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Initial Margin for Crypto Currencies Risks in Uncleared Markets
Anna Amirdjanova, David Lynch, Anni Zheng
February 11, 2026

ABSTRACT: We examine prospective classification of crypto currencies risks within the ISDA
Standardized Initial Margin Model (SIMM) framework for calculation of initial margin on trades
sensitive to cryptocurrencies’ risk factors in the uncleared market. Consistent with the view that
cryptocurrencies are digital assets that fundamentally rely on distributed ledger technology
(DLT) and induce financial risks that are significantly different from those in traditional risk
classes like commodities or FX, we find that cryptocurrencies are best classified into a distinct
risk class within SIMM that is split into two buckets — pegged and floating (unpegged) crypto
currencies as risk factors - and suggest risk weights’ calibration methodology within the
cryptocurrencies risk class that is consistent with the existing approaches adopted in SIMM.

l. INTRODUCTION

In response to the great financial crisis of 2008-2009, which highlighted systemic risks of
uncleared OTC derivatives and led to their regulation under the “Margin and Capital
Requirements for Covered Swap Entities” (80 Federal Register 74840) — also known as the
Uncleared Margin Rule (UMR) —in the U.S. and a gradual adoption of the BCBS/IOSCO
framework (BCBS-10SCO, 2013) for margin requirements on uncleared swaps worldwide, the
International Swaps and Derivatives Association (ISDA) developed in 2013 the Standardized
Initial Margin Model (SIMM), whose purpose was to provide a standardized method of
calculating initial margin (IM) so that counterparties could easily and quickly agree on the
amount of initial margin to be exchanged, on a daily basis, to compensate the 99t percentile of
potential losses over a 10-day margin period of risk — the time estimate to close out and re-
hedge positions with a defaulting counterparty —in case of a counterparty default. Due to the
model’s intended adoption across a wide range of participants in the uncleared derivatives
market — many of whom are constrained by scarce technological and labor resources — and the
need for frequent exchanges of IM, industry-wide implementation of sophisticated dynamic IM
models was impractical, so ISDA SIMM — a piece-wise static (as recalibrated only semi-annually,
and prior to 2025, annually), sensitivities-based parametric Value-at-Risk-type model — became
the industry’s answer for collateral IM exchange in the uncleared derivatives market. However,
conceived for the needs of the traditional financial market at the time when market
capitalization of crypto assets was barely breaking one billion U.S. dollars, SIMM so far lacks an
ability to calculate IM for crypto-sensitive financial assets despite exponential growth of the
crypto market, with the total crypto market capitalization reaching four trillion U.S. dollars
today.



As crypto market matures, gaining significance in terms of mainstream adoption, market
cap and regulatory oversight, there is an increasing need to incorporate cryptocurrency risks in
the ISDA SIMM model — the de facto industry-wide initial margin model accounting for over 90%
of all IM collected and posted in the uncleared market, with total IM collected stabilized at
around $431 billion in both 2023 and 2024. SIMM currently (in its version 2.8) assigns every
deal to one of the four product classes (rates/FX, equity, credit, and commodity) and the deal’s
risk factors to six risk classes: interest rates, FX, equities, commodities, credit qualifying, and
credit non-qualifying classes. Each risk class is further subdivided into multiple buckets, for
which the risk weights for delta and, as appropriate, vega (in the case of instruments with
sensitivity to implied volatility), curvature (for instruments with optionality), and base
correlation (for credit instruments with sensitivity to correlation between defaults of different
credits within an index or a basket) are calibrated from a total of four years of historical data (of
which 25% comes from a continuous period of significant stress specific to that risk class, and
the rest -- from the most recent 3 years that may be augmented with extra quarters if significant
stress occurred in that period) and are used to weigh sensitivities of a given deal, with weighted
sensitivities factored with calibrated relevant inter-bucket and intra-bucket correlations, to
compute the deal’s delta margin and, where applicable, vega margin, curvature margin, and
base correlation margin components. For a set of deals in the same netting set that are within
the same product class, the latter margin components are then added together for all such
deals to produce the initial margin amounts at each risk class level. Within each product class,
the risk-class level IMs are then aggregated as follows:
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where IM; is the initial margin amount at risk class r and Yrs is the correlation between risk
classes r and s. The SIMM IM at a netting set level is then obtained by simply adding product-
class level IMs across all the product classes (and netting-set level IM can be aggregated further
across netting sets with a given counterparty to produce the counterparty-level IM).

Thus, for computation of initial margin for crypto assets, SIMM’s existing risk classes
framework has to be augmented with a new crypto-specific risk class. In addition, we suggest
creating a new crypto product class (that would allow for recognition of hedging benefits —
depending on correlations — across crypto-specific risk factors) instead of trying to assign crypto
assets to one of the SIMM'’s traditional four product classes. CoinMarketCap, a popular crypto
tracking platform, currently tracks over 18,815 active cryptocurrencies. On the other hand,
cryptocurrency market remains highly concentrated with the top dozen cryptocurrencies



accounting for close to 90% of the total cryptocurrency market capitalization — with Bitcoin
(BTC) alone accounting for 58.5% and Ethereum (ETH) accounting for an additional 12% of
today’s total crypto market cap (Slickcharts, 2025). Thus, from a representativeness point of
view, taking a dozen of top cryptocurrencies (with a half being floating and the other half —
pegged to fiat currencies) should be sufficient to reflect material cryptocurency risks in today’s
crypto market.

