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Abstract

To what extent can monetary policy impact business innovation and productivity
growth? We use a New Keynesian model with endogenous total factor productivity
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by the zero lower bound (ZLB) and the TFP benefits of tightening monetary policy
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1 Introduction

Growth in total factor productivity (TFP) has slowed dramatically in recent years: as

seen in Figure 1, U.S. TFP growth in the post-1980s has never been as low for as long as

during the post-2007 period.1 This development has been a cause of widespread concern,

and at the same time has sparked an intense debate on its possible causes, with the role of

innovation and business dynamism the subject of increasing attention.2 From the vantage of

monetary policymakers, an important open question is to what extent can monetary policy

exert influence on TFP.

Figure 1: U.S. TFP Growth
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Note: 5-year moving average (two-sided) of annual U.S. TFP growth.

This paper analyzes the link between monetary policy and TFP dynamics using a New

Keynesian model that endogenizes TFP. In the model, technology innovation and adoption

drive medium-run swings in TFP.3 We begin by illustrating how monetary policy in the model

works to induce medium-run movements in TFP, through its impact on firms’ incentives to

develop innovations and implement them in production. We then use the model to address

two specific questions. First, we ask to what extent the zero lower bound (ZLB) constraint

on monetary policy played a role in driving the weakness in TFP growth seen since the onset

1The slowdown has been widespread across advanced economies. See, for instance, the July 2017 Monetary
Policy Report to Congress, p. 12-13.

2For example, Yellen (2016a) emphasizes that “[...] understanding whether, and by how much, productiv-
ity growth will pick up is a crucial part of the economic outlook” and notes that “there is some evidence that
the deep recession had a long-lasting effect in depressing investment, research and development spending, and
the start-up of new firms, and that these factors have, in turn, lowered productivity growth.”

3A recent but growing literature in macroeconomics incorporates endogenous TFP mechanisms of this type
within modern quantitative frameworks, following the lead of Comin and Gertler (2006). See, for example,
Anzoategui, Comin, Gertler and Martinez (2017), Benigno and Fornaro (2016), Bianchi et al. (2014), Guerron-
Quintana and Jinnai (2014), Kung and Schmid (2015), or Queralto (2013).
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of the Great Recession. Second, we examine how much future monetary policy can influence

future TFP, by tightening more slowly than currently projected.

Our findings suggest, first, that the adverse impact of the ZLB on TFP was substantial.

In particular, the constraints imposed by the lower bound on monetary policy from 2009

to 2015 led the levels of TFP and output to be permanently lower by 1.75 percent and

2.5 percent, respectively. Thus, according to our model, the ZLB accounts for a significant

fraction of the TFP and output shortfall relative to pre-crisis projections. Second, we find

that slower tightening of monetary policy after 2016 may significantly enhance longer-run

TFP and output. In particular, an alternative path for the policy rate which reaches the

long-run level of 3 percent around 2025 (rather than in 2019 as under current projections)

results in a boost in long-run TFP of 1 percent, and in long-run GDP of 1.5 percent.

An important aspect of our analysis is the use of identified vector autoregressions (VARs)

to obtain estimates of the dynamic effects of innovation (as measured by aggregate private

R&D expenditure) on TFP dynamics. These estimates indicate that increases in R&D in

the data tend to induce gradual, persistent increases in TFP, consistent with the model’s

predictions. The VAR evidence then proves useful to identify key model parameters linking

innovation and TFP. In addition, our analysis also employs identified VARs as a check on

the model’s empirical plausibility. We do this in two ways. First, we document the dynamic

effects of R&D in a larger-scale VAR (including a set of standard macroeconomic variables)

and compare them against the model’s predictions. Second, we examine the dynamic effects of

monetary policy in a VAR which, in addition to standard macroeconomic variables, includes

both R&D spending and TFP, and also compare the resulting estimates against the model’s

predicted effects of monetary policy shocks. Here, VAR-based estimates of the effects of

monetary policy shocks point to a rise in both R&D and in medium-run TFP following an

expansionary monetary shock, consistent with the model. Overall, the model does reasonably

well on both fronts.

Among the papers cited above, the closest to ours are Bianchi et al. (2014) and Anzoategui

et al. (2017), who also develop and estimate quantitative macroeconomic frameworks with

nominal rigidities and endogenous TFP dynamics. Our approach to modeling innovation and

adoption differs significantly from that in Bianchi et al. (2014). For example, theirs is a

Schumpeterian model of vertical innovations, while we use an expanding-variety framework

as in Romer (1990). In that respect, our model is much closer to the one in Anzoategui

et al. (2017), in turn based on Comin and Gertler (2006). In addition to some differences

in focus—our analysis is geared towards exploring the transmission from monetary policy

to productivity, while both Anzoategui et al. (2017) and Bianchi et al. (2014) give more

attention to explaining historical episodes—our work differs from these frameworks by making
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extensive use of VAR methods to estimate key model parameters, and to assess the model’s

quantitative performance. The benefit of this estimation strategy is that it allows us to focus

on the endogenous productivity mechanism, does not rely upon a correct specification of

other shocks, and can be used to ensure that the model fits well the dynamic effects of R&D

in the data. This approach also motivates some modeling differences—most notably, our

model includes a complementarity between R&D and technology adoption that is absent in

Anzoategui et al. (2017) and Comin and Gertler (2006), which we show improves the model’s

ability to fit the data.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 describes the parameterization of the model and the model assessment against the VAR

evidence. Section 4 contains the counterfactual experiments on the role of the ZLB and of

slower tightening post-2016. Section 5 concludes.

2 Model

This section describes the theoretical framework, consisting of a standard medium-sized

New Keynesian model augmented to include endogenous technology innovation and adoption.

We begin by describing the evolution of endogenous technology in section 2.1, which consti-

tutes the main departure from other medium-sized DSGE models found in the literature. The

remaining sections then characterize each set of agents in the model.

2.1 Evolution of technology

We model technology following Comin and Gertler (2006), which is in turn based on the

expanding-variety framework due to Romer (1990). Innovations in the model take the form

of new varieties of intermediate goods, which are discovered endogenously as a result of R&D

activity by private innovators. We let the aggregate measure of existing technologies (or the

“technological frontier”) be denoted by the variable Zt. Any point on the real line between 0

and Zt represents a distinct variety of intermediate. Each of these technologies is subject to

exogenous obsolescence, which occurs with probability 1−φ. Let Vt be the aggregate amount

of innovations developed during period t. In the following subsection, describing innovators’

optimization problem, we explain how Vt is determined. The technology frontier Zt thus

evolves as follows:

Zt+1 = φZt + Vt (1)
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New technologies, once discovered, are not yet readily available for use in production.

Rather, they are incorporated into use through a process that requires both time and re-

sources. Specifically, a competitive set of “technology adopters” spend resources each period

to try to make technologies usable. Each adopter succeeds with probability λt, which is as-

sumed to be an increasing function of the resources spent. If he is not successful, the adopter

may try again in the following period. Thus, adoption generally takes multiple periods, and

the adoption rate λt may vary with economic conditions. Section 2.3 below characterizes the

problem facing technology adopters.

Let the measure of technologies that are available for use be denoted At, satisfying At < Zt

at all times. The variable At determines aggregate TFP. As a result of the adoption process

just described, the evolution of At is given by the following:

At+1 = φ [λt (Zt − At) + At] (2)

Dividing the above equation by At yields an equation characterizing the growth rate of

TFP, which is governed by two variables: the rate of technology adoption, λt, and the stock

of total technologies relative to adopted technologies, Zt/At.

2.2 Innovators

Competitive innovators spend resources in R&D to develop new intermediate goods. They

then sell the rights to the new goods to an adopter, who converts the idea for the new product

into an employable input, as described in the next subsection.

Specifically, each innovator i has access to the following production function:

Vi,t = ζZt
1

Zη
t S

1−η
t

Si,t (3)

Here Vi,t denotes new products developed by innovator i and Si,t his R&D expenditure

(in units of final output). Aggregate R&D is St ≡
∫
i
Si,tdi. As in Romer (1990), there is a

positive spillover from the aggregate stock of innovations, Zt, to individual R&D productivity.

At the same time, the term 1

Zηt S
1−η
t

introduces a “congestion” externality from aggregate R&D.

Motivating such an externality is the notion that the best ideas may be the ones that are first

discovered. Under this formulation, in equilibrium the R&D elasticity of aggregate technology

creation is given by the parameter η, satisfying 0 < η < 1. The congestion effect depends

positively on the technological frontier Zt, capturing the notion that as the economy becomes

more sophisticated the efficiency of R&D declines. This term helps ensure that the growth

rate of new intermediate products is stationary. The parameter ζ is a scaling factor that we
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calibrate so that the model delivers a realistic growth rate of TFP in the balanced growth

path.

Let Jt be the value of a new “unadopted” innovation. We describe how Jt is determined

in the following subsection. Innovations developed at t become available starting in t + 1.

Accordingly, letting ϕt ≡ ζZt
Zηt S

1−η
t

, innovator i’s problem is

max
{Si,t+j}∞j=0

Et

{
∞∑
j=0

Λt,t+1+j

[
Jt+1+jϕt+jSi,t+j − (1 + ∆s

t)
(

1 + fs(Si,t+j/Si,t+j−1)
)
Si,t+j

]}
(4)

Where Λt,t+1 denotes the household’s stochastic discount factor between t and t+ 1. The

convex function fs(·) captures costs of adjusting the level of R&D. It satisfies fs(g) = f ′s(g) = 0

where g denotes the growth rate of R&D along the balanced growth path (which coincides

with the growth rate of technology, output, and other aggregates). In addition, innovators’

problem above includes an exogenous R&D tax, or “wedge,” given by the variable ∆s
t . We

assume the wedge follows a first-order autoregressive process: ∆s
t = ρs∆

s
t−1 + εst . The wedge

effectively introduces a gap between the marginal benefit and the marginal cost of innovation.

