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Abstract

We examined the performance of four families of large language models (LLMs) and a va-
riety of common fuzzy matching algorithms in assessing the similarity of names and addresses
in a sanctions screening context. On average, across a range of realistic matching thresholds,
the LLMs in our study reduced sanctions screening false positives by 92 percent and increased
detection rates by 11 percent relative to the best-performing fuzzy matching baseline. Smaller,
less computationally intensive models from the same language model families performed com-
parably, which may support scaling. In terms of computing performance, the LLMs were, on
average, over four orders of magnitude slower than the fuzzy methods. To help address this,
we propose a model cascade that escalates higher uncertainty screening cases to LLMs, while
relying on fuzzy and exact matching for easier cases. The cascade is nearly twice as fast and
just as accurate as the pure LLM system. We show even stronger runtime gains and comparable
screening accuracy by relying on the fastest language models within the cascade. In the near
term, the economic cost of running LLMs, inference latency, and other frictions, including API
limits, will likely necessitate using these types of tiered approaches for sanctions screening in
high-velocity and high-throughput financial activities, such as payments. Sanctions screening in
slower-moving processes, such as customer due diligence for account opening and lending, may
be able to rely on LLMs more extensively.
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1 Introduction

Financial institutions and payment service providers are prohibited from extending financial ser-
vices to and processing transactions on behalf of entities that have been sanctioned by relevant
authorities, such as the Office of Foreign Assets Control (OFAC).! High transaction volumes gener-
ally compel financial intermediaries to adopt automated sanctions screening systems that compare
names, addresses, and other relevant details in financial applications and payment messages to
information contained in publicly available sanctions lists. These systems often use approximate
string (“fuzzy”) matching algorithms to mitigate challenges associated with complex variations in
the way names, addresses, and localities are captured in the financial system (Fadavi, 2023).2

Even with fuzzy logic, noisy string representations leave sanctions screening systems vulnera-
ble to costly inaccuracies. False negatives may lead to monetary penalties and other enforcement
actions from sanctions authorities. False positives increase compliance burden, slow down trans-
actions due to manual reviews, and can harm customer experience. Of course, weak sanctions
screening systems also have broader national security implications, as threat actors are able to
move money more seamlessly.

Against this backdrop, we ask whether large language models (LLMs) are better than traditional
fuzzy matching methods at handling complex sanctions screening cases. They are compelling sup-
plements or alternatives for at least two reasons. First, the architecture underlying LLMs (Vaswani
et al., 2017) enables them to learn semantic, syntactic, and contextual patterns that can help sort
through subtle but meaningful string deviations. Second, they encode some world knowledge that
can aid in evaluating names, addresses, and other transaction party details. For example, they
appear to know the basic street layout of many major cities. They also know many corporate
structure suffixes and their common abbreviations. While these properties have the potential to
drive gains in screening matches, they are especially likely to help rule out legitimate transaction
parties whose identifying information and location details are similar to those of sanctioned entities.

We investigated our research question by evaluating the relative performance of LLMs and
fuzzy matching algorithms in assessing the similarity of hypothetical transaction party details. To
facilitate the assessment, we used GPT-40 to help generate a test dataset based on the sanctions
list published by OFAC. The test data contain the names and addresses of sanctioned entities from
ten countries, along with subtle and plausible deviations from the original strings that simulate
difficult sanctions screening cases. We then tested the string-matching capabilities of language
models from four different model families: Claude, Llama, Mistral, and Nova. For each model

family, we tested one larger and one smaller model, which we refer to as LLMs and small language

1Other sanctions authorities include the UK’s Office of Financial Sanctions Implementation, the UN Security
Council, and the European Union.

20FAC’s own sanctions list search tool uses two classical fuzzy matching techniques, edit distance and Jaro-
Winkler, as well as a phonetic matching algorithm, to aid in screening (OFAC, 2021).



models (SLMs), respectively. We compared the average classification performance of the LLMs
and SLMs to several fuzzy matching methods: Levenshtein, Jaro-Winkler, token sort, and token
set. We augmented the fuzzy methods by implementing a rigorous textual pre-processing and
normalization routine. We also tested a more dynamic approach that selects from and weights
multiple fuzzy algorithms depending on relative string length.

On average, the LLMs in our study reduced sanctions screening false positives by 92 percent
and increased screening matches by 11 percent relative to the highest-performing fuzzy matching
system. The SLMs performed similarly well, reducing false positives by 80 percent and increasing
screening matches by the same amount as the LLMs. Overall, the significant false positive gains
and meaningful improvement in matching performance are promising for sanctions screening accu-
racy. Indeed, fuzzy matching methods sacrifice false positives in favor of reducing false negatives.
LLMs could serve as a single mechanism for balancing both priorities. Additionally, comparable
performance between the LLMs and SLMs could support scalability in the financial system, as
smaller models tend to be cheaper to run, have higher API limits, and are a bit faster. It is also
feasible for many firms to run open-weight SLMs on proprietary hardware at scale.

The language models’ improved accuracy comes with a computing performance tradeoff, though.
In our study, the LLMs were, on average, over four orders of magnitude slower than the fuzzy
matching algorithms. The SLMs were about 25 percent faster than the LLMs but still considerably
slower than the fuzzy methods. Importantly, we did not evaluate the potentially substantial time
savings that could come from the language models’ ability to reduce false positives over the time-
consuming manual reviews that these types of hits trigger.

