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Abstract

This paper investigates whether the “virtue of complexity” (VoC), documented
in equity return prediction, extends to exchange rate forecasting. Using nonlinear
Ridge regressions with Random Fourier Features (Ridge-RFF), we compare the predic-
tive performance of complex models against linear regression and the robust random
walk benchmark. Forecasts are constructed across three sets of economic fundamen-
tals—traditional monetary, expanded monetary and non-monetary, and Taylor-rule
predictors—with nominal complexity varied through rolling training windows of 12, 60,
and 120 months. Our results offer a cautionary perspective. Complexity delivers only
modest, localized gains: in very small samples with rich predictor sets, Ridge-RFF can
outperform linear regression. Yet these improvements never translate into systematic
gains over the random walk. As training windows expand, Ridge-RFF quickly loses
ground, while linear regression increasingly dominates, at times even surpassing the
random walk under expanded fundamentals. Market-timing analyses reinforce these
findings: complexity-based strategies yield occasional short-sample gains but are unsta-
ble and prone to sharp drawdowns, whereas simpler linear and random walk strategies
provide more robust and consistent economic value. By incorporating formal forecast
evaluation tests—including Clark—West and Diebold—Mariano—we show that apparent
gains from complexity are fragile and rarely statistically significant. Overall, our evidence
points to a limited virtue of complexity in FX forecasting: complexity may help under
narrowly defined conditions, but parsimony and the random walk benchmark remain
more reliable across samples, predictor sets, and economic evaluations.
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1 Introduction

Accurately forecasting exchange rates remains one of the most challenging and enduring
puzzles in international finance, dating back to the seminal study by Meese and Rogoff (1983).
Their influential finding—that structural models based on economic fundamentals consistently
underperform a naive random walk in out-of-sample predictions—continues to be corroborated
by subsequent empirical investigations; see Rossi (2013) for a comprehensive review. Despite
considerable theoretical advances and methodological innovations, the so-called Meese-Rogoff
puzzle persists, underscoring the robustness of the random walk benchmark and casting doubt
on the predictive power of economic fundamentals.

Even so, recent work has identified conditions under which exchange rate predictability can
emerge. Empirical research highlights the role of richer predictor sets, attention to structural
policy regime changes, and methodological refinements such as panel data methods, adaptive
modeling frameworks and machine learning. In particular, the integration of monetary and
non-monetary fundamentals, global risk measures, and Taylor-rule fundamentals has shown
promise in specific contexts and horizons (see, among others, Molodtsova and Papell, |2009;
Zorzi et al., 2015 Pfahler, [2022; [Engel and Wu, |2024; |Filippou et al., 2025).

Parallel advances in econometrics—especially in high-dimensional and machine-learning
settings—have renewed interest in exploiting nonlinear structure in forecasting. [Kelly et al.
(2024) reinvigorate the discussion through the wirtue of complezity (VoC), arguing that
high-dimensional models with nonlinear transformations, such as Ridge regression with
Random Fourier Features (RFF), can outperform simpler linear models by harnessing “benign
overfitting” under appropriate regularization. These claims have spurred a nuanced debate:
Nagel| (2025) and Buncic| (2025) caution that apparent gains may reflect mechanical volatility-
timing artifacts or restrictive implementation choices rather than genuine economic structure.
In response, Kelly and Malamud| (2025) clarify the distinction between nominal and effective
complexity and show that the slope of the VoC curve depends critically on the parameter-
to-sample ratio, implying that benefits attenuate as effective sample size grows; they also
discuss ensemble complexity as a more robust way to harness high-capacity models.

Motivated by these debates and the persistent exchange-rate puzzle, this paper asks
whether the VoC documented primarily in equities extends to exchange rate predictability.
We address three questions: (i) does complexity—implemented via Ridge regressions with
RFF-—deliver meaningful out-of-sample gains over linear regression and the robust random
walk benchmark in FX? (ii) how sensitive are any gains to the choice of predictors? and (iii)

do complex models translate predictive gains into economic value in market-timing strategies?



We study three sets of widely used fundamentals: (i) traditional monetary variables
(money growth, interest rate differentials, output growth, and inflation differentials); (ii)
an expanded set combining monetary and non-monetary fundamentals, including global
risk indicators as in [Engel and Wu, (2024)); and (iii) Taylor-rule fundamentals incorporating
interest rate differentials and output gaps following Molodtsova and Papell (2009). To
ensure a comprehensive evaluation, we consider rolling training windows of 12, 60, and 120
months. Beyond standard out-of-sample R? and Mean Squared Prediction Error (MSPE),
we employ Clark—West (CW) tests to evaluate predictive accuracy relative to the random
walk and Diebold-Mariano (DM) tests to compare high-complexity Ridge-RFF against
linear regression, sharpening inference on statistical significance and robustness. We then
assess economic relevance through market-timing strategies for both single-currency and
equal-weighted currency portfolios.

This paper makes three contributions. First, it delivers one of the first rigorous tests of
the VoC hypothesis in exchange rates, a domain where the random walk has long been the
dominant benchmark. Unlike prior VoC studies in equities, which focus almost exclusively
on comparisons between complex and linear regressions, we explicitly evaluate Ridge-RFF
models against the random walk, providing a more demanding and relevant benchmark.
Second, our results show that while Ridge-RFF can yield localized gains in very small
samples with rich fundamentals, these improvements are fragile: as training windows expand,
linear regression often matches or exceeds RFF performance, and the random walk remains
remarkably robust. Third, by linking forecast statistics to portfolio outcomes, we demonstrate
that complexity rarely converts into durable economic value. Methodologically, we extend the
equity-focused VoC literature by incorporating CW and DM tests—tools largely absent in
that debate—to provide sharper evidence on when apparent gains are statistically meaningful.

Our findings also speak directly to the evolving VoC discussion: in FX, Ridge-RFF
delivers localized improvements when nominal complexity is high relative to sample size, but
once windows expand and the complexity ratio falls, parsimony prevails—linear regression
and, often, the random walk dominate both statistically and economically.

The remainder of the paper proceeds as follows. Section |2 reviews related work and
positions our contribution. Section [3| describes the empirical methodology, data, and con-
struction of exchange-rate fundamentals. Section [4] presents out-of-sample forecasting results
and statistical tests. Section [5| evaluates market-timing performance for single-currency and

equal-weighted portfolios. Section [6] concludes. Additional data details appear in Appendix [A]



2 Literature Review

Empirical exchange rate forecasting has long been challenged by the seminal finding of Meese
and Rogoff (1983) that no structural model could consistently beat a naive random walk. This
“random walk benchmark” — typically a no-change forecast — remains notoriously difficult
to outperform in out-of-sample tests. Early and recent studies alike confirm that a random
walk (especially without drift) often produces lower forecast errors than economic models.
For example, Cheung et al.| (2005) examined an expanded set of traditional models (including
monetary and productivity-based specifications) and found that no model consistently outper-
formed a random walk in terms of mean squared error. An updated analysis by [Cheung et al.
(2017) reached a similar conclusion: even with new variants (e.g., real interest rate parity
with shadow rates, Taylor-rule-based models), “the more recent models do not consistently
outperform older ones” or the random walk, especially for major pairs like EUR/USD. They
did note, however, a few instances of predictive success at longer horizons — for instance,
models beating the random walk at the 5-year horizon occurred more frequently than at
short horizons. This aligns with earlier hints in the literature that any predictability might
emerge only at long horizons or under specific conditions, though such gains are modest and
sample-dependent. Overall, the random walk without drift remains the toughest benchmark
to beat in exchange rate forecasting, underscoring the persistence of the Meese-Rogoft puzzle.

Nevertheless, numerous studies in the last decade have explored when and how economic
fundamentals can help forecast exchange rates. Rossi (2013) provides a comprehensive survey
of post-2000 findings, concluding that the answer to “Are exchange rates predictable?” is
“It depends.” Predictability appears strongest under specific choices of predictors, models,
and horizons. Notably, Rossi finds that using certain economic fundamentals like Taylor rule
differentials (which proxy relative monetary policy stances) or external imbalances (e.g., net
foreign asset positions) can yield improved forecasts under the right conditions. In particular,
these fundamentals showed promise at shorter horizons when used in simple linear models
with limited parameter estimation. This result echoes earlier work suggesting that imposing
theoretical long-run relationships can aid forecasting: for example, monetary models that
enforce long-run equilibrium (via error-correction terms) had some success at multi-year
horizons in the 2000s.

A recent study by [Engel and Wu/ (2024)) further supports the perspective of circumstantial
feature of predictability by showing significant improvements in the performance of standard
exchange rate models since the early 2000s. Engel and Wu argue that these models, incorpo-
rating both monetary and non-monetary fundamentals alongside global risk and liquidity

measures, perform substantially better in recent decades compared to the earlier periods



(1970s-1990s). They attribute this enhanced predictability largely to improved and more
credible monetary policy regimes, such as inflation targeting, which reduce the scope for
self-fulfilling expectations and excessive volatility.

Similarly, studies have re-examined purchasing power parity (PPP) as a predictor. While
PPP was historically critiqued for poor short-run performance, recent evidence suggests it can
be useful over longer periods. Zorzi et al. (2015) show that a calibrated half-life PPP model
(assuming the real exchange rate slowly mean-reverts to its equilibrium) forecasts real and
nominal exchange rates better than a random walk at both short and long horizons. In fact,
a series of papers find that a simple PPP-based forecast often significantly outperforms the
random walk, provided one assumes realistic slow adjustment of exchange rates toward their
PPP value. The intuition is that even if fundamental /value relationships are weak in the short
run, the gradual pull of exchange rates toward relative price parity can provide exploitable
forecasting power at medium to long horizons. By contrast, other traditional fundamentals
have a more mixed record. Standard monetary models (which include money supplies,
outputs, and interest rates) and uncovered interest parity (UIP, using interest differentials)
generally fail to beat the random walk at short horizons. There is some evidence of monetary
models improving forecast accuracy at longer horizons or in panel estimations, but results
are not consistent across samples. For instance, [Molodtsova and Papell (2009) found that
incorporating Taylor rule fundamentals yields better-than-random-walk forecasts for certain
currency pairs during the early 2000s, though such gains dissipate in other periods. Likewise,
interest rate parity deviations alone have limited predictive power due to time-varying risk
premia (the forward premium puzzle). Researchers have tried augmenting models with proxies
for risk or liquidity conditions — e.g., global volatility indices or financial stress measures —
to capture these time-varying premiums. |Cheung et al.| (2017)) report that adding risk and
liquidity factors can improve the in-sample fit of a sticky-price monetary model, but the
out-of-sample predictive improvement remains still unimpressive. In summary, traditional
macro fundamentals by themselves have struggled to consistently forecast exchange rates
better than a random walk, except in specific circumstances such as enforcing long-run PPP
or when particular fundamental imbalances become extreme.

One reason for the inconsistent performance of fundamentals is structural instability —
the idea that the relationship between exchange rates and fundamentals may change over time.
Recent research has tackled this challenge through model uncertainty and regime-switching
approaches. For example, Kouwenberg et al. (2017) develop a model selection framework
that allows the set of relevant fundamentals to shift over time, aligning with theories that
investors pay selective attention to different variables in different periods. They design an

adaptive forecasting rule that at any given time picks the best-performing fundamentals-based



model out of a broad menu of economic variables. This approach yields notable forecasting
gains: out-of-sample tests show it significantly beats the random walk for 5 out of 10 major
currencies. The selected fundamentals — and their weights — vary over time, suggesting
that part of the exchange rate disconnect may be due to markets periodically rotating their
focus (e.g., from interest differentials at one time to terms-of-trade or external deficits at
another). Such findings are consistent with the “scapegoat” models of Bacchetta and van
Wincoop (2004), which posit that agents might rationally latch onto different fundamentals in
explaining currency movements when true underlying drivers are unobservable. By accounting
for model uncertainty and allowing for time-varying parameter emphasis, the literature shows
improved forecast accuracy and even economic value (e.g., the adaptive forecasts can inform
profitable currency trading strategies). Other studies exploit panel data and factor models to
pool information from multiple currencies. |Engel and West| (2012) extract common factors
from a panel of bilateral dollar exchange rates and combine them with fundamentals; at long
horizons (8 to 12 quarters) in more recent samples, these factor-based forecasts modestly
outperform the random walk. Similarly, panel econometric techniques can increase predictive
power by sharing information across countries: [Ince and Kubler| (2014) finds that using panel
estimation with real-time data helps uncover predictability that is missed in single-currency,
revised-data regressions. The general message is that incorporating more data (cross-sectional
or temporal) and allowing for structural change can enhance the forecastability of exchange
rates, albeit incrementally.