Il. DATA

Our cryptocurrencies dataset consists of twelve major cryptocurrencies (six floating — Bitcoin
(BTC), Binance (BNB), Ethereum (ETH), Cardano (ADA), Dogecoin (DOGE), XRP Ledger (XRP) —
and six pegged — United States Dollar Coin (USDC), United States Dollar Tether (USDT), Dai coin
(DAI), True USD (TUSD), Pax Dollar (USDP), and Gemini Dollar (GUSD)), selected based on their
high market capitalization and trading volume, as recorded from CoinGecko, ensuring that the
sample is both popular and representative of the broader crypto market. The summary statistics
are presented in Table 1 below. The daily valuation data was retrieved from public sources —
BitBo and CoinMarketCap.

Table 1. Summary statistics of the twelve cryptocurrencies (six floating in the six top rows and
six pegged in the six bottom rows) used as calibration instruments in the new crypto risk

class.

Name Trading Volume | Market Capitalization Start Date in Our Data | End Date in Our Data Source
BTC 47,651,779,339 2,357,505,109,332 2013-01-01 2025-07-17 BitBo
ETH 55,014,727,363 426,229,665,454 2015-08-11 2025-07-17 CoinMarketCap
XRP 10,910,775,902 193,316,833,394 2013-08-05 2025-07-17 CoinMarketCap
BNB 2,494,844,905 106,643,889,562 2017-07-26 2025-07-17 CoinMarketCap

DOGE 12,527,195,381 34,778,699,738 2013-12-16 2025-07-17 CoinMarketCap
ADA 2,121,665,898 28,852,009,245 2017-11-09 2025-07-17 CoinMarketCap

usDT 160,916,462,044 160,296,240,201 2018-10-09 2025-07-17 CoinMarketCap
usbcC 11,396,661,980 64,166,332,095 2018-10-09 2025-07-17 CoinMarketCap
DAI 144,053,206 3,653,971,165 2019-11-12 2025-07-17 CoinMarketCap

TUSD 20,595,330 494,767,339 2018-10-09 2025-07-17 CoinMarketCap

UsbP 2,785,816 69,931,582 2018-10-09 2025-07-17 CoinMarketCap

GUSD 173,453,860 48,728,737 2018-10-09 2025-07-17 CoinMarketCap

As illustrated in Figure 1 (below), both the floating and pegged cryptocurrency markets are very
concentrated, and, collectively, market capitalization of floating cryptocurrencies far outweighs
that of pegged cryptocurrencies / stablecoins. (On the other hand, in terms of trading volume,
as evidenced by Table 1, USDT far outweighs the rest.)



Since SIMM methodology generally relies on pseudo-indices to determine calibration
periods for each risk class, a crypto index (or several indices) representative of the behavior of
the entire risk class of crypto currencies should ideally be chosen. Among available crypto
indices, BGCI stands out for the following reasons: it was one of the earliest comprehensive
benchmarks (launched on May 3, 2018), earlier than its alternatives such as the Nasdaq Crypto
Index (2021), the CoinDesk 20 Index (2024), and the S&P Cryptocurrency Broad Digital Market
Index (2021). In addition, its monthly rebalancing, as compared to the quarterly schedule of the
other mentioned indices, and strict eligibility rules (requiring assets to qualify for three
consecutive months and applying a 35% cap and 1% floor on weights) allow to reduce additional
spikes in volatility due to rebalancing and keep it reflective of the broader cryptocurrencies
market (without allowing Bitcoin to overly dominate the index).

Figure 1: Cryptocurrency Market Concentration (as of August 2025): The left pie chart shows market
capitalization of selected crypto currencies as a percent of overall crypto market cap. It shows that,
overall, market cap of floating cryptocurrencies far dominates that of pegged cryptocurrencies, and
the twelve crypto currencies selected in this paper account for 85% of the total crypto market
capitalization. The top pie chart on the right shows the six selected pegged crypto currencies as
percent of total pegged crypto market by market cap. The pegged (stablecoin) cryptocurrency market
is very concentrated: it is heavily dominated by USDT, with USDC coming as a remote second. The
bottom chart on the right is similar but is for the floating crypto market. It shows selected floating
crypto currencies as percent of total floating crypto market. The floating cryptocurrency market is very
heavily dominated by Bitcoin, with ETH coming as a far behind second.
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Another index used in this analysis is S&P GSCI, which ISDA employs as a single commodity
index in SIMM to calibrate stress period in commodity risk class. Both BGCl and S&P GSCl data
were retrieved from the Bloomberg Terminal: the BGCI series starts on 2017-08-02 and the S&P
GSCl series starts on 2008-01-02, with both series spanning through 2025-07-17.

M. POTENTIAL RISK CLASS ASSIGNMENT OF CRYPTOCURRENCY BUCKETS IN SIMM

Although the U.S. Commodity Futures Trading Commission (CFTC) classifies a number of the
more material cryptocurrencies (most notably, Bitcoin, Ethereum, but also others like Litecoin,
Tether, etc.) as commodities (CFTC, 2017) subject to the Commodity Exchange Act — with the
classification re-affirmed most recently by the US District Court in judgment for the CFTC in
Commodity Futures Trading Commn. v. lkkurty (2024 WL 3251348), we show that assignment of
cryptocurrencies risks to the existing commodities risk class within SIMM is inadvisable due to a
very different risk profile of cryptocurrencies’ risk factors in comparison to traditional
commodities risk factors and recommend placing crypto risks in a separate risk class.