To speed up the screening process and minimize the cost of invoking the language models, we
propose a model cascade that leans on exact and fuzzy matching for more certain cases and escalates
less certain ones to the language models for review. The cascade reduces runtime by 45 percent over
the pure language model system with no loss of accuracy. Relying on the fastest language models
within the cascade reduces runtime by another 50 percent with very similar screening accuracy.
Integrating these models in financial activities that are characterized by very high velocities and
throughput, such as payments, would likely require cascading and other types of tiered systems.
Sanctions screening in slower moving activities, such as customer onboarding and due diligence,
as well as some types of credit and insurance review, may be able to use language models more
extensively.

The remainder of this paper proceeds as follows. In section 2, we review related work at
the intersection of Al and finance. Section 3 discusses our research design, focusing on the data
and models underlying the study. Section 4 presents our screening results, including descriptive
properties of the model outputs and classification performance. Section 5 examines computing
performance and presents our model cascade system. Section 6 concludes by summarizing the

implications of this work and identifying areas for future research.



2 Related Work

This paper seeks to advance the emerging body of literature on generative Al (GenAl) in finance.
Aldasoro et al. (2024) identify a range of opportunities, challenges, and financial stability impli-
cations of GenAl adoption in the four major financial activities: intermediation, insurance, asset
management, and payments. Eisfeldt and Schubert (2024) examine how GenAlI affects financial
sector occupations and review GenAl uses in financial research. Some have explored GenAl appli-
cations in central banking and financial regulation (Araujo et al., 2024; Kazinnik and Brynjolfsson,
2025). Similar to this paper, others have focused on how GenAl can be used in more specific tasks,
such as analyzing central bank communications (Dunn et al., 2024; Fischer et al., 2023; Hansen
and Kazinnik, 2024; Silva et al., 2025), generating synthetic data to study rare financial events
(Kazinnik, 2023), assessing financial sentiment (Zhang et al., 2023), and making cash management
decisions in payment systems (Aldasoro and Desai, 2025).

The paper also relates to research on the use of Al for detecting fraud, money laundering, and
security threats in the financial system. A rich body of work examines specific machine learning
methods for fraud detection (West and Bhattacharya, 2016; Hilal et al., 2022). Others have pro-
posed simulation methodologies to support modeling research in fraud (Allen, 2025) and money
laundering (Altman et al., 2023) detection, mostly in retail payment systems. Recently, Desai
et al. (2025) developed a machine learning system geared toward detecting anomalies from various
sources in high-value payment systems. While not nearly as broad as the fraud and money laun-
dering detection literature, a few papers, like ours, are situated in the sanctions screening domain.
For example, researchers have proposed ways to enhance edit distance metrics and leverage natural
language processing techniques for sanctions screening (Nino et al., 2019; Kim and Yang, 2024).

Finally, our methodology leans on ideas from model cascading (Viola and Jones, 2001) and
the related areas of selective classification (El-Yaniv et al., 2010) and early exits in deep learning
(Bolukbasi et al., 2017; Teerapittayanon et al., 2016). The goal of these systems is to reduce
runtime, computing power, and economic cost, while minimizing loss of accuracy by sending less
uncertain instances to simpler, faster models and reserving more complex cases for larger, more
expensive models. Recently, scholars have extended model cascading to natural language processing
(Varshney and Baral, 2022) and LLMs. The cost of LLM inference has been a significant motivating
factor for the development of LLM cascades. For example, Chen et al. (2023) propose Frugal GPT,
a “budget-aware” LLM cascade that channels easier queries to smaller, cheaper models. They
find that FrugalGPT drives cost savings and even improved accuracy over single LLM systems for
certain tasks. Nie et al. (2024) propose a dynamic cascade tailored to data streams that uses a
logistic regression at the first layer and an LLM at the top layer. Like these systems, our proposed
cascade relies on simple methods—specifically, fuzzy and exact matching—for less uncertain screening

cases and only escalates higher uncertainty cases to the slower, more expensive language models.



3 Research Design

We compared the performance of LLMs to traditional fuzzy matching methods in assessing the
similarity of hypothetical transaction party names and addresses to those of sanctioned entities.
We did not attempt to reproduce a production grade sanctions screening environment. In most
cases, this would involve screening incoming transaction party details against all sanctioned entities,
possibly with filtering conditions to narrow down a candidate pool. Rather, we conducted pairwise
comparisons of names and addresses. While smaller scale in nature than a comprehensive screening
system, our study was carried out using production-grade architecture, subject to many of the same
constraints of real-world sanctions screening applications. For example, our LLM-based scorers
were invoked programmatically via cloud APIs and included buffering logic to accommodate service
quotas. Additionally, pairwise comparisons are often one of the final steps in the sanctions screening
process after a candidate pool has been narrowed down. The following sections discuss the data,

LLMs, prompting strategies, and fuzzy matching comparison methods that we used in the study.

3.1 Data

Our data are derived from the sanctions lists published by OFAC (OFAC, 2025). Specifically, we
used the combination of OFAC’s specially designated nationals (SDN) list and the consolidated
list for non-SDN sanctioned entities as of March 2025. The OFAC lists contain names, addresses,
localities, aliases, and other information for sanctioned individuals and entities. In our study, we
conducted pairwise comparisons of organization names and street addresses.? Table 1 summarizes
four case types that we evaluated, using fictitious examples. We are particularly interested in the
relative performance of the LLMs and fuzzy methods on the close match cases. The clear cases

help us simulate a more comprehensive classification system.