In the past several years, a wave of novel methodological developments — particularly
those drawn from machine learning (ML) and big data — have been applied to exchange
rate prediction. The motivation is that flexible, data-driven algorithms might detect complex
nonlinear relationships or interactions in the data that elude traditional linear models. One
strand of this research applies relatively simple ML tools to fundamentals-based forecasting.
For example, |Amat| (2018)) use regularization techniques (ridge regressions and an exponentially
weighted averaging of predictors) to forecast exchange rates with a range of economic
fundamentals. They report slight improvements over OLS: while no large reduction in RMSE
was found, their models were able to predict the correct direction of quarterly exchange
rate changes a bit above 50% of the time for most major currency pairs — a small but
non-trivial gain given that a random guess would be 50%. Building on that work, [Pfahler
(2022) explore more complex ML models like artificial neural networks (ANNs) and gradient-
boosted trees (XGBoost) in a panel of 10 OECD currencies. Their findings indicate that
nonlinear ML methods can indeed outperform the random walk under certain setups. In
particular, when predicting the direction of change rather than exact amounts, the ML models

showed significant predictive power. The XGBoost models beat the random walk’s directional



accuracy by a small margin (sometimes significantly so), and the ANN models by an even
larger margin — often statistically significant at the 1% level. However, an interesting nuance
emerged: these strong results depended on including “time dummy” variables in the model,
suggesting that the algorithms were capturing some time-specific effects or regimes. In fact,
an ANN using only time fixed effects (with no fundamentals) could predict well out-of-sample
in many cases, raising the concern that ML might be picking up patterns such as trends or
momentum rather than genuine economic relationships. Nonetheless, when the ANN was fed
both time dummies and fundamental variables (especially those from a monetary model), its
performance improved beyond using time dummies alone. This implies that the ML model
was able to exploit interactions between economic fundamentals and time-specific factors —
possibly capturing how the impact of fundamentals changes over different periods. In sum,
machine learning methods have shown promise in extracting predictive signals from data
that traditional approaches deemed unforecastable, but they also highlight the importance of
handling structural change and of carefully interpreting what drives the forecast gains.
More advanced data-driven approaches have likewise been tested. Deep learning archi-
tectures — such as recurrent neural networks (LSTM), convolutional neural networks, and
transformers — have been applied to exchange rate series with large sets of input features.
Meng et al.| (2024]), for example, forecast the Chinese RMB/USD rate using 40 input fea-
tures spanning macroeconomic indicators and market data. They find that a sophisticated
transformer-based model achieved the best accuracy, outperforming simpler models on this
task. Notably, their study emphasizes the role of economic fundamentals even in a data-rich,
machine-learning context: using explainability techniques, they show that variables such as
China—U.S. trade volumes and the exchange rates of major related currencies were among the
most influential features for the model’s predictions. In other words, the deep learning model’s
success still hinged on fundamental economic information, but the flexible ML framework
was better able to capture the nonlinear and interactive effects of those fundamentals on
the exchange rate. Similarly, in a recent study by [Filippou et al.| (2025) demonstrates that
short-horizon exchange rates can be predicted by combining economic fundamentals with
machine learning methods. Using an ensemble of elastic net and deep neural networks applied
to country-level and global variables, they show consistent outperformance over the random
walk benchmark—especially during periods of financial stress. Their findings highlight the
importance of modeling nonlinearities and state-dependent dynamics, offering both statistical
and economic value in forecasting. These results generally align with a broader insight in
the forecasting literature that more complex models can utilize large information sets more

effectively.



This paper is closely related to the recent literature on return predictability and the
so-called virtue of complexity (VoC). While most existing studies, including [Kelly et al.
(2024)), focus on equity return forecasting, our analysis provides an external test of these
ideas in the distinct setting of exchange rate predictability. Kelly et al.| (2024)) argue that
high-dimensional predictive models—implemented with random Fourier features and ridge
regularization—can outperform simpler alternatives, especially in short-horizon equity return
forecasts. They attribute these gains to “benign overfitting,” whereby large models, when
appropriately regularized, exploit weak but pervasive predictive signals. Consistent with this
view, our results across eight USD exchange rates show that Ridge-RFF can yield localized
improvements in small samples with rich predictor sets.

Subsequent research has both refined and challenged this perspective. Nagel (2025) argues
that RFF forecasts in small samples mimic volatility-timed momentum strategies rather than
capturing genuine nonlinear structure, which aligns with our finding that RFF advantages
vanish once sample size expands. Likewise, |Buncic| (2025)) demonstrates that methodological
choices—such as excluding intercepts or aggregating features rigidly—can overstate the
apparent benefits of complexity. Our results resonate with these critiques: as sample sizes
grow and nominal complexity falls in relative terms, the edge of complex models dissipates.
In FX, linear regression and, in many cases, the random walk not only regain ground but
consistently dominate both statistically and economically.

Responding to such critiques, [Kelly and Malamud| (2025) clarify the distinction between
nominal complexity (¢ = P/T, the parameter-to-sample ratio) and effective complexity, which
reflects shrinkage and implicit regularization. They show that nominal complexity is central
for understanding out-of-sample performance in equities. Our evidence suggests that, in FX,
high nominal complexity does not translate into lasting effective gains—particularly relative
to the random walk—underscoring domain-specific limits of the VoC framework. Moreover,
the attenuation of complexity’s benefits as training samples expand is consistent with their
theoretical perspective: as 7' rises relative to P, the slope of the VoC curve flattens, and the
marginal payoff to nominal complexity diminishes.

Overall, our results confirm the conditional nature of complexity’s value. Ridge-RFF
delivers localized gains in very small samples with rich predictors, reflecting benign overfitting,
but these advantages do not scale. As training windows lengthen, complexity’s edge disap-
pears or reverses, and simpler models—linear regression or even the random walk—become
systematically more reliable. This pattern echoes critiques by Nagel| (2025) and Buncic (2025)),
and also complements |Cartea et al.| (2025)), who show that in high-dimensional settings the

benefits of complexity erode once feature noise is accounted for. Our FX evidence reinforces



these points: complexity produces fragile, short-lived improvements, while parsimony proves
robust across horizons and predictor sets.

We further show that under the expanded set of monetary and non-monetary fundamentals,
linear regression consistently outperforms the random walk benchmark in medium and
especially long samples (notably at the 120-month window). This finding aligns with Engel
and Wul (2024), underscoring the importance of richer predictor information and longer
histories in recovering exchange rate predictability. Strikingly, however, Ridge-RFF fails
even in this potentially data-rich environment—underperforming both linear regression and
the random walk—suggesting that added complexity does not yield incremental gains when
fundamentals are informative and sample size is sufficient.

Taken together, our results, alongside recent contributions to the VoC debate, highlight
the sharply conditional appeal of complexity. While complexity can generate localized benefits
in equities and in very small-sample FX settings, its scope is limited, fragile, and benchmark-
dependent. Parsimonious models—particularly linear regression and the random walk—remain
more robust in FX, revealing that the “virtue of complexity” is tightly constrained by data

availability and the economic structure of exchange rate dynamics.

3 Empirical Methodology and Data

This section describes the random Fourier features (RFF) non-linear machine learning
framework of (Rahimi and Recht|, 2007, 2008)) that Kelly et al.| (2024) utilize to build
increasingly more complex machine learning models, together with the linear models that has
been used in the empirical exchange rate literature based on economic fundamentals. Our
empirical analysis assesses the predictive performance of complex machine learning models,
simpler linear forecasting models and the naive random walk for exchange rate returns. We
apply these models across different sets of exchange rate fundamentals and sample sizes to
provide a robust assessment of the so-called “virtue of complexity” in the context of exchange
rate forecasting.

Following the exchange rate forecasting literature, we define the target variable as the log

return of the bilateral exchange rate between the U.S. dollar and a foreign currency:
As; = log(S;) — log(Si—1),

where S; denotes the spot exchange rate (defined as the domestic currency price of a foreign
currency) observed at time ¢, with As, is the log exchange rate return. Exchange rates used

are the U.S. Dollar against the major currencies including Australian dollar (AUD), Canadian



dollar (CAD), Swiss franc (CHF), the euro (EUR), U.K. pound sterling (GBP), Japanese yen
(JPY), Norwegian krone (NOK), and Swedish krona (SEK). Details of the data and sources
used in in the analysis are provided in Appendix [A]

The predictor information set consists of the time ¢t measurable k x 1 vector GG; containing
three different sets of fundamentals motivated by the large literature on the so called “exchange
rate disconnect” (Meese and Rogoff, |1983; |[Rossi, [2013; Molodtsova and Papell, [2009; [Engel
and Wu, 2024)).

1. Traditional monetary fundamentals include money supply growth, inflation, interest
rate, and output growth differentials between the home (US) and foreign countries
which gives 4 x 1 vector, Gy = [A(m; — m}), A(iy —i¥), A(m — 77), Ay — y)] with
‘*' denoting the foreign variable and A is the first difference operator and represents a
one-month difference. The inflation over previous 12 months in the U.S. and foreign
country defined as m = p; — p;_12 and 7w} = p; — p;_,, where p; and p; are the log U.S.
and foreign consumer price indexes. Money supply in the U.S. and foreign country are
measured by M;, and M} and monthly logarithms are denoted by m; and m;. Therefore,
A(my; — my) gives the money supply growth differential between the U.S. and foreign
country. The U.S. and foreign nominal interest rates are denoted by i;and; and
measured by 3-month U.S. and foreign government bond rates.The log output in the
U.S. and foreign countries are denoted by y, and y; with output is captured by monthly
industrial production index. The output growth differential between the U.S. and
foreign country is then defined by A(y; —y;). The traditional fundamentals is motivated
by the monetary model of exchange rate determination with sticky prices and the
predictor set is more consistent with classical monetary models such as those tested by
Meese and Rogofl (1983) and revisited in subsequent studies (Rossi, [2013]).

2. Expanded monetary and non-monetary fundamentals includes variables introduced by
Engel and Wu, (2024). These fundamentals are home and foreign real interest rate
changes (Ar, and Ar;y), home and foreign inflation rates, m;, and 7}, one-month lagged
real exchange rate, ¢;_1, the U.S. trade balance on goods and services divided by U.S.
GDP, %, and a measure of monthly change in global risk aversion, (ARisk;). This

/
gives us a 7 x 1 vector, Gy = |Ary, Ary,m, w7, ARiske, ¢—1, } . The real interest

TB,
GDP;
rates are defined as r, = 7, — m, and r; = ¢y — 7, and the log real exchange rate as

Gt = St +Dp; — P

3. Taylor-rule-based fundamentals include the U.S. and foreign nominal interest rates, 7,

and 7}, inflation rates, m; and 7}, output gaps, v/ and y/*"*, and the real exchange
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rate, ¢;. Taylor-rule fundamentals give a 7 x 1 vector, G = [iy, i}, m, 7F, yi™?, y?*", Qt]/

(see, [Molodtsova and Papell, [2009).

We begin with a standard linear regression framework, estimated using ordinary least
squares (OLS), where exchange rate returns between t and ¢t + 1 are regressed on a set of

macroeconomic fundamentals at date ¢:
A5t+1 = G;B + Et41- (].)

This direct forecasting specification is also called ’‘single-equation, lagged fundamental model”
and has been used extensively in the empirical exchange rate prediction literature (Rossi,
2013) [

If the relationship between exchange rate returns and predictors are not linear, following
Kelly et al. (2024), one can assume that the true predictive model for exchange rate returns,

Asyy 1, follows the process:
Asipr = f(Gy) + €441, (2)

where G, is “fixed set of predictive signals, and f(.) a smooth function ” (p. 460 Kelly et al.
2024). Although the set of predictors Gy may be known to the researcher, the prediction
function f(.) is unknown and “can be approximated with a sufficiently wide neural network

(Kelly et al., [2024):
P
f(Gy) = Z Zi1Pi (3)
i=1

where Z;; = g(wiG), P is the number of terms used in the approximation to f(Gy), g() is
a predefined non-linear activation function with weight vector w;, and G, is the vector of
predictor variables under a given set of fundamentals. The approximating model for the true
predictive model in then takes the form:

P
Asy = Z Zi1Bi + & (4)
i=1

The approximation accuracy of Zfil Z;i+f; in to the unknown (true) function f(.)
in (3) depends on the number of predictor terms (or features) P. With a fixed number of
data points T used to train the model, one has to decide how large a P to use. A model is
said to be simple, when P << T (number of features is much less than the training sample

size), and will have low variance due to a parsimonious parametrization, but it will only

1One advantage of this direct forecasting equation is that is less prone to endogeneity of fundamentals
and hence, OLS can be used to estimate parameters.
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provide a crude approximation to the true function f(.). A high-complexity model where
P >> T will have better approximating properties to f(), but may be poorly behaved and
require regularization (or shrinkage estimation), which can increase bias. As in Kelly et al.
(2024), complexity c is defined as the ratio of the number of features P to the number of
training observations 7', ¢ = P/T. In a recent paper, [Kelly and Malamud| (2025)) labels this
as 'nmominal complexity’” in order to distinguish it from the notion of ’effective complexity’
that is introduced by Nagel (2025) and formally described as the ratio of effective number of
parameters to sample size where effective number of parameters accounts for shrinkage, bias,
or implicit regularization.

