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Córdoba, Juan Carlos, Anni T. Isojärvi, and Haoran Li (2025). “Declining Search
Frictions, Unemployment, and Growth Revisited,” Finance and Economics Discussion
Series 2025-098. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2025.098.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Declining Search Frictions, Unemployment, and Growth
Revisited∗
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Abstract

This paper revisits the conditions under which search models generate balanced growth paths
(BGPs)—equilibria where unemployment, vacancies, and job flows remain steady as search
frictions decline. Martellini and Menzio (2020) claim that such paths exist only when matches
are “inspection goods” and match quality follows a Pareto distribution. We show that these
conditions are sufficient but not necessary. Their implementation assumes a strong form of
stationarity—requiring the endogenous distribution of match qualities to remain invariant under
proportional scaling. This restriction forces the reservation quality to grow at a constant,
strictly positive rate, mechanically tying declining frictions to long-term growth and yielding
counterfactual implications of eliminating search frictions—persistent unemployment and
infinite welfare gains. Relaxing this restriction, balanced growth can arise under alternative
forms of scaling, such as additive transformations that restore stationarity without Pareto
tails or inspection. We further show that biased technological progress, when vacancies and
unemployed workers are complementary inputs, also generates well-behaved BGPs with finite
welfare gains and vanishing unemployment as search frictions disappear.
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”If search frictions in the labor market have diminished over the last 90 years, why
do we not see a secular inward shift of the Beveridge curve, a secular negative trend
in the unemployment rate, and a secular rise in the UE rate?... We seek a balanced
growth path (BGP) for this economy, that is, an equilibrium along which unemployment,
vacancies, UE, and EU rates are constant over time... A BGP exist iff (a) the quality of
a firm-worker match is a sample from a Pareto distribution with some tail coefficient...
and (b) the workers’ benefit from unemployment and the firms’ cost of maintaining a
vacancy grow at the same rate as average productivity. The assumption that matches are
inspection goods could be considered the third condition for the existence of a BGP.”
(Martellini and Menzio, 2020, pp. 4392).

1. Introduction

Despite dramatic improvements in job-search technology over the past century—from newspaper
classifieds to online platforms to algorithmic matching—aggregate labor market outcomes have
remained remarkably stable. Unemployment rates show no secular decline, the Beveridge curve
has not shifted inward over the long run, and job-finding and separation rates appear stationary.
This apparent disconnect between technological progress and stable labor-market outcomes poses a
fundamental puzzle for macroeconomic theory: how can declining search frictions coexist with
steady employment outcomes?

Martellini and Menzio (2020) (hereafter MM) offer an influential answer. In the spirit of King,
Plosser, and Rebelo (1988), they seek necessary and sufficient conditions for balanced growth in
search-theoretic models of unemployment. Their solution is strikingly sharp: a balanced growth
path exists if and only if firm–worker matches are “inspection goods” and match quality follows
a Pareto distribution.1 Under these assumptions, the long tail of the Pareto distribution induces
increasingly selective matching that offsets the effects of declining frictions, thereby preserving the
stability of labor market outcomes while generating long-run growth.

This paper revisits and challenges that characterization. We show that MM’s conditions are
sufficient but not necessary. The key lies in their implementation of the balanced-growth concept.
In their definition—stated in the abstract and introduction—a BGP requires that aggregate labor
variables such as unemployment, vacancies, and job flows remain constant over time, but says
nothing about the underlying, unobservable distribution of match qualities. MM nevertheless
impose a strong assumption on this latent distribution: it must remain invariant under proportional
scaling. This restriction—common in growth models but untested and empirically unmotivated in

1Inspection means that when a worker and a vacancy meet, the match-specific productivity is revealed and the parties
decide whether to form an employment relationship.
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labor-market settings—forces both the sampling and the endogenous match-quality distributions to
be Pareto and mechanically turns declining search frictions into a source of long-run growth. Yet
proportional scaling is not required for a stationary BGP.2 Once scaling is treated more generally,
the Pareto structure is no longer necessary, and declining frictions need not affect the economy’s
growth rate.

We demonstrate that alternative time transformations can restore stationarity without invoking
Pareto tails. For example, under exponential sampling of match quality, improvements in search
efficiency cause the reservation quality to drift linearly over time, rather than multiplicative as
in the Pareto case. This additive transformation of time ensures that the distribution of accepted
matches remains stationary even as search efficiency improves exponentially. In equilibrium,
self-selection adjusts just enough to offset the destabilizing effect of improved matching—restoring
the time-invariance of labor market outcomes but without generating long-run growth.

The restrictive structure implied by multiplicative scaling also generates counterfactual im-
plications. In the MM setup, unemployment persists even when posting vacancies is costless,
and the welfare gains from eliminating search frictions are infinite. In contrast, the canonical
Diamond–Mortensen–Pissarides (DMP) framework predicts that unemployment vanishes as posting
costs fall and that welfare gains are finite, bounded by the forgone output of unemployed workers.
Under exponential sampling, one core DMP prediction is restored—unemployment vanishes as
posting costs fall—but, as in the Pareto inspection case, the welfare gains from eliminating frictions
remain unbounded because ever-easier matching induces ever-higher reservation quality when match
quality is unbounded above.

Balanced growth can also arise outside the inspection framework. When technological progress
is input-biased and vacancies and unemployed workers are complementary inputs in the matching
function, the economy converges to a well-behaved BGP with stationary unemployment, tightness,
and job-finding rates. In this setting, unemployment vanishes as frictions disappear only if
technological progress is worker-augmenting. Unlike inspection models, the welfare gains from
eliminating frictions are finite. However, the resulting BGP is necessarily inefficient: the market
equilibrium supports a stable labor market with declining frictions, but the planner’s allocation
does not. This inefficiency arises because the bargaining weight in the market equilibrium is fixed,
whereas the planner’s shadow bargaining power varies with tightness, preventing the Hosios condition
(Hosios, 1990) from being satisfied. Thus, while the biased-technology DMP framework restores
the core qualitative properties of DMP models and avoids the implausible welfare implications of
inspection, it reveals an intrinsic inefficiency between market and planner allocations.

Together, these results show that MM’s characterization overstates the conditions required for
2MM do not explicitly use the stationary terminology. We use it to clarity our contribution, as explained in Section

3.5.

3



balanced growth. Pareto distributions and inspection are sufficient under a particular (multiplicative)
time transformation, but not necessary once alternative transformations are considered. In this
article, we focus on the two most transparent cases—multiplicative and additive detrending—but
the logic extends to more general transformations of time that can also restore stationarity. Our
analysis clarifies the logical structure of balanced growth in search models and provides a broader
foundation for understanding how declining frictions interact with stationarity and growth.

The rest of the paper proceeds as follows. Section 2 outlines the main mechanisms. Section 3
revisits the inspection model from the planner’s perspective, defines the BGP, stationary BGP, and
scale-invariant BGP, derives the efficiency conditions for the SI-BGP, and shows that the MM model
is efficient under the Hosios condition and Cobb-Douglas matching. It further demonstrates that
with exponential sampling, a BGP exists in which unemployment and vacancies remain stationary
while declining frictions do not generate growth, and extends the analysis to more general cases.
Section 4 analyzes a DMP model with homogeneous workers and biased technological progress in
the matching function, showing that a well-behaved BGP arises when unemployment and vacancies
are complementary inputs. Section 5 concludes.

2. Overview

Because the paper is technically detailed, it is useful to begin with an overview of the main ideas.
MM analyze a two-stage matching process in the labor market. In the first stage, a worker meets
a vacancy with arrival rate 𝐴𝑡 𝑝(𝜃𝑡), where 𝜃𝑡 is labor market tightness defined as vacancies over
unemployed workers and 𝐴𝑡 is a technological parameter growing exogenously at the constant rate
𝑔𝐴: 𝐴𝑡 = 𝐴0𝑒

𝑔𝐴𝑡 . MM refer to this as the meeting rate. If a meeting occurs, the process moves
to the second stage, where the productivity of the match is drawn from a distribution 𝐹 (𝑧). The
unemployment-employment (UE) rate is thus

ℎ𝑢𝑒,𝑡 = 𝐴𝑡 𝑝(𝜃𝑡) (1 − 𝐹 (𝑅𝑡)) , (1)

where 𝑅𝑡 is the reservation threshold of match quality.
MM seek a balanced growth path (BGP) in which both ℎ𝑢𝑒 and 𝜃 remain constant, consistent

with the empirical evidence of unemployment and vacancies discussed by MM. Since the matching
technology improves over time, the reservation threshold must rise accordingly to satisfy the equation
at all times. Time-differentiating yields

𝑔𝐴 =
𝐹′(𝑅𝑡)

1 − 𝐹 (𝑅𝑡)
·
𝑅𝑡 , ∀𝑡, (2)

and under the assumption that 𝑅𝑡 grows at a constant rate, MM obtain their key condition (equation
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(10)), which implies that 𝐹 must be Pareto. They further show that 𝑅𝑡 indeed grows at a constant
rate as an equilibrium outcome, and that increasing selectivity adds to economic growth.

Our paper builds on three observations that qualify and extend this framework.

1. Pareto is not necessary. MM’s equation (10) is a special case of the more general condition,
equation (2). While Pareto sampling produces a constant UE transition rate, other distributions, such
as exponential, can do so as well once the adjustment of reservation quality is specified differently.
For instance, if

·
𝑅𝑡 is constant (rather than

·
𝑅/𝑅𝑡), the reservation quality increases linearly rather

than exponentially over time, and the solution to the differential equation (2) is exponential rather
than Pareto. With exponential sampling, unemployment, tightness, and transition rates remain
stationary, but output growth slows down and eventually stops. Thus, declining search frictions do
not drive long-run growth, and stationarity does not uniquely require a Pareto distribution.

2. Inspection models have counterfactual implications. Introducing inspection fundamentally
changes the standard DMP logic. In the canonical model, eliminating search frictions (making
vacancies costless) drives unemployment to zero and yields finite welfare gains. In inspection
models, by contrast, costless posting pushes tightness and reservation productivity to infinity. With
Pareto sampling, both forces cancel each other out and unemployment persists even under costless
posting. Moreover, the welfare gains from eliminating frictions become infinite, a problematic
prediction as it overshadows the role of any other frictions known in economics.

3. Technological progress may be biased. MM assume Hicks-neutral progress, with 𝐴𝑡 scaling
the entire meeting rate. A more general formulation is

ℎ𝑢𝑒,𝑡 = 𝑝(𝜃𝑡 , 𝐴𝑡) (1 − 𝐹 (𝑅𝑡)),

where 𝐴𝑡 affects the productivity of unemployment and vacancies differently. When these inputs are
complements, biased progress in one input eventually faces diminishing returns: improvements in
𝐴𝑡 no longer raise the meeting rate without bound, and the need for ever-rising reservation thresholds
disappears. In the limit, search efficiency gains no longer fuel growth, undermining MM’s claim
that declining frictions necessarily generate long-run expansion.

3. Inspection

This section considers variants of the MM inspection model, with the aim of characterizing the
necessary and sufficient conditions for the existence of a suitable balanced growth path. While
the original framework analyzes a decentralized equilibrium, we study the corresponding social
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planner’s allocation and show that the two coincide if the Hosios condition holds and the matching
function is Cobb-Douglas. Our formulation generalizes the baseline model to incorporate both
endogenous and exogenous job destruction, nesting the canonical case without declining search
frictions as a special case.

3.1. Environment

The economy is populated by a continuum of workers of measure one and a continuum of firms of
positive measure. At each date 𝑡, each worker is either unemployed, 𝑢𝑡 , or employed in a job with
firm-specific productivity 𝑧. Let 𝑛𝑡 (𝑧) denote the measure of workers at time 𝑡 employed in jobs
with productivity 𝑧. Employed workers with productivity 𝑧 produce 𝑦𝑡𝑧, where 𝑦𝑡 = 𝑦0𝑒

𝑔𝑦 𝑡 is an
aggregate productivity term common to all jobs and grows at rate 𝑔𝑦 ≥ 0. Jobs are destroyed at an
exogenously rate 𝛿 ≥ 0, or endogenously when either the worker or the firm chooses to separate.
In the planner’s allocation, endogenous separations are characterized by a productivity cutoff 𝑅𝑡:
matches with 𝑧 < 𝑅𝑡 are terminated, while those with 𝑧 ≥ 𝑅𝑡 continue. Unemployed workers
produce 𝑏𝑡 .