The variable ∆s
t plays an important role in our model estimation exercise. In particular, we

use variation in the wedge to initiate movements in R&D, and then trace out the effects on

TFP and other variables. We then calculate the analogous object in the data, using a VAR to

identify shocks to R&D. We estimate key model parameters governing the innovation sector

by requiring that the dynamic effects of R&D in the model match those in the data.

One possible interpretation for the wedge is that it reflects frictions in financial inter-

mediation, constraining credit for innovators.4 More generally, we think of the wedge as a

reduced-form way of inducing movements in R&D, be it due to financing constraints or to

other (unmodeled) sources of variation of the desirability of R&D investments.

Given that all innovators make the same choices, we now drop the i subindex. The first-

order condition for the problem above is given by

Et (Λt,t+1Jt+1)ϕt = (1 + ∆s
t)
{

1 + f ′s (St/St−1)
St
St−1

+ fs (St/St−1)− Et
[
Λt,t+1f

′
s (St+1/St)

(
St+1

St

)2 ]}
(5)

4See Queralto (2013) for an explicit model of this channel. The data offers some evidence in support of the
notion that financing constraints affect R&D: when we compare the orthogonalized shocks to R&D from our
VAR (identified by assuming that they do not affect TFP contemporaneously) to the excess bond premium
(Gilchrist and Zakraǰsek (2012)), we find a strong negative correlation between current and lagged values of
the excess bond premium and the orthogonalized shocks to R&D.
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Equation (5) sets the marginal benefit from R&D to its marginal cost, including the wedge

∆s
t . The marginal benefit of R&D includes the expected discounted value of an (unadopted)

innovation tomorrow, given by Et (Λt,t+1Jt+1). Aggregate innovation, which determines the

evolution of the frontier Zt (see equation (1)) is then Vt ≡
∫
i
Vi,tdi = ζZ1−η

t Sηt . Note that η

governs the elasticity of Vt to St. This elasticity is one of the key parameters that we estimate

using VAR evidence on R&D and TFP. Using the equation for Vt in (1) we obtain that the

growth rate of Zt is determined by the ratio St/Zt (with elasticity η). Thus, long-run growth

in the technology frontier (and therefore in TFP) is fully endogenous in our model: permanent

changes in ∆s
t , for example, lead to permanent changes in the growth rate of Zt.

2.3 Adopters

Competitive technology adopters employ resources to convert available technologies into

use. Each adopter succeeds in making a product usable in any given period with probability

λt. If the adopter is not successful in period t, he may try again in t + 1. This success

probability depends positively on the amount of expenditures by the adopter. Given that the

success rate will be the same across products, this formulation facilitates aggregation.

As a way to introduce adjustment costs in adoption activity, we suppose that adopters’

input is a specialized good (e.g. equipment) that is produced using final output by equipment

producers, described below.5 The latter agents face adjustment costs that are analogous

to those faced by innovators and by capital goods producers. We denote the price of the

equipment good used by adopters by Qm
t .

Let Mi,t be the amount of equipment used by any adopter i. The probability of a successful

adoption, λt, depends on Mi,t and is given by the following:

λt(Mi,t) = κλ (St/At)
νMρλ

i,t (6)

with κλ > 0, 0 < ν < 1, and 0 < ρλ < 1. The probability of a successful adoption is

increasing and concave in adoption effort Mi,t. Different from Comin and Gertler (2006),

we assume the probability of successful adoption includes a “spillover” from aggregate R&D

expenditure St (relative to the total stock of adopted innovations At, which ensures that

the spillover term is stationary). The idea here is that aggregate R&D may have a benign

externality effect on the likelihood of adoption of existing innovations, for example because

5We have found that adjustment costs of adoption investments are necessary avoid excessive volatility in
adoption activity, e.g. in response to monetary shocks.
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adopters learn from aggregate R&D efforts.6 In addition to having some plausibility, this

spillover term is critical for the model to be able to generate realistic TFP dynamics following

an innovation shock, as we illustrate in detail below. The parameter ν—governing the strength

of the spillover—is another of the key parameters that we estimate.

An adopter i buys the rights to an unadopted technology from innovators, at competitive

price Jt. The adopter then uses resources Mi,t which lead to the technology becoming usable

for production with probability λt(Mi,t). If the adopter is successful, he sells the adopted

technology to goods producers obtaining for it the price Ht, given by

Ht = Πt + φEt (Λt,t+1Ht+1) (7)

where Πt is the monopoly profit from operating the technology.

The problem of an adopter is

Jt = max
Mi,t

−Qm
t Mi,t + φEt

{
Λt,t+1

[
λt(Mi,t)Ht+1 +

(
1− λt(Mi,t)

)
Jt+1

]}
(8)

Since Mi,t is the same across adopters, we omit the i subscript in what follows. Adopters’

first-order condition is given by

ρλκλφ (St/At)
ν Et [Λt,t+1 (Ht+1 − Jt+1)] = Qm

t M
1−ρλ
t (9)

Adoption effort Mt is increasing in the expected discounted value of the difference Ht−Jt,
i.e. in the difference in value between an adopted and an unadopted technology. In addition,

everything else equal, increases in aggregate R&D will also lead to increases in adoption effort

(via the externality term in (6)), as aggregate R&D enhances the marginal benefit of adoption

expenditure Mt. Thus, the R&D externality in (6) works to introduce complementarity

between R&D and technology adoption—a feature that is clearly favored by the data, as we

show below.

In period t there is a measure Zt − At of technologies which adopters are attempting to

convert into use, with each adopter using Mt equipment goods. Accordingly, the aggregate

amount of goods used by adopters is given by (Zt − At)Mt.

6Griffith et al. (2004), for instance, emphasize that an important role of R&D is to facilitate the adoption
of existing innovations.
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2.4 Intermediate goods producers

Each of the At varieties of intermediates that are actively used as of period t is produced

by a monopolistically competitive producer. Wholesale output, Y w
t , is a CES aggregate of

individual intermediate goods:

Y w
t =

[∫ At

0

Y m
i,t

ϑ−1
ϑ di

] ϑ
ϑ−1

(10)

Wholesale output is then used to produce final output by retailers, described below, who

are subject to nominal rigidities. In (10), Y m
i,t is output by the producer of intermediate i.

Each intermediates producer sets (nominal) price Pi,t. The price level of wholesale output

associated with (10) is then Pw
t =

[∫ At
0
P 1−ϑ
i,t di

] 1
1−ϑ

. Each intermediate goods producer i

combines capital Ki,t and labor Li,t to produce their variety, using a Cobb-Douglas production

function:

Y m
i,t = Kα

i,tL
1−α
i,t (11)

Solving the intermediate good firm’s problem yields standard first order conditions for

pricing, labor, and capital. Let Wt be the nominal wage and Rk
t the real rental rate of capital.

Cost minimization by intermediates producers yields the following conditions

Wt/Pt =
1

Mϑ

1

Mt

(1− α)
Y w
t

Lt
(12)

Rk
t =

1

Mϑ

1

Mt

α
Y w
t

Kt

(13)

Here,Mϑ ≡ ϑ/(ϑ− 1) is the markup arising from imperfect competition in intermediates

production, andMt is the markup of the final output price level, Pt, over the wholesale output

price level: Mt ≡ Pt
Pwt

. The determination of Pt is described in subsection 2.5 characterizing

retailers.

Real per-period profits by intermediates producers, denoted Πt, are equal across firms and

can be shown to be given by

Πt =
1

ϑ

1

Mt

Y w
t

At
(14)

The present discounted value of the profit flow (14) constitutes the main driver of tech-

nology adoption and ultimately of innovation, as suggested by equations (9) and (5).

Combining (10) with the first-order conditions for intermediates producers and with equi-

9



librium in factor markets yields the following expression for aggregate wholesale output Y w
t :

Y w
t = A

1
ϑ−1

t Kα
t L

1−α
t (15)

Here Kt and Lt denote aggregate capital and labor: Kt ≡
∫ At

0
Ki,tdi, Lt ≡

∫ At
0
Li,tdi.

Equation (15) makes clear that TFP is driven by the measure of adopted varieties of inter-

mediates, At.

2.5 Retailers

A continuum of mass unity of retail firms produce final output using wholesale output as

input. Each producer simply purchases wholesale output, costlessly differentiates it, and sells

it to final output users. Final output Yt is a CES composite of retailers’ output:

Yt =

[∫ 1

0

Y r
i,t

ω−1
ω di

] ω
ω−1

(16)

where Y r
i,t is output by retailer i ∈ [0, 1]. Let the price set by retailer i be Pi,t. The final

output price level is Pt =
[∫ 1

0
P 1−ω
i,t di

] 1
1−ω

. Cost minimization by users of final output yields

a standard demand function for retailer i’s output:

Y r
i,t =

(
Pi,t
Pt

)−ω
Yt (17)

Each retailer can only reset its price with probability 1−θ. Firms not resetting their price

follow the indexation rule

Pi,t = Pi,t−1π
ιp
t−1π

1−ιp (18)

where πt ≡ Pt/Pt−1 is inflation and π its steady state. Nominal marginal cost for retailers

is Pw
t . The problem facing a retailer resetting its price in period t is

max
P ∗t

Et
∞∑
j=0

θiΛt,t+j

(
P ∗t
∏j

k=1 π
ιp
t+k−1π

1−ιp

Pt+j
−
Pw
t+j

Pt+j

)
Y r
i,t+j (19)

subject to the demand function (17).
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2.6 Capital and equipment producers

Capital producers make new capital goods using final output as input, and are subject

to adjustment costs. They sell new capital to househods at price Qt. The objective of the

representative capital producer is to choose a state-contingent sequence {It+j}∞j=0 to maximize

the expected discounted value of profits:

Et
{ ∞∑

j=0

Λt,t+j

[
Qt+jIt+j −

(
1 + fi (It+j/It+j−1)

)
It+j

]}
(20)

where the adjustment cost function fi has the same properties as fs. From profit maxi-

mization, we obtain that the price of capital goods is equal to the marginal cost of investment

goods production:

Qt = 1 + fi (It/It−1) +
It
It−1

f ′i (It/It−1)− Et
[
Λt+1

(
It+1

It

)2

f ′i (It+1/It)
]

(21)

The aggregate stock of physical capital then follows the law of motion below:

Kt+1 = (1− δ)Kt + It (22)

Equipment producers face a problem analogous to that of capital producers, with a similar

adjustment cost function, denoted fm. Letting equipment goods produced by the (represen-

tative) equipment producer be Imt , the latter’s objective is the same as (20) replacing Qt+s by

Qm
t+s and It+s by Imt+s, and with function fm instead of fi. The market for equipment goods

must clear in the aggregate, and so we must have Imt = (Zt − At)Mt.