Table 1: Pairwise Comparison Case Types

Case Type ABC International Ltd. 123 Chestnut Street, NW
Clear negative Main Street Bank 456 Magnolia Drive, SE
Negative close match A&C International LLC 12 Chestnut Avenue, NW
Positive close match ~ ABC Int’l Limited 123 Chestnut St., Northwest
Clear positive ABC International Ltd. 123 Chestnut Street, NW

The lists only contain original strings, so we needed to generate the candidate strings that served
as our test data. Generating these for the clear negative and clear positive cases was straightforward.
For the former, we selected a random name or address, depending on the test type, and for the

latter, we selected the same name or address. For the close match cases, we used GPT-40 to help

3We focused on organization names and not individual names because the OFAC lists contain many phonetic
transliterations of individuals’ names. Evaluating phonetic similarities is beyond the scope of our study.



generate deviations from the original organization names and addresses. Specifically, we asked the
model to propose subtle and plausible deviations from the original strings that meet the close match
case typologies. Importantly, GPT-40 is not one of the LLMs underlying the pairwise comparisons
in the main results. Using a different model for data generation helps ensure independence between
our test data and evaluation systems.

To facilitate human-in-the-loop output review, we asked for the data in small batches of roughly
25 strings for one country at a time. Because of our detailed data evaluation process, we were only
able to generate data for ten countries: Australia, Canada, France, Germany, Italy, Ireland, New
Zealand, Spain, the United Kingdom, and the United States.* Our dataset includes 260 organization
names and 429 street addresses. Each of the 689 strings has a variation for the four case types.
Therefore, the classification results we present in section 4 are based on 2,756 observations for each

model. Table 2 shows some representative data for the close matches.

Table 2: Representative Data for the Close Matches

Original Positive close match Negative close match
Havin Bank Limited Havin Bank Ltd Haven Banking Co.

NPC International N.P.C. Int’l NVC International

Mellat Insurance Company Mellat Ins. Co. Mellot Insurance Corp.
Via Lorenzo Rocci 14 Via L. Rocci, No. 14 Via Lorenzo Ricci 12

20 Rue Auguste Vacquerie 20 Rue A. Vacquerie 22 Rue Auguste Vauquelin
345 E. Railway Avenue 345 East Railway Ave. 345 W. Railway Street

3.2 Language Models

We used language models from four different model families available in the AWS Bedrock service
to conduct the pairwise string comparisons. For each family, we tested one larger and one smaller
variety. For ease of reference, we refer to the larger models as LLMs and the smaller models as

SLMs. Table 3 summarizes the models that we tested.?

Table 3: Language Models Used in the Assessment

Family Developer LLM SLM

Claude Anthropic Claude 4 Sonnet Claude 3.5 Haiku
Llama  Meta Llama 3.3 70B Llama 4 Scout 17B
Mistral Mistral AI Mistral Large Mistral Small
Nova Amagzon Nova Pro Nova Micro

Our core prompt represents a few-shot approach (Brown et al., 2020) that establishes the

4We selected the countries that we felt we would have the most success auditing based on language, alphabet, and
personal experience.
% Although Claude Opus is bigger than Claude Sonnet, we used the latter due to speed and cost constraints.



model’s persona, describes the comparison task, provides several examples of likely matches and
non-matches, presents the two strings that need to be compared, and asks the model to produce
a score on a scale of 0-100, where 100 represents the highest likelihood of a match. The fuzzy
matching assessments are on a scale of 0-100 as well. We also tested a zero-shot prompt, which
is identical to the few-shot prompt but withholds the examples, and a chain-of-thought reasoning
prompt in the spirit of Wei et al. (2022), which presents the model with a step-by-step framework
for thinking through example assessments before asking it to rate the pair. While the few-shot
approach slightly edged out the other two on classification performance, accuracy differences were
negligible. The Appendix presents the few-shot and chain-of-thought prompts. We used different
templates for organization names and street addresses, and we set the temperature to zero for our

model runs to limit response variation across iterations.%

3.3 Fuzzy Matching Methods

We compared the performance of the LLMs and SLMs to four widely used fuzzy matching methods:
Levenshtein, Jaro-Winkler, token sort, and token set. Levenshtein, which is also known as edit
distance, is based on the number of operations, including insertions, deletions, and substitutions,
that it takes to transform one string into another (Levenshtein, 1965). Jaro-Winkler is derived
from the number of matching characters between two strings, the number of transpositions, and
the length of the strings, with greater weight assigned to commonalities at the beginning of the
strings (Jaro, 1989; Winkler, 1990). Token sort and token set are two variations on edit distance
introduced by SeatGeek (2011). The former measures the edit distance of two strings that have been
transformed by tokenizing the strings and sorting them in alphabetical order. The latter works by
tokenizing two strings, extracting and sorting the intersection, constructing new comparison strings
using the sorted intersection and remainders, computing the edit distance among the transformed
strings, and taking the highest score. In addition to these core methods, we assessed the weighted
ratio implemented by Bachmann (2021), which dynamically selects candidate algorithms based on
relative string length, applies small penalties to token-based methods and scaling factors to partial
ratio methods, and returns the highest score.” For comparability, we used the normalized similarity

version of these metrics on a 0-100 scale, where higher values indicate higher levels of similarity.

5The temperature is an inference parameter that controls the likelihood that the language model opts for higher-
or lower-probability query responses. Setting the temperature to zero instructs the model to select the highest-
probability response.

"The weighted ratio selects from normalized Indel similarity, partial ratio, token set, token sort, partial token set,
and partial token sort.
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Figure 1. Average Similarity Scores for Close Matches. The bar plots depict the average
similarity scores on a scale of 0-100 generated by the fuzzy methods (blue bars), SLMs (dark
gray bars), and LLMs (light gray bars) for the negative close matches (left plot) and positive
close matches (right plot), split out by addresses (left grouping) and names (right grouping).
The fuzzy methods produce similar ratings across all case and test type combinations, while
the language models are better able to distinguish between the negative and positive case
types. No. of observations: addresses = 429, names = 260.