Calibration of risk weights within each risk class in SIMM requires a determination of an
additional stress period using the so-called “Stress Balance Method,” which relies on
identification of the top 10% of the most volatile, disjoint quarters (since Jan 2, 2008 through
the last day of the current calibration period) for a pseudo-index representing that risk class. For
the commodities risk class, the pseudo-index is S&P GSCI. As shown in Figure 2, a comparison of
the top six most volatile quarters of S&P GSCI 10-day relative returns with the top six most
volatile quarters for 10-day relative returns of the selected twelve cryptocurrencies’ calibration
instruments — six most material pegged cryptocurrencies and six most material floating
cryptocurrencies — shows that neither the pegged nor unpegged cryptocurrencies have a similar
stress periods profile as the commodities pseudo-index S&P GSCl as only one of GSCl’s top six
stress quarters falls close to the cryptocurrencies’ top six stress quarters.

Figure 2. Comparison of top six most volatile quarters of 12 crypto instruments as well as of
the commodities index S&P GSCl and the Bloomberg Galaxy Crypto Index (BGCI)
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In addition, Figure 2 also confirms that the top six floating (unpegged) crypto-currencies (BTC,
BNB, ETH, ADA, DOGE, and XRP) have a distinctly different clustering of the most stressful /
volatile quarters than the (bottom six) pegged crypto-currencies/stablecoins (USDC, USDT, DAI,
TUSD, USDP, GUSD), suggesting that the assumed split into two cryptocurrencies’ buckets based
on pegged vs. unpegged nature was the right call. Among potential candidates for a crypto
(pseudo)index used for determination of a separate cryptocurrency risk class stress period is
Bloomberg Galaxy Crypto Index (BGCI), which tracks well four of the most volatile quarters
among the selected floating cryptocurrencies. However, given the differences in stress quarters’
distribution across floating versus pegged cryptocurrencies, one may either use a second
“pseudo-index” (say, USDT) to determine a separate stress period for pegged currencies or rely
on ISDA’s new “greedy”? algorithm (applied across all twelve selected calibration instruments)
to determine the calibration period(s) for the floating and pegged cryptocurrencies’ buckets.

1 The “greedy” algorithm is used here with permission of ISDA, and ISDA reserves full rights to the algorithm. It
works as follows: Suppose there is a set of N time series over a period T, and one wants to select n most stressed,
disjoint time intervals of fixed length m for that set of time series. Then take a rolling window i of length m (starting
at the beginning of period T), compute the corresponding R-score R(i) defined by equation (1), then shift the
window to the right by one day, compute the corresponding R-score again, and so on, until the last day of the
rolling window coincides with the last day of period T. Then rank the resulting R-scores in decreasing order and pick
the period i; with the highest R-score. Then discard any periods i of length m that overlap with i;. Then from those
left, find the period i; with the next highest R-score. Then discard any periods i of length m overlapping i,. Then
repeat this process until iy, iy, ..., i, are selected. In this paper, the algorithm is used to determine top six stress
quarters for a given risk bucket or risk class (instead of a pseudo-index, like it is currently done in SIMM), with the
set of time series being the set of calibration instruments in that risk bucket or risk class. If some of these six most
stressed quarters fall in the recent 3-year period, the additional stress period gets reduced to a smaller number of
quarters, say, s (like is currently done in SIMM). Then the “greedy” algorithm is used again to find a continuous
single period of s quarters in length (with the highest R-score) to determine the additional stress period (which
together with the recent period is then used for calibration of risk weights in that risk bucket or risk class).



(The “greedy” algorithm was introduced in SIMM version 2.8 for determination of a global
stress period and is currently not used in SIMM for calibration period selection for individual risk
classes, likely due to being too computationally costly for application in buckets/risk classes with
thousands of calibration instruments). However, since cryptocurrencies’ buckets have few
calibration instruments due to crypto industry’s concentration, the “greedy” algorithm is
feasible to use for the crypto risk class and, as Table 5 subsequently illustrates, it provides
superior results for calibration period determination for delta risk weights of the two
cryptocurrencies’ buckets relative to the other methods considered.

To see the effect of placing cryptocurrencies risk factors into a separate risk class versus
placing them into two additional buckets within the existing commodities risk class, we compare
the corresponding calibrated delta risk weights of cryptocurrencies’ buckets based on differing
calibration periods used for the two cases, while keeping the overall method of calibration the
same. In SIMM 2.7+2412 (used by the industry during the half-year starting on July 12, 2025),
the calibration of the commaodities risk class is based on the calibration period comprised of two
distinct periods: a 3-quarter stress period from September 13, 2008 through June 12, 2009 and
the “recent period” from October 1, 2021 through December 31, 2024. If two new
cryptocurrencies’ buckets (pegged and unpegged) are added to that calibration, the resulting
calibrated delta risk weights are as follows:

Table 2. Delta risk weights of commodity risk class buckets based on SIMM 2.7+2412
calibration period with additional 2 crypto buckets in commaodity risk class.

Bucket Description Delta Risk Weight
1 Coal 48
2 Crude 21
3 Light Ends 23
4 Middle Distillates 20
5 Heavy Distillates 24
6 North American Natural Gas 33
7 European Natural Gas 61
8 North American Power 37
9 European Power and Carbon 64
10 Freight 45
11 Base Metals 21
12 Precious Metals 17
13 Grains and Qilseed 16
14 Softs and Other Agriculturals 17
15 Livestock and Dairy 10
17 Indexes 16




18 Crypto Floating 58

19 Crypto Pegged 1
(Note: Bucket 16 is skipped as its delta risk weight is not calibrated but set to be the maximum risk weights of
buckets 1-15. Note also that the more precise calibrated delta risk weight for bucket 19 (pegged crypto) is 0.72 but,
since SIMM uses rounded to the nearest integer risk weights, its delta risk weight is rounded to 1.)

