayy | o5 > a,y)

< limCx Y b
t=k

k—oo

< 0

thus establishing that Davis and Mikosch (1998, eq 2.10) holds for it, which, in turn, establishes that
~ in Davis and Mikosch (1998, eq 2.11) exists. Suppose that v # 0.

Consider the function 7. : M (ﬁi\ {0}) —Ras

T. (i(;}fizi) :i{zi X I(Z;> &)} {Y; x I(Y; >¢)}.
i=1

=1

Further let

- n

Ny = Sbotiyzg, (85)
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Given (80),

U,.=T. (ﬁn) .

From Davis and Mikosch (1998, Proposition 3.1, Remark 3.2), ]Vn 4 Nasn — oo, and then from

the continuous mapping theorem, T, (ﬁn) 4T (JV) asn — oco. Lastly, from Davis and Hsing

(1995, Theorem 3.1(ii)),
ffl (N) i) ng7 o2 e — 0, (86)

€

where U,z 2 is a ky-stable random variable that can be expressed in terms of quantities qualitatively

similar to the P;’s and Q;;’s in Lemma 2, in which case,

~ d
Unﬁ — U€27 o2-

Proof of Theorem 9. A univariate analog to (15) is
S, = ZY; for i=2,4.
t=1

Given this univariate analog,

—2p-2-2  _
na, b, T, =

2 2) x S — (nay?b;%) x (n~152)°

2) x S8 — (nay2b,%) x (ntayb,)? x ((a;'0;1) x 52)°

where the fourth equality follows from the proof of Theorem (8). Consequently, the asymptotic limit

of 72 is determined by S2.

Also from the proof of Theorem 8, )~(t is regularly varying with tail index «,. By Mikosch (1999,
Proposition 1.5.14), 5(% = ( Y2, Z? ) is regularly varying with tail index /2.

~ n ~ ~ ~ ~
Let N2 = t;éaﬁzbﬁzytng. Given N, —% N asn — oo, from the proof of Theorem 8, N2 -5 N2
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asn — oo, given Remark 2. Since (1) X2 is regularly varying and (2) N2 - N2 as n — oo, Davis

and Hsing (1995, Theorem 3.1(i)) can be applied to establish
(a,j?b?f) X Sﬁ 4, Ues, 54,
where U, 4 is a (r,/2)-stable random variable that can be expressed in terms of the limiting points

for Y,2/b2 and Z% /a2 .1

Proof of Theorem 11. Recalling the definition of fjn,a from (80), let
(7,375 = a;Qb,fZ {ef x I (etz > bue)} x {af x I (of > aue)},
t=1
and define the function T, : M, (@i\ {0}) — R2as

T, (Z(sm) = < S H{Z X I(Z; > e} Y, x T(Y; > )}, S AZ?xI(Z;>e)} {Y2xI(Y,>¢)} > .
- =1 =1
Further recall the definition of ]Vn from (85). Then

(e T2 ) =Te(W).

The conditions requisite for

are established in the proof of Theorem 8. That

i (N,) L5 (F), -

£

then follows from the continuous mapping theorem. Lastly,
~ (S d
T, (Nn> — ( U2, 52, Ua 54 ) ) e—0

results from Davis and Mikosch (1998, Proposition 3.3), where the marginal limits are described at

the end of the proofs to Theorems (8) and (9), respectively.ll
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12 Appendix B (Tables)

Table 1: Parameter Configurations
00
Specification  w, oy Bo
] 0.05 005 0.90
I 0.05 010 0.85
I 0.05 020 0.5
v 0.05 030 0.65

Notes to Table 1. Different GARCH(1, 1) parameter values considered in the Monte Carlo simulations.

Table 2: Out-of-Sample Forecast Comparisons

Eval. Loss Forecast Horizon
Asset  Sample (Beg.)  Function Estimator 1-Step  5-Steps  10-Steps  21-Steps
SPX 5/1/2020 RMSE QMLE 6.687 7.152 7.367 7.487
VTNGQMLE  6.820 7.338 7.593 7.713
FAN 7.057 7.718 8.143 8.611
QLIKE QMLE 3.463 3.481 3.492 3.502
VTNGQMLE  3.463 3.480 3.491 3.501
FAN 3.468 3.488 3.503 3.522
1/3/2022 RMSE QMLE 6.476 6.790 7.074 7.213
VTNGQMLE  6.550 6.902 7.206 7.263
FAN 6.873 7.414 7.937 8.449
QLIKE QMLE 3.496 3,510 3.524 3.538
VTNGQMLE  3.494 3.506 3.519 3.532
FAN 3.500 3.516 3.535 3.559
VIX 5/1/2020 RMSE QMLE 34.026
VTNGQMLE  26.301
FAN 31.441
QLIKE QMLE 5.636
VTNGQMLE  5.628
FAN 5.633
1/3/2022 RMSE QMLE 27.446
VTNGQMLE  18.747
FAN 24.307
QLIKE QMLE 5.557
VTNGQMLE  5.548
FAN 5.554

