
Finance and Economics Discussion Series

Federal Reserve Board, Washington, D.C.
ISSN 1936-2854 (Print)

ISSN 2767-3898 (Online)

When Tails Are Heavy: The Benefits of Variance-Targeted,
Non-Gaussian, Quasi-Maximum Likelihood Estimation of

GARCH Models

Todd Prono

2025-075

Please cite this paper as:
Prono, Todd (2025). “When Tails Are Heavy: The Benefits of Variance-Targeted, Non-
Gaussian, Quasi-Maximum Likelihood Estimation of GARCH Models,” Finance and Eco-
nomics Discussion Series 2025-075. Washington: Board of Governors of the Federal Reserve
System, https://doi.org/10.17016/FEDS.2025.075.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



When Tails Are Heavy: The Benefits of Variance-Targeted,
Non-Gaussian, Quasi-Maximum Likelihood Estimation of GARCH

Models1

Todd Prono2

This Version: July 2025

Abstract

In heavy-tailed cases, variance targeting the Student’s-t estimator proposed in Bollerslev (1987)

for the linear GARCH model is shown to be robust to density misspecification, just like the popu-

lar Quasi-Maximum Likelihood Estimator (QMLE). The resulting Variance-Targeted, Non-Gaussian,

Quasi-Maximum Likelihood Estimator (VTNGQMLE) is shown to possess a stable limit, albeit one that

is highly non-Gaussian, with an ill-defined variance. The rate of convergence to this non-standard limit

is slow relative
√
n and dependent upon unknown parameters. Fortunately, the sub-sample bootstrap

is applicable, given a carefully constructed normalization. Surprisingly, both Monte Carlo experiments

and empirical applications reveal VTNGQMLE to sizably outperform QMLE and other performance-

enhancing (relative to QMLE) alternatives. In an empirical application, VTNGQMLE is applied to VIX

(option-implied volatility of the S&P 500 Index). The resulting GARCH variance estimates are then used

to forecast option-implied volatility of volatility (VVIX), thus demonstrating a link between historical

volatility of VIX and risk-neutral volatility-of-volatility.

Keywords: GARCH, VIX, VVIX, heavy tails, robust estimation, variance forecasting, volatility,

volatility-of-volatility. JEL codes: C13, C22, C58.
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1 Introduction

The linear GARCH model of Bollerslev (1986) remains a workhorse for conditional volatility modelling in

financial economics, its applications spanning portfolio formation, derivative pricing, and risk management.

For a sequence {Yt}, the most popular version of this model states

Yt = σtεt, εt ∼ i.i.d. D (0, 1) , (1)

σ2
t = ω + αY 2

t−1 + βσ2
t−1, (2)

where D is an unknown distribution with probability density function g. The most common method for

estimating (1) and (2) involves likelihood methods, which require specification of a proxy density function

f , where, it is likely that f 6= g. This paper treatsD and, therefore, g as latent. In order to increase efficiency

in the GARCH model parameter estimates, ex-ante attempts are made to better match the selected f with the

heavy-tailed features of data commonly modeled. The intent of these attempts, however, is not to identify g,

and, therefore, achieve the Cramer-Rao lower bound. Rather, the intent is to select an f that is "closer" to g

than a Gaussian density but that (like a Gaussian density) also maintains robustness in the model parameter

estimates, in the (likely) case where f 6= g. The desired result is a non-Gaussian GARCH estimator that is

robust to density misspecification and more efficient than the Gaussian alternative.

By far, the most popular choice for f is the Gaussian density, in which case, the estimator for (1)

and (2) is the quasi-maximum likelihood estimator (QMLE). Explaining this popularity is the robustness

of QMLE to density misspecification. Early demonstrations of QMLE as a robust estimator include Lee

and Hansen (1994) as well as Lumsdaine (1996), with more recent (and more general) demonstrations

including Berkes, Horváth, and Kokoszka (2003), Francq and Zakoïan (2004), and Straumann and Mikosch

(2006). These more recent demonstrations also identify E
(
ε4t
)
< ∞ as (close to) necessary for QMLE to

be asymptotically normal.

It is well known that while robust, QMLE is not particularly efficient, especially in cases of a heavy-

tailed D. Engle and Gonzalez-Rivera (1991) show, for instance, that a semi-parametric estimator for (1) and

(2) bests the efficiency of QMLE by up to 50%. The evidenced wide gap between QMLE and (infeasible)

full maximum likelihood estimation has encouraged a literature on GARCH estimators that aims to improve

upon the efficiency of QMLE, while maintaining robustness. Examples of this literature include Francq et

al. (2011a), Fan et al (2014), and Preminger and Storti (2017). Figures 5 and 11 show tail index estimates for
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{ε̂t}
T
t=1 from daily S&P 500 (log) returns and VIX levels.3 By the end of the, respective, data samples, point

estimates no longer support E
(
ε4t
)
< ∞ for S&P 500 (log) returns, while there is no evidence supporting

E
(
ε4t
)
< ∞ for VIX levels. From Hall and Yao (2003), when E

(
ε4t
)

= ∞, QMLE has a non-Gaussian

limit with a reduced rate of convergence (relative to
√
n). In current times, therefore, the efficiency gap

for QMLE (when applied to S&P 500 returns and VIX levels, at least) appears even wider than what the

literature documents.

In light of the empirical evidence in Figures 5 and 11, selecting f as the (standardized) Student’s-t

density of Bollerslev (1987) seems like an intuitively appealing choice. In the case where g is (very) heavy

tailed but f is Gaussian, the parameter α in (2) has to, in some sense, work doubly-hard controlling for the

heavy-tailed features of {Yt}t∈Z unconditionally. That is, when f is Gaussian, α is the only model parameter

capable of capturing these heavy-tailed effects, where those effects source to either "reactivity" in
{
σ2
t

}
t∈Z

to the previous period’s shock or to static features of {εt}t∈Z. If, instead, f is the (standardized) Student’s-

t density, then the additional degree-of-freedom parameter can capture the static tail features of {εt}t∈Z,

allowing α to focus on the dynamic features of
{
σ2
t

}
t∈Z. The trouble with selecting f as the (standardized)

Student’s-t density, however, is that the resulting Non-Gaussian, Quasi-Maximum Likelihood Estimator

(NGQMLE) is not robust to density misspecification (see; e.g., Newey and Steigerwald, 1997, and Fan et al.,

2014). Specifically, from Fan et al. (2014, Proposition 1), bias in NGQMLE sources to under-identification

of the scale of {εt}t∈Z, when f 6= g.4

This paper investigates Variance-Targeted NGQMLE (VTNGQMLE) for the model of (1) and (2), where

f is the (standardized) Student’s-t density of Bollerslev (1987).5 When g is (relatively) thin tailed such that

E
(
Y 4
t

)
< ∞, VTNGQMLE is shown to be biased, just like NGQMLE, whenever f 6= g. In heavy-tailed

cases when E
(
Y 4
t

)
= ∞, however, the asymptotic limit of VTNGQMLE becomes dominated by prop-

erties of the sample variance (the VT part). Explaining this dominance are different rates of convergence;

specifically, the sample variance converges slower than does the likelihood function. As a result, effects

from the likelihood function disappear as the sample gets large, rendering VTNGQMLE consistent, even

3For a regularly varying random variable, the tail index ι > 0 is a moment supremum; meaning, if εt is regularly varying, then

E |εt|p <∞ if and only if p < ι (see; e.g., Resnick, 1987, for an introduction to regular variation).
4In the model of (1) and (2), scale of the innovations is given by ω. When f is Gaussian, ω is identified in cases where f 6= g.

When f is non-Gaussian, identification of ω is no longer guaranteed in these same cases. Moreover, since α can be shown to

depend on scale, (potential) lack of identification of ω also impacts α.
5See Engle and Mezrich (1996) for the initial proposal of variance-targeted estimation and Francq et al. (2011b) for an investi-

gation into the theoretical properties of VTQMLE.
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when f 6= g, so long as
{
σ2
t

}
t∈Z is mean stationary.6,7 Consequently, in heavy-tailed cases, VTNGQMLE

is robust to density misspecification, making it a member of the class of robust estimators like Francq et al.

(2011a), Fan et al. (2014), and Preminger and Storti (2017).

Vaynman and Beare (2014) show that when E
(
Y 4
t

)
=∞, the limit of VTQMLE is analogously domi-

nated by properties of the sample variance. This paper (i) extends that result to a non-Gaussian likelihood,

one that produces inconsistent GARCH parameter estimates in the absence of variance targeting, and (ii)

considers additional (very) heavy-tailed cases that are empirically relevant. Specifically, the distributional

limit of VTNGQMLE is determined in cases where E
(
σ4
t

)
= ∞ and E

(
ε4t
)

= ∞ but the distribution of{
σ2
t

}
t∈Z and

{
ε2t
}
t∈Z, respectively, remain in the domain of attraction of a normal law. Additionally, cases

where E
(
σ4
t

)
= ∞ and E

(
ε4t
)

= ∞ but the distribution of
{
σ2
t

}
t∈Z and

{
ε2t
}
t∈Z, respectively, is in the

domain of attraction of a stable law are also considered. In this heaviest-tail case, the distributional limit of

VTNGQMLE is shown to jointly depend on extremes from both
{
σ2
t

}
t∈Z and

{
ε2t
}
t∈Z. In the case where

E
(
σ4
t

)
= ∞ but E

(
ε4t
)
< ∞, in contrast, the distributional limit singularly depends on extremes from{

σ2
t

}
t∈Z. Consistent with the logic stated above favoring NGQMLE over QMLE (bias issues aside), sim-

ulation results, while confirming both VTQMLE and VTNGQMLE to be consistent in heavy-tailed cases

and more efficient than QMLE, even when f 6= g, also (strongly) favor VTNGQMLE over VTQMLE, on

efficiency grounds, in these same cases.

The distorting properties of the sample variance on VTQMLE are considered a cost, since these prop-

erties can prevent VTQMLE from achieving a Gaussian limit. Complicated estimators aimed at dampening

the tails of {Yt}t∈Z are, thus, proposed so that VTQMLE can retain such a limit (see; e.g., Hill and Renault,

2012). This paper, in contrast, views the distorting properties of the sample variance as a benefit, since those

properties enable variance-targeted estimation, generally, and VTNGQMLE, specifically, to be robust to

density misspecification. Counter-balancing the non-Gaussian limit of VTNGQMLE in heavy-tailed cases

are (iii) beneficial effects from the Student’s-t likelihood (effects that are retained in large, though still finite,

samples, owing to a relatively slow rate of convergence), and (iv) QMLE also having a non-Gaussian limit

of similar, qualitative form, in these same cases (see Hall and Yao, 2003, Theorem 2.1).

Despite its non-Gaussian limit, Monte Carlo experiments reveal VTNGQMLE to perform surprisingly

well against the competing robust estimators of both Fan et al. (2014) (hereafter FAN) and Preminger

and Storti (2017) (hereafter LSE) . In fact, VTNGQMLE is shown to outperform both estimators in terms

6In this case, "large" is relative, in the sense that, owing to a slower rate of convergence, effects from the likelihood function

will tend to remain, even in finite samples that are quite "large," by standard convention. This tendency is shown to be a benefit,

not a cost, however.
7{Yt}t∈Z in (1) and (2) needs to be covariance stationary, meaning

{
σ2t
}
t∈Z cannot follow an IGARCH (1, 1) process.
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of root-mean-squared and mean-absolute-error in samples as large as 10, 000 observations. Moreover, in

empirical, out-of-sample forecasting exercises using S&P 500 (log) returns and VIX levels, VTNGQMLE

is shown to outperform both QMLE and FAN.8

Empirical applications involve forecasting the volatility of S&P 500 (log) returns and VIX levels. The

former represents a standard application in financial econometrics. The latter, however, is more nuanced

and leverages a characteristic unique to the S&P 500 Index. That is, for the S&P 500 Index, the following

three features are directly observable: (v) the return; (vi) option-implied volatility of the return (VIX); (vii)

option-implied volatility of the volatility (VVIX). Using features (vi) and (vii) robust estimation of the model

in (1) and (2) on VIX demonstrates that the variance of VIX (viii) evidences rich GARCH effects and (viv)

these effects are useful at forecasting option-implied volatility of volatility (VVIX), thus establishing a link

between historical VIX variance and risk-neutral volatility-of-volatility.

2 Preliminaries

Define µ as a measure on a locally compact, second countable Hausdorff space E, and let M+ (E) denote

a collection of Radon measures on E. For R = R ∪
{
−∞, ∞

}
, consider the bounded set Rd \ {0},

where bounded here means bounded away from zero. Also, B ∈ B
(
Rd \ {0}

)
denotes a Borel σ-field

defined on this bounded set. Lastly, the unit sphere is denoted by Sd−1 =
{
x ∈ Rd : |x| = 1

}
.

For an Rd-valued random vectorX,

Definition 1 X is multivariate regularly varying with tail index κ0 ∈
(

0, ∞
)

if ∃ a sequence {an} →

∞ and a nonnull µ ∈M+

(
Rd \ {0}

)
such that

nP
(
a−1
n X ∈ ·

) v−→ µ (·) as n→∞,

where "v" denotes "vague convergence,"

µ (sB) = s−κ0µ (B) ,

∀ s > 0 and a relatively compact B ∈ B
(
Rd+ \ {0}

)
.

8In the case of VIX levels, both QMLE and FAN produce implausible estimates, while the estimates from VTNGQMLE remain

"in-line" with economic rationale and empirical observation.
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In addition, δX denotes the Dirac measure atX; meaning, for some setA, δX (A) =

 0 X /∈ A

1 X ∈ A

 .

C denotes a generic constant that can take-on different values in different places. "
d−→" denotes (weak) con-

vergence in distribution.

3 The Model and Background Results

Under consideration is the linear GARCH (1, 1) model of Bollerslev (1986). Results presented herein can

be extended to the general GARCH (p, q) case, where p, q ≥ 1 (see; e.g., Vaynman and Beare, 2014).

Focusing on the special case of p = q = 1, besides being the most practically relevant, also facilitates the

illustration of key concepts and ideas, as well as the verification of important conditions.

For a sequence {Yt}t∈Z, and a σ-algebra defined for this sequence as denoted by Ωt,

Yt = σtεt, εt ∼ i.i.d. D (0, 1) , (3)

σ2
t = ω0 + α0Y

2
t−1 + β0σ

2
t−1, (4)

where D is an unknown probability distribution with associated density function g. ω0 denotes the true

value of ω; ω any one of a set of possible values, and ω̂ an estimate. Parallel definitions hold for all other

parameter values.

ASSUMPTION 3.1.

ω > 0, α > 0, β ≥ 0, α+ β < 1.

Under Assumption 3.1, the GARCH(1, 1) model being considered nests the the ARCH(1) model as a

special case. Given (3), (4), and Assumption 3.1,

E
(
Y 2
t

)
= E

(
σ2
t

)
=

ω0

1− α0 − β0

<∞, (5)

where, for notational convenience, E
(
σ2
t

)
= E

(
σ2
)
. As a result, (4) may be re-written as

σ2
t = E

(
σ2
)

(1− α0 − β0) + α0Y
2
t−1 + β0σ

2
t−1. (6)
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LetXt =
(
σ2
t , Y 2

t

)′
. Again owing to (3)-(4),

Xt = AtXt−1 +Bt, (7)

where

At =

 β0 α0

β0ε
2
t α0ε

2
t

 , Bt =

 ω0

ω0ε
2
t

 ,

represents a stochastic recurrence equation (SRE) (see; e.g., Mikosch and Stărică, 2000, eq. 2.2). As such,

Definition 1 is shown to apply (see; e.g., Mikosch and Stărică, 2000, and Basrak et al., 2002).

ASSUMPTION 3.2. The sequence
{
ε2t
}
t∈Z is regularly varying, with tail index ι0.

Under Assumption 3.2, innovations to the GARCH(1, 1) model are heavy-tailed, in the sense that the

(unknown) distribution for these innovations belongs to the Fréchet class, as opposed to the more commonly

assumed Gumbel class.9 Regardless of whether GARCH(1, 1) model innovations are heavy-tailed in a

Fréchet-class sense, or (relatively) thin-tailed in a Gumbel-class sense, Xt will be regularly varying (see

Mikosch, 1999, Corollary 1.4.40).

