Finance and Economics Discussion Series

Federal Reserve Board, Washington, D.C.
ISSN 1936-2854 (Print)
ISSN 2767-3898 (Online)

Local Estimation for Option Pricing: Improving Forecasts with
Market State Information

Hyung Joo Kim, Dong Hwan Oh

2025-076

Please cite this paper as:

Kim, Hyung Joo, and Dong Hwan Oh (2025). “Local Estimation for Option Pricing:
Improving Forecasts with Market State Information,” Finance and Economics Discus-
sion Series 2025-076. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016 /FEDS.2025.076.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Local Estimation for Option Pricing: Improving Forecasts with

Market State Information*

Hyung Joo Kimf Dong Hwan Oh?

July 30, 2025

Abstract

We propose a novel estimation framework for option pricing models that incorporates local,
state-dependent information to improve out-of-sample forecasting performance. Rather than
modifying the underlying option pricing model, such as the Heston-Nandi GARCH or the Heston
stochastic volatility framework, we introduce a local M-estimation approach that conditions on
key state variables including VIX, realized volatility, and time. Our method reweights historical
observations based on their relevance to current market conditions, using kernel functions with
bandwidths selected via a validation procedure. This adaptive estimation improves the model’s
responsiveness to evolving dynamics while maintaining tractability. Empirically, we show that
local estimators substantially outperform traditional non-local approaches in forecasting near-
term option implied volatilities. The improvements are particularly pronounced in low-volatility
environments and across the cross-section of options. The local estimators also outperform
the non-local estimators in explaining future option returns. Our findings suggest that local
information, when properly incorporated into the estimation process, can enhance the accuracy

and robustness of option pricing models.

*The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members
of the research staff or the Board of Governors.
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1 Introduction

Accurately pricing options is essential for trading, hedging, risk management, and regulatory pur-
poses. While the ability to forecast future option prices or their distributions is often more relevant
for these applications, much of the literature on option valuation has focused on fitting historical or
in-sample option prices more closely by developing increasingly complex models.! Since the seminal
work of Black and Scholes (1973), numerous models have been proposed to address the empirical
limitations of the Black-Scholes (BS) framework—most notably its inability to capture volatility
smiles and skews due to the assumption of constant volatility. Models such as the stochastic volatil-
ity (SV) model of Heston (1993), the GARCH-based model of Heston and Nandi (2000), and their
extended models have made significant strides in matching observed option prices, underlying re-
turn dynamics, and other option moments while offering tractable pricing formulas.? Nonetheless,
relatively little attention has been paid to their forecasting performance.

Furthermore, the role of the estimation method itself has received limited attention. Most
standard approaches use fixed-parameter estimation techniques, which implicitly treat all historical
observations as equally informative. This uniform weighting can be problematic in evolving or
regime-shifting markets, where stale observations may dilute the influence of relevant information.
Recent work by Dendramis, Kapetanios, and Marcellino (2020) and Oh and Patton (2024) shows
that reweighting observations based on current market conditions can improve forecasting accuracy
in macroeconomic and financial applications. These advances motivate our core research question:
can option pricing models be improved by modifying the estimation method, without changing the
model?

In this paper, we develop a novel local M-estimation framework for option pricing models that
conditions on market state variables using kernel-based weighting. Rather than altering the model

structure, we adapt parameter estimates to reflect the current market environment. Our framework

!For example, regulatory applications and central counterparties (CCPs) often require models that can forecast po-
tential exposures under future market scenarios. Forecasted option values are used in margin requirement calibration,
stress testing, and systemic risk assessments.

2An extensive set of studies include, but not limited to, Bakshi, Cao, and Chen (1997), Bates (2000, 2019),
Duffie, Pan, and Singleton (2000), Pan (2002), Eraker (2004), Christoffersen, Jacobs, Ornthanalai, and Wang (2008),
Christoffersen, Heston, and Jacobs (2009, 2013), Christoffersen, Jacobs, and Mimouni (2010), Andersen, Fusari, and
Todorov (2015), Babaoglu, Christoffersen, Heston, and Jacobs (2018), Bardgett, Gourier, and Leippold (2019), Du
and Luo (2019), Ait-Sahalia, Karaman, and Mancini (2020), Ait-Sahalia, Li, and Li (2021), Gruber, Tebaldi, and
Trojani (2021), Heston, Jacobs, and Kim (2024).



allows for observation-specific weighting based on a range of informative variables, including the
VIX, realized volatility, risk-neutral skewness and kurtosis, VIX volatility index (VVIX), and the
variance risk premium (VRP), or weighting that places greater emphasis on more recent data points.
Bandwidths or tuning parameters governing the weighting scheme are selected using a split-sample
validation procedure to avoid look-ahead bias.

We apply this estimation technique to both GARCH and SV option pricing models and evaluate
its forecasting performance using out-of-sample (OOS) option implied volatilities from 2015 to 2023.
Our empirical analysis demonstrates that the local estimation approach significantly outperforms
traditional non-local methods in both time-series and cross-sectional dimensions.

Our empirical findings demonstrate that local estimation substantially improves the accuracy
of forecasting option prices or implied volatilities. Across multiple forecast periods from 2015 to
2023, local estimators consistently outperform their non-local counterparts in both time-series and
cross-sectional environments. In the GARCH model, conditioning on VIX leads to the greatest
improvements in implied volatility forecasting, while in the SV model, time-based local estimations
perform best. These enhancements are especially pronounced in low-volatility periods, such as
2017, when market conditions evolve gradually. Although the outperformance of local estimation
is less noticeable during high-volatility periods, it performs at least at par or slightly better relative
to non-local estimation.

In addition to reduced time-series forecast errors, local estimation leads to overall improved and
more balanced pricing performance across different moneyness levels and maturities. We confirm
that this improvement stems from the better alignment of model-implied risk-neutral distributions
with nonparametric benchmarks. Moreover, local estimators yield expected option returns that
match ex-post realized option returns better, indicating improvements in the joint modeling of
physical and risk-neutral dynamics. These results not only support the theoretical value of state-
dependent estimation but also demonstrate its practical utility for traders, margin models, and

short-horizon risk forecasts.

This paper contributes to the literature in three key directions:
First, our paper contributes to the growing literature on forecasting option moments. One strand

of this literature focuses on forecasting option-implied volatility surfaces (e.g., Almeida, Fan, Freire,



and Tang, 2023; Chen, Grith, and Lai, 2025; Dufays, Jacobs, and Rombouts, 2025). While these
studies generate the entire volatility surface and then forecast it using various volatility forecasting
models or their extensions, our approach emphasizes incorporating local state information into
the estimation of dynamic option pricing models to better forecast implied volatilities. Instead
of directly forecasting the volatility surface, we use a better-estimated option pricing model to
generate the distribution of future underlying prices and variances, and then compute expected
implied volatilities from those distributions. This approach allows us to forecast implied volatility,
internally consistent with a pricing model. Another strand of the literature focuses on forecasting
the cross-section of option returns (e.g., Zhan, Han, Cao, and Tong, 2022; Bali, Beckmeyer, Moerke,
and Weigert, 2023; Cao, Vasquez, Xiao, and Zhan, 2023). Though our goal is not to find forecasting
models for option returns, we compute model-implied expected option returns and show that our
local estimation model forecasts option returns better than a benchmark (non-local) model.

Second, we improve option pricing performance by incorporating current information through a
novel estimation method. Rather than extending or modifying existing models, we employ a local
estimation method that naturally incorporates recent market information, which proves beneficial
for pricing options or forecasting implied volatilities.®> This approach allows us to capture the most
up-to-date market dynamics without increasing model complexity.? By focusing on estimation
rather than model structure, we maintain simplicity while enhancing adaptability to changing mar-
ket conditions. This method is particularly effective in volatile or rapidly evolving markets where
traditional models might struggle to adapt quickly. Furthermore, our approach can potentially
reduce estimation time, parameter uncertainty, and model risk, which are common challenges in
more complex option pricing models.

Third, we bridge two strands of research—dynamic volatility modeling and local estimation

methods in econometrics—and apply them to a forward-looking option pricing framework.? Our

3Relatedly, Kim (2025) and Schreindorfer and Sichert (2025) exploit state information to better estimate the
conditional pricing kernel implied by index returns and options, and Oh and Patton (2024) show that applying a
local estimation method improves volatility forecasting.

4As an example of capturing state-dependent market dynamics in option pricing with a modest increase in model
complexity, Hansen and Tong (2025) improve the GARCH option pricing model fit by allowing a time-varying risk
preference parameter.

SThis perspective is particularly relevant for practitioners involved in margin setting and short-horizon trading. For
example, clearinghouses often rely on forecasts of near-term option prices conditional on current market conditions
to determine initial and variation margins. Similarly, trading desks require real-time pricing that reflects current
volatility and tail risk exposure, which static parameter estimates may fail to capture.



approach aligns with how options are used in practice, such as in margin setting or short-horizon
forecasting, where the objective is not to fit past prices but to forecast near-term values conditional
on current information. By incorporating forward-looking local information into the estimation
step, we improve the responsiveness of otherwise fixed-parameter models and enhance their fore-

casting performance without adding structural complexity.

The remainder of the paper is organized as follows. Section 2 describes the benchmark option
pricing models and the local M-estimation framework, along with implementation details including
kernel choices, bandwidth selection, and validation procedures. Section 3 introduces the data, and

Section 4 reports the empirical results. Section 5 concludes.

2 Model and Estimation

This section outlines the option pricing models and the local estimation framework. We specify the
physical and risk-neutral dynamics for the Heston-Nandi GARCH and Heston SV models, followed
by a local M-estimation approach that reweights observations based on state variables. This method
preserves the model structure while adapting parameters to current market conditions. We also
describe kernel weighting, bandwidth selection, and the validation procedure used for out-of-sample

evaluation.

2.1 Stock price dynamics and transition likelihoods

We focus on two widely used option pricing models: the Heston and Nandi (2000) GARCH option
pricing model and the Heston (1993) SV option pricing model, as well as their underlying dynamics.
The former is based on the discrete-time dynamic of the stock price, where its variance follows a
GARCH process derived from historical returns and past volatilities. The latter uses the continuous-
time dynamic of the stock price in conjunction with its stochastic volatility, which follows a square-
root process. Both approaches are essential for pricing options and analyzing volatility dynamics
because they incorporate the time-varying nature of volatility into the valuation process. They
have also received ample attention in the literature, not only for their time-varying volatility but
also for their quasi-closed-form option pricing formulas and their sufficient performance in terms of

average option fits.



