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ABSTRACT. The provision of public goods in developing countries is a central challenge.
This paper studies a model where each agent’s effort provides heterogeneous benefits to
the others, inducing a network of opportunities for favor-trading. We focus on a classical
efficient benchmark — the Lindahl solution — that can be derived from a bargaining
game. Does the optimistic assumption that agents use an efficient mechanism (rather
than succumbing to the tragedy of the commons) imply incentives for efficient investment
in the technology that is used to produce the public goods? To show that the answer
is no in general, we give comparative statics of the Lindahl solution which have natural

network interpretations. We then suggest some welfare-improving interventions.
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1. INTRODUCTION

Questions concerning the provision of public goods are central to development research.
A large literature describes the problems of public good provision, especially in rural
environments. For example, it has been argued that individuals with similar levels of
private consumption but differing levels of public goods such as clean drinking water or
effective medical care will experience vastly different qualities of life (Besley and Ghatak
[2006]).

Public goods and externalities have been a fundamental topic in economics since [Pigou
[1920)’s landmark contribution in which he described how taxation can improve welfare.
In a later article, Hardin| [1997], suggested that public goods such as common lands were
overutilised by the community since private individuals did not internalise the social cost
when deciding how many cattle to graze. In recent years, [Seabright| [1993] and |Dasgupta
[2009] have argued that social institutions and norms have some capacity for aligning

private and social incentives in the absence of explicit property rights!]]

This paper is focused on situations where the provision of public goods (or abatement of
public bads) confers multilateral and heterogeneous benefits across players and has het-
erogeneous costs for each player. We can think of many such examples in a development
setting - for example, Foster and Rosenzweig| [1995] and Bandiera and Rasul [2006] con-
sider the case of farmers learning about technology as a public good which has positive

externalities across farmers.

Consider a typical village. Soil types and wealth levels vary greatly leading to different
varieties of crops being grown. A farmer trialing a new hybrid seed would only offer
learning advantages to other villagers who would plant the same seed. Also the magnitude
of the benefit from learning would be proportional to the amount of land available to
each farmer. The ability to observe the information may depend on the geographic and
social distance between farmers. This suggests that the benefits will be heterogeneous
across farmers depending on the capacity to update given the new information. The
model outlined in section [2]is flexible enough to allow these heterogeneous benefits across

farmers.

To give a concrete example, suppose farmer A grows only soybeans and wheat, farmer B
grows soybeans and rice, and farmer C grows wheat, rice and soybeans. If farmer A trials
new soybean seeds, it will lead to benefits to both farmers B and C. But, if farmer C trials
wheat varieties it will only lead to benefits for farmer A. The concept of heterogeneous and
For instance, |Dasguptal [2009] describes social punishment within communities "His tribe traditionally
practiced a form of punishment that involved spearing the thigh muscle of the errant party. When I asked
him what would happen if the party obliged to spear an errant party were to balk at doing so, the young

man’s reply was that he in turn would have been speared. When I asked him what would happen if the
person obliged to spear the latter miscreant were to balk, he replied that he too would have been speared!”
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multilateral benefits explicitly modelled in the paper may lead to interesting effects. For
instance, changes in farmer B’s experimentation with rice cultivation may affect farmer
C’s choice of cultivation of wheat, which in turn may affect farmer A’s choice of soy-
bean cultivation - even though farmer A does not directly benefit from farmer B’s initial

experimentation with rice. This will be explicitly considered in the equilibrium concept.

Water resources in farming villages offer yet another example of public goods in develop-
ment which have these multilateral and heterogeneous benefits. A shortage of water - a
crucial input into farming - will have differing impacts on farmers according to the crop,
soil and acreage owned by the farmer. Farmers have access to many water resource tools

such as land levelling, irrigation and even choice of crop.

During periods of water shortage, each farmer will have the ability to manage their usage
of water at differing costs of implementation (for instance, a farmer on very hard soil will
find it very costly to level their land). There will be both heterogeneous benefits (a farmer
with water intensive crops will benefit greatly from a reduction in the water shortage)
and multilateral benefits. (Ostrom [1992] and Bardhan [2000] have described in detail the
heterogeneous effects of water access both at a local and international level.

The above examples demonstrate how public goods can be important in villages and have
differential impacts and costs across the village. This leads to two key policy questions
this paper is interested in trying to answer:

(1) How will a given intervention in a village change the provision of public goods?
(2) If we wanted to increase the provision of certain public goods, what are the optimal

interventions for addressing this?

To answer these fundamental policy questions we need a theory of public good provision
in a development setting.

Besley and Ghatakl [2006] describe how the collective action problem is difficult to over-
come both at a governmental level and a decentralised level. However, they do describe
theoretical conditions under which some of the difficulties in public good provision may
be mitigated. This can occur in particular, if: (i) interactions are more likely to be re-
peated since those who refuse can more easily be punished, (ii) information is good so
that individuals’ actions to assist in public good provision can be observed and (iii) there
is a strong social structure that can be used to ostracize individuals or can be used to
withdraw other forms of cooperation. These conditions are more likely to be satisfied in
close-knit villages.

The framework of this paper will assume theoretical conditions under which public good

provision may be successful. Based on such a framework, we will study the levels of public
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goods provided when the benefits of public goods are heterogeneous across agents and
there is a network of benefit flows.

This article studies the Lindahl equilibrium - a classical solution in a public goods game
which is on the Pareto frontier. Each agent exerts costly effort to produce a public good
which confers heterogeneous benefits to different individuals and the cost of producing
these public goods varies across individuals. We use insights from Elliot and Golub [2015]
who give a simple characterization of Lindahl equilibrium in terms of a single network
centrality condition[]

This paper’s first contribution characterises how the network architecture affects the
amount of investment in the public good by each individual and subsequently solves for
each individual’s welfare conditional on her place in the network. The paper uses a flexible
parametric setting, making the characterization of the Lindahl equilibrium more explicit
and interpretable than in Elliot and Golub| [2015].

Second, in this environment the paper demonstrates the Lindahl equilibrium is unique.
Banerjee et al.| [2007] argue that “strong enough coordination mechanisms can make almost
any group outcome implementable. We believe a micro-founded theory of such coordina-
tion is required to make this approach interesting and sharpen its predictive power, and
we are not aware of any such theory”. We fill this gap in the collective action literature
since the Lindahl equilibrium is unique, efficient and has bargaining foundations. Since
our equilibrium is unique, we are able to offer comparative statics of how changes in the
network architecture affects both public good provision and the welfare of each agent in a
Lindahl equilibrium. For example: if one individual’s costs of public good provision falls,
how does the Lindahl equilibrium change? We are able to answer how and who the policy
maker should target to increase certain agents’ or groups of agents’ welfare. Further,

Third, the paper highlights where public good provision may be suboptimal and suggests
policy implications to correct such inefficiencies. The paper focuses on the case where
individuals may have suboptimal incentives to reduce their marginal cost of effort. The
paper does not explicitly model an investment stage but does offer suggestive evidence for
the failure to fully internalise the benefits from cost reductions.

The context of public goods in development is already an extensively studied subject, but

groups into two main themes.