What follows in the remainder of this section is a summary of select (weakly) dependent and heavy-

tailed limit theory results, upon which later sections are based. This summary draws heavily from Davis

and Mikosch (1998) and Mikosch and Stărică (2000), both of which, in turn, rely on results from Davis and

Hsing (1995). The intent of this summary is to introduce certain key results; not provide a comprehensive

review. A detailed treatment of these results, as well as additional background information, can be found in

the aforementioned works.

Lemma 1 Given Assumptions 3.1 and 3.2, let {Xt} be the unique stationary solution for the SRE in (7).

Then (i) X is regularly varying with tail index κ0 ∈ (1, ι0), and (ii) P (|X| > x) ∼ Cx−κ0 for some

C ∈ (0,∞).

From Definition 1, let {an} satisfy

nP (|X| > an)→ 1, n→∞ (8)

9See McNeil et al. (2015, Chapter 5) for definitions of the Frechét and Gumbel classes of distributions, respectively. As illus-

trations, the Student’s-t distribution with a finite degree of freedom is a member of the Frechét class, while the Normal distribution

is a member of the Gumbel class.
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Given (8), Lemma 1(ii) implies that

an ∼ (Cn)1/κ0 , (9)

and analogously, Assumption 3.2 implies that

bn ∼ (Cn)1/ι0 . (10)

ASSUMPTION 3.3. E
(
σ4
)

= ∞, but the distribution of σ2 remains in the domain of attraction of a

normal law. In this case,

H (a) = E
(
σ4 × I

(
σ2 ≤ a

))
; an = inf

{
a > 0 : nH (a) ≤ a2

}
, (11)

where H is slowly varying at∞.

Compared to (9), Assumption 3.3 offers an alternative characterization of an, one that applies in the

borderline case where κ0 = 2. This condition heralds from Hall and Yao (2003), as do the following two

implications; specifically,

a2P
(∣∣σ2 − E

(
σ2
)∣∣ > a

)
H (a)

→ 0, a→∞ (12)

(see; e.g., Feller, 1996, (8.5), p. 303), and

aE
(∣∣σ2 − E

(
σ2
)∣∣× I (∣∣σ2 − E

(
σ2
)∣∣ > a

))
H (a)

→ 0, a→∞. (13)

Consider the following sequence of point processes defined from the normalized process (Xt).

Nn =
n∑
t=1

δXt/an , n ∈ N, (14)

where {an} is defined in (8) and (9).

Lemma 2 Given Lemma 1 and the sequence of point processes in (14),

Nn
d−→ N =

∞∑
i=1

∞∑
j=1

δPiQij ,
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where (iii)
∞∑
i=1
δPi is a Poisson process on

(
0, ∞

)
with absolutely continuous intensity measure

v (dy) = γ0κ0y
−κ0−1dy,

κ0 ∈
(

1, ι0

)
, and γ0 ∈ ( 0, 1 ], (iv)

∞∑
j=1

δQij for i ∈ N is an i.i.d. sequence of point processes on

R2
+ \ {0} taking values in the set

{
µ ∈M+

(
R2

+ \ {0}
)}

: µ ({x : |x| > 1}) = 0 and µ (S) > 0,

and (v)
∞∑
i=1
δPi and

∞∑
j=1

δQij for i ∈ N are mutually independent.

Remark 1 From Basrak et al. (2002, Remark 2.12.), the points

(
Pi, Qij

)
correspond with the ra-

dial and spherical parts, respectively, of the limiting points Xt/an, where the spherical part accounts for

clustering behavior in the limiting point process.

Remark 2 Consider the sequence of point processes

N2
n =

n∑
t=1

δX2
t /a

2
n
.

Given Lemma 2 and the continuous mapping theorem,

N2
n

d−→ N2 =

∞∑
i=1

∞∑
j=1

δP 2i Q2
ij
.

In words, Lemma 2 details a convergence result from point process theory that can be used to establish

the distibutional limit of the vector sequence

Skn =

n∑
t=1

Xk
t , k = 1, 2, (15)

in the case where

E
(
Xk
t

)l
=∞ for l > 1.

To illustrate, consider the function Tε : MP

(
R2

+\ {0}
)
−→ R2 such that

a−kn Skn = Tε

(
Nk
n

)
.
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Given Lemma 2 and Remark 2,

Tε

(
Nk
n

)
d−→ Tε

(
Nk
)
, n→∞.

In addition, given Davis and Mikosch (1998, Proposition 3.3),

Tε

(
Nk
)

d−→ Sk, ε→ 0,

where Sk is a vector of (κ0/k)-stable random variables expressed in terms of the Pi’s and Qij’s in Lemma

2. The end result

a−kn Skn
d−→ Sk, (16)

is a limiting distribution for Skn with an ill-defined variance. The univariate analog to (16) was determined

by Davis and Hsing (1995, Theorem 3.1). Both (16) and its univariate analog factor prominently in the

limiting results developed in Section 5.

4 Estimation

For the purpose of estimating (3) and (4), assume (potentially incorrectly) that the probability density func-

tion of D is given by f , where

f ∝
(

1 +
x2

η − 2

)−(η+1)
2

, η > 2,

in which case, the non-Gaussian likelihood based upon the standardized tη-distribution of Bollerslev (1987)

applies. In this case, let

θ =
(
ω, α, β, η

)
=
(
ω, ϑ, η

)
=
(
ω, π

)
.

Given Assumption 3.1 and its implication in (5), consider the alternative parameter vector

v =
(
s2, π

)

10



such that

σ2
t (υ) =

 c (v) + αY 2
t−1 + βσ2

t−1 (υ) if 1 ≤ t ≤ n

s2 if t ≤ 1

 ,

where c (v) = s2 (1− α− β). Then, for

σ̂2
n =

1

n

n∑
t=1

Y 2
t ,

the log likelihood function under consideration is given by

logLn

(
σ̂2
n, π

)
=

n∑
t=1

lt

(
σ̂2
n, π

)

where

lt

(
σ̂2
n, π

)
= log fη

(
εt | Ωt−1

)
,

as defined in Bollerslev (1987, eq. 1), and π̂n is the solution to

logLn

(
σ̂2
n, π̂n

)
= arg max

π∈Π
logLn

(
σ̂2
n, π

)
, (17)

a Variance-Targeted, Non-Gaussian, Quasi-Maximum Likelihood Estimator (VTNGQMLE) for ϑ0. The

FOC from (17) is

0 =
∂

∂π
logLn (v̂n) =

n∑
t=1

∂lt (υ̂n)

∂π
. (18)

Let

v0 =
(
σ2

0, ϑ0, η̃0

)
,

where σ2
0 = E

(
σ2
)
, and η̃0 is interpreted as a "pseudo" truth.10

ASSUMPTION 4.1.

Q (ω, η) = − lnω + E
[
ln f

(
ω0εt
ω , η

)]
has a unique maximum at either ω0 and η0 when f = g or ω0 and η̃0 when f 6= g.

Assumption 4.1 is a generic identification condition for the scale and shape of f . It is the same as

Newey and Steigerwald (1997, Assumption 2.4). When f = g, this assumption holds naturally. When

f 6= g, Assumption 4.1 follows from identification of the scale and shape parameters of g.

10In the (likely) case where f 6= g, there is no "true" η. Nevertheless, in this case, η̂ converges to something, and that something

is defined as a "pseudo" truth.

11



Taking a first-order Taylor Expansion of (18) around υ = υ0 produces

0 =
n∑
t=1

{
∂lt (υ0)

∂π
+
∂2lt (υi)

∂π∂υ′
(υ̂n − υ0)

}
(19)

=

n∑
t=1

{
∂lt (υ0)

∂π
+
∂2lt (υi)

∂π∂σ2

(
σ̂2
n − σ2

0

)
+
∂2lt (υi)

∂π∂ϑ′

(
ϑ̂n − ϑ0

)
+
∂2lt (υi)

∂π∂η
(η̂n − η̃0)

}

where υi lies on the line segment between υ̂n and υ0. Letting

Jn =
1

n

n∑
t=1

∂2lt (υi)

∂π∂ϑ′
, Kn =

1

n

n∑
t=1

∂2lt (υi)

∂π∂σ2
, Mn =

1

n

n∑
t=1

∂2lt (υi)

∂π∂η
, Zn =

n
1

n

∑
t=1

∂lt (υ0)

∂π
,

(19) becomes

0 = nZn + Jnn
(
ϑ̂n − ϑ0

)
+Knn

(
σ̂2
n − σ2

0

)
+Mnn (η̂n − η̃0) . (20)

ASSUMPTION 4.2.

Jn
a.s.→ J ≡ E

(
∂2lt (υ0)

∂π∂ϑ′

)
, Kn

a.s.→ K ≡ E
(
∂2lt (υ0)

∂π∂σ2

)
, Mn

a.s.→ M ≡ E
(
∂2lt (υ0)

∂π∂η

)
.

When η =∞, Assumption 4.2 follows from Vaynman and Beare (2014, Lemma 1). Given Assumption

4.2, rearranging (20) and substituting population moments for sample moments produces

na−1
n

(
ϑ̂n − ϑ0

)
= −J−1

{
Kna−1

n

(
σ̂2
n − σ2

0

)
+Mna−1

n (η̂n − η̃0) + na−1
n Zn

}
. (21)

5 Asymptotics

This section considers the large-sample implications of (21) in six cases ranging from (relatively) thin-

tailed to (very) heavy-tailed. To preview the results, the large-sample properties of VTNGQMLE look very

different depending on whether a thin-tailed or thick-tailed case applies.

5.1 Case 1: κ0 > 2; η̃0 =∞.

In this case, the likelihood used in estimation is Gaussian, so the second term on the right-hand-side of (21)

drops out. In addition, a−1
n = n−1/2 so that

√
n
(
σ̂2
n − σ2

0

) d−→ N
(
0, Vσ2

)
, (22)

12



by a CLT for weakly dependent data, and

√
nZn

d−→ N (0, VZ) , (23)

by, for instance, Hall and Yao (2003, Theorem 2.1(a)). Moreover,

√
n
(
ϑ̂n − ϑ0

)
d−→ N (0, Vϑ) , (24)

by Francq et al. (2011, Theorem 1.1); in which case, given (22) and (23), Vϑ is seen to depend upon both

Vσ2 and VZ . Moreover, given Francq et al. (2011, Corollary 2), the VTQMLE cannot be asymptotically

more efficient than QMLE.

5.1.1 Case 2: κ0 > 2; η̃0 ∈
(

2, ∞
)

.

In this case, all three terms on the right-hand-side of (21) matter. a−1
n = n−1/2 continues to hold, as do both

(22) and (23), except that the latter now follows from Fan et al. (2014, Theorem 2). Given Assumption 4.1,

we can posit that
√
n (η̂n − η̃0)

d−→ N
(

0, Vη̃

)
. (25)

In (25), Fan et al. (2014, Section 5.3) establishes the rate of convergence as
√
n and the limit as Gaussian,

both so long as ι0 > 1.

We can further posit that

√
n
((
ϑ̂n + Ĉn

)
− ϑ0

)
d−→ N

(
0,
. .
V ϑ

)
, (26)

using (22) and results from Fan et al. (2014, Theorem 2). In (26), however, and in contrast to (24),Ĉn
p−→

C 6= 0, thus rendering ϑ̂n from (17) generally inconsistent. The presence of a non-asymptotically-vanishing

Ĉn follows from Fan et al. (2014, Proposition 1). Specifically, for our chosen f , VTNGQMLE fails to

identify the scale of the true model innovations, whenever f 6= g (see, additionally, Newey and Steigerwald,

1997). This issue of under-identification impacts ϑ̂n, generally, because it impacts α̂n, specifically. Conse-

quently, ϑ̂n from VTNGQMLE is inconsistent because the scale of the GARCH(1, 1) model’s innovations

is not identified.

It is well known that NGQMLE is inconsistent whenever f 6= g. It turns out that in this case, VT-

NGQMLE inherits this same undesirable property.

13



5.1.2 Case 3: κ0 = 2; η̃0 ∈
(

2, ∞
)

.

In this case, apply Assumption 3.3. In addition, let

Un = a−1
n

n∑
t=1

(
Y 2
t − E

(
Y 2
))

(27)

= a−1
n

n∑
t=1

((
σ2
t +Wt

)
− E

(
Y 2
))

; Wt =
(
ε2t − 1

)
× σ2

t

= a−1
n

n∑
t=1

Wt + a−1
n

n∑
t=1

(
σ2
t − E

(
σ2
))

= I(a) + II(a)

Following notation from Mikosch and Stărică (2000), for a random variable X , let

γn,X (h) =
1

n

n−h∑
t=1

XtXt+h.

Given (6),

II(a) = a−1
n

n∑
t=1

α0

(
Y 2
t−1 − E

(
Y 2
))

+ β0

(
σ2
t−1 − E

(
σ2
))

(28)

= α0na
−1
n

(
γn,Y (0)− E

(
Y 2
))

+ β0na
−1
n

(
γn,σ (0)− E

(
σ2
))

=

(
α0

1− β0

)
na−1

n

(
γn,Y (0)− E

(
Y 2
))

Plugging (28) back into (27) produces

Un =

(
1− β0

1− α0 − β0

)
a−1
n

n∑
t=1

Wt (29)

Theorem 3 Given Assumptions 3.1 and 3.3,

na−1
n

(
σ̂2
n − σ2

0

) d−→ N

(
0,

(
1− β0

1− α0 − β0

)2

VW

)
(30)

where an is given by (11), and VW is defined in (65) of the Appendix.

Proof. Unless otherwise stated, all proofs appear in Appendix A.

Motivated by results in Hall and Yao (2003), Theorem 3 establishes σ̂2
n as asymptotically normal in the

borderline case where κ0 = 2. In this case, (23) continues to hold as in Case 2, as does (25). Moreover,

14



given Assumption 3.3,

n1/2a−1
n = O (1) ,

in which case, from (21),

na−1
n

(
ϑ̂n − ϑ0

)
= −J−1

{
Kna−1

n

(
σ̂2
n − σ2

0

)
+M

√
n (η̂n − η̃0) +

√
nZn

}
.

As a result, VTNGQMLE remains an inconsistent estimator of ϑ̂n, owing to the (asymptotic) effects of Zn.

5.2 Case 4: κ0 ∈
(
1, 2

)
; ι0 > 2.

Given Figure 5, this case has been empirically relevant for SPX (log) returns, at least, in the past

Theorem 4 Given Lemma 1, (9), Assumption 4.2, and (21), if E
(
Y 4
t

)
=∞; σ2

t is in the domain of attrac-

tion of a κ0-stable law, and E
(
ε4t
)
<∞, then

na−1
n

(
ϑ̂n − ϑ0

)
= −J−1Kna−1

n

(
σ̂2
n − σ2

0

)
+ op (1) . (31)

When E
(
Y 4
t

)
= ∞ because κ0 < 2, and E

(
ε4t
)
< ∞ (or, equivalently, ι0 > 2), the distributional

limit of ϑ̂n becomes dominated by the limit of σ̂2
n (an analogous result is reported in Vaynman and Beare,

2014, for VTQMLE). This dominance sources to a slower rate of convergence for σ̂2
n compared to either η̂n

or the score of the likelihood function. Since σ̂2
n

p−→ σ2
0, an effect of this dominance is that VTNGQMLE

becomes a consistent estimator for ϑ̂n. As such, VTNGQMLE is a robust estimator like QMLE and the

multi-step estimators aimed at improving QMLE, like Fan et al. (2014) and Preminger and Storti (2017).

Theorem 5 Given Lemma 1 and (9), if E
(
Y 4
t

)
= ∞; σ2

t is in the domain of attraction of a κ0-stable law,

and E
(
ε4t
)
<∞, then

na−1
n

(
σ̂2
n − σ2

0

) d−→
(

1− β0

1− α0 − β0

)
Uσ2 , (32)

where Uσ2 is the κ0-stable random variable given in (72).