2.7 Employment agencies

As in Erceg, Henderson and Levin (2000), there is a continuum of households indexed by

i ∈ [0, 1], each of which is a monopolistic supplier of specialized labor Li,t. A large number

of competitive “employment agencies” combine specialized labor into a homogeneous labor

input used by intermediate goods producers, according to

Lt =

[∫ 1

0

L
ωl−1

ωl
i,t dj

] ωl
ωl−1

(23)

From employment agencies’ cost minimization, demand for labor variety i is

Li,t =

(
Wi,t

Wt

)−ωl
Lt (24)

11



where Wi,t is the nominal wage received by supplier of labor of type i and the wage paid by

intermediates’ producers is

Wt =

[∫ 1

0

W 1−ωl
i,t dj

] 1
1−ωl

(25)

2.8 Households

Household i seeks to maximize the utility function

Et

{
∞∑
j=0

βj
[
log(Ct+j − hCt+j−1)− χ

1 + ε
L1+ε
i,t+j

]}
(26)

subject to a sequence of budget constraints

Ct +
Bt+1

Pt
+QtKt+1 ≤

Wi,t

Pt
Li,t +Qi,t +Rt

Bt

Pt
+
[
Rk
t + (1− δ)Qt

]
Kt + Π̃t (27)

Here Ct is consumption, Bt is holdings of the nominal riskless bond, Qt is the real price of

capital, Qi,t is the net cash flow from household i’s portfolio of state-contingent securities, and

Π̃t is total firm profits distributed to the household. The parameter h, satisfying 0 < h < 1,

governs the extent of consumption habits.

As in Erceg et al. (2000), every period a fraction θw of households cannot freely set the

wage, but instead follows the indexation rule

Wi,t = Wi,t−1gπ
ιw
t−1π

1−ιw (28)

The remaining fraction of households sets an optimal wage by solving

max
W ∗t

Et

{
∞∑
j=0

(θwβ)j
[
− χ

1 + ε
L1+ε
i,t+j +

UC,t+j
Pt+j

Li,t+jW
∗
t

j∏
k=1

gπιwt+k−1π
1−ιw

]}
(29)

subject to the labor demand function (24).
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2.9 Central bank and resource constraint

We suppose that the central bank sets the nominal interest rate Rt according to the

following Taylor rule:

Rt =
g

β
π
(πt
π

)γπ ( yt
ypott

)γy
∆r
t (30)

where yt ≡ Yt/At is detrended output, and where ypott denotes (detrended) potential out-

put, defined as the equilibrium level of output that would result under perfectly flexible prices

and wages. Thus, the rule targets a measure of slack that ignores the “gap” in technology

At.
7 We use this policy as a baseline as it is likely a good approximation of the measures of

slack considered by central banks in practice. In Appendix E, we explore the implications

of a rule that instead uses Yt/Y
pot
t as the measure of the output gap, and we also consider

(within the context of a simplified model) an alternative rule that targets deviations from

efficient (i.e., first-best) output.

The rule includes an exogenous monetary policy shock, given by the variable ∆r
t , which

follows the stochastic process log(∆r
t ) = ρr log(∆r

t−1) + εrt .

The aggregate resource constraint is given by

Yt = Ct +
[
1 + fi (It/It−1)

]
It +

[
1 + fm

(
Imt /I

m
t−1

) ]
Imt +

[
1 + fs (St/St−1)

]
St (31)

Final output is used for consumption, investment, adoption and innovation. To a first order,

Yt ≈ Y w
t = A

1
ϑ−1

t Kα
t L

1−α
t , i.e. wholesale and final output are approximately equal.

This completes the description of the model. Appendix D contains the complete set of

equilibrium conditions.

2.10 Comparison with the literature

Here we describe the main differences between our model and the related frameworks in

Bianchi et al. (2014) and Anzoategui et al. (2017). Our model of innovation, like that in

Comin and Gertler (2006) and Anzoategui et al. (2017), is based on the expanding-variety

framework due to Romer (1990), while Bianchi et al. (2014) use a vertical-innovations setting.

In addition, we also follow Comin and Gertler (2006) and Anzoategui et al. (2017) in explicitly

capturing technology diffusion lags, different from Bianchi et al. (2014).

Overall, our model is much closer to Anzoategui et al. (2017) and Comin and Gertler

7An equivalent formulation would be a rule which assumes that technology in the potential economy is
equal to technology in the actual economy, At.
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(2006), with a couple of notable exceptions. First, we allow R&D to have a positive impact on

adoption, thus inducing a form of complementarity between the two activities. The motivation

is that R&D activity may not just reflect the pure invention of new goods, but may also

reflect in part its role in facilitating the implementation of existing innovations—as argued,

for example, by Griffith et al. (2004). As we explain in detail in 3.2, this feature of the model

proves very important in allowing the model to deliver realistic dynamic effects of R&D on

TFP. Second, we introduce costs of adjusting the level of both R&D and adoption expenditure.

This feature is also important for the model’s empirical performance, for otherwise the model

delivers excessive volatility of R&D and adoption spending, and unrealistic dynamics of R&D

following monetary policy shocks.

3 Parameter values and model assessment

This section describes the parameterization of the model and provides an assessment of

the model’s empirical performance. We partition the parameters into two sets: the first set

contains mostly standard preference and technology parameters that we calibrate following

the existing literature, as described in section 3.1 below. The second set contains parameters

that we estimate, which govern the effects of R&D on TFP. The key parameters within this set

are the elasticity of innovation to R&D, η, and the elasticity of the adoption rate to aggregate

R&D, ν. To estimate these parameters, we first identify the dynamic effects of R&D on TFP

using U.S. data, and then require the model to match the identified dynamics. Section 3.2

describes our estimation procedure in detail.

Section 3.3 then turns to model assessment. We perform this exercise in two ways. We

first examine how the effects of an R&D shock in the model compare against those from an

identified VAR which, in addition to TFP, includes a broader set of standard macroeconomic

variables. We also compare the effects of a monetary shock in the model (including on R&D

and TFP) to a VAR-based estimate of the effects of an identified monetary policy shock. The

model, we find, does reasonably well along both dimensions.

3.1 Calibrated parameters

We calibrate the model at an annual frequency. The calibrated parameter values are shown

in Table 1. Our calibration for common preference and technology parameters is relatively

standard. We set the discount factor, β, to 0.9975, to deliver a balanced-growth-path real

interest rate of 1 percent annually. Several recent studies (e.g. Reifschneider (2016)) calibrate

a similarly low value for the long-run real interest rate, consistent with the decline in estimates
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Table 1: Calibrated Parameters

Symbol Value Description

β 0.9975 Discount factor
α 0.33 Capital Share
δ 0.1 Capital depreciation
ε−1 2 Frisch labor supply elasticity
h 0.50 Habit
ω 6 Elasticity of substitution across retailers
ωl 6 Elasticity of substitution across labor types
θ 0.75 Probability of keeping price fixed
θw 0.65 Probability of keeping wage fixed
ιp 0.50 Degree of price indexation to past inflation
ιw 0.50 Degree of wage indexation to past inflation
100(π − 1) 2 Steady-state (net) inflation
γπ 1.5 Inflation coefficient of the Taylor rule
γy 1.0 Output gap coefficient of the Taylor rule
ϑ 2.4925 Intermediates producers’ elasticity of substitution
φ 0.90 Obsolescence of technologies
ρλ 0.925 Adoption elasticity

L 1 Steady-state labor

100(g
1

ϑ−1 − 1) 0.5 Steady-state (net) TFP growth

λ 0.20 Steady-state adoption probability
f ′′i 1 Investment adjustment costs
f ′′s 4 R&D adjustment costs
f ′′m 4 Adoption equipment adjustment costs
ρr 0.55 Monetary shock persistence
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of the U.S. natural rate of interest (see, for example, Holston, Laubach and Williams (2017)).

The capital share α is set to 0.33, and the capital depreciation rate is δ = 0.1. We calibrate ε

to 0.5, resulting in a Frisch elasticity of labor supply of 2.8 The habit parameter, h, is set to

0.50, somewhat below typical estimates, to account for the fact that these estimates typically

result from quarterly data while our model is annual.

Turning to the parameters governing price setting, we set the elasticity of substitution

across retailers, ω, to 6, and we set the same value for the elasticity of substitution across

labor types, ωl. These values yield a steady-state price and wage markup of 20 percent, in

the neighborhood of values commonly found in the literature (e.g. Justiniano et al. (2010),

Christiano et al. (2005)). We emphasize, however, that our results are insensitive to variations

around these values. We set the price and wage rigidity parameters, θ and θw, to 0.75 and 0.65

respectively. These choices result from converting to annual frequency the quarterly estimates

from Anzoategui et al. (2017). Similarly high levels of nominal rigidity are common in recent

studies—for example, Del Negro, Giannoni and Schorfheide (2015). The literature features

a fairly wide range of values for the price and wage indexation parameters, ranging from

full indexation (e.g., Christiano et al. (2005)) to relatively low values (e.g. Justiniano et al.