Political competition for public goods in the presence of finite resources and differing
preferences represents one pillar of past research. Previous papers have shown that benefits
of public goods do not accrue symmetrically to everyone in a community. This can arise
as a result of competition or differing preferences. As Hardin [1997] states, ‘successful

2The Lindahl equilibrium enjoys several other robustness properties. As shown in [Elliot and Golub| [2015],
it is robust to coalitional deviations in a repeated game setting.



EFFICIENT PUBLIC GOOD PROVISION IN NETWORKS: REVISITING THE LINDAHL SOLUTION 5

collective action often entails suppression of another group’s interest.” [Esteban and Ray
[2001] theoretically demonstrate how group size can affect the probability of the successful
implementation of a project. Therefore, explicitly modelling the heterogeneous benefits

that accrue across individuals is important.

A second consistent theme in the literature is the optimal allocation of decision rights
with respect to public good provision. Is it optimal to allocate decision rights centrally at
the governmental level - where there may beimperfect information - or decentralise at the
local level, where some of the positive externalities across villages may be disregarded?
Oates| [1972] and Besley and Coate, [2003] discuss the importance of decision rights and the
respective costs over where to allocate decision rights. This paper adds to this literature by
characterising the equilibrium public good provision if the decision rights are decentralised

at the village level when there are heterogeneous and multilateral benefits[]

Although the paper’s main focus is public goods provision, by relabeling certain variables,
we can consider positive spillovers within teams. For instance, assume each individual
produces a single service which requires different inputs by each agent. The absence of
any input will potentially reduce the productivity of the final service and subsequently
the value. Hence, the model could be extended to consider the case where each agent
provides a service which has heterogeneous benefits across the network, and subsequently

characterise how much of the service is provided and what level of services is sustainable.

The remainder of the paper is organized as follows. In section[2] we describe the model and
the assumptions. Section [3] provides details on how individual characteristics determine
relative utility. Section [4] determines how positive individual shocks affect the network,
and section [b| determines how an individual is affected by changes to other individuals.

Section [6 concludes.

2. MODEL

There is a set of agents N = {1,2,...,n} each of whom simultaneously chooses an effort
a; € Ry g at a cost of ¢if(a;) where we assume f : R< o9 — Ry ( is a continuously
differentiable function such that f’() > 0 and f”(.) > 0. Therefore, we assume each
agent’s cost function is strictly convex in her own effort and there is an individual specific

cost ¢ € Rg o Which is possibly heterogeneous across agents.

3The water resource problem described earlier would be a classic question over where to allocate the
decision rights. For example if individual villages could decide over whether to build a dam and other
water conservation methods, they may ignore the benefits or costs that accrue to neighbouring villages.
Whereas if the government were to decide whether to build a dam it may lack the necessary local knowledge
over the optimal location of the dam. The insights from the model presented in this paper will attempt
to model the extent of the public good provision within the village setting,
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Each individual potentially benefits from the efforts of his neighbours. In particular we
assume an agent benefits from a weighted sum of his peers’ efforts. Therefore, each
individual’s single period utility function U; : RZ o — Ris:

Ui(ay) = Z Rijajs —cif(ais) Vi
J

where R;; € R> ( for all i # j and R;; = 0 for all 7. The repeated game is one in which
each agent takes a possibly random effort a;; in each of infinitely many discrete periods ¢
and payoffs are given by u; = >°2°,6'U;(a;). The game is one of complete and symmetric

information.

We do not place any restriction on ; R;; being the same across i; thereby allowing for
different individual and total benefits across individuals. We denote the n x n matrix of
benefits as R

We can think of R as a network of benefit flows, which is depicted in Figure . The
thickness of the arrows demonstrates the importance of agent j’s effort for agent i’s utility
(Rij). Figure (1) demonstrates how the benefits can be both heterogenous and multilateral
across agents. For instance an increase in agent C’s effort would confer benefits to agents
A and H, with the benefits A receives greater than that of agent H.

F1GURE 1. The benefit matrix depicted as a network of benefit lows. The
thickness of the arrows represents the magnitude of the marginal benefits.

In the case of farmer learning, we are allowing that some farmers may benefit more from
other farmers’ experimentation. Additionally, by using different cost parameters, we are

41t can be noted that each individual’s utility function can be normalised such that ¢; = 1; however, it will
be easier for building intuition for future results to retain the non-normalised utility function.
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allowing it to be more costly for some farmers to invest in learning about new crops - for
instance, we may think that learning about new crops is risky, and it is more costly for

poorer farmers to insure themselves.

As a technical aside, we note that the above functional form actually represents a more

general setting. Consider the following utility function:

(1) Ui(a) = ZRijhj(aj) —gi(a;) Vi
J

Where h;(.) are continuously differentiable concave functions and g;(.) are continuously
differentiable convex functions. Consider the following transformation of the effort space:
@; = h; Y(a;) and gG;(a) = g; (h;l(ai)) This transformation maps equation into the

basic model with linear benefits, without losing convexity in the cost function. Therefore,

the utility function under consideration is both relatively general and tractable.

2.1. Assumptions on stage game utilities. A few further technical assumptions are
necessary to ensure the existence of a Lindahl (centrality-stable) equilibrium.

Z]‘ Rij
c

i

Assumption 1 (Sufficiently costly effort). f’(a) > max;

for some a € R, ).

>, Rii
C.

i

Assumption 1 (Sufficiently cheap effort). f/(a) < min; for some a € Ry, ().

Assumption 3 (Connectedness of the benefit flow). If a € ]Rg o and M is a nonempty
proper subset of IV, then there exist ¢ € M and j ¢ M so that R;; > 0

Assumption 1 is required to ensure that we are able to bound the efforts of each agent at
an equilibrium effort level.

Assumption 2 is required to ensure that individuals are willing to provide some positive
effort.

Assumption 3 is not a particularly restrictive assumption; it is used to ensure that a
key matrix is irreducible. If this assumption were to fail, we could conduct the analysis
separately on each component.

Key definitions. Following Elliot and Golub) [2015] we define the Jacobian J(a) at effort
levels a to be the n x n matrix whose (7, j) element is:

ana _ Rij lfz#j

Jij(a) =
700, T et i

Definition (Elliot and Golub| [2015]). An effort vector a € RY o s centrality-stable if
a#0and J(a)a=0. B
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The intuition behind this condition is that if we define each individual’s contribution as
Jii(a)a; = —c;if'(a;)a; (i.e. the marginal cost of their effort multiplied by the amount of
the effort undertaken) this will equal a weighted sum of other agents’ efforts, weighted by

how much those efforts benefit agent <.

Therefore, at a centrality-stable outcome:
—Jii(a)ai = Z Jij (a)aj
J

Cif/(ai)ai = Z Rija;
J

Elliott and Golub demonstrate there is a Lindahl interpretation of this result. They show
that in this model, centrality-stable outcomes are exactly the Lindahl equilibria.

2.2. Lindahl equilibrium.

Definition 1. A Lindahl equilibrium is a pair (a*, P), where ax € RY o- and P is a

matrix of prices, such that the following conditions hold:
(i) Pij > 0 for i # j (where Pj; can be interpreted as the price i pays for j’s effort)
(ii) Vj Pj; = —>2,2; Pij (j’s wage is the sum of the prices each i pays j)

(iii) a* € argmax  Uj(a) subject to >_; Pja; <0

Elliot and Golub| [2015] show that a is a centrality-stable point if and only if there is a ma-
trix of prices (P) such that (a, P) is a Lindahl equilibrium. These prices are constructed
as follows: P;; =v;J;j(a) = v;R;; for all i # j, where v is a row vector such that vJ(a) = 0.
Therefore, in this context each agent ¢ ‘pays’ a price to individual j proportional to the
marginal benefit (R;;) he receives from individual j’s effort. Agent i is ‘paid’ a price from

each farmer in proportion to the marginal benefit (Rj;) she receives from agent i’s effort.

