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Abstract

We use the Bayesian method introduced by Gallant and McCulloch (2009) to estimate

consumption-based asset pricing models featuring smooth ambiguity preferences. We

rely on semi-nonparametric estimation of a flexible auxiliary model in our structural

estimation. Based on the market and aggregate consumption data, our estimation

provides statistical support for asset pricing models with smooth ambiguity. Statistical

model comparison shows that models with ambiguity, learning and time-varying volatil-

ity are preferred to the long-run risk model. We analyze asset pricing implications of

the estimated models.
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1 Introduction

A number of asset pricing puzzles pose remarkable challenges to the standard consumption-based

asset pricing model with a fully rational representative-agent. Among them is the “equity premium

puzzle” first documented by Mehra and Prescott (1985), which states that the standard model

requires an implausibly high level of risk aversion to explain the historical equity premium in the

U.S. data. Other important stylized facts of the stock market include excess return volatility,

countercyclical equity premium and equity volatility, and return predictability.1 A recent strand

of the literature proposes to embed ambiguity in an otherwise standard model to explain various

asset pricing puzzles. An ambiguity-averse agent recognizes uncertainty about an objective law

governing the state process and is averse to such uncertainty. There are two popular approaches

to model ambiguity in the asset pricing literature, the multiple-priors approach and the smooth

ambiguity approach.2 Existing consumption-based models with ambiguity are largely confined

to model calibration. However, calibration does not provide the likelihood of the model given

observed macroeconomic and financial variables. As a result, statistical support for the importance

of ambiguity in asset pricing is still limited in the structural model estimation literature.

In this paper, we use the “General Scientific Models” (henceforth, GSM) Bayesian estimation

method developed by Gallant and McCulloch (2009) to estimate a set of consumption-based asset

pricing models with smooth ambiguity preferences. Our Bayesian estimation jointly produces

estimates of preference parameters and parameters governing state dynamics in a structural model.

We consider models with an ambiguity-averse representative agent who is uncertain about the

conditional mean growth rate of aggregate consumption. The agent’s preferences are represented

by generalized recursive smooth ambiguity utility advanced by Hayashi and Miao (2011) and Ju

and Miao (2012). This class of preferences builds on the seminal work of Klibanoff, Marinacci, and

Mukerji (2005, 2009) and allows for the separation among risk aversion, ambiguity aversion and

the elasticity of intertemporal substitution (EIS). Altug, Collard, Çakmakli, Mukerji, and Özsöylev

1 See Shiller (1981), Fama and French (1989), Schwert (1989), and Fama and French (1988a) for related empirical
evidence.

2 See Epstein and Wang (1994), Chen and Epstein (2002), Epstein and Schneider (2008), and Drechsler (2013) for
applications of the multiple-priors preferences and Ju and Miao (2012), and Collard, Mukerji, Sheppard, and Tallon
(2017) for applications of smooth ambiguity preferences. The smooth ambiguity utility model has a connection with
risk-sensitive control and robustness, see Klibanoff, Marinacci, and Mukerji (2009), Hansen (2007) and Hansen and
Sargent (2010).
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(2017) show that in a special case, where the EIS and relative risk aversion are inversely related,

Ju and Miao’s generalized smooth ambiguity utility function is not equivalent to the preferences

proposed by Klibanoff et al. (2005, 2009). Our estimation suggests a clear distinction of the EIS

from risk aversion for all models and a preference for early resolution of uncertainty.

We examine three models featuring smooth ambiguity. The first is the original model of Ju and

Miao (2012). The growth rate of consumption follows a Markov-switching process in which the mean

growth rate depends on a hidden state. The hidden state evolves according to a two-state Markov

chain. The agent cannot observe the state but can learn about the state in a Bayesian fashion

by observing realized growth rates of consumption. Ambiguity arises since the mean growth rate

is unobservable. Because the hidden state evolves dynamically over time, learning cannot resolve

the agent’s ambiguity in the long run. The agent is ambiguity-averse in that he dislikes a mean-

preserving spread in the continuation value led by the agent’s belief about the hidden state. As

a result, compared with a solely risk-averse agent, the ambiguity-averse agent effectively assigns

more probability weight to “bad” states that are associated with lower levels of the continuation

values.

The second model is an extension of the first and incorporates time-varying conditional volatility.