For estimation, we specify the physical dynamics and maximize the return transition likelihoods.
It is worth noting that we do not use options data in model parameter estimations; instead, we use
them for model validation and out-of-sample analysis. We discuss more details on how we convert

the optimal physical dynamics to risk-neutral dynamics and how we price options in Section 2.2.

2.1.1 The GARCH dynamics

We employ the physical stock price and variance dynamics of Heston and Nandi (2000) and Christof-

fersen, Heston, and Jacobs (2013) as our first benchmark model:

InS(t+1) = InS@E)+ (T+ <,u;) v(t+1)> +Vo(t+1)z(t+1), (1)

v(t+1) = w+pu(t)+a (z(t) - 7\/@)2 ,
where each time interval is one day, r is the risk-free rate, and z(t) follows a standard normal
distribution. In this model, p governs the equity risk premium. In the variance dynamic, «
identifies the reactivity of variance to stock price, v provides the leverage effect, and § partially
captures the persistence of variance.

Since the next-period daily variance v(t + 1) is determined once the daily return In S(t) —
In S(t—1) or return shock z(t) is realized, it enables us to formulate the return transition likelihood

recursively. At each point in time ¢t + 1, the log likelihood is given as

1(lnS(t—l—l)—lnS(t)—(T+(H_%)U(t+1)))2 (2)

InL(t+1) :—%ln(%v(tﬂ))— 5 Wi+ 1)

where the variance is given as

InS(t) ~nS(t=1) — (r+ (n=3)v(t) _ v(t)>2- 3)

v 1) =w v «
t+1)=w+pu(t) + < 0



2.1.2 The SV dynamics

As our second model, we adopt the continuous-time stochastic volatility model of Heston (1993).

Its physical dynamics are given as

dlnS(t) = <r + <,u - ;) v(t)) dt + /v(t)dzi(t), (4)
dv(t) = k(0 —v(t))dt + o/v(t)dza(t),

where z1 and zo follow Brownian motions with correlation coefficient p. The square-root process or
the CIR process used for the variance dynamic fundamentally captures a mean-reverting property
of variance, where xk and 6 identify the mean-reverting speed and the long-run mean, respectively.

For model estimation, the presence of latent stochastic variance makes implementation relatively
more complex than that of the GARCH dynamics, as it requires filtering the latent variable.® To
reduce the computational burden, we instead adopt the method of Heston, Jacobs, and Kim (2023),
which exploits the linear relationship between the squared VIX and the instantaneous stochastic

variance implied by this SV model.” Specifically, we assume
v(t) =m0 +mVIX3(t), (5)

where 19 and n; are free parameters to be estimated.
To characterize the transition likelihood function, we apply the Euler discretization to equa-

tion (4), resulting in:

2
Vit +A) —v(t) = K(O—v(t)A+ et +A),

InR(i+A) = [r+<u—1)v(t)]A+61(t+A)7 (6)

where R(t + A) = S(t + A)/S(t) denotes the gross return and A = 1/252.8 The error terms

5To filter stochastic variance, the literature employs various approaches, including the Kalman filter, particle
filter, and Markov Chain Monte Carlo (MCMC) techniques. For examples, see Ghysels and Jasiak (1994) and Ruiz
(1994) for applications of the Kalman filter, Christoffersen, Jacobs, and Mimouni (2010) and Dufays, Jacobs, Liu,
and Rombouts (2023) for the particle filter, and Andersen, Benzoni, and Lund (2002), Eraker, Johannes, and Polson
(2003), Jones (2003), Eraker (2004), and Bates (2006) for MCMC methods.

"The exact linear relationship involves a specific functional form with a measurement error. However, to avoid the
additional filtering problem required to model this error, they further simplify the setup by relaxing the functional
form and omitting the measurement error.

8Note that In R(t + A) is the daily log return between ¢ and ¢t + A while v(t) is the annualized variance at time .



e(t+A) = (e1(t+A), ea(t+ A)) follow a bivariate normal distribution with mean and covariance

matrix given as

0_ 0 s = v(t)  opu(t) A
0 apv(t) o2u(t)

Then, the joint log likelihood at t + A is expressed as:

InL(t+A) = Inf(logR(t+ A), VIX?(t + A)|[VIX?(t))
= In[f(log R(t + A),v(t + A)|v(t)) x J(t + A)]

Lot + AYS 1 t)e(t + A) + Iy, (7)

1
= —In2m) - 5 In|SE)] - 3¢

where f(In R(t+ A), v(t+ A)|v(t)) represents the conditional density of the discretized log R(t+ A)
and v(t + A), J(t + A) is the Jacobian term relating VIX?(¢t + A) to v(t + A), given by 7, from

equation (5). Time ¢ is measured in days.

2.2 Risk-neutral dynamics and option pricing

We now turn to the discussion of how we price options under the two dynamics (GARCH and SV),
respectively. It is noteworthy to mention that our physical dynamics in equations (1) and (4) alone
are insufficient for option pricing. Either the pricing kernel or risk-neutral dynamics are necessary
to compute model-implied option prices. In this section, we describe our choice of the pricing kernel
and the internally consistent risk-neutral dynamics, followed by the option valuation procedure.

To compute option prices, we first specify the pricing kernel and then derive the corresponding
risk-neutral stock price dynamics. Following Heston and Nandi (2000), we assume that the rep-
resentative agent is risk-averse to negative aggregate market returns. Specifically, we adopt the
power utility function, which is parsimonious and widely used in the literature. The pricing kernel
is then given by

=
M(t) = M(0)e™® <§(((t)))> , (8)

where £ represents the risk aversion parameter, and § represents the time-preference parameter.

Inferred from the given physical dynamics and the pricing kernel in equation (8), we obtain the

In contrast, following the convention, v(¢) in equation (1) represents the daily variance in the GARCH model.



following risk-neutral dynamics.? For the GARCH model,

mS(E+1) = InS() + (r _ %U(H 1)) o+ D+ 1), )

2
)

Wt+1) = woBult) +a (z*(t) - ’y*w/v(t))

where

7= v +E
£ = p
For the SV model,
dnS(t) — (7" _ ;v(t)> dt + \/o(B)d=1(8), (10)

do(t) = K"(0" —o(t))dt + o/ v(t)dz5(t),

where

dzi(t) = dz(t) + &/ v(t)dt,
dz5(t) = dzo(t) + Epo/u(t)de,

k' = K+po,
0" = kO/Kk",
£ = p

Using the risk-neutral dynamics in equations (9) and (10), we follow the fast Fourier transfor-

mation of Carr and Madan (1999) for option valuation. The price of a call option with its strike

9Christoffersen, Heston, and Jacobs (2013) and Heston, Jacobs, and Kim (2023) provide more detailed derivation
of these relationships for the GARCH and the SV models, respectively. They also discuss a more generalized pricing
kernel that preserves the same functional form of the risk-neutral dynamics.



price K and maturity 7 is given by a quasi-closed-form solution involving a numerical integration:

—ak

C(S(t), v(t), 1) = /0 " Re [e*w%(u)} du, (11)

™

where 4 is the imaginary unit and & is the natural log of K. The function v (u) is the Fourier
transform of a modified call price, which is the call price multiplied by e®* for a > 0.19 We
calculate ¥ (u) as follows:

e "I (u—i(a +1)[S(1), v(t))
(a+iu)(a+ 1+ iu)

P(u) =

)

where fEH(¢|S(t),v(t)) = Ef [¢'?1o85 (t+7)] represents the risk-neutral conditional characteristic
function of log S(t 4 7). We derive closed-form expressions for fCH (¢|S(t),v(t)) following Heston
and Nandi (2000) for the GARCH model and Heston (1993) for the SV model. The price of a put
option with the same strike and maturity can be determined using put-call parity. Note that the
pricing formula in equation (11) does not account for future dividends. In line with the existing
literature, we adjust the current index level by discounting it with the dividend yield; that is, we
use S(t)e” 9", where ¢ is the continuously compounded dividend yield at time ¢. Lastly, we convert
each model-implied option price into the Black—Scholes implied volatility to facilitate consistent

comparisons across the cross section and over time.

2.3 Local M-estimation

Most stock price dynamics are typically estimated using M-estimation, a flexible framework for

parameter estimation that minimizes or maximizes a specified objective function:

T
R o1
Or = arg min ;L (Ye, 9-1(0)), (12)

where 8 € © C RP. In this framework, L represents the loss function, Y denotes the target variable,
and ¢(#) defines a parametric model of the target functional. M-estimation encompasses a wide
range of methods, including maximum likelihood estimation (MLE) and least squares estimation.

Under mild regularity conditions, M-estimators exhibit desirable properties such as consistency and

0We use a = 4, following Heston, Jacobs, and Kim (2023).



V/T-asymptotic normality; see Newey and McFadden (1994).

However, the standard M-estimation framework assumes implicitly that all observations con-
tribute equally to the objective function, which limits its ability to incorporate time-specific informa-
tion that could improve parameter estimation. In the current pricing environment, certain historical
data points may hold greater informational value for parameter estimation. As demonstrated by
Oh and Patton (2024), maintaining the baseline model while optimally weighting observations can
enhance forecasting performance. Following a similar approach, we preserve the standard option
pricing model but assign greater weights to past data points that are more relevant to the specific
day of pricing.

Building on the approaches of Dendramis, Kapetanios, and Marcellino (2020) and Oh and

Patton (2024), we define the estimator as:

T

~ 1

On.r(s) = argmin > LY, 01(0) K (s = Si—13hr) , fors € Ink(S), (13)
t=1

where IC represents the kernel function, hp is a bandwidth parameter that decreases with sample
size, s is a predetermined value of the state variable, typically set to its current value at the time
the forecast is generated, and Int(S) denotes the interior of the support of the state variable S. The
weights are determined by a kernel function based on the distance between the current and past
levels of state variables. Past values that deviate significantly from the current level are assigned
smaller weights, while those closer to the current level receive larger weights. This approach allows
the underlying dynamics to adapt effectively to the current environment, potentially improving
option price forecasts.

This local approach offers significant advantages over traditional estimation methods, particu-
larly in the context of option pricing. There are two main reasons for its effectiveness:

1. Resolution of model misspecification: Standard option pricing models often suffer from
misspecification, as they may not fully capture the complex dynamics of volatilities of underlying
assets. The local estimation approach helps mitigate this issue by allowing the model parameters to
vary with the state variable, thus adapting to prevailing market conditions where the option pricing
is conducted. This flexibility enables the model to adjust to different market regimes and conditions,

effectively reducing the impact of model misspecification. By giving more weight to observations

10



that are similar to the current market state, the method implicitly allows for nonlinearities and
time-varying relationships that may not be captured by a fixed parametric model.