4 Screening Results

This section presents the results of our assessment along several dimensions. We begin by exploring
the descriptive properties of the models, focusing on the average similarity scores and the distri-
bution of the scores. We then present the classification performance of the models on the raw
text. Next, we show how the language models perform relative to the fuzzy methods after putting
the name and address strings through a rigorous pre-processing and normalization framework and

relative to a more dynamic fuzzy matching method.

4.1 Descriptive Properties

Figure 1 presents the average similarity scores produced by the fuzzy matching methods, SLMs,
and LLMs for the close matches, split out by addresses and names. Lower scores are better for the
negative cases, and higher scores are better for the positive cases. Across the board, the language
models outperform the fuzzy matching algorithms. The latter produce similar ratings on average
for both sets of cases and test types, which is undesirable. Meanwhile, there is a clear divergence in
the way the language models rate the negative and positive cases. For the negative close matches,
the language models’ scores are considerably lower than those of the fuzzy methods, but the gap
is wider for addresses than names. For the positive close matches, there are less dramatic but still
meaningful differences in the ratings. The LLMs slightly outperform the SLMs, but performance
is comparable, especially for the positive cases.

Figure 2 captures the distributions of the scores for the three methods across the close match
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Figure 2. Distribution of Similarity Scores for Close Matches. The histograms depict
the distribution of similarity scores on a scale of 0-100 generated by the fuzzy methods
(top row), SLMs (middle row), and LLMs (bottom row) for the negative close matches
(left column) and positive close matches (right column). Each histogram is based on 2,756
scores, representing 260 and 429 pairwise name and address comparisons, respectively, for
four constituent models. The language models tend to be much more certain in their ratings
than the fuzzy methods, with scores clustering near zero for the negative cases and 100 for
the positive cases.

cases. The most important takeaway is that the language models show high levels of certainty
in their ratings. Their score distributions are concentrated between 0-10 for the negative cases
and 90-100 for the positive cases, while the fuzzy methods produce smoother distributions. The
distributional differences between the case types are also consistent with the average scores depicted
in figure 1. The SLMs and LLMs are better able to distinguish between the negative and positive

cases, while the fuzzy methods tend to give high scores for both case types.

4.2 Classification Performance

Sanctions screening systems generally use similarity scores to classify records based on a matching
threshold (Fadavi, 2023). Figure 3 depicts the average classification scores for the three model types

across four realistic matching thresholds and for three related metrics: the F1 score, precision, and
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Figure 3. Classification Performance Across Realistic Matching Thresholds. The bar plots
depict the average classification performance across four matching thresholds (80, 85, 90, 95), as
measured by three metrics: F1 score (left), precision (middle), and recall (right). The SLMs (dark
gray bars) and LLMs (light gray bars) decisively outperform the fuzzy methods (blue bars) based
on the F1 summary metric. The next two plots show that while the fuzzy methods demonstrate
the classic tradeoff between precision and recall as we raise the matching threshold, the language
models’ performance is stable. Average scores are based on 2,756 assessments performed by each
underlying model.

recall.® In contrast to figures 1 and 2, which focus on the close match cases, the classification scores
are computed on the full sample, including the clear positives and clear negatives (see: section 3.1).
The F1 score (left), which is the harmonic mean of precision and recall, shows the language models
decisively outperforming the fuzzy methods across all matching thresholds, while the performance
of the SLMs and LLMs is comparable. Differences in performance among the individual LLMs and
SLMs, which we do not depict here, were negligible.”

The F1 scores for the fuzzy methods deteriorate noticeably as the matching threshold increases.
The reason for this is clear in observing the constituent elements of F1, precision and recall.'® The
fuzzy methods exhibit the classic tradeoff between the two. As we raise the threshold, fewer records
are classified as matches. Consequently, precision increases but recall plummets. By contrast,
the language models show stability with the changing threshold. This follows directly from the
similarity score distributions depicted in figure 2. Because the language models tend to be very
certain one way or the other—that is, their scores cluster around 0 and 100—performance is not as
sensitive to adjustments in the matching threshold. In practice, this means that practitioners could

likely select a very high matching threshold, without materially affecting detection rates.

8The classification results presented throughout this paper reflect in-sample performance. We did not train any
models, so we are not as concerned about overfitting. The fuzzy methods are deterministic, and the language models
are pre-trained with no fine tuning.

9The Mistral models, which are developed by a French Al firm, slightly outperformed the other models on assess-
ments originating from non-English language speaking countries, but the differences were small.

10T this context, precision captures the share of records classified as matches that are truly matches. Recall
captures the share of true matches that are correctly identified by the system.



4.3 Pre-processing, Normalization, and Dynamic Fuzzy Methods

Many deviation patterns in organization names and street addresses are recurring. For example,
“Street” is often represented as “St.” Therefore, we may be giving the LLMs too much credit
for repeatedly recognizing the same patterns, when we could normalize recurring deviations to a
common representation. To examine the relative performance of the LLMs and fuzzy methods
after making such adjustments, we developed a rigorous textual pre-processing and normalization
routine, which is presented in detail in the Appendix. The process involves converting all text to
lowercase, removing punctuation, stripping extra whitespace, and normalizing recurring abbrevi-
ations and acronyms to common words. As examples, all instances of “ltd” were replaced with
“limited,” and all instances of “rd” were replaced with “road.” We made 17 such adjustments for
the organization names and 37 for the addresses.!!