Kelly et al.| (2024]) show theoretically that expected out-of-sample forecast accuracy and
portfolio performance are strictly increasing in model complexity when appropriate shrinkage
is applied. To verify their theoretical results, they utilize the RFF framework to be able to
smoothly transition from a low-complexity model to a high complexity one. Specifically, the
RFF methodology takes as input the k& x 1 vector Gy of predictor variables under a given set
of fundamentals and converts the information contained in Gy into (a pair of) new signals
S;+ defined as:

Ziy = [sin(yw]GYy) cos(vwiGy)], (5)

where w; ~ i.i.d.N (0, I) is a k x 1 random weight vector, I is the identify matrix of conformable
size, and v is a standard deviation parameter set to 2 in Kelly et al. (2024) that controls
the variability in the Gaussian draws of w;. To generate P RFFs, one needs to generate P/2
weights w; and then evaluate the transformation in . This approach allows generating
larger predictor sets based on a limited number of k predictors and thereby more ’‘complex’
models from the same underlying fundamentals and the associated information set by simply
creating new random weight vectors w; and RFF pairs Z;; from .

When P >> T, estimation of 3; is obtained by minimizing the Ridge objective function:

T

P 2 P
Bz(/\) = arg mﬁin Z <A3t - ; Zz‘,tﬂz‘) + A ; el (6)

t=1

where A is the regularization parameter and ZB’\ (A) is the vector of regularized least squares
estimates of P x 1 vectors of stacked { 61»}5;1. The regularization term A\ penalizes the size of
the coefficients, thereby mitigating overfitting when the number of predictors is large relative

to the sample size.
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Given the Ridge regression estimates of B (M), 1 — month ahead forecasts of As;y1, given

information up to time ¢, are computed as

P
AStH\t = Z Zi,tﬁi(/\)- (7)
i=1

To evaluate out-of-sample predictive performance, we use rolling window regressions with
window lengths of 12, 60, and 120 months. At each step, the model is re-estimated using
only the training window, and forecasts are generated for the subsequent 1-month ahead
exchange rate return. Similar to [Kelly et al.|(2024), we consider training window sizes as
small as T" = 12 and since in our case, GG; is of dimensions £ = 4and 7 depending on the
set of fundamentals used, we do not have Ridgeless regression as in [Kelly et al.| (2024), but
note that in our case, linear regression corresponds to A = 0 without the need for using
Moore-Penrose pseudo-inverse to solve 3. We follow [Kelly et al. (2024)) and set P = 12000
and A = 1000 in our assessment of the complexity.

We evaluate the forecasting performance of linear and high-complexity (nonlinear or
Ridge-RFF) models against each other as well as random walk. Following Kelly et al.| (2024),
we do not include an intercept term in linear and Ridge-RFF models and compare them
against a driftless random Walkﬂ We use out-of-sample R?, Mean Squared Prediction Error
(MSPE) ratios, Clark-West (CW) and Diebold-Mariano (DM) forecast comparison tests. We
use CW test in comparing the high-complexity and linear regressions relative to the random
walk benchmark as random walk is nested while use DM test in comparing Ridge-RFF against
the linear benchmark as linear benchamrk not necessarily nested within the Ridge-RFF.

Similar to Kelly et al.| (2024), we further evaluate the economic relevance of forecasts by
implementing market-timing strategies that take positions in currency portfolios based on
1 — month ahead predicted returns. At time ¢, the model-based strategy takes a long (short)
position that is determined by the exchange rate return forecast under a model, yielding a
portfolio return of Ag,:w - ASy11, where A;;Ht) denotes the forecast of the excess exchange
rate return under a model (Ridge-RFF and linear) and As,;.; is the realized exchange rate
return on date ¢t + 1. We construct market timing strategy under random walk in a similar
fashion where positions are based on the the previous period’s exchange rate return, i.e.,
As; - As;yq1. Portfolio returns under Ridge-RFF are averaged across 1000 simulations as in
Kelly et al.| (2024). We use both single-currency market-timing portfolios for each currency

as well as equal-weighted eight-currency portfolios by aggregating across currencies at each

2Note that the terms ‘linear’ and ‘OLS’ are used interchangeably, as are ‘nonlinear’ and ‘Ridge-RFEF”,
throughout the paper.
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point in time and evaluate performance using a range of out-of-sample metrics, including

Sharpe ratios (SR), Information ratios (IR), skew, maximum loss and t-tests.

4 Out-of-sample Performance Statistics

In this section, we present and discuss out-of-sample performance of linear and nonlinear
models relative to the random walk benchmark and to each other, using out-of-sample (OOS)
R? Mean Squared Prediction Error (MSPE), and the Clark-West (CW) and Diebold-Mariano
(DM) predictive accuracy tests across three predictor sets—traditional monetary fundamentals,
the expanded monetary and nonmonetary set of [Engel and Wul (2024) (we label this set by
monetary+), and Taylor-rule fundamentals of Molodtsova and Papell (2009). Because the
latter two sets include more predictors, they provide a natural setting to test whether greater
nominal complexity improves performance through Ridge-RFF.

Each table in this section corresponds to a single training-window length (7') and contains
three panels—A: Traditional, B: Monetary+, and C: Taylor rule—so that all predictor sets
are compared side-by-side for the same 7. Within each panel, columns are grouped into three
comparisons: Linear vs. Random Walk (reporting R%, and CW against RW), Ridge-RFF vs.
Random Walk (reporting R% . and CW against RW), and Ridge-RFF vs. Linear (reporting
the MSPE ratio MSPE, = %}%ﬁ: and the DM test) Positive and statistically significant
CW (DM) values favor the first model named in the column header; negative and significant
values favor the second. We employ DM because OLS need not be nested within Ridge-RFF.

Table [1| reports the 1-month ahead forecasting results under traditional, monetary+, and
Taylor rule fundamentals in Panels A, B, and C, respectively for the 12-month rolling window.
In Panel A with traditional fundamentals where the number of predictors k£ = 4, neither
linear regression nor Ridge-RFF succeeds in improving upon the random walk. Out-of-sample
R?—values are uniformly negative across currencies—especially so for the linear model—while
Clark—West tests rarely reject the null of equal predictive accuracy (only CAD for the linear
model, and CAD and JPY for Ridge-RFF). Across all currencies, high-complexity RFF based
model achieves substantially lower MSPE ratios (0.551-0.747) and statistically significant
Diebold—Mariano test rejections in its favor against the linear regression.

Results in Panels B and C extend the analysis to the broader predictor sets—monetary
and non-monetary fundamentals (k = 7) and Taylor-rule fundamentals (k = 7). The linear
model performs very poorly in these settings, generating severely negative out-of-sample

R? values for all currencies as the number of parameters estimated increases in rolling

3Equivalently, M SPE, = 117_?;? £ allows back-out of model MSPEs from the reported OOS R2.

Lin
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Table 1: Out-of-sample forecast comparisons statistics for 12-month rolling-window across
traditional, monetary-+, and Taylor rule fundamentals

Linear vs. Random Walk Nonlinear vs. Random Walk Nonlinear vs. Linear
R%m CW R?\rlm CW MSPE, DM
Panel A: Traditional fundamentals

AUD —1.274 0.491 —0.252 —0.003 0.551 3.270***
CAD —0.726 1.767** —0.104 2.027** 0.640 5.148%**
CHE —1.007 0.678 —0.244 0.245 0.620 3.752%**
EUR —1.156 —0.188 —0.208 —0.417 0.560 2.674***
GBP —0.754 —0.886 —0.251 0.522 0.713 4.585%**
JPY —0.990 1.084 —0.153 2.670*** 0.579 3.442%**
NOK —0.636 —0.506 —0.222 0.519 0.747 2.323**
SEK —-0.771 —0.428 —0.209 0.113 0.682 4.059%%*

Panel B: Monetary and non-monetary fundamentals

AUD —4.579 0.133 —0.153 —0.942 0.207 5.187#**
CAD —4.949 —1.400%* —0.147 0.226 0.193 4.649%+*
CHE —4.395 —0.403 —0.128 —0.186 0.209 5.527H**
EUR —3.809 0.430 —0.104 1.017 0.230 6.372%%*
GBP —3.487 —1.275 —0.099 —0.153 0.245 7.905%**
JPY —17.755 —0.701 —0.163 —0.341 0.062 1.773%*
NOK —151.536 —1.309* —0.147 —0.053 0.008 1.180
SEK —6.629 —1.284%* —0.123 0.041 0.147 4.823%**
Panel C: Taylor Rule fundamentals

AUD  -10.167 0.590 —0.224 1.069 0.110 4.825%+*
CAD —6.256 —1.057 —0.392 —0.646 0.192 7.028%**
CHE —5.445 —0.251 —0.300 1.326* 0.202 5.879***
EUR —4.604 —0.102 —0.356 0.651 0.242 6.472%**
GBP —4.490 0.953 —0.266 0.131 0.231 6.909%**
JPY —28.664 1.676%* —0.313 1.787%* 0.044 1.267
NOK —5.868 0.409 —0.366 —1.026 0.199 8.071HH*
SEK —6.412 0.900 —0.365 —0.035 0.184 5.913%**

This table reports 1-month ahead out-of-sample forecast accuracy performance comparison statistics between
the linear (Lin) and random walk (RW), Ridge-RFF (RFF) and random walk, and Ridge-RFF and linear
(see, the main text for details). The forecast target is the 1 — month ahead forecast of log USD exchange
rate return relative to given currency. Linear vs. Random Walk and Ridge-RFF vs. Random walk panels
report oos R? values (i.e., R?, . and R% ., respectively), and Clark-West (CW) statistic for equal predictive
accuracy against RW. The columns for Ridge-RFF vs. Linear report Mean Squared Prediction Error (MSPE)
ratios between RFF and Lin, and Diebold-Mariano (DM) test for equal forecast accuracy between these
models. *, ** and *** for CW and DM tests indicate rejection of the null of equal predictive accuracy in
favor of the first model (i.e., Lin against the RW and RFF against the RW under CW test, and RFF against
the Lin under DM test) if the reported test is positive and in favor of the second model if negative.
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regressions. It consistently fails to outperform either the random walk or Ridge-RFF, and
under monetary+ fundamentals the Clark—West test even turns significantly negative at
the 10% level for CAD, NOK, and SEK, formally favoring the random walk over the linear
regression. In contrast, Ridge-RFF continues to dominate the linear model across most
currencies, producing near-zero MSPE ratios and large statistically significant (at 1% level)
positive Diebold-Mariano statistics. Taken together, these findings confirm the pattern
observed with traditional fundamentals: at high nominal complexity, Ridge-RFF reliably
improves upon linear regression but does not deliver systematic gains against the random
walk benchmark across all currencies. These gains reflect not just nominal complexity, but
also the model’s ability to exploit “effective complexity,” as Ridge regularization (A = 1000)
selects only a subset of relevant RFFs at each estimation. In sum, when 7' is small and
complexity is at its peak, Ridge-RFF shows advantages over linear regression, but these do
not translate into systematic gains against the random walk benchmark.

With the increase in the rolling window size to 60 months, reported in Panels A-C of
Table [2} the linear model begins to show improved performance. Out-of-sample R? values
remain negative, but the magnitudes are substantially smaller, and in several cases the linear
model outperforms the random walk, as indicated by positive and statistically significant CW
test statistics. For instance, under the Taylor rule fundamentals the linear model outperforms
the random walk for three of the eight currencies (GBP, JPY, and NOK) at the 10% or
5% levels. Similarly, the linear model beats the random walk for CAD under traditional
fundamentals (Panel A) and for GBP, NOK, and SEK under the monetary+ fundamentals
at 10% or 1% significance levels (Panel B).