A further point to note regarding this solution concept: it is robust to coalitional devia-
tions. More precisely, with patient players (sufficiently high 6 < 1) it can be enforced by
an equilibrium in which, if an agent or coalition of agents does not put in the equilibrium
level of effort, then the deviating coalition will not receive any future benefits from those

outside the coalition.

Therefore, the centrality-stable equilibrium concept has many appealing features. Not
only does it offer a tractable equilibrium condition, it is robust to coalitional deviations,

and is able to be sustained in a theoretical Lindahl equilibrium.

Proposition 1. Under the assumptions in section[2-1], the following statements hold:
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1) If a € RY is centrality-stable, then a is sustainableﬂ

(1)
(2)
3)
(4)

There exists a centrality-stable a € RZ
3
4) The centrality-stable a € RY is unique and given byﬂ

> Riar, = cif'(ai)a; Vi
k

If a € RY, is sustainable, then a is Pareto-efficient

(2) Ra = cof/(a)oa

Proof. Statements (1)-(3) hold directly from [Elliot and Golub) [2015], and statement (4) is
proven using a contraction mapping theorem. The proof is provided in appendix[A.1] O

By proving that uniqueness holds in our environment we are able to firstly consider how the
equilibrium changes as we alter the parameters of the model. Secondly, as we have proven
uniqueness using a contraction mapping theorem we are able to efficiently compute the
equilibrium for any functional form which satisfies our assumptions (Stokey et al.[ [1989]).

3. INDIVIDUAL CHARACTERISTICS

Understanding how the heterogeneous and multilateral marginal benefits (which can be
thought of as a network of benefit flows) affect different outcomes is complex. One way of
characterizing the impact of the network is to look at two almost identical agents — clones

— and compare how the network and the equilibrium affects their welfare.
Definition 2. Agent i is an unconnected clone of agent j if the following conditions hold:

(1) Individuals i and j receive the same marginal benefits from all other agents in the
network (R;, = Rjj, for all k # i or j)
(2) Individuals 7 and j have no reciprocal connections (Rj; = R;; = 0)

Figure in appendix (B.1]) show’s an example of identical clones.

Using the definition of clones allows us to examine how the Lindahl equilibrium affects

similar individuals in the village.

Proposition 2. Under the assumptions in section [2.1; if individual i is an unconnected
clone of agent j and has a higher cost parameter (c; > ¢;), then individual i will choose a

strictly lower effort (a; < a;) in the unique Lindahl equilibrium.

5An effort vector a is sustainable if there is a § < 1 so that if § > d, there is a strong Nash equilibrium o
of the repeated game, which is also a subgame-perfect Nash Equilibrium, in which the infinite repetition
of a occurs on the path of play.

6The mathematical operator, o, is called the Hadamard product. It is a binary operation that takes two
matrices of the same dimensions, and produces another matrix where each element ¢j is the product of
elements ij of the original two matrices.
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The proof of this result follows from observing that each agent receives the same marginal
benefits. Accordingly, the individual with the lower cost parameter will choose the greater
effort level (formally shown in appendix [A.2)) in the unique Lindahl equilibrium.

Definition 3. The elasticity of total cost with respect to effort is defined as:

6(a):(?cif(a) a :8f(a) a
da  cif(a) da  f(a)

The elasticity of total cost with respect to effort is the percentage change in total costs

divided by the percentage change in effort levels.

If the elasticity of total cost is increasing in the level of effort then the marginal cost

(ag&@) divided by the average cost (@

) is increasing in effort.

Proposition 3. Under the assumptions in section if the elasticity of total costs is
decreasing in effort and individual © is an unconnected clone of agent j with a higher cost
parameter (c; > cj), then agent i will be better off (U;(a) > Uj(a)) in the unique Lindahl

equilibrium.

The proof follows from Proposition and the fact that each individual receives the same
benefits through the network, therefore the difference in each individual’s welfare will be

a function of her equilibrium effort level and cost function. The proof is in appendix [A-3]

The effect of elasticity increasing in a can also be shown:

Proposition 4. Under the assumptions in section if the elasticity of total costs is
increasing in effort and individual © is an unconnected clone of agent j with a higher cost
parameter (c; > c¢;), then agent i will be worse off (U;(a) < Uj(a)) in the unique Lindahl

equilibrium.
Proof. Proof is symmetric to the previous theorem and is omitted. O

In the case where agent 4 is an unconnected clone of agent j, we can summarize the above

results as follows:

U; <U; if e(a) is increasing in a
Ci > Cj = a; < aj <=
Ui > U; ife(a) is decreasing in a
Figure [2] helps to build the intuition for this result. The graph shows a function which
exhibits decreasing elasticity in a. Note individual i’s cost for a given effort level is always

greater than that of agent j. If agent 7 is an unconnected clone of agent j then the



EFFICIENT PUBLIC GOOD PROVISION IN NETWORKS: REVISITING THE LINDAHL SOLUTION 11

FIiGURE 2. How costs, efforts and utilities are related for unconnected
clones i and j if ¢; > ¢; and elasticity is decreasing in a

Total Costs

c;f(a;)
cif(a;)

Marginal Costs

c.f'(a)

cif'(a)

total benefits must be the same for the two individuals. Following from equation this
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implies:

(3) cif'(ai)a; = ¢ f'(aj)a;

Equation requires that the marginal cost multiplied by the effort level must be equal
across unconnected clones in the unique Lindahl equilibrium. Hence area ‘A’ and area ‘B’
in figure [2 must be equal at the equilibrium effort levels a; and a;. Although agent i has a
higher cost parameter ¢;, and consequently higher marginal costs at the equilibrium effort
a;, agent i’s total costs (¢;f(a;)) are lower than agent j’s. Since we have already shown
that the total benefits for ¢ and j must be the same, agent ¢ must be strictly better off
than agent j in the unique Lindahl equilibrium.

The intuition behind this result stems from the equilibrium condition being determined
by marginal costs and benefits. If €(a) is decreasing in a, the proportional rise in marginal
costs is less than that of average costs. It follows that if agent ¢ has a higher cost parameter
(¢;) than agent j, then her marginal costs will always be greater than that of agent j.
Agent ¢ chooses a lower equilibrium effort a; which has higher marginal costs - but the
proportional rise in marginal costs is less than the rise in average costs. Thus, agent i’s

total costs are lower and agent 7 is better off.
Definition 4. Agent i is a connected clone of agent j if the following conditions holdlZI:

(1) Individuals ¢ and j receive the same marginal benefits from all other agents in the
network (R;, = Rjj, for all k # i or j)
(2) Individuals i and j have equal reciprocal connections (Rj; = R;; = K > 0)

Figure @ in appendix (B.2)) show’s an example of connected clones.

Proposition 5. Under the assumptions in section[2.1], suppose the elasticity of total costs
is decreasing or constant in effort and individual © is a connected clone of agent j with
higher individual costs (¢; > ¢;), then agent i will be better off (Uj(a) > Uj(a)) in the
unique Lindahl equilibrium.