2. Informative state variables: The effectiveness of this approach relies on the choice of infor-
mative state variables that contain valuable information about potential model misspecification.
These state variables serve as proxies for changing market conditions or regimes that affect option
prices. For instance, variables such as option implied volatility, skewness and kurtosis, or macroe-
conomic indicators such as realized variance of S&P 500 returns can provide crucial information
about the current market environment. By conditioning the estimation on these state variables, the
local approach incorporates this additional information into the pricing model, leading to more ac-
curate and adaptive option price estimates. The state variables essentially guide the model to focus

on the most relevant historical data for the current pricing scenario, improving its predictive power.

By addressing model misspecification and leveraging informative state variables, this local es-
timation approach can potentially lead to more accurate option pricing, especially in dynamic and
evolving market conditions where traditional fixed-parameter models may struggle.!! The efficacy
of this local estimation approach hinges critically on the judicious selection of state variables and
the determination of appropriate bandwidth parameters. In the following section, we present a
detailed exposition of our methodology for selecting these crucial elements.

In our empirical analyses, we use the negative log likelihood (—1In £) in equation (2) or (7) as
a loss function L, in conjunction with the realized stock return as a target variable Y and either
the GARCH dynamics or the SV dynamics for a parametric model g(#). The set of parameters 6
is {u, w, B, a, v} for the GARCH dynamics and {u, k, 0, o, p, no, m} for the SV dynamics.
Furthermore, we impose a couple of restrictions. To relevantly capture the unconditional level
of equity risk premium, we fix u at the level of the time-series average equity premium between
January 1996 and August 2023. To preserve variance positivity, we impose w > 0 and 8 > 0 for

the GARCH model and the Feller (1951) condition (2x6 > ¢2) for the SV model.

"For a comprehensive theoretical analysis of the improvements afforded by this local estimation approach, we refer
readers to Section 2 of Oh and Patton (2024), which provides detailed discussions on the asymptotic properties of
the estimator.

11



2.4 Implementing Local Estimation and Model Evaluation: Methodological De-

tails

To implement the local estimation through equation (13), we need to specify the weighting function
and select appropriate state variables. We begin by detailing the kernel functions for different types
of state variables, then describe our process for bandwidth determination and model evaluation,
and finally discuss the specific state variables used in our study.

For stochastic state variables, we adopt a Gaussian kernel:

2

Kg(x;h):exp{—;m}, forz € Rand h > 0 (14)

We examine the bandwidth values, h, ranging from 0.0505 to bog, where og represents the standard
deviation of the state variable. Smaller bandwidths make the model parameters more ‘localized,’
but they reduce precision due to a smaller effective sample size. Conversely, as h increases, the
local estimator converges to the non-local methods equivalent to the original estimation methods
proposed by Heston and Nandi (2000) and Heston (1993). While h is a time-insensitive parameter,
we implement a dynamic approach for og to enhance precision. Specifically, we compute og at each
point in time as the rolling standard deviation of the state variable over the preceding three-year
window.

When employing time as the state variable, we use a one-sided exponential kernel defined by
the bandwidth parameter A and a window length of m:

M(1—))

Kg(;\) = ml{j <m}, for j €{0,1,2,..} and 0 < A < 1 (15)

The values of A explored range from 0.98 to 0.9999. Lower A values result in reduced emphasis on
older observations during estimation, leading to more temporally localized model parameters but
increased estimation variability. As A\ approaches 1, the weighting function flattens, and the local
estimator converges to the non-local benchmark estimators described in Heston and Nandi (2000)

and Heston (1993).

The process for determining bandwidth parameters and evaluating option pricing models follows

12



a structured approach. We divide our dataset into two distinct subsets: an estimation sample and
an out-of-sample (OOS) set. The estimation sample is used to determine the optimal bandwidth
parameter for each state variable. Subsequently, the selected bandwidth parameters are employed
to evaluate option pricing errors during the OOS period, ensuring that bandwidth parameters are
free from look-ahead bias.!?

More specifically, our methodology follows a two-step process: first, identifying the optimal

bandwidth, and second, evaluating the option pricing model in the OOS period.

Step 1: Optimal Bandwidth Selection

To determine the optimal bandwidth parameter for each state variable, we further subdivide
the estimation sample into two parts: a ‘training sample’ (the first half) used to estimate model
parameters across various bandwidths, and a ‘validation sample’ (the second half) used to identify
the optimal bandwidth parameter. For each fixed bandwidth value!?, we estimate the model using
the training sample of underlying stock returns data through equation (13). We then calculate
option pricing errors in the validation sample of option data using these estimates and pricing
formulas. The bandwidth value yielding the lowest option pricing errors in the validation sample

is selected as optimal.

Step 2: OOS Model Evaluation

Given the optimal bandwidth parameter for each state variable, we re-estimate the model using
the entire estimation sample of underlying return data (i.e., combined training and validation sam-
ples) via equation (13). Given these parameter estimates with pricing formulas, we then calculate
option pricing errors using option price data from the OOS period. To assess the performance of
various models in our application, we compare their OOS average losses. It is important to note
that these OOS losses are unweighted, which ensures that the local estimator does not have any
inherent advantage in the evaluation process. This approach provides a fair and unbiased compar-

ison between local and non-local estimation methods.

12T 0ok-ahead bias occurs when a model incorporates information that would not have been available at the time
of prediction. This could lead to unrealistically accurate estimates by inadvertently using future data in parameter
estimation.

13We test bandwidth values ranging from 0.050 to 50, with 0.05 increments for stochastic state variables, or from
0.98 to 0.9999 with 0.0005 increments for the time-based state variable.
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For both validation and OOS evaluation, we first need to forecast option prices or implied
volatilities. In this paper, we particularly rely on implied volatility. As a forecast measure for
the i-day ahead implied volatility, we calculate the expected implied volatility by using parameter
estimates at time ¢. To this end, we simulate the underlying price and variance for the next three
days using their physical dynamics in equation (1) or (4), calculate option prices and implied
volatilities over the joint distribution of the underlying price and variance, and then take their
expectations for each time ¢ + 1.

To evaluate pricing errors, we focus on forecasting performance for the next three-day option

14 Specifically, we evaluate option pricing performance by defining the the

implied volatilities.
relative implied volatility error (IVR). Let IV R; denote the mean squared relative errors of the

next three-day option implied volatilities:

3 Ny [Jydate _ g { [Vmod.el}
1 1 t+4,5 t t+1,5
IVR, = - E — E - , (16)
3 e j=1 I‘/;C—liriij

where Vg&t‘j is the Black-Scholes implied volatility for option j at time ¢+ in data, and E; [ I 1/;5?@0?61}
is the time-t expected Black-Scholes implied volatility obtained from the simulation discussed above.
Ny represents the number of options included in the evaluation at time t. We then define IVR as

the time series average of IV R; over an evaluation period, that is,
1 X
IVR = ; IVR;. (17)

We assess that a model is superior to another model when the former IVR is statistically smaller
than the latter’s.

Having established our methodology for local estimation and bandwidth determination, we now
introduce the set of state variables considered to completely implement the local estimation. We
consider six stochastic state variables that are well-established in the literature as informative and

useful for pricing options or explaining option returns. These include two measures of volatility:

143We evaluate the performance every week. Excluding the evaluation date and a holiday if exists, we forecast the
next three-day option implied volatilities.

14



the VIX and the 5-minute realized volatility (RV5) of the S&P 500 index. Furthermore, we use
the VVIX, which captures volatility-of-volatility by measuring the expected volatility of the 30-
day forward price of the VIX.!5 As tail measures, we incorporate model-free risk-neutral skewness
and kurtosis based on Bakshi, Kapadia, and Madan (2003). We also include the variance risk
premium (VRP), a measure of risk compensation that investors and policymakers use to assess
sentiment regarding uncertainty. In addition to these six variables associated with a kernel function
equation (14), we consider time as a state variable associated with a kernel function in equation (15).

This results in a total of seven possible state variables.'6

3 Data and Empirical Setup

In both the validation and out-of-sample (OOS) evaluation, we use daily S&P 500 call and put
options with maturities between 14 and 183 days. The total sample period for the options data
is from January 2011 to August 2023. We obtain the data from OptionMetrics and apply the
following initial filters: discarding (i) options with implied volatility below 5% or above 150%, (ii)
options with volume or open interest of fewer than ten contracts, (iii) options with mid price below
$0.50 or a bid price below $0.375 to avoid low-valued options, and (iv) options with data errors,
where the bid price exceeds the offer price or where a negative price is implied by put-call parity.

Under our empirical setup, where we evaluate pricing performances for subsequent days of a
week, we select one day per week to determine a weekly set of options. Following existing studies
(see, e.g., Heston and Nandi, 2000; Christoffersen, Heston, and Jacobs, 2013), we choose Wednesday
because it is the day of the week least likely to be a holiday. It is also less likely than other days to
be affected by day-of-the-week effects. Every Wednesday, we apply additional filters by retaining
only out-of-the-money (OTM) call and put options and excluding those with moneyness below 0.75
or above 1.25.

To enhance computational efficiency, instead of using all available data points, we select repre-

sentative options that adequately span the implied volatility surface each Wednesday. We follow

15This forward price represents the price of a hypothetical VIX futures contract expiring in 30 days.

16The use of these state variables are supported by extant papers. For instance, Bali, Beckmeyer, Moerke, and
Weigert (2023), Cao, Vasquez, Xiao, and Zhan (2023), and Horenstein, Vasquez, and Xiao (2025) highlight the
importance of volatility measures, including implied volatility, realized volatility, volatility of volatility, and variance
risk premium; Kelly and Jiang (2014), tail risk. Oh and Patton (2024) also bolster the significance of volatility and
time state variables in forecasting volatility.
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the methodology of Dufays, Jacobs, Liu, and Rombouts (2023) to construct a balanced dataset.
Specifically, we create eight buckets for moneyness (S/K) and five buckets for maturity.!” This
results in 40 buckets, and we keep the most actively traded option in each bucket, although not
all buckets are populated every week. Comparing the filtered set of Wednesday options with those
available throughout the following week, we retain only the common options for each week from
Wednesday. The final filtered dataset comprises 64,970 option contracts. Panels A and B of Table 1

provide descriptive statistics of the filtered option dataset.