Unemployed workers can be assigned to jobs across different productivity levels, but doing so
requires vacancy creation. Let 𝑣𝑡 denote vacancies posted at cost 𝑘𝑡 units of output per vacancy
per period. These vacancies generate 𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡) random matches between unemployed workers
and vacant jobs, where 𝐴𝑡 measures search efficiency, and 𝑀 is a constant-returns-to-scale (CRS)
matching function. 𝑀 is increasing in each argument, concave, and satisfies the Inada conditions.
Let 𝑀1 and 𝑀2 denote the corresponding partial derivatives with respect to the first and second
arguments, respectively.

When a worker and firm meet, a match productivity 𝑧 is drawn from a cumulative distribution
𝐹 (𝑧) with density 𝑓 (𝑧) and support [𝑧𝑙 ,∞). The law of motion of 𝑛𝑡 (𝑧) is:

·
𝑛𝑡 (𝑧) = 𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡) 𝑓 (𝑧) − 𝛿𝑛𝑡 (𝑧) for 𝑧 ≥ 𝑅𝑡 and 𝑡 ≥ 0.

3.2. Planner’s Problem

Given an initial distribution of employment, [𝑛0(𝑧)]∞0 , the planner solves the following problem:

max
{𝑣𝑡 ,𝑢𝑡 ,𝑅𝑡 ,n𝑡 }∞𝑡=0

∫ ∞

𝑡=0
𝑒−𝑟𝑡

[∫
𝑅𝑡

𝑦𝑡𝑧𝑛𝑡 (𝑧)𝑑𝑧 + 𝑢𝑡𝑏𝑡 − 𝑘𝑡𝑣𝑡

]
𝑑𝑡 subject to:

·
𝑛𝑡 (𝑧) = 𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡) 𝑓 (𝑧) − 𝛿𝑛𝑡 (𝑧) for 𝑧 ≥ 𝑅𝑡 for 𝑡 ≥ 0, and (3)

𝑢𝑡 = 1 −
∫ ∞

𝑅𝑡

𝑛𝑡 (𝑧)𝑑𝑧, 𝑅𝑡 ≥ 𝑧
𝑙

for 𝑡 ≥ 0. (4)
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The planner selects vacancies, unemployment, and a productivity cutoff to maximize the
discounted present value of net output at discount rate 𝑟 , subject to the law of motion for employment
across job productivities and the labor market resource constraint.

To connect this formulation with the MM decentralized equilibrium, it is useful to define the
meeting rates implied by the matching function. An unemployed worker meets a vacancy at rate
𝑚𝑡 = 𝐴𝑡 𝑝 (𝜃𝑡) where 𝑝 (𝜃) ≡ 𝑀 (1, 𝜃) and 𝜃𝑡 = 𝑣𝑡/𝑢𝑡 is labor market tightness. Symmetrically, a
vacancy meets an unemployed worker at rate 𝑠𝑡 = 𝐴𝑡𝑞 (𝜃𝑡) , where 𝑞 (𝜃) = 𝑝 (𝜃) /𝜃.

3.3. Optimality Conditions

Let 𝑒−𝑟𝑡𝜆𝑡 (𝑧) and 𝑒−𝑟𝑡𝜂𝑡 be the Lagrange multipliers associated with equation (3) and equation (4),
respectively, for 𝑡 ≥ 0. The conditions associated with the optimal choices of 𝑣𝑡 , 𝑢𝑡 , 𝑅𝑡 , and 𝑛𝑡 (𝑧)
are:

𝑘𝑡 = 𝐴𝑡𝑀2 (1, 𝜃)
∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 = 𝐴𝑡𝑞𝑡 (1 − 𝜇𝑡)
∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧, (5)

𝜂𝑡 = 𝑏𝑡 + 𝐴𝑡𝑀1 (1, 𝜃)
∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 = 𝑏𝑡 + 𝐴𝑡 𝑝𝑡𝜇𝑡

∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧, (6)

𝜂𝑡 = 𝑦𝑡𝑅𝑡 , and (7)

𝑦𝑡𝑧 − 𝜂𝑡 − 𝛿𝜆𝑡 (𝑧) = 𝑟𝜆𝑡 (𝑧) −
·
𝜆𝑡 (𝑧) for 𝑧 ≥ 𝑅𝑡 , (8)

where 𝜇𝑡 ≡ 𝜕𝑀𝑡

𝜕𝑢𝑡

𝑢𝑡
𝑀𝑡

= 𝜇 (𝜃𝑡) is the elasticity of matches with respect to unemployment.
Equation (5) states that the optimal mass of vacancies equates the marginal cost 𝑘𝑡 to the marginal

benefit: the additional matches created by an extra vacancy, 𝐴𝑡
𝜕𝑀𝑡

𝜕𝑣𝑡
= 𝐴𝑡𝑞𝑡 (1 − 𝜇𝑡), multiplied by

the expected shadow value of a filled job.
Equation (6) requires that the shadow flow value of an unemployed worker, 𝜂𝑡 , equals the flow

of output while unemployed, 𝑏𝑡 , plus the additional matches generated by an unemployed worker,
𝐴𝑡

𝜕𝑀𝑡

𝜕𝑢𝑡
= 𝐴𝑡 𝑝𝑡𝜇𝑡 , times expected shadow value of a match.

Equation (7) implies that the optimal reservation productivity 𝑅𝑡 is such that the production of
the marginal worker, 𝑦𝑡𝑅𝑡 , equals the shadow flow value of unemployment, 𝜂𝑡 . Finally, equation (8)
characterizes the shadow value 𝜆𝑡 (𝑧) of a filled job of quality 𝑧.

We now rewrite these expressions in a form that will be useful later. Combining equation (6)
and equation (7) yields:

𝑦𝑡𝑅𝑡 − 𝑏𝑡 = 𝐴𝑡 𝑝𝑡𝜇𝑡

∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧.

Substituting equation (5) into this expression leads to our first key relationship:

𝑦𝑡𝑅𝑡 − 𝑏𝑡

𝑘𝑡
=

𝑝𝑡𝜇𝑡

𝑞𝑡 (1 − 𝜇𝑡)
=

𝜇 (𝜃𝑡)
1 − 𝜇 (𝜃𝑡)

𝜃𝑡 . (9)
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Next, substituting equation (7) into equation (8) gives:

(𝑟 + 𝛿) 𝜆𝑡 (𝑧) = 𝑦𝑡𝑧 − 𝑦𝑡𝑅𝑡 +
·
𝜆𝑡 (𝑧) for 𝑧 ≥ 𝑅𝑡 . (10)

This is the familiar value function equation in which 𝜆𝑡 (𝑧) denotes the social value of a match.
Solving this differential equation (see Appendix) yields:

𝜆𝑡 (𝑧) − 𝑒−(𝑟+𝛿)𝑑𝜆𝑡+𝑑 (𝑧) =
∫ 𝑑

0
𝑒−(𝑟+𝛿)𝜏 (𝑦𝑡+𝜏𝑧 − 𝑦𝑡+𝜏𝑅𝑡+𝜏) 𝑑𝜏. (11)

The transversality condition 𝑒−(𝑟+𝛿)𝑑𝜆𝑡+𝑑 = 0 must hold. If 𝑑 is finite, this implies 𝜆𝑡+𝑑 = 0 or,
from equation (10),

𝑧 = 𝑅𝑡+𝑑𝑡 (𝑧) . (12)

Equation (12) defines 𝑑𝑡 (𝑧), the optimal longevity of a match with productivity 𝑧 at time 𝑡, absent
an exogenous destruction shock. Substituting this into equation (11) gives:

𝜆𝑡 (𝑧) =
∫ 𝑑 (𝑧,𝑡)

0
𝑒−(𝑟+𝛿)𝜏 (𝑦𝑡+𝜏𝑧 − 𝑦𝑡+𝜏𝑅𝑡+𝜏) 𝑑𝜏. (13)

3.4. Aggregates

The measure of aggregate employment with match quality below 𝑧𝑡 is:

𝑁𝑡 (𝑧𝑡) ≡
∫ 𝑧𝑡

𝑅𝑡

𝑛𝑡 (𝑥)𝑑𝑥. (14)

Total employment is then:
𝑁𝑡 = 𝑁𝑡 (∞) = 1 − 𝑢.

From equation (3) and equation (14), we obtain:

·
𝑁 𝑡 (𝑧𝑡) = 𝑛𝑡 (𝑧𝑡)

·
𝑧𝑡 − 𝑛𝑡 (𝑅𝑡)

·
𝑅𝑡 +

∫ 𝑧𝑡

𝑅𝑡

·
𝑛𝑡 (𝑥)𝑑𝑥 (15)

= 𝑛𝑡 (𝑧𝑡)
·
𝑧𝑡 − 𝑛𝑡 (𝑅𝑡)

·
𝑅𝑡 +

∫ 𝑧𝑡

𝑅𝑡

[𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡) 𝑓 (𝑥) − 𝛿𝑛𝑡 (𝑥)] 𝑑𝑥

= 𝑛𝑡 (𝑧𝑡)
·
𝑧𝑡 − 𝑛𝑡 (𝑅𝑡)

·
𝑅𝑡 + 𝑢𝑡𝐴𝑡 𝑝𝑡 (𝐹 (𝑧𝑡) − 𝐹 (𝑅𝑡)) − 𝛿𝑁𝑡 (𝑧𝑡) .

This expression decomposes employment below 𝑧𝑡 into net inflows from new matches and outflows
from job destructions.
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Similarly, the law of motion for total employment can be expressed as:

·
𝑁 𝑡 =

∫ ∞

𝑅𝑡

·
𝑛𝑡 (𝑧)𝑑𝑧 − 𝑛𝑡 (𝑅𝑡)

·
𝑅𝑡 (16)

= 𝑢𝑡𝐴𝑡 𝑝𝑡 (1 − 𝐹 (𝑅𝑡)) − 𝛿𝑁𝑡 − 𝑛𝑡 (𝑅𝑡)
·
𝑅𝑡 .

Here, total employment depends on the inflow from unemployed workers matched to jobs above 𝑅𝑡

and the outflow from job destruction. Finally, define the cumulative distribution of match qualities
as:

𝐺 𝑡 (𝑧) ≡
𝑁𝑡 (𝑧)
𝑁𝑡

. (17)

This is the fraction of employed workers in matches with productivity below 𝑧.

3.5. Balanced Growth

3.5.1. Definition

The definition of a balanced growth path (BGP) is central, as it imposes restrictions on endogenous
variables and frees equations that help identify the exogenous forces—particularly the dynamics of
𝑘𝑡 , 𝑏𝑡 , and the function 𝐹—needed to sustain the path. We begin with the general definition.

Definition (BGP): A Balanced Growth Path (BGP) is an initial state 𝐺0(𝑧) and an associated
efficient allocation such that unemployment, tightness, and the employment-to-unemployment
(EU) and unemployment-to-employment (UE) rates remain constant over time, while aggregate
productivity and search efficiency grow at constant rates 𝑔𝑦 ≥ 0 and 𝑔𝐴 ≥ 0.

This is the definition that MM emphasize in the abstract and introduction of their paper. It
guarantees constancy of aggregate labor-market variables but imposes no restriction on the evolution
of the match-quality distribution 𝐺 𝑡 (𝑧𝑡). It is natural, however, to require that 𝐺 𝑡 (𝑧𝑡) exhibit some
form of stationarity.

Definition (SBGP): A Stationary Balanced Growth Path (SBGP) is a BGP such that

𝐺 𝑡 (𝑇𝑡 (𝑧)) = 𝐺0(𝑧) for all 𝑧 ≥ 𝑅0,

where 𝑇𝑡 (𝑧) is a time transformation of 𝑧 capturing how the distribution evolves over time. The
following, more restrictive version, is the one MM adopt to prove their main result, Theorem 1.

Definition (SI-BGP): A Scale-Invariant Balanced Growth Path (SI-BGP) is an SBGP for which
𝑇𝑡 (𝑧) = 𝑧𝑒𝑔𝑧 𝑡 .

An SI-BGP is therefore a special case of an SBGP—one that imposes a proportional (multiplica-
tive) transformation on the endogenous distribution 𝐺 𝑡 . MM highlight the broader BGP definition in
their abstract and introduction but adopt the more restrictive SI-BGP in their analytical derivations.
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The general BGP concept requires only that aggregate labor-market variables remain stationary and
imposes no structure on 𝐺 𝑡 , consistent with MM’s stated objective: “We seek conditions for the
existence of a balanced growth path (BGP), where unemployment, vacancy, and worker’s transition
rates remain constant in the face of improvements in the production and search technologies.”