(2010)). As a compromise between the two extremes, we set ιp = ιw = 0.5. The steady-state

inflation rate is calibrated to 2 percent per year. Finally, we set the policy rule coefficients

on inflation and the output gap, γπ and γy, to 1.5 and 1.0 respectively. The resulting rule

provides a reasonably good description of the FOMC’s actual behavior in the years prior to

the Great Recession, as argued by Reifschneider (2016), and has been shown to have good

stabilization properties across different models (see Taylor (1999)).

The parameter governing the elasticity of final output with respect to intermediates, ϑ,

is chosen so that the technological level At takes the purely labor-augmenting form, which

amounts to imposing the restriction (1− α)(ϑ− 1) = 1.9 This restriction implies that there

exists a balanced growth path along which output is proportional to TFP, and therefore

profits per period Πt are stationary (see equation (14)), which simplifies somewhat the char-

acterization of the balanced growth path. Given the choice for α, the resulting value for the

intermediate goods markup is ϑ/(ϑ − 1) = 1.67, close to the value of 1.6 set by Comin and

Gertler (2006).

We set the technology obsolescence rate, 1 − φ, to 10 percent annually, similar to An-

zoategui et al. (2017), who rely on estimates of technological obsolescence from Caballero and

Jaffe (1993). We also follow Anzoategui et al. (2017) and set the elasticity of the adoption

8We have also experimented with values of the Frisch elasticity of 1 and 0.75, and found that our key
results are relatively unchanged under these alternative values.

9Kung and Schmid (2015) make a similar parameter restriction.
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probability to adoption expenditure, ρλ, to 0.925 (also similar to the value originally set by

Comin and Gertler (2006)). This value helps deliver a realistic ratio of R&D to GDP in

steady state, and is also consistent with measures of the cyclicality of technology diffusion,

Anzoategui et al. (2017) document.

To set the parameters χ (labor disutility), ζ (productivity of R&D), and κλ (constant in

the adoption rate), we target properties of the model’s balanced growth path. In particular,

we normalize the level of labor L to unity, and target a TFP growth rate of 0.5% and an

adoption rate of 0.20. The target for TFP growth is the average U.S. TFP growth rate

since 2005. The adoption rate target follows Comin and Gertler (2006) and Anzoategui et

al. (2017), who rely on evidence on average technology adoption lags. The average adoption

lag in the model is given by λ
−1

. The chosen value for λ thus implies an average adoption

lag of five years. Given these targets, we then back out the parameters χ, ζ and κλ. In our

estimation procedure below, we always keep the targets fixed as we search over the estimated

parameters, thus ensuring that our estimates are always consistent with the targeted values

for the balanced growth path.

Turning to the adjustment costs parameters, we set f ′′i , governing the adjustment costs

of investment in physical capital, to unity, a value that lies somewhat below the range of

estimates typically found in the literature (from a value of around 1.7 estimated by Primiceri

et al. (2006) to much higher values found by, e.g., Smets and Wouters (2007)). Part of the

reason why we choose a lower value is that adjustment costs are likely less pronounced at

the annual frequency than at the quarterly frequency. In addition, we have found that even

conditional on a value of unity, our model generates a relatively small response of investment to

a monetary policy shock, likely due to the presence of other highly interest-elastic components

of spending (namely, adoption and R&D). We calibrate the R&D adjustment cost parameter,

f ′′s , to match the relative volatility of R&D growth to investment growth in the data. U.S.

R&D growth is about two-thirds as volatile as investment growth, which our model matches

when setting f ′′s = 4.10 Given that comprehensive measures of adoption expenditures are

not available, we suppose that adjustment costs to adoption are as large as for R&D, and

accordingly set f ′′m = f ′′s . Finally, we set the parameter governing the persistence of the

monetary shock, ρm, to 0.55, based on the autocorrelation of Taylor rule residuals (given our

calibrated rule) in the pre-Great Recession period.

10To calculate this ratio, we simulate the model conditional on shocks to ∆s
t and ∆r

t , calibrated such that
the model delivers realistic volatilities of the R&D growth and the Fed funds rate.
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3.2 Estimated parameters

We begin by describing a small-scale VAR we use as means of gauging the quantitative

effects of R&D on TFP. The reduced-form empirical specification is the following first-order

system:

 yust

tfpust

rdust

 = cus +Bus

 yust−1

tfpust−1

rdust−1

+ uust (32)

Here yust , tfpust , and rdust represent, respectively, real GDP, TFP, and real business-sector

R&D expenditure (obtained from the NSF). All variables are in logs. The frequency is

annual, and observations start in 1953. We estimate the above system by least squares.

The coefficients to be estimated include a vector of constants, cus, a matrix of autoregressive

coefficients, Bus, and the variance-covariance matrix of the reduced-form residuals ut. We

include all three variables in levels, given the likely presence of cointegrating relationships

among them.11

To identify structural shocks to R&D, we rely on a lower-triangular Choleski factorization

of the variance-covariance matrix of the reduced-form residuals. Given the variable ordering

in (32), this identification scheme imposes the restriction that TFP does not respond con-

temporaneously to structural innovations in R&D. This is a natural assumption: it captures

the idea that it takes time for R&D expenditure (an input into the innovation process) to

result in new technologies that become implemented and used in production. Macroeconomic

models featuring technological innovation and adoption, including ours, generally satisfy this

restriction. We also believe it is important to allow both TFP and R&D to respond to shocks

to GDP, which is accomplished by placing GDP first in the VAR. This allows us to control for

business-cycle effects which might induce comovement between R&D and TFP if, for example,

the short-run behavior of the latter partly reflects mismeasurement.

The black solid line in Figure 2 shows the dynamic effects of a one-standard-deviation

identified shock to R&D expenditure: R&D rises by about 4 percent on impact, and then

gradually declines. The shock impacts TFP significantly, albeit with a delay: at its peak—

which occurs after about seven years—the response of the level of TFP reaches nearly 0.5%,

with half of the full effect materializing about three years after the initial shock. Further, the

TFP increase induced by the shock is highly persistent, and its level stays high long after R&D

has returned to baseline. The natural interpretation is that a rise in R&D for reasons unrelated

11The same approach is followed, for example, by Christiano et al. (2005).
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Figure 2: Small-scale VAR v. model responses to R&D shock

Note: The black solid lines show the empirical responses to an identified R&D shock in the VAR 32, and the
shaded areas indicate confidence intervals. The solid blue lines with circles show the model’s responses to a
shock to the R&D wedge at the estimated parameter values.

to current TFP (or to the state of the economy, as proxied for by real GDP) accelerates the

development of technological innovations which, after some time, become implemented in

production and eventually improve firms’ productivity.12

We have investigated whether the effects of R&D on TFP just documented also hold within

a sample of advanced economies, and found that they do. The analysis is shown in appendix

A. We find the impact of R&D on TFP to be somewhat weaker within a panel of about 20

advanced economies compared to the U.S. However, when we consider only countries with

high R&D to GDP ratios we find substantially stronger effects than with the full panel. In

addition, we have also considered different measures of TFP in the case of the U.S. (including

those calculated by Fernald (2014)), and found our results to be robust to these alternative

measures (see appendix B).

We now turn to estimating the model’s key parameters driving the effect of R&D on

TFP, by requiring the model-generated impulse responses of R&D and TFP to be as close

as possible to the VAR-based ones. To initiate movement in R&D, we use a shock to the

R&D wedge ∆s
t . We estimate four parameters: the elasticity of new innovations with respect

12An alternative possibility is that the results in Figure 2 reflect the effects of a rise in future TFP (for
exogenous reasons), which is foreseen by firms and leads them to increase R&D expenditure today. One way to
test for that possibility is to use the same identification scheme, but replacing R&D for aggregate investment.
Under the hypothesis that our results are driven by the effect of anticipated future TFP movements, we would
expect to find a similar pattern using investment in place of R&D, as the anticipation of high future TFP
should also lead firms to increase investment. However, we find that TFP actually falls following a rise in
investment (although the decline is not statistically significant).
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Table 2: Estimated Parameters

Symbol Value Description

η 0.30 Elasticity of technology creation to R&D
ν 0.29 R&D spillover to adoption
ρs 0.39 Persistence coefficient of ∆s

t

σs 0.17 Size of impulse to ∆s
t

to R&D, η; the magnitude of the spillover from aggregate R&D to adoption, ν; the first-

order autoregressive coefficient of the innovation wedge, ρs; and the size of the impulse to

the innovation wedge, σs. Let the subset of estimated model parameters be ε ≡ (η, ν, ρs, σs).

Let also Ψ(ε) denote the mapping from ε to the model’s impulse responses to the initiating

shock to ∆s
t , and let Ψ̂ be the empirical impulse responses of R&D and TFP to an identified

R&D shock, as shown in Figure 2. We use the first 15 years of each response, so Ψ̂ contains

30 elements. We estimate ε by solving

min
ε

[
Ψ̂−Ψ(ε)

]′
V−1

[
Ψ̂−Ψ(ε)

]
(33)

Here V denotes a diagonal matrix with the variances of the estimated impulse responses along

the main diagonal. The weighting matrix V gives relatively more weight to more precise

estimates in the optimization problem above.

Table 2 contains the resulting parameter estimates. Our estimate of the elasticity of

aggregate new technology production with respect to aggregate R&D expenditure, η, is 0.30,

a value lower than used by Comin and Gertler (2006) but in the vicinity of the value estimated

by Anzoategui et al. (2017). The estimate of the R&D spillover to adoption is 0.29, indicating

that the data favors an increase in adoption rates to occur alongside the rise in R&D. The

estimate of first-order autoregressive coefficient ρs is 0.39, and the size of the impulse to ∆s

is 17 percent.

Figure 2 plots the empirical impulse responses along with the model-generated responses,

computed using the estimated parameter values in Table 2. The model tracks the empirical

movements in R&D and TFP well. As seen in the Figure, in both the model and the data,

an increase in R&D of about 4 percent initially leads the level of TFP to rise about 0.4 in the

medium-run, and the dynamic path of the TFP rise in the model is very close to its empirical

counterpart.