At the same time, Ridge-RFF performance weakens relative to both the linear model
and the random walk. While OOS R? values improve modestly, MSPE ratios often reach or
exceed unity, indicating that Ridge-RFF offers no efficiency gains over linear regression. For
example, MSPE ratios exceed one for all currencies except for AUD and EUR, with DM tests
generally failing to reject equal predictive accuracy under the monetary fundamentals (Panel
A). In several cases, the balance even tips in favor of the linear model: the DM test rejects
in favor of OLS for CHE under traditional fundamentals and for EUR, GBP, NOK, and
SEK under Taylor rule fundamentals, with negative and statistically significant DM values
at the 10% or 5% levels. Moreover, Ridge-RFF begins to underperform the random walk,
with CW tests not only negative but also statistically favoring the benchmark for CHE and
NOK under traditional fundamentals and for AUD and EUR under monetary+ fundamentals.
In the case of JPY under Taylor rule fundamentals, both linear regression and Ridge-RFF

outperform the random walk, as confirmed by statistically significant CW test rejections,
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Table 2: Out-of-sample forecast comparisons statistics for 60-month rolling-window across
traditional, monetary-+, and Taylor rule fundamentals

Linear vs. Random Walk

Nonlinear vs. Random Walk

Nonlinear vs. Linear

R%. CW R3.:. CW MSPE, DM
Panel A: Traditional fundamentals
AUD —0.155 0.964 —0.116 —0.860 0.966 0.603
CAD —0.060 2.294%* —0.065 —0.164 1.005 —0.124
CHE —0.097 0.718 —0.182 —2.488%H* 1.078 —1.338%*
EUR —-0.077 —0.276 —0.076 —0.886 0.999 0.018
GBP —0.056 0.101 —0.079 0.605 1.021 —0.578
JPY —0.109 0.312 —0.137 —0.393 1.025 —0.583
NOK —0.093 —0.332 —0.204 —1.290* 1.101 —1.129
SEK —0.097 —1.062 —0.100 —0.211 1.003 —0.086
Panel B: Monetary and non-monetary fundamentals
AUD —0.353 0.854 —0.238 —1.635* 0.915 0.834
CAD —0.280 —0.620 —0.242 —0.277 0.970 0.412
CHE —0.266 —1.007 —0.210 —1.178 0.956 0.601
EUR —0.227 0.216 —0.338 —1.327* 1.091 —0.802
GBP —0.136 2.420%%* —0.118 0.642 0.984 0.274
JPY —0.246 0.520 —0.208 —0.208 0.970 0.531
NOK —0.224 1.341%* —0.206 —0.966 0.986 0.202
SEK —0.198 1.386* —0.205 —0.896 1.005 —0.095
Panel C: Taylor Rule fundamentals

AUD —0.234 0.721 —0.224 1.134 0.992 0.152
CAD —0.292 0.429 —0.395 —0.754 1.080 —0.917
CHE —-0.213 0.325 —0.301 1.263 1.073 —1.023
EUR —0.221 1.202 —0.362 —0.116 1.116 —1.294%*
GBP —0.218 1.849%* —0.308 —0.448 1.074 —1.382%*
JPY —0.282 1.420%* —0.287 1.874%* 1.003 —0.053
NOK —0.221 1.783** —0.338 —0.552 1.096 —1.888**
SEK —0.258 0.773 —0.353 0.068 1.075 —1.366*

See, Table

while the DM test indicates no significant difference between the two models, underscoring
that they remain broadly competitive with each other.

With the increase in the training window to 120 months, reported in Panels A—C of
Table [3] the relative performance of linear and Ridge-RFF models shifts decisively in favor
of parsimony. First, the linear model shows clear signs of improvement. Out-of-sample R?
values, while often still slightly negative, are closer to zero and accompanied by several cases
of statistically significant CW test rejections in favor of the linear model against the random
walk. Under traditional fundamentals (Panel A), CAD and CHE exhibit positive CW test
statistics at the 1% and 5% levels, respectively, while under Taylor rule fundamentals (Panel
C), where the linear model achieves statistically significant gains for AUD and EUR at the
5% level. Similar to Engel and Wul (2024)), the strongest results emerge under monetary-+
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Table 3: Out-of-sample forecast comparisons statistics for 120-month rolling-window across
traditional, monetary-+, and Taylor rule fundamentals

Linear vs. Random Walk Nonlinear vs. Random Walk Nonlinear vs. Linear
R%m CW R?Vlin CW MSPE, DM
Panel A: Traditional fundamentals

AUD —0.067 0.257 —0.056 —0.792 0.989 0.484
CAD —0.010 2.4T71H¥* —0.019 0.845 1.009 —0.410
CHE —0.019 1.654%* —0.104 —0.957 1.083 —1.130
EUR —0.017 0.539 —0.038 —0.396 1.020 —0.592
GBP —0.024 0.409 —0.021 0.746 0.997 0.157
JPY —0.060 —0.204 —0.059 —0.498 0.999 0.030

NOK 0.016 1.096 —0.157 —0.371 1.176 —1.388*
SEK —0.057 —1.300* —0.087 —0.811 1.028 —0.795

Panel B: Monetary and non-monetary fundamentals

AUD —0.081 1.754** —0.244 —1.189 1.151 —2.465%**
CAD —0.073 0.853 —0.250 —0.470 1.165 —2.853%**
CHE —0.095 0.193 —0.238 —0.390 1.131 —1.874**
EUR 0.002 2.878%H* —0.449 —1.007 1.451 —3.33 7k
GBP —0.024 2.682%** —0.140 0.884 1.113 —2.217%*
JPY —0.103 0.466 —0.233 0.220 1.118 —1.934**
NOK —0.088 2.007** —0.187 0.210 1.091 —1.377*
SEK —0.069 1.856%* —0.212 —0.366 1.134 —2.540%**
Panel C: Taylor Rule fundamentals

AUD —0.046 2.043** —0.235 1.103 1.181 —3.301%**
CAD —0.062 1.145 —0.414 —0.781 1.332 —3.193%**
CHE —0.105 0.448 —-0.314 1.446* 1.189 —3.128%**
EUR —0.092 2.139%* —0.488 —0.882 1.363 —3.147%**
GBP —0.126 0.786 —0.335 —0.565 1.186 —3.407F**
JPY —0.124 0.258 —0.305 1.779%* 1.161 —2.033**
NOK —0.098 0.972 —0.343 —0.558 1.223 —3.952%%*
SEK —0.126 —0.040 —0.368 0.068 1.215 —3.380%**

See, Table

fundamentals (Panel B), the linear model outperforms the random walk for five out of eight
currencies including AUD, EUR, GBP, NOK, and SEK, all at conventional significance levels.

By contrast, Ridge-RFF performance deteriorates further. Out-of-sample R? values
are consistently more negative than those of the linear model, and CW tests rarely provide
evidence of predictive gains relative to the random walk. Moreover, MSPE ratios are uniformly
above one, and DM tests overwhelmingly reject the null of equal predictive accuracy in favor
of the linear model under Monetary+ and Taylor rule fundamentals. DM tests are not only
negative but also highly significant (often at the 1% level) across virtually all predictor sets
and currencies. Even in cases where Ridge-RFF attains positive CW values (e.g., JPY and
CHE under Taylor rule fundamentals), the corresponding DM tests indicate that these modest

gains are eclipsed by the stronger and more robust performance of the linear model.
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Taken together, the 120-month results highlight a decisive reversal: Ridge-RFF loses
the edge it displayed in very small samples, while the linear model steadily gains ground,
occasionally outperforming the random walk benchmark and dominating Ridge-RFF in direct
comparisons.

The results across the three training windows (12, 60, and 120 months) reveal a coherent
narrative about the role of complexity in FX predictability: At short horizons (T = 12),
nominal complexity is at its peak (p = P/T very large), and Ridge-RFF demonstrates
tentative advantages over linear regression. It produces lower MSPE ratios and statistically
significant DM rejections in its favor across several currencies. The performance of Ridge-RFF
in short training samples is consistent with the results in equity return prediction as reported
by Kelly et al.| (2024)), highlighting the potential of virtue of complexity in very small windows
against linear regression. Yet, these gains are relative: Ridge-RFF still fails to systematically
outperform the random walk benchmark, which remains a formidable hurdle and a benchmark
that has not been explored by the recent studies exploring the ‘virtue of complexity’ in equity
return prediction.

At intermediate horizons (T' = 60), the picture becomes more balanced. The linear model
begins to close the gap, with smaller negative R? values and occasional statistically significant
outperformance of the random walk. Ridge-RFF’s edge diminishes: MSPE ratios hover
around one, DM tests often fail to reject, and in some cases significantly favor the linear
model. Ridge-RFF also begins to underperform the random walk in selected currencies. This
marks a turning point, where the “virtue of complexity” weakens and parsimony regains
traction.

At long horizons (T' = 120), the balance tips decisively in favor of parsimony. The linear
model consistently outperforms Ridge-RFF, both in terms of MSPE ratios and DM tests,
with multiple cases of statistical significance, especially under Monetary+ and Taylor rule
fundamentals. It also delivers meaningful gains against the random walk under several
predictor sets. Ridge-RFF, by contrast, fails to match this performance, producing uniformly
inferior outcomes relative to linear regression and often underperforming the random walk.

Overall, the evidence suggests that the benefits of complexity in FX return prediction
are highly sensitive to sample size. In very small samples, consistent with the notion of
benign overfitting (Kelly et al., [2024), Ridge-RFF can exploit nominal complexity to improve
upon linear regression, though never consistently against the random walk. As the training
window expands, however, effective complexity declines, regularization reduces the marginal
contribution of RFFs, and linear regression reasserts itself as the stronger predictor—at times

even outperforming the random walk.
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5 Market timing strategy performance

In this section, we evaluate model performance through their ability to generate market-timing
portfolios at both the single-currency and equal-weighted levels, following the approach of [Kelly:
et al. (2024). For the linear and Ridge-RFF models, positions are based on 1-month-ahead
exchange rate return forecasts constructed under three sets of fundamentals—Traditional,
Monetary+, and Taylor rule—using rolling training windows of 12, 60, and 120 months.
Portfolio returns are generated by taking positions proportional to the model’s forecast:
when the forecast is positive, the strategy takes a long position; when negative, it reduces or
reverses exposure. The same trading logic applies uniformly across all models, including the
random walk benchmark, where the one-month lagged return dictates position-taking (see
Section [3)).

In addition to single-currency strategies, we also examine an equal-weighted market-
timing portfolio, in which currency positions are aggregated into an equally weighted basket
that is rebalanced monthly. Analyzing both types of strategies allows us to distinguish
between model performance at the individual currency level and the aggregate portfolio
level, thereby capturing differences between idiosyncratic predictability and systematic gains
across currencies. In the following we first present and discuss results for the single currency
strategies and then the results under equal-weighted portfolio ([5.2]).

5.1 Single-currency portfolios

Table [4] reports results under the random walk—based market timing strategy while Tables [5], [6]
and [7| under Ridge-RFF and linear regression-based strategies across traditional, monetary+,
and Taylor-Rule fundamentals in columns A-C for T'= 12, 60, and 120, respectively.
Because random-walk-based strategy relies solely on lagged exchange rate returns, results
in Table 4] remain broadly similar across training windows, with differences largely reflecting
variation in the out-of-sample evaluation periods. Overall, the RW strategy generates modestly
positive Sharpe ratios and information ratios relative to the market across most currencies,
though statistical significance is generally weak. The standout case is the Japanese yen
(JPY), which delivers consistently higher Sharpe ratios (ranging from 0.257 to 0.288) with
t-statistics around 1.8, achieving statistical significance at the 10 percent level in all windows.
Its information ratios relative to the market are also positive and significant, making JPY the
clearest case where lagged return—based timing has predictive value. By contrast, CAD, EUR,
and NOK tend to produce small or negative Sharpe ratios across all windows, indicating
little or no timing ability. Other currencies (AUD, GBP, SEK, and CHF) display positive but

statistically insignificant Sharpe ratios. Distributional properties are heterogeneous: GBP
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Table 4: Market timing performance metrics: Random walk-based timing stratgey

SR t IR v. t Skew Max
Mkt Loss
Panel A: Training window size T' = 12
AUD 0.064 0.450 0.040 0.281 0.327 10.552
CAD —-0.174 —1.214 —0.167 —1.166 —1.458 9.770
CHE 0.115 0.763 0.101 0.666 —1.778 9.953
EUR 0.058 0.289 0.056 0.275 —2.607 9.430
GBP 0.183 1.278 0.172 1.197 4.129 4.412
JPY 0.257 1.791* 0.236 1.646%* —0.259 8.201
NOK —0.034 —0.234 —0.040 —0.276 0.151 7.377
SEK 0.113 0.787 0.075 0.522 2.895 7.057
Panel B: Training window size T" = 60
AUD 0.145 0.970 0.128 0.855 3.035 5.351
CAD —-0.173 —1.154 —0.168 —1.123 —1.396 9.461
CHE 0.053 0.335 0.030 0.189 —2.084 9.896
EUR —0.063 —0.288 —0.065 —0.293 —3.583 9.798
GBP 0.185 1.240 0.169 1.129 4.842 4.471
JPY 0.268 1.793* 0.257 1.716* 0.219 8.650
NOK 0.009 0.060 —0.008 —0.051 0.905 4.878
SEK 0.171 1.143 0.122 0.815 3.174 6.961
Panel C: Training window size T' = 120
AUD 0.119 0.748 0.112 0.702 2.936 5.076
CAD —0.167 —1.053 —0.166 —1.047 —1.334 8.988
CHE 0.047 0.278 0.036 0.215 —3.011 10.679
EUR —0.178 —0.706 —0.201 —0.792 —0.745 4.313
GBP 0.170 1.074 0.176 1.111 5.344 4.434
JPY 0.288 1.814* 0.271 1.704%* —0.229 8.979
NOK —0.045 —0.282 —0.048 —0.302 0.938 4.659
SEK 0.153 0.965 0.148 0.932 3.161 6.675

This table reports one-month-ahead out-of-sample market-timing strategy performance metrics for single-
currency portfolios under the random walk (RW) benchmark. Reported statistics include the Sharpe ratio
(SR) of each strategy with associated t-statistics for mean returns, the Information Ratio relative to the
market (IR v. Mkt) with corresponding t-statistics, as well as skewness of returns (Skew) and the maximum
loss (Max Loss) in standard deviation units. Statistical significance of mean returns and information ratios is
denoted by *, ** and *** at the 10%, 5%, and 1% levels, respectively.

and SEK exhibit large positive skew, while CHF and EUR exhibit persistent negative skew.
Drawdown risks remain material across all currencies, with maximum losses often between 7
and 10 standard deviations, underscoring the volatility inherent in return-based timing even
for this simple benchmark. Notably, GBP combines reasonably strong Sharpe ratios with
relatively low drawdowns (around 4.4), while CAD and CHF combine weak or negative Sharpe
ratios with among the largest drawdowns, highlighting variation in risk-return trade-offs
across currencies.