Remark 3 The method of proof behind Theorem 5 borrows from both Davis and Mikosch (1998) and

Mikosch and Stărică (2000). Theorem 5 is also closely related to Vaynman and Beare (2014, Theorem

4).

Remark 4 The limit in (32) relates to the Pi’s andQij’s in Lemma 2.
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Established in Theorem 5 is a stable limit for σ̂2
n that is highly non-Gaussian. Convergence to this non-

Gaussian limit is also slower than the usual
√
n rate and dependent upon the tails of

{
σ2
t

}
. In this case,

while both
{
σ2
t

}
and

{
ε2t
}

are allowed to be heavy tailed, only the tail properties of the former impact the

limit in (32).11

Given (31) and (32), establishing the limit of ϑ̂n requires a straight-forward application of Slutsky’s

Theorem to produce

na−1
n

(
ϑ̂n − ϑ0

)
d−→ −

(
1− β0

1− α0 − β0

)
J−1KUσ2 . (33)

5.3 Case 5: κ0 ∈
(
1, ι0

)
; ι0 = 2.

This second borderline case was first introduced and studied in Hall and Yao (2003). Given Figure 6, this

case appears to be empirically relevant for SPX (log) returns in contemporaneous times. For analyzing this

case, the following Condition is important.

ASSUMPTION 5.1. E
(
ε4
)

=∞, but the distribution of ε2 remains in the domain of attraction of a normal

law. In this case,

H (b) = E
(
ε4 × I

(
ε2 ≤ b

))
; bn = inf

{
b > 0 : nH (b) ≤ b2

}
,

where H is slowly varying at∞.

Remark 5 Assumption 5.1 parallels Assumption 3.3 but for ε2 and is identical to Hall and Yao (2003, eq.

2.8). It controls the rate of tail decay in the distribution of ε2.

In this borderline case, (31) continues to hold, in which case, the asymptotic properties of ϑ̂n remain

dominated by those of σ̂2
n. Establishing the stable limit of σ̂2

n, however, becomes more complicated com-

pared to Theorem 5, since it is now the case that E
(
ε4
)

= ∞. Nevertheless, with the aid of Assumption

5.1 and its associated implications (see 12 and 13, appropriately modified for ε2), (32) continues to hold, as

established by the following Theorem.

Theorem 6 Given Lemma 1, (9), and Assumption 5.1, ifE
(
Y 4
t

)
=∞, and σ2

t is in the domain of attraction

of a κ0-stable law, then (32) continues to hold.

11Just as the impact of the likelihood function vanishes in (31), the impact of extremes in
{
ε2t
}

vanish in determining the limit

of σ̂2n. The notation for the limiting variable Uσ2 emphasizes this singular impact.
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Under Theorem 6, despite ε2 being a heavier-tailed process compared to Case 4, its tail properties

continue to exercise no effect on the asymptotic limit of σ̂2
n. Moving from Case 1 to Case 2, the rate of

convergence changes but the distributional limit remains (generally) the same. Moving from Case 4 to Case

5, in contrast, both the rate of convergence and the distributional limit remain unaltered. Explaining this

difference between borderline cases are the dual results that (1) the rate of convergence implied by {bn} is

faster than the rate of convergence implied by {an}, causing any effects related to the former to vanish, and

(2) extremes in σ2
t continue to dominate the asymptotic behavior of

n∑
t=1
Y 2
t .

An immediate consequence of (31) and (32) continuing to hold is that (33) also continues to hold.

5.4 Case 6: κ0 ∈
(
1, ι0

)
; ι0 < 2.

There is strong empirical evidence supporting this very heavy-tailed case as being relevant for VIX (see Fig-

ures 11 and 12). In addition, empirical relevance of this case even for SPX (log) returns, in contemporaneous

times, cannot be dismissed (see Figures 5 and 6).

Theorem 7 Given Lemma 1, (9), (10), (20), and Assumption 4.2, if E
(
Y 4
t

)
= ∞; σ2

t is in the domain of

attraction of a κ0-stable law; E
(
ε4t
)

=∞, and ε2 is in the domain of attraction of a ι0-stable law, then

na−1
n b−1

n

(
ϑ̂n − ϑ0

)
= −J−1Kna−1

n b−1
n

(
σ̂2
n − σ2

0

)
+ op (1) . (34)

In this case, the analog to (27) is

Un = a−1
n b−1

n

n∑
t=1

(
Y 2
t − E

(
Y 2
))
,

in which case,

Un =

(
1− β0

1− α0 − β0

)
a−1
n b−1

n

n∑
t=1

Wt, (35)

following the steps outlined in (27)–(29). Given (34), analysis of a−1
n b−1

n

n∑
t=1
Wt then determines the asymp-

totic limit of ϑ̂n.

Theorem 8 Given Lemma 1, (9) and (10), if E
(
Y 4
t

)
=∞; σ2

t is in the domain of attraction of a κ0-stable

law; E
(
ε4t
)

=∞, and ε2 is in the domain of attraction of a ι0-stable law, then

na−1
n b−1

n

(
σ̂2
n − σ2

0

) d−→
(

1− β0

1− α0 − β0

)
Uε2, σ2 , (36)
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where Uε2, σ2 is the κ0-stable random variable given in (86).

Under Theorem 8, and for the first time, tail properties of both
{
σ2
t

}
and

{
ε2t
}

matter in determining the

asymptotic limit in (36).

Remark 6 In the proof of Theorem 8, when establishing the asymptotic variance of certain sums as negligi-

ble, it appears insufficient to rely solely on the normalizing constants {an}, since doing so implies explosive

(as opposed to dampened) behaviour in the affected sums, as n grows large. Joint reliance on the normal-

izing constants {an} and {bn}, however, enables the variance of these affected sums to smoothly vanish.

Moreover, the asymptotic limit of the remaining sum is seen to depend on both {an} and {bn}, as opposed

to just {an} alone.

Remark 7 The limits in (32) and (36) are not the same, but they are similar in a qualitative sense (see; e.g.,

Davis and Mikosch, 1998, Remark 3.2). That is, Uε2, σ2 can be expressed in terms of quantities that are

qualitatively similar to the Pi’s andQij’s in Lemma 2.

The limit of VTNGQMLE in (36) appears (qualitatively) similar to the limit of QMLE, as determined

by Hall and Yao (2003, Theorem 2.1(c)). Under Case 6, consequently, it is unclear which estimator (VT-

NGQLME or QMLE) dominates the other, on efficiency grounds. A similar statement appears to hold

true when comparing VTNGQMLE to the multi-step estimator of Preminger and Storti (2017) that as-

sumes E
(
Y 2
t

)
< ∞ (hereafter LSE), since

√
n asymptotic normality of this estimator also depends on

E
(
ε4t
)
< ∞, just as in the QMLE case.12 The multi-step estimator of Fan et al. (2014), on the other hand,

(hereafter FAN) should be more efficient (asymptotically) than VTNGQMLE, since the former should be

√
n asymptotically normal, so long as ι0 > 1.

Lastly, given (34) and (36), Slutsky’s Theorem establishes

na−1
n b−1

n

(
ϑ̂n − ϑ0

)
d−→ −

(
1− β0

1− α0 − β0

)
J−1KUε2, σ2 . (37)

6 Bootstrap Inference

Troubles with the results in (33) and (37) are twofold:

12In the case of QMLE, E
(
ε4t
)
<∞ is necessary for

√
n asymptotic normality. Still in the case of QMLE, Hall and Yao (2003)

show that whenE
(
ε4t
)
=∞, the asympotic limit is α-stable with a slower rate of convergence that depends upon the tail properties

of
{
ε2t
}

. Owing to this result, it seems reasonable to conclude that when E
(
ε4t
)
=∞, LSE, too, would have an α-stable limit and

a rate of convergence slower than
√
n. This conclusion, however, has not been formally established.
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1. the precise form of the distributional limits is awkward, rendering how to construct asymptotic confi-

dence bands unclear;

2. the rate of convergence depends upon distributional characteristics that are unknown.

Owing to these twin troubles, it is equally unclear the practical relevance of (33) and (37). To help dispel

these troubles, consider

τ̂2
n = n−1

n∑
t=1

Y 4
t −

(
n−1

n∑
t=1

Y 2
t

)2

, (38)

which is analogous to a finite-sample variance for σ̂2
n, if the true variance were well defined.

Theorem 9 Under Case 6 and the assumptions of Theorem 8,

na−2
n b−2

n τ̂2
n

d−→ Uε4, σ4 , (39)

where Uε4, σ4 is a (κ0/2)-stable random variable determined by the extremes of both
{
ε2t
}

and
{
σ2
t

}
(see

the proof of Theorem 9 for additional details).

Remark 8 Hall and Yao (2003) consider a statistic analogous to (38) that is based on εt, as opposed to Yt.

Denote the Hall and Yao (2003) statistic τ̂2
n (εt), so that the statistic in (38) can be denoted τ̂2

n (Yt). Because

{εt} is i.i.d., an appropriately scaled version of τ̂2
n (εt) can be shown to have a stable limit using results from

Feller (1971) and Lepage et al. (1981), even when E
(
ε4t
)

= ∞. Complicating an analgous demonstration

for τ̂2
n (Yt), in the case where E

(
Y 4
t

)
= ∞, is dependence in {Yt} that sources to

{
σ2
t

}
. Theorem (9)

establishes a stable distributional limit for τ̂2
n (Yt) by relying upon the convergence results summarized in

Section 3.

Corollary 10 Under Case 4 and the assumptions of Theorem 5,

na−2
n τ̂2

n
d−→ Uσ4 , (40)

where Uσ4 is a (κ0/2)-stable random variable determined by the extremes of
{
σ2
t

}
.

Proof. The general method of proof follows the same arguments in the proof of Theorem 5 immediately

below (71) and through to the end. Establishing

Tε
(
N2
) d−→ Uσ4 , ε→ 0
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for an appropriately defined Tε (·) and the N2 in Remark 2 follows from Davis and Hsing (1995, Theorem

3.1(i)).

Theorems (8) and (9) demonstrate that individually na−1
n b−1

n

(
σ̂2
n − σ2

0

)
and na−2

n b−2
n τ̂2

n have proper

limiting distributions. The following theorem and corollary establish that these (weak) marginal convergence

results are also joint.

Theorem 11 Under Case 6 and the assumptions of Theorem 8,

(
na−1

n b−1
n

(
σ̂2
n − σ2

0

)
, na−2

n b−2
n τ̂2

n

)
d−→
(
Uε2, σ2 , Uε4, σ4

)
, (41)

where the, respective, marginal limits are those from (36) and (39).

Corollary 12 Under Case 4 and the assumptions of Theorem 5,

(
na−1

n

(
σ̂2
n − σ2

0

)
, na−2

n τ̂2
n

)
d−→
(
U σ2 , U σ4

)
, (42)

where the, respective, marginal limits are those from (32) and (40).

Proof. The method of proof follows that of Theorem (11) (see Appendix A). Alternatively, let

(
na−1

n

(
σ̂2
n − σ2

0

)
, na−2

n τ̂2
n

)
=
( ··
Un,ε, Vn,ε

)
,

and note that
··
Un,ε is a special case of Un,ε in Vaynman and Beare (2014, eq. 35). Then (42) can be

established by following the steps outlined in Vaynman and Beare (2014, proof of Theorem 4).

With the aid of the continuous mapping theorem and Slutsky’s Theorems, from (41) follows that

√
n

(
ϑ̂n − ϑ0

τ̂n

)
d−→ −

(
1− β0

1− α0 − β0

)
J−1K

Uε2, σ2
U

1/2
ε4, σ4

 . (43)

The power of (43) is that the left-hand-side has a proper limiting distribution, and the rate of convergence is

known. Moreover, given (42), it is evident that the left-hand-side of (43) has a proper limiting distribution

under Cases 3–6. In fact, the left-hand-side of (43) has a proper limiting distribution under all of the cases

considered in Section 5. In Cases 1 and 2, the result is trivial, since τ̂n has a degenerate limit, with the stan-

dard
√
n rate of convergence. In Case 3, τ̂n maintains a degenerate limit; however, the rate of convergence

to that degenerate limit is now unknown. Fortunately, the rate of convergence to a non-degenerate limit for
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(
ϑ̂n − ϑ0

)
is also unknown and happens to depend upon the same latent factor in such a precise way that

the effect of this (common) latent factor cancels out. In Cases 4–6, the limit of τ̂n becomes non-degenerate,

but the rate of convergence to that non-degenerate limit remains precisely aligned with the rate of conver-

gence in
(
ϑ̂n − ϑ0

)
in such a way that the normalized statistic

(
ϑ̂n−ϑ0
τ̂n

)
converges at the standard

√
n rate.

Owing to this result,
(
ϑ̂n−ϑ0
τ̂n

)
can be bootstrapped using the re-sampling scheme described in Hall and Yao

(2003, Section 3.2), which then approximates the limiting result in (43), as demonstrated by Hall and Yao

(2003, Theorem 3.2).

7 Monte Carlo Experiments

The sequence {εt} is drawn from the skewed student’s-t density of Hansen (1994). This density has two

parameters, λ and η, with the former governing skewness, the latter governing the tails, and up to the ηth

moment of the distribution being well defined. Values for these parameters are

λ0 =
(

0.00, 0.40, 0.80, 0.99
)

; η0 =
(

8.5, 4.5, 4.0, 3.5
)
.

As λ increases, so, too, does skewness, while as η decreases, tail thickness increases. η0 = 8.5 is a (rel-

atively) thin-tailed case, while the remaining values for η0 correspond with heavy-tailed cases. When

η0 = 4.5, QMLE is asymptotically normal (AN). When η0 = 4.0, AN of QMLE is preserved, but with

a convergence rate slower than
√
n, while when η0 = 3.5, QMLE is no longer AN, instead converging to a

limit that appears qualitatively similar to the one discovered for VTNGQMLE.

Non-zero skewness levels are considered for two reasons. First, λ 6= 0 introduces a density misspeci-

fication, since f is symmetric. Second, non-zero skewness is an empirical feature of both SPX log returns

and VIX levels, especially, in recent times (see Figure 16), where the former tends to be negative and the

latter strongly positive.13 Unreported results indicate no material differences between positive and negative

values for λ0; consequently, only results for positive values are reported.14

Across the different parameterizations of the innovation density, the different GARCH(1, 1) model pa-

rameters are given in Table 1. The estimators under study are QMLE, NGQMLE, VTNGQMLE, FAN, and

LSE. NGQLME is the Student’s-t estimator of Bollerslev (1987), while FAN and LSE are the estimators of

Fan et al. (2014) and Preminger and Storti (2017), respectively. Away from the case λ = 0, NGQMLE is

not robust, while FAN, LSE, and QMLE are all robust estimators. Samples sizes for the simulations range

13The positive skewness in VIX levels is "natural," in the sense that VIX > 0 because it is a volatility.
14Simulation results using negative values of λ0 are available upon request.
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from 500 − 100, 000, with all simulations conducted over 10, 000 trials.15 Summary statistics for the sim-

ulations include mean bias and inter-decile range. Also reported are ratios of the root-mean-squared- and

mean-absolute-error (each measured with respect to the true parameter value) divided by the corresponding

measure for QMLE. Termed "efficiency ratios," values less than one indicate improved efficiency of the

given estimator over QMLE. Figures 17–24 depict results for Specification III.

7.1 Bias

For α̂n, as λ0 increases, NGQMLE displays a growing bias that can be quite severe, particularly in large

samples (see Figure 17). Bias in VTNGQMLE (relative to NGQMLE), in contrast, behaves quite differ-

ently, tending to decrease (rather sharply) as the sample size increases. At very large samples (> 10, 000),

VTNGQMLE appears to retain a small amount of bias. Large sample results in Section 5 are based on

a first-order approximation to the score of the likelihood function. This residual bias, then, is consistent

with higher-order effects. Since this residual bias is (1) orders-of-magnitude smaller than the bias affecting

NGQMLE and (2) additionally materially smaller than the bias displayed by VTQMLE, the latter being

a consistent estimator (see Francq et al., 2011, Theorem 1.1), any retained bias in VTNGQMLE, and the

higher-order terms causing it, appears to be only of secondary importance. Consequently, simulation results

confirm VTNGQMLE to be a consistent estimator, comparable to FAN, LSE, and QMLE.