The proof of this result follows from the proposition and is formally provided in
appendix There are two effects when there are reciprocal benefits between agents; (i)
the direct effect - person j exerts higher effort than person ¢, hence person i receives more
benefits from his neighborhood and (ii) the effect from the elasticity of the cost function

leading to lower total costs. Therefore, the direct effect just enhances the effect mentioned
in proposition .

"The only difference between a connected and unconnected clones is whether there are reciprocal benefits
between the clones.
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Remark 1. Suppose the elasticity of total costs is increasing in effort and individual i is
a connected clone of agent j with higher individual costs (¢; > ¢;), this does not imply
that agent ¢ will be worse off (U;(a) < Uj(a)) in the unique Lindahl equilibrium. There
are two effects when agents are connected clones: (i) the direct effect that person j exerts
greater effort and (ii) agent 4’s total costs are higher due to the elasticity increasing in a.
Hence, agent i receives more benefits but also incurs higher costs, therefore whether agent

i is better off overall is ambiguous.

Propositions - describe how an individual’s characteristics affect both her equilib-
rium effort level and utility. It is not necessarily true that individuals who have cheaper
technology are better off and in particular it depends on the technology environment.
Therefore, if we have two different farmers who receive the same benefit from their neigh-
bours’ investments, the farmer for whom it is more costly to invest in learning about new

methods may be better off.
Definition 5. Agent i is an identical clone of agent j if the following conditions holdﬁ

(1) The cost parameter for individuals ¢ and j are the same: ¢; =¢j = ¢

(2) Individuals i and j receive the same marginal benefits from all other agents in the
network (R;, = Ry, for all k # i or j)

(3) Individuals ¢ and j confer the same marginal benefits to all other agents in the
network (Ry; = Ry; for all k # i or j)

(4) Individuals 7 and j have equal reciprocal connections (Rj; = R;; = K > 0)

Figure (7) in appendix (B.3)) show’s an example of identical clones.

Corollary 1. Under the assumptions in section[2.1], suppose the elasticity of total costs
s decreasing in effort and individual i is an identical clone of agent j. If agent i’s cost
was to fall then agent j would be better off than agent i (Uj(a) > Us(a)) in the unique

Lindahl equilibrium.

The proof follows from propositions and . If the elasticity of total costs is decreasing
in effort, we know from propositions and that the agent with higher costs will be
better off. When the agents have the same cost and confer the same marginal benefits to all
other agents in the network we also know that a reduction in either of the cost functions
will lead to the same equilibrium effort vector (a) in the unique Lindahl equilibrium.
Therefore, if agent ¢ could choose between reducing her own cost or farmer j’s cost, she

would always choose to reduce farmer j’s costﬂ

8Therefore identical clones differ from the connected and unconnected clones in that they have the same
costs and confer the same marginal benefits to all other agents.

9We have had to make the additional assumptions ‘individuals ¢ and j confer the same marginal benefits to
all other agents in the network (Ry; = Rg; for all k # 4 or j)’ and ‘c; = ¢;’ in our result because although
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Consequently, farmer ¢ has a greater incentive to reduce ¢; than her own cost parameter c;.
This is a startling result and follows from: when the elasticity of total costs is decreasing
in effort for a given effort level of their neighbours, each farmer would prefer to have a
higher cost parameter. We have not modelled a two stage game, therefore, this result
is more suggestive of how even if we have Pareto optimality in the stage game, initial

incentives to invest in cost reducing technology may be distorted.

4. NETWORK-WIDE CHARACTERISTICS

The paper can also examine how changes in the network can affect individual effort levels
and welfare. Firstly a result pinning down the indirect utility function for each agent will

be useful for explaining the intuition and the proofs.

Definition 6. An agent’s indirect utility function can be characterised by U;(c;, a(R,c)) =
Ui(R, c) such that Ra = cf(a)

Lemma 1. An agent’s indirect U;(c;, a;(R,c)) is strictly increasing in the equilibrium a;

The proof is provided in appendix Ultimately, if a farmer’s effort level increases and
¢; stays the same, then it must be because farmer i’s benefits have increased. The increase

from the benefits will always be greater than the rise in costs.

Definition 7. Define the cost vector ¢ to be less than ¢/, ¢ < ¢/, if ¢; < ¢ for all 7 and

cj < cj for at least some one j.

Definition 8. Define the matrix D(a) to be a positive diagonal matrix such that D;;

is the marginal cost for agent i to increase her effort level at the equilibrium action a:
Dii(a) = g=-leif'(ai)ai] = cif"(ai)ai + cif'(a;).

Definition 9. Define the matrix M(a) to be the weighted distance between individual ¢
and j at the equilibrium effort levelm Element M;;(a) is a weighted sum of the number
of paths between agent i and j, weighted by the marginal benefit (R;;) of an increase in
a; for individual ¢ divided by the marginal cost for agent j to increase his effort (Dj;).
Therefore element M;; is useful to describe how important individual j is for 7 taking into

account all possible paths between ¢ and j in the unique Lindahl equilibrium.

we know that the farmer with higher costs would be better off than the farmer with lower costs, we do not
know how the other individuals effort levels are affected in equilibrium. Therefore by assuming the two
additional assumptions above we can explicitly say that regardless of whose costs are reduced everyone
elses’ equilibrium effort level would be the same.

OFormally M(a) = (In — RD(a)*)~! and it is shown in Appendix this can be written as M(a) =

|57 (RD@))"]
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Proposition 6. Under the assumptions in section [2.1, an increase in the cost vector
¢’ >c will necessarily lead to a decrease in the effort levels for all agents at the the unique
Lindahl equilibrium. In particular each agent’s change in effort level for a small change

in the cost vector is equal to:

(a' —a) ~ —D Ha)M(a) (¢’ —c)of'(a)oa

The proof is provided in appendix

In equilibrium, we would expect that an individual’s action would fall as we increase his
cost function. However, it is not immediately obvious that an increase in one individual’s

cost will necessarily lead to a reduction in everyone’s effort in equilibrium.

Intuitively, if farmer i’s costs rise, for a given effort vector of his peers a_;, farmer 7 will
reduce his effort leveIH If farmer ¢ reduces his effort, any farmer j who receives benefits
directly from farmer i (Rj; > 0) will reduce his effort since his benefits are reduced. We
can now extend the argument to all farmers k who receive benefits from the set of farmers
j who are directly connected to farmer ¢. Repeating this chain we can see all farmers

reduce their effort levels.

Due to the network of benefit flows, those farmers who confer benefits to farmer 7 will also
reduce their effort levels. Subsequently, there is a multiplier effect from farmer ¢’s initial
reduction in effort which flows through the network (the magnitude of this multiplier effect
for each agent depends on the matrix M). Figures and graphically demonstrate
the intution. Figure shows the initial stylised network of benefit flows and figure
shows how changes in person G’s cost parameter will cause changes through the network.
Assume that G’s cost parameter was to rise, for a given effort vector for the other agents,
G's effort will fall. Therefore, the benefits A recieves will fall, leading A to reduce her
effort. Following the chain, we know that F’ will reduce his effort, but then G will reduce
her effort further, leading to a new iteration of effort reductions through the network (the
multiplier effect)m

Overall, farmer ¢ reduces her equilibrium effort due to two effects: (i) the direct cost effect
and (ii) the indirect effect from other farmers reducing their own effort levels leading to

lower benefits for farmer 7.