Turning to fundamentals-based models, Table [5| reports market-timing performance for
individual currencies under the traditional monetary fundamentals. At the shortest window
(T = 12), Ridge-RFF shows clear pockets of strength but no broad dominance. In particular,
CAD and JPY stand out for RFF with economically meaningful and statistically significant
Sharpe ratios (CAD: SR = 0.306, t = 2.114; JPY: SR = 0.373, t = 2.580), supported by

significant information ratios against both the market and the random walk. Crucially, “IR
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v. LIN” confirms incremental value for RFF in these two currencies (CAD: ¢ = 1.753, JPY:
t = 2.414). Elsewhere, performance is mixed: RFF’s SR is near zero for AUD and CHE,
negative for EUR, and small for GBP/NOK/SEK; the linear model’s gains are limited to
CAD (modestly significant) and JPY (positive but not significant). Drawdowns at 7" = 12 are
nontrivial across both models—for example, AUD exhibits large maximum losses (about 11
standard deviations) for both LIN and RFF—whereas CAD shows comparatively mild losses
(about 4.4-4.5 standard deviations), aligning with its stronger risk-adjusted performance.
Skewness varies widely: LIN returns are strongly negatively skewed for GBP and EUR, while
RFF skewness is more benign for JPY and mixed elsewhere.

With the 60-month window (7" = 60), in line with the out-of-sample performance statistics
discussed in Section [4] the balance tilts toward parsimony. Linear timing improves—CAD is
now solidly significant (LIN: SR = 0.345, t = 2.279)—while RFF deteriorates sharply across
most currencies. RFF delivers negative and often statistically significant Sharpe ratios for
CHE (SR = —0.426, t = —2.672) and NOK (SR = —0.391, t = —1.315, with “IR v. Mkt”
t = —2.506), and remains weak or marginal elsewhere (e.g., AUD, EUR, JPY, SEK). The
new “IR v. LIN” column makes the underperformance explicit: RFF is significantly worse
than LIN for CHE (¢t = —2.587), and negative (though not always significant) for several
others. Importantly, tail risk rises under complexity: RFF maximum losses are elevated—e.g.,
CAD (about 15 standard deviations), CHE (about 10.7 standard deviations), AUD (about
10.1 standard deviations)—and generally exceed those of LIN, underscoring fragility when
the sample expands and nominal complexity (¢ = P/T) falls. LIN drawdowns are materially
lower (typically 4-10 standard deviation) and more in line with its steadier SR profile.

At the longest window (7" = 120), the reversal is complete. Linear timing is most effective
in CAD (LIN: SR = 0.401, ¢ = 2.494), with additional positive though weaker SRs for CHE,
EUR, and NOK; SEK and JPY are the notable laggards for LIN (negative or near zero). By
contrast, RFF is broadly weak: S Rs are negative for AUD, CHE, EUR, JPY, NOK, and SEK,
and only small and insignificant for CAD and GBP. The “IR v. LIN” metric rarely favors
RFF (mostly negative or near zero), indicating that any incremental value of complexity
has evaporated in data-richer settings. Risk metrics reinforce this: RFF exhibits some of
the largest drawdowns in the table—e.g., CHE (about 12.6 standard deviations)—and more
negative skew (e.g., CHE, SEK), whereas LIN’s tail risk is comparatively contained for the few
currencies where it performs best (e.g., CAD with Max Loss around 4.9 standard deviations).

In sum, under traditional fundamentals, Ridge-RFF’s advantages are localized to very
small samples and a couple of currencies (CAD, JPY) where “IR v. LIN” confirms incremental
content. As the training window grows from 12 to 60 and 120 months, linear timing

becomes relatively stronger, whereas RFF performance turns persistently negative with
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Table 5: Market timing performance metrics for single currency portfolios under traditional

fundamentals
SR t IR v. t IR v. t IR v. t Skew Max
Mkt RW LIN Loss
Panel A: Training window size T' = 12
AUD 0.068 0.471 0.074 0.511 0.055 0.382 —3.193 11.082
CAD 0.260 1.797* 0.264 1.822% 0.271 1.867* 2.023 4.466
CHE 0.107 0.703 0.142 0.932 0.134 0.883 8.809 4.010
LIN EUR —0.036 —0.175 —0.044 —0.215 —0.049 —-0.239 —2.432 8.989
GBP —0.128 —0.884 —0.139 —0.957 —0.156 —1.074 —2.460 11.233
JPY 0.155 1.071 0.144 0.991 0.120 0.827 2.870 7.004
NOK —0.129 —0.506 —0.163 —0.632 —0.200 —0.772 —1.448 6.268
SEK —0.081 —0.407 —0.091 —0.457 —0.082 —0.413 —0.746 5.535
AUD 0.000 —0.003 —0.031 —0.218 —0.011 —0.076 —0.011 —0.076 —2.090 11.078
CAD 0.306 2.114**  0.294 2.024**  0.338 2.328%*  0.255 1.753% 2.297 4.383
CHE 0.036 0.234 0.008 0.054 0.001 0.007 0.046 0.299 —1.568 9.409
RFF EUR —0.080  —0.397 —0.082 —0.405 —0.130 —0.637 —0.073 —0.357 —1.843 7.299
GBP 0.075 0.519 0.060 0.415 0.049 0.339 0.131 0.902 1.319 5.688
JPY 0.373 2.580*%**  (0.354 2.442%*%  0.320 2.201%%  0.350 2.414*%%  0.519 5.534
NOK 0.123 0.484 0.053 0.208 0.154 0.595 0.193 0.750 —-0.797 4.821
SEK 0.022 0.110 0.017 0.086 0.022 0.108 0.090 0.452 —0.528 6.589
Panel B: Training window size T = 60
AUD 0.135 0.896 0.152 1.008 0.156 1.033 0.508 10.527
CAD 0.345 2.279**  0.344 2.273**  0.346 2.279%* 1.575 5.152
CHE 0.105 0.655 0.152 0.948 0.103 0.644 2.603 6.384
LIN EUR —0.058 —0.260 —0.034 —0.151 —0.049 —0.221 —0.307 5.286
GBP 0.015 0.102 —0.004 —0.026 —0.065 —0.431 3.644 5.603
JPY 0.048 0.321 0.056 0.369 0.027 0.178 1.848 5.815
NOK —0.107  —0.360 —0.199 —0.660 —0.134 —0.448 0.496 4.824
SEK —0.242 —1.118 —0.230 —1.059 —0.256 —1.180 —2.862 8.271
AUD —0.128 —0.850 —0.142 —0.943 —0.131 —0.868 —0.190 —1.261 —1.391 10.056
CAD —0.025 —0.163 —0.007 —0.049 —0.018 —0.116 —0.034 —0.221 —6.397 15.032
CHE —0.426 —2.672%%* —(0.491 —3.063%*%* —(0.448 —2.802%** —(0.414 —2.587*¥%*% 5771 10.701
RFF EUR —0.193 —0.871 —0.189 —0.850 —0.183 —0.823 —0.186 —0.834 —1.705 6.726
GBP 0.096 0.635 0.062 0.408 —0.013 —0.089 0.106 0.700 7.461 6.552
JPY —0.060 —0.398 —0.073 —0.484 —0.093 —0.611 —0.068 —0.448 —1.569 7.802
NOK —0.391 —1.315 —0.757 —2.506*%* —0.379 —1.262 —0.386 —1.291 —1.856 6.736
SEK —0.047  —0.216 —0.040 —0.184 —0.055 —0.252 0.123 0.566 —4.107 8.928
Panel C: Training window size T' = 120
AUD 0.039 0.244 0.042 0.261 0.044 0.277 1.166 7.568
CAD 0.401 2.494*%*  0.401 2.490*%*  0.412 2.553** 1.417 4.938
CHE 0.269 1.574 0.318 1.859* 0.274 1.600 6.779 6.753
LIN EUR 0.132 0.517 0.142 0.554 0.140 0.545 0.349 4.012
GBP 0.064 0.399 0.068 0.422 —0.006 —0.037 2.307 5.923
JPY —0.033 —0.206 —0.017 —0.106 —0.049 —0.303 —3.012 11.045
NOK 0.480 1.209 0.427 1.053 0.458 1.132 0.539 3.848
SEK —0.352 —1.423 —0.266 —1.068 —0.394 —1.585 —3.696 8.594
AUD —0.119 —0.748 —0.119 —0.745 —0.125 —0.779 —0.180 —1.127 3.425 5.032
CAD 0.130 0.807 0.136 0.846 0.120 0.742 0.026 0.161 —0.941 9.796
CHE —0.183 —1.075 —0.223 —1.301 —0.213 —1.245 —0.069 —0.404 —6.962 12.551
RFF EUR —0.104 —0.408 —0.084 —0.326 —0.146 —0.568 —0.140 —0.543 0.551 4.100
GBP 0.122 0.762 0.129 0.803 0.050 0.311 0.106 0.658 6.390 5.040
JPY —0.081 —0.506 —0.136 —0.848 —0.123 —0.765 —0.078 —0.485 —0.208 6.581
NOK —0.152 —0.383 —0.486 —1.199 —0.155 —0.384 —0.220 —0.541 —1.317 5.501
SEK —0.199 —0.804 —0.191 —0.767 —0.200 —0.805 0.033 0.132 —3.181 7.583

This table reports one-month-ahead out-of-sample market-timing strategy performance metrics for single-currency portfolios
under the traditional monetary fundamentals. Results are presented for linear regression (LIN) and Ridge-RFF (RFF) models,
evaluated relative to the market, the random walk (RW), and to each other. Reported statistics include the Sharpe ratio (SR)
of each strategy with associated t-statistics for mean returns; Information Ratios (IR) relative to the market, LIN relative to
RW, and RFF relative to both RW and LIN, each with corresponding t-statistics; as well as higher-moment and downside risk
measures: skewness of returns (Skew) and the maximum loss (Max Loss) in standard deviation units. Statistical significance of
mean returns and information ratios is denoted by *, ** and *** for the 10%, 5%, and 1% levels, respectively.
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higher drawdowns. The evolution across T' is consistent with a limited, short-sample “virtue
of complexity” that does not scale once more data become available and parsimony can
capitalize on signal more reliably.

Table [6] evaluates timing strategies under the expanded set of monetary and non-monetary
fundamentals. The results confirm that predictor richness does not translate into reliable
benefits from added model complexity.

At the shortest horizon (7' = 12), both models perform weakly overall. Linear regression
delivers mostly negative Sharpe ratios, with particularly poor results for CAD, GBP, NOK,
and SEK, each with negative and often marginally significant ¢-statistics. Large maximum
losses—for instance, NOK suffers a drawdown of over 23 standard deviations.—highlight
instability in LIN despite its simplicity. Ridge-RFF offers only isolated and statistically weak
improvements, most notably for EUR (SR = 0.216, ¢t = 1.075), while for most currencies its
performance remains flat or negative. Importantly, the “IR v. LIN” entries are uniformly
weak, suggesting that RFF does not extract incremental value from the richer predictor set
even in small samples.