Table 2 illustrates that, when placed in the commodities risk class, the floating cryptocurrency
bucket has one of the top three delta risk weights in that risk class (and much higher than that
of gold/precious metals with which crypto are often compared as a store of value), while the
pegged cryptocurrency bucket naturally has a very low risk weight. Yet, as we will see soon,
these calibrated delta risk weights for crypto are poorly estimated due to the fact that stress
periods for cryptocurrencies are very different from those of traditional commodities.

Indeed, suppose cryptocurrency risk factors are put in a separate risk class with individual
calibration periods for each of the two buckets (owing to the stark differences between the
two). Then the new delta risk weights for cryptocurrency buckets depend on whether BGCI (or
some other representative crypto index) is used for the cryptocurrency risk class overall or
whether the “greedy” algorithm is used to determine the stress periods for each of the two
buckets separately because, as shown in Table 3, the stress period for the pegged
cryptocurrency bucket shifts as a result.

”

Table 3. Estimated calibration period for crypto risk class based on either BGCI or the “greedy
algorithm for the observation period in SIMM 2.7+2412.

Based on BGCI Based on “greedy” algorithm
Additional Stress | Recent Period Additional Stress = Recent Period
Period Period
Crypto Floating  Nov 22, 2017 - Jan1, 2022 - Nov 29, 2016 — Jan 1, 2022 -
Nov 21, 2018 Dec 31, 2024 Nov 28, 2017 Dec 31, 2024
Crypto Pegged Nov 22,2017 - Jan 1, 2022 - Apr 23,2019 - Jan 1, 2022 -
Nov 21, 2018 Dec 31, 2024 Apr 22,2020 Dec 31, 2024

The calibration periods for a cryptocurrencies’ bucket’s delta risk weight are obtained by first
identifying top 10% of the most volatile quarters for each of the 13 time series (10-day relative
return of BGCl and 10-day relative returns of each of the twelve crypto currencies (BTC, BNB,
ETH, ADA, DOGE, XRP, USDC, USDT, DAI, TUSD, USDP, GUSD)) for the historical period (in SIMM
2.7+2412) from Jan 2, 2008 through Dec 31, 2024. The latter historical period covers 17 years
(or 68 quarters), so top 10% of the most volatile (disjoint) quarters consists of six most volatile
quarters. Unlike ISDA has done for the traditional risk classes, we choose to round the number
of most volatile quarters down rather than up because there were no cryptocurrencies in 2008,



while in 2009, BTC was the only one launched and with no standard pricing until mid-2010 (with
all the other cryptocurrency instruments launched some years later). Next, we find how many of
the six most stressed/volatile quarters fall in the “recent” 3-year period of 2022-2024. For BGClI,
the number of “recent stress” quarters is 0, so the “recent” period is from Jan 1, 2022 through
Dec 31, 2024, and the number of non-recent stress quarters must be 4, so the stress period for
BGCl is obtained by finding a continuous year (continuous period of 365 calendar days) prior to
2022 with the highest volatility of returns. Similarly, for the “greedy” algorithm approach, the
number of “recent stress” quarters is O for both pegged and unpegged (floating) crypto (as seen
in Table 4), so the stress period for each bucket is obtained by finding (using a rolling by a day
window) a continuous year prior to 2022 with the largest cumulative R score, where

vol(k,i)

R = Xk ymvolo (1)

MaxVol(k)’

where i is a rolling 1-year period prior to 2022, k is an instrument in a given bucket, vol(k,i) is the
average daily volatility of the kth instrument’s returns over period i, and MaxVol(k) is the
maximum of the average daily volatility of the kth instrument’s returns over all 1-year periods
prior to 2022. It is worth noting that, as is clear from Table 4, although R scores from the greedy
algorithm can be compared for the same fixed set of instruments across time (with higher R
scores generally representing a more volatile period for that set of instruments), they should
not be compared across different sets of instruments (as evidenced by the fact that R scores for
a set of pegged crypto instruments are often higher than R scores of a set of floating/unpegged
crypto instruments).

Table 4. Top six most stressed quarters (as measured by cumulative R scores) for 10-day
relative returns for the two cryptocurrencies’ buckets (each with six instruments).

Instrument Quarter Start Quarter End R score in quarter
Floating Crypto 11/08/2017 02/06/2018 R_score: 2.72
bucket with 09/21/2013 12/20/2013 R_score: 2.52
“greedy” 05/16/2017 08/14/2017 R_score: 2.49
algorithm 11/21/2020 02/19/2021 R_score: 2.04
04/02/2021 07/01/2021 R_score: 2.03
05/19/2015 08/17/2015 R_score: 1.57
Pegged Crypto 03/04/2020 06/02/2020 R_score: 5.48
bucket with 07/19/2018 10/17/2018 R_score: 3.33
“greedy” 11/26/2019 02/24/2020 R_score: 2.75
algorithm 10/24/2018 01/22/2019 R_score: 2.43
06/19/2020 09/17/2020 R_score: 1.83
04/25/2019 07/24/2019 R_score: 1.78




Once the additional one year of stress is determined through both methods (by the
pseudo-index BGCl method and by the cumulative R scores via greedy algorithm), we calibrate
delta risk weights for cryptocurrencies’ buckets by finding the median — across all six
instruments in each bucket — of the maximum of absolute values of the 15t and 99" percentiles
of the 10-day overlapping relative returns of each instrument over the 3-year recent period plus
the year of stress. The resulting calibration of delta risk weights for pegged and unpegged
cryptocurrencies’ buckets, as shown in Table 5, illustrates that once stress period selection is
specific to each cryptocurrency bucket, the delta risk weights for cryptocurrencies’ buckets rise
by at least a factor of two (relative to being kept in the commodities risk class).