Pre-processing and normalization are challenging. Without implementing complex exception
handling rules, erroneous normalization introduces errors. For example, it is not uncommon for
streets to be named after saints, which, like the word street, typically use the abbreviation “St.”
(for example, St. Mary’s Lane). There are also two reasons why pre-processing and normalization
are likely to be more successful in our simulation than in a real-world sanctions screening system.
First, our sample does not include individual names, which have fewer opportunities to normalize
recurring patterns than organization names. Second, the primary languages of the countries in our
sample (English, French, German, Italian, and Spanish), share the same core Roman alphabet.
Normalization is less reliable for names and addresses that have been transliterated from languages
like Russian, Arabic, Chinese, and Farsi—the most represented origin languages on the OFAC lists.

As we discuss further in section 5, the fuzzy algorithms are computationally efficient, so it
is feasible to pursue methods that dynamically select from multiple potential fuzzy matching ap-
proaches. To this end, we also assessed the performance of the dynamic weighted ratio (Bachmann,
2021), which is discussed in 3.3.

Figure 4 provides a holistic summary of how the language models perform relative to the fuzzy
matching methods under various scenarios. The figure captures the average percentage difference
in false and true positives for the language models compared to the fuzzy methods for all matching
thresholds between 80 and 95. The blue and light gray bars represent performance relative to
the average of the fuzzy algorithms on the raw and normalized text, respectively. The dark gray
bar captures performance relative to the weighted ratio, which is applied after pre-processing and
normalization.

The LLMs and SLMs reduce false positives by 91 and 75 percent, respectively, on the raw text
and improve detection rates by 40 percent. The false positive gains are robust to pre-processing and

normalization, but the detection rate performance gap narrows significantly to about 17 percent.

1VWe tokenized the strings by word, and the replacements were carried out on standalone tokens. We did not
replace sub-strings.

10
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Figure 4. Average Language Model Performance Relative to the Fuzzy Methods (Matching
Thresholds: 80-95). The bar plots capture the average percent decline in false positives (left
plot) and percent increase in true positives (right plot) achieved by the SLMs (left grouping)
and LLMs (right grouping) relative to the fuzzy methods over the matching thresholds 80-95
on the raw text (blue bars) and pre-processed and normalized text (light gray bars). The
dark gray bars represent the language model performance compared to the weighted ratio,
which also includes pre-processing and normalization. The false positive performance is
robust across all methods, while the performance gap narrows for the true positives.

The weighted ratio with pre-processing and normalization performs even better from a detection
perspective, but it does not change the false positive picture.

Overall, the weighted ratio represents the best performance balance among the fuzzy approaches.
Compared to the weighted ratio, the LLMs and SLMs reduce false positives by 92 and 80 percent, re-
spectively, and detect about 11 percent more matches. Thus, even with rigorous text pre-processing
and dynamic fuzzy matching approaches, the LLMs and SLMs show significant reductions in false
positives and meaningful gains in matching performance, reinforcing the notion that language mod-

els have the potential to simultaneously balance precision and detection.

5 Computing Performance and Model Cascading

To assess computing performance, we carried out a smaller scale test designed to avoid triggering
API limits. The API request limits per minute ranged from 200-800 for the LLMs and 200-1600
for the SLMs in our study. Given the lower bound on both model types, we examined the runtime
on 200 pairwise comparisons of names and addresses, for a total of 400 evaluations for each model.

Because the language models are considerably slower than the fuzzy algorithms, we also designed
and assessed a model cascade system that only invokes language models for high uncertainty cases
and defers to simpler methods for easier cases. Specifically, the cascading algorithm first tests for
an exact string match and returns 100 if one exists. Next, it calculates the fuzzy weighted ratio. If
the ratio is below a user-defined lower bound, it returns 0, and if the ratio is above a user-defined

upper bound, it returns 100. Otherwise, it escalates to a language model. The intuition is that
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above the upper bound and below the lower bound, there is a high probability that the strings are
matches and non-matches, respectively. In these cases, it is more efficient from an economic and
computing performance perspective to abstain from LLM inference.

The challenge, of course, is setting the lower and upper bounds. The lower bound is meant to
quickly rule out true negatives while also minimizing false negatives. The upper bound is meant
to quickly identify true positives, while minimizing false positives. For this assessment, we set
the lower bound to 45 and the upper bound to 98. We chose the thresholds by examining the
distribution of the weighted ratio against screening outcomes. False positives increase when the
upper bound is set lower than 98, while false negatives increase when the lower bound is set below
45. Practitioners could similarly set the threshold boundaries by examining historical data and
screening performance.

The model cascade only uses one SLM or LLM at a time as the final layer, and below we present
the average performance for the cascade approach across all the models. However, we also assessed
the performance gains for the cascade using only the fastest SLM and LLM in our study, which
were Llama 4 Scout and Mistral Large, respectively. The Claude models were the slowest in our
simulation, and they drive up the average runtime considerably. Table 4 presents the computing
performance results for the language models under three different scenarios: the flat system, which
represents the average runtime for the four language models when they evaluate every record, the
average performance for the four language models using the cascade, and the cascade using Llama
4 Scout (SLM) and Mistral Large (LLM).