[Table 1 AROUND HERE]

We obtain S&P 500 index returns from CRSP. The sample period of the return data is from
January 1996 to August 2023. We use a longer return series than options data to better capture the
time series dynamics of the underlying index’s variance. While extracting the underlying variance
begins in 1996, our likelihood-based estimation sample starts in 2007, as all local estimation state
variables are available from that year onward. We obtain the VIX and VVIX from Bloomberg. We
calculate RV5 as the sum of open-to-close squared five-minute returns. The VRP is calculated as
the difference between the forward-looking market variance implied by option prices (VIX?) and the
annualized one-month forecast of realized variance over time (Bollerslev, Tauchen, and Zhou, 2009;
Carr and Wu, 2009). We also compute model-free risk-neutral skewness (SKEW) and kurtosis
(KURT) following Bakshi, Kapadia, and Madan (2003). Panel C of Table 1 reports descriptive
statistics of these six state variables.

The time series for the risk-free rate is proxied by the one-month Treasury Bill rates obtained
from CRSP. Following the standard implementation in the literature, options are valued using a

maturity-specific risk-free rate obtained from OptionMetrics.
[Table 2 AROUND HERE]

We conduct model estimation and evaluation across multiple periods using both expanding
and rolling window approaches, as summarized in Table 2. In the expanding window approach,

to determine an optimal bandwidth parameter, we initially estimate our models using data from

"Tn the moneyness dimension, we define buckets with moneyness levels spaced every 0.03 between 0.91 and 1.09,
and assign two additional buckets for options with moneyness below 0.91 or above 1.09. In the maturity dimension,
we define buckets with maturities of 30 days or less, 31-60 days, 61-90 days, 91-121 days, and more than 122 days.
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January 2007 to December 2010 (training sample) and validate them using the subsequent period
from January 2011 to December 2014 (validation sample). After identifying the optimal bandwidth
parameter from this estimation sample, we conduct out-of-sample (OOS) evaluation for the period
of January 2015 to December 2016. Our validation sample and OOS evaluation procedure employs
an expanding window approach. We estimate the model at time ¢ and evaluate it using calculated
option prices from ¢+ 1 to ¢t + 3. We then expand the window to include ¢ + 1 data to estimate the
model at 41 and repeat the evaluation using t 42 to t+4 data. This method ensures our model is
continuously updated with the most recent data. As illustrated in Table 2, we progressively expand
our sample periods. For each subsequent period (P2, P3, and P4), we extend both the training and
validation samples by one year and evaluate the next two years out-of-sample. This progressive
expansion enables us to maintain the most appropriate bandwidth parameter that reflects recent
market conditions. By regularly updating our estimation window, we can potentially achieve better
results for both local and non-local estimations, as the model adapts to evolving market dynamics.
It is important to note that for each subsequent period (P2, P3, and P4), we use a different
bandwidth parameter, optimally chosen in the respective estimation sample. This approach ensures
that our model remains responsive to changing market conditions across different time frames.

In the rolling window approach, we fix the window size at 1,512 observations (approximately
six years) for validation sample evaluation, and 2,016 observations (approximately eight years) for
OOS evaluation. As the window advances one week at a time, we re-estimate the model using
the most recent 1,512 or 2,016 data points, depending on the evaluation stage, and assess its
performance over the subsequent three days. This procedure mirrors the evaluation horizon used
in the expanding window setup but preserves a constant sample size throughout. By relying on
a fixed-length, moving estimation sample, the rolling window approach offers a complementary

perspective on model performance under evolving market conditions.

4 Empirical Results

We report the out-of-sample (OOS) performance of the GARCH and SV models, specifically com-
paring several local estimation models with the non-local estimation approach. We then compare

the best-performing local specification with the non-local model across various dimensions and
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examine their associated economic implications. Finally, we assess the robustness of the local

estimation model’s outperformance by examining alternative OOS performance metrics.

4.1 Out-of-sample option price forecasting performance

Panel A of Table 3 provides a detailed evaluation of the pricing performance of Heston-Nandi
GARCH option pricing models during the OOS period, spanning from January 2015 to August
2023, inferred from the expanding window estimation. These models are estimated using two
distinct approaches: the non-local quasi-maximum likelihood (QML) method by Heston and Nandi
(2000), denoted by 4, and the local QML method described in Section 2.3. The table organizes the
rows based on the average OOS loss, IVR, as defined in equation (17). Each local QML estimator
employs a specific set of state variables and bandwidth parameters, which are outlined in the
second and third columns, respectively. As described in Section 2.4, these bandwidth parameters
are optimized based on the performance measured by the same loss function IVR in the validation

sample.
[Table 3 AROUND HERE]

To further assess the relative performance of the models, the table reports Diebold-Mariano
(DM) t-statistics based on Newey-West standard errors with five lags, following Diebold and Mari-
ano (1995), which compare each model’s average OOS loss against that of the benchmark non-local
QML method (denoted by #). Negative t-statistics indicate that a given model achieves a lower av-
erage loss compared to the benchmark. The final column provides an additional layer of evaluation
by indicating, with a checkmark, whether a given model is included in the 95% model confidence
set (MCS)—a procedure proposed by Hansen, Lunde, and Nason (2011).18

The benchmark method, which relies on non-local QML, performs the seventh among the eight
estimation methods considered. Four local methods demonstrate significantly lower OOS losses
compared to the benchmark, as evidenced by the DM test results, with their DM t-statistics falling
below -2. The local method that achieves the best performance in the validation sample uses VIX

as a state variable and also exhibits the lowest average loss during the OOS period. A direct

8To construct the MCS, we implement the stationary bootstrap, adopting an average block duration of ten
observations.
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comparison between the benchmark method and the best-performing local method selected from
the validation sample yields a DM t-statistic of -5.85, providing strong evidence that the local
approach outperforms the non-local benchmark. Among all estimation methods evaluated, the
local methods utilizing VIX and time as state variables are included in the model confidence set.

Panel B of Table 3 evaluates the pricing performance of SV option pricing models on the same
dataset, inferred from the expanding window estimation. The benchmark method, which relies on
non-local QML, ranks the seventh among the eight estimation methods. All local methods except
the one with VVIX show significantly lower OOS losses compared to the benchmark, as indicated
by the DM test results, with all DM t-statistics below -2. The local method that performs best in
the validation sample incorporates time as a state variable and also exhibits the lowest average loss
during the OOS period. Across the entire set of estimation methods, the local methods utilizing
time, RV5, and VIX as state variables are included in the model confidence set.

The two option pricing model classes, the GARCH and SV models, do not necessarily have
to have the same state variable for the best-performing local estimation specification because one
model can capture a certain characteristic better than the other, and vice versa. As a result, we find
that the optimal state variables for the GARCH and SV option pricing models are VIX and time,
respectively. However, within the estimation specifications of the GARCH option pricing model,
the time state variable is also included in the model confidence set, implying that the importance
of the local time information is not statistically different from that of VIX. Similarly, within the
SV model specifications, VIX is also included in the model confidence set.

Additionally, Table 4 reports the OOS option pricing performance based on the rolling window
estimation. Panel A presents results for the Heston-Nandi GARCH models, and Panel B for the
Heston SV models. Interestingly, the MCS of each model class includes the same state variables as
those identified using the expanding window approach. Although the most optimal state variable
for the GARCH model under the rolling window is time, whereas VIX is the most optimal under
the expanding window, both time and VIX are included in the MCS under both approaches. For
the SV model, the state variables, time, RV5, and VIX, consistently constitute the MCS, with
their rankings remaining unchanged. Similar to the expanding window approach, the non-local
benchmark is ranked very low, namely seventh or eighth, with significantly higher OOS average

losses compared to those from local estimation methods. Regardless of whether the expanding or
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rolling window is used, the overall OOS pricing performances are highly consistent across the two

approaches.

[Table 4 AROUND HERE]

4.2 Model performance comparison and economic implications

We further investigate when, where, and why a local estimation outperforms the non-local es-
timation. Specifically, we compare the time series and cross-sectional pricing errors of different
specifications to see when and where performance improvement is pronounced. We also discuss
how parameter estimates vary over time. Furthermore, simulated variance and return distributions
help us better understand the differences between the local and non-local estimation performances.
Lastly, since we estimate physical dynamics of the stock price and variance but evaluate the model
using option prices, we are able to exploit the link between the physical distributions and the risk-
neutral distributions for an external validity test. Specifically, we employ expected option returns
that measure the ratio between the physical expectation and the risk-neutral expectation of future
payoffs. For brevity, in the following analyses, we focus on comparing the results between the

non-local benchmark and the best-performing local estimation in either the GARCH or SV model.

4.2.1 Time series and cross sectional pricing errors

Figure 1 presents the time series of out-of-sample (OOS) pricing errors. Panels A and C depict the
errors under the GARCH models, based on the expanding window and rolling window approaches,
respectively. Similarly, Panels B and D show the errors under the SV models, using the expanding
window and rolling window approaches. As discussed in Tables 3 and 4, the local QML estima-
tion with VIX as a state variable demonstrates the best performance for the expanding-window
GARCH model in terms of the average loss (IVR) out of sample. For the other three models, the
local estimation with time as a state variable performs best. The local estimation in all four panels
generally outperforms the non-local benchmark during the pre-2019 period, while the difference
is less pronounced during the post-2019 period, on average. Nevertheless, we still observe a sta-
tistically significant difference between the local and non-local approaches for the rolling-window

GARCH model during the post-2019 period. Across all panels, the biggest difference occurs around
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2017, when the market was relatively calm.

[Figure 1 AROUND HERE]

Comparing the pricing errors between Panels A and C or between Panels B and D reveals that
the time series dynamics of the non-local pricing errors are more dependent on the estimation data
window than those of the local pricing errors. For instance, the non-local pricing errors during
2017 and 2018 decrease substantially when the estimation scheme changes from the expanding
window to the rolling window, whereas the local pricing errors during the same period change
little. This observation highlights a methodological advantage of local estimation. Unlike non-local
estimation, which assigns equal weights to every data point, local estimation places more weight
on states similar to current conditions, making it less dependent on the estimation sample size or
period.