We postulate that conditional volatility of consumption growth follows another two-state Markov

chain that is independent of the chain for the mean growth state, as in McConnell and Perez-Quiros

(2000) and Lettau, Ludvigson, and Wachter (2008). A number of studies have examined the role

of time-varying volatility and found that volatility risk is significantly priced in the stock market,

see Bollerslev, Tauchen, and Zhou (2009), Drechsler (2013) and Bansal, Kiku, Shaliastovich, and

Yaron (2014), among others. By estimating a model with ambiguity, learning and time-varying

volatility, we aim to investigate whether (1) inclusion of time-varying volatility affects the estimated

impact of ambiguity on asset prices, and (2) the model with time-varying volatility represents an

improvement over the original model.

The third model is built on the long-run risk model of Bansal and Yaron (2004) and the smooth

ambiguity model of Collard, Mukerji, Sheppard, and Tallon (2017). The motivation for examining

this model is to study the impact of ambiguity in a long-run risk setting. The persistent long-run

risk component in the conditional mean of consumption growth is empirically difficult to detect.
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Thus, it is reasonable to postulate that the agent also faces the same difficulty as an econometrician

does.3 Similar to the model setup of Ju and Miao (2012), the agent cannot observe the long-run

risk component governing mean consumption growth but can learn about it in a Bayesian fashion

by observing realizations of consumption and dividend growth rates. In addition, we incorporate

stochastic volatility as an exogenous process as in Bansal and Yaron (2004).4 By estimating this

model, we want to investigate to what extent the estimated level of ambiguity aversion depends on

specifications of state processes and the information structure.

In all three models, the agent’s ambiguity aversion endogenously generates pessimistic beliefs

about the distribution of consumption growth. In contrast to an ambiguity-neutral investor, the

ambiguity-averse agent always slants his belief toward states with low levels of conditional mean

growth of consumption. This pessimism is manifested by a sharp increase in the pricing kernel when

the economy experiences a negative shock after staying at the “normal” growth rate for several

periods. The pessimistic distortion to the pricing kernel raises its volatility and thus implies a high

market price of risk and high equity premium.

In addition to models with smooth ambiguity, we also estimate two baseline models with Epstein

and Zin (1989)’s recursive utility for model comparison. The first baseline model is the long-run

risk model studied by Bansal, Kiku, and Yaron (2012), which is an improved formulation of the

original model of Bansal and Yaron (2004). The second baseline model is a special case of Ju and

Miao’s model, where we suppress ambiguity aversion. In this model, the agent without endogenous

pessimism makes Bayesian inference to evaluate mean consumption growth. By estimating a series

of structural models with and without smooth ambiguity, we address two important questions: (1)

does a structural estimation with macro-finance data lend statistical support to the class of smooth

ambiguity preferences that have sound decision-theoretic basis? (2) Based on a standard Bayesian

model comparison between those featuring smooth ambiguity and Epsetin-Zin’s preferences, which

estimated model is the preferred model? We find a significant distinction between risk aversion

3 Bidder and Dew-Becker (2016) study a related framework where the agent estimates the consumption process non-
parameterically and prices assets using a pessimistic model. They find that long-run risks arise endogenously as the
worst-case outcome. Collard et al. (2017) consider a more elaborate model in which the agent is not only ambiguous
about the latent mean growth rate of consumption but also ambiguous about whether the latent variable comes from
a highly persistent process or a moderately persistent process.

4 Incorporating an unobservable stochastic volatility component together with learning is beyond the scope of our
study. We leave estimation of the model in which the agent also has ambiguity about the volatility state for future
research.
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and ambiguity aversion in the estimated models. Moreover, the distinction is robust to different

specifications of consumption dynamics.

A model comparison exercise based on posterior likelihoods and the Bayesian information cri-

teria (BIC) shows that the two models featuring smooth ambiguity and time-varying volatility are

preferred to both the long-run risk model and the Epstein-Zin’s recursive utility model with regime-

switching consumption growth and learning. Prior to our study, Bansal, Gallant, and Tauchen

(2007) and Aldrich and Gallant (2011) concluded that the long-run risk model is a preferred model.

In addition, we find that the estimated smooth ambiguity models can match moments of asset re-

turns better than the Epstein-Zin’s models do. The estimated Ju and Miao’s model, which receives

less statistical support than the long-run risk model, matches the equity premium and variance risk

premium in the data well.