For β̂n, bias in NGQMLE decreases sharply with the sample size, indicating NGQMLE to be a consistent

estimator for β0 (see Figure 18). In fact, for β̂n, NGQMLE tends to display the least bias of all the estimators

being studied and under all the simulation designs considered. This result confirms the theoretical prediction

in Fan et al. (2014) that bias in NGQMLE sources to under-identification of scale. β̂n is unaffected by scale,

in which case, NGQMLE is a robust estimator for β0. VTNGQMLE of β̂n tends to be close to NGQMLE

in terms of bias and, consequently, tends to display among the least bias of the estimators being studied,

except under very large sample sizes. Parallel to α̂n, any retained bias in β̂n from VTNGQMLE sources to

higher-order effects, which, owing to results that follow, are of (decidedly) second-order importance.

7.2 Dispersion

For α̂n, except in the largest samples, NGQMLE and VTNGQMLE tend to be noticeably less disperse

than the other estimators. Under all simulation designs considered, the rate of convergence for FAN and

15The first 200 observations within each trial are dropped in order to avoid initialization effects. Very large samples are considered

because of the slow convergence rates identified under Cases 4 and 6 (see, also, Hall and Yao, 2003, Theorem 2.1(b)–(c), for

QMLE).
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NGQMLE should be
√
n. The rate of convergence for VTNGQMLE, however, should always be less than

√
n and should be the slowest in the case where η0 = 3.5. Consistent with these predictions, the rate of

reduction in dispersion appears muted for VTNGQMLE compared to both FAN and NGQMLE (see Figure

19). Moreover, the difference between rates of reduction in dispersion appears most apparent in the case

where η0 = 3.5.

For β̂n, NGQMLE and VTNGQMLE are consistently the least disperse estimators, followed by FAN

and LSE (see Figure 20). QMLE and VTQMLE are the bottom-two, in terms of dispersion, and appear

(effectively) indistinguishable.

7.3 Efficiency

For α̂n, as λ0 increases, the bias in NGQMLE grows in importance and eventually dominates both efficiency

ratios, causing NGQMLE to become the least efficient estimator (see Figures 21 and 23). This dominance,

however, takes a surprisingly long while to set in, only severely and adversely impacting the very largest

sample sizes. For empirically-relevant sample sizes (i.e., T ∈
[

500, 2, 500
]
), NGQMLE beats all other

estimators except VTNGQMLE in terms of RMSE (see Figure 21), with a similar result holding for MAE

(see Figure 23). The source of this outperformance appears to be (despite the materially higher bias) the

material reduction in dispersion that the Student’s-t likelihood affords (specifically, estimation of a degrees-

of-freedom parameter) relative to the competing estimators. Moreover, except in the largest samples consid-

ered (≥ 50, 000), NGQMLE sizably outperforms QMLE, in terms of both RMSE and MAE. Consequently,

as a practical matter, in heavy-tailed cases, and despite the presence of material bias, NGQMLE appears

preferable to QMLE.

For α̂n and λ0 > 0, VTNGQMLE consistently beats NGQMLE (see Figures 21 and 23). Moreover, and

surprisingly, in these same cases, VTNGQMLE consistently beats both FAN and LSE in samples as large

as T = 2, 500, generally. In the heaviest-tailed case of η0 = 3.5, specifically, VTNGQMLE beats FAN and

LSE in samples as large as T = 10, 000. Consequently, gains in VTNGQMLE over FAN and LSE appear to

be finite-sample phenomena; however, in heavy-tailed cases, these gains (1) are rather sizable and (2) extend

into finite samples that are (very) common to empirical applications.

Still for α̂n, in the (relatively) thin-tailed case of η0 = 8.5, VTNGQMLE is never more efficient (under

either efficiency ratio) than QMLE in the largest sample size, making gains in VTNGQMLE over QMLE

also a finite-sample phenomena; albeit, one that similarly persists into surprisingly large samples. In cases

where η0 ≤ 4.5, however, material efficiency gains in VTNGQMLE over QMLE begin appearing even in
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the largest sample size, when λ0 > 0. When η0 = 4.0, VTNGQMLE is more efficient than QMLE across

all sample sizes considered, with this tendency preserved in the heaviest-tailed case of η0 = 3.5. From Hall

and Yao (2003, Theorem 2.1(b)–(c)), the large sample properties of QMLE change when η0 ≤ 4.0. In these

same cases, the relative large sample properties between VTNGQMLE and QMLE appear to change as well.

For α̂n using RMSE, Francq et al. (2011, p. 630) reports that when the true ARCH (1) innovations

are heavy-tailed, VTQMLE "performs remarkably well and even outperforms QMLE." The sample size

upon which this result is based is T = 500. Results in Figures 21 and 23 show that this outperformance

of VTQMLE over QMLE (1) extends to the GARCH (1, 1) case and (2) covers sample sizes much larger

than T = 500. For instance, when η0 ≤ 4.0, VTQMLE bests QMLE (in terms of either RMSE or MAE)

in samples as large as T = 10, 000. However, across all samples considered, VTNGQMLE always bests

VTQMLE (and by large amounts), and in the heaviest-tailed cases of η0 ≤ 4.0, VTQMLE tends not to

outperform QMLE in the largest sample size, while VTNGQMLE does.

For β̂n overall, VTNGQMLE and NGQMLE tend to be the most efficient estimators, with NGQMLE

performing the best across all specifications considered (see Figures 22 and 24). Only at samples larger

than T = 10, 000 does there appear any appreciable difference between NGQMLE and VTNGQMLE, with

that difference favoring NGQMLE. In these same (very) large sample cases (≥ 50, 000), both FAN and LSE

outperform VTNGQMLE but neither outperforms NGQMLE. Consequently, not only is β̂n from NGQMLE

robust to density misspecification (as further explored in the next section), NGQMLE is the best estimator

for β0 out of all the estimators considered.

Consequently, in the family of robust GARCH estimators, VTNGQMLE appears tough to beat. Com-

pared to both FAN and LSE, VTNGQMLE is also the simplest to implement, requiring the fewest compu-

tational steps.

8 Explaining the Results

Let

σ2
t =

σ2
t

ω0

. (44)

Conditional on (44), the model of (3) and (4) can be re-cast as

Yt =
√
ω0σtεt, (45)
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σ2
t = 1 +

(
α0

ω0

)
Y 2
t−1 + β0σ

2
t−1. (46)

From (45), the constant parameter ω0 can be seen as the scale of the model’s innovations. From (46),

"reactivity" of the conditional variance to the previous period’s innovation is seen to depend on scale.16 Also

from (46), the portion of the previous period’s conditional variance affecting the current period’s conditional

variance is seen to be invariant to scale. Consequently, difficulties in estimating ω0 have the potential

to adversely impact the estimation of α0, while such difficulties should not impact the estimation of β0.

Conversely, improvements in the estimation of ω0 have the potential to benefit the estimation of α0, as

shown; e.g., by Fan et al. (2014).

Consider, next, the following generalization to the model of (3),

Yt = ηf,0σtεt, (47)

=
··
σtεt

where

ηf,0 = arg max
ηf>0

E

[
− log ηf + log f

(
ε

ηf

)]
, (48)

with the expectation is taken under g, and

··
σ

2

t =
(
η2
f,0ω0

)
+
(
η2
f,0α0

)
Y 2
t−1 + β0

··
σ

2

t−1 (49)

= ω0 + α0Y
2
t−1 + β0

··
σ

2

t−1.

(47) and (48) herald from Fan et al. (2014, eq. 6), where ηf,0 acts as a scale adjustment parameter.17

The model of (47) and (48) compliments the finding from Newey and Steigerwald (1997) that GARCH-

style models require additional parameters for correcting discrepancies between f and g, so as to ensure

identification of NGQMLE.18 When either f = g or f ∝ e
−x2
2 , ηf,0 = 1 (see Fan et al., 2014, Proposition

1), in which case, the baseline model of (3) and (4) applies. As a result, no adjustment factor is necessary

for the scale estimate from QMLE. However, when f 6= g and f ∝ e
−x2
2 does not hold (as is the case here),

ηf,0 6= 1. In this case, owing to (49), incorrectly assuming that ηf,0 = 1 results in a biased estimate of scale.

Moreover, the same bias impacting scale will also (and equally) impact "reactivity."

Consider estimation of (47) and (49) ignoring the presence of ηf,0 and, therefore, implicitly assuming

16That is, GARCH "reactivity" is the ARCH parameter normalized by the (unconditional) scale of the model’s innovations.
17Specifically, ηf,0 measures the "distance" between f and g.
18Those discrepancies relate to location and scale.
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ηf,0 = 1.19 The following two cases are considered: E
(
Y 4
t

)
<∞ (the thin-tailed case); E

(
Y 4
t

)
=∞ (the

heavy-tailed case). Let ω̂ denote the NGQMLE estimate of ω0 and ω̂
V T

the VTNGQMLE estimate, with

parallel definitions holding for other parameters in (49).

ASSUMPTION 8.1 Under both the thin- and heavy-tailed cases,

p lim
(
ω̂n

)
= ω0; p lim

(
α̂n

)
= α0; p lim

(
β̂n

)
= β0. (50)

Under Assumption 8.1, neither ω0 nor α0 are identified, owing to the distorting presence of ηf,0. What

are identified, however, are ω0 and α0, which can be interpreted as reduced-form parameters. Consequently,

NGQMLE (minus any scale correction) consistently estimates the reduced-form conditional variance in

(49). The mistake, then, is treating ω̂n and α̂n as structural estimates. When f 6= g and f ∝ e
−x2
2 does not

hold, NGQMLE under-identifies the (structural) GARCH model.

Monte Carlo results support Assumption 8.1. In (50), bias in ω̂n and α̂n as estimates of ω0 and α0,

respectively, is precisely the same, as it stems from the same distorting property introduced by ηf,0. This

prediction is confirmed by comparing Figures 17 and 25. In large samples, the size and sign of the bias in

NGQMLE estimates for ω0 and α0, respectively, are identical across all simulation designs considered for

which f 6= g. In addition, no (asymptotic) bias is detected for the NGQMLE estimates for β0.

Under both the thin- and heavy-tailed cases, ω̂
V T
n is given by

ω̂
V T
n = η̂2

f,nω̂n = η̂2
f,n

{
σ̂2
n

(
1− α̂V Tn − β̂n

)}
,

in which case, the scale of the GARCH model innovations is, in turn, a scaled version of the uncon-

ditional variance of Yt, where the scaling coefficients are the parameters governing short-term, conditional

variance dynamics. Under the thin-tailed case, the probability limit of ω̂
V T
n is

p lim
(
ω̂
V T
n

)
= η2

f,0

{
σ2

0 (1− α0 − β0)
}

(51)

= η2
f,0ω0 − α0σ

2
0η

2
f,0

(
η2
f,0 − 1

)
= p lim

(
ω̂n

)
− α0σ

2
0η

2
f,0

(
η2
f,0 − 1

)
,

where the second equality follows from p lim
(
η̂2
f,n

)
= η2

f,0 by Fan et al. (2014, Theorem 1) and p lim
(
α̂
V T
n

)
=

19Fan et al. (2014), in contrast, accounts for the presence of ηf,0 by estimating (48) in a preliminary step, using {̂ε} from QMLE.

Unlike in Newey and Steigerwald (1997), it is not possible to jointly estimate ηf,0 along with the other GARCH parameters, since

ηf,0 is not separately identified.
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α0 by the discussion under Case 2. In this case, ω̂
V T
n is also a biased estimator of scale, but the form of the

bias differs from that affecting ω̂n.

Under the heavy-tailed case, the probability limit of ω̂
V T
n becomes

p lim
(
ω̂
V T
n

)
= η2

f,0

{
σ2

0 (1− α0 − β0)
}

(52)

= η2
f,0ω0

= p lim
(
ω̂n

)
,

where the first equality follows from p lim
(
α̂
V T
n

)
= α0 by Theorem 4 or 7. In this case, ω̂

V T
n remains a

biased estimator of scale, but the form of the bias is now precisely the same as that affecting ω̂n.

Monte Carlo results support the prediction in (52). Biases in ω̂
V T
n and ω̂n tend to be right on top of each

other, in cases where f 6= g (see Figure 25). Differences in these biases tend to be minor and, consequently,

source to p lim
(
α̂
V T
n

)
= α0 being true to a first-order approximation.

Section 5 discovers that VTNGQMLE is a biased estimator for α0 in the thin-tailed case (including the

borderline case of Assumption 3.3) but a consistent estimator in the heavy-tailed case. (51) and (52) reveal

that in neither case is VTNGQMLE a consistent estimator of scale. Fan et al. (2014) shows that accounting

for the scale correction parameter in (47) and, therefore, solving the identification problem evident in (49),

results in a more efficient estimator than QMLE, consistent with the argument put forth in Section 1. That is,

in heavy-tailed cases, a heavy-tailed likelihood can distinguish heavy-tailed effects that are static in nature

from heavy-tailed effects that arise due to short-run fluctuations in the conditional variance. A Gaussian

likelihood, in contrast, cannot make this distinction. Holding heavy-tailed likelihoods back, however, is

their inability to identify (and consistently estimate) scale, when those likelihoods depart from the truth.

Fan et al. (2014) removes this impediment and shows that the resulting efficiency gains (relative to QMLE)

can be substantial. Section 7 shows that VTNGQMLE can be a materially more efficient estimator for α0

than FAN, LSE, and QMLE. But VTNGQMLE does not solve the identification problem associated with

scale, whenever f 6= g. So what is going on? Results presented in Section 7 hint at an answer.

From Section 7, NGQMLE is shown (consistent with popular belief) to be a biased estimator away from

the true innovation density. Despite being a biased estimator for α0, NGQMLE is also shown (contrary to

popular belief) to perform surprisingly well against robust alternatives in finite samples of surprisingly large

sizes. The reason behind this surprisingly strong performance is the reduction in dispersion afforded by

NGQMLE (see Figure 17). Analogous reductions in dispersion tend also to be afforded to the NGQMLE

estimates of ω0 (see Figure 26), where these reductions (relative to robust alternatives) tend to grow as η0
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shrinks. Moreover, these reductions in dispersion tend to be so great as to overwhelm the presence of bias,

resulting in estimates of ω0 that tend to be more efficient (in terms of either RMSE or MAE) than robust

alternatives in finite samples as large as T = 2, 500 (see Figures 27 and 28). From (52) and confirmed in

Figure 25, NGQMLE and VTNGQMLE for ω0 are closely linked in terms of bias. It turns out, NGQMLE

and VTNGQMLE for ω0 are also closely linked in terms of dispersion (see Figure 26) as well as in terms of

efficiency (see Figures 27 and 28). Consequently, VTNGQMLE tends to produce a more efficient estimate

of scale, in heavy-tailed cases, than does either FAN, LSE, or QMLE in sample sizes as large as T = 2, 500.

In these same cases, the outperformance of the VTNGQMLE estimates of α0 over those from FAN, LSE,

or QMLE is at its highest (compare Figures 21 and 27 as well as Figures 23 and 28). As a result, efficiency

gains in VTNGQMLE over FAN, LSE, and QMLE can be attributed to the same factor identified in Fan et

al. (2014): improvements in the estimate of scale for the GARCH model innovations. In contrast to Fan et

al. (2014), however, in the case of VTNGQMLE, this improvement is being afforded by a biased estimator.