In addition to comparing the time-series errors, we also examine the cross-sectional option
pricing errors. Panels A and B of Table 5 present the OOS pricing errors from the expanding-
window GARCH model across moneyness and maturity buckets. Panel A shows the results from
the local estimation using VIX, while Panel B displays the results from the non-local estimation.
For deep OTM put options (S/K > 1.06), the non-local estimation error is slightly smaller, but
for all other buckets, the local estimation error is significantly smaller. Furthermore, the non-local
estimation exhibits larger variation in pricing errors across the moneyness dimension, whereas the
local estimation shows much less variation overall. In other words, non-local estimation tends to
focus more on reducing errors for OTM puts, while local estimation results in a more balanced
allocation of importance across the cross-section. Ultimately, the use of local information incurs
a slight performance cost for deep OTM puts but maintains small errors for those options while

reducing overall error and improving performance.

[Table 5 AROUND HERE]

Panels C and D of Table 5 present the cross-sectional option pricing errors for the expanding-
window SV model. As shown in Table 3, the performance gap between the optimal local estima-
tion and the non-local estimation is smaller in the SV model than in the GARCH model. The

cross-sectional pricing errors follow the same pattern: the estimation using time-local information
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statistically outperforms the non-local estimation overall, but the magnitude of improvement is
smaller than in the GARCH model. Interestingly, unlike the GARCH model, the variation in
errors under non-local estimation is more pronounced along the maturity dimension than the mon-
eyness dimension for the SV model. When local estimation is used, the variation in errors across
different maturities is significantly reduced, leading to more balanced results. Taken together, the
SV option pricing model is already more improved compared to the GARCH model, and thus the
marginal improvement from using local information is relatively smaller. Nevertheless, we still
observe statistical improvement in the SV model as well.

Table 6 repeats the cross-sectional pricing error analysis for the rolling-window GARCH and
SV models. The rolling window approach produces highly consistent cross-sectional pricing error
patterns with those from the expanding window approach, with one exception: the local GARCH
model outperforms the non-local GARCH model for deep OTM put options. We again observe
that local estimation leads to more balanced pricing errors across option maturity and moneyness
compared to non-local estimation. Given the overall similarities between the results from the
expanding window and rolling window approaches, we focus on further analyses based on the

expanding window approach.

[Table 6 AROUND HERE]

4.2.2 Time series of parameter estimates

Panels A through D of Figure 2 depict the time series of the parameter estimates of w, 3, «, and
v, in order under the GARCH model. To get a better sense of economic intuition, we also report
the variance persistence measured by 3+ ay? and the long-run variance measured by (w+a)/(1 —
B — av?) in Panels E and F, respectively. The parameter estimates from the local estimation are
highly time-varying, and they sometimes far deviate from the non-local estimates.'® For example,
around 2017, which is a relatively calm period, the local estimate of the reactivity parameter o
is approximately half of its non-local estimate, suggesting that variance is locally less reactive to
the return shock during such a period. On the other hand, since the COVID-19 shock in 2020, we

observe many data points where « is more than double of its non-local estimate, indicating that

9Note that the non-local parameter estimates are also slightly time-varying because we estimate them every week
using the expanding window scheme.
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variance is locally more reactive to the return shock.
[Figure 2 AROUND HERE]

Furthermore, variance persistence implied by the non-local estimation is set at between 0.95
and 0.98 over the course of the OOS period. In contrast, variance persistence implied by the local
estimation ranges from 0.8 to 0.98, especially with low persistence during a calm period in 2017.
This result indicates that variance tends to revert to its mean level relatively quickly during a
period with low conditional variance, while it reverts to its mean level relatively slowly during a
period with high conditional variance. Interestingly, the persistence implied by the local estimation
rarely exceeds that implied by the non-local estimation.

Figure 3 depicts the time series of parameter estimates under the SV model. As in the GARCH
model, we also observe that the local parameter estimates are time-varying and highly volatile.
First, k represents the variance mean reversion speed, and 1 — k/252 corresponds to the variance’s
daily persistence. In Panel A, we see that the local estimate of x is almost always higher than the
non-local estimate, which implies that the variance persistence implied by the local estimation is
lower than that implied by the non-local estimation—consistent with the results from the GARCH
model estimation. One difference is that while the persistence was lowest in 2017 under the GARCH
model, it is lowest during 2018-2019 under the SV model. Looking at 6, which corresponds to the
long-run variance, the local estimate is consistently lower than the non-local estimate before the
2020 COVID-19 shock, but shows a sharp spike at the onset of COVID-19 and thereafter stays
above or at a similar level to the non-local estimate. Compared to the GARCH model estimation
results, one interesting point is that the locally estimated long-run variance in the GARCH model
follows market volatility patterns like the VIX, while this pattern is relatively less pronounced in

the SV model.
[Figure 3 AROUND HERE]

Most of the SV model’s local parameter estimates exhibit two jumps—one during the 2018 Vol-

mageddon?’ and another during the 2020 COVID-19 shock. Looking at the correlation parameter

20Tt refers to the sudden spike in volatility on February 5, 2018, which led to large losses in inverse volatility
products.
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p in Panel D, we see that the negative correlation between return and variance shocks changes
significantly at these two events, with the magnitude of the correlation decreasing.?! Although not
as large as in the SV model results, in fact, Panel D of Figure 2 shows that the leverage parameter
~ in the GARCH model also exhibits a negative jump during the same periods, which likewise

suggests a reduction in the size of the negative correlation.

4.2.3 Simulated return and variance distributions

We have confirmed that both the GARCH and SV models improve their OOS pricing performances
in both time series and cross section when local information is incorporated in estimation. Then,
why does model performance improve when local information is used? To investigate this, we
simulate returns and variances using each model’s estimates and examine their forward risk-neutral
distributions. We select two representative days from our sample period—one with low conditional
volatility and one with high. The year 2017 is a low-volatility period, and during this time, the
difference between local and non-local estimation errors appears consistently, making it a reasonable
period for this analysis. Additionally, the peak of the COVID-19 crisis is undoubtedly a high-
volatility period. As a result, we select July 12, 2017, and March 18, 2020, as the respective low-
and high-volatility days for analysis.

For each model and each of the selected dates, we take the parameter estimates and run sim-

22 To assess how well these

ulations to obtain the 7-horizon forward risk-neutral distribution.
model-implied distributions match the actual distribution, we compare them against the nonpara-
metric risk-neutral distribution of Breeden and Litzenberger (1978). Since we evaluate models
out-of-sample by checking whether the model estimated today can price options accurately over
the next three days, we compare the model-implied distributions with the data-driven nonparamet-
ric risk-neutral return distribution corresponding to the day after each of the two representative
dates.

Figures 4 and 5 show the one-month forward risk-neutral distributions from the GARCH and SV

models, respectively.?> Panels A and B describe the return and variance distributions for the low

21 This observation is in line with Pyun (2019).

22We run 50,000 simulation draws at a daily frequency.

23The overall implications remain consistent for other option maturities or horizons; we report the three-month
distributions in Figures A.1 and A.2 in Appendix.
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conditional volatility case, while Panels C and D correspond to the high conditional volatility case.
In all panels, we show both the optimal local and non-local estimation results, and for the return
distributions, we also display the nonparametric distribution for comparison. Since our analysis
focuses only on OTM options, the portion of the distribution with negative returns (Return < 1)
corresponds to the state prices used to compute OTM put option prices, while the positive return

region (Return > 1) corresponds to that used for OTM call options.

[Figure 4 AROUND HERE]

Looking at Panels A and C of Figure 4, we can see that in the positive return region, the return
distribution derived from the local estimation using VIX is much closer to the nonparametric
distribution than that from the non-local estimation. This is consistent with the results from
Table 5, where the difference in OTM call pricing errors between local and non-local estimations
is substantial. Furthermore, in Panel C, the return distribution inferred from the local estimation
is also closer to the nonparametric distribution in the negative return region, while in Panel A,
the results are more mixed or similar. This partially aligns with the earlier observation that local

estimation incurs some performance cost for deep OTM puts in the cross-sectional error analysis.
[Figure 5 AROUND HERE]

Moreover, Figure 5 shows that in the SV model, the results are similar under low conditional
volatility, but under high volatility, the differences between the distributions inferred from the
local and non-local estimations become much smaller. Indeed, Figure 3 shows that during the
COVID-19 period, the difference in errors is quite minimal. This suggests that the SV model
itself is already potentially more beneficial for capturing return and volatility dynamics during
high-volatility periods.

Taking a step further, why do the return distributions differ between local and non-local esti-
mation? We can find a clue by looking at the variance distributions in Panels B and D. In the low
conditional volatility case, the variance distribution from the local estimation is narrower and more
concentrated around lower variances. As a result, the return distribution from the local estimation
also becomes narrower and closer to the nonparametric distribution than that from the non-local

estimation. In contrast, in the high conditional volatility case, the variance distribution from the
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local estimation is much wider and more concentrated around higher variances. This makes the re-
turn distribution from the local estimation also wider and closer to the nonparametric distribution
compared to the non-local estimation. The reason why the variance distributions change in this
way is that as seen in Figure 2, the parameter estimates move appropriately in response to local
information. For example, during low-volatility periods, both the long-run variance and persis-
tence estimated by the local method are lower than those from the non-local estimation, resulting

in patterns like Panel B. During high-volatility periods, the opposite pattern appears.

4.2.4 Expected option returns

So far, we have explored various ways in which local estimation outperforms non-local estimation,
focusing on how well each approach explains out-of-sample (OOS) option prices. A noteworthy
aspect of our estimation framework is that the model parameters are estimated solely using return
data to capture the physical dynamics, while the implied risk-neutral dynamics are derived under a
power utility assumption to compute option prices. In the end, our validation and OOS performance
assessments have concentrated on how well the risk-neutral dynamics align with actual outcomes
or how accurately they explain future option prices. However, we have not yet examined the
implications for the physical dynamics used in the estimation process.

Therefore, we now aim to investigate whether both the physical and risk-neutral dynamics
jointly contribute to performance improvement. To do this, we evaluate how well the local and
non-local estimation methods explain option returns. Specifically, we compare the holding-to-
expiration realized option returns with the model-implied expected option returns. Since we focus
exclusively on index options, which are European-style, all payoffs are determined at maturity
without early exercise. The option payoff is driven by the comparison between the index spot price
at maturity and the strike price, and thus is determined by the physical dynamics. In contrast, the
current option price is determined under risk-neutral dynamics. Consequently, the option return
reflects information from both the physical and risk-neutral dynamics as of the current date.

We compute the realized option return as follows:

(57— K)*
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and the expected option return is calculated as:
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In the model-implied expected option return, the numerator is the expectation under the physical
measure. This can be derived in closed form using the same characteristic function employed for
option pricing but using the physical dynamics instead of the risk-neutral dynamics.