Table 4: Average Runtime (in seconds) for 400 Pairwise Evaluations

Flat Cascade Cascade

Measurement  Model Type (Average) (Average) (Fastest)
Total LLM 179.8 99.27 49.42
SLM 135.2 82.21 45.55
Per Record LLM 0.450 0.248 0.124
SLM 0.338 0.206 0.114

Under the flat system, the LLMs took about three minutes, on average, to carry out 400 pairwise
comparisons, at a rate of just under half a second per record.'? By comparison, it only took the
fuzzy algorithms about seven milliseconds, on average, to carry out the evaluations. Accordingly,
the LLMs were over four orders of magnitude slower than the fuzzy methods. The SLMs were
about 25 percent faster than the LLMs but still much slower than the fuzzy algorithms. The
cascade reduced the LLM runtime by 45 percent compared to the flat system. The fastest model

cascade was another 50 percent faster than the overall cascade average. Performance gains were

12The median runtime was 40 percent less than the average runtime for both the SLMs and LLMs. The mean was
driven up the Claude models, which were the slowest in the cohort we tested.
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Figure 5. Screening Accuracy of the Model Cascade. The figure plots precision-recall
curves for all matching thresholds between 0 and 100 for the flat system (blue dashed line),
the average cascade (solid gray line), and cascade using the fastest model (black dotted
line). Performance is very similar across the different systems. The areas under the curves
are around 99 percent for each system.

comparable for the SLMs. For both model types, the runtime approached about a tenth of a second
per evaluation under the fastest model system.

An important question is whether the cascade compromises on screening accuracy. To this end,
figure 5 plots precision-recall curves for all matching thresholds between 0 and 100 for the three sys-
tems separately for the SLMs and LLMs. More area under the curve indicates higher performance.
Accuracy among the three systems is virtually identical. The precise areas under the curve are
all above 99 percent, with just slightly lower performance for the fastest SLM. The results suggest
that practitioners could pursue these types of performance-optimized systems without significant
deterioration in screening accuracy.

We did not test the computing performance effects of the buffering logic needed to accommodate
API limits because these limits are likely to vary for many different types of cloud and Al service
provider accounts. However, we used this type of logic to accommodate API limits in producing the
main results, and it is clearly another source of friction. On the other hand, we also did not quantify
the extent to which the language models’ false positive gains can reduce manual interventions, but
the time saved could be substantial. The need for sanctions screening speed will vary based on
the financial activity in question. In slower moving processes, such as the customer onboarding
and due diligence required for account opening, lending, and insurance underwriting, it may be
feasible to increase the scope of LLM usage throughout the screening process, including potentially
incorporating reasoning models. In other settings, such as payment processing, screening needs to
occur near real-time. In these higher velocity systems, inference latency and other frictions, such

as API limits, will compel the use of tiered approaches like the model cascade we propose here.
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6 Conclusion

Inaccurate sanctions screening can lead to costly errors for financial institutions and payment pro-
cessors, including potential enforcement actions and increased compliance burden. Weak sanctions
screening systems also harm national security, as sanctioned entities can move money more easily.
We show how LLMs and SLMs can help drive significant sanctions screening accuracy gains over
more traditional fuzzy logic, especially in reducing false positives. The false positive gains were
robust to various fuzzy matching enhancements, including string pre-processing and normalization
and using dynamic approaches. SLMs performed comparably to LLMs in our study, which may
support scaling, as they tend to be cheaper, have higher API limits, and are a bit faster. Some
firms may also be able to deploy open-weight SLMs in sanctions screening applications using their
own hardware.

While the language models in our study were more accurate than the fuzzy methods, they
were also considerably slower. We did not attempt to quantify the time savings that could be
achieved by reducing false positives, which may be substantial in practice. However, we did assess
a model cascading approach that defers to simple matching methods for straightforward cases, while
escalating more uncertain cases to the language models. The cascade dramatically reduced runtime
with no loss of accuracy. These types of tiered approaches will be needed for LLM-based sanctions
screening in settings that require near real-time screening, such as payment systems. Other types of
financial activities, such as customer due diligence for account opening, credit review, and insurance
underwriting, may be able to rely on LLMs more extensively.

Our findings and scope of research point to several potential areas for future inquiry. As a
starting point, follow-up studies could scale up simulations beyond pairwise comparisons to screen
against full sanctions lists. Researchers could also explore more efficient ways of giving LLMs access
to sanctions list data, such as through fine tuning or retrieval augmented generation. Additionally,
our model cascade only uses one type of language model as the final evaluation layer. Future
work could evaluate sanctions screening decision rules for deferring to SLMs before escalating to
LLMs and potentially incorporate deep reasoning models for the most complex cases. Finally,
future research could explore LLM applications for similar types of verification and authentication

challenges in the financial system.

14



References

Aldasoro, I. and A. Desai (2025). Ai agents for cash management in payment systems. Available
at SSRN.

Aldasoro, 1., L. Gambacorta, A. Korinek, V. Shreeti, and M. Stein (2024). Intelligent financial
system: how ai is transforming finance. BIS Working Papers (1194).

Allen, J. (2025). Cardsim: a bayesian simulator for payment card fraud detection research. Finance
and Economics Discussion Series (2025-017).

Altman, E., J. Blanusa, L. Von Niederhdusern, B. Egressy, A. Anghel, and K. Atasu (2023).
Realistic synthetic financial transactions for anti-money laundering models. Advances in Neural
Information Processing Systems 36, 29851-29874.

Araujo, D., S. Doerr, L. Gambacorta, and B. Tissot (2024). Artificial intelligence in central banking.
BIS Bulletin (84).

Bachmann, M. (2021). Rapidfuzz documentation: Wratio. Online; accessed 25-June-2025.

Bolukbasi, T., J. Wang, O. Dekel, and V. Saligrama (2017). Adaptive neural networks for efficient
inference. In International conference on machine learning, pp. 527-536. PMLR.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. (2020). Language models are few-shot learners. Advances in neural
information processing systems 33, 1877-1901.