Table 5. Comparison of delta risk weights of pegged and floating crypto buckets placed in a
separate crypto risk class versus in the commodity risk class, depending on which method
(BGCI or greedy algorithm) is used to select the calibration period.

Crypto Bucket’s In Commodity Risk In Crypto Risk Class with In Crypto Risk Class with

delta risk weight Class calibration period based | calibration period based on R
on BGCl volatility scores from greedy algorithm

Floating Crypto 58 132 132

Pegged Crypto 1 1 2

In other words, Table 5 shows that placing crypto buckets in commodity risk class significantly
underestimates delta risk weights of the crypto buckets (with delta risk weights being at least
twice smaller than when a separate cryptocurrency risk class is used). On the other hand,
Bloomberg Galaxy Crypto Index appears to capture volatility of floating crypto currencies very
well but does not work nearly as well to represent pegged crypto currencies. Overall, the
calibration of floating crypto and pegged crypto buckets based on calibration periods
determined separately for each bucket using the “greedy” algorithm produces the most reliable
result (of the three approaches considered here) in view of the stark differences between the
risks of the two crypto buckets and their significant differences from the risks of traditional
commodities.

V. CORRELATIONS
IJJTS

ones) used in ISDA SIMM are estimated using (nonparametric) Kendall’s correlation coefficient

All the correlations (cross-risk classes correlations , as well as inter-bucket and intra-bucket
g that is then converted to Pearson correlation coefficient estimate through sin(0.5mts)
transformation as proposed in Kendall’s book. The initial non-parametric approach (in the form
of Kendall’s correlation) is adopted in SIMM to make the estimation less sensitive to outliers,
but SIMM model still aims to capture linear relationships between risk factors rather than
monotonic ones (due to the underlying variance-covariance structure of decompositions in



SIMM), so the given (scaled) sine transformation provides an estimate of the Pearson
correlation once the influence of outliers is accounted for. Another popular non-parametric
correlation — rank-based Spearman’s correlation —is, in general, statistically less preferable than
Kendall’s due to its downward bias and slower convergence to Gaussian distribution with
sample size. To see a more explicit comparison of different types of correlation and their
robustness properties, consider an MA(1) process of the form: X; = & + ae.1, where & are i.i.d.
N(0, o:?), and a second time series Y, which is a linear function of X plus white noise: Yi = dXt + &t
, where & are i.i.d. N(0, 0s2), with (6) process independent of (&t) process. Then the true
correlation parameter between X and Y is given by:

E((Xe-E(Xe))(Ye-E(Y1)))/[Var(Xe)Var(Ye) ]2 = GE(Xe2)/[(E(X{P?E(Xi2)+ os2}]Y/2
= ¢/[d%+ 0s%/{(1+a?)0c?} 2,

so if $=0, the true contemporaneous correlation between processes X and Y is zero (as
expected), while if $#0, the true correlation parameter is sign(d)/[1+052/{d?(1+a?)c:2}]¥2, with
function sign(x) set to 1 for positive x and -1 for negative x. (Naturally, as s>~ 0, Y becomes
just a linear function of X, so the correlation converges to 1 for $>0 and -1 for ¢$<0.) For
example, taking a simple example of 6= 05 =1, $=0.8, and a=0.4 gives a theoretical true
correlation of 1/(1+1/[{0.64(1+.16)}]%2= 0.6527472. To see the behavior of sample correlation
coefficients (Pearson, Spearman, Kendall, and Kendall’s conversion to Pearson), we simulate the
corresponding time series X and Y (of n=100 time points each) and compute all four types of
sample correlations. Then in the X series, we replace one of the observations with an outlier
that is 100¢ in size. Afterwards, in the Y series, we replace one of the observations with an
outlier that is -150s in size (as shown in Figure 3). Then we recompute all four types of sample
correlations. Then we repeat this simulation N=1000 times and compute the average of each of
the four correlation types before and after inserting two outliers. The simulation results are
summarized in Table 6 and show that the scaled sine transformation sin(0.5nts) of Kendall’s
sample correlation (converted to Pearson’s coefficient) is both accurate and more robust than
the other alternatives.