Further departing from Fan et al. (2014), improvements in the estimation of ω0 do not appear to be the

only factor contributing to the outperformance of VTNGQMLE over FAN, LSE, and QMLE: the very act

of variance targeting itself appears to be a second contributing factor. Why? VTQMLE estimates of ω0 are

never more efficient than the QMLE alternatives in any of the simulation designs considered (see Figures

27 and 28). Despite this fact, VTNGQMLE estimates of α0 nonetheless deliver sizable efficiency gains

over QMLE alternatives in heavy-tailed cases (as also reported in Francq et al., 2011), where these gains

tend to increase as the tails grow thicker. Explaining the difference in gains earned using VTNGQMLE

over VTQMLE links to the former’s improvements in estimating scale over the latter’s. Both estimators,

however, also appear to enjoy a boost afforded from the very act of VT. Supporting the existence of this

shared boost is the fact that efficiency gains in the VTNGQMLE estimates of α0 tend to persist into larger

sample sizes even after the efficiency gains in the VTNGQMLE estimates of ω0 have disappeared (again,

compare Figures 21 and 27 as well as Figures 23 and 28).

9 S&P 500 Index-Related Volatility Estimation and Forecasting

The S&P 500 Index is a unique financial instrument in that the following three quantities are each directly

observed daily: (i) the return on the index; (ii) option-implied volatility on the index (VIX); (iii) option-

implied volatility on VIX, or option-implied volatility of volatility (VVIX). Using a historical time series

of (i), it is standard to apply the model of (3) and (4) for the purpose of forecasting return variance and

comparing out-of-sample results against the realized (return) variance (see; e.g., Andersen and Bollerslev,
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1998). Following this convention, Section 9.0.1 compares ϑ̂n from QMLE, VTNGQMLE, and FAN, using

the results for each, respective, estimator to generate out-of-sample volatility forecasts 1-, 5-, 10-, and 21-

days-ahead to determine which estimator produces the best forecasts at each horizon. Aiding these forecast

comparisons are the loss functions RMSE and QLIKE, since both are "robust" in the sense discussed by

Patton (2011).

Applying the model of (3) and (4) to the historical time series of (ii), though less standard, produces

estimates of the historical volatility of VIX. Given that (iii) is directly observable, it is feasible to ask

whether estimates of the historical volatility of VIX are useful in forecasting VVIX. In this sense, VVIX

acts analogously as the realized (return) variance in that both (potentially) can be used to compare the

efficacy of competing volatility forecasts, despite the fact that VVIX is not an unbiased measure (or proxy)

of the realized volatility of VIX.20 Section 9.1 proposes a forecasting model for VVIX that takes GARCH

volatility of VIX forecasts as inputs.21 1-day-ahead VVIX forecasts are then constructed using 1-day-ahead

volatility forecasts of VIX from QMLE, VTNGQMLE, and FAN, and the performance of these competing

VVIX forecasts are compared using the RMSE and QLIKE loss functions.

9.0.1 Returns

Figures 1 and 2 depict rolling window estimates of α̂n from daily S&P 500 returns, first over a lengthy

period beginning 12/27/1999, and then over a shortened period immediately following the worst (financially

speaking) of the COVID crisis. In the GARCH (1, 1) model, the parameter α0 measures the "reactivity" of

return variance to the previous period’s return shock. Evident in Figure 1, return variance has become an

increasingly reactive process through time, and in a statistically significant way. Evident in Figure 2, when

reactivity is at its highest, α̂n from QMLE is the largest, followed by FAN and then by VTNGQMLE. Oh

and Patton (2024) document a tendency for QMLE-based GARCH volatility forecasts to "overshoot" their

target (the realized return variance) following a large return shock. Figure 1 suggests this tendency to be the

most acute in recent times. VTNGQMLE is the least impacted by this tendency (compared to both QMLE

and FAN), however, making VTNGQMLE (in some sense) comparable to the local maximum likelihood

estimator of Oh and Patton (2024).

In the GARCH (1, 1) model, φ0 = α0 + β0 measures persistence in the variance process. Evident in

20The realized volatility of VIX is determined under the historical measure, while VVIX is determined under the risk-neutral

measure. Consequently, the latter contains a variance-of-the-variance risk premium not present in the former (see; e.g., Huang et

al., 2019).
21This model provides reduced-form scale corrections for the variance-of-variance risk premium, and so can be interpreted as

internalizing the bias in VVIX as a proxy for the (latent) realized volatility of VIX.
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Figure 3, variance persistence has been on the decline in recent years and in a statistically significant way.

This decline is the most acute under QMLE. Evident in Figure 4, VTNGQMLE and FAN, in contrast, both

indicate more modest declines in variance persistence. A variance process that is more reactive and less

persistent is harder to forecast. The fact that both VTNGQMLE and FAN dampen these trends, (potentially)

foreshadow their tendency to produce more stable and, thus, more reliable variance forecasts.

Figure 5 depicts 2×ι0 estimates from the Hill (1975) estimator, together with one-sided 95% confidence

bands, constructed using the standard error estimator in Hill (2010).22 In the middle of the sample, these

estimates provide no evidence in favor of

H0 : ι0 < 2, (53)

thus indicating QMLE to be
√
n asymptotically normal. Under Cases 4–6, in contrast, VTNGQMLE has a

non-Gaussian limit, to which convergence is slower than
√
n. Collectively, these results imply that, in the

middle of the sample (when GARCH volatility was relatively less reactive and relatively more persistent),

QMLE performed better than VTNGQMLE. Towards the end of the sample, however, there is now evidence

favoring (53); in fact, evident in Figure 5, ι̂n < 2. From Hall and Yao (2003, Theorem 2.1), when ι0 < 2,

QMLE also has a non-Gaussian limit, with a slower rate of convergence compared to
√
n. At the end of the

sample, therefore, it is less apparent that QMLE should outperform VTNGQMLE.

Table 2 summarizes out-of-sample comparisons of the GARCH volatility forecasts produced by QMLE,

VTNGQMLE, and FAN, respectively, using the RMSE and QLIKE loss functions and the standard "RV5"

proxy for the latent variance. Comparisons are conducted over two forecast evaluation samples, one begin-

ning on 5/1/2020 and one on 1/3/2022 (the approximate date where the difference between α̂n from QMLE

and VTNGQMLE gaps out and remains wide through to the end of the sample; see, Figure 2). Over these

samples, k-period-ahead forecasts are generated each day, where k ∈
(

1, 5, 10, 21
)

. By RMSE,

QMLE is the best; although, VTNGQMLE is fairly close behind. FAN, interestingly, tends to noticeably lag

both QMLE and VTNGQMLE. By QLIKE, however, a different story emerges. In this case, VTNGQMLE

is the consistent winner, while FAN continues to lag behind.

9.1 VIX

It is standard convention to model SPX log returns, since the underlying index levels appear (at least) to

be well approximated as an I (1) process. VIX levels, on the other hand (precisely because they measure

volatilities), should be both strictly stationary and ergodic (see; e.g., Nelson, 1990, and Lumsdaine, 1996).

22Specifically, depicted in Figure 5 are tail index estimates for {|̂εt|}Tt=1 as determined using VTNGQMLE.
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Consequently, it should be not only feasible, but also preferable, to extract the conditional variance of VIX

directly from VIX levels, rather than from VIX log returns, with one important caveat. When modeling daily

SPX log returns, it is also standard to ignore the conditional mean, since it is small and doing so exercises

(very) little impact on ϑ̂n. The VIX series, however (again, because it is a series of volatilities), clusters, and

the degree of this clustering indicates that conditional mean dynamics are important. Andersen et al. (2003)

study the realized return variance series and find it to display long-memory properties. The model of Corsi

(2009) uses lower-frequency covariates as proxies for long-memory properties. Motivated by these results,

consider the following extension of the model in (3) and (4).

ρ (L) (1− L)d0 Yt = θ (L) εt, (54)

εt = σtηt, ηt ∼ i.i.d. D (0, 1) , (55)

σ2
t = ω0 + α0ε

2
t−1 + β0σ

2
t−1, (56)

where ρ (L) =
(

1− ρY,0L
)

; θ (L) =
(
1− θε,0L

)
, and L is the lag operator. (54) is an ARFIMA(

1, d, 1
)

model for {Yt}t∈Z, where d ∈
(

0, 0.50
)

governs long-memory dynamics. The esti-

mator for (54) is full maximum likelihood (see Sowell, 1992). Using this estimator, {ε̂t}
T
t=1 is obtained and

from which (55) and (56) are estimated in a second step.

Table 3 summarizes estimation results of (54) on a lengthy VIX sample (see the Notes to Table 3 for

additional details). The estimate d̂ is inside of, but near, it’s upper bound, indicating the VIX series to be a

covariance stationary and (strongly) long-memory process. As a benchmark, parameter estimates including

the constraint d = 0 are also summarized in Table 3, where this constraint forces the conditional mean of

VIX to display only short-memory properties. Notice that ρ̂Y is significantly different in the two cases, with

ρ̂Y being much closer to 1 in the case where d = 0, compared to the case where d is (jointly) estimated.

When d = 0, ρ̂Y is forced to perform "double-duty," controlling for both short- and long-run dynamics.

When d is freely estimated, on the other hand, ρ̂Y only governs short-run dynamics, while d̂ determines

long-run dynamics. In the case of VIX, at least, allowing for long-run dynamics results in less persistent

short-run dynamics.

Figures 7 and 8 depict rolling window estimates of α̂n from VIX (see the Notes to Figures7–10 for

additional details). Analogous to the case for return variance in Figures 1 and 2, VIX variance "reactivity"

has been increasing through time. The level of VIX variance "reactivity," however, is higher than that

of return variance "reactivity," and in a statistically significant way (compare Figure 8 against Figure 2).
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Differences in α̂n between QMLE, VTNGQMLE, and FAN also appear accentuated in the VIX variance

case, compared to the return variance case. Specifically, evident in Figure 8, α̂n from VTNGQMLE appears

materially muted compared to either QMLE or FAN. Since heightened values of α̂n tend to be associated

GARCH volatility forecast "overshoot," VTNGQMLE appears (far) less prone to this difficulty than either

QMLE or FAN.

Figures 9 and 10 track persistence in VIX variance through time. In contrast to the case for return vari-

ance (see Figures 3 and 4), where all three estimators tend to indicate a declining trend in persistence, in the

case of VIX variance, only VTNGQMLE signals a declining trend; QMLE and FAN both imply increas-

ing trends, occurring at the end of the sample. What’s more, towards the end of the sample, φ̂n > 1 for

both QMLE and FAN, indicating the variance of VIX to be either "integrated" or even explosive, while for

VTNGQMLE, φ̂n remains (comfortably) inside of the unit boundary. VVIX (owing to it being observable)

appears to be, not only mean stationary, but also covariance stationary.23 It seems counterintuitive, then,

for implied vol-of-vol to appear covariance stationary, while historical vol-of-VIX appears (under QMLE

and FAN, at least) either "integrated" or explosive. Regardless, for QMLE, VTNGQMLE, and FAN, ma-

terial differences between in-sample estimates foreshadow accentuated differences between out-of-sample

volatility forecasts, compared to the return variance case.

Figures 11 and 12 depict rolling 2× ι0 estimates for GARCH (1, 1) model innovations to VIX (see the

Notes to Figures 11 and 12 for additional details). Consider the one-side null of ι0 ≥ 2. The full sample

offers (very) little support for this null (see Figure 11), and emerging from the COVID crisis, there is no

support for this null (see Figure 12). Monte Carlo results under Case 6 evidence material efficiency gains of

VTNGQMLE over both QMLE and FAN. Figures 11 and 12 support Case 6 as being empirically relevant

for the variance of VIX. Additionally, notice that if ι0 < 2 (as is strongly supported by Figures 11 and

12), then QMLE has a non-Gaussian limit and a convergence rate slower than
√
n (see Hall and Yao, 2003,

Theorem 2.1), comparable to the findings for VTNGQMLE in Section 5.

Let σ̂t | t−1 denote the out-of-sample GARCH volatility forecast for VIX from (56). Figure 13 compares

σ̂t | t−1 from VTNGQMLE to VVIX on date t. Visually, out-of-sample GARCH volatility forecasts for

VIX display similar dynamics compared to VVIX. These visual similarities are confirmed by a correlation

coefficient of 0.53 between
{
σ̂t | t−1

}T
t=1

and {V V IXt}
T
t=1 for the full forecast evaluation sample (see the

Notes to Figures 13–15 for additional details). Also visually apparent in Figure 13 is that the two series are

not on the same scale. This visual dissimilarity should not be that surprising, since VVIX is anticipated to

23Estimating (54) on VVIX produces d̂ < 0.50 and ρ̂Y,0 < 1. These results are not reported herein but are available upon

request.
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contain a vol-of-vol risk premium that should not be present in the historical volatility of VIX (see; e.g.,

Huang et al., 2019). This scale difference needs to be addressed, however, if
{
σ̂t | t−1

}T
t=1

is to serve as a

forecasting instrument for {V V IXt}
T
t=1. Towards that end, consider the following model for adjusting the

scale of σt | t−1 for the purpose of forecasting a target variable Ut. Let

Vt =
Ut
σt
, (57)

where σt is given in (56).

Vt = ζ0 + ρV,0Vt−1 + θυ,0νt−1 + νt, (58)

where {νt}t∈Z∗ are i.i.d. innovations and Z ∈ Z∗, so that

Vt | t−1 = ζ0 + ρV,0Vt−1 + θυ,0νt−1

and

Ut | t−1 = Vt | t−1 × σt | t−1. (59)

In the current application, Ut = V V IXt. Dynamics in (58) are limited to being short-memory. Rolling

estimates of ρV,0 (not reported here, but available upon request) are all comfortably inside of the unit bound-

ary, indicating that short-run dynamics (at least as a proxy), are not a bad fit; especially, since only short-run

forecasts are being made.

(57)–(58) control for the vol-of-vol risk premium in VVIX, allowing that risk premium to exercise both

constant and time-varying effects on scale. This time-varying scale factor is then forecast out-of-sample, and

the resulting out-of-sample forecast is combined with an out-of-sample GARCH volatility of VIX forecast

to produce the forecast of VVIX in (59). The complete model of (54)–(59), then, produces a forecast of

VVIX that uses the GARCH volatility of VIX as its principle input.

The dynamic scale factor model of (57)–(59) additionally, however, has a more general interpretation.

Consider Ut as an observable proxy for the true (and latent) volatility that σt | t−1 is intended to forecast.

For illustrative purposes, suppose σt | t−1 is the GARCH return volatility from the previous section, so that

a good candidate for Ut is the realized return volatility.24 In this case, ζ0 = 1 and ρV,0 = 0 in (58),

since the realized return volatility is an unbiased estimator for the true (and latent) return volatility (see;

e.g., Barndorff-Nielsen and Shephard, 2004). Consequently, σt | t−1 can be used as an unadjusted forecast

24In other words, Ut =
√
RV 5t.
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for the realized return volatility, consistent with standard practice. With this illustrative example in mind,

consider VVIX, not as the target variable of interest directly, but rather as an observable proxy for the true

(and latent) volatility of VIX. Owing to the presence of a vol-of-vol risk premium, VVIX can be anticipated

to be a biased proxy for the volatility of VIX. The model of (57)–(59), then, can be seen as correcting for this

bias, thus allowing VVIX to be used as the predicted variable in an evaluation of the GARCH volatility of

VIX forecasts, where that evaluation looks to examine the efficacy of the GARCH volatility of VIX forecasts

as predictive instruments for the true (and latent) volatility of VIX.

Figure 14 shows the results of applying the model in (57)–(59) to adjust (or correct) the GARCH volatil-

ity of VIX forecasts in Figure 13. As is evident, the predicted variable (VVIX) and the out-of-sample fore-

casts are now on the same scale. Moreover, the full-sample correlation between the adjusted forecasts and

VVIX is, essentially, the same (0.51 versus 0.53), indicating that adjusting the forecasts does (practically)

nothing to alter the predictive power of the GARCH volatility of VIX forecasts. Consequently, Figure 14

evidences that GARCH volatility of VIX is, in fact, useful at forecasting implied volatility-of-volatility

(VVIX).