The scale-invariance assumption on 𝐺 𝑡 follows related work in endogenous growth theory (e.g.,
Perla and Tonetti, 2014; Lucas and Moll, 2014; Buera and Oberfield, 2020; Benhabib et al., 2021),
where it is purposeful because it generates growth. In the present context—focused on explaining
labor-market stationarity—it inadvertently introduces growth even though it is not required for the
stated objective. One implication is that the reservation productivity, the lower bound of support,
must grow at rate 𝑔𝑧 along an SI-BGP:

𝑅𝑡 = 𝑅0𝑒
𝑔𝑧 𝑡 .

The broader BGP and SBGP definitions impose no such restriction. In our exponential example
below, 𝑇𝑡 (𝑧) = 𝑧 + 𝜙𝑡, so the reservation productivity instead follows

𝑅𝑡 = 𝑅0 + 𝜙𝑡, 𝜙 > 0.

3.6. BGP System of Equations

Along a BGP, the following versions of equations (5), (9), (12), (13), (15), and (16) must hold. First,
the first order condition with respect to vacancies becomes

𝑘𝑡 = 𝐴𝑡𝑀2 (1, 𝜃)
∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧, (18)

while the reservation condition reads

𝑦𝑡𝑅𝑡 − 𝑏𝑡

𝑘𝑡
=

𝑀1 (1, 𝜃)
𝑀2 (1, 𝜃)

=
𝜇 (𝜃)

1 − 𝜇 (𝜃) 𝜃. (19)

Match longevity is defined by
𝑧 = 𝑅𝑡+𝑑𝑡 (𝑧) , (20)

and the shadow value of a filled job satisfies

𝜆𝑡 (𝑧) =
∫ 𝑑 (𝑧)

0
𝑒−(𝑟+𝛿)𝜏 (𝑦𝑡+𝜏𝑧 − 𝑦𝑡+𝜏𝑅𝑡+𝜏) 𝑑𝜏. (21)
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The dynamics of employment by productivity are given by

𝑛𝑡 (𝑧𝑡)
·
𝑧𝑡 + 𝑢𝐴𝑡 𝑝 (𝜃) (𝐹 (𝑧𝑡) − 𝐹 (𝑅𝑡)) = 𝑛𝑡 (𝑅𝑡)

·
𝑅𝑡 + 𝛿𝑁𝑡 (𝑧𝑡) . (22)

In steady state, inflows into unemployment must equal outflows, implying

𝑢ℎ𝑢𝑒 = (1 − 𝑢) ℎ𝑒𝑢, (23)

where the job-finding and job-destruction rates are given by

ℎ𝑢𝑒 ≡ 𝐴𝑡 𝑝 (𝜃) (1 − 𝐹 (𝑅𝑡)) , and (24)

ℎ𝑒𝑢 ≡ 𝛿 + 𝑛𝑡 (𝑅𝑡)
𝑁

·
𝑅𝑡 , (25)

respectively, with total employment 𝑁 = 1 − 𝑢.
Given parameters, these conditions can be used to solve for 𝑑𝑡 (𝑧), 𝑅𝑡 , 𝜃, 𝜆𝑡 (𝑧) , 𝑛𝑡 (𝑧), ℎ𝑢𝑒, and

ℎ𝑒𝑢 . Equation (22) corresponds to equation (15) when
·
𝑁 𝑡 (𝑧𝑡) = 0, and equation (23) corresponds

to equation (16) when
·
𝑁 𝑡 = 0. Finally, equation (24) and equation (25) provide explicit definitions

for the steady-state job-finding and job-destruction rates.
As in MM, it is convenient to work with the distribution 𝐺 𝑡 defined in equation (17). To derive

the implied restrictions on 𝐺, substitute equations (23)-(24) into equation (22):

𝑛𝑡 (𝑧𝑡)
·
𝑧𝑡 + 𝑢𝐴𝑡 𝑝(𝜃) (𝐹 (𝑧𝑡) − 𝐹 (𝑅𝑡)) = ℎ𝑒𝑢𝑁 − 𝛿𝑁 + 𝛿𝑁𝑡 (𝑧𝑡)

= 𝑢ℎ𝑢𝑒 + 𝛿 (𝑁𝑡 (𝑧𝑡) − 𝑁)
= 𝑢𝐴𝑡 𝑝(𝜃) (1 − 𝐹 (𝑅𝑡)) + 𝛿 (𝑁𝑡 (𝑧𝑡) − 𝑁) .

Simplifying yields:

𝑛𝑡 (𝑧𝑡)
·
𝑧𝑡 = 𝑢𝐴𝑡 𝑝(𝜃) (1 − 𝐹 (𝑧𝑡)) + 𝛿 (1 − 𝑢)

(
𝑁𝑡 (𝑧𝑡)
𝑁

− 1
)
.

From equation (17) we have that (1 − 𝑢)𝐺′
𝑡 (𝑧) = 𝑛𝑡 (𝑧). Substituting this into the previous expression

gives:
(1 − 𝑢)

(
𝐺′

𝑡 (𝑧𝑡)
·
𝑧𝑡 + 𝛿 (1 − 𝐺 𝑡 (𝑧))

)
= 𝑢𝐴𝑡 𝑝(𝜃) (1 − 𝐹 (𝑧𝑡)) , (26)

which provides the implied restriction on the evolution of the endogenous employment distribution.
Moreover, the job destruction rate (25) becomes:

ℎ𝑒𝑢 = 𝛿 + 𝐺′
𝑡 (𝑅𝑡)

·
𝑅𝑡 . (27)
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These last two equations can replace equation (22) and equation (25) in the definition of BGP.
On a scaled invariant BGP (SI-BGP), productivity grows at a constant rate ¤𝑧𝑡/𝑧𝑡 = 𝑔𝑧. Substituting
this into equation (26) and equation (27) yields

(1 − 𝑢)
(
𝐺′

𝑡 (𝑧𝑡)𝑧𝑡𝑔𝑧 + 𝛿 (1 − 𝐺 𝑡 (𝑧))
)
= 𝑢𝐴𝑡 𝑝(𝜃) (1 − 𝐹 (𝑧𝑡)) , (28)

ℎ𝑒𝑢 = 𝛿 + 𝐺′
𝑡 (𝑅𝑡)𝑅𝑡𝑔𝑧 . (29)

These two conditions replace equation (26) and equation (27) in the definition of an SI-BGP.
Finally, average match quality satisfies

𝑍𝑡 =

∫
𝑅𝑡

𝑧𝐺′
𝑡 (𝑧)𝑑𝑧, (30)

which links the distribution of employed matches to aggregate productivity.
Decentralization and efficiency. A direct comparison shows the connection between the social

planner’s solution and the decentralized equilibrium in MM. Our system of equations defining an
SI-BGP is identical to theirs if 𝛿 = 0 (i.e., all job separations are endogenously determined by the
reservation rule) and the matching elasticity 𝜇(𝜃) is replaced by a constant workers’ bargaining power
𝛾. In other words, when the Hosios condition holds and the matching function is Cobb–Douglas,
MM’s decentralized equilibrium is efficient.

Proposition 1 (Efficiency of the MM Equilibrium). Consider the decentralized equilibrium in
Martellini and Menzio (2020). If job separations are entirely endogenous (𝛿 = 0) and the matching
function is Cobb–Douglas with elasticity 𝜇 equal to the workers’ bargaining power 𝛾, then the
decentralized equilibrium coincides with the social planner’s allocation. Under these conditions,
the equilibrium satisfies the Hosios efficiency criterion, and the scale-invariant balanced growth
path (SI-BGP) is efficient.

3.7. Characterization

We now present three main results. The first two parallel MM’s Lemma 1 and Theorem 1, which
establish necessary and sufficient conditions for the existence of a SI-BGP. Our results are novel in
that they pertain to efficient rather than decentralized equilibrium allocations and allow for both
endogenous and exogenous separations, whereas MM consider only the endogenous separations.

The third result is a counterexample: a SBGP that is not an SI-BGP, where the distribution 𝐹 is
exponential rather than Pareto, yet labor market statistics remain constant over time. This example
demonstrates that search models need not be constrained by the narrow conditions of MM’s Lemma
1 and Theorem 1.
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Lemma 1 (Necessary conditions for a SI-BGP). Let 𝑔𝑦 ≥ 0 and 𝑔𝐴 > 0 be arbitrary growth rates
for the production and search technologies.
1. A SI-BGP may exist only if (a) the distribution 𝐹 is Pareto with an arbitrary coefficient 𝛼;
(b) the growth rate of the vacancy cost, 𝑔𝑘 , and the growth rate of the unemployment benefit,
𝑔𝑏, are equal to 𝑔𝑦 + 𝑔𝑧; and (c) the discount rate 𝑟 is greater than 𝑔𝑦 + 𝑔𝑧.
2. In any SI-BGP, the growth rate 𝑔𝑧 of the distribution 𝐺 𝑡 is equal to 𝑔𝐴/𝛼.

The proof of Lemma 1 follows MM closely and is therefore omitted. The need for a Pareto
distribution follows from our discussion in Section 2. Intuitively, a Pareto distribution is required to
ensure scale invariance of match quality, so that the reservation cutoff can grow proportionally over
time. Moreover, equation (12) in MM, needed for the proof, is analogous to our equation (19), except
that our expression involves the endogenous elasticity 𝜇 (𝜃) rather than the exogenous bargaining
weight 𝛾. But since 𝜃 is constant along a BGP, this difference does not affect the proof of Lemma 1.

Assuming that the conditions of Lemma 1 are satisfied, the next step is to show that a SI-BGP
exists and is unique. This amounts to verifying that, under those conditions, the system of equations
defining a SI-BGP can be solved and yields a unique set of functions and values for 𝑑𝑡 (𝑧), 𝑅𝑡 , 𝜃,
𝜆𝑡 (𝑧) , 𝐺 𝑡 (𝑧), ℎ𝑢𝑒, and ℎ𝑒𝑢 . Following MM’s steps, this system can be reduced to two equations in
the two unknowns 𝑅0 and 𝜃:

𝑅0 = (𝐴0𝑀2 (1, 𝜃)Φ1𝑦0/𝑘0)1/(𝛼−1) , and (31)

𝑅0 =
𝑏0
𝑦0

+ 𝑀1 (1, 𝜃)
𝑀2 (1, 𝜃)

𝑘0
𝑦0

, (32)

where
Φ1 =

𝑧𝛼
𝑙

(𝛼 − 1)
(
(𝛼 − 1) 𝑔𝑧 +

(
𝑟 + 𝛿 − 𝑔𝑦

) ) . (33)

Given the assumed properties of 𝑀, this system has a unique solution. Equation (31) is a strictly
decreasing function of 𝜃, spanning from +∞ to 0, while equation (32) is a strictly increasing function
of 𝜃, spanning from 0 to +∞. By the intermediate value theorem, the two curves intersect at a unique
𝜃, which binds down a unique solution for 𝑅0 and 𝜃. The solution for 𝑅𝑡 is then 𝑅𝑡 = 𝑅0𝑒

(𝑔𝐴/𝛼)𝑡 . A
unique solution for 𝐺0(𝑧) can then be found.

Given that 𝐹 is Pareto, equation (28) reads:

(1 − 𝑢)
(
𝐺′

𝑡 (𝑧)𝑧𝑔𝑧 + 𝛿 (1 − 𝐺 𝑡 (𝑧))
)
= 𝑢𝐴𝑡 𝑝 (𝜃)

(
𝑧𝑙

𝑧

)𝛼
.

This is a differential equation for 𝐺 𝑡 (𝑧). A natural guess for the solution is 𝐺 𝑡 (𝑧) = 1 −
(
𝑅𝑡

𝑧

)𝛼
.
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Substituting this into the differential equation yields

(1 − 𝑢)
(
𝑅𝑡

𝑧

)𝛼
(𝛼𝑔𝑧 + 𝛿) = 𝑢𝐴𝑡 𝑝 (𝜃)

(
𝑧𝑙

𝑧

)𝛼
.

This equation is satisfied if

(1 − 𝑢) (𝛼𝑔𝑧 + 𝛿) = 𝑢𝐴𝑡 𝑝 (𝜃)
( 𝑧𝑙
𝑅

)𝛼
= 𝑢𝐴𝑡 𝑝 (𝜃) (1 − 𝐹 (𝑅)) = 𝑢ℎ𝑢𝑒,

or
𝑢 =

𝛼𝑔𝑧 + 𝛿

𝛼𝑔𝑧 + 𝛿 + ℎ𝑢𝑒
=

𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + ℎ𝑢𝑒
.