Corollary 2. Under the assumptions in section a decrease in the cost vector ¢’ < c
will necessarily lead to an increase in the effort levels for all agents in the unique Lindahl

equilibrium.

U his follows from proposition .
121 the appendix, we show that the spectral radius of RD ™!, p(RD™ 1), is less than one. Therefore, we
can conclude the effect of the cost increase is a converging series.
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FIGURE 3. A stylised benefit flow through the network. The arrows demon-
strate who confers benefits on whom.

F1GURE 4. The flow of a cost increase on person G through the network

0
L

=2 =3

=g



EFFICIENT PUBLIC GOOD PROVISION IN NETWORKS: REVISITING THE LINDAHL SOLUTION 17
Proof. The proof is symmetric to the previous proposition and is omitted ]

Definition 10. The matrix of benefits R’ is greater than R (R’ > R), if R}; > R;; for

all ij pairs and Rj; > R;; for at least one ij pair.

Proposition 7. Under the assumptions in section an increase in R toR’, such that
R’ > R, will necessarily lead to an increase in the effort levels for all agents in the unique

Lindahl equilibrium.

The proof is provided in the appendix [A7]

Similar to the intuition for Proposition @, if farmer 7 has an increase in his benefit matrix,
then farmer i’s equilibrium effort level will increase. Therefore, those farmers who receive
benefits from farmer ¢ will also increase their equilibrium effort level. Consequently, a
multiplier effect through the network will lead to each agent increasing their equilibrium

action in the unique Lindahl equilibrium.

By combining proposition (7)) with Lemma , we can see an increase in the benefit matrix
for any agent will necessarily lead to the increase in utility for all agents - explicitly, the
benefits for farmer 7 from other agents increasing their effort levels outweighs the costs for

farmer ¢ increasing her own effort level.

In terms of policy advice, attempting to increase the proliferation of public good provi-
sion within a village may be supported by investing in improving network links between
agents. For instance, if new hybrid seeds were invented which were sustainable over many
different soil types, this would increase the benefit matrix, which would lead to greater

crop experimentation.

Furthermore, we expect that it is easier to share information in villages which have a
greater amount of social links between farmers, therefore those vilages which have greater
social intergration may lead to a higher level of public good provision since the benefits
from investing would be greater. This suggests improving village institutions to share

information may improve each farmer’s welfare.

One further point; in this model we consider the benefit matrix to be exogenous, however,
if each individual were to privately invest in these links, there would be a suboptimal
level of link formation. Since every farmer’s utility increases as we improve a link between
farmers ¢ and 7, this means there is a positive externality from the introduction of each link
on the rest of the village. Hence, the social benefits are greater than the private benefits
from link formation leading to the possibility of inefficient link formation. This further
supports the possibility that even if we have Pareto efficient actions being undertaken,
there may be inefficiencies in the first stage, whether through insufficient incentives to

form links or implementing cost reducing technology.
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Proposition 8. Under the assumptions in section|2.1), an increase in the cost vector from
c to ¢’ such that ¢’ > ¢ will necessarily lead to a reduction in utility for all agents at the
unique Lindahl equilibrium.

The proof is provided in appendix

This proof shows that even though everyone’s equilibrium action falls (so the total costs
for each individual falls), the reduction in costs is less than the reduction in benefits for
each individual. Secondly, it demonstrates no agent has an incentive to increase their own

costs.

Summarising, propositions and argue an individual with higher costs may be better
off than an individual with lower costs and proposition argues that if either of their
costs were reduced both individuals would be better off.

5. HOW THE NETWORK AFFECTS THE INDIVIDUAL

In this section we will be analysing how each individual’s welfare is a function of the entire
network. Recall the matrix (definition [9) M(a) introduced in section [d Element M;;(a)
is useful to describe how important individual j is for ¢ taking into account all possible
paths between i and j.

Proposition 9. Under the assumptions in section |2.1, consider an increase in costs for
person k, then the relative impact on person ¢ and person j can be characterised by indi-
vidual fized effects (Hi(a;) and (Hj(aj)), and network effects from person k to person i
and j ((M;x(a)) and (M;i(a))) in the unique Lindahl equilibrium.

dU;
do,  Hi(a;) " M. (a)

Ui Hj(a;) = Mji(a)

dcy,

fork #£1i orj

where Hi(a;) = %

The proof is in appendix

Therefore, this proposition formally shows how each agent’s relative welfare is affected by
a change in farmer k’s costs. Furthermore, if person 7 and j were exerting the same effort
initially, the farmer’s whose utility would be most affected would be the farmer who is
‘closest’ to farmer k in terms of weighted paths.

Proposition 10. Under the assumptions in section 2.1, consider a change in the benefit
matriz (Ry;) then the change in person i’s welfare can be characterised by an individual
fized effect (H;(a;)), a network effect from person k to person i (M;,(a)) and the action

of person j in the unique Lindahl equilibrium.
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Proof. The change in person i’s utility is equal to:

av; ¢i (f"(ai)aqi) A o ,
dRy; e (f"(ai)ai + f’(ai))Mlk(a)aJ th7
(4) = Hi(a;) x Mjp(a) xaj ifk#j

0

Therefore, if were to consider two different possible link improvements Ry; or Ry, and
compare which link addition would benefit farmer ¢ the most, we can observe this is solely

dependent on whether farmer j or farmer p puts in the most effort since:

dU;
dRy; G .

(5) dUka =L fork#j orp
R, P

Intuitively, this follows from observing when we improve a link to agent k, agent k’s direct
benefit is largest when the link comes from the agent who exerts the highest effort. Since
the multiplier effect described in section [4] is proportional to the increase in agent k’s
effort, agent ¢ prefers for the link to farmer k to induce the greatest rise in his effort and

consequently the network.

We can extend this result a little further. Consider the following thought exercise: If we
were to improve one link in the network from any agent k to any agent j such that k # 7,
which link should we improve to maximise farmer i's utility? Equation shows that we
only to look at two different variables, the action vector (a) and the distance between the
recipient of the benefit and farmer i (M;;). We conjecture under quite general conditions
that M;; > M for all k # 4. In this case, if we wanted to maximise farmer i’s utility
from improving a benefit link, we should add a benefit link from the farmer j who has the

highest effort level to farmer 4, where j # i.

6. CONCLUSION

Close-knit villages are characterised by repeated interaction, and a large, complex social
network which provides information and potential social sanctions. These three key fea-
tures of village economies suggests that a cooperative equilibrium which is coalitionally
stable may occur. The Lindahl equilibrium in our model is a useful benchmark for these
villages for four reasons: it is unique, robust to coalitional deviations, has strategic foun-
dations, and offers a market interpretation whilst simultaneously being characterised by
a single network centrality condition. The solution concept has many desirable properties

whilst offering a tractable model for analysing the provision of public goods.

This article examines three key features of the network: (i) how an individual’s relative

welfare in the network depends on their own characteristics, (ii) how individual changes
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affect the network and (iii) how individual’s welfare changes according to the network

architecture.

The paper demonstrates how the provision of public goods within a network can change
with small changes in the parameters. Additionally, the paper is able to characterise the

welfare effects from these changes in the environment.