Notes to Table 2. Daily SPX, VIX, and VVIX levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4)
is estimated on SPX log returns using a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end
of the sample on 10/29/2024. For k € ( 1, 5, 10, 21 ) on each day of the sample, k-period-ahead GARCH volatility
forecasts are constructed using QMLE, VTNGQMLE, and FAN. RMSE and QLIKE loss functions evaluate the efficacy of these
GARCH forecasts, using the standard "RV5" proxy for the latent variance. The ARFIMA (1, d, 1) model of (54) is estimated
on VIX levels using a fixed 20-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample
on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is then estimated on the daily ARFIMA (1, d, 1) model innovations
using QMLE, VTNGQMLE, and FAN on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end
of the data sample on 10/29/2024, so as to produce the out-of-sample forecasts 7, | ,_; and G, | ,_, on each date ¢ of the sample.
For each estimator, the dynamic scale factor model of (57)—(59) is estimated on a fixed 10-year look-back window beginning on

4/30/2020 and rolling through the end of the data sample on 10/29/2024, so as to produce ﬁt | t—1 = mt | +—1 foreach date

— T
t in the sample, where w replaces o | ;1 in (59). {VVIXt ‘ t—l} ) formed using the competing estimators
t=
are compared using the RMSE and QLIKE loss functions.
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Table 3: ARFIMA ( 1,

d, 1) Estimates for VIX

model para. est. stderror 95% C.I.
ARFIMA( 1, d, 1) p, 0830 0045 0742 0918
6  -0494 0065 -0.622 -0.366
d 0497 0002 0494 0500
ARFIMA(1, 0, 1) p, 0984 0005 0975 0.994
6  -0138 0032 -0202 -0.075
d  0.000

Notes to Table 3. Daily VIX levels source to Bloomberg, L.P. The ARFIMA ( 1, d,

1 ) model is fit to these VIX

levels over a lengthy sample beginning 1/2/1990 and running through 10/13/2022. Reported standard errors are robust in the

Huber-White "sandwich" estimator sense.

Table 4: Out-of-Sample VVIX Forecast Construction Comparisons

Eval. Loss Function
Sample (Beg.) Forecast RMSE  QLIKE
5/1/2020 1-Step 43469 5634
Avg. 26.301  5.628
1/3/2022 1-Step  26.801  5.552
Avg. 18.747  5.548

Notes to Table 4. Daily VIX levels source to Bloomberg, L.P. The ARFIMA (1, d, 1) model of (54) is estimated on
VIX levels using a fixed 20-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample on
10/29/2024. The GARCH (1, 1) model of (55) and (56) is estimated on the daily ARFIMA (1, d, 1) model innovations using
VTNGQMLE on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample on
10/29/2024, so as to produce the out-of-sample forecasts 7, | ;1 and &, | ,_, on each date ¢ of the sample. The dynamic scale
factor model of (57)—(59) is estimated on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end

of the data sample on 10/29/2024, so as to produce for each date ¢ in the sample ﬁt |t—1 = V\//I\Xt | t—1 as denoted by "1-

Step", and ﬁt | t—1 = V/V\]Xt | t—1 as denoted by "Avg." , where, in this case,

Ot | t—11T0¢ | t—2 .
————5———— replaces o4 | ;1 in (59).

— T
{VVIXt | t,l} L formed as "1-Step" and "Avg." are then compared using the RMSE and QLIKE loss functions.

t=
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13 Appendix C (Figures)

Notes to Figures 1-4. Daily SPX index levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4) is estimated on daily log returns
constructed from these index levels using a fixed 10-year look-back window beginning on 12/23/1999 and rolling through the end of the
data sample on 10/29/2024. The GARCH estimators being compared are QMLE, VTNGQMLE, and FAN. For these estimators, the figures
plot & and ?43 =a+ B as solid lines. Also plotted as dashed lines are 2-sided, 95% confidence bands for the QMLE estimates, constructed
using Huber-White “sandwich" standard error estimates.

Notes to Figures 5-6. Daily SPX index levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4) is estimated on daily log returns
constructed from these index levels using VTQMLE and a fixed 10-year look-back window beginning on 12/23/1999 and rolling through
the end of the data sample on 10/29/2024.0n each day beginning 12/23/1999, GARCH (1, 1) model innovations for the fixed 10-year look-
back window are estimated, to which the tail index estimator of Hill (1975) is applied using a threshold of 5% of the largest innovations in
absolute value.?” One-sided, 95% confidence bands (dashed lines) for the Hill (1975) estimates (solid lines) are also constructed using the
robust standard error estimator developed in Hill (2010).