This condition is consistent with equation (23) and equation (29), together with the guessed
solution for 𝐺 𝑡 (𝑧), thereby confirming its validity. Hence, an efficient SI-BGP exists, is unique
and—importantly—is continuous at 𝑔𝐴 = 0 if 𝛿 > 0. This continuity is possible because 𝛿 > 0
allows for exogenous job destruction. By contrast, if 𝛿 = 0 and 𝑔𝐴 = 0, there would be no job
destruction along a SI-BGP making full employment an absorbing state. The following theorem
collects these results.

Theorem 1 (Existence and properties of a SI-BGP). Let 𝑔𝐴 > 0, 𝑔𝑦 ≥ 0, and 𝛿 > 0. An efficient
SI-BGP exists if and only if (a) 𝐹 is Pareto with coefficient 𝛼 > 1; (b) 𝑔𝑏 and 𝑔𝑘 satisfy
𝑔𝑏 = 𝑔𝑦 + 𝑔𝐴/𝛼 and 𝑔𝑘 = 𝑔𝑦 + 𝑔𝐴/𝛼; and (c) 𝑟 > 𝑔𝑦 + 𝑔𝐴/𝛼.

If an efficient SI-BGP exists, it is unique, continuous at 𝑔𝐴 = 0, and has the following
properties:
(i) 𝑢, 𝜃, ℎ𝑢𝑒, and ℎ𝑒𝑢 are constant, with ℎ𝑢𝑒 = 𝐴0𝑝(𝜃) (1 − 𝐹 (𝑅0)) , ℎ𝑒𝑢 = 𝑔𝐴 + 𝛿;
(ii) 𝐺 𝑡 (𝑧𝑒𝑔𝑧 𝑡) = 𝐺0(𝑧) with 𝑔𝑧 = 𝑔𝐴/𝛼 and 𝐺0(𝑧) = 1 −

(
𝑅0
𝑧

)𝛼
; and

(iii) labor productivity grows at the rate 𝑔𝑦 + 𝑔𝐴/𝛼.

The theorem confirms MM’s findings for the planner. Under DMP decentralization, efficient
and market allocations generally differ, except when the Hosios condition holds and the matching
function is Cobb-Douglas. In contrast to MM, our SI-BGP is continuous at 𝑔𝐴 = 0.

We now present the main result of this subsection: an example of an SBGP that is not scale-
invariant (SI-BGP). We refer to this case as an AI-BGP (“Additive Invariant”). As shown in Section
2, when the sampling distribution is exponential rather than Pareto, maintaining a constant UE
rate requires the reservation productivity to rise linearly rather than exponentially over time. This
linear drift preserves the stationarity of aggregate labor-market variables and prevents declining
search frictions from generating long-run growth. The limit of our example therefore corresponds to
an SI-BGP without growth. The following proposition establishes that such an equilibrium arises
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endogenously when unemployment benefits increase linearly over time while the cost of posting
vacancies remains constant.

Proposition 2 (AI-BGP). Let 𝑦 = 1, 𝑔𝐴 > 0, 𝐹 (𝑧) = 1 − 𝑒−𝜈𝑧, 𝑘𝑡 = 𝑘 , and 𝑏𝑡 = 𝑏 + (𝑔𝐴/𝜈) 𝑡. Then
there exists a unique efficient BGP such that:
(i) 𝑢, 𝜃, ℎ𝑢𝑒, and ℎ𝑒𝑢 are constant, with ℎ𝑢𝑒 = 𝐴0𝑝(𝜃) (1 − 𝐹 (𝑅0)) , ℎ𝑒𝑢 = 𝑔𝐴 + 𝛿;
(ii) 𝑅𝑡 = 𝑅0 + (𝑔𝐴/𝜈) 𝑡;
(iii) 𝐺 𝑡 (𝑧 + (𝑔𝐴/𝜈) 𝑡) = 𝐺0(𝑧) = 1 − 𝑒−𝜈(𝑧−𝑅0);
(iv) average productivity satisfies 𝑍𝑡 = 1/𝜈 + 𝑅𝑡 . Hence

¤𝑍𝑡
𝑍𝑡

=
𝑔𝐴

1 + 𝜈𝑅0 + 𝑔𝐴𝑡
−→ 0 as 𝑡 → ∞.

Proof. Following MM’s steps, the system reduces to two equations in the two unknowns 𝑅0 and 𝜃.
Equation (24) becomes

ℎ𝑢𝑒 = 𝐴0𝑒
𝑔𝐴𝑡 𝑝 (𝜃) 𝑒−𝜈𝑅𝑡 = 𝐴0𝑝 (𝜃) 𝑒−𝜈𝑅0 .

From this expression, it follows that
𝑅𝑡 = 𝑅0 +

𝑔𝐴

𝜈
𝑡. (34)

Substituting into equation (19) yields the first equation in two unknowns:

𝑅𝑡 − 𝑏𝑡

𝑘
=

𝑅0 − 𝑏

𝑘
=

𝑀1 (1, 𝜃)
𝑀2 (1, 𝜃)

. (35)

Next, using equation (34) in equation (20) gives 𝑑 (𝑧) = (𝑧 − 𝑅𝑡) /(𝑔𝐴/𝜈). The appendix shows that∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 = Φ2𝑒
−𝜈𝑅𝑡 , (36)

where Φ2 = 1
𝑟+𝛿

1
𝜈

[
𝑟+𝛿−𝑔𝐴
𝑟+𝛿 + 1

𝑟+𝛿
𝑔2
𝐴

𝑟+𝛿+𝑔𝐴

]
. Plugging this and equation (34) into equation (18) gives

the second equation:

𝑘 = 𝐴𝑡𝑒
−𝜈𝑅𝑡𝑀2 (1, 𝜃)Φ2 = 𝐴0𝑒

−𝜈𝑅0𝑀2 (1, 𝜃)Φ2. (37)

Equations (35) and (37) determine 𝜃 and 𝑅0. Given the assumed properties of 𝑀 , this system admits
a unique solution. Now consider equation (26):

(1 − 𝑢)
(
𝐺′

𝑡 (𝑧)
𝑔𝐴

𝜈
+ 𝛿 (1 − 𝐺 𝑡 (𝑧))

)
= 𝑢𝐴𝑡 𝑝 (𝜃) 𝑒−𝜈𝑧 .

This is a differential equation for 𝐺 𝑡 (𝑧). Given the exponential form on the right-hand side, a natural
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conjecture is
𝐺 𝑡 (𝑧) = 1 − 𝑒−𝜈(𝑧−𝑅𝑡 ) .

Substituting yields
(1 − 𝑢) 𝑒−𝜈(𝑧−𝑅𝑡 ) (𝑔𝐴 + 𝛿) = 𝑢𝐴𝑡 𝑝 (𝜃) 𝑒−𝜈𝑧 .

This holds if and only if

(1 − 𝑢) (𝑔𝐴 + 𝛿) = 𝑢𝐴𝑡 𝑝 (𝜃) 𝑒−𝜈𝑅𝑡 = 𝑢𝐴𝑡 𝑝 (𝜃) (1 − 𝐹 (𝑅𝑡)) = 𝑢ℎ𝑢𝑒,

or equivalently,
𝑢 =

𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + ℎ𝑢𝑒
=

𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + 𝐴𝑡 𝑝 (𝜃) 𝑒−𝜈𝑅𝑡
,

which follows from equations (23), (24), (27), and the conjecture for 𝐺. Thus, the conjecture is
verified. Finally, average match quality—equal to average labor productivity since 𝑦 = 1— defined
in equation (30) satisfies

𝑍𝑡 =
1
𝜈
+ 𝑅𝑡 .

Hence,
·
𝑍 𝑡

𝑍𝑡
=

·
𝑅𝑡

𝑍𝑡
=

𝑔𝐴

1 + 𝜈𝑅0 + 𝑔𝐴𝑡
→ 0.

□

Comparing Theorem 1 and Proposition 1, we find that if the sampling distribution is Pareto,
a SI-BGP requires both the cost of posting a vacancy and unemployment compensation to rise
exponentially over time. By contrast, if the sampling distribution is exponential, the cost of posting
a vacancy can remain constant, while unemployment compensation needs to grow only linearly.
The underlying reason is that under an exponential distribution, small changes in the reservation
threshold have large effects on the probability of drawing a high-quality match. Consequently,
parameters do not need to adjust as much to sustain a BGP.

In summary, MM imposes an unnecessary extra assumption. They assume that in any BGP, the
reservation productivity must grow at a constant rate. Proposition (2) removes this assumption.
While it is true that an increase in reservation productivity is necessary to offset the persistent
improvements in search technology, this increase does not need to be exponential over time.

3.8. The Role of Search Frictions

We now turn to the implications of eliminating search frictions. In the canonical DMP model,
removing frictions—by making vacancy posting costless—drives unemployment to zero. In the
MM inspection framework, by contrast, unemployment does not vanish: although jobs become
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easy to find, workers simultaneously become excessively selective, exactly offsetting the improved
matching prospects. In our exponential benchmark, however, unemployment does vanish, since
self-selection is too weak to neutralize the ease of finding work.

The welfare predictions differ just as sharply. In the DMP model, the gains from eliminating
frictions are finite, bounded by the additional output that unemployed workers could contribute.
In both the MM model and our exponential inspection variant, however, the welfare gains are
unbounded. As matching becomes arbitrarily easy, it is optimal for workers to hold out for ever-better
offers, and since match quality is unbounded above, expected gains diverge. This implausible
implication highlights a core weakness of inspection frameworks. The present section illustrates
these weaknesses, while Section 4 develops an alternative mechanism that avoids them.

For this analysis, we adopt the canonical Cobb-Douglas (CD) matching function, 𝑀 (𝑣, 𝑢) =
𝑢𝛾𝑣1−𝛾, to facilitate comparison with MM’s formulas.

3.8.1. The Underlying Source of Unemployment

In the two models we are considering, the unemployment rate satisfies

𝑢 =
𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + ℎ𝑢𝑒
, (38)

where ℎ𝑢𝑒 satisfies equation (24). In this section, we are interested in the limit of this expres-
sion as 𝑘 → 0. In the DMP model, free vacancy posting would drive vacancies, tightness, 𝜃,
workers’ matching probability, and the UE transition probability, ℎ𝑢𝑒, to infinite, thus eliminating
unemployment.

3.8.2. MM’s Model

In the MM model, the UE transition satisfies

ℎ𝑢𝑒 ≡ 𝐴0𝑝 (𝜃) (1 − 𝐹 (𝑅0)) = 𝐴0𝜃
1−𝛾𝑧𝛼𝑙 𝑅

−𝛼
0 . (39)

In order to characterize ℎ𝑢𝑒, we need to characterize 𝜃 and 𝑅0.
Using the assumed matching function, equation (31) and equation (32) simplify to:

𝑅0 =

(
𝐴0 (1 − 𝛾)Φ1

𝑦0

𝑘
1−𝛾
0

)1/(𝛼−1)

(𝜃𝑘0)−𝛾/(𝛼−1) , and (40)

𝑅0 =
𝑏0
𝑦0

+ 𝛾

1 − 𝛾

𝜃𝑘0
𝑦0

. (41)
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Equation (40) depicts 𝑅0 as a decreasing function of 𝜃𝑘0 while equation (41) depicts 𝑅0 as an
increasing function of 𝜃𝑘0. A unique solution for 𝑅0 and 𝜃𝑘0 exists. Moreover, as 𝑘0 decreases, the
curve from equation (40) shifts upwards and that from equation (41) remains unchanged, pushing
the solution toward higher 𝑅0 and 𝜃𝑘0, but also higher 𝜃. As 𝑘 → 0 both 𝑅0 and 𝜃 diverge to ∞.

For 𝑘 sufficiently low, the constant term 𝑏0
𝑦0

in equation (41) becomes negligible so that

𝑅0 ≈ 𝛾

1 − 𝛾

𝜃𝑘0
𝑦0

.