Although not explicitly modelled, the paper also shows how the optimal provision of public
goods may fail. In particular, by showing a cost reduction for agent 7 or an improvement in
the benefit matrix has positive externalities for all other individuals in the network suggest
there are suboptimal incentives for investment in cost reducing technology. Future research
focusing on explicitly modelling the incentives for investment in cost reducing technologies

would be interesting.

The paper has many further possible extensions. The utility function in this paper is a
weighted sum over other individual’s actions, therefore there is no complementarity or
substitution between different individuals provision of public goods. For instance, we may
expect that learning about different crops are substitutes since farmers can only grow a
finite number of crops. Understanding how to increase the flexibility of the model whilst
still retaining tractability and ascertaining whether uniqueness still holds would be an

interesting line for future research.

Another interesting question for future research arises from ascertaining what is the welfare
maximising benefit matrix? Assume that there is a fixed number of benefit links and all
agents had the same cost parameter, what would be the optimal configuration? We
conjecture that due to the strict convexity in the cost function, the optimal configuration

would have an equal number of benefit flows for each agent.

Overall, this paper has described how heterogeneous and multilateral benefits affect the
equilibrium provision of public goods under assumptions which are likely to be fulfilled in
a close-knit villages. We have characterised the Lindahl equilibrium and described how

the equilibrium changes under certain conditions.
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APPENDIX A. PROOFS

A.1. Proof of Proposition[I} Under the assumptions in Section 2.1} the following state-
ments hold:

1) If a € R% is centrality-stable, then a is sustainable.

2) There exists a centrality-stable a € RZ, .

3)
)

4) The centrality-stable a € RY is unique and given by:

(

(

(3) If a € RY is sustainable, then a is Pareto-efficient.

(

(6) > Riar = cif'(a;)a; Vi
k

(7) Ra = cof/(a)oa

Proof. Statements (1)-(3) hold directly from [Elliot and Golub| [2015], and statement (4)

is proven using a contraction mapping theorem.

We want to show there is only one solution to equation @ If we can show that the

following system of equations is a contraction mapping, then we will have a unique solution:

(8) g(a) =a— Byp(a)

where B is some nxn matrix with constant coefficients to be chosen and p(a) = co f’(a) oa — Ra.

Therefore, the equation g(a) = a is equivalent to p(a) = 0.

Formally if g : X — X is Lipschitz continuous with Lipschitz constant L < 1, then g(a)
has a unique fixed point a* and thus p(a*) = 0. Therefore, we must first show that we can
find a mapping g from a set X to itself. Then we must show this mapping is a contraction
on X.

Ry -
Let us assume a; is bounded above by a such that f’(a) = max; Z]C ’ = K and bounded

R '
ZJCi - = K. Next let us define the set X to be T7,

where T' = [a, a]. Also, let us assume our matrix B is a diagonal matrix with strictly

below by a such that f/'(a) = min;

positve elements, b;. To show that our mapping g, maps set 17" into itself, we must show

g satisfies:

a>gi(a)>a YaeT", i

Where we denote the it" element of g(a), as gi(a).
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First we show g;(a) is strictly less than or equal to a for all a. This condition, element-wise

requires:

a>a;—b; lclf a'L i ZRUCL]

Let us define R = max; y_ I;;, then it must hold that:

a > a; —b |:sz az i ZRz]CLJ

(9) > [le (al) Q; Ra}
Since inequality @ must hold for all possible values of a;, let us define d; such that:
a; = arg 2?2% a; — |:sz (az) a; Ra}

If a; does not equal a, then a solves the following implicit function:

(10) 1-— bicif//(&i)&i - bZCZfI(CALZ) =0
Let us first show the case where a; is stricly less than a. Substituting equation into
equation @ we have:

a 2 a + biRZZ — [1 — biCif//(di)fli] fli
Rearranging and using a; is stricly less than a, it follows:

1> b;(R+ cif"(@:)ai)
Since ¢; f"(a;)a; is finite, we can always find a sufficiently small b; such that this condition
holds.
If a; equals a; then inequality @D becomes:
a a— b [cif’(a)a - Ra}

1-— bl {Cif/(fl) - R}
R

v

1
Cif/(6_1,>

Y

v

Rij
This condition is satisfied by our definition that f'(a) = max; =2 - 2. Therefore we have
established g;(a) is strictly less than or equal to a for all a. Next we show that g;(a) is

strictly greater than or equal to a for all a. This condition, element-wise requires:

(11) a<a;— |:sz az i ZR’L]aj
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Let us define R = min; > R;;, then it must hold that:

(12) ai — b [¢if'(a;)a; — Ra] < a; — b; {Cif,(ai)ai - ZRijaj
J

Where we substitite (@ < Zj Rija]) into equation . The LHS of equation is

minimized at a; = a, therefore we have to merely show that:

a <a—blcif'(a)a — Ral
Rearranging:
¢if'(a) <R

Which is satisfied by our initial assumption that f/(a) < min,

. Therefore, we have
shown for a sufficiently small b;, the mapping g, maps from 7" into itself. Now we just
need to show that ¢ is a contraction on T".

Differentiating equation with respect to a:

g'(a) =1-By(a)

Note:
cif"(ar)ar +c1f'(a1) —Riz e —Rip
—R :
¢'(a) = “
. . . _Rnfl,n
—R1 T —Rpn—1 cnf” (an)an + cnf'(an)

Therefore, if we can find a suitable matrix B such that:

(13) IT-By'(a) <1
then we have contraction mapping.

Then we can write equation I — By'(a) element wise as:

1—b1(c1f"(a1)ar +c1f'(a1)) biRi2 --- bi1Rip

. . bnfanfl,n
bp Rt T L — by (cnf"(an)an + cnf'(an))
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Then we can choose any b; in the set (0, min {%, ming %}) such that:

| I-B¢'(a)],;| = [1—bi(cif’(ai)ai+cif'(ai))] <1 Vi
|[I-B¢'(a)];|= |bi R <1 Vi#j

Hence if we use the sup-norm as our distance metric then for a sufficiently small b; equation
is satisfied. Therefore, for a suitably small b; we have shown that ¢ is a contraction
mapping on 7™ and as such, there is unique fixed point a* in the set T which satisfies the

equilibrium equation @ To complete the proof we show there is no equilibrium a; > a.

Formally, for all possible a, if at least one a; > a then a is not an equilibrium action
profile. We shall prove this by contradiction.

Let us define a’ such that:

/
a

a—+e

Assume there is some a; > a’ and a; > a; for all j. Then the equilibrium condition

requires:

f'(ar)ay = 2 kit for agent k

Ck
. R;j;
Let us subsitute in f’(a) = max; 2271]
Ryja;
flar)ar = L Bk for agent k
Ck
Zj Rijaj
< max —/———=
i Ck,
(14) < fl(a)ay

Recalling that f/(a) is increasing in a, then f’(a) must be strictly less than f’(a’), therefore
inequality cannot hold. Thereby proving that for all possible a, if at least one a; > a
then a is not an equilibrium action profile. A symmetric proof shows that if at least one
a; < a and a € RY; then a is not an equilibrium action profile.

This completes the proof the centrality-stable a € RZ, is unique. O
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A.2. Proof of Proposition [2] Under the assumptions in section 2.1} if individual i is an
unconnected clone of agent j and has a higher cost parameter (¢; > ¢;), then individual i
will choose a strictly lower effort (a; < a;) in the unique Lindahl equilibrium.