We use the projection method to solve all models examined in this paper. The log-linear

approximation method that has been widely used in the long-run risk literature is not applicable

to our smooth ambiguity models. This is because learning induces nonlinearities in the dynamics

of the agent’s beliefs. Additionally, the smooth ambiguity utility function is highly nonlinear. To

keep our quantitative analysis consistent, we also use the projection method to solve the long-run

risk model. In a recent work, Pohl, Schmedders, and Wilms (2017) assess numerical accuracy of

the log-linear approximation method and find that applying log-linearization to solve long-run risk

models can yield biased results due to neglecting higher-order effects. The bias becomes more

pronounced when the long-run risk and stochastic volatility components are highly persistent.

Using the log-linear approximation and a mixed data frequency approach, Schorfheide, Song, and

Yaron (2017) perform Bayesian estimation of long-run risk models with several specifications of

stochastic volatility and find that the long-run risk component and stochastic volatilities are highly

persistent. While our estimation is based on annual data and Bayesian indirect inference, we also

find persistent long-run risk and stochastic volatility components as well as a high EIS.

Similar to other macro-finance applications, we face sparsity of data because we use annual

data for estimation. In addition, the likelihood of a structural asset pricing model is not readily

available. As has become standard in the macro-finance empirical literature, we use prior infor-

mation and a Bayesian estimation methodology to overcome data sparsity. Specifically, we use
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the GSM Bayesian estimation method developed by Gallant and McCulloch (2009). GSM is the

Bayesian counterpart to the classical “indirect inference” and “efficient method of moments” (here-

after, EMM) methods introduced by Gouriéroux, Monfort, and Renault (1993) and Gallant and

Tauchen (1996, 1998, 2010). These are simulation-based inference methods that rely on an auxil-

iary model for implementation. The Bayesian estimation of GSM relies on the theoretical results of

Gallant and Long (1997) in its construction of a likelihood. In particular, Gallant and McCulloch

synthesize a likelihood by means of an auxiliary model and simulations from the structural model.

A comparison of Aldrich and Gallant (2011) with Bansal et al. (2007) displays the advantages

of a Bayesian EMM approach relative to a frequentist EMM approach, particularly for the purpose

of model comparison. An indirect inference approach is an appropriate estimation methodology in

the context of this study since the estimated equilibrium model is highly nonlinear and does not

admit analytically tractable solutions, thereby severely inhibiting accurate numerical construction

of a likelihood by means other than GSM. GSM uses a sieve (see Section 3) specially tailored to

macroeconomic and financial time-series applications as the auxiliary model. When a suitable sieve

is used as the auxiliary model, as in this study, the GSM method synthesizes the exact likelihood

implied by the model.5 In this instance, the synthesized likelihood model departs significantly from

a normal-errors likelihood, which suggests that alternative econometric methods based on normal

approximations will give biased results. In particular, in addition to the generalized autoregressive

conditional heteroscedasticity (GARCH) effect, the four-dimensional error distribution implied by

the smooth ambiguity model is skewed in all four components and has fat-tails for consumption

growth, dividend growth and stock returns, and thin tails for bond returns.

This paper contributes to a growing body of literature on ambiguity, learning and macro-finance.

We discuss closely related papers here. Epstein and Schneider (2007) develop a model with learning

under ambiguity. They use the multiple-priors approach to model ambiguity and assume a set of

priors and a set of likelihoods for signals. Beliefs are updated by Bayes’ rule in an appropriate

way. Epstein and Schneider (2008) apply this model to study information quality and asset prices.

Leippold, Trojani, and Vanini (2008) adopt the continuous-time multiple-priors framework of Chen

5 Gallant and McCulloch (2009) use the terms “scientific model” and “statistical model” instead of the terms “structural
model” and “auxiliary model” used in the indirect inference econometric literature. We will follow the conventions
of the econometric literature. The structural models here are equilibrium asset pricing models.
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and Epstein (2002) to analyze asset pricing implications of learning under ambiguity. Cogley and

Sargent (2008) examine the impacts of pessimistic beliefs on the market price of risk and equity

premium. Hansen and Sargent (2010) consider robustness concerns in learning and study time-

varying model uncertainty premia. Collard et al. (2017) assume that a representative agent with

smooth ambiguity preferences faces both model uncertainty and state uncertainty and analyze the

dynamics of risk premia conditioning on the historical data. Johannes, Lochstoer, and Mou (2016)

and Collin-Dufresne, Johannes, and Lochstoer (2016) study parameter learning and asset prices in

the consumption-based framework with recursive utility. Jeong, Kim, and Park (2015) estimate an

asset pricing model in which the agent has multiple-priors utility. Their estimation results suggest

that ambiguity on the true probability law governing fundamentals carries a sizable premium.