We next document the model’s transmission from R&D to TFP, and illustrate the role
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Figure 3: R&D shock transmission, sensitivity to η and ν
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Note: The solid blue line represents the impulse responses at the estimated parameter values. The green
dash-dotted line shows the responses when doubling η relative to its estimated value, and the grey dashed
line shows the responses when reducing ν to one-fourth of its estimated value.

of the parameters η and ν in shaping the model’s responses. As we show below, both the

magnitude and the time path of the empirical TFP response help identify η and ν. Figure 3

shows the impulse responses of several variables pertaining to the innovation and adoption

sectors at our estimated values (blue solid line), along with the responses resulting from

setting η = 0.61 (i.e. twice its estimated value), shown by the green dash-dotted line, and

from setting ν = 0.08 (i.e. one-fourth of its estimate). Throughout we continue to maintain

the steady-state targets for L, g and λ. As shown by the blue solid line in the Figure, the

increase in R&D spurs the creation of new innovations Vt, which add to the stock of existing

technologies, Zt. As these innovations become adopted (which occurs at a higher rate for some

time, due to the adoption spillover) the stock of technologies in use (At) rises, accounting for

the rise in TFP.

Note that with a higher elasticity of innovation to R&D (η), the increase in Vt from a given

rise in R&D becomes larger. As a consequence, the total stock of technologies Zt rises by more,

ultimately leading to a higher response of the level of the TFP. In turn, when the spillover

from R&D to adoption is weaker (i.e. ν is lower) the overall rise in TFP is smaller, this time
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due to a response of adoption which is mostly negative throughout the simulation (note in

this case both Vt and Zt exhibit roughly similar dynamics as under the baseline parameter

estimates). In addition, lower ν also makes the dynamic response of TFP substantially flatter:

with the baseline estimates, the peak response of TFP occurs relatively soon, after about 7

years, and levels off thereafter. By contrast, a lower ν implies a much more gradual effect

on TFP, which continues to rise throughout the simulation horizon. This explains why the

data tends to favor a larger ν, as such a gradual TFP rise in the model is at odds with its

empirical counterpart. Thus, given that the parameters η and ν have different implications

for the path of TFP given a path of R&D, it is possible to identify both parameters given the

empirical responses of R&D and TFP.

We next explore the implications of assuming no spillovers from R&D to adoption. To

this end, we first reestimate the parameter vector ε, this time imposing ν = 0 (no effect

of aggregate R&D on the adoption rate). The resulting parameter estimates are η = 0.99,

ρs = 0.75 and σs = 0.079. Figure 4 shows the model’s behavior in this case (green dash-

dotted line), compared to our baseline case. As discussed earlier, the baseline case has the

adoption rate rise above its steady-state value (of twenty percent per year) for a few years

after the shock. By contrast, absent the spillover, the adoption rate falls throughout the

simulation horizon. This is the result of a type of substitution effect: given the decrease

in the innovation wedge—which works to make investments in R&D more desirable—agents

optimally direct resources toward that activity, and away from other activities (including

technology adoption).13 The lower adoption rate then makes it very hard for the model to

match the data: note from the bottom-left panel that the increase in At with ν = 0 is very

gradual, and clearly at odds with the data. This is the case even though the elasticity of

innovation to R&D is much larger in this case (0.99 compared to 0.30).

3.3 Model assessment

Next, we turn to an assessment of the model’s performance against the data. We do so in

two ways: first, we augment the VAR to include a broader set of macroeconomic variables,

and compare the effects of R&D shocks to those obtained from the model. This larger-

scale VAR includes aggregate investment (excluding R&D), consumption, inflation (measured

by the GDP deflator) and the monetary policy rate (measured by the Wu and Xia (2016)

shadow rate). We order the additional variables after R&D, so they are allowed to respond

contemporaneously to R&D shocks. Second, we obtain estimates on the effects of monetary

13Note that because the rise in innovation Vt raises to stock of unadopted technologies, Zt − At, aggre-
gate adoption expenditures would rise even if each adopter kept individual adoption expenditure (and hence
adoption rates) constant.

22



Figure 4: R&D shock, baseline v. no adoption spillover

years

2 4 6 8 10 12 14

%
 d

e
v

-1

0

1

2

3

4

5
R&D

years

2 4 6 8 10 12 14

%
 d

e
v

-1

0

1

2

3

4
New innovation (V)

years

2 4 6 8 10 12 14

%
 d

e
v

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Stock of innovations (Z)

years

2 4 6 8 10 12 14

%

19.4

19.6

19.8

20

20.2

20.4
Adoption rate (λ)

years

2 4 6 8 10 12 14

%
 d

e
v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Adopted innovations (A)

years

2 4 6 8 10 12 14

%
 d

e
v

0

0.1

0.2

0.3

0.4

0.5
TFP

Baseline

No adoption spillover

Note: The solid blue line represents the impulse responses at the estimated parameter values, and the green
dash-dotted line shows the responses in a (reestimated) model that imposes ν = 0 (no adoption spillover).
The reestimated parameter values in the no-spillover model are η = 0.99, ρs = 0.75, σs = 0.079.

policy shocks on the same set of variables, and compare them against the effects of monetary

policy shocks predicted by the model.

Figure 5 plots the empirical responses for the larger set of variables (shown by the black

solid lines), along with their model counterparts (the blue circled lines). The model matches

macroeconomic aggregates reasonably well. It roughly matches the overall quantitative in-

crease in GDP. It also does a good job of reproducing the initially muted response of consump-

tion and investment (the latter actually declines somewhat on impact, both in the data and

in the model), as well as their eventual rise as the boom in TFP strengthens. Inflation drops

in the model as well as in the data, albeit the model underpredicts its decline somewhat. The

Fed funds rate declines a bit in the data, while in the model it rises initially (due to a rise in

the natural rate, resulting from higher expected consumption growth) and then flattens out.

Next, we describe the VAR we use to identify the effects of monetary shocks in the data.

Because it is not feasible to accurately capture monetary shocks within an annual setting,

we switch to the quarterly frequency. We use data on GDP, R&D, consumption, investment,

TFP, inflation and the Fed funds rate. The NSF does not produce data on R&D spending
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Figure 5: Large-scale VAR v. model responses to R&D shock

Note: Responses to an identified R&D shock in the larger-scale U.S. VAR (black solid lines and shaded
areas), along with model impulse responses (blue circled lines).

at the quarterly frequency, so we use the measure from the Bureau of Economic Analysis

instead. Given the likely importance of movements in factor utilization at the high frequency,

we use a utilization-adjusted TFP measure, as computed by Fernald (2014). We continue to

use the shadow Fed funds rate to measure the stance of monetary policy, which allows us

to estimate the VAR through end-2016 (including the period in which monetary policy was

constrained by the ZLB), although our results are virtually unchanged when we stop in the

fourth quarter of 2008. As frequently done in the literature, we identify monetary shocks by

ordering the Fed funds rate last in the VAR, thus restricting it to be unable to impact the

other variables within the same quarter.

We first briefly describe the effects of an identified monetary shock in the data. The black

solid lines in Figure 6 show the responses to a one-standard-deviation decline in the Fed funds

rate obtained from the VAR. We average the quarterly responses to obtain annual figures, to

ease comparison with the model. Appendix C contains the original responses at the quarterly

frequency. The Fed funds rate drops by 60 basis points and then reverts back relatively
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quickly. The shock induces familiar movements in GDP, consumption, and investment, which

respond in a hump-shaped fashion and peak after about 2 years. The policy loosening also

causes a small rise in inflation after some delay. The initial fall in inflation is consistent with

a short-lived “price-level puzzle” typically found in VAR studies of this type (e.g., Christiano

et al. (2015)). Interestingly, the shock also induces a statistically significant increase in R&D

spending, which rises about 40 basis points at its peak (somewhat less than the rise in GDP).

The response of R&D spending is smaller in magnitude than that of investment, as well as

somewhat more protracted: investment rises by nearly two percent and peaks after about two

years, while the peak in R&D occurs after 3 to 4 years and reverts back more slowly. This

pattern is suggestive of larger adjustment costs of R&D than of investment. Finally, TFP

does not respond significantly in the short run, but rises by between 10 and 20 basis points in

the medium run. Further, the rise is statistically significant.14 Note that the longer-run TFP

increase is consistent with the medium-run behavior of GDP, which also remains elevated by

around 20 basis points.

We next compare the VAR-based effects of monetary policy shocks to those predicted by

the model. We study the effects of a negative innovation to ∆r
t in the model, sized so that

the policy rate falls by 60 basis points in the first year (similar to the data). The effects of

the shock are shown by the blue circled lines in Figure 6. The model-based responses are

reasonably close to those in the data. If anything, the model underpredicts somewhat the

short-run booms in consumption and particularly in investment. The peak response of R&D

in the model is about 40 basis points, very close to the data, although the increase is more

persistent. On the other hand, the model generates a smaller rise in TFP than in the data

throughout most of the simulation horizon, matching the rise of TFP in the data only after

about ten years.

How does monetary policy affect TFP in the model? Figure 7 shows the responses of key

variables pertaining to innovation and adoption to the same shock to the policy rate shown in

Figure 6. Given nominal rigidities, the drop in the nominal rate engineers a decline in the real

interest rate, which due to the increase in expected inflation falls somewhat more than the

nominal rate (almost 70 basis points). The decline in the real interest rate contributes to a rise

in the marginal values of innovation, Et (Λt,t+1Jt+1), and of adoption, Et [Λt,t+1 (Ht+1 − Jt+1)].

In addition, the cyclical upswing resulting from looser monetary policy endogenously raises the

market value of new innovations, through an increase in profits to owning a new innovation Πt.