Also evidenced in Figure 14 is a tendency for the forecasts to "overshoot" their target. Perhaps this

tendency shouldn’t be too surprising, given the heightened levels of GARCH variance "reactivity" observed

across different estimators (see Figure 7). To help mitigate this tendency, the following strategy (motivated

by the "averaged-forecasting" approach used in De Nard et al., 2021) is adopted.25 For any date t, it is

possible to generate two forecasts, σ̂t | t−1 and σ̂t | t−2. The single point forecast for date t is then given

by
σ̂t | t−1+σ̂t | t−2

2 , and this average forecast is substituted for σ̂t | t−1 in (59). The result of performing

this substitution is evidenced in Figure 15. The effect is a fairly apparent reduction in forecast variability,

generally, and, more importantly, forecast extremes, specifically. Interestingly, the correlation between these

adjusted average forecasts and VVIX increases to 0.65 (from 0.51). Forecast evaluations performed using

the QMLE, VTNGQMLE, and FAN estimators all substitute
σt | t−1+σt | t−2

2 for σt | t−1 in (59).

Table 2 also summarizes out-of-sample comparisons of the GARCH volatility forecasts produced by

QMLE, VTNGQMLE, and FAN, respectively, using the RMSE and QLIKE loss functions and VVIX as

the predicted variable.26 Comparisons are conducted over the same two forecast evaluation samples used

25Consider the set of daily forecasts
{
σt+h | t

}H=21
h=1

. The "averaged forecast" from this set is given by H−1
H=21∑
h=1

σt+h | t. This

"averaged forecast" is a proxy for the monthly volatility forecast. By analogy, the desired forecast here is a daily forecast. That

daily forecast is proxied by an "averaged forecast" taken over a near neighborhood behind the desired forecast date. That is, the

"averaged forecast" is H−1
H=2∑
h=1

σt | t−h.

26Following the discussion above, VVIX can be interpreted either as the target variable being forecasted of a (biased) proxy for

the true (and latent) volatility of VIX.
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in evaluating the SPX return volatility estimates. Over these samples, only 1-day-ahead forecasts are con-

sidered. By RMSE, VTNGQMLE is now the clear winner, with FAN second and QMLE a close third.

By QLIKE, the rankings remain unaltered. These results are consistent with the conclusions drawn from

the parameter estimates depicted in Figures 7–10. These results further bolster the strong performance of

VTNGQMLE in the Monte Carlo experiments.

Table 4 compares the "average forecasting" method for generating 1-day-ahead VVIX forecasts to the

standard method (both of which are described above). For comparison purposes, out-of-sample results from

the "average forecasting" method are depicted in Figure 15, while results from the standard method are

depicted in Figure 14. Consistent with these figures, the "average forecasting" method beats the standard

method in terms of RSME. Somewhat surprising, the "average forecasting" method also beats the standard

method in terms of QLIKE.

10 Conclusion

Motivated by the NGQMLE of Bollerlsev (1987), this paper considers the VTNGQMLE, determining its

limiting properties, studying its finite-sample properties, and applying it in a series of empirical investiga-

tions into volatility forecasting. In heavy-tailed cases, VTNGQMLE is shown to be a robust estimator, like

QMLE, FAN, and LSE. In these same cases, when the likelihood function is misspecified, VTNGQMLE is

shown to perform (surprisingly) well, both in simulation and empirically. In fact, VTNGQMLE is shown to

be very hard to beat, both by the popular QMLE and by alternative (robust) estimators aimed at improving

the QMLE result.

Explaining the popularity of QMLE is it being robust and
√
n asymptotically normal, under fairly gen-

eral conditions. Previous works demonstrate that QMLE loses its Gaussian limit when the model errors

become (very) heavy-tailed (see; e.g., Hall and Yao, 2003). In earlier years, this case, while theoretically

interesting, did not appear empirically relevant. In recent times, however, this case has become empirically

relevant. Moreover, in this case, both QMLE and multi-step estimators aimed at producing more efficient

(relative to QMLE) estimates perform (relatively) poorly. VTNGQMLE, in contrast, performs markedly

better; in part, because of its reliance upon a heavy-tailed (though misspecified) likelihood function that

removes some emphasis from the ARCH parameter as the single model parameter responsible for captur-

ing heavy-tailed features in the unconditional distribution of the random variable being modeled. In recent

times, therefore, VTNGQMLE appears to deserve serious consideration over QMLE and competing esti-

mators because VTNGQMLE (i) is comparable in complexity relative to QMLE but (ii) delivers sizably
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improved results.

References

[1] Andersen, T.G. & T. Bollerslev (1998) Answering the skeptics: yes, standard volatility models do

provide accurate forecasts. International Economic Review 39(4), 885-905.

[2] Andersen, T.G., T. Bollerslev, F.X Diebold & P. Labys (2003) Modeling and forecasting realized

volatility. Econometrica 71(2), 579-625.

[3] Barndorff-Nielsen, O.E. & N. Shephard (2004) Econometric analysis of realized covariation: high

frequency based covariance, regression, and correlation in financial economics. Econometrica 72(3),

885-925.

[4] Basrak, B., R.A. Davis & T. Mokosch (2002) Regular variation of GARCH processes. Stochastic

Processes and their Applications 99(1), 95-115.

[5] Berkes, I., L. Horváth & P. Kokoszka (2003) GARCH processes: structure and estimation. Bernoulli

9, 201-227.

[6] Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Economet-

rics 31, 307-327.

[7] Bollerslev, T. (1987) A Conditionally Heteroskedastic Time Series Model for Speculative Prices and

Rates of Return. The Review of Economics and Statistics 69(3), 542-547.

[8] Corsi, F. (2009) A simple approximate long-memory model of realized volatility. Journal of Financial

Econometrics 7(2), 174-196.

[9] Davis, R.A., & T. Hsing (1995) Point process and partial sum convergence for weakly-dependent

random variables with infinite variance. The Annals of Probaility 23(2), 879-917.

[10] De Nard, G., O. Ledoit & M. Wolf (2021) Factor models for portfolio selection in large dimensions:

the good, the better, and the ugly. Journal of Financial Econometrics 19(2), 236-257.

[11] Engle, R.F., & G. Gonzalez-Rivera (1991) Semiparametric ARCH models. Journal of Business and

Economic Statistics 9, 345-359.

36



[12] Engle, R.F., & J. Mezrich (1996) GARCH for groups. Risk 9, 36-40.

[13] Feller. W. (1971) An introduction to probability theory and its applications. New York: Wiley.

[14] Fan, J., L. Qi and D. Xiu (2014) Quasi-maximum likelihood estimation of garch models with heavy-

tailed likelihoods. Journal of Business and Economic Statistics 32, 178-191.

[15] Francq, C., G. Lepage & J.M. Zakoïan (2011a), Two-stage non gaussian qml estimation of garch

models and testing the efficiency of the gaussian qmle. Journal of Econometrics 165, 246-257.

[16] Francq, C., L. Horváth & J-M. Zakoïan (2011b) Merits and drawbacks of variance targeting in GARCH

Models. Journal of Financial Econometrics 9(4), 619-656.

[17] Francq, C., & J.-M. Zakoïan (2004) Maximum likelihood estimation of pure garch and arma-garch

processes. Bernoulli 10, 605-637.

[18] Hansen, B.E. (1994) Autoregressive conditional density estimation. International Economic Review

35, 705-730.

[19] Hall, P. & Q. Yao (2003) Inference in arch and garch models with heavy-tailed errors. Econometrica

71, 285-317.

[20] Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. Annals of

Statistics 5, 1163-1174.

[21] Hill, J.B. (2010) On tail index estimation for dependent, heterogeneous data." Econometric Theory

26(5): 1398-1436.

[22] Hill, J.B. & E. Renault (2012) Variance targeting for heavy tailed time series. Unpublished manuscript.

[23] Huang, D., C. Schlag, I. Shaliastovich, and J. Thimme (2019) Volatility-of-volatility risk. Journal of

Financial and Quantitative Analysis 54(6), 2423-2452.

[24] LePage, R., M. Woodroofe & J. Zinn (1981) Convergence to a stable distribution via order statistics.

The Annals of Probability 9(4), 624-632.

[25] Lee, S.W. & B.E. Hansen (1994) Asymptotic theory for the garch(1,1) quasi-maximum likelihood

estimator. Econometric Theory 10, 29-52.

37



[26] Lumsdaine, R.L. (1996) Consistency and asymptotic normality of the quasi-maximum likelihood esti-

mator in IGARCH (1,1) and covariance stationary GARCH (1,1) models. Econometrica 64, 575-596.

[27] McNeil, A.J., R. Frey & P. Embrechts (2015) Quantitative Risk Management: Concepts Techniques,

and Tools, Revised Edition. Princeton University Press: Princeton, NJ.

[28] Nelson, D.B. (1990) Stationarity and persistence in the GARCH (1,1) model, Econometric Theory

6(3), 318-334.

[29] Mikosch, T. (1999) Regular variation, subexponentiality and their applications in probability theory.

Lecture notes for the workshop "Heavy Tails and Queques," EURANDOM, Eindhoven, Netherlands.
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11 Appendix A (Proofs)

Proof of Theorem 3. Let

Itn = I
(∣∣σ2

t − E
(
σ2
)∣∣ > an

)
, Jtn = 1− Itn = I

(∣∣σ2
t − E

(
σ2
)∣∣ ≤ an) .

Then

a−1
n

n∑
t=1

Wt = a−1
n

n∑
t=1

Wt × Itn + a−1
n

n∑
t=1

Wt × Jtn

= I(b) + II(b)

I(b) = a−1
n

n∑
t=1

{(
ε2t − 1

)
× σ2

t × Itn −
(
ε2t − 1

)
× E

(
σ2
)
× Itn +

(
ε2t − 1

)
× E

(
σ2
)
× Itn

}
= a−1

n

n∑
t=1

(
ε2t − 1

)
×
(
σ2
t − E

(
σ2
))
× Itn + a−1

n

n∑
t=1

(
ε2t − 1

)
× E

(
σ2
)
× Itn

= I(c) + II(c)

By Markov’s Inequality,

P (|II(c)| > C) ≤ C−1E

(∣∣∣∣∣a−1
n

n∑
t=1

(
ε2t − 1

)
× E

(
σ2
)
× Itn

∣∣∣∣∣
)

≤ C−1na−1
n E

(∣∣ε2t − 1
∣∣)× E (σ2

)
× E

(
I
(∣∣σ2

t − E
(
σ2
)∣∣ > an

))
≤ Ca−1

n nP
(∣∣σ2

t − E
(
σ2
)∣∣ > an

)
≤ Ca−1

n

(
a2
nP
(∣∣σ2

t − E
(
σ2
)∣∣ > an

)
H (an)

)
−→ 0

as n→∞, where the fourth inequality follows from (11), and the (weak) convergence result follows
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from (12). Next, and also by Markov’s Inequality,

P (|I(c)| > C) ≤ C−1E

(∣∣∣∣∣a−1
n

n∑
t=1

(
ε2t − 1

)
×
(
σ2
t − E

(
σ2
))
× Itn

∣∣∣∣∣
)

≤ C−1na−1
n E

(∣∣(ε2t − 1
)
×
(
σ2
t − E

(
σ2
))
× Itn

∣∣)
≤ Ca−1

n nE
(∣∣σ2

t − E
(
σ2
)∣∣× I (∣∣σ2

t − E
(
σ2
)∣∣ > an

))
≤ C

anE
(∣∣σ2

t − E
(
σ2
)∣∣× I (∣∣σ2

t − E
(
σ2
)∣∣ > an

))
H (an)

−→ 0

as n→∞, where the fourth inequality follows from (11), and the (weak) convergence result follows

from (13). Consequently,

a−1
n

n∑
t=1

Wt = a−1
n

n∑
t=1

Wt × Jtn + op (1) ,

and

V ar

(
a−1
n

n∑
t=1

Wt × Jtn

)
= na−2

n E
((
ε2t − 1

)2 × σ4
t × I

(∣∣σ2
t − E

(
σ2
)∣∣ ≤ an)) (60)

= Ca−2
n nE

(
σ4
t × I

(∣∣σ2
t − E

(
σ2
)∣∣ ≤ an))

≤ C ×
(
E
(
σ4
t × I

(∣∣σ2
t − E

(
σ2
)∣∣ ≤ an))

E
(
σ4
t × I

(
σ2
t ≤ an

)) )
,

where the inequality follows from (11). For sufficiently large n,

I
(∣∣σ2

t − E
(
σ2
)∣∣ ≤ an) ≥ I (σ2

t ≤ an
)

(61)

Given (61), because E
(
σ2
)

does not depend on n, ∃ a C such that

I
(∣∣σ2

t − E
(
σ2
)∣∣ ≤ an) = I

(
σ2
t ≤ an + C

)
(62)
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Given (62),

E
(
σ4
t × I

(∣∣σ2
t − E

(
σ2
)∣∣ ≤ an))

E
(
σ4
t × I

(
σ2
t ≤ an

)) =

an+C∫
0

σ4f
(
σ2
)
dσ2

an∫
0

σ4f (σ2) dσ2

(63)

= 1 +

an+C∫
an

σ4f
(
σ2
)
dσ2

an∫
0

σ4f (σ2) dσ2

Given (63),

lim
n→∞

V ar

(
a−1
n

n∑
t=1

Wt × Jtn

)
= C <∞. (64)

Given (64), in turn, it is possible to apply a CLT to a−1
n

n∑
t=1
Wt following analogous arguments given

by Hall and Yao (2003, p. 306-307). Let the result of this application be

a−1
n

n∑
t=1

Wt
d−→ N

(
0, V

W

)
. (65)

(30) then follows from Slutsky’s Theorem.�

Remark 9 An alternative way of establishing that (60) is bounded is to note that, given Assumption 3.3,(
E(σ4t×I(|σ2t−E(σ2)|≤an))

E(σ4t×I(σ2t≤an))

)
is a ratio of slowly varying functions that, as such, has a finite limit.

Proof of Theorem 4. For i = 1, 2, let

X (i) =

 η̂n − η̃0 if i = 1

Zn if i = 2

 . (66)

Under Case 2, it is established that
√
nX (i) converges to a stable limit, so long as ι0 > 1. Consider
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then

na−1
n X (i) =

(
n1/2a−1

n

)
×
(
n1/2X (i)

)
=

(
n1/2

(
Cn1/κ0

)−1
)
×
(
n1/2X (i)

)
= C ×

(
n
κ0−2
2κ0

)
×
(
n1/2X (i)

)
= C × op (1)×Op (1)

= op (1) .

where the third equality follows, since n1/2X (i) converges to a stable limit, and n
κ0−2
2κ0 −→ 0 as

n→∞, since κ0 < 2.�

Remark 10 n1/2 is increasing at a faster rate than n
κ0−2
2κ0 is decreasing. Consequently, n1/2X (i) reaches

its stable limit first and then is driven towards zero by n
κ0−2
2κ0 .

Proof of Theorem 5. Starting from (29), for a ε > 0,

a−1
n

n∑
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Wt = a−1
n
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t > anε
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(67)
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(68)
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= Cna−2

n E
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t × I
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σ2
t ≤ anε
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,

where necessary for the third equality is E
((
ε2t − 1

)2)
< ∞, which is established by E

(
ε4t
)
< ∞.

Since given Theorem 1, σ2
t is regularly varying with tail index κ0, for a function L that is slowly
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varying at∞,
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where the first ∼ follows from Mikosch (1999, Theorem 1.2.9), the second ∼ from Mikosch (1999,

Theorem 1.2.6), and the last ∼ from Lemma 1. Putting (69) and (68) together,

V ar (II(d)) ∼ Cε2nP
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σ2 > anε

)
,

in which case,

lim
n→∞

V ar (II(d)) ∼ C × ε2−κ0

by Definition 1, and further

lim
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V ar (II(d)) ∼ 0,

since κ0 ∈ (1, 2). As a result,
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Let
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and define the function Tε : MP
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−→ R as
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δXi
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Xi,2 −Xi,1

)
× I
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Xi,1 > ε
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such that, given (14), Un,ε = Tε (Nn). From Lemma 2, Nn
d−→ N as n → ∞, in which case,
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Tε (Nn)
d−→ Tε (N) as n→∞ by the continuous mapping theorem. Lastly,

Tε (N)
d−→ Uσ2 , ε→ 0, (72)

by Davis and Hsing (1995, Theorem 3.1(ii)), where Uσ2 is a κ0-stable random variable that can be

expressed in terms of the Pi’s and Qij’s in Lemma 2. Given (29), (72) then results in

Un
d−→
(

1− β0

1− α0 − β0

)
Uσ2 .