Jahan-Parvar and Liu (2014), Backus, Ferriere, and Zin (2015) and Altug et al. (2017) exam-

ine both business cycle and asset pricing implications in dynamic stochastic general equilibrium

(DSGE) models with smooth ambiguity. Ilut and Schneider (2014) estimate a DSGE model with

multiple-priors utility. Their estimation suggests that time-varying confidence in future total factor

productivity explains a significant fraction of the business cycle fluctuations. Bianchi, Ilut, and

Schneider (2016) estimate another DSGE model to explain joint dynamics of asset prices and real

economic activity in the postwar data. They show that time-varying ambiguity about corporate

profits leads to high equity premium and excess volatility. They further show that the recursive

multiple priors utility model provides a tractable way to analyze DSGE models with time varying

uncertainty and facilitates estimation by means of likelihood methods.

The rest of the paper proceeds as follows. Section 2 presents consumption-based asset pricing

models with smooth ambiguity. Section 3 discusses the estimation method and empirical findings.

Section 4 presents asset pricing implications. Section 5 concludes. Numerical solution methods and

additional results are included in the Internet Appendix.

2 Asset Pricing Models

The intuitive notions behind any consumption-based asset pricing model are that agents receive

income (wage, interest, and dividends) that they use to purchase consumption goods. Agents

reallocate their consumption over time by trading stocks that pay random dividends and bonds
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that pay interest with certainty. This is done for consumption smoothing over time. The budget

constraint implies that the purchase of consumption, bonds, and stocks cannot exceed income in

any period. Agents are endowed with a utility function that depends on the entire consumption

path. The first-order conditions of their utility maximization deliver an intertemporal relation

of prices of stocks and bonds. Among all tradable assets, we focus on the risky asset that pays

aggregate dividends and the one-period risk-free bond with zero net supply.

2.1 Asset Pricing Models Featuring Smooth Ambiguity

We examine three consumption-based asset pricing models in which a representative agent is en-

dowed with smooth ambiguity preferences. These models include (1) Ju and Miao (2012)’s model

in which the mean of consumption growth follows a hidden Markov chain with two states, abbre-

viated as “AAMS”, (2) an extended version of Ju and Miao’s model with time-varying conditional

volatility, abbreviated as “AAMSSV”, and (3) a long-run risk model featuring ambiguity in which

the long-run risk component is assumed to be unobservable, abbreviated as “AALRRSV” model.

The latter model shares many features with the models introduced by Collard et al. (2017). In

all these models, the agent cannot observe the state determining mean consumption growth but

learns about the state in a Bayesian fashion. The unobservable mean growth state implies that the

agent is ambiguous about the data-generating process of fundamentals. Smooth ambiguity utility

captures the agent’s aversion toward this ambiguity.

2.1.1 The AAMS model

Aggregate consumption follows the process

∆ct ≡ ln

(
Ct
Ct−1

)
= µ (st) + σcεc,t, εc,t ∼ N (0, 1) ,

where εc,t is an i.i.d. standard normal random variable, and st indicates the state of mean con-

sumption growth and follows a two-state Markov chain. Suppose that “l” and “h” indicate low

and high mean growth states respectively. The transition probabilities are given by

Pr (st = l|st−1 = l) = pll, Pr (st = h|st−1 = h) = phh
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Because aggregate dividends are more volatile than aggregate consumption (see Abel, 1999 and

Bansal and Yaron, 2004), the dividend growth process is given by

∆dt ≡ ln

(
Dt

Dt−1

)
= λ∆ct + gd + σ̃dεd,t (1)

where εd,t is an i.i.d. standard normal random variable that is independent of all other shocks

in the model. The parameter λ represents the leverage ratio; see Abel (1999). We pin down the

parameters gd and σ̃d by the estimates of unconditional mean and volatility of dividend growth.