Chen, L., M. Zaharia, and J. Zou (2023). Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176.

Desai, A., A. Kosse, and J. Sharples (2025). Finding a needle in a haystack: a machine learn-
ing framework for anomaly detection in payment systems. The Journal of Finance and Data
Science 11, 100163.

Dunn, W., E. E. Meade, N. R. Sinha, and R. Kabir (2024). Using generative ai models to understand
fomc monetary policy discussions. FEDS Notes.

Eisfeldt, A. L. and G. Schubert (2024). Generative ai and finance. Annual Review of Financial
Economics 17.

El-Yaniv, R. et al. (2010). On the foundations of noise-free selective classification. Journal of
Machine Learning Research 11(5).

Fadavi, A. (2023). Economic sanctions on the rise: The ever-increasing importance of sanctions
screening in a compliance programme. Journal of Financial Compliance 6(4), 333-345.

Fischer, E., R. McCaughrin, S. Prazad, and M. Vandergon (2023). Fed transparency and policy
expectation errors: A text analysis approach. Federal Reserve Bank of New York Staff Re-
ports (1081).

Hansen, A. L. and S. Kazinnik (2024). Can chatgpt decipher fedspeak? Awailable at SSRN 4399406 .

Hilal, W., S. A. Gadsden, and J. Yawney (2022). Financial fraud: a review of anomaly detection
techniques and recent advances. Ezpert systems With applications 193, 116429.

15



Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical association 84 (406), 414-420.

Kazinnik, S. (2023). Bank run, interrupted: Modeling deposit withdrawals with generative ai.
Awailable at SSRN.

Kazinnik, S. and E. Brynjolfsson (2025). Ai and the fed. NBER Working Paper Series (33998).

Kim, S. and S. Yang (2024). Accuracy improvement in financial sanction screening: is natural
language processing the solution? Frontiers in Artificial Intelligence 7, 1374323.

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals.
In Doklady Akademii Nauk, Volume 163, pp. 845-848. Russian Academy of Sciences.

Nie, L., Z. Ding, E. Hu, C. Jermaine, and S. Chaudhuri (2024). Online cascade learning for efficient
inference over streams. arXiv preprint arXiv:2402.04513.

Nino, R., A. Sison, and R. Medina (2019). Optimization of edit distance algorithm for sanctions
screening risk score assessment. International Journal of Advanced Trends in Computer Science
and Engineering 8(6), 1289-1295.

OFAC (2021). Frequently asked questions: No. 249. Online; accessed 25-June-2025.

OFAC (2025). Sanctions list service: Specially designated nationals list. Online; accessed 31-March-
2025.

SeatGeek (2011). Fuzzywuzzy: fuzzy string matching in python. Blog post. Online; accessed
25-June-2025.

Silva, T. C., K. Moriya, and R. M. Veyrune (2025). From text to quantified insights: a large-scale
llm analysis of central bank communication. IMF Working Papers 2025(109), A001.

Teerapittayanon, S., B. McDanel, and H.-T. Kung (2016). Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd international conference on pattern recognition

(ICPR), pp. 2464-2469. IEEE.

Varshney, N. and C. Baral (2022). Model cascading: Towards jointly improving efficiency and
accuracy of nlp systems. arXiv preprint arXiv:2210.05528.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin (2017). Attention is all you need. Advances in neural information processing systems 30.

Viola, P. and M. Jones (2001). Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern
recognition. CVPR 2001, Volume 1, pp. I-1. leee.

Wei, J., X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. (2022).
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural in-
formation processing systems 35, 24824-24837.

West, J. and M. Bhattacharya (2016). Intelligent financial fraud detection: a comprehensive review.
Computers & security 57, 47-66.

16



Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. ERIC.

Zhang, B., H. Yang, and X.-Y. Liu (2023). Instruct-fingpt: Financial sentiment analysis by instruc-
tion tuning of general-purpose large language models. arXiv preprint arXiv:2306.12659.

17



Appendix: Prompts and Text Pre-processing

This appendix includes additional details on our prompts (see: section 3.2) and pre-processing and

normalization routine (see: section 4.3).

Prompts

We tested zero-shot, few-shot, and chain-of-thought (CoT) prompts. We have different templates
for the addresses and organization names. While the few-shot prompts edged out the other prompts
on screening performance, the differences were negligible. The results from the few-shot prompts are
the main ones we present in the paper. The few-shot prompts include four components, which are
presented below. We concatenate these together into a single query for each pairwise comparison.
The zero-shot prompts are identical to the few-shot prompts, but they withhold the examples.
The CoT prompts retain the same basic structure as the few-shot prompts, but we replace the list
of examples with step-by-step reasoning templates. We include four reasoning examples in each
prompt, two for matches and two for non-matches. We present the CoT reasoning templates below,

with two reasoning examples for brevity.

Few-Shot Prompt: Addresses

Persona

You are an expert evaluator specializing in judging whether two street address strings are a

match.