�

Remark 11 (71) is a special case of Vaynman and Beare (2014, eq. 35). Consequently, the result in

(72) also follows from the proof of Vaynman and Beare (2014, Theorem 4), starting from equaton 35 and

proceeding to the end.

Proof of Theorem 6. Given (67),

II (d) = a−1
n

n∑
t=1

(
ε2t − 1

)
× I

(
ε2t > bnε

)
× σ2

t × I
(
σ2
t ≤ anε

)
+a−1

n

n∑
t=1

(
ε2t − 1

)
× I

(
ε2t ≤ bnε

)
× σ2

t × I
(
σ2
t ≤ anε

)
= I(e) + II(e).

V ar (II(e)) = a−2
n n× V ar

((
ε2t − 1

)
× I

(
ε2t ≤ bnε

)
× σ2

t × I
(
σ2
t ≤ anε

))
= E

((
ε2t − 1

)2 × I (ε2t ≤ bnε))× a−2
n n× E

(
σ4
t × I

(
σ2
t ≤ anε

))
=

{
E
(
ε4t × I

(
ε2t ≤ bnε

))
+ C

}
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
≤

{
b2nn
−1 + C

}
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
≤ C × a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
−→ 0,

as n→∞ and ε→ 0, where both inequalities follow from Assumption 5.1, and convergence sources
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to (69) and the results that follow.

V ar (I (e)) = E
((
ε2t − 1

)2 × I (ε2t > bnε
))
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
=

{
E
(
ε4t × I

(
ε2t > bnε

))
+ C

}
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
= E

(
ε4t × I

(
ε2t > bnε

))
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
+C × a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
=

(
b2nn
−1
)
×
(
b−2
n n

)
E
(
ε4t × I

(
ε2t > bnε

))
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
+C × a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
≤

(
b2nn
−1
)
×
(
E
(
ε4t × I

(
ε2t > bnε

))
H (bn)

)
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
+C × a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
≤

(
bnn
−1
)
×
(
bnE

(
ε4t × I

(
ε2t > bnε

))
H (bn)

)
× a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
+C × a−2

n n× E
(
σ4
t × I

(
σ2
t ≤ anε

))
,

following from both Assumption 5.1 and (13) adapted for ε2. Noting that bnn
−1 = o(1),

lim
n→∞

V ar (I (e)) ≤ o (1)× ε2−κ0 + C × ε2−κ0

−→ 0,

as ε → 0, (see, again, (69) and the results that follow). Consequently, (70) continues to hold and,

from which, the result in (33) follows (see the proof of Theorem 5), since the limiting random variable

continues to be determined by (only) the extremes of σ2
t , despite E

(
ε2t
)

=∞.�

Proof of Theorem 7. Given (66),

na−1
n b−1

n X (i) =
(
n1/2a−1

n

)
×
(
b−1
n

)
×
(
n1/2X (i)

)
= C ×

(
n
κ0−2
2κ0

)
×
(
n
−1
ι0

)
×
(
n1/2X (i)

)
= C × o (1)× o (1)×Op (1)

= op (1) ,

where the third equality follows since κ0 < 2, and n1/2X (i) converges to a stable limit (see the proof
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of Theorem 4).�

Proof of Theorem 8. Starting from (35), the analog to (67) is

a−1
n b−1

n

n∑
t=1

Wt = a−1
n b−1

n

n∑
t=1

Wt × I
(
σ2
t > anε

)
+ a−1

n b−1
n

n∑
t=1

Wt × I
(
σ2
t ≤ anε

)
= I(d) + II(d),

preserving the same notation from the proof of Theorem 5. Consider

I(d) = a−1
n b−1

n

n∑
t=1

Wt × I
(
ε2t > bnε

)
× I

(
σ2
t > anε

)
+a−1

n b−1
n

n∑
t=1

Wt × I
(
ε2t ≤ bnε

)
× I

(
σ2
t > anε

)
= I (di) + I (dii) ,

and

I(d) = a−1
n b−1

n

n∑
t=1

Wt × I
(
ε2t > bnε

)
× I

(
σ2
t ≤ anε

)
+a−1

n b−1
n

n∑
t=1

Wt × I
(
ε2t ≤ bnε

)
× I

(
σ2
t ≤ anε

)
= II (di) + II (dii) .

V ar (II (dii)) = a−2
n b−2

n nV ar
((
ε2t − 1

)
× I

(
ε2t ≤ bnε

)
× σ2

t × I
(
σ2
t ≤ anε

))
=

(
n−1

)
×
{(
b−2
n n

)
× E

((
ε2t − 1

)2 × I (ε2t ≤ bnε))}× {(a−2
n n

)
× E

(
σ4
t × I

(
σ2
t ≤ anε

))}
=

(
n−1

)
× II (diii)× II (d iv) ,

where

II (diii) =
(
b−2
n n

)
×
{
E
(
ε4t × I

(
ε2t ≤ bnε

))
− 2E

(
ε2t × I

(
ε2t ≤ bnε

))
+ E

(
I
(
ε2t ≤ bnε

))}
=

(
b−2
n n

)
×
{
E
(
ε4t × I

(
ε2t ≤ bnε

))
+ C

}
=

(
b−2
n n

)
× E

(
ε4t × I

(
ε2t ≤ bnε

))
+ o (1) ,
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since

b−2
n n =

(
Cn

1
ι0

)−1

n (73)

= C ×
(
n
ι0=2

ι0

)
−→ 0

as n→∞, given ι0 < 2.

E
(
ε4t × I

(
ε2t ≤ bnε

))
=

bnε∫
0

(
ε2
)2
f
(
ε2
)
dε2 (74)

∼ C × (−ι0)×
bnε∫
0

(
ε2
)2−ι0−1

L
(
ε2
)
dε2

∼ C × (−ι0)× (2− ι0)−1 ×
{(
ε2
)2−ι0 L (ε2) |bnε0

}
∼ C × (bnε)

2 (bnε)
−ι0 L (bnε)

∼ C × (bnε)
2 × P

(
ε2 > bnε

)
,

where the first ∼ follows from Mikosch (1999, Theorem 1.2.9), the second from Mikosch (1999,

Theorem 1.2.6), and the final from Lemma 1. Consequently,

II (diii) = C × (ε)2 × nP
(
ε2 > bnε

)
,

in which case,

lim
n→∞

II (diii) = C × (ε)2−ι0 ,

which, in turn, implies that

lim
n→∞

lim
ε→0

II (diii) ∼ 0,

since ι0 < 2, and

lim
n→∞

lim
ε→0

II (d iv) ∼ 0,

given (68) and the arguments that (immediately) follow. As a result,

lim
n→∞

lim
ε→0

V ar (II (di)) ∼ 0. (75)
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Next,

II (di) = a−1
n b−1

n

n∑
t=1

{
ε2t × I

(
ε2t > bnε

)
− I

(
ε2t > bnε

)}
× σ2

t × I
(
σ2
t ≤ anε

)
=

(
n−

1
2 b−1
n

) n∑
t=1

{
ε2t × I

(
ε2t > bnε

)
− I

(
ε2t > bnε

)}
×
{
a−1
n × n

1
2 × σ2

t × I
(
σ2
t ≤ anε

)}
≤ C ×

(
n−

1
2 b−1
n

) n∑
t=1

{
ε2t × I

(
ε2t > bnε

)
− I

(
ε2t > bnε

)}
≤ C ×

{(
n−

1
2 b−1
n

) n∑
t=1

ε2t × I
(
ε2t > bnε

)
− b−1

n

{
n−

1
2

n∑
t=1

ε2t × I
(
ε2t > bnε

)}}

≤ C ×
{(

n−
1
2 b−1
n

) n∑
t=1

ε2t × I
(
ε2t > bnε

)
− o (1)×Op (1)

}

≤ C × n−
1
2 ×

{
b−1
n

n∑
t=1

ε2t × I
(
ε2t > bnε

)}
+ op (1)

where the first inequality follows from (68) and the results that (immediately) follow, and the third

inequality follows from a central limit theorem for i.i.d. data. Since (1) {εt}t∈Z is i.i.d., and (2) (8)

holds for ε and the normalizing constants bn,

lim
n→∞

lim
ε→0

b−1
n

n∑
t=1

ε2t × I
(
ε2t > bnε

)
= Zε2 , (76)

where Zε2 follows a ι0-stable law (see; e.g., LePage et al., 1981, Theorem 1). Given (1) and (2),

sufficient for (76) is that the distribution of ε has a balanced tail (see, Feller, 1971), as defined in

Davis and Hsing (1995, eq. 1.2)). Given (76),

II (di) ≤ C × o (1)×Op (1) + op (1) ≤ op (1) ,

in which case, given (75), II (d) ≤ op (1). Consequently, the asymptotic limit of a−1
n b−1

n

n∑
t=1
Wt is
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determined by I (di) and I (dii).

I (dii) = a−1
n b−1

n

n∑
t=1

(
ε2t − 1

)
× I

(
ε2t ≤ bnε

)
× σ2

t × I
(
σ2
t > anε

)
= a−1

n b−1
n

n∑
t=1

{
ε2t × I

(
ε2t ≤ bnε

)
− I

(
ε2t ≤ bnε

)}
× σ2

t × I
(
σ2
t > anε

)
= a−1

n b−1
n

n∑
t=1

ε2t × I
(
ε2t ≤ bnε

)
× σ2

t × I
(
σ2
t > anε

)
−a−1

n b−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)
× I

(
ε2t ≤ bnε

)
= I (e) + II (e) .

II (e) ≤
{
a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)}
×
{
b−1
n

n∑
t=1

I
(
ε2t ≤ bnε

)}

≤
{
a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)}
×
(
b−1
n n

1
2

){
n−

1
2

n∑
t=1

I
(
ε2t ≤ bnε

)}

≤
{
a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)}
× o (1)×Op (1) ,

where the final inequality follows from (73) and a central limit theorem for i.i.d. data. Given Lemma

1 and (8),

lim
n→∞

lim
ε→0

a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)
= Zσ2 , (77)

where Zσ2 follows a κ0-stable law (see Davis and Hsing, 1995, Theorem 3.1.ii). Consequently,

II (e) ≤ Op (1)× op (1) ≤ op (1) . (78)

Next,

I (e) =
(
n−

1
2

)
×
{
a−1
n

n∑
t=1

{(
b−1
n n

1
2

)
× ε2t × I

(
ε2t ≤ bnε

)}
×
{
σ2
t × I

(
σ2
t > anε

)}}
(79)

≤ C ×
(
n−

1
2

)
×
{
a−1
n

n∑
t=1

{
σ2
t × I

(
σ2
t > anε

)}}
≤ C × o (1)×Op (1) ,

where the first inequality follows from (74) and the results that (immediately) follow, and the third
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inequality follows from (77). Combining (78) and (79) implies that I (dii) ≤ op (1). What then

remains to consider is

I (di) = a−1
n b−1

n

n∑
t=1

(
ε2t − 1

)
× I

(
ε2t > bnε

)
× σ2

t × I
(
σ2
t > anε

)
= a−1

n b−1
n

n∑
t=1

ε2t × I
(
ε2t > bnε

)
× σ2

t × I
(
σ2
t > anε

)
−a−1

n b−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)
× I

(
ε2t > bnε

)
= I (f) + II (f) .

First,

II (f) ≤
{
a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)}
×
{
b−1
n

n∑
t=1

I
(
ε2t > bnε

)}

≤
{
a−1
n

n∑
t=1

σ2
t × I

(
σ2
t > anε

)}
×
(
n
1
2 b−1
n

)
×
{
n−

1
2

n∑
t=1

I
(
ε2t > bnε

)}
≤ I (g)× o (1)× II (g) ,

where the third inequality follows from (73 ). Moreover, since I (g)
w−→ Zσ2 (see 77), and II (g)

d−→

N (0, V ) given a (standard) central limit theorem for i.i.d. data, II (f) ≤ op (1).

Finally, consider

I (f) = a−1
n b−1

n

n∑
t=1

{
ε2t × I

(
ε2t > bnε

)}
×
{
σ2
t × I

(
σ2
t > anε

)}
(80)

= Ũn,ε.

Let Yt = ε2t and Zt = σ2
t , noting that Yt and Zt are independent. Further, let X̃t =

(
Yt, Zt

)
, with

the associated polar coordinates
( ∣∣∣X̃t

∣∣∣ , θ
(
X̃t

) )
, where A ∈ B

(
[ 0, 2π )d−1

)
, the Borel
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subsets of [ 0, 2π )d−1, for 1 ≤ d ≤ 2. For a r > 0, consider

P
( ∣∣∣X̃t

∣∣∣ > ur, θ
(
X̃t

)
∈ A

)
P
(∣∣∣X̃t

∣∣∣ > r
)

=
P
(
|Yt| > ur, |Zt| > ur, θ (Xt) ∈ A

)
P
(
|Yt| > r, |Zt| > r

)
=

{
P (|Yt| > ur)

P (|Yt| > r)

}
×
{
P (|Zt| > ur)

P (|Zt| > r)

}
,

in which case,

lim
u→∞

P
( ∣∣∣X̃t

∣∣∣ > ur, θ
(
X̃t

)
∈ A

)
P
(∣∣∣X̃t

∣∣∣ > r
) =

{
r−ι0

}
×
{
r−κ0

}
<∞ (81)

∀ r, given Assumption 3.2 and Lemma 1. Given (81), in turn, Davis and Mikosch (1988, eq. 2.1) is

satisfied for X̃t (see also Resnick, 1986). Moreover, given Carrasco and Chen (2002, Corollary 6),{
X̃t

}
is strong mixing, in which case, Davis and Mikosch (1998, eq 2.3) is also satisfied. Next, note

that time-dependence in
{
X̃t

}
drives entirely from {Zt}, where

σ2
t = ω + αY 2

t−1 + βσ2
t−1 (82)

= ω + σ2
t−1

(
αε2t−1 + β

)
= σ2

t−1At +Bt

=
t∏
i=1
Aiσ

2
0 +

t∑
i=1

t∏
j=i+1

AjBi

= It,1σ
2
0 + It,2,

where the final equality follows from recursive substitution. From Mikosch and Stărică (2000), (82)

is a valid stochastic recurrence equation, for which

P
(
σ2
t > any | σ2

0 > any
)
≤ P

(
It,1σ

2
0 > any | σ2

0 >
any

2

)
+ P

(
It,2 >

any

2
| σ2

0 > any
)

≤ I (h) + II (h) .

51



Using Markov’s inequality,

I (h) =
P
(
It,1σ

2
0 >

any
2 , σ2

0 > any
)

P
(
σ2

0 > any
)

=
P
(
It,1σ

2
0 × I

(
σ2

0 > any
)
> any

2

)
P
(
σ2

0 > any
)

≤
2× (any)−1 × E

(
It,1σ

2
0 × I

(
σ2

0 > any
))

P
(
σ2

0 > any
)

≤
2× (any)−1 × E

(
It,1
)
× E

(
σ2

0 × I
(
σ2

0 > any
))

P
(
σ2

0 > any
) ,

where

E
(
It,1
)

= E

(
t∏
i=1
Ai

)
=

t∏
i=1
E (Ai) = E (A)t = bt,

b < 1, and

E
(
σ2

0 × I
(
σ2

0 > any
))

=

∞∫
any

σ2
0f
(
σ2

0

)
dσ2

0

∼ C × (−κ0)

∞∫
any

(
σ2

0

)−κ0 L (σ2
0

)
dσ2

0

∼ C × (−κ0) (−κ0 + 1)−1 (any)−κ0+1 L (any)

∼ C × (any)× (any)−κ0 L (any)

∼ C × (any)× P
(
σ2

0 > any
)
,

with the first ∼ following from Mikosch (1999, Theorem 1.2.9), and the third ∼ following from

Mikosch (199, Theorem 1.2.6(b)). As a result,

I (h) ≤
2× (any)−1 × bt × C × (any)× P

(
σ2

0 > any
)

P
(
σ2

0 > any
) (83)

≤ C × bt.
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Next, by independence and Markov’s inequality,

II (h) = P
(
It,2 >

any

2

)
(84)

= P

(
t∑
i=1

t∏
j=i+1

AjBi >
any

2

)

≤ P

(
∞∑
i=1

∞∏
j=i+1

AjBi >
any

2

)

≤
(any

2

)−1
× E

(
∞∑
i=1

∞∏
j=i+1

AjBi

)

≤
(any

2

)−1
× E

∞∑
i=1

∞∏
j=i+1

E
(
Aj
)
Bi

≤ C × a1
n,

since E (A) < 1. For a sequence of positive integers {rn}, where rn →∞ and n
rn
→∞ as n→∞,

putting together the results in (83) and (84) produces

lim
k→∞

lim
n→∞

supP

 ∨
k≤|t|≤rn

σ2
t > any | σ2

0 > any


≤ lim

k→∞
lim
n→∞

sup 2 (m+ 1)

rn+m∑
t=k

P
(
σ2
t > any | σ2

0 > any
)

≤ lim
k→∞

C ×
∞∑
t=k

bt

≤ 0,

thus establishing that Davis and Mikosch (1998, eq 2.10) holds for X̃t, which, in turn, establishes that

γ in Davis and Mikosch (1998, eq 2.11) exists. Suppose that γ 6= 0.