To ensure a more consistent comparison — given that characteristics such as maturity and
moneyness vary daily in the market data — we utilize the Volatility Surface data from OptionMetrics.
This dataset provides interpolated market option prices on a uniform grid of Black-Scholes Deltas
and maturities. We conduct our analysis across 1-month and 3-month horizons. The sample period
matches our OOS window, and we consistently use option data from Wednesdays only to compute
both realized and expected option returns. We then compare their time-series averages. Figure 6

presents the results.

[Figure 6 AROUND HERE]

We find that the expected option returns computed from the local estimation consistently align
more closely with the realized option returns than those from the non-local estimation. This
pattern holds across all panels, regardless of the underlying option pricing model (GARCH or SV)
or maturity. When comparing local- and non-local-implied option returns, we observe that in-the-
money options (roughly |Delta| > 50), whether calls (positive Delta) or puts (negative Delta), show
relatively similar results between the two methods. However, as we move toward out-of-the-money
options (|Delta| < 50), the divergence between the two expected returns grows in both calls and
puts, with the local-implied return aligning more closely with the realized return. This pattern
becomes more pronounced as the maturity increases.

This finding connects benefits of the optimal physical dynamics obtained through the local
estimation approach with the improved OOS option pricing performance. Taken together, they
demonstrate that the local estimation provides superior economic implications in terms of option

returns compared to the non-local estimation.
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4.3 Robustness to choice of performance measures

In this section, we investigate whether local estimation continues to robustly outperform non-local

estimation even when alternative performance evaluation measures are used.

4.3.1 Performance measure: IVR given future stock prices and variances

First, we assess the robustness of our main results by calculating future option prices and the
corresponding implied volatilities under the assumption that future stock prices and variances are
known and given. In the main analysis, we computed the expected value of implied volatility
without access to any future information at the time of evaluation. However, forecasting option
prices inherently involves two components: one related to predicting the option pricing model or
its parameters, and the other related to the future evolution of the underlying prices and variances.
Since we forecast implied volatilities directly without explicitly forecasting the underlying variables
better, it is difficult to clearly disentangle the sources of uncertainty associated with each compo-
nent. To address this concern, we conduct an additional analysis in which future option values are
computed based on ex-post realized future stock prices and variances, and examine whether the
results remain robust.

Table 7 presents the results. Overall, the findings are highly consistent with our main out-of-
sample performance results reported in Table 3. For the GARCH and SV models, local estimation
using the VIX and time as the state variable, respectively, continues to deliver the best perfor-
mance in both the validation and out-of-sample periods. One notable difference is that, while the
MCS set under the SV model includes time, RV5, and VIX in Table 3, only time and RV5 are
included in Table 7. Nevertheless, VIX still ranks third and yields highly negative DM statistics.
Looking at average losses, we find that the GARCH models show a reduction of approximately
0.001 to 0.005 across different specifications compared to the main results. For the SV models,
the reduction ranges from about 0.002 to 0.005. While these improvements reflect the benefit of
knowing future underlying prices, the relative performance of different estimation methods remains
largely unchanged. This suggests that the ranking of estimation methods is robust to this assump-
tion—that is, whether or not future stock prices and variances are known, the local estimation

method continues to outperform the non-local approach.
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[Table 7 AROUND HERE]

4.3.2 Performance measure: variance of delta-hedged portfolio return

Second, we test the robustness of our approach using an alternative performance measure in place of
the relative implied volatility error, which we used in the main analysis. As an alternative measure,
we consider the variance of returns from a delta-hedged portfolio.?* Delta hedging is commonly
used in option trading to reduce or neutralize directional risk. However, as emphasized by Hull and
White (2017), reducing the variance of the portfolio’s return may be more important than simply
achieving zero Delta, as this accounts for risk from both price changes and expected changes in
volatility. Furthermore, while in the Black and Scholes (1973) model the delta-hedged portfolio
has zero Delta, this is no longer the case under models such as the Heston-Nandi GARCH or the
Heston SV model. Therefore, rather than simply analyzing the returns of the hedged portfolio,
we use the variance of those returns as our performance measure to test the effectiveness of the
estimation approach.

Table 8 presents the results. Looking at Panel A, which shows the performance of the Heston-
Nandi GARCH model, we find that using time as the local information variable yields the best
performance in both the validation and OOS samples under this new performance measure. How-
ever, the results from using VIX as the local variable are also very close to those of the time
specification. VIX is included in the MCS set and significantly outperforms the non-local esti-
mation in a statistically meaningful way. Compared to the main results in Panel A of Table 3,
although the rankings have shifted slightly, it is strongly consistent that VIX and time remain the
two best-performing state variables despite the change in performance measure.

Panel B shows the results for the Heston SV model using the new performance measure. Here,
time performs best in the validation sample, whereas in the OOS sample, VIX leads, followed
by RV5 and time, in that order. Nevertheless, the differences in OOS average loss are small, all
three state variables are included in the MCS set, and they statistically outperform the non-local

estimation. Comparing this with Panel B of Table 3, where IVR is used as the performance measure,

#4The delta-hedged call return calculation follows Almeida, Freire, and Hizmeri (2025):

max(S(t+ 1) — K,0) — Call(t, 7, K) — A(S(t+ 1) — S(t)) — (Call(t, 7, K) — AS(t))rT
S(t) '
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we again find that the three state variables consist of the MCS set.

In sum, we evaluate 1- to 3-day-ahead option forecast performance using two different option
pricing models and two different performance measures. Across all cases, a local estimation con-
sistently and statistically outperforms the non-local estimation, demonstrating the effectiveness of
the local approach for option forecasting. It is also encouraging to see that, despite using different
performance metrics, the best-performing state variables or those included in the MCS set remain

virtually unchanged.

[Table 8 AROUND HERE]

5 Conclusion

This paper develops and empirically evaluates a local M-estimation framework that enhances out-of-
sample option pricing accuracy by incorporating state-dependent information into standard pricing
models. Rather than modifying the model structure, the framework reweights historical obser-
vations based on their relevance to current market conditions using kernel-based techniques. We
implement this approach for both GARCH and stochastic volatility (SV) models, conditioning on
a range of variables including VIX, realized volatility (RV5), variance risk premium (VRP), VVIX|
skewness, kurtosis, and calendar time.

Our empirical analysis, based on data from 2015 to 2023, shows that the local estimation method
consistently outperforms traditional non-local approaches in forecasting near-term option prices.
These improvements are statistically significant in both time-series and cross-sectional dimensions.
For the GARCH model, VIX- or time-based local estimation achieves the lowest implied volatility
forecast errors and is included in the model confidence set. For the SV model, time-based local
estimation performs best, with RV5 and VIX also yielding strong results. The gains are especially
pronounced in calm periods around 2017, where local parameter estimates differ substantially from
their non-local counterparts. In addition, local estimation reduces pricing error dispersion across
moneyness and maturities, resulting in more balanced cross-sectional performance.

Furthermore, local estimation produces risk-neutral return distributions more closely aligned
with nonparametric benchmarks, particularly in low-volatility environments. Model-implied ex-

pected option returns under local estimation more accurately match realized returns, reflecting
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improved alignment between physical and risk-neutral dynamics. Lastly, robustness checks using
alternative evaluation metrics—including forecasts given ex-post realized underlyings and delta-
hedged return variances—corroborate the consistency and superiority of the local approach.
Overall, our findings underscore the practical value of adapting estimation methods to prevailing
market conditions. Without increasing model complexity, the local estimation framework yields
substantial gains in predictive accuracy, making it particularly well-suited for applications such
as risk management, margin setting, and regulatory forecasting. Future research may extend this
framework to incorporate jumps, alternative pricing kernels, or machine learning techniques for

automated state variable selection and bandwidth tuning.
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Table 1: Summary statistics

Panel A: Option data by moneyness

Number of contracts Average IV (%) Average price Average spread

S/K <0.91 2,472 18.015 11.799 0.678
091 < S/K <094 4,857 15.011 17.993 0.818
094 < S/K <0.97 8,562 13.857 25.958 0.923
0.97 < S/K < 1.00 10,045 14.913 54.112 1.267
1.00 < S/K <1.03 10,138 17.054 62.736 1.415
1.03 < S/K < 1.06 10,084 19.489 42.598 1.109
1.06 < S/K < 1.09 9,129 21.280 30.880 0.966

S/K > 1.09 9,683 25.867 21.640 0.836

All 64,970 18.471 37.546 1.058
Panel B: Option data by maturity
Number of contracts Average IV (%) Average price  Average spread
DTM < 30 10,720 18.977 16.246 0.630
30 < DTM < 61 19,200 18.373 26.190 0.883
61 < DTM < 91 15,575 18.207 38.477 1.140
91 < DTM < 122 10,420 18.565 52.693 1.304
DTM > 122 9,055 18.422 67.814 1.510
Panel C: State variables

Mean Standard deviation Skewness Kurtosis

VIX (%) 20.357 8.241 2.081 10.743
RV5 0.023 0.053 13.284 312.590

VRP 0.012 0.022 5.276 78.072
VVIX (%) 93.280 16.429 1.177 5.847
SKEW -2.544 1.295 -1.411 4.817
KURT 21.091 20.733 2.272 8.361

Notes: Panels A and B present descriptive statistics for closing OTM option contracts for the January 2011
to August 2023 period. Panel C reports on the six state variables for the January 2007 to August 2023
period. VIX and VVIX are in percentage terms. Mean and standard deviation of the first four state
variables (VIX, RV5, VRP, and VVIX) are annualized.