Using this and equation (40), closed form solution for 𝑅0 and 𝜃 can be found as:

𝜃𝑘→0 = Ω1𝑘
− 𝛼

𝛼−(1−𝛾)
0 , and (42)

𝑅𝑘→0 =
𝛾

1 − 𝛾

Ω1
𝑦0

𝑘
− 1−𝛾

𝛼−(1−𝛾)
0 , (43)

where Ω1 =

[
1−𝛾
𝛾

(𝐴0 (1 − 𝛾)Φ1)1/(𝛼−1) 𝑦𝛼/(𝛼−1)
0

] 1
1+𝛾/(𝛼−1)

. These solutions are valid in the limit, but
if 𝑏0 = 0, they are also valid for any 𝑘 . Substituting these solutions into equation (39), the solution
for ℎ𝑢𝑒 is obtained. The solution then can be substituted into equation (38) to find unemployment.
The following proposition summarizes the main results.

Proposition 3. In a SI-BGP with 𝑀 (𝑢, 𝑣) = 𝑢𝛾𝑣1−𝛾, and 𝑘 → 0,

ℎ𝑢𝑒 → ℎ∗𝑢𝑒 = (𝛼 − 1)
(
𝛼 − 1
𝛼

𝑔𝐴 + 𝑟 + 𝛿 − 𝑔𝑦

)
/𝛾,

𝑢∗ =
𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + ℎ∗𝑢𝑒
> 0.

Proof. See Appendix. □

Discussion. Unlike the DMP model, unemployment persists in MM’s model even when
posting vacancies is costless. Firms post infinitely many vacancies, making matches certain,
but workers become increasingly selective and wait for the best possible draws. Consequently,
unemployment remains strictly positive and independent of level parameters such as 𝐴0 or 𝑧𝑙 .
Moreover, unemployment decreases with the Pareto tail parameter: thinner tails induce workers to
accept jobs more readily. The key driver of long run unemployment in MM’s model is the random
nature of match quality. If 𝛼 = ∞, so that match quality is deterministically 𝑧𝑙 , then unemployment
would fall to zero when 𝑘 = 0.
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3.8.3. SBGP with Exponential Sampling Distribution

The outcome changes when the sampling distribution is exponential rather than Pareto. Because the
exponential distribution has much thinner tails, the selection motive is too weak to sustain positive
unemployment in the presence of abundant job offers. As a result, unemployment vanishes once
vacancies become costless, as we show.

Under the exponential distribution and CD matching, the UE transition rate is

ℎ𝑢𝑒 = 𝐴0𝑝 (𝜃) 𝑒−𝜈𝑅0 = 𝐴0𝜃
1−𝛾𝑒−𝜈𝑅0 .

To determine ℎ𝑢𝑒, we solve for (𝑅0, 𝜃) using the efficient conditions (35) and (37). Under CD
matching, they become:

𝑘 = 𝐴0𝑒
−𝜈𝑅0 (1 − 𝛾) 𝜃−𝛾Φ2, and (44)

𝜃 =
1 − 𝛾

𝛾

𝑅0 − 𝑏0
𝑘

. (45)

Substituting equation (45) into equation (44) gives a single equation in 𝑅0:

𝐿𝐻𝑆(𝑅0) :=
𝑒−𝜈𝑅0

(𝑅0 − 𝑏0)𝛾
=

𝑘1−𝛾

𝐴0 (1 − 𝛾)1−𝛾 𝛾𝛾Φ2
. (46)

Equation (46) admits a unique solution since 𝐿𝐻𝑆(𝑏0) = ∞, 𝐿𝐻𝑆(∞) = 0, and 𝐿𝐻𝑆′(𝑅0) < 0.
Moreover, as 𝑘 → 0, 𝑅0 → ∞. Once 𝑅0 is determined, 𝜃 follows from equation (45).

Rewriting equation (44),

𝑘 = 𝐴0𝑒
−𝜈𝑅0 (1 − 𝛾) 𝜃−𝛾Φ2 = ℎ𝑢𝑒 (1 − 𝛾) 𝜃−1Φ2,

which implies, using equation (45),

ℎ𝑢𝑒 =
𝑘𝜃

(1 − 𝛾)Φ2
=

𝑘
1−𝛾
𝛾

𝑅0−𝑏0
𝑘

(1 − 𝛾)Φ2
=

𝑅0 − 𝑏0
𝛾Φ2

.

Thus the UE rate is increasing in the reservation quality 𝑅0. Since lim𝑘→0 𝑅0 = ∞, it follows that
ℎ𝑢𝑒 → ∞. Consequently, unemployment converges to zero.
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3.8.4. Welfare Cost of Search Frictions

We now highlight a problematic feature of inspection models: eliminating search frictions by
making vacancy posting costless leads to unbounded productivity and infinite welfare gains. Using
equation (35) and CD matching, social welfare can be written as

𝑊 =

∫ ∞

𝑡=0
𝑒−𝑟𝑡

[∫
𝑅𝑡

𝑦𝑡𝑧𝑛𝑡 (𝑧)𝑑𝑧 + 𝑢𝑏𝑡 − 𝑘𝑡𝑣

]
𝑑𝑡 (47)

=

∫ ∞

𝑡=0
𝑒−𝑟𝑡

[
(1 − 𝑢) 𝑦𝑡

∫
𝑅𝑡

𝑧𝑡𝑔𝑡 (𝑧)𝑑𝑧 + 𝑢𝑏𝑡 − 𝑘𝑡𝜃𝑢

]
𝑑𝑡

=

∫ ∞

𝑡=0
𝑒−𝑟𝑡

[
(1 − 𝑢) 𝑦𝑡𝑍𝑡 + 𝑢𝑏𝑡 −

1 − 𝛾

𝛾
(𝑦𝑡𝑅𝑡 − 𝑏𝑡) 𝑢

]
𝑑𝑡,

where 𝑔𝑡 (𝑧) is the density corresponding to the distribution function 𝐺 𝑡 (𝑧).
In the MM model, Lemma 1 and Proposition 1 yield the closed-form expression

𝑊 =

∫ ∞

𝑡=0
𝑒−(𝑟−𝑔𝑦−𝑔𝑧)𝑡

[
(1 − 𝑢) 𝛼

𝛼 − 1
𝑦0𝑅0 + 𝑢𝑏0 −

1 − 𝛾

𝛾
(𝑦0𝑅0 − 𝑏0) 𝑢

]
𝑑𝑡

=

[
(1 − 𝑢) 𝛼

𝛼−1 − 1−𝛾
𝛾
𝑢

]
𝑦0𝑅0 + 1

𝛾
𝑢𝑏0

𝑟 − 𝑔𝑦 − 𝑔𝑧
. (48)

Since 𝑅0 → ∞ as 𝑘 → 0, welfare diverges to +∞ provided the coefficient on 𝑦0𝑅0 is positive—
that is, when unemployment is not too high. Conditions (a) and (c) in Theorem 1 guarantee that it is,
in fact, the case.

Proposition 4. In an SI-BGP with 𝑀 (𝑢, 𝑣) = 𝑢𝛾𝑣1−𝛾, lim𝑘→0 𝑊 = ∞.

Proof. See Appendix. □

The implication of Proposition 4 is stark: eliminating search frictions delivers infinite welfare
gains.

In our AI-BGP variant, unemployment vanishes as 𝑘 → 0, so welfare given in equation (47)
simplifies to

lim
𝑘→0

𝑊 =

∫ ∞

𝑡=0
𝑒−𝑟𝑡𝑍𝑡𝑑𝑡 =

∫ ∞

𝑡=0
𝑒−𝑟𝑡

[
1
𝜈
+ 𝑅0 + (𝑔𝐴/𝜈) 𝑡

]
𝑑𝑡

=
1
𝑟

(
1
𝜈
+ 𝑅0

)
+ 𝑔𝐴/𝜈

𝑟2 .

Since 𝑅0 → ∞, welfare again diverges to +∞.
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Conclusion. In both the Pareto and exponential inspection frameworks, eliminating search
frictions leads to unbounded welfare gains. This outcome stands in sharp contrast to the DMP
model, where welfare gains are finite, and highlights a fundamental weakness of inspection models:
they predict implausibly large benefits from removing frictions.

3.9. Possible Generalizations

An SBGP requires that 𝐺 𝑡 (𝑇𝑡 (𝑧)) = 𝐺0(𝑧). So far, we have focused on two cases: the Pareto case, in
which 𝑇𝑡 (𝑧) = 𝑧𝑒𝑔𝑧 𝑡 , and the exponential case, in which 𝑇𝑡 (𝑧) = 𝑧 + 𝜙𝑡. We refer to the corresponding
SBGPs as the SI-BGP (Scale-Invariant) and the AI-BGP (Additive-Invariant), respectively.

We now outline a general methodology for determining the time-transformation function 𝑇𝑡 (𝑧)
for a given sampling distribution 𝐹 (𝑧). Note first that by construction, 𝑅𝑡 = 𝑇𝑡 (𝑅0). Along a BGP,
equation (1) can be written as

𝑅𝑡 = 𝐻−1 (𝜙1𝑒
−𝑔𝐴𝑡 ) ,

where 𝐻 (𝑅𝑡) = 1 − 𝐹 (𝑅𝑡) is the survival function and 𝜙1 is a constant. Because 𝜙1 = 𝐻 (𝑅0), it
follows that

𝑅𝑡 = 𝑇𝑡 (𝑅0) where 𝑇𝑡 (𝑧) ≡ 𝐻−1 (𝐻 (𝑧)𝑒−𝑔𝐴𝑡
)
.

A few illustrative cases include:

1. Pareto: 𝐹 (𝑧) = 1 −
(
𝑧𝑙
𝑧

)𝛼
, 𝐻 (𝑅) =

( 𝑧𝑙
𝑅

)𝛼, 𝐻−1(𝑥) = 𝑧𝑙𝑥
−1/𝛼, 𝑇𝑡 (𝑧) = 𝑧𝑒𝑔𝐴𝑡/𝛼.

2. Exponential: 𝐹 (𝑧) = 1 − 𝑒−𝜈𝑅, 𝐻 (𝑅) = 𝑒−𝜈𝑅, 𝐻−1(𝑥) = −1
𝜈

ln 𝑥, 𝑇𝑡 (𝑧) = 𝑧 + 𝑔𝐴𝑡

𝜈
.

3. Gompertz: 𝐹 (𝑧) = 1 − 𝑒−𝜏(𝑒
𝜈𝑧−1) , 𝐻 (𝑅) = 𝑒−𝜏(𝑒

𝜈𝑅−1) , 𝐻−1(𝑥) = 1
𝜈

ln
(
1 − 1

𝜏
ln 𝑥

)
, 𝑇𝑡 (𝑧) =

1
𝜈

ln
(
𝑒𝜈𝑧 + 𝑔𝐴𝑡

𝜏

)
.

4. Weibull: 𝐹 (𝑧) = 1−𝑒−(𝜈𝑅)𝜏 , 𝐻 (𝑅) = 𝑒−(𝜈𝑅)
𝜏 , 𝐻−1(𝑥) = 1

𝜈
(− ln 𝑥)1/𝜏,𝑇𝑡 (𝑧) = 1

𝜈
((𝜈𝑧)𝜏 + 𝑔𝐴𝑡)1/𝜏.

These examples illustrate that the detrending required to preserve stationarity depends sensitively
on the underlying sampling distribution. Once 𝑇𝑡 (𝑧) is determined, equation (19) can be used to
back out the implied parameter restrictions for 𝑏𝑡 and 𝑘𝑡 :

𝑏𝑡 = 𝑦𝑡𝑇𝑡 (𝑅0) − 𝑘𝑡
𝑀1(1, 𝜃)
𝑀2(1, 𝜃)

.

Here, 𝑅0 and 𝜃 are endogenous but constant.
The procedure above provides candidates for balanced growth paths. A complete characterization,

however, requires verifying that all BGP-defining equations are jointly satisfied. Because some of
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the necessary integrals may not have closed-form solutions, numerical methods may be needed to
verify existence and fully characterize the corresponding SBGP.

4. Biased Technological Change

This section develops an alternative to the inspection framework: a DMP model with homogeneous
workers and biased technological progress in the matching function. We show that when technological
change is biased and the inputs in the matching function are complements, a well-behaved limiting
BGP exists. This BGP preserves the central properties of the standard DMP model under worker-
augmenting technological progress: welfare gains from eliminating search frictions are finite, and
unemployment vanishes when vacancies are costless.

The section proceeds in two parts. The first subsection formalizes the notion of biased
technological progress in the matching function and provides a sharp characterization for the
constant elasticity of substitution (CES) case. We show that, contrary to MM’s claim, their results
are not robust to the introduction of biased progress. In particular, the limiting growth rate of
matches may converge to zero despite ongoing technological improvements, rendering their main
theorem inapplicable in such cases. This analysis assumes a stationary tightness rate.