As a result, the magnitude of the increase in the marginal values of innovation and adoption

14When we run the same VAR but using instead the non-utilization-adjusted measure of TFP, we find a
short-run boom in TFP following the monetary shock (consistent with higher rates of factor utilization), but
obtain a very similar longer-run response.
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Figure 6: Monetary VAR v. model responses to monetary shock

Note: Responses to an identified monetary shock in a VAR (black solid lines and shaded areas), along with
model impulse responses to monetary shock (blue circled lines).

is larger than the magnitude of the decline in the real rate, as seen in the bottom left and

middle panels of Figure 7.15 The higher marginal values of innovation and adoption naturally

lead to a rise in R&D spending (as seen earlier in Figure 6) and in adoption expenditure per

unadopted good, Mt, which increases about as much as R&D. The result is a rise in both

innovation Vt and in adoption rates λt. The latter are ultimately responsible for the gradual

rise in TFP seen in the bottom-left panel of Figure 6.

4 Experiments

We next use the model to perform counterfactual experiments. We focus on two specific

questions. First, we use the model to explore the implications for TFP of the long period

15Note that log-linearizing Et (Λt,t+1Jt+1) and Et [Λt,t+1 (Ht+1 − Jt+1)] around the steady state yields,
respectively, −rt + Et {jt+1} and −rt + αHEt {ht+1} − αJEt {ht+1}, where rt denotes the real interest rate,
lowercase letters denote log-deviations of uppercase letters, and αH ≡ H/(H − J), αJ ≡ J/(H − J).
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Figure 7: Monetary shock in the model, endogenous technology variables
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Note: The Figure shows the impulse responses to a monetary shock ∆r
t . We size the impulse so that it

induces a fall in the nominal interest rate of 60 basis points, as in the monetary VAR.

during which U.S. monetary policy was constrained by the ZLB. Second, we examine the

extent to which more-accommodative monetary policy post-2016 can boost future TFP. We

address each of these questions in turn.

4.1 Role of the zero lower bound

Our first experiment focuses on quantifying the effect of the ZLB constraint on TFP. Our

approach is as follows. We first use our calibrated Taylor rule, together with observations

on inflation, the output gap, and the Fed funds rate (which was zero from 2009 through

2015) to deduce the historical values of ∆r
t that resulted from enforcing the ZLB on the

monetary policy rate. We follow the common practice of approximating the output gap by

(the negative of) twice the unemployment gap (i.e. the gap between actual unemployment and

the natural rate of unemployment)—as done, for example, in Yellen (2016b) and Reifschneider

(2016). Following this approach, our Taylor rule recommends a policy rate deep into negative

territory, shown by the grey dash-dotted line in the first panel of Figure 8. We take the
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difference between the rate prescribed by the Taylor rule and the actual Fed funds rate in this

period, shown by the black solid line in the same panel, in order to compute the monetary

policy shocks ∆r
t from 2009 to 2014. Our calibrated policy rule implies positive values for

∆r
t from 2009 through 2014, shown by the black solid line in the middle panel, suggesting

that the degree of monetary contraction due to the ZLB was substantial. Our experiment

then asks the question: how would TFP, and other variables, have evolved if that monetary

contraction had been absent? The experiment amounts to analyzing the consequences of

setting the shocks in the second panel of Figure 8 to zero.16

The remaining panels of Figure 8 show the effect on GDP, inflation, R&D and TFP, of

setting the ∆r
t to 0 from 2009 through 2014 (relative to the “baseline” in which the ZLB was

binding throughout). From the last panel, note that the level of TFP rises persistently in the

counterfactual, by almost 1.75 percent after about ten years, due to greater innovation and

faster adoption. The long-run effects on output are even greater: output rises by 2.5 percent

over the long run, as higher TFP leads to more accumulation of physical capital.

Finally, we briefly describe the consequences of the same experiment in a model without

the endogenous TFP mechanism, shown by the green dashed line labelled “exogenous growth.”

In this case, removing the monetary contraction also results in a substantial boost to GDP,

with a peak effect of roughly 3.8 percent in 2010—relatively close to the effect in our full

model, of about 4.3 percent in the same year. Crucially, however, in this case the boost

to GDP is short-lived: by 2016, the level of GDP is back to baseline—in sharp contrast to

the model with endogenous TFP, in which GDP is permanently higher absent the monetary

shocks enforcing the ZLB.

4.2 Effect of slower monetary tightening post-2016

Given the effects of monetary policy on TFP just documented, how much can future

monetary policy boost TFP within this setting? We next use the model to illustrate the con-

sequences for future TFP of the pace of monetary policy tightening post-2016. In particular,

we consider the following experiment. Suppose a baseline scenario in which the policy rate

post-2016 follows the path shown by the black solid line in the top left panel of Figure 9,

taken from the FOMC’s “projected appropriate policy path” as of June 14, 2017. Under this

baseline path, the Fed funds rate reaches 3 percent (its long-run level) in 2019, and averages

about 2.75 percent over the period 2017-2020. We then consider an alternative scenario in

which monetary policy tightens much more slowly, as shown by the grey dash-dotted line.

16Of course, given linearity, this experiment is equivalent to feeding the model the sequence ∆r
t in the

second panel of Figure 8, multiplied times −1.
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Figure 8: Effects of ZLB constraint

Note: The first panel shows the actual Fed funds rate (solid line) and the Fed funds prescribed by our
calibrated Taylor rule, given observations of inflation and the output gap (grey dash-dotted line). The second
panel shows the historical shocks to the Taylor rule that enforced the ZLB, calculated as the actual Fed funds
rate minus the rate prescribed by the Taylor rule (in the years in which the latter was negative, i.e. 2009
through 2014). In the alternative simulation, we set these shocks to 0. The remaining panels show the effects
on GDP, Inflation, R&D and TFP of setting the monetary shocks to zero. The blue solid line in these panels
shows the effects in our baseline model with endogenous TFP, and the green dashed lines show the effects in
a model with exogenous TFP.

This scenario assumes that the Fed funds rate does not reach its new long-run level until after

2025—i.e., more than half a decade later than in the baseline. In the alternative scenario, the

policy rate averages only around 2.25 percent in 2017-2025, 50 basis points less than in the

baseline. We enforce the alternative scenario via exogenous monetary shocks ∆r
t . The shocks

required to generate the alternative path of the policy rate are shown in the top middle panel

of Figure 9.

The remaining panels again show the effects on GDP, inflation, R&D and TFP of the

alternative policy path. The monetary stimulus boosts TFP, which rises gradually starting in

the early 2020’s and plateaus at a level almost 1 percent higher by 2030. As before, the long-

run effects on GDP are even greater, with its level rising almost 1.5 percent above baseline by

the late 2020s. The monetary accommodation leads to a temporary boost in inflation, which
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Figure 9: Effect of slower monetary tightening

Note: The first panel shows the projected Fed funds rate path (solid line) and the alternative with slower
tigthening (grey dash-dotted line). The second panel shows the shocks to the Taylor rule required to generate
the alternative path (grey dash-dotte line). The remaining panels show the effects on GDP, Inflation, R&D
and TFP of the alternative policy rate path. The blue solid line in these panels shows the effects in our
baseline model with endogenous TFP, and the green dashed lines show the effects in a model with exogenous
TFP.

rises 20 basis points in the early 2020s, but then quickly reverts back and remains persistently

below baseline in the late 2020s and early 2030s, as the rise in TFP strengthens.

We conclude by comparing the effects in our baseline model to those in a version of

the model without endogenous TFP. In the latter case, the output boost due to monetary

accommodation is purely temporary, and smaller in magnitude throughout. Note also that

in this case, the slower tightening is somewhat less inflationary, as the rise in TFP works to

moderate the increase in marginal costs.

5 Conclusion

This paper analyzes a framework that provides a link between TFP and monetary policy,

via the latter’s impact on firms’ technology innovation and adoption activity. The model

30



suggests that monetary policy can exert a significant influence on medium-run TFP dynamics.

Overall, the mechanisms emphasized by the model significantly raise the stakes over the

conduct of monetary policy, compared to more-conventional settings which treat the evolution

of TFP as fully exogenous.

Our approach has relied on the identified effects of R&D on TFP as a source of discipline

on the model’s quantitative properties. In addition to R&D, however, an important channel

driving TFP in the model is firms’ investment in the adoption of the technologies that result

from R&D efforts. Comprehensive aggregate measures of technology adoption investments

are, however, as of yet unavailable.17 Collecting such measures would be highly desirable, and

would allow further discipline on the model’s implications for technology adoption.

Another fruitful line of future research is an analysis of the optimal monetary policy in the

presence of endogenous technology innovation and adoption, and how best to approximate by

means of simple policy rules.18 Incorporating the possibility of recurrent “stagnation traps”

(Benigno and Fornaro (2016)) featuring low productivity growth and a binding ZLB constraint

within that analysis would be highly desirable as well.

17Anzoategui et al. (2017) provide some measures of diffusion based on evidence on individual technologies.
18Garga and Singh (2016) is a recent example of work in that direction.
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Appendix

A R&D shocks in a panel of advanced economies

We next explore whether the effects of R&D on TFP identified in the U.S. hold more

generally in a sample of advanced economies (AEs henceforth). The data consists of a panel

of 21 AEs (not including the U.S.) in the post-1980 period (see Appendix F for details on the

data). Data on business-sector R&D expenditure is from the OECD. We select the sample

of countries based on the availability of business-sector R&D data. We specify the following

empirical model, analogous to (32):

 yi,t

tfpi,t

rdi,t

 = ci +B

 yi,t−1

tfpi,t−1

rdi,t−1

+ ui,t (A.1)

The system contains a vector of country fixed effects, ci, thus allowing estimation of the

country-specific intercept term for each country in the sample. The model, however, imposes

the matrix B as well as the variance-covariance matrix of the residuals ui,t to be common

across countries. This so-called least-square dummy variable (LSDV) or fixed-effects estimator

is commonly used in panel VAR settings with relatively long time series of macroeconomic

data—for example, Uribe and Yue (2006), Akinci (2013) or Cerra and Saxena (2008).19 We

follow the same Choleski approach as in Section 3.2 to identify R&D shocks.