We set the unconditional mean of dividend growth to that of consumption growth implied by the

Markov-switching model. In addition, we denote the unconditional volatility of dividend growth

by σd.

The agent cannot observe the mean growth state but can learn about it through observing

the history of consumption and dividends. The agent knows the parameters in the consumption

and dividend processes, namely, {µl, µh, pll, phh, σc, λ, gd, σ̃d}. Suppose that the agent’s belief is

πt = Pr (st = h|It) where It denotes information available at time t. With respect to learning about

the unobservable state, dividends do not contain additional information compared to consumption.

As a result, given the prior belief π0 and full information, the agent updates his beliefs according

to Bayes’ rule:

πt+1 =
phhf (∆ct+1|st+1 = h)πt + (1− pll) f (∆ct+1|st+1 = l) (1− πt)

f (∆ct+1|st+1 = h)πt + f (∆ct+1|st+1 = l) (1− πt)

where f (∆ct|st) is conditional density with mean µ (st) and variance σ2c :

f (∆ct|st) ∝ exp

[
−(∆ct − µ (st))

2

2σ2c

]
.

The generalized recursive smooth ambiguity utility function proposed by Hayashi and Miao

(2011) and Ju and Miao (2012) implies that given consumption plans C = (Ct)t≥0 the value

function Vt = V (C;πt) is given by

Vt (C;πt) =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1 (C;πt+1))}1−1/ψ

] 1
1−1/ψ

,
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where β ∈ (0, 1) is the subjective discount factor, ψ is the elasticity of intertemporal substitution

(EIS) parameter, γ is the coefficient of relative risk aversion, and Rt (V (Ct+1;πt+1)) is the certainty

equivalent of the continuation value given by

Rt (Vt+1 (C;πt+1)) =

(
Eπt

[(
E{st+1,,t}

[
Vt+1 (C;πt+1)

1−γ
]) 1−η

1−γ
]) 1

1−η

. (2)

Ambiguity aversion is characterized by the parametric restriction η > γ, where η is the ambiguity

aversion parameter. By setting η = γ, we obtain Epstein-Zin’s recursive utility under ambiguity

neutrality.6 In the certainty equivalent (2), the expectation operator Est+1,t [·] is taken with respect

to the conditional distribution of consumption growth in state st+1 and all other information at time

t. The expectation operator Eπt is taken with respect to the posterior belief about the unobservable

state.

Following Hayashi and Miao (2011), the stochastic discount factor (SDF) in this model is given

by

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Rt (Vt+1)

)1/ψ−γ

(
E{st+1,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ).

The last multiplicative term in the SDF arises due to ambiguity aversion. This term makes the

SDF more countercyclical than in the case of Epstein and Zin’s recursive utility and induces large

variations in the SDF. The risk-free rate, Rft , is the reciprocal of the conditional expectation of the

SDF,

Rft =
1

Et [Mt,t+1]
.

Stock returns, defined by Rt+1 =
Pt+1 +Dt+1

Pt
, satisfy the Euler equation

Et [Mt,t+1Rt+1] = 1.

6 We follow Ju and Miao (2012) and do not consider η < γ in our estimation as this parametric restriction might imply
“ambiguity loving”, see also Hayashi and Miao (2011).
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We rewrite the Euler equation as

0 = π̃tEh,t
[
MEZ
t,t+1

(
Rt+1 −Rft

)]
+ (1− π̃t)El,t

[
MEZ
t,t+1

(
Rt+1 −Rft

)]
,

where Eh,t [·] denotes Est+1,t [·] for st+1 = h and similarly for state l. We interpret the term MEZ
t,t+1

as the SDF under recursive utility:

MEZ
zt+1,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ
.

We interpret π̃t as the ambiguity-distorted belief and represent it by:

π̃t =
πt

(
Eh,t

[
V 1−γ
t+1

])− η−γ
1−γ

πt

(
Eh,t

[
V 1−γ
t+1

])− η−γ
1−γ

+ (1− πt)
(
El,t

[
V 1−γ
t+1

])− η−γ
1−γ

.

As long as η > γ, distorted beliefs are not equivalent to Bayesian beliefs. The distortion driven by

ambiguity aversion is an equilibrium outcome and implies pessimistic beliefs; see Section 4.