Source: Bloomberg Finance LP; OptionMetrics, Ivy DB US, via WRDS; and authors’ calculations.
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Table 2: Sample periods for estimation and out-of-sample evaluation

Panel A: Expanding window

Estimation sample Out-of-sample (OOS)
Training sample Validation sample
Start End Start End Start End

P1 Jan 2007 Dec 2010 Jan 2011 Dec 2014 Jan 2015  Dec 2016
P2 Jan 2007 Dec 2011 Jan 2012 Dec 2016 Jan 2017  Dec 2018
P3  Jan 2007 Dec 2012 Jan 2013 Dec 2018 Jan 2019  Dec 2020
P4 Jan 2007 Dec 2013 Jan 2014 Dec 2020 Jan 2021  Aug 2023

Panel B: Rolling window

Estimation sample Out-of-sample (OOS)
Training sample Validation sample
Start End Start End Start End

P1 Jan 2007 Dec 2012 Jan 2013 Dec 2014 Jan 2015  Dec 2016
P2  Jan 2009 Dec 2014 Jan 2015 Dec 2016 Jan 2017  Dec 2018
P3  Jan 2011 Dec 2016 Jan 2017 Dec 2018 Jan 2019  Dec 2020
P4 Jan 2013 Dec 2018 Jan 2019 Dec 2020 Jan 2021  Aug 2023

Notes: This table outlines the sequential sample periods used for model estimation and out-of-sample
(O0S8) evaluation with an expanding window (Panel A) and a rolling window (Panel B). Each row in each
panel corresponds to a forecasting period (P1 through P4), in which the model is first trained on historical
data (training sample), then validated on a holdout window (validation sample) to select optimal
bandwidths, and finally evaluated using an OOS test. The estimation sample includes both the training
and validation periods. The validation and OOS periods involve weekly forecasts of three-day-ahead option
prices and are strictly forward-looking, ensuring no look-ahead bias in model assessment.
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Table 3: Out-of-sample option pricing performance: expanding window approach

Panel A: Heston-Nandi GARCH model

Rank State variable ~ Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS

1* VIX 1.51 1.31 1.16 1.16 0.0315 -5.85 v

2 time 0.9945 0.9945 0.9945 0.9945 0.0315 -5.32 v

3 VRP 0.50 0.50 0.50 0.65 0.0448 -3.70

4 RV5 1.01 1.01 0.96 1.01 0.0473 -3.21

5 BKMskew 0.65 0.55 0.60 0.60 0.0575 -1.00

6 BKMkurt 0.70 0.45 0.50 0.70 0.0630 -0.09

7 ¢ 0.0637

8 VVIX 1.50 1.35 0.50 1.20 0.0659 0.38

Panel B: Heston SV model

Rank State variable Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS

1* time 0.9980 0.9975 0.9975 0.9975 0.0181 -4.82 v

2 RV5 2.71 2.31 2.01 2.01 0.0192 -5.34 v

3 VIX 4.51 3.36 2.86 2.16 0.0207 -5.22 v

4 VRP 3.15 1.95 1.70 1.30 0.0226 -4.37

5 BKMskew 1.45 1.30 0.95 0.85 0.0228 -4.77

6 BKMkurt 1.85 1.60 0.80 0.85 0.0269 -2.78

7 ¢ 0.0310

8 VVIX 2.00 1.90 1.95 1.90 0.0315 0.36

Notes: This table presents metrics evaluating pricing performance during the out-of-sample (OOS) period,
January 2015 to August 2023, for Heston-Nandi GARCH option pricing models (Panel A) and Heston SV
option pricing models (Panel B). These models are estimated using either the (non-local) quasi-maximum
likelihood (QML) approach, indicated by ¢, or the local QML approach. In each panel, the rows are
ordered by the average OOS loss, calculated as the relative implied volatility error in equation (17). The
local method that demonstrates the best performance in the validation sample (the latter half of the
estimation sample) is highlighted with an asterisk (*) in the first column. Local estimators utilize state
variables listed in the second column and bandwidth parameters specified in the next four columns, which
are optimized using the validation sample. All models are estimated using an expanding window. The
penultimate column reports Diebold-Mariano t-statistics for each model compared to the benchmark
non-local method (identified as #), where negative values suggest lower average loss. Finally, the last
column marks models included in the 95% model confidence set with a checkmark.
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Table 4: Out-of-sample option pricing performance: rolling window approach

Panel A: Heston-Nandi GARCH model

Rank State variable Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS
1* time 0.9940 0.9970 0.9965 0.9940 0.0329 -6.57 v
2 VIX 1.36 1.56 1.61 1.26 0.0384 -6.50 Ve
3 RV5 0.96 1.56 1.06 1.11 0.0541 -3.79
4 BKMkurt 0.30 0.65 1.05 2.25 0.0550 -3.99
5 BKMskew 0.15 0.30 0.90 2.25 0.0557 -3.62
6 VRP 0.40 0.60 0.80 1.95 0.0595 -2.03
7 ¢ 0.0726
8 VVIX 0.25 1.85 0.65 1.40 0.0797 0.83
Panel B: Heston SV model
Rank State variable ~ Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS
1* time 0.9960 0.9985 0.9985 0.9970 0.0187 -4.81 v
2 RV5 2.06 4.71 2.91 1.81 0.0194 -5.84 v
3 VIX 2.66 4.96 4.96 1.41 0.0199 -5.48 v
4 VRP 2.00 5.00 3.25 1.85 0.0217 -3.58
5 BKMskew 1.35 5.00 1.85 2.20 0.0221 -4.24
6 BKMkurt 1.50 5.00 1.65 1.90 0.0229 -3.94
7 VVIX 1.45 3.65 3.00 2.60 0.0233 -1.47
8 ¢ 0.0243

Notes: This table presents metrics evaluating pricing performance during the out-of-sample (OOS) period,
January 2015 to August 2023, for Heston-Nandi GARCH option pricing models (Panel A) and Heston SV
option pricing models (Panel B). These models are estimated using either the (non-local) quasi-maximum
likelihood (QML) approach, indicated by ¢, or the local QML approach. In each panel, the rows are
ordered by the average OOS loss, calculated as the relative implied volatility error in equation (17). The
local method that demonstrates the best performance in the validation sample (the latter half of the
estimation sample) is highlighted with an asterisk (*) in the first column. Local estimators utilize state
variables listed in the second column and bandwidth parameters specified in the next four columns, which
are optimized using the validation sample. All models are estimated using a rolling window. The
penultimate column reports Diebold-Mariano t-statistics for each model compared to the benchmark
non-local method (identified as #), where negative values suggest lower average loss. Finally, the last
column marks models included in the 95% model confidence set with a checkmark.
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Table 5: Out-of-sample option pricing error by maturity and moneyness: expanding window approach

Heston-Nandi GARCH model
Panel A: Local - VIX
S/K <094 094<S/K <100 1.00<S/K<1.06 S/K >1.06

T<30 0.0456 0.0558 0.0204 0.0429
30 <7<61 0.0330 0.0435 0.0163 0.0337
61 <7 <91 0.0330 0.0322 0.0149 0.0342
91 <7 <122 0.0387 0.0237 0.0158 0.0368
T > 122 0.0361 0.0194 0.0160 0.0405

Panel B: Nonlocal
S/K <094 094<S/K<100 1.00<S/K<1.06 S/K >1.06

T <30 0.0727 0.1206 0.0410 0.0314
30 <7 <61 0.0507 0.1192 0.0435 0.0243
61 <7 <91 0.0639 0.1217 0.0445 0.0227
91 <7 <122 0.0828 0.1077 0.0402 0.0240
7> 122 0.0896 0.0880 0.0395 0.0253

Heston SV model

Panel C: Local - time

S/K <094 094<S/K <100 1.00<S/K<106 S/K>1.06

T <30 0.0359 0.0310 0.0138 0.0359
30 <7 <61 0.0251 0.0209 0.0096 0.0212
61 <7 <91 0.0207 0.0184 0.0089 0.0169
91 <7 <122 0.0222 0.0167 0.0097 0.0179
7> 122 0.0240 0.0165 0.0110 0.0189

Panel D: Nonlocal
S/K <094 094<S/K<100 100<S/K<1.06 S/K >1.06

7<30 0.0304 0.0445 0.0113 0.0252
30 <7<61 0.0272 0.0470 0.0138 0.0120
61 <7 <91 0.0364 0.0615 0.0183 0.0085
91 <7 <122 0.0543 0.0661 0.0199 0.0099
T > 122 0.0693 0.0690 0.0264 0.0118

Notes: This table presents the cross-sectional out-of-sample (OOS) pricing errors from Heston-Nandi
GARCH option pricing models (Panels A and B) and Heston SV option pricing models (Panels C and D)
across moneyness and maturity buckets. Panels A and C show the results from the local estimation using
the VIX and time as a state variable, respectively, while Panels B and D show the result from the non-local
estimation. All models are estimated using an expanding window.
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Table 6: Out-of-sample option pricing error by maturity and moneyness: rolling window approach

Heston-Nandi GARCH model
Panel A: Local - time

S/K <094 094<S/K <100 1.00<S/K<106 S/K>1.06

7 <30 0.0912 0.0608 0.0262 0.0463
30 <7<61 0.0492 0.0439 0.0210 0.0347
61 <7 <91 0.0347 0.0335 0.0192 0.0335
91 <7 <122 0.0412 0.0265 0.0193 0.0364
T > 122 0.0244 0.0172 0.0196 0.0355

Panel B: Nonlocal
S/K <094 094<S/K<100 1.00<S/K<1.06 S/K >1.06

7 <30 0.1238 0.1233 0.0503 0.0461
30 <7 <61 0.0726 0.1213 0.0530 0.0434
61 <7 <91 0.0784 0.1223 0.0529 0.0450
91 <7 <122 0.1009 0.1029 0.0474 0.0463
7> 122 0.0878 0.0791 0.0453 0.0509

Heston SV model

Panel C: Local - time

S/K <094 094<S/K <100 1.00<S/K<106 S/K>1.06

T <30 0.0347 0.0288 0.0139 0.0368
30 <7 <61 0.0240 0.0199 0.0103 0.0224
61 <7 <91 0.0185 0.0187 0.0106 0.0186
91 <7 <122 0.0207 0.0184 0.0120 0.0200
7> 122 0.0232 0.0183 0.0137 0.0212

Panel D: Nonlocal
S/K <094 094<S/K<100 100<S/K<1.06 S/K >1.06

T <30 0.0305 0.0340 0.0123 0.0340
30 <7<61 0.0252 0.0281 0.0102 0.0198
61 <7 <91 0.0325 0.0341 0.0129 0.0164
91 <7 <122 0.0455 0.0374 0.0157 0.0181
T > 122 0.0510 0.0405 0.0196 0.0207

Notes: This table presents the cross-sectional out-of-sample (OOS) pricing errors from Heston-Nandi
GARCH option pricing models (Panels A and B) and Heston SV option pricing models (Panels C and D)
across moneyness and maturity buckets. Panels A and C show the results from the local estimation using
time as a state variable, while Panels B and D show the result from the non-local estimation. All models
are estimated using a rolling window.
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Table 7: Out-of-sample pricing performance given future stock prices and variances