Figure 3. A simulated run of MA(1) process X and process Y, which is a linear function of X plus
independent white noise, over a hundred timepoints, where one outlier (marked by a red
upward dot) is inserted in X and one outlier (marked by another red dot) is inserted in Y.
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Table 6. Comparison of Pearson’s, Spearman’s, Kendall’s, and Kendall’s-transformed-to-
Pearson sample correlation coefficients between simulated time series X and Y (with n=100
time points each and N=1,000 simulation runs), where X is MA(1) and Y is a sum of ¢X (with
¢$=0.8) plus independent white noise, before and after adding a couple of outliers (as in

Figure 3).
True correlation | Average Average Average Average
is 0.6527472 Pearson’s r Spearman’s p Kendall’s tg Sin(0.5mts)
No outliers 0.6503504 0.6292351 0.4528388 0.6504231
With outliers 0.3170934 0.6051634 0.4354695 0.6295742

Table 6 illustrates the high sensitivity of the classical sample Pearson’s correlation to outliers as

Pearson’s correlation coefficient drops below half of its original value (from 0.6503504 to

0.3170934) once a couple of outliers is introduced. In contrast, the three columns with non-

parametric correlations show little change in response to the insertion of outliers. (In addition,

the non-parametric versions of sample correlation are expected to be more robust than the

Pearson’s correlation once the Gaussian assumption for X and Y is dropped.) Further

comparison of each of the four sample correlation coefficients with the true population

correlation (of 0.6527472) shows that Kendall’s-transformed-to-Pearson sample correlation

coefficient (in the last column) is highly accurate relative to the other common estimates of

correlation, and this overall result generally remains stable when various parameters of the




simulation (including the number of simulation runs, the length of time series, the coefficients
and the order of the moving average process X, linear coefficient ¢ in Y, and the volatilities of
noises) are perturbed. Hence, ISDA’s choice of correlation estimate — based on the specified
conversion of Kendall’s coefficient to Pearson — appears to be optimal from the combined
accuracy and robustness points of view and is therefore adopted in the rest of this paper.

Proceeding with intra-bucket correlations of the two cryptocurrencies’ buckets based on the 3
recent years (2022-2024) plus one year of stress, where a single stress period is selected for the
entire crypto class using the "greedy" algorithm (which results in the 11/27/2017 - 11/26/2018
additional stress period), produces estimated intra-bucket correlations shown in Table 7, with
intra-bucket correlation for the floating crypto bucket being significantly higher than the one for
the pegged crypto bucket (the latter is very low suggesting that once the pegging to USD is
accounted for, the rest of the variation across pegged instruments is rather idiosyncratic).

Table 7. The calibration of intra-bucket correlations in the crypto risk class based on the recent
period of three years (2022-2024) plus one year of stress (the latter is found by computing R
scores across all twelve calibration instruments in the crypto risk class and applying the
“greedy” algorithm to determine a single year of additional stress for the crypto risk class).

Crypto Kendall-to-Pearson Recent period Additional stress period
Bucket intra-bucket correlation

floating 73% 1/1/2022 - 11/27/2017 -
pegged 14% 12/31/2024 11/26/2018

However, although the above identification of a single calibration period for the entire crypto
risk class is consistent with the approach adopted in ISDA SIMM, it is far from ideal for pegged
crypto bucket because the stress period of 11/27/2017 to 11/26/2018 includes only one month
when "pegged" crypto had trading data. Given this data limitation, like in the case of delta risk
weights, it may still be advisable to calibrate individual calibration periods for the two
cryptocurrencies’ buckets. In the latter case, the new intra-bucket correlations are revised in
accordance with Table 8 (with the intra-bucket correlation for floating crypto bucket staying
unchanged, but with the intra-bucket correlation for pegged crypto bucket rising by about 6%).

Table 8. The calibration of intra-bucket correlations in the crypto risk class based on separate
calibration periods for the two buckets (each calibration period is selected based on “greedy”
algorithm applied to six instruments in each crypto bucket).

Crypto Kendall-to-Pearson Recent period Additional stress period

Bucket | intra-bucket correlation

floating 73% 1/1/2022 - 11/27/2017 -
12/31/2024 11/26/2018




pegged 20% 1/1/2022 - 4/23/2019 —
12/31/2024 4/22/2020

Note that instead of using the “greedy” algorithm as in Table 8, one could use BGCI as a pseudo-
index for determination of the calibration period for floating crypto bucket and USDT as a
“pseudo-index” for pegged crypto bucket, but the resulting intra-bucket correlations would stay
close to those in Table 8. (As before, using a single pseudo-index like BGCI for the entire crypto
class is inadvisable since the stress period ends up including only about one month of pegged
crypto data, so it’s not representative of the stress period for pegged cryptocurrencies.) Note
also that the stress period for the floating crypto bucket in Table 8 is different from the stress
period in the fourth column in Table 3, even though both are based on the “greedy” algorithm
for individual crypto instruments in the floating bucket, because delta risk weight calibration
requires only a single instrument to be available in a bucket (and Bitcoin started much earlier
than the other floating crypto instruments), whereas intra-bucket correlation calibration
requires availability of at least two instruments, so the time horizons within which a stress
period selection takes place are necessarily different in the two cases.

To determine the inter-bucket correlation between floating and pegged crypto buckets,
we compute pairwise correlations between each instrument in the floating crypto bucket and
each instrument in the pegged crypto bucket and take the median of all such correlations (this is
consistent with the approach taken in SIMM for the other risk classes). To avoid computing
62=36 separate calibration periods for each pair of instruments, we select the calibration period
based on BGCI and USDT as pseudo-indices. Noting that none of the top six most volatile (in
terms of R scores) quarters of BGCl and none of the top six most volatile quarters of USDT fall
within the 3-year recent period of 2022-2024, we select a continuous, one-year additional stress
period that falls within the period of 10/23/2018 (start date of USDT returns time series to
ensure that both USDT and BGCI return time series are available) to 12/31/2021 (the last day
before the start of the 3-year recent period). That additional 1-year stress period can be chosen
by maximizing the sum of R scores of BGCl and USDT. (This represents a slight departure from
ISDA SIMM'’s methodology in other risk classes where the calibration period for inter-bucket
correlations coincides with the calibration period for delta risk weights in that risk class. This is
because we have chosen to use separate calibration periods for delta risk weights for the two
crypto buckets, given how different the two crypto buckets stress periods are and the shorter
availability of data for pegged cryptocurrencies versus the floating cryptocurrencies. As a result,
a separate single calibration period had to be chosen to compute the inter-bucket correlation
between the floating and pegged crypto buckets.)