Your task is to rate your confidence that two strings represent the same street address after

accounting for common variations (for example: abbreviations, ordering, punctuation,

formatting, etc.).
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Few-Shot Examples

Here are a few examples of address pairs that are likely to be matches:
e Address 1: 63 South Capitol Lane; Address 2: 63 S. Capitol Ln.
e Address 1: 8 Marshall Road, Unit 14; Address 2: 8 Marshall Rd., No. 14
e Address 1: Karlstrasse 35; Address 2: Karlstr. #35
Here are a few examples of address pairs that are NOT likely to be matches:
e Address 1: 1001 K ST NW; Address 2: 1000 K ST NE

e Address 1: 50 Anson Rd.; Address 2: 50 Anston St.

e Address 1: 10 Rue de la Paix; Address 2: 12 Rue de la Paie
NG J

Specific Task

Now, carefully evaluate addresses 1 and 2 below:

e Address 1: {String 1}
e Address 2: {String 2}
Provide your confidence rating on a numeric scale from 0 to 100, where:

e 100 means you are completely certain addresses 1 and 2 represent the same street

address.
e 0 means you are completely certain addresses 1 and 2 are different street addresses.

Respond ONLY with a single integer between 0 and 100. Do NOT provide any additional

explanations or words.

. J

Few-Shot Prompt: Organization Names

Persona

You are an expert evaluator specializing in judging whether two name strings for companies

and other organizations are a match.
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General Task

Your task is to rate your confidence that two strings represent the same underlying company

or organization name after accounting for common variations (for example: acronyms,

abbreviations, ordering, punctuation, formatting, etc.).

Few-Shot Examples

Here are a few examples of name pairs that are likely to be matches:

e Name 1: International Advisors LTD; Name 2: Int’l Advisors Limited

e Name 1: Inst. for Energy Research and Development; Name 2: Institute for Energy
R&D

e Name 1: National Relief Organization; Name 2: Nat’l Relief Org.
Here are a few examples of name pairs that are NOT likely to be matches:
e Name 1: International Advisors LTD; Name 2: Global Advisors Corp.

e Name 1: Inst. for Energy Research and Development; Name 2: Association of Energy

Researchers

e Name 1: National Relief Organization; Name 2: Medical Relief Organization
- J

Specific Task

Now, carefully evaluate names 1 and 2 below:

e Name 1: {String 1}
e Name 2: {String 2}
Provide your confidence rating on a numeric scale from 0 to 100, where:

e 100 means you are completely certain names 1 and 2 represent the same underlying

name.
e 0 means you are completely certain names 1 and 2 are different underlying names.

Respond ONLY with a single integer between 0 and 100. Do NOT provide any additional

explanations or words.
\ y
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Chain-of-Thought Reasoning Templates

CoT Reasoning: Addresses

Below are examples showing the step-by-step reasoning process.

Example 1 (MATCH):
Address 1: 63 South Capitol Lane
Address 2: 63 S. Capitol Ln.

Step 1: Identify differences - South vs S., Lane vs Ln.

Step 2: Consider variation types - Abbreviations

Step 3: Evaluate reasonableness - Common address abbreviations

Step 4: Assess intersection - 63, Capitol : Street number and core street name combination is
strong similarity signal

Step 5: Certainty level - High certainty these are the same street addresses
Example 2 (MATCH). ..

Example 3 (NOT A MATCH):
Address 1: 1001 K ST NW
Address 2: 1000 K ST NE

Step 1: Identify differences - 1001 vs 1000, NW vs. NE

Step 2: Consider variation types - Street number, directional

Step 3: Evaluate reasonableness - Numbers indicate opposite street sides, Directionals
indicate different city locations

Step 4: Assess intersection - K, ST: potentially same street, but variations supersede

Step 5: Certainty level - Low certainty these are the same entity

Example 4 (NOT A MATCH). ..
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CoT Reasoning: Organization Names

Below are examples showing the step-by-step reasoning process.

Example 1 (MATCH):
Name 1: International Advisors LTD
Name 2: Int’l Advisors Limited

Step 1: Identify differences - International vs Int’l, LTD vs Limited

Step 2: Consider variation types - Abbreviations

Step 3: Evaluate reasonableness - Standard word and organizational structure abbreviations
Step 4: Assess intersection - Advisors: generic domain overlap

Step 5: Certainty level - High certainty these are the same underlying name
Example 2 (MATCH). ..

Example 3 (NOT A MATCH):
Name 1: International Advisors LTD
Name 2: Global Advisors Corp.

Step 1: Identify differences - International vs Global, LTD vs Corp.

Step 2: Consider variation types - Company name, business structure

Step 3: Evaluate reasonableness - Similar but distinct name, different organizational
structure

Step 4: Assess intersection - Advisors: generic domain overlap

Step 5: Certainty level - Low certainty these are the same entity

Example 4 (NOT A MATCH)...
- J
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Pre-processing and Normalization Steps
The pre-processing and normalization routine that we use in our analysis proceeds as follows:
1. Convert to lower case
2. Remove punctuation
3. Tokenize by word
4. Normalize recurring abbreviations and acronyms to common representations
5. Re-join tokens separated by a space

6. Strip extra whitespace

On step 4, we make 17 adjustments for the organization names and 37 for the addresses. The

table below captures the name adjustments.

Target Replacement

1td limited

inc incorporated

corp corporation

co company

llc limited liability company
org organization

Ip limited partnership

llp limited liability partnership
intl international

sas societe par actions simplifiee
immo  immobilien

imm immobilien

sa societe anonyme

srl limited liability company
pty proprietary

plec public limited company

dac designated activity company

The table below captures the address adjustments.
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Target Replacement
st street

ave avenue
avd avenida
avda avenida
bd boulevard
boul boulevard
blvd boulevard
rd road

dr drive

In lane

ct court

pl place

wy way

cir circle

sq square

ter terrace
tce terrace
cls close

ch chateau
po post office
apt apartment
ste suite

bldg building
fl floor

no number

n north

nth north

S south

sth south

e east

W west

ne northeast
nw northwest
se southeast
SwW southwest
str strasse

C calle
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