With medium-sized samples (7" = 60), linear regression stabilizes. GBP is a clear standout:
LIN achieves a Sharpe ratio of 0.404 (¢t = 2.703), significant at the 1% level, with supporting
information ratios against the market and the random walk. Modest though less significant
improvements are also observed for NOK and SEK. In contrast, Ridge-RFF systematically
deteriorates. Across most currencies (e.g., AUD, CHE, EUR, NOK, SEK), RFF produces
negative and often significant Sharpe ratios, coupled with elevated drawdowns. Notably, for
EUR, RFF collapses to SR = —0.284 with “IR v. Mkt” ¢t = —1.337, underscoring its fragility
once longer training samples reduce nominal complexity. Tail risks remain consistently larger
under RFF, while linear regression maintains more balanced drawdowns (typically between
5-10 standard deviations).

At the longest horizon (T" = 120), the advantage of parsimony is decisive. Linear regression
strategies produce their strongest results across all predictor sets here: EUR (SR = 0.648,
t = 2.571), GBP (SR = 0.464, t = 2.924), and AUD (SR = 0.314, t = 1.980) all record
statistically significant Sharpe ratios, while NOK and SEK also deliver positive and marginally
significant performance. By contrast, Ridge-RFF remains persistently weak, with negative or
near-zero Sharpe ratios for most currencies and large drawdowns (e.g., JPY at 9.171 standard
deviations, CHE at 8.364 standard deviations.). Even where RFF produces positive values
(such as GBP or JPY), these gains are small and insignificant, and never competitive with
linear regression.

Overall, the Monetary+ results reinforce the fragility of complexity in FX timing.

Ridge-RFF occasionally produces marginally positive outcomes in small samples (e.g., EUR
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Table 6: Market timing performance metrics for single currency portfolios

and nonmonetary (monetary-+) fundamentals

under Monetary

SR t IR v. t IR v. t IR v. t Skew Max
Mkt RW LIN Loss
Panel A: Training window size T' = 12
AUD 0.019 0.132 0.032 0.225 0.007 0.046 —1.372 8.976
CAD —0.201 —1.402 —0.240 —1.673% —0.167 —1.159 —5.587 14.173
CHE —0.056 —0.368 —0.073 —0.479 —0.091 —0.601 —3.950 10.843
LIN EUR 0.092 0.455 0.098 0.486 0.077 0.383 2.043 7.212
GBP —0.187  —1.305 —-0.197 —1.371 —0.259 —1.802* —2.496 10.083
JPY —0.093 —0.649 —0.120 —0.833 —0.144 —1.002 —-0.721 7.280
NOK —0.187  —1.309 —0.184 —1.283 —0.188 —1.311 —21.551 23.198
SEK —0.184  —1.286 —-0.172 —1.199 —-0.177 —1.234 —3.750 12.836
AUD —0.139 —0.974 —0.145 —1.012 —0.141 —0.981 —0.138 —0.965 1.114 7.906
CAD 0.033 0.232 0.030 0.210 0.044 0.306 0.053 0.365 1.390 7.645
CHE —0.026 —0.173 —0.038 —0.250 —0.038 —0.248 —0.028 —0.187 0.171 9.832
RFF EUR 0.216 1.075 0.219 1.087 0.209 1.036 0.212 1.049 1.400 5.051
GBP —0.020 —0.140 —0.018 —0.124 —0.064 —0.443 —0.001 —0.005 0.257 6.006
JPY —0.051 —0.352 —0.079 —0.546 —0.172 —1.196 —0.043 —0.298 —0.746 11.293
NOK —0.009 —0.063 —0.010 —0.067 —0.004 —0.026 —0.006 —0.043 —0.428 7.206
SEK 0.004 0.028 0.014 0.099 —0.014 —0.101 0.011 0.074 0.458 6.978
Panel B: Training window size T" = 60
AUD 0.139 0.928 0.137 0.913 0.079 0.529 0.627 8.209
CAD —0.080  —0.532 —0.071 —0.472 —0.037 —0.249 —2.409 10.416
CHE —0.157  —0.989 —0.207 —1.300 —0.189 —1.191 —8.163 15.487
LIN EUR 0.051 0.233 0.044 0.199 0.094 0.427 —2.693 7.807
GBP 0.404 2.703***  0.384 2.565**  0.360 2.399%** 2.955 5.463
JPY 0.083 0.555 0.072 0.482 0.066 0.437 —0.827 8.077
NOK 0.192 1.285 0.178 1.189 0.193 1.288 —2.371 9.154
SEK 0.209 1.400 0.223 1.485 0.200 1.335 —3.436 10.064
AUD —0.247  —1.652*% —0.251 —1.672% —0.257 —1.713* —0.237 —1.581 —1.496 7.203
CAD —0.042 —0.278 —0.042 —0.280 —0.030 —0.199 —0.044 —0.291 0.727 5.670
CHE —0.184  —1.158 —0.227 —1.426 —0.189 —1.191 —0.166 —1.043 —2.768 10.402
RFF EUR —0.284 —1.294 —0.295 —1.337 —0.278 —1.262 —0.280 —1.271 —4.224 10.132
GBP 0.098 0.658 0.098 0.652 0.069 0.462 0.050 0.331 1.916 4.719
JPY —0.032 —0.211 —0.035 —0.230 —0.109 —0.724 —0.042 —0.280 —1.126 9.685
NOK —0.150 —1.001 —0.149 —0.992 —0.152 —1.013 —0.163 —1.085 —1.018 7.296
SEK —0.145 —0.967 —0.132 —0.877 —0.166 —1.110 —0.158 —1.050 —0.901 6.841
Panel C: Training window size T' = 120
AUD 0.314 1.980*%*  0.311 1.958%* 0.298 1.877* 2.470 4.331
CAD 0.106 0.668 0.112 0.706 0.162 1.020 1.069 9.341
CHE 0.027 0.160 —0.010 —0.061 0.011 0.062 —5.780 14.288
LIN EUR 0.648 2.571**  0.667 2.632%**  0.658 2.595%%* 1.126 4.795
GBP 0.464 2.924***  0.501 3.153***  0.435 2.731%** 2.944 4.977
JPY 0.079 0.499 0.060 0.375 0.045 0.283 0.975 5.039
NOK 0.308 1.941* 0.306 1.927* 0.327 2.058%* —2.442 11.616
SEK 0.302 1.904* 0.305 1.920%* 0.305 1.915% 0.078 6.926
AUD —0.193 —1.218 —0.193 —1.215 —0.202 —1.271 —0.164 —1.028 —1.121 7.100
CAD —0.074  —0.469 —0.073 —0.461 —0.072 —0.456 —0.086 —0.541 —1.236 5.849
CHE —0.065 —0.384 —0.084 —0.496 —0.070 —0.413 —0.064 —0.375 —1.202 8.364
RFF EUR —0.263 —1.045 —0.286 —1.127 —0.239 —0.942 —0.182 —0.705 —2.314 7.278
GBP 0.143 0.903 0.144 0.903 0.118 0.741 0.103 0.645 1.976 3.658
JPY 0.035 0.222 0.032 0.200 —0.061 —0.381 0.027 0.171 —1.284 9.171
NOK 0.035 0.220 0.037 0.231 0.040 0.254 0.009 0.057 —0.563 7.446
SEK —0.062 —0.394 —0.059 —0.374 —0.085 —0.534 —0.081 —0.510 —0.986 5.501

This table reports one-month-ahead out-of-sample market-timing strategy performance metrics for single-
currency portfolios under monetary-+ fundamentals. See, notes for Table

25



at T = 12), but these gains vanish quickly as training samples grow. Linear regression, by
contrast, benefits systematically from the richer information set, delivering strong and statis-
tically significant Sharpe ratios for multiple currencies at T" = 120. Importantly, drawdown
patterns show that RFF strategies entail higher downside risk across all horizons, further
weakening the economic case for complexity. In this predictor environment, parsimony is not
only more reliable but also economically safer, underscoring the limited virtue of complexity
once richer fundamentals and longer histories are available.

Table [7] presents timing strategy performance under Taylor rule fundamentals. Compared
to traditional and Monetary+ predictors, the Taylor rule set provides the most consistent
evidence of economic value for linear regression, particularly as the sample size grows, while
Ridge-RFF offers selective short-sample advantages that erode quickly.

In the short-window case (7" = 12), linear regression produces a mixed profile. While CAD
and CHE perform poorly (negative Sharpe ratios around —0.15 and —0.04), several currencies
show encouraging results. Notably, JPY achieves a Sharpe ratio of 0.249 (¢t = 1.740), significant
at the 10% level, while GBP, AUD, NOK, and SEK all record small but positive Sharpe
ratios. Ridge-RFF delivers competitive, and in some cases stronger, results: JPY (SR=0.257,
t = 1.796) and AUD (SR=0.159, ¢ = 1.114) show robust short-horizon performance, and
CHE and EUR also post positive ratios. Nevertheless, these gains come at the cost of
greater instability in other currencies: for example, CAD underperforms markedly, with
negative Sharpe ratios across specifications and a large maximum loss exceeding 12 standard
deviations.

At the medium horizon (7" = 60), linear regression consolidates its advantage. Significant
gains emerge for GBP (SR=0.293, t = 1.961), NOK (SR=0.261, ¢t = 1.746), and EUR
(SR=0.237, t = 1.081), while AUD and JPY also show positive, though less significant,
results. Ridge-RFF produces respectable outcomes for JPY (SR=0.274, t = 1.835) and AUD
(SR=0.175, t = 1.174), but overall performance weakens elsewhere: GBP, NOK, and SEK all
fall into negative territory, with drawdowns consistently higher than those observed under
linear regression. For example, CAD records a maximum loss of 12.4 standard deviations
under RFF versus a much smaller 10.9 standard deviations under LIN. These patterns
highlight the fragility of complexity in medium-sized samples.

At the longest horizon (T" = 120), the contrast is most pronounced. Linear regression
delivers its strongest and most statistically reliable results across all fundamentals. EUR
achieves a Sharpe ratio of 0.528 (¢ = 2.094), while AUD also performs strongly (SR=0.354,
t = 2.235). Positive and significant gains extend to CAD and NOK, while most other
currencies remain at least weakly positive. Ridge-RFF, by contrast, deteriorates markedly.
Apart from JPY (SR=0.284, t = 1.787) and CHE (SR=0.238, ¢t = 1.406), most currencies
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Table 7: Market timing performance metrics for single