Consider the function T̃ε : MP

(
R2

+\ {0}
)
−→ R as

T̃ε

( ∞∑
i=1

δYiZi

)
=

∞∑
i=1

{Zi × I (Zi > ε)} {Yi × I (Yi > ε)} .

Further let

Ñn =
n∑
t=1
δa−1n b−1n YtZt

. (85)
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Given (80),

Ũn,ε = T̃ε

(
Ñn

)
.

From Davis and Mikosch (1998, Proposition 3.1, Remark 3.2), Ñn
d−→ Ñ as n→∞, and then from

the continuous mapping theorem, T̃ε

(
Ñn

)
d−→ T̃ε

(
Ñ
)

as n → ∞. Lastly, from Davis and Hsing

(1995, Theorem 3.1(ii)),

T̃ε

(
Ñ
)

d−→ Uε2, σ2 , ε→ 0, (86)

where Uε2, σ2 is a κ0-stable random variable that can be expressed in terms of quantities qualitatively

similar to the Pi’s and Qij’s in Lemma 2, in which case,

Ũn,ε
d−→ Uε2, σ2 .

�

Proof of Theorem 9. A univariate analog to (15) is

Sin =
n∑
t=1

Y i
t for i = 2, 4.

Given this univariate analog,

na−2
n b−2

n τ̂2
n =

(
a−2
n b−2

n

)
× S4

n −
(
na−2

n b−2
n

)
×
(
n−1S2

n

)2
=

(
a−2
n b−2

n

)
× S4

n −
(
na−2

n b−2
n

)
×
(
n−1anbn

)2 × ((a−1
n b−1

n

)
× S2

n

)2
=

(
a−2
n b−2

n

)
× S4

n −
(
n−1

)
×
((
a−1
n b−1

n

)
× S2

n

)2
=

(
a−2
n b−2

n

)
× S4

n − o (1)×Op (1)

=
(
a−2
n b−2

n

)
× S4

n + op (1) ,

where the fourth equality follows from the proof of Theorem (8). Consequently, the asymptotic limit

of τ̂2
n is determined by S4

n.

Also from the proof of Theorem 8, X̃t is regularly varying with tail index κ0. By Mikosch (1999,

Proposition 1.5.14), X̃2
t =

(
Y 2
t , Z2

t

)
is regularly varying with tail index κ0/2.

Let Ñ2
n =

n∑
t=1
δa−2n b−2n Y 2t Z

2
t
. Given Ñn

d−→ Ñ as n→∞, from the proof of Theorem 8, Ñ2
n

d−→ Ñ2
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as n→∞, given Remark 2. Since (1) X̃2
t is regularly varying and (2) Ñ2

n
d−→ Ñ2 as n→∞, Davis

and Hsing (1995, Theorem 3.1(i)) can be applied to establish

(
a−2
n b−2

n

)
× S4

n
d−→ Uε4, σ4 ,

where Uε4, σ4 is a (κ0/2)-stable random variable that can be expressed in terms of the limiting points

for Y 2
t /b

2
n and Z2

t /a
2
n.�

Proof of Theorem 11. Recalling the definition of Ũn,ε from (80), let

Ũ2
n,ε = a−2

n b−2
n

n∑
t=1

{
ε4t × I

(
ε2t > bnε

)}
×
{
σ4
t × I

(
σ2
t > anε

)}
,

and define the function T̃ε : MP

(
R2

+\ {0}
)
−→ R2 as

T̃ε

( ∞∑
i=1

δYiZi

)
=

( ∞∑
i=1
{Zi × I (Zi > ε)} {Yi × I (Yi > ε)} ,

∞∑
i=1

{
Z2
i × I (Zi > ε)

}{
Y 2
i × I (Yi > ε)

} )
.

Further recall the definition of Ñn from (85). Then

(
Ũn,ε, Ũ2

n,ε

)
= T̃ε

(
Ñn

)
.

The conditions requisite for

Ñn
d−→ Ñ , n→∞

are established in the proof of Theorem 8. That

T̃ε

(
Ñn

)
d−→ T̃ε

(
Ñ
)
, n→∞

then follows from the continuous mapping theorem. Lastly,

T̃ε

(
Ñn

)
d−→
(
Uε2, σ2 , Uε4, σ4

)
, ε→ 0

results from Davis and Mikosch (1998, Proposition 3.3), where the marginal limits are described at

the end of the proofs to Theorems (8) and (9), respectively.�
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12 Appendix B (Tables)

Table 1: Parameter Configurations
θ0

Specification ω0 α0 β0
I 0.05 0.05 0.90

II 0.05 0.10 0.85

III 0.05 0.20 0.75

IV 0.05 0.30 0.65

Notes to Table 1. Different GARCH(1, 1) parameter values considered in the Monte Carlo simulations.

Table 2: Out-of-Sample Forecast Comparisons
Eval. Loss Forecast Horizon

Asset Sample (Beg.) Function Estimator 1-Step 5-Steps 10-Steps 21-Steps

SPX 5/1/2020 RMSE QMLE 6.687 7.152 7.367 7.487

VTNGQMLE 6.820 7.338 7.593 7.713

FAN 7.057 7.718 8.143 8.611

QLIKE QMLE 3.463 3.481 3.492 3.502

VTNGQMLE 3.463 3.480 3.491 3.501

FAN 3.468 3.488 3.503 3.522

1/3/2022 RMSE QMLE 6.476 6.790 7.074 7.213

VTNGQMLE 6.550 6.902 7.206 7.263

FAN 6.873 7.414 7.937 8.449

QLIKE QMLE 3.496 3.510 3.524 3.538

VTNGQMLE 3.494 3.506 3.519 3.532

FAN 3.500 3.516 3.535 3.559

VIX 5/1/2020 RMSE QMLE 34.026

VTNGQMLE 26.301

FAN 31.441

QLIKE QMLE 5.636

VTNGQMLE 5.628

FAN 5.633

1/3/2022 RMSE QMLE 27.446

VTNGQMLE 18.747

FAN 24.307

QLIKE QMLE 5.557

VTNGQMLE 5.548

FAN 5.554

Notes to Table 2. Daily SPX, VIX, and VVIX levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4)

is estimated on SPX log returns using a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end

of the sample on 10/29/2024. For k ∈
(

1, 5, 10, 21
)
, on each day of the sample, k-period-ahead GARCH volatility

forecasts are constructed using QMLE, VTNGQMLE, and FAN. RMSE and QLIKE loss functions evaluate the efficacy of these

GARCH forecasts, using the standard "RV5" proxy for the latent variance. The ARFIMA (1, d, 1) model of (54) is estimated

on VIX levels using a fixed 20-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample

on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is then estimated on the daily ARFIMA (1, d, 1) model innovations

using QMLE, VTNGQMLE, and FAN on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end

of the data sample on 10/29/2024, so as to produce the out-of-sample forecasts σ̂t | t−1 and σ̂t | t−2 on each date t of the sample.

For each estimator, the dynamic scale factor model of (57)–(59) is estimated on a fixed 10-year look-back window beginning on

4/30/2020 and rolling through the end of the data sample on 10/29/2024, so as to produce Ût | t−1 = V̂ V IXt | t−1 for each date

t in the sample, where
σt | t−1+σt | t−2

2
replaces σt | t−1 in (59).

{
V̂ V IXt | t−1

}T
t=1

formed using the competing estimators

are compared using the RMSE and QLIKE loss functions.
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Table 3: ARFIMA
(

1, d, 1
)

Estimates for VIX
model para. est. stderror 95% C.I.

ARFIMA
(

1, d, 1
)

ρY 0.830 0.045 0.742 0.918

θ -0.494 0.065 -0.622 -0.366

d 0.497 0.002 0.494 0.500

ARFIMA
(

1, 0, 1
)

ρY 0.984 0.005 0.975 0.994

θ -0.138 0.032 -0.202 -0.075

d 0.000

Notes to Table 3. Daily VIX levels source to Bloomberg, L.P. The ARFIMA
(

1, d, 1
)

model is fit to these VIX

levels over a lengthy sample beginning 1/2/1990 and running through 10/13/2022. Reported standard errors are robust in the

Huber-White "sandwich" estimator sense.

Table 4: Out-of-Sample VVIX Forecast Construction Comparisons
Eval. Loss Function

Sample (Beg.) Forecast RMSE QLIKE

5/1/2020 1-Step 43.469 5.634

Avg. 26.301 5.628

1/3/2022 1-Step 26.801 5.552

Avg. 18.747 5.548

+

Notes to Table 4. Daily VIX levels source to Bloomberg, L.P. The ARFIMA (1, d, 1) model of (54) is estimated on

VIX levels using a fixed 20-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample on

10/29/2024. The GARCH (1, 1) model of (55) and (56) is estimated on the daily ARFIMA (1, d, 1) model innovations using

VTNGQMLE on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end of the data sample on

10/29/2024, so as to produce the out-of-sample forecasts σ̂t | t−1 and σ̂t | t−2 on each date t of the sample. The dynamic scale

factor model of (57)–(59) is estimated on a fixed 10-year look-back window beginning on 4/30/2020 and rolling through the end

of the data sample on 10/29/2024, so as to produce for each date t in the sample Ût | t−1 = V̂ V IXt | t−1 as denoted by "1-

Step", and Ût | t−1 = V̂ V IXt | t−1 as denoted by "Avg." , where, in this case,
σt | t−1+σt | t−2

2
replaces σt | t−1 in (59).{

V̂ V IXt | t−1
}T
t=1

formed as "1-Step" and "Avg." are then compared using the RMSE and QLIKE loss functions.
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13 Appendix C (Figures)

Notes to Figures 1–4. Daily SPX index levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4) is estimated on daily log returns

constructed from these index levels using a fixed 10-year look-back window beginning on 12/23/1999 and rolling through the end of the

data sample on 10/29/2024. The GARCH estimators being compared are QMLE, VTNGQMLE, and FAN. For these estimators, the figures

plot α̂ and φ̂ = α̂+ β̂ as solid lines. Also plotted as dashed lines are 2-sided, 95% confidence bands for the QMLE estimates, constructed

using Huber-White "sandwich" standard error estimates.

Notes to Figures 5–6. Daily SPX index levels source to Bloomberg, L.P. The GARCH (1, 1) model of (3) and (4) is estimated on daily log returns

constructed from these index levels using VTQMLE and a fixed 10-year look-back window beginning on 12/23/1999 and rolling through

the end of the data sample on 10/29/2024.On each day beginning 12/23/1999, GARCH (1, 1) model innovations for the fixed 10-year look-

back window are estimated, to which the tail index estimator of Hill (1975) is applied using a threshold of 5% of the largest innovations in

absolute value.27 One-sided, 95% confidence bands (dashed lines) for the Hill (1975) estimates (solid lines) are also constructed using the

robust standard error estimator developed in Hill (2010).

Notes to Figures 7–10. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model, where

d ∈ (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window beginning on

12/31/2009 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (3) and (4) is then estimated on

the daily ARFIMA (1, d, 1) model innovations using a fixed 10-year look-back window beginning on 12/31/2009 and rolling through the

end of the data sample on 10/29/2024. The GARCH estimators being compared are QMLE, VTNGQMLE, and FAN. For these estimators,

the figures plot α̂ and φ̂ = α̂+ β̂ as solid lines.

Notes to Figures 11–12. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model,

where d ∈ (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window

beginning on 12/31/2009 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is

then estimated on the daily ARFIMA (1, d, 1) model innovations using VTNGQMLE and a fixed 10-year look-back window beginning

on 12/31/2009 and rolling through the end of the data sample on 10/29/2024. On each day beginning 12/31/2009, GARCH (1, 1) model

innovations for the fixed 10-year look-back window are estimated, to which the tail index estimator of Hill (1975) is applied using a

threshold of 5% of the largest innovations in absolute value. One-sided, 95% confidence bands (dashed lines) for the Hill (1975) estimates

(solid lines) are also constructed using the robust standard error estimator developed in Hill (2010).

Notes to Figures 13–15. Daily VIX levels source to Bloomberg, L.P. These VIX levels are mean-filtered using an ARFIMA (1, d, 1) model,

where d ∈ (0, 0.5), estimated using the full maximum likelihood estimator of Sowell (1992) on a fixed 20-year look-back window

beginning on 05/01/2020 and rolling through the end of the data sample on 10/29/2024. The GARCH (1, 1) model of (55) and (56) is

then estimated on the daily ARFIMA (1, d, 1) model innovations using VTNGQMLE and a fixed 10-year look-back window beginning

on 05/01/2020 and rolling through the end of the data sample on 10/29/2024. On each day beginning 04/30/2020, a 1-step-ahead and

2-steps-ahead out-of-sample GARCH volatility forecast is made, so that for each date t in the forecast-evaluation sample, there are two

out-of-sample, GARCH volatility forecasts, σ̂t | t−1 and σ̂t | t−2. Figure 13 compares σ̂t | t−1 against the actual VVIX value on date

t. Figure 14 depicts the out-of-sample VVIX forecast constructed using σ̂t | t−1 and V̂t | t−1, comparing that forecast against the actual

VVIX value on date t. Figure 15 depicts the out-of-sample VVIX forecast constructed from
σ̂t | t−1+σ̂t | t−2

2
and V̂t | t−1, comparing

that forecast against the actual VVIX value on date t. In Figures 14 and 15, MAX is the largest VVIX value ever observed.

Notes to Figure 16. Daily SPX index and VIX levels source to Bloomberg, L.P. For SPX log returns, skewness estimates on a fixed 10-year look-

back window beginning on 05/01/2020 and rolling through the end of the data sample on 10/29/2024 are shown. For VIX levels, skewness

estimates for the innovations to an ARFIMA (1, d, 1) model fit to a fixed 10-year look-back window beginning on 05/01/2020 and rolling

through the end of the data sample on 10/29/2024 are shown.

27This 5% threshold means that the 126 largest daily innovations (in terms of absolute value) are input into the Hill (1975)

estimator.
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Figure 1: SPX α̂n (Full Sample)

Figure 2: SPX α̂n (Post COVID)
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Figure 3: SPX φ̂n (Full Sample)

Figure 4: SPX φ̂n (Post COVID)
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Figure 5: SPX ι̂n (Full Sample)

Figure 6: SPX ι̂n (Post COVID)
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Figure 7: VIX α̂n (Full Sample)

Figure 8: VIX α̂n (Post COVID)
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Figure 9: VIX φ̂n (Full Sample)

Figure 10: VIX φ̂n (Post COVID)
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Figure 11: VIX ι̂n (Full Sample)

Figure 12: VIX ι̂n (Post COVID)
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Figure 13: VIX 1-Step GARCH Vol Forecasts

Figure 14: VVIX 1-Step GARCH Vol Forecasts
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Figure 15: VVIX Average GARCH Vol Forecasts

Figure 16: SPX and VIX Skewness
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