Notes to Figures 7-10. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model, where
d € (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window beginning on
12/31/2009 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (3) and (4) is then estimated on
the daily ARFIMA (1, d, 1) model innovations using a fixed 10-year look-back window beginning on 12/31/2009 and rolling through the
end of the data sample on 10/29/2024. The GARCH estimators being compared are QMLE, VTNGQMLE, and FAN. For these estimators,

the figures plot & and 5 =a+ B as solid lines.

Notes to Figures 11-12. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model,
where d € (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window
beginning on 12/31/2009 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is
then estimated on the daily ARFIMA (1, d, 1) model innovations using VTNGQMLE and a fixed 10-year look-back window beginning
on 12/31/2009 and rolling through the end of the data sample on 10/29/2024. On each day beginning 12/31/2009, GARCH (1, 1) model
innovations for the fixed 10-year look-back window are estimated, to which the tail index estimator of Hill (1975) is applied using a
threshold of 5% of the largest innovations in absolute value. One-sided, 95% confidence bands (dashed lines) for the Hill (1975) estimates
(solid lines) are also constructed using the robust standard error estimator developed in Hill (2010).

Notes to Figures 13-15. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model,
where d € (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window
beginning on 05/01/2020 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is
then estimated on the daily ARFIMA (1, d, 1) model innovations using VTNGQMLE and a fixed 10-year look-back window beginning
on 05/01/2020 and rolling through the end of the data sample on 10/29/2024. On each day beginning 04/30/2020, a 1-step-ahead and
2-steps-ahead out-of-sample GARCH volatility forecast is made, so that for each date ¢ in the forecast-evaluation sample, there are two
out-of-sample, GARCH volatility forecasts, &, | ;_; and &, | ;_o. Figure 13 compares &, | ,_; against the actual VVIX value on date

t. Figure 14 depicts the out-of-sample VVIX forecast constructed using &, | ;_, and 17t | t—1, comparing that forecast against the actual

VVIX value on date ¢. Figure 15 depicts the out-of-sample VVIX forecast constructed from Teie-1t0e ez and \7t | t—1, comparing

that forecast against the actual VVIX value on date ¢. In Figures 14 and 15, MAX is the largest VVIX value ever observed.

Notes to Figure 16. Daily SPX index and VIX levels source to Bloomberg, L.P. For SPX log returns, skewness estimates on a fixed 10-year look-
back window beginning on 05/01/2020 and rolling through the end of the data sample on 10/29/2024 are shown. For VIX levels, skewness
estimates for the innovations to an ARFIMA (1, d, 1) model fit to a fixed 10-year look-back window beginning on 05/01/2020 and rolling
through the end of the data sample on 10/29/2024 are shown.

2'This 5% threshold means that the 126 largest daily innovations (in terms of absolute value) are input into the Hill (1975)
estimator.
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Figure 1: SPX &, (Full Sample)
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Figure 2: SPX @,, (Post COVID)
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Figure 3: SPX gAb,n (Full Sample)
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Figure 4: SPX ¢,, (Post COVID)
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Figure 5: SPX7%,, (Full Sample)
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Figure 6: SPX7,, (Post COVID)
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Figure 7: VIX a,, (Full Sample)
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Figure 8: VIX @, (Post COVID)
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Figure 9: VIX En (Full Sample)
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Figure 10: VIX En (Post COVID)
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Figure 11: VIX7,, (Full Sample)
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Figure 12: VIX7,, (Post COVID)
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Figure 13: VIX 1-Step GARCH Vol Forecasts
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Figure 14: VVIX 1-Step GARCH Vol Forecasts
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Figure 15: VVIX Average GARCH Vol Forecasts
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Figure 16: SPX and VIX Skewness
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FIGURE 17: MEAN BIAS COMPS (ALPHA)
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FIGURE 18: MEAN BIAS COMPS (BETA)
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FIGURE 19: DISPERSION COMPS (ALPHA)
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FIGURE 20: DISPERSION COMPS (BETA)
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FIGURE 21: ROOT-MEAN-SQUARED-ERROR COMPS (ALPHA)
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FIGURE 22: ROOT-MEAN-SQUARED-ERROR COMPS (BETA)
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FIGURE 23: MEAN-ABSOLUTE-ERROR COMPS (ALPHA)
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FIGURE 24: MEAN-ABSOLUTE-ERROR COMPS (BETA)
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FIGURE 25: MEAN BIAS COMPS (OMEGA)
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FIGURE 26: DISPERSION COMPS (OMEGA)
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FIGURE 27: ROOT-MEAN-SQUARED-ERROR COMPS (OMEGA)
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FIGURE 28: MEAN-ABSOLUTE-ERROR COMPS (OMEGA)
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