Figure A.1 shows the impulse responses to an R&D shock in there different samples.

The first row presents results from the United States, the second row from the full panel of

AEs, and the third row from the top 5 R&D performing economies. We see that a rise in

R&D induces a gradual, persistent rise in TFP in all three samples. The TFP increase is

statistically significant at the 95% level. There are, however, some notable differences with

the U.S. First and foremost, the TFP response appears to be notably weaker in the panel of

advanced economies: R&D rises about 5.75% on impact in the AEs (more than in the U.S.),

but the overall effect on the level of TFP is about 0.25%, half that in the U.S. Further, the

peak effect is reached much later: TFP continues to rise by year 12. By contrast, in the U.S.

the TFP response levels out after about eight years. Finally, note that R&D itself also rises

19As shown by Nickell (1981), the LSDV estimator is biased due to correlation between the country fixed
effects and the lagged dependent variables. This bias, however, is likely to be small in settings like the one
above where the time-series dimension is relatively large.
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Figure A.1: Response to R&D shock in a panel of advanced economies

Note: As in Figure 2, the black solid lines show the empirical responses to an identified R&D shock. The
first row presents results from the United States, the second row from the full panel of advanced economies,
and the third row from the top 5 R&D performing economies. The shaded areas indicate 95% confidence
intervals.

much more persistently in the AEs: by year 12 it is still 3.75% above baseline, while in the

U.S. R&D has returned to baseline by that time. This strengthens our conclusion that R&D

is less powerful in affecting TFP in the AEs, and may also help explain why the TFP rise is

more gradual in the AEs than in the U.S., where TFP levels out much sooner.

We have found that there is significant heterogeneity in the effect of an R&D shock on
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TFP across countries. In particular, the effects on TFP tend to be stronger in countries with

higher ratios of private R&D to GDP. To illustrate this point, the third row of Figure A.1

repeats the same analysis as above, but this time estimation is performed using the top-5

research economies in our sample as measured by their average R&D-GDP ratios: Germany,

Japan, South Korea, Sweden and Switzerland. We focus on the top 5 for illustration and

because they are widely recognized as highly innovative countries, but conclusions hold more

generally when we look at reasonable variations in the set of countries, so long as they include

countries that are high in the ranking of R&D-to-GDP. As seen in the Figure, TFP now rises

much more than in the full sample of AEs: the peak effect is about 0.9%, much larger than

for the full sample, and in fact stronger than for the U.S. in terms of peak TFP response

per size of initial rise in R&D. That said, the R&D movement continues to be much more

persistent in this sample of foreign economies than in the U.S.

B Alternative TFP measures

Throughout our analysis, we have relied upon annual TFP data from the Long-Term

Productivity Database published by Bergeaud et al. (2015). This dataset measures TFP in a

panel of advanced economies, allowing us to perform the panel analysis in Appendix A. That

said, we find similar empirical results when we instead use TFP data published by Fernald

(2014).

To explore the impact of using alternative TFP measures, we estimate our small-scale VAR

using three different TFP series. When using Fernald TFP, we assume the same recursive

ordering as in Equation 32, allowing GDP to impact TFP contemporaneously. When using

the utilization-adjusted series, we instead place GDP at the end of the recursive ordering,

imposing the assumption that GDP does not impact TFP contemporaneously. We believe this

assumption is reasonable, since the utilization adjustment performed by Fernald is designed

to account for non-technological factors that vary with the business cycle and also affect

measured TFP.

Figure B.1 presents a comparison between the three different estimates of our small-scale

VAR. The first row presents our baseline results using BCL, the second row using Fernald

TFP, and the third row using Fernald utilization-adjusted TFP. We find that an increase in

R&D induces a persistent rise in TFP, which is statistically significant at the 95% level for

all three measures. The response of Fernald TFP is just under 0.4% at peak, slightly below

our baseline results. When using the utilization-adjusted series, the TFP response is again

just under 0.4% at peak, however, it is interesting to note that the TFP rise is much more

gradual and the peak response occurs after 15 years. This is consistent with the view that
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Figure B.1: Comparison between Alternative TFP Measures in the US VAR

Note: As in Figure 2, the black solid lines show the empirical responses to an identified R&D shock in the
United States and the shaded areas indicate 95% confidence intervals.

utilization-adjustment removes short term non-technological factors that impact TFP, which

may explain the more gradual response.

C Monetary Shocks in the United States

To study the impact of monetary policy on R&D and TFP, we estimate a monetary VAR

following the specification of Christiano et al. (2005). This VAR is estimated using quarterly

data, as this is the highest frequency for which R&D data is available. These results are used

in Section 3.3 to asses the model’s ability to match the data.
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Figure C.1: Response to a monetary policy shock in the United States

Note: The black solid lines show the empirical responses to an identified monetary policy shock in the United
States and the shaded areas indicate 95% confidence intervals.

Figure C.1 presents the response to a monetary policy shock at a quarterly frequency. To

ensure consistency with our model, these impulse responses are averaged in order to obtain

the annual series seen in Figure 6.

D Complete set of model equilibrium conditions

In what follows we collect the full set of equations characterizing equilibrium.

At+1 = φ [λt (Zt −At) +At] (D.1)

Zt+1 = φZt + Vt (D.2)

Vt = ζZ1−η
t Sηt (D.3)

Jt = −Qmt Mt + φEt
{

Λt,t+1

[
λtHt+1 +

(
1− λt

)
Jt+1

]}
(D.4)
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Qmt = 1 + fm
(
Imt /I

m
t−1

)
+

Imt
Imt−1

f ′m
(
Imt /I

m
t−1

)
− Et

[
Λt,t+1

(
Imt+1

Imt

)2

f ′m
(
Imt+1/I

m
t

) ]
(D.5)

Ht = Πt + φEt(Λt,t+1Ht+1) (D.6)

Πt =
1

ϑ

1

Mt

Yt
At

(D.7)

Et (Λt,t+1Jt+1) ζ

(
Zt
St

)1−η
= (1 + ∆s

t )
{

1 + f ′s (St/St−1)
St
St−1

+ fs (St/St−1)− Et
[
Λt,t+1f

′
s (St+1/St)

(
St+1

St

)2 ]}
(D.8)

Qmt M
1−ρλ
t = ρλκλφ (St/At)

ν Et [Λt,t+1 (Ht+1 − Jt+1)] (D.9)

λt = κλ (St/At)
νMρλ

t (D.10)

Yt = A
1

ϑ−1

t Kα
t L

1−α
t (D.11)

Yt = Ct +
[
1 + fi (It/It−1)

]
It +

[
1 + fm

(
Imt /I

m
t−1

) ]
Imt +

[
1 + fs (St/St−1)

]
St

(D.12)

Λt,t+1 =
βUC,t+1

UC,t
(D.13)

UC,t =
1

Ct − hCt−1
− βhEt

(
1

Ct+1 − hCt

)
(D.14)

wt =
1

Mt

ϑ− 1

ϑ
(1− α)

Yt
Lt

(D.15)

Kt+1 = (1− δ)Kt + It (D.16)

Qt = 1 + fi (It/It−1) +
It
It−1

f ′i (It/It−1)− Et
[
Λt+1

(
It+1

It

)2

f ′i (It+1/It)
]

(D.17)

1 = Et

(
Λt,t+1

ϑ−1
ϑ

1
Mt+1

α Yt+1

Kt+1
+ (1− δ)Qt+1

Qt

)
(D.18)

Imt = (Zt −At)Mt (D.19)

π1−ω
t = θ

(
π
ιp
t−1π

1−ιp)1−ω + (1− θ)(π∗t )1−ω (D.20)

π∗t =
ω

ω − 1

x1,t

x2,t
πt (D.21)

x1,t = UCD,tM−1
t YD,t + θβ

(
π
ιp
t π

1−ιp)−ω Et (x1,t+1π
ω
t+1

)
(D.22)

x2,t = UCD,tYD,t + βθ
(
π
ιp
t π

1−ιp)1−ω Et (x2,t+1π
ω−1
t+1

)
(D.23)

1 = Et
[
Λt,t+1

Rt
πt+1

]
(D.24)

Rt =
g

β
π
(πt
π

)γπ ( Yt/At

Y pot
t /Apott

)γy
∆r
t (D.25)
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w1−ωl
t = (1− θw)(w∗t )

1−ωl + θw
[
π−1
t wt−1g

(
πιwt−1π

1−ιw)]1−ωl (D.26)

w∗t =Mw
x1w,t

x2w,t
(D.27)

x1w,t = L∗tUC,tMRSt + βθwEt(x2w,t+1) (D.28)

x2w,t = L∗tUC,t + βθwg
(
πιwt π

1−ιw)Et(π−1
t+1x2w,t+1) (D.29)

L∗t =

(
w∗t
wt

)−ωl
Lt (D.30)

MRSt =
χ (L∗t )

ε

UC,t
(D.31)

Equations (D.1)-(D.31) can be solved for the endogenous variablesAt+1, Zt+1, Vt, Jt, Q
m
t , Ht,Πt,

St,Mt, λt, Yt, Ct,Λt,t+1, wt, Kt+1, Qt, It, I
m
t , πt, π

∗
t , x1,t, x2,t, Rt, wt, w

∗
t , x1w,t, x2w,t, L

∗
t ,MRSt, UC,t,Mt.

The potential economy is characterized by the same equations above, setting θ = θw = 0.

E Additional model results

E.1 Taylor rule including technology in the output gap

Figure E.1 compares the effects of a contractionary monetary shock under our baseline

Taylor rule to an alternative that responds to Yt/Y
pot
t (rather than to yt/y

pot
t ). Note that

under the alternative rule, TFP and output eventually revert back to baseline: under the

alternative rule, the policymaker seeks to close a measure of the output gap that includes

endogenous technology At. Note also the significant overshooting of inflation, which turns

positive for several years before reverting back to zero. These results are broadly consistent

with those found by Erceg and Levin (2014), and result from the presence of a slow-moving

state variable in the Taylor rule (technology in our case, and labor force participation in the

case of Erceg and Levin (2014)).