The second subsection embeds biased technological progress into the full DMP model. We show
that a BGP with constant tightness emerges endogenously as a general equilibrium outcome—our
main contribution. A key feature of this equilibrium is that it is necessarily inefficient, highlighting
a sharp contrast between planner and market allocations.

4.1. Biased Technological Change in the Matching Function

Section 2 assumed a matching function of the form 𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡). In this formulation, technological
progress is Hicks-neutral. We now consider a more general specification,

𝑀 (𝐴𝑡𝑢𝑡 , 𝐵𝑡𝑣𝑡) ,

where 𝐴𝑡 and 𝐵𝑡 represent unemployment- and vacancy-augmenting technologies, growing at
constant exogenous rates 𝑔𝐴 ≥ 0 and 𝑔𝐵 ≥ 0, respectively.

The job-finding rate is defined as

𝑚𝑡 ≡
𝑀 (𝐴𝑡𝑢𝑡 , 𝐵𝑡𝑣𝑡)

𝑢𝑡
= 𝑀 (𝐴𝑡 , 𝐵𝑡𝜃𝑡) =: 𝑚𝑡 (𝜃𝑡) . (49)

where 𝜃 ≡ 𝑣
𝑢

is the market tightness. For later purposes, it is convenient to define effective tightness
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as
𝜃̂𝑡 ≡

𝐵𝑡𝑣𝑡

𝐴𝑡𝑢𝑡
= 𝜃𝑡

𝐵𝑡

𝐴𝑡

.

When 𝐴𝑡 = 𝐵𝑡 , the function simplifies to 𝐴𝑡𝑀 (𝑢𝑡 , 𝑣𝑡) , the Hicks-neutral case considered by MM.
MM argue that their results extend beyond Hicks-neutral progress:

”In the case of input-augmenting search progress, the rate 𝑔𝑚 converges to some
𝑔∗𝑚... In the limit as 𝑔𝑚 → 𝑔∗𝑚, our theorems hold with 𝑔∗𝑚 replacing 𝑔𝐴.” (MM, footnote
10)3.

However, for their results to hold, it is essential that 𝑔∗𝑚 > 0. Otherwise, their main results do not
apply. If 𝑔𝑚 = 0, then a Pareto distribution cannot be derived from their equation (10). Moreover,
with 𝑔𝐴 = 0 and their assumption 𝛿 = 0, job destruction disappears, and unemployment vanishes in
the limit.

To see why 𝑔∗𝑚 = 0 may naturally arise under biased technological progress, consider the CES
matching function:

𝑀 (𝐴𝑢, 𝐵𝑣) =
{

(𝛼 (𝐴𝑢)𝜎 + (1 − 𝛼) (𝐵𝑣)𝜎)1/𝜎
, 𝜎 ≦ 1, 𝜎 ≠ 0.

(𝐴𝑢)𝛼 (𝐵𝑣)1−𝛼 if 𝜎 = 0.

}
. (50)

This specification has a long tradition in the search-and-matching literature (e.g., Den Haan
et al., 2000; Hagedorn and Manovskii, 2008; Petrosky-Nadeau et al., 2018). The Cobb-Douglas case
corresponds to 𝜎 = 0. Workers and vacancies are complements if 𝜎 < 0 and substitutes if 𝜎 > 0.
Córdoba et al. (2024) discusses several advantages of the CES function with complementarity.

For the CES function, the growth rate of meetings is

𝑔𝑚,𝑡 = 𝜇

(
𝜃̂𝑡

)
𝑔𝐴 +

(
1 − 𝜇

(
𝜃̂𝑡

))
𝑔𝐵, (51)

where
𝜇

(
𝜃̂

)
=

𝛼

𝛼 + (1 − 𝛼) 𝜃̂𝜎
. (52)

The formula confirms that when technological progress is Hicks-neutral (𝑔𝐴 = 𝑔𝐵), we obtain
𝑔𝑚,𝑡 = 𝑔𝐴 = 𝑔𝐵 > 0. The next proposition characterizes the limit behavior when technological
progress is either worker or vacancy augmenting.

Proposition 5. Suppose 0 < 𝜃 < ∞, and either (i) 𝑔𝐴 > 0 and 𝑔𝐵 = 0; or (ii) 𝑔𝐵 > 0 and 𝑔𝐴 = 0.
3MM use the notation 𝑔𝑝 for the growth rate of meetings; we use 𝑔𝑚.
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Then

𝑔∗𝑚 = lim
𝑡→∞

𝑔𝑚,𝑡 =


max {𝑔𝐴, 𝑔𝐵} > 0 if 𝜎 > 0

𝛼𝑔𝐴 + (1 − 𝛼) 𝑔𝐵 > 0 if 𝜎 = 0
0 if 𝜎 < 0

 .

Proof. As 𝑡 → ∞, effective tightness satisfies

𝜃̂𝑡 →
{

0, 𝑔𝐴 > 0,
∞, 𝑔𝐵 > 0

}
.

From equation (52):

lim
𝑡→∞

𝜇

(
𝜃̂𝑡

)
=


𝜎 > 0 𝜎 < 0

𝑔𝐴 > 0 1 0
𝑔𝐵 > 0 0 1

 .

Substituting into equation (51) yields:

lim
𝑡→∞

𝑔𝑚,𝑡 =


𝜎 > 0 𝜎 < 0

𝑔𝐴 > 0 𝑔𝐴 0
𝑔𝐵 > 0 𝑔𝐵 0

 .

□

The proposition shows that when inputs are substitutes, 𝑔∗𝑚 > 0, which is necessary for MM’s
results to hold. The more interesting cases are when inputs are complements (𝜎 < 0) and
technological progress is biased, either worker-augmenting or vacancy-augmenting, in which cases
𝑔∗𝑚 = 0. In these cases, MM’s results do not hold. The reason is that biased progress runs into
diminishing returns: the non-improving input becomes a bottleneck under strict complementarity,
creating an upper bound on meetings even in the presence of continued technological progress.

We now explore the implications of this limit behavior within the DMP search-and-matching
model with declining search frictions.

4.2. DMP Model with Biased Technological Change

There is a unit one of workers, of which 𝑛𝑡 are employed and 𝑢𝑡 are unemployed. Employed workers
produce 𝑦𝑡 = 𝑦𝑒𝑔𝑡 , the unemployed workers produce 𝑏𝑡 = 𝑏𝑒𝑔𝑡 , where 𝑦 > 𝑏, and vacancy posting
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costs 𝑘𝑡 = 𝑘𝑒𝑔𝑡 at time 𝑡. Given an initial employment level 𝑛0, the social planner solves

max
{𝑛𝑡 ,𝑣𝑡 ,𝑢𝑡 }∞𝑡=0

∫ ∞

0
𝑒−(𝑟−𝑔)𝑡 (𝑛𝑡𝑦 + 𝑢𝑡𝑏 − 𝑘𝑣𝑡) 𝑑𝑡 subject to

·
𝑛𝑡 = 𝑀 (𝐴𝑡𝑢𝑡 , 𝐵𝑡𝑣𝑡) − 𝛿𝑛𝑡 ,∀𝑡 ≥ 0, (53a)

𝑢𝑡 = 1 − 𝑛𝑡 , ∀𝑡 ≥ 0, (53b)

where 𝐴𝑡 = 𝐴0𝑒
𝑔𝐴𝑡 and 𝐵𝑡 = 𝐵0𝑒

𝑔𝐵𝑡 , 𝑟 > 𝑔, and 𝛿 > 0. Let 𝜌 ≡ 𝑟 − 𝑔 denote the effective discount
rate.

Optimality conditions. Let 𝑒−𝜌𝑡𝜆𝑡 and 𝑒−𝜌𝑡𝜂𝑡 denote the Lagrange multipliers associated with
constraints (53a) and (53b), respectively. The first-order conditions with respect to 𝑣𝑡 , 𝑢𝑡 , and 𝑛𝑡 are:

𝑘 =
𝜕𝑀𝑡

𝜕𝑣𝑡
𝜆𝑡 = 𝑠𝑡 (1 − 𝜇𝑡) 𝜆𝑡 , (54)

𝜂𝑡 = 𝑏 + 𝜕𝑀𝑡

𝜕𝑢𝑡
𝜆𝑡 = 𝑏 + 𝑚𝑡𝜇𝑡𝜆𝑡 , and (55)

𝑦 − 𝜂𝑡 − 𝛿𝜆𝑡 = 𝜌𝜆𝑡 −
·
𝜆𝑡 . (56)

Here, 𝑠𝑡 is the job-filling rate and 𝜇𝑡 the elasticity of the matching function with respect to ”effective”
job seekers:

𝑠𝑡 ≡
𝑀𝑡

𝑣𝑡
= 𝑚𝑡 (𝜃𝑡) /𝜃𝑡 and (57)

𝜇𝑡 ≡
𝜕𝑀𝑡

𝜕 (𝐴𝑡𝑢𝑡)
𝐴𝑡𝑢𝑡

𝑀𝑡

= 𝜇

(
𝜃̂𝑡

)
.

Optimality also requires the transversality condition lim𝑡→∞ 𝑒−𝜌𝑡𝜆𝑡𝑛𝑡 = 0.
Equations (54) to (56) mirror those of the canonical DMP framework. From equation (54), the

efficient number of vacancies equates the marginal cost 𝑘 with the marginal new matches associated
to a vacancy, 𝜕𝑀𝑡

𝜕𝑣𝑡
, multiplied by the shadow value of a match, 𝜆𝑡 . The marginal gain 𝜕𝑀𝑡

𝜕𝑣𝑡
equals the

average gain 𝑠𝑡 =
𝑀𝑡

𝑣𝑡
, scaled down by the elasticity 1 − 𝜇𝑡 .

Equation (55) states that the shadow value flow of an unemployed worker, 𝜂𝑡 , is equal the
worker’s own output, 𝑏, plus the expected contribution to new matches, 𝜕𝑀𝑡

𝜕𝑢𝑡
, weighted by 𝜆𝑡 . Here,

the marginal gain 𝜕𝑀𝑡

𝜕𝑢𝑡
equals the average gain, 𝑚𝑡 , scaled by 𝜇𝑡 .

Finally, combining equation (55) and equation (56) yields the value of a match:

𝜌𝜆𝑡 = 𝑦 − 𝑏 − (𝛿 + 𝑚𝑡𝜇𝑡) 𝜆𝑡 +
·
𝜆𝑡 . (58)

This expression shows that the net return of a match is the added output 𝑦 − 𝑏 plus the the capital
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gains,
·
𝜆𝑡 , offset by the effective depreciation rate. Depreciation includes both the exogenous job

destruction rate, 𝛿, and the endogenous effect 𝑚𝑡𝜇𝑡 , which captures the fact that a successful match
reduces the pool of job seekers and thereby lowers future matching opportunities.

4.2.1. Balanced Growth Characterization

Consider balanced growth paths (BGPs) along which variables grow at constant rates. The following
proposition shows that—despite improvements in the matching technology—labor-market variables
remain stationary along any BGP.

Proposition 6. Along a balanced growth path, the growth rates of 𝑛, 𝑢, 𝑚, 𝜇, 𝜆, 𝑠, and 𝜃 are zero.

Proof. Since population is constant, both employment (𝑛) and unemployment (𝑢) must be constant
along a BGP. Equation (53a) then reduces to

𝛿𝑛 = 𝑚𝑡𝑢 = 𝑚𝑢.

Thus 𝑚𝑡 = 𝑚 along a BPG. Similarly, since 𝜇𝑡 ∈ [0, 1] , we must have 𝜇𝑡 = 𝜇. Substituting these
results into equation (58) and imposing the transversality condition yields

𝜆𝑡 = 𝜆 =
𝑦 − 𝑏

𝜌 + 𝛿 + 𝑚𝜇
.