Proof. Recall that the equilibrium condition J(a)a = 0 implies:
(15) > Ripay, = cif'(ai)a; Vi
k

Next, if we assume that ith and jth row of the benefit matrix are identical and there are
no reciprocal connections, then the total benefits from the network must be the same for
both individuaISB Inserting this into equation :

(16) > Ricar, =Y Rjpar = cif'(ai)a; = ¢; f'(aj)a;
% %

Without loss of generality assume ¢; < ¢;. Then using equation :
f'lai)ai ¢
f'aj)a; i
Recalling that f(.) is strictly convex, therefore it follows that a; > a; if and only if
¢ < ¢j. O

(17) >1

A.3. Proof of Proposition [3 Under the assumptions in section if the elasticity of
total costs is decreasing in effort and individual 7 is an unconnected clone of agent j with
a higher cost parameter (¢; > ¢;), then agent i will be better off (Uj(a) > Uj(a)) in the

unique Lindahl equilibrium

Proof. Recalling the original utility function U; = }°; Rixar — ¢;f(a;) and without loss of
generality assume ¢; < ¢;, then ¢ is worse off than j if and only if:

U, < Uj
> Riar —cif(ai) < Y Rjkar —c;f(ay)
k k
Since by the assumption that two individuals receive the same benefit through the network
and there are no reciprocal links we know that }, Rjrar = > ) Rjpaithen:
Ui < Uj
(18) —cif(ai) < —c;f(a;)

13The condition that ith and jth row of the benefit matrix are identical and there are no reciprocal
connections explicitly requires R, = Rj, for all k # ¢ or j and R;; = Rj; =0
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Using equation we know thaﬁ

¢if'(ay)a;
(19) ¢ = 7}/(%;@,-]
Sub in equation for ¢; in equation :
U ) > i)
fllaj)a; _ flaias
f(aj) flai)

If we define the elasticity of total cost to be €(a;) :acg;(iai) ci ;(iai) - ag(aaj) fgai,-) then:

Ui < Uj & e(a;) < €(ay)

In the previous proposition we showed a is decreasing in ¢ hence if the elasticity is de-

creasing in a then the agent with higher cost will be better off. ([l

A.4. Proof of Proposition Under the assumptions in section suppose the elas-
ticity of total costs is decreasing or constant in effort and individual ¢ is a connected
clone of agent j with higher individual costs (¢; > ¢;), then agent i will be better off
(Ui(a) > Uj(a)) in the unique Lindahl equilibrium.

Proof. Recall that the equilibrium condition J(a)a = 0 implies:
(20) > Rigay, = ¢if'(as)a; Vi
k

Next, if we assume that ith and jth row of the benefit matrix are identical and have equal
reciprocal connections, then the total benefits from the network must be different only
by the extent of their respective actionsﬁ Therefore, we can write a similar condition to

equation :

Z Rikak + Kaj = cif'(ai)ai
kj

Z Rjkak + Ka; = cjf'(aj)aj
ki

M1y the proof we have passed terms across inequalities without worrying about changes in the sign of the
inequality since all the terms of the expression must be greater than zero - since we have a convex cost
function (so f’(.) > 0) and actions must be non-negative.

15The condition that ith and jth row of the benefit matrix are identical and there are equal reciprocal
connections explicitly requires Rix = Rj, for allk # i or j and Ri;; = Rjs = K >0
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Hence subbing out for (37;_; Rjrax) we can combine the two equations into:

cif/(ai)ai — Kaj = cjf/(aj)aj - KCLZ'
cif’(ai)ai + Ka; = cjf’(aj)aj + Kaj
(21) ailcif'(ai) + K] = ajlc;f'(a;) + K]

Assume without loss of generality that ¢; < ¢;, then it follows that a; > a; due to the

strict convexity in f(.). This can be proven by contradiction, assume a; < a; then for
equation to hold, we need:

cif'(a))+ K > ¢if'(aj)+ K
cif'(ai) > ¢jf'(ay)

Since we have assumed ¢; < ¢; it most hold that:

f'(ai) > f'(ay)

However, due to the strict convexity in f(.) then a; > a; leading to a contradiction.
Therefore agents with higher costs put in lower effort when they have equal benefits from

the network and reciprocal connections:

Ci < ¢j = a;>aj

We are interested in characterising when agent j’s utility is greater than agent ¢’s, in the
case where ¢; < ¢;, therefore:

U, < Uj
> Rigar —cif (ai) < Y Rjgap —c;f(ay)
k k
Z Rray, + Kaj — cif(ai) < Z Rjkak + Ka; — ij(aj)
kAj ki

Where in the last equation we have used R;; = R;; = K > 0 to define the reciprocal
benefits between agents.

U, < Uj
Kaj+cjf(aj) < Ka;+cif(a;)
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Using equation (21) we can sub in for ¢;:

cif’(ai)ai + K(ai — aj)

Kaj—i-

] f(aj) < Ka; + cif(ai)

With some rearrangingE’!l:

. f/(a])a]—f(aj) e fla) — cif’(ai)ai o

Kla; = ai) [ f'(aj)a; < af(a) ( f'(aj)a; ) flag)
oy [ ai)ag = flag) o f'(aj)a; e f'(ai)a;

@) Ky ”[ Flafa) | © ( 7(ay) ) ()

Recalling the definition of elasticity of total costs with respect to action is €(a;) = (%g; (iai) C.J?("av) =

8{9&” f(a;i), then we can write equation as:

K(a; - as) [f'“”)”j‘f “”] < ci(elay) — e(a)

> ¢ (e(ai) —e(ay))

Therefore the LHS is greater than zero since due to the strict convexity in f(.) and the
assumption ¢; < ¢;, hence if elasticity of total costs with respect to actions is decreasing
in the action, then the individual with lower costs is worse off.

Hence:
¢ <cjeap>a; = {Ui < Uj if €(a)is decreasing in a
(|

A.5. Proof of Lemma [1} An agent’s indirect U;(c;, a;(R,c)) is strictly increasing in
the equilibrium a;

Proof. Using the equilibrium condition and the strict concavity assumption on f(.) we can
show that U;(¢;, a;(R,c)) is strictly increasing in a;.

Firstly J(a)a = 0 implies:

(23) ZRikaz =c;f'(a})a} Vi
k

16Recall that f(a) > 0 for all @ > 0 hence all terms are positive
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Recall that:
Ui =Y Ripay, — cif(a;)

k
Substituting in ), R;zajfrom equation into the utility function:

Ui(ci, aj) = cif'(af)a; — cif(af)
Ui(ci, aj) = ¢ [f'(a7)a; — f(a])]
Due to f(.) being strictly convex, this function is increasing in a;. Formally:

ou;
oa*

1

= ci [f"(a7)aj] >0

A.6. Proof of Proposition [6] Under the assumptions in section an increase in the
cost vector ¢’ >c¢ will necessarily lead to a decrease in the effort levels for all agents at
the the unique Lindahl equilibrium. In particular each agent’s change in effort level for a

small change in the cost vector is equal to:

(a' —a) ~ —-D Ha)M(a) (¢’ —c)of'(a)oa
Proof. Consider the equilibrium action for all agents:

Z Rikak = cif’(ai)ai VZ
k

Define a new parameter 6 € [0, 1], which ¢ depends on. This implicitly defines a function
a*: [0,1] — R, where a(f) is the fixed point when ¢ = ¢(6). The parameter 6 is used to

model how changes in 0 affect c(0) and in turn a*(6).