Table 9. The calibration of inter-bucket correlation between the floating and pegged crypto
buckets based on the stress period obtained using the “greedy” algorithm that maximizes the
sum of R scores for BGCl and USDT pseudo-indices.

Pearson | Spearman | Kendall | Kendall-to-Pearson Additional Recent period
conversion stress period
(mm/dd/yyyy)
-2% -3% -2% -4% 11/10/2018 - 01/01/2022 -
11/09/2019 12/31/2024

We included all four types of correlation in Table 9 to double-check the consistency of signs and
variability of inter-bucket correlations of different types. The results show that the inter-bucket
correlation between floating and pegged crypto is slightly negative and very close to zero
regardless of the specific type of correlation coefficient used. Given that these sample
correlations are estimates (subject to estimation errors) and extremely close to zero, we suggest
setting the inter-bucket correlation between the floating and pegged crypto buckets to zero.

Finally, to determine the cross risk class correlations between the cryptocurrency risk
class and each of the other six traditional risk classes, we suggest representing the
cryptocurrency risk class via 10-day relative returns of two representative instruments: BGCI
and USDT. Meanwhile, each traditional risk class in SIMM is represented by the 10-day returns
across representative instruments currently adopted in ISDA SIMM and listed in Table 10.

Table 10: Cross risk class correlation representative instruments

Risk Class Risk Factor(s)

Interest Rates 10-year swap rates of G4 currencies: USD, GBP, JPY, and EUR

FX USD/JPY, JPY/USD, EUR/USD, USD/EUR, EUR/JPY, JPY/EUR, EUR/GBP,
GBP/EUR, GBP/USD, USD/GBP, GBP/JPY, JPY/GBP

Equity S&P 500, Nikkei 225, Euro Stoxx 50, FTSE 100

Credit Qualifying 5-yr CDX.NA.IG, CDX.NA.HY, iTraxx Europe and iTraxx Europe Crossover

Credit Non-qualifying CMBX.NA.A, CMBX.NA.AA, CMBX.NA.AAA, CMBX.NA.BB,
CMBX.NA.BBB-

Commodity S&P GSCI

Cryptocurrency BGCI, USDT

Two possible approaches to calibration of cross-risk class correlations can be explored (and are
in line with the existing approaches taken in ISDA SIMM). One is, for a given pair of risk classes
(i,j), take all possible pairs of representative instruments (with one instrument from risk class i
and the second instrument from risk class j), compute the corresponding correlation for each
such pair of representative instruments, and then compute the median of absolute values of
such correlations (the correlations are Kendall’s correlations converted to Pearson, as discussed
earlier). Under this approach, assume first that the cryptocurrency risk class is represented by a



single representative USDT. Then, as shown in Table 11, all cross-risk class correlations between
crypto risk class and the traditional risk classes are very low.

Table 11. Cross risk class correlations between crypto risk class represented by USDT and the
traditional six risk classes. The additional stress period was calibrated by using the “greedy”
algorithm as the one-year period that maximizes the sum of R score for USDT and the average
R score across representative risk factors from Table 10 for Risk Class 2.2 3

Additional stress period
Risk Class 1|[Risk Class 2 || Correlation parameter Recent period
(mm/dd/yyyy)
Crypto- 01/01/2022 —
vP Commodity 5% 01/21/2020 - 01/20/2021 /01/
USDT 12/31/2024
Crypto- 01/01/2022 -
Equit 6% 12/10/2019 — 12/09/2020
USDT qurty ° /10/ 109/ 12/31/2024
Crypto- 01/01/2022 —
vP IR 11% 10/24/2018 — 10/23/2019 /01/
USDT 12/31/2024
Crypto- 01/01/2022 -
Credit 4% 10/26/2018 — 10/25/2019
uSDT Q ° /26/ /25/ 12/31/2024
Crypto- 01/01/2022 -
YPIO™  creditNonQ 3% 06/18/2019 — 06/17/2020| °+0Y
USDT 12/31/2024
Crypto- 01/01/2022 —
vP FX 12% 06/27/2019 — 06/26/2020| /Y
USDT 12/31/2024

In particular, the low correlations in Table 11 between USDT and the commodity risk class and
between the USDT and the equities risk class are further illustrated in Figure 4 using the scatter

2 Unlike ISDA who uses the same calibration period — global stress period (Sept 13, 2008 to June 12, 2009 in SIMM
2.7+2412) plus global recent period — to calibrate all cross risk class correlations, we here calibrate individual stress
periods across pairs of each crypto bucket with the other risk classes (plus add the 3-year recent period) for cross-
class correlation parameter estimation not only because it generally results in more accurate correlations but, more
crucially, because crypto markets did not yet exist during this ISDA SIMM global stress period.

3 Although ISDA’s “greedy” algorithm calls for a simple addition of R scores across instruments, we opt to average R
scores across risk factors within each non-crypto risk class before summing them for different risk classes because,
as is clear from Table 10, some risk classes contain only one risk factor, while others contain a lot more, so a simple
addition of R scores across all the risk factors in a given pair of risk classes would bias the stress period selection
towards a risk class with a higher number of representative risk factors.




plot matrices of USDT versus S&P GSCl and of USDT versus S&P 500 (one of the four risk factors in
equities class).