currency portfolios under Taylor rule

fundamentals
SR t IR v. t IR v. t IR v. t Skew Max
Mkt RW LIN Loss
Panel A: Training window size T' = 12
AUD 0.085 0.594 0.088 0.615 0.067 0.469 3.437 6.282
CAD —0.147 —1.027 —0.154 —1.076 —0.103 —-0.719 —1.190 6.819
CHE —0.038 —0.251 —0.045 —0.295 —0.106 —0.702 0.794 6.075
LIN EUR —0.018 —0.090 —0.020 —0.101 —0.056 —-0.277 0.005 7.402
GBP 0.136 0.952 0.137 0.955 0.061 0.425 1.662 4.356
JPY 0.249 1.740%* 0.227 1.577 0.150 1.041 1.472 4.484
NOK 0.059 0.409 0.044 0.309 0.076 0.532 4.001 5.761
SEK 0.121 0.846 0.086 0.601 0.083 0.580 1.239 6.421
AUD 0.159 1.114 0.152 1.059 0.163 1.136 0.140 0.977 0.732 7.139
CAD —0.094 —0.656 —0.089 —0.620 0.130 0.904 —0.067 —0.464 —4.513 12.845
CHE 0.190 1.255 0.182 1.202 0.151 0.995 0.222 1.466 0.421 5.209
RFF EUR 0.134 0.665 0.131 0.652 0.151 0.748 0.152 0.752 —0.539 4.787
GBP 0.018 0.124 0.025 0.174 —0.084 —0.582 —0.044 —0.304 —0.796 6.812
JPY 0.257 1.796* 0.244 1.699* 0.074 0.515 0.167 1.158 —0.885 10.405
NOK —0.152 —1.059 —0.147 —1.022 —0.177 —1.236 —0.175 —1.218 —1.440 6.636
SEK —0.006 —0.041 —0.006 —0.040 —0.077 —0.534 —0.043 —0.302 —0.457 5.613
Panel B: Training window size T' = 60
AUD 0.120 0.801 0.110 0.738 0.042 0.280 2.612 6.044
CAD 0.053 0.355 0.070 0.469 0.142 0.951 0.645 10.855
CHE 0.047 0.294 —0.047 —0.293 0.025 0.160 —4.328 13.051
LIN EUR 0.237 1.081 0.263 1.195 0.327 1.485 —3.892 10.332
GBP 0.293 1.961**  0.280 1.873* 0.230 1.535 1.625 5.190
JPY 0.208 1.391 0.195 1.301 0.104 0.691 0.762 6.647
NOK 0.261 1.746* 0.248 1.653* 0.292 1.949% 0.724 4.689
SEK 0.100 0.669 0.079 0.530 0.032 0.213 —-0.979 11.530
AUD 0.175 1.174 0.171 1.144 0.102 0.682 0.135 0.903 0.070 8.271
CAD —0.114 —0.765 —0.110 —0.734 0.074 0.496 —0.141 —0.941 —4.616 12.426
CHE 0.193 1.220 0.169 1.061 0.203 1.277 0.188 1.182 0.144 5.382
RFF EUR —0.027 —0.123 —0.024 —0.110 0.033 0.150 —0.150 —0.679 —1.045 5.318
GBP —0.065 —0.432 —0.048 —0.323 —0.167 —1.112 —0.157 —1.048 —0.796 6.287
JPY 0.274 1.835% 0.265 1.769* 0.089 0.595 0.212 1.411 —0.798 10.498
NOK —0.083 —0.557 —0.083 —0.554 —0.117 —-0.779 —0.190 —1.268 —1.243 6.667
SEK 0.011 0.071 0.012 0.077 —0.084 —0.562 —0.025 —0.170 —0.310 5.489
Panel C: Training window size T' = 120
AUD 0.354 2.235%*  0.351 2.212%*  0.349 2.198%* 2.173 6.429
CAD 0.147 0.930 0.159 0.999 0.228 1.433 2.181 10.080
CHE 0.080 0.470 0.052 0.307 0.067 0.396 —0.329 4.905
LIN EUR 0.528 2.094**  0.572 2.259**  0.563 2.219%* 0.926 4.678
GBP 0.119 0.753 0.126 0.796 0.043 0.270 0.005 7.143
JPY 0.040 0.255 0.036 0.224 —0.055 —0.344 —3.554 11.821
NOK 0.156 0.983 0.156 0.984 0.186 1.171 1.316 4.698
SEK —0.007 —0.042 0.001 0.008 0.000 —0.002 —1.364 7.251
AUD 0.179 1.132 0.177 1.115 0.135 0.853 0.027 0.172 0.175 7.937
CAD —0.125 —0.792 —0.125 —0.785 0.042 0.262 —0.174 —1.095 —4.496 11.805
CHE 0.238 1.406 0.227 1.333 0.253 1.488 0.225 1.324 0.539 5.624
RFF EUR —0.234 —0.927 —0.233 —0.920 —0.156 —0.614 —0.372 —1.453 —1.180 4.823
GBP —0.086 —0.542 —0.095 —0.600 —0.179 —1.128 —0.122 —0.767 —0.738 6.241
JPY 0.284 1.787* 0.267 1.676* 0.071 0.445 0.283 1.781* —1.241 10.610
NOK —0.089 —0.563 —0.089 —0.562 —0.079 —0.499 —0.135 —0.849 —1.222 6.306
SEK 0.011 0.071 0.013 0.080 —0.071 —0.445 0.013 0.081 —-0.314 5.205

This table reports one-month-ahead out-of-sample market-timing strategy performance metrics for single-
currency portfolios under Taylor rule fundamentals. See, notes for Table
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record negative Sharpe ratios, with especially poor results for EUR (SR=-0.234, t = —0.927).
Moreover, maximum losses for RFF remain elevated, often exceeding those of linear regression,
underscoring the higher tail risk associated with complexity.

Overall, the Taylor rule results are consistent with a broader narrative: Ridge-RFF can
provide isolated improvements in very small samples, particularly for JPY and AUD, but
these advantages weaken and often reverse as the sample size expands. By contrast, linear
regression steadily strengthens with longer histories, producing statistically significant gains
for multiple major currencies at 1" = 120. Importantly, RFF strategies entail higher and more
volatile drawdowns across all horizons, further reducing their appeal in practical portfolio
settings. The evidence suggests that under Taylor rule fundamentals, parsimony dominates
complexity: linear regression extracts the predictive content of these fundamentals in a stable
and economically meaningful manner, while Ridge-RFF adds little and frequently introduces
greater risk.

Taken together, the single-currency results paint a consistent picture of the limited and
fragile nature of complexity in exchange rate forecasting. Ridge-RFF offers selective benefits
in very small samples with richer fundamentals, echoing the notion of “benign overfitting”
whereby regularization allows complex models to exploit weak signals. Yet these advantages
are narrow in scope: as sample sizes grow, Ridge-RFF not only fails to add value but
often underperforms both linear regression and the random walk, with larger volatility and
deeper drawdowns. By contrast, linear regression steadily improves with richer fundamentals
and longer samples, culminating in robust, statistically significant gains under Taylor-rule
fundamentals at T" = 120. This progression underscores the broader lesson that parsimony and
data availability ultimately dominate complexity in the context of exchange rate predictability.
The “virtue of complexity,” while occasionally visible, does not translate into systematic or
durable economic value; rather, the enduring strength lies in well-specified linear models and,

in many contexts, the random walk benchmark.

5.2 Equal-Weighted Currency Portfolio

Table [§| reports performance metrics for the equal-weighted market-timing strategy under RW,
Linear regression, and Ridge-RFF[] With the shortest training window of 7' = 12, Ridge-RFF
demonstrates some promise in generating economically meaningful portfolio returns, while

linear regression performs poorly relative to both RFF and the random walk. For example,

4Because the equal-weighted portfolio requires all eight currencies, the evaluation period begins only after
the euro (EUR) enters the sample in 1999. Results using an alternative specification—where the portfolio
includes seven currencies before 2000 and all eight thereafter—are very similar and therefore omitted for
brevity, but available upon request.
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Table 8: Equal Weighted Portfolio Market timing trading strategy performance

SR t IR v. t IR v. t IR v. t Skew Max
Mkt RW LIN Loss
Panel A: Training window size T' = 12
RW 0.232 1.181 0.232 1.149 —0.469 7.413
Trad LIN —0.499 —1.953* —0.500 —1.946* —0.516 —2.008** —1.823 5.909
RFF 0.446 1.747%  0.449 1.747* 0.351 1.349 0.475 1.851* —0.026 3.488
Mon.+ LIN —-0.256 —1.276 —0.251 —1.242 —-0.266 —1.318 —13.900 15.973
RFF —-0.020 -0.099 -0.006 -0.032 -—-0.240 -1.173 -—0.003 -0.016 0.179 4.545
Tavlor LIN 0.200 0.997 0.213 1.056 0.092 0.456 0.476 5.495
y RFF 0.503 2.501** 0.516 2.557** (0.164 0.802 0.450 2.226** (0.039 3.891
Panel B: Training window size T = 60
RW 0.345 1.701* 0.345 1.566 1.430 3.095
Trad LIN —-0.367 —1.236 —0.363 —1.213 —-0.363 —1.213 0.272 3.894
RFF 0.095 0.319 0.108 0.360 0.045 0.150 0.135 0.450 0.036 2.434
Mon- LIN 0.321 1.464 0.313 1.414 0.303 1.366 —0.233 3.665
RFF -0.286 —1.303 —0.250 —1.133 —0.372 —1.667* —0.382 —1.715* 0.340 2.531
Tavlor LIN 0.467 2.129** 0.505 2.287** 0.336 1.516 —0.113 3.551
¥ RFF 0.387 1.761* 0.402 1.818* 0.084 0.377 0.217 0.974 0.275 3.321
Panel C: Training window size T' = 120
RW 0.361 1.413 0.361 1.427 1.671 2.858
Trad LIN —-0.032 —-0.081 —-0.030 —0.074 —-0.049 -0.123 —0.535 3.802
RFF —0.663 —1.669* —0.671 —1.658* —0.678 —1.682* —0.668 —1.659* 0.013 2.803
Mon_- LIN 0.298 1.181 0.303 1.196 0.317 1.245 —0.048 5.237
RFF —-0.114 —-0.452 -0.114 —-0.452 —0.258 —1.008 —0.250 —0.972 0.449 2.359
LIN 0.220 0.875 0.217 0.856 0.164 0.646 —0.478 4.723
Taylor

RFF 0.496  1.970** 0.506  1.997** 0.283  1.110  0.465  1.831* 0.544  2.906

This table reports performance metrics for equal-weighted currency market-timing portfolios constructed
from one-month-ahead forecasts under the random walk (RW), linear (LIN), and Ridge-RFF (RFF) models
across three sets of fundamentals, traditional monetary (Trad), monetary+ (Mon+), and Taylor rule (Taylor).
Reported statistics include the Sharpe ratio (SR) with t-statistics for mean returns, the Information Ratio
relative to the market (IR v. Mkt), the Information Ratio of LIN relative to RW, and the Information Ratio
of RFF relative to both RW and LIN, each with corresponding ¢-statistics. We also report skewness of returns
(Skew) and the maximum portfolio loss (Max Loss) in standard deviation units. Statistical significance of
t-statistics is denoted by *, ** and *** at the 10%, 5%, and 1% levels, respectively.
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under Taylor rule fundamentals, Ridge-RFF achieves the highest Sharpe ratio (0.503) with a
statistically significant ¢-statistic (2.501), clearly outperforming both the linear model and RW
(SR = 0.232, ¢t = 1.181). Similarly, under traditional fundamentals, RFF delivers a positive
Sharpe ratio (0.446, ¢t = 1.747) and significant information ratios relative to linear regression,
while the linear model produces negative Sharpe ratios (—0.499, t = —1.953), substantially
underperforming RW. By contrast, under monetary+ fundamentals, both models fail to
improve upon RW: Ridge-RFF generates a near-zero Sharpe ratio (—0.020, insignificant), and
linear regression produces strongly negative performance (—0.256, t = —1.276), while RW
remains positive (SR = 0.232).

Importantly, the drawdown evidence reinforces the fragility of these results. Ridge-RFF
under Taylor fundamentals exhibits relatively modest losses (Max Loss ~ 3.89), while linear
portfolios under monetary+ fundamentals suffer extremely large drawdowns (Max Loss
~ 15.97) with very large negative skew. Even under traditional fundamentals, linear timing
strategy drawdowns are deeper than those of RFF or RW. Thus, while Ridge-RFF occasionally
improves on linear timing strategy and even outperforms RW in settings such as Taylor
fundamentals, these gains are neither broad-based nor robust across predictor sets, and the
strategy remains vulnerable to sharp losses depending on model choice and information set.

With larger samples, performance dynamics shift. In the evaluation period corresponding
to T'= 60 in Panel B of Table , the random walk benchmark sets a higher bar (SR = 0.345,
t = 1.70). Linear regression begins to show meaningful economic value under Taylor rule
fundamentals (SR = 0.467, t = 2.13), significantly outperforming both the random walk and
RFF. Ridge-RFF continues to deliver moderate gains under Taylor rule fundamentals (SR =
0.387, t = 1.76), but its edge over linear regression largely disappears, with information ratios
against linear model weak or insignificant. Under traditional and monetary+ fundamentals,
RFF underperforms (Sharpe ratios near zero or negative), while linear regression strategies
provide at best modest gains. Drawdowns provide further evidence of fragility: although
linear portfolios under Taylor rule fundamentals and RW achieve positive Sharpe ratios in
this training window, they also suffer moderate losses (= 3.55 to 3.10), while RFF portfolios
show similar downside risk (= 3.32). In contrast, RFF under traditional or monetary+
fundamentals yields both weak returns and low information resilience, with even negative and
statistically significant information ratios relative to both random walk and linear strategies.

At the longest training horizon of 7" = 120 reported in Panel C of the Table, the reversal
is stark. The random walk continues to yield stable if modest returns (SR = 0.361), while
Ridge-RFF generally deteriorates, producing negative or insignificant Sharpe ratios under
traditional and monetary+ fundamentals. For example, RFF under traditional fundamentals

generates a Sharpe ratio of —0.66 (¢ = —1.67), significantly underperforming both the
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random walk and linear regression, with drawdowns (& 2.8) comparable to linear but without
compensating returns. By contrast, linear regression produces positive Sharpe ratios under
monetary+ (0.30) and Taylor rule fundamentals (0.20). Importantly, Ridge-RFF under Taylor
rule fundamentals still produces a positive and statistically significant Sharpe ratio (0.496,
t = 1.97) with better information ratio relative to linear portfolio and relatively less elevated
drawdown risk, suggesting some residual benefit of complexity in this setting.