Writing out the equilibrium condition in the new notation gives us:

> Riar(8) = ci(0)f (ai(0))ai(0) Vi
k

Ra(d) = c(0)of'(a(d))oa(d)

Differentiating this function with respect to 8 gives:

Ra'(6) = ¢/(6)of (a(9)) 0 a(8) + c(6)of" (a(8)) o a(f) o a'(8) + c o ' (a(9)) 0 a'(6)
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Note when using Hadamard product, ¢ o f”’(a(f)) o a(f) o a’(f) can be rewritten as
C[F/(a(0))A(0)d’(0)] where C =diag(c) and F”(a(d)) = diag(f”(a(f))) and A(0) =diag(a(h)).
Therefore, we transform a n x 1 vector into a diagonal n x n matrix.

Collecting terms in a’() and rearranging giveﬂ

(R—CF’(a)A —CF'(a))a’'(d) = c(@)of'(a)oa
(24) a'(#) = —(CF’(a)A+CF'(a)—R) 'd(#)of'(a)oa

Equation states how the action profile a changes for changes in the parameter (6).
Define D = CF”(a)A + CF/(a) and this can be further reduced to:

a'(d) = —[D-R| ') of'(a)oa
(25) a(6) = D' [I-RD| c(#)of(a)oa

If the spectral radius, p(.), of [RD_l} is less than one, we can write equation 1) as:

(26) a'(f) = —D! [i (RDl)k] (@) of'(a)oa
k=0

To show p(RD™1!) < 1, we use lemma 1 in Elliot and Golub [2015], which shows the
spectral radius of p(RE™!) = 1, where E = CF’(a). By noting

D - E =(CF’(a)A + CF'(a)) — (CF'(a)) = CF"(a) > 0
Then the spectral radius:
p(RD1) < pRE)=1

Therefore, the change in the action profile a’(f) can be written in the form of equation
(26). Equation shows that an increase in the cost function (¢’(f) > 0 for all elements
with at least one strict inequality) will lead to a reduction in the action profile for all agents
due to all the terms on the RHS are positive and they are multiplied by a negative. [

1TFor ease of exposition, the term 6 has been dropped except from the terms which are differentiated with
respect 6
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A.7. Proof of Proposition |7, Under the assumptions in section an increase in R’
from R such that R’ > R will necessarily lead to an increase in the effort levels for all
agents in the unique Lindahl equilibrium.

Proof. Similar to the proof of Proposition define a new parameter 6 € [0, 1], which
R depends on. This implicitly defines a function a : [0,1] — R, where a() is the fixed
point when ¢ = ¢(f). The parameter 6 is used to model how changes in 6 affect R(6) and
in turn a(d). We can show a’(f) is increasing in R/(6). To be precise, recall the original

equilibrium condition:

S Ri(0)ap(6) = eif (af(9))a;(6) Vi
k

Which we can rewrite as:

(27) R(6)a(0) = c o £'(a(6)) o a(6)

Following the proof of Proposition we can differentiate equation and rearrange
such that:

a'(d) = [D-R] 'R'(ha
a(l) = D [IfRD_I}_lR’(O)a

Therefore, since the spectral radius, p(RD~!) < 1, we can write this as:

a'(§) =D i (RD_1>k R'(0)a
k

Hence, an increase in the intensity of links or the introduction of new links (R’(#) > 0) in

the benefit matrix will lead to an increase in the equilibrium action for all agents. O

A.8. Proof of Proposition Under the assumptions in section an increase in the
cost vector from ¢ to ¢’ such that ¢ > ¢’ will necessarily lead to a reduction in utility for
all agents at the unique Lindahl equilibrium.

Proof. The prof relies on using lemma [T} proposition [f] and proposition[7] First note that
the change in the indirect utility, U;(c;, a;(R,c)) can be written as:

Ui(cia ai(R> C)) = Cif/(a:)az - le(a;k)
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Differentiating with respect to cg

dU; da:
dc;: = Li=i- [f'(ai)ai — f(ai)] + ¢ [f//(ai)aidclj
First consider the case i # k; the sign (‘;CUZ) = sign(g‘cz;), since the other terms are

greater than zero. Hence following proposition [6] which shows actions are decreasing in

costs, then:

<dUi) <0ifk #i

dcg

To show that:

dU;
0
( de; ) <

Note that a utility function can be transformed with an affine transformation such that an
individual’s choice of a; is unchanged from an increase in ¢; or an appropriately weighted

reduction in the ith row of the benefits matrix.

Formally, consider scaling an individual’s cost function by , therefore the equilibrium will
be such that:

> Riraj, = wcif'(a7)a
k

Further we could replicate the same equilibrium a* by using R}, = %, therefore, it follows
the change in person #’s action from the increase in costs is the same as a reduction in the
ith row of the benefit matrix R.

Hence, following proposition [7]which showed actions decreasing in reductions in the benefit

matrix and:
dUZ o 1 dai :|
Ry, © [f )% g
H . av; \ da; heref au; U
ence, &gn(dRik) = s&gn(dRik) > 0. Therefore 72t < 0.

A.9. Proof of Proposition[9, Under the assumptions in section[2.1], consider an increase
in costs for person k, then the relative impact on person ¢ and person j can be characterised

by individual fixed effects (H;(a;) and (H;(aj)), and network effects from person k to
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person 4 and j ((M;,(a)) and (M;ji(a))) in the unique Lindahl equilibrium.

du;
do,  Hi(as) o M. (a)

Ui Hja;) ~ Mjn(a)

for k#14 oryj

dey,
() = 4" (aiai
where H;(a;) = Pt D
Proof.
dU; _ / " daz}
o = e [Flaa = fla)] + | Fader
f"(ai)a; o
Frlas)a; + f,(a.)Mik-fl(ak)ak ifi £k
Where we have substituted in gg; from the earlier proofs. Therefore defining H;, =
Wﬁ% we can denote this as:
au; .
de = HiMikf'(ak)ak if 4 7& k
Therefore:
dUu;

dew  Hi My
aU; =, M,
——J j ]k

dcy,

for kK #i orj




EFFICIENT PUBLIC GOOD PROVISION IN NETWORKS: REVISITING THE LINDAHL SOLUTION 35

APPENDIX B. CLONES

FI1GURE 5. Agents A and C are unconnected clones in this matrix, since
they receive the same marginal benefits from the rest of the network and
confer no benefits to each other

B.1. Unconnected clones. The benefits which agents A and C receive are denoted in

red for clarity.
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FIGURE 6. Agents A and C are connected clones in this matrix, since they
receive the same marginal benefits from the rest of the network and confer
equal benefits to each other

B.2. Connected clones. The benefits which agents A and C receive are denoted in red

for clarity.
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FIGURE 7. Agents A and C are identical clones in this matrix, since they
receive and confer the same marginal benefits from and to the rest of the
network.

B.3. Identical Clones. Agents A and C must the same cost parameter too (not shown
in the figure). The benefits which agents A and C' receive and confer are denoted in red

for clarity.
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