Substituting into equation (54) gives

𝑘 =
𝑠𝑡 (1 − 𝜇)
𝜌 + 𝛿 + 𝑚𝜇

(𝑦 − 𝑏) . (59)

Equation (59) implies that 𝑠𝑡 = 𝑠, and since 𝑚 = 𝑠𝜃𝑡 then 𝜃𝑡 = 𝜃 along a BGP. □

Equation (59) determines 𝜃, and the unemployment rate follows from

𝑢 =
𝛿

𝑚 + 𝛿
. (60)

Markets. Equation (59) parallels Pissarides (2000, Eq. 1.24) in a decentralized setting where
firms post vacancies with success probability 𝑠∗, workers find jobs with probability 𝜃∗𝑠∗, firms
capture a fraction 1 − 𝛾 of the match surplus, and free entry holds. In our notation:

𝑘 =
𝑠∗ (1 − 𝛾)
𝜌 + 𝛿 + 𝑚∗𝛾

(𝑦 − 𝑏) .4 (61)

4Pissarides (2000) assumes 𝑔 = 0, unlike here.
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Free entry further implies that the expected net return of posting a vacancy, 𝑠∗ (𝑦 − 𝑤∗) /𝑘 − 𝛿,
equals the effective market return 𝜌, where 𝑤 which yields the wage equation:

𝑤∗ = 𝑦 − (𝜌 + 𝛿) 𝑘
𝑠∗

.

The market equilibrium is generally inefficient because the worker’s bargaining power is fixed at a
constant value 𝛾 > 0, while in the planner’s allocation the effective bargaining power is variable,
𝜇

(
𝜃̂𝑡

)
. This permits the market equilibrium to sustain a BGP; the corresponding efficient allocation,

by contrast, necessarily rules one out.

4.2.2. Equilibrium

Consider first the market solution. According to equation (61), a BGP with declining search costs
exists if they do not affect 𝑚∗ or 𝑠∗ = 𝑚∗/𝜃∗. Taking time derivatives of equation (49) yields

·
𝑚

∗
𝑡

𝑚∗
𝑡

= 𝑀1 (𝐴𝑡 , 𝐵𝑡𝜃
∗) 𝐴𝑡

𝑀

·
𝐴𝑡

𝐴𝑡

+ 𝑀2 (𝐴𝑡 , 𝐵𝑡𝜃
∗) 𝜃𝐵𝑡

𝑀

·
𝐵𝑡

𝐵𝑡

(62)

= 𝜇

(
𝜃̂∗𝑡

)
𝑔𝐴 +

(
1 − 𝜇

(
𝜃̂∗

))
𝑔𝐵.

All terms in this expression are non-negative. The following proposition follows naturally:

Proposition 7. There is no BGP in the market economy when 𝑔𝐴 > 0 and 𝑔𝐵 > 0. In particular,
there is no BGP with Hicks-neutral technological progress in the matching function.

This proposition confirms MM’s result for the Hicks-neutral case, namely that there is no BGP
in a model without inspection. The next lemma suggests that a BGP may exist when technological
change is either vacancy or worker augmenting.

Lemma 2 Suppose 𝜃 = 𝜃∗ ∈ (0,∞) . For
·
𝑚

∗
𝑡

𝑚∗
𝑡
= 0, one of the following two conditions must hold:

(i) 𝑔𝐴 > 0, 𝑔𝐵 = 0, and 𝜇 (0) = 0, or
(ii) 𝑔𝐵 > 0, 𝑔𝐴 = 0, and 𝜇 (∞) = 1.

Proof. (i) If 𝑔𝐴 > 0 and 𝑔𝐵 = 0, then 𝜃̂∗𝑡 → 0 and 𝜇

(
𝜃̂∗𝑡

)
→ 𝜇 (0) = 0. Hence,

·
𝑚

∗
𝑡

𝑚∗
𝑡
=

𝜇

(
𝜃̂∗𝑡

)
𝑔𝐴 → 0. (ii) If 𝑔𝐴 = 0 and 𝑔𝐵 > 1, then 𝜃̂∗𝑡 → ∞ and 𝜇

(
𝜃̂∗𝑡

)
→ 𝜇 (∞) = 1. Hence,

·
𝑚𝑡

𝑚𝑡
=

(
1 − 𝜇

(
𝜃̂∗𝑡

))
𝑔𝐵 → 0. □

At this point, it is convenient to focus on the CES matching function given in equation (50).
Applying the lemma, we find that strict complementarity is a necessary condition for the existence
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of a BGP. In the CES case, the function 𝜇

(
𝜃̂

)
satisfies equation (52). When inputs are strict

complements, 𝜎 < 0, we have 𝜇 (0) = 0 and 𝜇 (∞) = 1, exactly as required by the lemma. In
contrast, when inputs are substitutes (𝜎 > 0), we obtain 𝜇 (0) = 1 and 𝜇 (∞) = 0—the opposite of
the condition required by the lemma. Therefore, strict complementarity is necessary, though not
sufficient, for the existence of a BGP.

4.3. CES Matching

Proposition 8. Suppose 𝑀 is a CES matching function. An interior BGP of the market economy
exists in the following two cases:
(i) 𝑔𝐴 > 0, 𝑔𝐵 = 0, 𝜎 < 0, 𝛾 > 0, and

𝑘 <
(1 − 𝛼)1/𝜎 𝐵 (1 − 𝛾)

𝜌 + 𝛿
(𝑦 − 𝑏) ; (63)

(ii) 𝑔𝐴 = 0, 𝑔𝐵 > 0, 𝜎 < 0, 𝛾 < 1, and 𝑦 > 𝑏.

Proof. (i) Under the stated conditions, the matching function converges to 𝑀 (𝐴𝑢, 𝐵𝑣) = (1 − 𝛼)1/𝜎 𝐵𝑣.
Hence, 𝑠∗1 = (1 − 𝛼)1/𝜎 𝐵, 𝑚∗

1 = (1 − 𝛼)1/𝜎 𝐵𝜃∗1, 𝑢
∗
1 = 𝛿

𝑚∗
1+𝛿

,

𝜃∗1 =
(1 − 𝛼)1/𝜎 𝐵 (1 − 𝛾) (𝑦 − 𝑏) − (𝜌 + 𝛿) 𝑘

(1 − 𝛼)1/𝜎 𝐵𝛾𝑘
, and

𝑤∗
1 = 𝑦 − (𝜌 + 𝛿) 𝑘

(1 − 𝛼)1/𝜎 𝐵
.

Condition (63) guarantees that an interior solution for 𝜃∗ exists. (ii) Under the stated conditions,
the matching function converges to 𝑀 (𝐴𝑢, 𝐵𝑣) = 𝛼1/𝜎𝐴𝑢. Thus, 𝑠∗2 = 𝛼1/𝜎𝐴/𝜃∗2, 𝑚

∗
2 = 𝛼1/𝜎𝐴,

𝑢∗2 = 𝛿
𝑚∗

2+𝛿
,

𝜃∗2 =
𝛼1/𝜎𝐴 (1 − 𝛾)
𝜌 + 𝛿 + 𝛼1/𝜎𝐴𝛾

𝑦 − 𝑏

𝑘
, and

𝑤∗
2 = 𝑦 − (𝜌 + 𝛿) (1 − 𝛾) (𝑦 − 𝑏)

𝜌 + 𝛿 + 𝛼1/𝜎𝐴𝛾
.

An interior solution exist iff 0 < 𝛾 < 1 and 𝑦 > 𝑏. □

Discussion. The limit BGP characterized in Proposition 1 emerges because the CES matching
function converges to a linear technology in which the sole effective input is the one not experiencing
technological progress. With labor-augmenting progress, the matching function converges to a
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linear function of effective vacancies. Conversely, with vacancy-augmenting progress, it converges
to a linear function of effective unemployed workers.

Despite these asymptotic linearities, the unemployment rate remains well behaved. For example,
increases in the vacancy posting cost, unemployment benefits, or workers’ bargaining power reduce
market tightness and raise unemployment in the usual way.

Proposition 8 provides a counterexample to MM’s claim—made in their footnote 10—that their
model remains valid in the limit even under input-specific technological change. Not only the
growth rate of the meetings rate goes to zero in these cases, but the canonical DMP model delivers a
well-defined limit BGP without requiring heterogeneity, Pareto distributions, or inspection.

Of the two cases identified in Proposition 8, case (i) is the only one that delivers the standard
result that unemployment vanishes when vacancy posting is costless. Furthermore, Córdoba et al.
(2024) also show that labor-augmenting technological progress in the matching function can account
for a significant share of the decline in the labor share and the fall in market tightness observed
between 1980 and 2007.

4.3.1. Welfare Cost of Search Frictions

An important distinction between the DMP model analyzed in this section and the inspection models
discussed previously lies in the potential welfare gains from eliminating search frictions. In a BGP,
social welfare satisfies:

𝑊 (𝑢) =
𝑛𝑦 + 𝑢𝑏 − 𝑘𝑣

𝑟 − 𝑔
=

𝑦 − 𝑢𝑦 + 𝑢𝑏 − 𝑘𝜃𝑢

𝑟 − 𝑔

=

𝑦 − (𝑦 − 𝑏)
(

𝜌+𝛿+𝑚
𝜌+𝛿+𝑚𝜇

)
𝑢

𝑟 − 𝑔
(using equations (57) and (61))

= 𝑦

1 − (1 − 𝜑)
(
𝑢(𝜌+𝛿)+(1−𝑢)𝛿
𝑢(𝜌+𝛿)+(1−𝑢)𝛿𝜇

)
𝑢

𝑟 − 𝑔
(using equation (60)),

where 𝜑 = 𝑏/𝑦.
The relative welfare costs of search frictions can then be defined as:

Ψ (𝑢) ≡ 𝑊 (0) −𝑊 (𝑢)
𝑊 (0) = (1 − 𝜑)

(
𝑢 (𝜌 + 𝛿) + (1 − 𝑢) 𝛿
𝑢 (𝜌 + 𝛿) + (1 − 𝑢) 𝜇𝛿

)
𝑢.

This measure is relative to the ideal benchmark of full employment. Such benchmark is achieved
when 𝑘 = 0 in case (i) of Proposition 8 but not in case (ii). The key point is that the welfare costs of
search frictions, or unemployment for short, is bounded above by 1 − 𝜑, which occurs when 𝜇 = 0
and 𝜌 = 0.
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In practice, estimated welfare costs fall well below this upper bound. For example, under the
parametrization employed by Shimer (2005), the welfare cost is Ψ (𝑢) = 6.5%.5

5. Conclusion

Martellini and Menzio (2020) pose a fundamental puzzle: how can technological progress in the
matching function (“declining search frictions”) be reconciled with the empirical stationarity of
unemployment, tightness, and the Beveridge curve? In the spirit of King et al. (1988), they seek
necessary and sufficient conditions under which balanced growth can coexist with those stationary
labor-market facts.

This paper offers three main conclusions.
First, MM’s characterization is too strong. Their conditions (inspection goods with Pareto-

distributed quality) are sufficient but not necessary. Balanced growth paths arise outside their
framework.

Second, the inspection approach has implausible implications in the cases we study. In the
Pareto version, unemployment persists even when vacancies are free to post, and the welfare gains
from eliminating search frictions are unbounded. In the exponential version, unemployment does
vanish with costless posting, yet the welfare gains remain infinite because workers keep raising their
reservation standards as matching becomes arbitrarily easy and the quality support is unbounded.

Third, a constructive alternative exists within a standard DMP environment once we allow
for biased technological change and complementarity in matching. With complementary inputs,
biased progress in one input makes the other input relatively scarcer, creating a bottleneck and
hence diminishing returns to search improvements. The growth rate of meetings falls to zero,
delivering a well-behaved BGP with stationary unemployment, tightness, and transition rates. In this
setting, unemployment vanishes as frictions disappear but only if progress is worker-augmenting,
and—crucially—welfare gains are finite. However, the BGP is necessarily inefficient: the market
equilibrium admits a stationary path with declining frictions, whereas the planner’s allocation does
not, reflecting the failure of the Hosios condition when bargaining weights are fixed but the planner’s
shadow elasticity varies with tightness.

These results reframe the interpretations MM consider. They do not support the view that search
frictions are irrelevant, nor that the historical decline in frictions has been too small. Instead, they
point to a specific countervailing mechanism—endogenous bottlenecks from complementarity under
biased progress—that can neutralize the growth effects of improved matching while preserving
stationary labor-market variables. They also show that MM’s sufficiency result does not pin down
a unique path: stationarity can emerge without perpetual growth in reservation quality (as in the

5We use 𝜑 = 0.4, 𝜌 = 0.012, 𝜇 = 0.72, 𝛿 = 0.1, and 𝑢 = 4%.
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exponential case) and without attributing growth to declining frictions (as in the biased-technology
DMP case).