Overall, the portfolio results align closely with the out-of-sample forecast evidence. At
short training windows (7" = 12), Ridge-RFF can exploit extreme nominal complexity to
deliver economically meaningful trading gains, particularly under Taylor rule fundamentals,
with comparatively controlled drawdowns. At intermediate horizons (7" = 60), the advantage
shifts toward linear regression, which produces higher Sharpe ratios and stronger statistical
significance, especially under Taylor rule predictors, though both linear and RFF portfolios still
exhibit moderate downside risks. By T" = 120, Ridge-RFF strategies generally underperform
both linear regression and the random walk, with the exception of modest gains under Taylor
fundamentals, and all models continue to be constrained by drawdowns that limit their
practical applicability.

Taken together, these results reinforce the broader conclusion that the “virtue of complexity”
in FX prediction is fragile and sample-dependent. Complexity delivers relative improvements
in very small samples, but these do not persist as sample size grows. Moreover, the drawdown
evidence highlights that even when complexity improves Sharpe ratios, the resulting strategies
remain vulnerable to sizeable losses, which undermines their appeal in practical portfolio
settings. In terms of economic value, parsimony—captured by simple linear regression or
even the random walk—remains more robust and reliable for constructing profitable and
risk-managed market-timing portfolios.

In comparing the equal-weighted portfolio performance with the single-currency portfolio
results reported in Section [5.1] a consistent picture emerges. The equal-weighted portfolio
tends to smooth out idiosyncratic gains and losses that appear in single-currency strategies,
particularly for Ridge-RFF at short horizons. For example, while single-currency portfolios
occasionally deliver strong Sharpe ratios under Ridge-RFF in small samples (e.g., JPY or
CAD at T = 12), the equal-weighted portfolio translates these into only modest gains, with
performance highly dependent on predictor choice. Likewise, linear regression strategies that
perform reasonably well for select currencies under Taylor rule fundamentals in larger samples
(T =60 or T" = 120) produce more muted gains once aggregated into the equal-weighted
portfolio. Importantly, the drawdown evidence shows that portfolio aggregation reduces
extreme tail risks present in single-currency strategies (e.g., very large losses for NOK or

SEK), but at the same time it dilutes pockets of predictability that individual currencies
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occasionally display. Taken together, the results indicate that while individual currencies
may at times exhibit local predictability under complex models, these signals are too weak or
inconsistent to scale into robust portfolio-level profits, leaving the random walk and simple
linear benchmarks difficult to beat in practice.

Overall, market timing portfolio results align closely with the out-of-sample forecast
evidence. At short training windows (7" = 12), Ridge-RFF can exploit extreme nominal
complexity to deliver economically meaningful trading gains, particularly under Taylor rule
fundamentals. At intermediate horizons ( 7' = 60), the advantage shifts toward linear
regression, which produces higher Sharpe ratios and stronger statistical significance, especially
under Taylor rule predictors. By T" = 120, Ridge-RFF strategies generally underperform
both linear regression and the random walk, with the exception of modest gains under Taylor
fundamentals.

These results reinforce the broader conclusion that the “virtue of complexity” in FX
prediction is fragile and sample-dependent. Complexity delivers relative improvements in
very small samples, but these do not persist as sample size grows. In terms of economic value,
parsimony—captured by simple linear regression or even the random walk—remains more
robust and reliable for constructing profitable market-timing portfolios.

These findings connect tightly to the evolving debate on complexity in equity return
prediction. First, [Kelly and Malamud| (2025) respond to recent critiques by clarifying that
the central object is the complexity ratio ¢ = P/T, distinguishing nominal from effective
complexity and emphasizing how implicit regularization can allow large models to learn even
in small samples; they further stress that VoC is a theory of out-of-sample performance
under misspecification and is not about recovering a “true” model. They also highlight data
features—‘concentration” and “alignment”™—that govern whether performance should rise
with complexity. In our FX setting, the absence of systematic gains relative to RW as T’
grows suggests that either concentration, alignment, or both, differ materially from the equity
contexts where VoC curves slope upward, consistent with their framework.

Second, Nagel| (2025)) argues that with P >> T and highly persistent predictors, ridgeless
RFF forecasts mechanically approximate a volatility-timed momentum rule—weights become
a similarity kernel over the last T returns—so apparent small-sample “learning” largely reflects
recency and volatility timing rather than extraction of genuine signals. Our FX results are
potentially consistent with this interpretation: at T'= 12, Ridge-RFF can outperform OLS
(a local advantage) but does not consistently defeat RW; at larger 7', the momentum-like
edge recedes and parsimony wins, aligning with the view that small-T" overparameterization

explores only a thin subspace and cannot reliably uncover stable predictability.
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Third, |Buncic (2025)) revisits Kelly et al.| (2024))’s empirics and shows that two imple-
mentation choices—zero-intercept and aggregation of RFF draws—shape the monotone VoC
patterns; when an intercept is included and aggregation is handled coherently, simpler (or
mildly regularized) models often dominate. Our FX evidence parallels that spirit without
including an intercept: as T' expands, OLS (parsimonious, with effectively lower c) overtakes
RFF, and portfolio performance improves without escalating nominal complexity. Notably,
all three equity-based papers debate buy-and-hold versus timing and do not employ the RW
forecasting benchmark we adopt in FX; thus, our findings contribute new evidence under a
benchmark that is notoriously difficult to surpass in currencies.

In FX, complexity’s benefits are not universal: when ¢ = P/T is extreme and T is
short, Ridge-RFF can look relatively good versus OLS but not versus RW; as effective
sample size grows, parsimony becomes economically preferable. This pattern is consistent
with theories that allow small-sample learning under high complexity but predict data-
dependent VoC curves, and with critiques highlighting the mechanical momentum content of
overparameterized, short-window RFF. The upshot is that domain (FX vs. equities), sample
length, and the benchmark all matter. Our results therefore refine the “virtue of complexity”
claim by showing its limits in FX: when judged against a strong RW comparator, complexity

delivers—at most—Ilocalized advantages that do not generalize into durable economic value.

6 Conclusions

This paper investigates whether the recently proposed “virtue of complexity”—originally
documented in equity return prediction—extends to foreign exchange rate forecasting. Using
nonlinear Ridge regressions augmented with Random Fourier Features (RFF), we conduct
a comprehensive 1-month ahead out-of-sample forecasting exercise under alternative sets
of economic fundamentals, across rolling training windows of 12, 60, and 120 months.
Benchmarks include both traditional linear regression models and the random walk, with
additional evaluation through market-timing portfolio strategies.

The results provide a measured perspective on the role of complexity in FX forecasting.
With short training windows, where nominal complexity (7" = ¢/T) is highest, Ridge-RFF
can deliver relative gains over linear regression, including lower MSPE ratios and improved
Diebold—Mariano statistics in select currencies. Yet, these improvements are fragile and never
translate into robust gains against the random walk benchmark. As the training window
expands, Ridge-RFF performance deteriorates—first losing parity with linear regression at
T = 60 and then decisively underperforming at 7' = 120. In contrast, linear models gradually

improve with larger samples, occasionally outperforming the random walk under richer
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predictor sets (especially under Monetary+ fundamentals, supporting recent results in [Engel
and Wu, [2024)), though the benchmark remains difficult to beat consistently. Market-timing
portfolio results reinforce this message: RFF-based strategies show local gains in very small
samples, especially under Taylor rule fundamentals, but linear strategies provide more stable
and economically meaningful returns as sample sizes grow.

Relative to the recent literature, our findings add several insights. Consistent with Kelly
et al. (2024), we observe that complexity can yield localized benefits in small samples with
richer fundamentals, reflecting the idea of “benign overfitting.” However, our results show that
these benefits are limited in scope and highly sensitive to training sample size, predictor choice,
and benchmark. Importantly, the random walk—absent from equity-based studies—remains
the dominant comparator in FX, and neither Ridge-RFF nor linear regression consistently
surpass it. This highlights the domain-specific limits of complexity’s appeal.

Our evidence also connects to the evolving debate. Kelly and Malamud| (2025) clarify
that the key distinction is between nominal complexity (p/T') and effective complexity
(parameters effectively used after shrinkage). In their framework, nominal complexity remains
central for understanding out-of-sample performance. Our results suggest that, in FX, high
nominal complexity does not translate into effective predictive gains against the random walk,
particularly as sample size grows. Instead, parsimony appears to dominate at longer training
windows. Meanwhile, the critiques of Nagel (2025)) and [Buncic| (2025) resonate strongly with
our findings. Nagel argues that RFF-based forecasts often mimic volatility-timed momentum
rules in short samples, which aligns with our evidence that Ridge-RFF advantages fade quickly
as T' expands. Buncic shows that methodological restrictions can exaggerate complexity’s
benefits, and when relaxed, simpler models often prevail—mirroring our result that OLS
reasserts itself in larger samples.

Taken together, our analysis suggests three key lessons. First, complexity in FX forecasting
is conditional and fragile, offering advantages only in small samples with specific predictor
sets, and never consistently over the random walk. Second, linear regression retains relevance:
with richer fundamentals and larger samples, it often provides more robust statistical and
economic performance. Third, the persistence of the random walk benchmark underscores
the challenges of FX predictability and the risks of overstating the benefits of nonlinear
complexity.

For researchers, these findings highlight the importance of benchmarking complex models
against both linear regressions and the random walk, and of linking statistical performance
to economic value. For practitioners and policymakers, they underscore the enduring appeal
of transparency, parsimony, and robustness in FX forecasting—where signals are weak,

benchmarks are strong, and the supposed virtue of complexity proves sharply limited.
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Future research should build on these insights by probing further into the specific mecha-
nisms behind complexity gains, investigating alternative nonlinear structures beyond RFF,
and more carefully accounting for methodological artifacts that may confound empirical re-
sults. Moreover, adaptive or hybrid models that intelligently blend simplicity and complexity
in response to data conditions may hold promise for improving forecast accuracy in a robust

and interpretable manner.
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Appendices

A Data

As discussed in Section [3] our empirical analysis employs three sets of economic fundamentals
to analyze U.S. dollar exchange rates against eight major currencies. End-of-month nominal
exchange rate series are obtained from the IMF International Financial Statistics (IFS).
Consumer Price Index (CPI) and industrial production index data for the United States
(home country) and foreign countries are also sourced from IFS. Inflation rates are calculated
as the log-difference of the CPI over the preceding 12-month period. Monthly industrial
production indices serve as proxies for each country’s output level.

To measure the money supply, we utilize the monetary aggregate MO, chosen for its
consistent availability across the countries in our study. The end-of-month money supply
data are retrieved from Haver Analytics. Nominal 3-month government bond interest rates
are obtained from the Global Financial Database (GFD) and Federal Reserve Economic Data
(FRED). The specific interest rate series from GFD include ITAUS3D (AUD), ITCAN3D
(CAD), ITEUR3D (EUR), ITJPN3D (JPY), ITNOR3D (NOK), ITSWE3D (SEK), ITCHE3D
(CHF), and ITGBR3D (GBP), while DTB3 (US) is obtained from FRED.

We construct a global risk aversion variable, denoted as Risk, by extracting the first
principal component from the same five risk measures utilized by Engel and Wu/ (2024]).
These risk measures include spreads from |Gilchrist and Zakrajsek| (2012)), Moody’s Aaa and
Baa corporate bond yields minus the Federal Funds rate spreads (FRED series: AAAFF
and BAAFF), and Moody’s Aaa and Baa corporate bond yields minus the 10-Year Treasury
yield (FRED series: AAA10Y and BAA10Y). The Gilchrist and Zakrajsek (2012) spreads are
available from https://www.federalreserve.gov/econres/notes/feds-notes/updatin
g-the-recession-risk-and-the-excess-bond-premium-20161006.html, whereas the
remaining four spreads (AAAFF, BAAFF, AAA10Y, BAA10Y) are downloaded from FRED.

Additionally, U.S. trade balance and GDP data are sourced from FRED. The trade balance
data is available at monthly frequency starting from 1992 (FRED series: BOPGSTB) and
quarterly prior to 1992 (BOPBGS). Quarterly trade balance and GDP series are converted
into monthly frequency through linear interpolation. Finally, we compute the output gap
for the United States and foreign countries using quarterly GDP data. We first apply the
Hodrick-Prescott (HP) filter with a smoothing parameter of 1600, then convert the quarterly
output gap series into monthly frequency through linear interpolation.

The availability of a complete dataset varies by currency, depending on data availability

for the included variables across the three fundamental sets. For all currencies, the sample
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period ends in October 2024. The start dates differ as follows: January 1974 for GBP and
JPY, February 1975 for AUD, March 1975 for CAD, January 1980 for CHF, January 1998
for SEK, January 1999 for EUR, and January 2008 for NOK.
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