Figure 4. Scatter plot matrix of USDT versus S&P GSCI showing very low correlation between
the two.
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Figure 5. Scatter plot matrix of USDT 10-day relative returns versus equity indices’ 10-day
relative returns (as in Table 11) showing very low correlation between USDT versus
representative equity indices (as evidenced by the top row or the left most column of the
“matrix”). (This is in contrast to the strong positive correlations between the four equities
indices evidenced by the sub-matrix of the second through the last rows and columns.)
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On the other hand, if the cryptocurrency risk class is represented by BGCI (instead of USDT), the
cross-risk class correlation parameters between cryptocurrency risk class and the traditional risk
classes remain very low (and broadly similar, with mainly the correlation with FX risk class
dropping in magnitude from 12% to 2%, while correlation with Credit Qualifying risk class rises



from 4% to 11%). (These very low cross-risk class correlation parameters between crypto and

the other risk classes remain robust with respect to taking other common types of correlation

and to varying the stress period.)

Table 12. Cross risk class correlations between crypto risk class represented by BGCI and the

traditional six risk classes.

Additional stress period

Risk Class 1 ||Risk Class 2| Correlation parameter (mm/dd/yyyy) Recent period
Crypto-BGCI|| Commodity 9% 11/28/2017 — 11/27/2018 0115;)31{/25;22 4_
Crypto-BGCI|| Equity 2% 11/01/2017 - 10/31/2018 0112/?31 {/22522 4_
Crypto-BGCI IR 13% 08/21/2017 — 08/20/2018 0114% {/220522 4_
Crypto-BGCI|| CreditQ 11% 11/29/2017 — 11/28/2018 0114?; {/22522 4_
Crypto-BGCI|| CreditNonQ 2% 08/21/2017 — 08/20/2018 0112/;)31 {/25522 4_
Crypto-BGCI FX 2% 08/25/2017 — 08/24/2018 0115)31 {/2;)0222 4_

Here we can similarly illustrate low correlation parameters between floating crypto and

commodities and equities risk classes through scatter plot matrices (in Figure 6) of floating
crypto index BGCI versus S&P GSCl and in Figure 7 of BGCI versus S&P 500.




Figure 6. Scatter plot matrix of BGCI 10-day relative returns versus S&P GSCI 10-day relative
returns (same period as in Table 11) visually showing very low correlation between the two.
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Figure 7. Scatter plot matrix of BGCI 10-day relative returns versus equity risk factors’ 10-day
relative returns (as in Table 11) visually showing (in the top row or left most column of the
“matrix”) very low correlations between BGCI and each (of the four) equity indices.
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Given the similarly low correlation parameter values in Table 11 and Table 12 between the
crypto risk class and the six traditional risk classes, these results suggest that correlations of
crypto risks with other risk classes are low for both pegged and floating cryptocurrencies, and
the use of both (at once) BGCI and USDT as two representative instruments for cryptocurrencies
risk class would yield essentially the same results.



A second approach for cross-risk class correlation calibration is to build a single pseudo-index
for each risk class (by taking a median of 10-day returns across all the representative
instruments in each given risk class). Then the cross-risk class correlation parameter between
each pair of risk classes could be set to equal the absolute value of correlation between
respective pseudo-indices. This approach is less attractive for cryptocurrency risk class because
USDT and BGCI have substantially different scales and stress periods, so averaging the two
series is likely to yield a synthetic index that is not capable of capturing realistic cross-risk class
correlations for either the pegged or the floating crypto cases.

V. CONCLUSIONS

Today’s rapid development of crypto markets makes it necessary to incorporate new crypto
product class and cryptocurrency risk class in the SIMM model to reduce counterparty risk
associated with uncleared trading of derivatives sensitive to crypto risk factors. While
conceptual hedging considerations suggest introduction of a separate crypto product class, it is
the significantly different stress periods’ profile, large underestimation of the cryptocurrencies’
delta risk weights, and the extremely low cross-risk class correlations between cryptocurrency
and the traditional risk classes that drive the need to separate cryptocurrencies’ risk factors into
a separate risk class rather than create crypto buckets within one of the already existing six risk
classes. The proposed calibrations of delta risk weights in cryptocurrencies buckets and
respective intra-bucket, inter-bucket, and cross-risk class correlations have the advantage of
being simple to compute, robust to outliers and missing data, and consistent with the ISDA
SIMM existing methodology. In addition, with crypto trading being highly concentrated in just a
few instruments, and pegged and floating cryptocurrencies having substantially different stress
period profiles, delta risk weights for the pegged versus floating cryptocurrencies’ buckets
should ideally be calibrated based on separate calibration periods (specific to each bucket). On
the other hand, for the purposes of computing cross risk class correlations between crypto risk
class and each of the six traditional risk classes, one could potentially use a pair of
representative crypto indices (one from each of the floating and pegged crypto buckets, like
BGCl and USDT in our approach) to calibrate a single correlation parameter (based on Kendall’s
correlation coefficient converted to Pearson for robustness against outliers) per each pairing of
crypto risk class with a non-crypto risk class. Finally, this is the first systematic study in academic
literature of inclusion of crypto risks into IM model, while keeping the model simple — and, thus,
applicable industry-wide — and, at the same time, reflecting the unique risks associated with
crypto.
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