Panel A: Heston-Nandi GARCH model

Rank State variable ~ Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS

1* VIX 1.51 1.36 1.21 1.16 0.0300 -5.78 v

2 time 0.9950 0.9950 0.9955 0.9955 0.0313 -4.92 v

3 VRP 0.60 0.50 0.50 0.65 0.0427 -3.27

4 RV5 1.16 1.06 0.96 1.06 0.0445 -3.12

5 BKMskew 1.05 0.55 0.65 0.65 0.0553 -0.62

6 ¢ 0.0586

7 BKMkurt 0.70 0.45 0.70 0.70 0.0589 0.05

8 VVIX 1.90 1.90 0.50 1.20 0.0616 0.51

Panel B: Heston SV model

Rank State variable Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS

1* time 0.9980 0.9980 0.9975 0.9980 0.0158 -5.07 v

2 RV5 2.81 2.46 2.16 2.16 0.0171 -5.42 v

3 VIX 4.61 4.16 3.36 2.56 0.0186 -4.99

4 BKMskew 1.45 1.25 1.00 0.90 0.0190 -5.16

5 VRP 3.00 1.95 1.65 1.25 0.0206 -3.61

6 BKMkurt 1.80 1.55 0.80 0.85 0.0228 -2.82

7 ¢ 0.0265

8 VVIX 2.00 1.90 2.00 1.95 0.0269 0.37

Notes: This table presents metrics evaluating pricing performance during the out-of-sample (OOS) period,
January 2015 to August 2023, for Heston-Nandi GARCH option pricing models (Panel A) and Heston SV
option pricing models (Panel B). These models are estimated using either the (non-local) quasi-maximum
likelihood (QML) approach, indicated by ¢, or the local QML approach. In each panel, the rows are
ordered by the average OOS loss, calculated as the relative implied volatility error under the assumption
that future stock prices and variances are known and given. The local method that demonstrates the best
performance in the validation sample (the latter half of the estimation sample) is highlighted with an
asterisk (*) in the first column. Local estimators utilize state variables listed in the second column and
bandwidth parameters specified in the next four columns, which are optimized using the validation sample.
All models are estimated using an expanding window. The penultimate column reports Diebold-Mariano
t-statistics for each model compared to the benchmark non-local method (identified as ¢), where negative
values suggest lower average loss. Finally, the last column marks models included in the 95% model
confidence set with a checkmark.
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Table 8: Out-of-sample delta hedging performance

Panel A: Heston-Nandi GARCH model

Rank State variable Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS
1* time 0.9960 0.9935 0.9935 0.9905 8.22E-06 -3.99 v
2 VIX 1.96 2.11 1.86 1.46 9.72E-06 -3.35 Ve
3 RV5 1.56 1.61 1.41 1.41 1.08E-05 -2.07
4 ¢ 1.20E-05
5 BKMkurt 0.70 0.55 0.70 1.30 1.29E-05 0.94
6 BKMskew 1.05 0.50 0.30 1.35 1.33E-05 1.35
7 VRP 0.55 0.50 0.50 1.15 1.38E-05 0.69
8 VVIX 0.60 0.35 0.35 1.25 1.91E-05 0.95
Panel B: Heston SV model
Rank State variable ~ Optimal bandwidth parameters Out-of-sample performance
P1 P2 P3 P4 Avg. loss DM stat MCS
1 VIX 1.56 1.71 1.61 1.36 6.43E-06 -7.68 v
2 RV5 2.06 1.91 1.76 1.56 6.50E-06 -8.23 v
3* time 0.997 0.9975 0.9975 0.9965 7.04E-06 -3.55 v
4 VRP 4.75 1.95 1.75 1.35 7.67E-06 -3.59
5 BKMskew 2.10 1.35 1.10 0.90 7.70E-06 -3.68
6 BKMkurt 2.70 1.95 0.80 0.95 8.49E-06 -0.69
7 ¢ 8.67E-06
8 VVIX 1.95 1.90 2.00 1.60 8.93E-06 0.95

Notes: Notes: This table presents metrics evaluating delta hedging performance during the out-of-sample
(O0S) period, January 2015 to August 2023, for Heston-Nandi GARCH option pricing models (Panel A)
and Heston SV option pricing models (Panel B). These models are estimated using either the (non-local)
quasi-maximum likelihood (QML) approach, indicated by ¢, or the local QML approach. In each panel,
the rows are ordered by the average OOS loss, calculated as the variance of returns from a delta-hedged
portfolio. The local method that demonstrates the best performance in the validation sample (the latter
half of the estimation sample) is highlighted with an asterisk (*) in the first column. Local estimators
utilize state variables listed in the second column and bandwidth parameters specified in the next four
columns, which are optimized using the validation sample. All models are estimated using an expanding
window. The penultimate column reports Diebold-Mariano t-statistics for each model compared to the
benchmark non-local method (identified as ¢), where negative values suggest lower average loss. Finally,
the last column marks models included in the 95% model confidence set with a checkmark.
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Notes: This figure shows the time-series out-of-sample (OOS) option pricing errors measured by the
relative IV error in equation (16) for the Heston-Nandi GARCH model (Panels A and C) and for the
Heston SV model (Panels B and D). Panels A and B present the results from the expanding window
estimation, while Panels C and D present the results from the rolling window estimation. The solid blue
lines represent the results from the local estimation using the VIX as the state variable, and the dashed red

lines represent the results from the non-local estimation.
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Figure 2: Time-series out-of-sample GARCH parameter estimates
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Notes: This figure shows the time-series out-of-sample (OOS) GARCH model parameter estimates. Panels
A, B, C, and D plot the estimates of w, £, «, and =, respectively. Panels E and F plot the model-implied
variance persistence and long-run variance, measured by 8+ ay? and (w + «)/(1 — 8 — a?), respectively.
The solid blue lines represent the results from the local estimation using the VIX as the state variable, and
the dashed red lines represent the results from the non-local estimation.
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Figure 3: Time-series out-of-sample SV parameter estimates
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Notes: This figure shows the time-series out-of-sample (OOS) SV model parameter estimates. Panels A, B,
C, and D plot the estimates of x, 6, o, and p, respectively. The solid blue lines represent the results from

the local estimation using time as the state variable,

non-local estimation.

and the dashed red lines represent the results from the
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Figure 4: GARCH-simulated one-month forward variance and return distributions

Low conditional volatility, 07/12/2017
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Notes: This figure shows the simulated risk-neutral distributions of the one-month forward return and
annualized daily variance for Heston-Nandi GARCH option pricing models. Panels A and B display these
distributions conditional on a low-volatility environment, using parameter estimates from July 12, 2017.
Assuming the underlying stock price is observed the following day, the distributions of one-month forward
returns and variances are simulated for that day. Panels C and D show the corresponding distributions
under a high-volatility environment, using parameter estimates from March 18, 2020, with an identical
simulation procedure to the low-volatility case. The solid blue lines represent the results from the local
estimation using the VIX as the state variable, the dashed red lines represent the results from the non-local
estimation, and the dotted black lines represent the nonparametric return distribution from data by
Breeden and Litzenberger (1978).

Source: OptionMetrics, Ivy DB US, via WRDS; and authors’ calculations.
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Figure 5: SV-simulated one-month forward variance and return distributions

Low conditional volatility, 07/12/2017
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Notes: This figure shows the simulated risk-neutral distributions of the one-month forward return and
annualized daily variance for Heston SV option pricing models. Panels A and B display these distributions
conditional on a low-volatility environment, using parameter estimates from July 12, 2017. Assuming the
underlying stock price is observed the following day, the distributions of one-month forward returns and
variances are simulated for that day. Panels C and D show the corresponding distributions under a
high-volatility environment, using parameter estimates from March 18, 2020, with an identical simulation
procedure to the low-volatility case. The solid blue lines represent the results from the local estimation
using time as the state variable, the dashed red lines represent the results from the non-local estimation,
and the dotted black lines represent the nonparametric return distribution from data by Breeden and
Litzenberger (1978).

Source: OptionMetrics, Ivy DB US, via WRDS; and authors’ calculations.
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Figure 6: Expected option returns
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Notes: This figure shows the comparison between the model-implied holding-to-expiration expected option
returns with the realized option returns. Panels A and B present the one-month and three-month option
returns under Heston-Nandi GARCH option pricing models across the Black-Scholes Delta dimension
(z-axis). Panels C and D present the corresponding results for Heston SV option pricing models. The solid
blue lines represent the result from the optimal local estimation, the dashed red lines represent the result
from the non-local estimation, and the dotted black lines represent the data.

Source: OptionMetrics, Ivy DB US, via WRDS; Center for Research in Security Prices, CRSP 1925 US
Indices Database and CRSP US Treasury Database - Daily/Monthly (updated monthly), via WRDS; and
authors’ calculations.
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Appendix
Figure A.1: GARCH-simulated three-month forward variance and return distributions
Low conditional volatility, 07/12/2017
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Notes: This figure shows the simulated risk-neutral distributions of the three-month forward return and
annualized daily variance for Heston-Nandi GARCH option pricing models. Panels A and B display these
distributions conditional on a low-volatility environment, using parameter estimates from July 12, 2017.
Assuming the underlying stock price is observed the following day, the distributions of three-month forward
returns and variances are simulated for that day. Panels C and D show the corresponding distributions
under a high-volatility environment, using parameter estimates from March 18, 2020, with an identical
simulation procedure to the low-volatility case. The solid blue lines represent the results from the local
estimation using the VIX as the state variable, the dashed red lines represent the results from the non-local
estimation, and the dotted black lines represent the nonparametric return distribution from data by
Breeden and Litzenberger (1978).

Source: OptionMetrics, Ivy DB US, via WRDS; and authors’ calculations.
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Figure A.2: SV-simulated three-month forward variance and return distributions
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Notes: This figure shows the simulated risk-neutral distributions of the three-month forward return and
annualized daily variance for Heston SV option pricing models. Panels A and B display these distributions
conditional on a low-volatility environment, using parameter estimates from July 12, 2017. Assuming the
underlying stock price is observed the following day, the distributions of three-month forward returns and
variances are simulated for that day. Panels C and D show the corresponding distributions under a
high-volatility environment, using parameter estimates from March 18, 2020, with an identical simulation
procedure to the low-volatility case. The solid blue lines represent the results from the local estimation
using time as the state variable, the dashed red lines represent the results from the non-local estimation,
and the dotted black lines represent the nonparametric return distribution from data by Breeden and
Litzenberger (1978).

Source: OptionMetrics, Ivy DB US, via WRDS; and authors’ calculations.
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