E.2 Efficient allocation and alternative Taylor rules

Here we compare the model behavior under alternative Taylor rules which target the

efficient allocation (featuring socially optimal innovation), rather than potential. We abstract

from a number of model features to keep the analysis tractable. In particular, we abstract

from capital accumulation (and set α = 0), habits, adjustment costs, and nominal wage

rigidities, and indexation to past inflation. We also set the R&D impact on adoption rates to

zero: ν = 0.

38



Figure E.1: Monetary shock, baseline and alternative Taylor rule
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We begin by characterize the socially optimal allocation. The planner maximizes
∑∞

t=1 β
tU(Ct, Lt)

subject to the constraints

At+1 = λtφ (Zt − At) + φAt (E.1)

λt = κλM
ρλ
t (E.2)

Zt+1 = φZt + ζtZ
1−η
t Sηt (E.3)

A
1

ϑ−1

t Lt = Ct + St +Mt(Zt − At) (E.4)

for all t. We assume that the productivity of R&D, ζt, follows an exogenous first-order

autoregressive process, playing a role akin to the innovation wedge in the main text.

Eliminate λt and write the Lagrangian
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L = E0

∞∑
t=1

βt

{
U(Ct, Lt) + γAtγCt

[
κλM

ρλ
t φ (Zt − At) + φAt − At+1

]
+γZtγCt

[
φZt + ζtZ

1−η
t Sηt − Zt+1

]
+ γCt

[
A

1
ϑ−1

t Lt − Ct − St −Mt(Zt − At)
]}

where γAtγCt, γZtγCt and γCt are the multipliers on (E.1), (E.3), and (E.4) respectively.

Taking first order conditions of the problem above and collecting the constraints yields the

following system:

At+1 = λtφ (Zt − At) + φAt (E.5)

λt = κλM
ρλ
t (E.6)

Zt+1 = φZt + ζtZ
1−η
t Sηt (E.7)

A
1

ϑ−1

t Lt = Ct + St +Mt(Zt − At) (E.8)

χLεtCt = A
1

ϑ−1

t (E.9)

1 = γZtηζt

(
St
Zt

)η−1

(E.10)

1 = γAtκλρλM
ρλ−1
t φ (E.11)

γZt = Et

{
βC−1

t+1

C−1
t

{
γAt+1λt+1φ+ γZt+1

[
φ+ ζt+1(1− η)

(
St+1

Zt+1

)η ]
−Mt+1

}}
(E.12)

γAt = Et

{
βC−1

t+1

C−1
t

{
γAt+1φ(1− λt+1) +

1

ϑ− 1
A

1
ϑ−1
−1

t+1 Lt+1 +Mt+1

}}
(E.13)

The above constitute 9 equations in At+1, λt, Zt+1, Ct, Lt, St,Mt, γZt, γAt, characterizing

the efficient allocation.

We perform the following experiments. We document the responses of the efficient and

potential economies, as well as the responses of the “actual” economy under two variants of

the Taylor rule: one which responds to deviations of output from potential (Yt/Y
pot
t ) and

another that responds to deviations of output from efficient output, as characterized by the

above system. In all cases, we assume constant subsidies to labor, R&D, and adoption along

the balanced growth path in the actual and flex-price (or potential) economies, such that

labor supply, the adoption rate and the TFP growth rate are equal to those in the efficient

economy (with values given by the targets described in 3.1). Given these subsidies, all three
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Figure E.2: Monetary shock, efficient and potential economy and alternative Taylor rules
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economies have identical balanced growth paths.

Figure E.2 shows the effects of a monetary policy shock in the actual economy under

the two variants of the Taylor rule. As the Figure makes clear, the behavior of the actual

economy is the same under the two rules. The reason is that neither the potential nor the

efficient economies are affected by the monetary shock. The same is true for the frequently

used “liquidity preference” shock (see Fisher (2015)), as the latter has no allocative effects

absent nominal rigidities.

There are, however, other types of exogenous disturbances under which the economy’s

behavior will differ depending on which Taylor rule is followed by the monetary authority. To

illustrate this point, we explore the effects of a one percent disturbance to the R&D efficiency,

ζt, with persistence set to 0.5. As seen in Figure E.3, the evolution of the efficient (blue circled

line) and the potential (green solid) economies following a positive innovation to ζt is quite

different. From the first two panels, R&D increases more in the efficient economy than in
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the potential economy, and adoption expenditure (and therefore the adoption rate) falls by

less—resulting in a substantially larger medium-run rise in TFP. Note also that consumption

falls by more in the first few years (reflecting a greater desire of the planner to reallocate

expenditure to innovation) in the efficient economy, and labor rises by more throughout.

Turning to the actual economy, we find that the Taylor rule targeting efficient output is

quite effective in inducing all variables to track their respective paths in the efficient economy.

A similar observation applies to the case in which the Taylor rule targets potential output. As

a result, the behavior of the actual economy is quite different across the two rules, and mirrors

the differences between the efficient and potential economies. Note also that the effects of the

shock on inflation and the nominal interest rate are also quite different, with inflation rising

substantially more under the Taylor rule that targets efficient output. This is suggestive of a

tradeoff for the monetary authority, as tracking the efficient economy entails greater costs in

terms of nominal instability.
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Figure E.3: R&D efficiency shock, efficient and potential economy and alternative Taylor
rules
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F Data

We estimate the small and large-scale VARs at the annual frequency, in order to take

advantage of the most reliable R&D data for the United States, which is published by the

National Science Foundation. We estimate the monetary VAR using quarterly data, following

the example of Christiano et al. (2005).

F.1 Annual Data

The most reliable R&D data for the United States comes from the National Science Foun-

dation, which currently surveys approximately 45,000 companies on an annual basis. Com-
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panies are legally required to respond to the survey.20 We use real business sector R&D,21

performed in the domestic United States by companies with five or more employees, publicly

or privately held. This includes labor costs, which in recent years constitute approximately

two thirds of R&D costs. Data comes from the NSF’s Science and Engineering Indicators

2016, Appendix Table 4-2, available online.

TFP comes from The Long-Term Productivity database published by Bergeaud et al.

(2015). These authors compute TFP as the Solow residual from a Cobb-Douglas production

function with constant returns to scale and with capital stock and hours worked as input. We

select this measure of TFP to ensure comparability across countries, allowing us to estimate

the impact of R&D shocks in a panel of advanced economies.

Real GDP comes from the National Income and Product Accounts of the United States.

Investment is defined as real gross private domestic investment minus real business R&D

expenditure, in order to ensure consistency with the model. The federal funds rate is measured

as the Wu and Xia (2016) Shadow Rate. Inflation is defined as the log difference of the GDP

deflator. Finally, consumption is defined as real personal consumption expenditures.

F.2 Quarterly Data

We use the newly released quarterly R&D data published by the BEA in the National

Income and Product Accounts. This data is used by Bianchi et al. (2014) to estimate a

quarterly model of endogenous productivity growth. While this is the only quarterly R&D

series for United States, it is not without limitations. Most importantly, the BEA R&D

measure omits software R&D, which in recent years has been about 20% of total business

R&D. Data comes from NIPA Table 5.3.3, which presents real private fixed investment by

type.

We use quarterly utilization-adjusted TFP published by Fernald (2014), as the Long-

Term Productivity database is only available at the annual frequency. For the remaining

macroeconomic variables included in the monetary VAR, we use the quarterly version of all

series described in Appendix F.1.

20“Your Response is Required by Law” is printed on the first page of the Business R&D and Innova-
tion Survey. The survey further clarifies that “Title 13, United States Code, requires businesses and other
organizations that receive this questionnaire to answer the questions and return the report to the Census
Bureau.”

21The NSF defines R&D as “planned, creative work aimed at discovering new knowledge or developing new
or significantly improved goods and services.” This includes basic research aimed at acquiring new knowledge,
applied research that solves specific problems, and development that produces new or significantly improved
goods, services, or processes. It does not include routine product testing, market research, or exploration for
natural resources.
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F.3 Panel Data

Our panel consists of annual data for 22 advanced economies. We include the same

countries as Coe et al. (2009), with just two exceptions due to data availability.22 Table F.1

contains a complete list of the countries and years included in our panel.

R&D is measured as R&D expenditure performed by business enterprise in constant US

dollars. Data comes from the OECD Research and Development Statistics. For the United

States, this series is equivalent to real business sector R&D expenditure as published by the

NSF.

Our primary source of TFP data is the Long-Term Productivity database published by

Bergeaud et al. (2015). This data is designed for cross country comparisons and is available

for 17 advanced economies including the United States. For the five remaining countries in

our panel, we use TFP data from the Total Economy Database produced by The Conference

Board. These series are augmented with Information and Communications Technology (ICT)

and Labor Quality. These series are used for Austria, Ireland, Israel, New Zealand, and South

Korea.

Gross Domestic Product is measured in constant US dollars, as published in the Total

Economy Database produced by The Conference Board.

22Greece and Iceland are both excluded due to a lack of R&D data.
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Table F.1: Panel Dataset

Country Sample
Australia 1981 - 2011
Austria 1989 - 2013
Belgium 1981 - 2013
Canada 1981 - 2013
Denmark 1981 - 2013
Finland 1981 - 2013
France 1981 - 2013
Germany 1981 - 2013
Ireland 1989 - 2012
Israel 1991 - 2013
Italy 1981 - 2013
Japan 1981 - 2013
Netherlands 1981 - 2013
New Zealand 1989 - 2011
Norway 1981 - 2013
Portugal 1982 - 2013
South Korea 1995 - 2013
Spain 1981 - 2013
Sweden 1981 - 2013
Switzerland 1981 - 2012
United Kingdom 1981 - 2013
United States 1953 - 2016
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