Finally, this agenda opens clear avenues for future work. Empirically, measuring the bias in
the matching progress (worker- vs. vacancy-augmenting) and the degree of complementarity is
central to distinguishing between inspection and bottleneck mechanisms and to conducting credible
welfare assessments. Theoretically, exploring policy in environments with biased progress and
complementarity—where market BGPs are inefficient—can clarify the role of bargaining institutions
as well as vacancy taxes or subsidies. Relatedly, Córdoba et al. (2024) show that CES matching with
worker-augmenting progress can account for secular movements in the labor share and tightness,
underscoring the empirical relevance of biased technological change in matching.
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Appendix

A.1. Proofs of Equations and Propositions

Proof of Equation (11): To solve this differential equation, write it as

𝑒−(𝑟+𝛿)𝜏
[ ·
𝜆𝑡+𝜏 (𝑧) − (𝑟 + 𝛿) 𝜆𝑡+𝜏 (𝑧)

]
= 𝑒−(𝑟+𝛿)𝜏 [𝑦𝑡+𝜏𝑅𝑡+𝜏 − 𝑦𝑡+𝜏𝑧] .

Integrating yields:∫ 𝑑

0
𝑒−(𝑟+𝛿)𝜏

[ ·
𝜆𝑡+𝜏 (𝑧) − (𝑟 + 𝛿) 𝜆𝑡+𝜏 (𝑧)

]
𝑑𝜏 =

∫ 𝑑

0
𝑒−(𝑟+𝛿)𝜏 [𝑦𝑡+𝜏𝑅𝑡+𝜏 − 𝑦𝑡+𝜏𝑧] 𝑑𝜏.

The integral on the left-hand side simplifies to:[
𝑒−(𝑟+𝛿)𝜏𝜆𝑡+𝜏 (𝑧)

]𝑑
0 = 𝑒−(𝑟+𝛿)𝑑𝜆𝑡+𝑑 (𝑧) − 𝜆𝑡 (𝑧).
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Proof of Equation (36): Let a =: 𝑔𝐴/𝜈. Equation (13) becomes

𝜆𝑡 (𝑧) =

∫ 𝑑 (𝑧,𝑡)

0
𝑒−(𝑟+𝛿)𝜏 (𝑧 − 𝑅𝑡 − 𝑎𝜏) 𝑑𝜏

= (𝑧 − 𝑅𝑡)
∫ 𝑑𝑡 (𝑧)

0
𝑒−(𝑟+𝛿)𝜏𝑑𝜏 − 𝑎

∫ 𝑑𝑡 (𝑧)

0
𝜏𝑒−(𝑟+𝛿)𝜏𝑑𝜏

= (𝑧 − 𝑅𝑡)
[
−𝑒−(𝑟+𝛿)𝜏

𝑟 + 𝛿

]𝑑𝑡 (𝑧)
0

− 𝑎

[
−𝑒−(𝑟+𝛿)𝜏

(
𝜏

𝑟 + 𝛿
+ 1
(𝑟 + 𝑠)2

)]𝑑𝑡 (𝑧)
0

=
𝑧 − 𝑅𝑡

𝑟 + 𝛿

[
−𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧) + 1

]
− 𝑎

𝑟 + 𝛿

[
−𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

(
𝑑𝑡 (𝑧) +

1
𝑟 + 𝛿

)
+ 1
𝑟 + 𝛿

]
=

𝑎𝑑𝑡 (𝑧)
𝑟 + 𝛿

[
1 − 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

]
+ 𝑎

𝑟 + 𝛿

[
𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

(
𝑑𝑡 (𝑧) +

1
𝑟 + 𝛿

)
− 1
𝑟 + 𝛿

]
=

𝑎

𝑟 + 𝛿

[
𝑑𝑡 (𝑧)

[
1 − 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

]
+ 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

(
𝑑𝑡 (𝑧) +

1
𝑟 + 𝛿

)
− 1
𝑟 + 𝛿

]
=

𝑎

𝑟 + 𝛿

[
𝑑𝑡 (𝑧)

[
1 − 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

]
+ 𝑑𝑡 (𝑧) 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧) + 𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

1
𝑟 + 𝛿

− 1
𝑟 + 𝛿

]
=

𝑎

𝑟 + 𝛿

[
𝑑𝑡 (𝑧) +

𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿
− 1
𝑟 + 𝛿

]
.

We next need to calculate∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 =
𝑎

𝑟 + 𝛿

∫
𝑅𝑡

[
𝑑𝑡 (𝑧) +

𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿
− 1
𝑟 + 𝛿

]
𝑓 (𝑧)𝑑𝑧

=
𝑎

𝑟 + 𝛿

∫
𝑅𝑡

[
𝑧 − 𝑅𝑡

𝑎
+ 𝑒−(𝑟+𝛿)

𝑧−𝑅𝑡
𝑎

𝑟 + 𝛿
− 1
𝑟 + 𝛿

]
𝜈𝑒−𝜈𝑧𝑑𝑧

∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 = (1 − 𝐹 (𝑅𝑡))
∫
𝑅𝑡

𝜆𝑡 (𝑧)
𝑓 (𝑧)

1 − 𝐹 (𝑅𝑡)
𝑑𝑧

= (1 − 𝐹 (𝑅𝑡)) 𝐸 [𝜆𝑡 (𝑧) |𝑧 > 𝑅]

= (1 − 𝐹 (𝑅𝑡))
𝑎

𝑟 + 𝛿
𝐸

[
𝑑𝑡 (𝑧) +

𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿
− 1
𝑟 + 𝛿

|𝑧 > 𝑅

]
= (1 − 𝐹 (𝑅𝑡))

𝑎

𝑟 + 𝛿

{
𝐸𝑧>𝑅 [𝑑𝑡 (𝑧)] + 𝐸𝑧>𝑅

[
𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿

]
− 1
𝑟 + 𝛿

}
.

Now,

𝐸𝑧>𝑅 [𝑑𝑡 (𝑧)] = 𝐸𝑧>𝑅

[
𝑧 − 𝑅𝑡

𝑎

]
=

1
𝑎
𝐸𝑧>𝑅𝑡

𝑧 − 𝑅𝑡

𝑎
=

1
𝑎

(
1
𝜈
+ 𝑅𝑡

)
− 𝑅𝑡

𝑎
=

1
𝑎𝜈

; and
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𝐸𝑧>𝑅

[
𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿

]
=

1
𝑟 + 𝛿

𝐸𝑧>𝑅

[
𝑒−(𝑟+𝛿)𝑑𝑡 (𝑧)

𝑟 + 𝛿

]
=

1
𝑟 + 𝛿

[ 𝜈𝑎

𝑟 + 𝛿 + 𝜈𝑎

]
.

Therefore, ∫
𝑅𝑡

𝜆𝑡 (𝑧) 𝑓 (𝑧)𝑑𝑧 = (1 − 𝐹 (𝑅𝑡))
𝑎

𝑟 + 𝛿

{
1
𝑎𝜈

+ 1
𝑟 + 𝛿

𝜈𝑎

𝑟 + 𝛿 + 𝜈𝑎
− 1
𝑟 + 𝛿

}
= 𝑒−𝜈𝑅𝑡

𝑎

𝑟 + 𝛿

[
1
𝑎𝜈

+ 1
𝑟 + 𝛿

𝜈𝑎

𝑟 + 𝛿 + 𝜈𝑎
− 1
𝑟 + 𝛿

]
= 𝑒−𝜈𝑅𝑡

1
(𝑟 + 𝛿)𝜈

[
1 + 1

𝑟 + 𝛿

(𝜈𝑎)2

𝑟 + 𝛿 + 𝜈𝑎
− 𝑎𝜈

𝑟 + 𝛿

]
= 𝑒−𝜈𝑅𝑡

1
(𝑟 + 𝛿)𝜈

[
𝑟 + 𝛿 − 𝑔𝐴

𝑟 + 𝛿
+ 1
𝑟 + 𝛿

𝑔2
𝐴

𝑟 + 𝛿 + 𝑔𝐴

]
. (64)

Proof of Proposition 3: Substituting equation (42) and equation (43) into equation (39):

ℎ∞𝑢𝑒 = 𝐴0𝑧
𝛼
𝑙

(
Ω1𝑘

− 𝛼
𝛼−(1−𝛾)

0

)1−𝛾 (
𝛾

1 − 𝛾

Ω1
𝑦0

𝑘
− 1−𝛾

𝛼−(1−𝛾)
0

)−𝛼
= Ω2𝑘

𝛼(1−𝛾)−𝛼(1−𝛾)
𝛼−(1−𝛾)

0 = Ω2,

where

Ω2 = 𝐴0𝑧
𝛼
𝑙 Ω

1−𝛾
1

(
𝛾

1 − 𝛾

Ω1
𝑦0

)−𝛼
= 𝐴0𝑧

𝛼
𝑙

(
𝛾

1 − 𝛾

1
𝑦0

)−𝛼
Ω

1−𝛾−𝛼
1

= 𝐴0𝑧
𝛼
𝑙

(
𝛾

1 − 𝛾

1
𝑦0

)−𝛼 (
1 − 𝛾

𝛾
(𝐴0 (1 − 𝛾)Φ1)1/(𝛼−1) 𝑦

𝛼
𝛼−1
0

) 1−𝛾−𝛼

1+𝛾/(𝛼−1)

= 𝐴
1+ 1

𝛼−1
1−𝛾−𝛼

1+𝛾/(𝛼−1)
0 𝑦

𝛼+ 𝛼
𝛼−1

1−𝛾−𝛼

1+𝛾/(𝛼−1)
0

×𝑧𝛼𝑙
(

𝛾

1 − 𝛾

)−𝛼 (
1 − 𝛾

𝛾
((1 − 𝛾)Φ1)1/(𝛼−1)

) 1−𝛾−𝛼

1+𝛾/(𝛼−1)

= 𝑧𝛼𝑙

(
𝛾

1 − 𝛾

)−𝛼 (
𝛾−1 (1 − 𝛾)𝛼/(𝛼−1)

) 1−𝛾−𝛼

1+𝛾/(𝛼−1)
Φ−1

1

= 𝑧𝛼𝑙 𝛾
−𝛼− 1−𝛾−𝛼

1+𝛾/(𝛼−1) (1 − 𝛾)𝛼 (1 − 𝛾)−𝛼 Φ−1

= 𝑧𝛼𝑙 𝛾
−1Φ−1

1 .
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Therefore,

ℎ∞𝑈𝐸 = Ω2 = 𝑧𝛼𝑙 𝛾
−1Φ−1

1 =
𝑧𝛼
𝑙
𝛾−1

𝑧𝛼
𝑙

(𝛼−1)( (𝛼−1)𝑔𝑧+(𝑟+𝛿−𝑔𝑦))

= (𝛼 − 1)
(
𝛼 − 1
𝛼

𝑔𝐴 + 𝑟 + 𝛿 − 𝑔𝑦

)
/𝛾.

Proof of Proposition 4: According to equation (48), 𝑊 → ∞ as 𝑘 → ∞ if (1 − 𝑢) 𝛼
𝛼−1 >

1−𝛾
𝛾
𝑢 or

𝛼
𝛼−1

𝛼
𝛼−1 + 1−𝛾

𝛾

=

𝛼
𝛼−1

𝛼𝛾+(1−𝛾) (𝛼−1)
(𝛼−1)𝛾

=
𝛼𝛾

𝛼𝛾 + (1 − 𝛾) (𝛼 − 1)

> 𝑢∞ =
𝑔𝐴 + 𝛿

𝑔𝐴 + 𝛿 + ℎ𝑢𝑒
.

This simplifies to:

𝛼

𝛼 − 1
ℎ∞𝑢𝑒 >

1 − 𝛾

𝛾
(𝑔𝐴 + 𝛿)

𝛼

𝛼 − 1
ℎ∞𝑢𝑒 =

𝛼

𝛾
(𝑟 + 𝛿 − 𝑔𝑦 + 𝑔𝐴 − 𝑔𝑧) =

𝛼

𝛾
(𝑔𝐴 + 𝛿 + 𝑟 − 𝑔𝑦 − 𝑔𝑧).

As long as 𝑟 − 𝑔𝑦 − 𝑔𝑧 > 0, then because 𝛼 > 1 and 1 − 𝛾 < 1

𝛼

𝛼 − 1
ℎ∞𝑢𝑒 =

𝛼

𝛾
(𝑔𝐴 + 𝛿 + 𝑟 − 𝑔𝑦 − 𝑔𝑧) >

1 − 𝛾

𝛾
(𝑔𝐴 + 𝛿).
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