We rewrite the Euler equation to solve for the price-dividend ratio,

Pt
Dt

= Et
[
Mt,t+1

(
1 +

Pt+1

Dt+1

)
Dt+1

Dt

]
.

Since Pt
Dt

is a functional of the state variable πt,
Pt
Dt

= Φ (πt), the Euler equation becomes

Φ (πt) = Et [Mt,t+1 (1 + Φ (πt+1)) exp (∆dt+1)] .

2.1.2 The AAMSSV model

We follow McConnell and Perez-Quiros (2000) and Lettau et al. (2008) and extend Ju and Miao’s

model by incorporating time-varying conditional volatility. We assume that the conditional mean

and volatility states follow two independent Markov chains. The consumption process takes the

form

∆ct = µ (sµt ) + σ (sσt ) εc,t, εc,t ∼ N (0, 1)
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with transition probabilities

Pr
(
sµt = l|sµt−1 = l

)
= pµll, Pr

(
sµt = h|sµt−1 = h

)
= pµhh,

Pr
(
sσt = l|sσt−1 = l

)
= pσll, Pr

(
sσt = h|sσt−1 = h

)
= pσhh .

To ease the analysis, we assume that the mean state sµt is unobservable while the volatility state

sσt is observable. We make this simplifying assumption for two reasons: First, empirical studies

such as Bryzgalova and Julliard (2015) have established that estimation and characterization of

the mean consumption growth is more difficult than consumption volatility. Second, according

to the existing literature, volatility states are very persistent, leading to filtered probabilities of

the volatility state close to 1. These results imply that ambiguity has little room with respect to

consumption volatility states.7

The agent updates beliefs according to Bayes’ rule as

πt+1 =
pµhhf

(
∆ct+1|sµt+1 = h, sσt+1

)
πt +

(
1− pµll

)
f
(
∆ct+1|sµt+1 = l, sσt+1

)
(1− πt)

f
(
∆ct+1|sµt+1 = h, sσt+1

)
πt + f

(
∆ct+1|sµt+1 = l, sσt+1

)
(1− πt)

where f
(
∆ct+1|sµt+1, s

σ
t+1

)
is conditional density

f
(
∆ct+1|sµt+1, s

σ
t+1

)
∝ 1

σ
(
sσt+1

) exp

[
−
(
∆ct+1 − µ

(
sµt+1

))2
2σ
(
sσt+1

)2
]

The value function is given by

Vt (C;πt, s
σ
t ) =

[
(1− β)C

1−1/ψ
t + β

{
Rt
(
Vt+1

(
C;πt+1, s

σ
t+1

))}1−1/ψ] 1
1−1/ψ

,

Rt
(
Vt+1

(
C;πt+1, s

σ
t+1

))
=

(
Eπt

[(
E{sµt+1,s

σ
t ,t}

[
Vt+1

(
C;πt+1, s

σ
t+1

)1−γ]) 1−η
1−γ
]) 1

1−η

in which E{sµt+1,s
σ
t ,t} [·] denotes the expectation conditional on the history up to time t including

the volatility state sσt , and a probability distribution of consumption growth given state sµt+1. The

7 We have also examined the model in which both the conditional mean and volatility states are unobservable. But
solving the model requires substantial run time to achieve convergence. For some parameter values, the numerical
algorithm fails to locate a fixed point for the wealth-consumption ratio. These difficulties make our Bayesian MCMC
estimation infeasible. Lettau et al. (2008) also point out the convergence issue for Epstein and Zin’s recursive utility.
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conditional expectation can be explicitly written as

E{sµt+1,s
σ
t ,t}

[
V 1−γ
t+1

]
=

 pσllE{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = l

]
+ (1− pσll)E{sµt+1,s

σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = h

]
, sσt = l

(1− pσhh)E{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = l

]
+ pσhhE{sµt+1,s

σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = h

]
, sσt = h

where

E{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1

]
∝
∫

1

σ
(
sσt+1

) exp

(
−
(
∆ct+1 − µ

(
sµt+1

))2
2σ
(
sσt+1

)2
)
V 1−γ
t+1 d (∆ct+1) .

The SDF in this model is

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Rt (Vt+1)

)1/ψ−γ

(
E{sµt+1,s

σ
t ,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

The dividend growth process is specified in the same form as in the AAMS model, i.e., in equation

(1). Stock returns and the risk-free rate are defined in a similar way accordingly. The price-dividend

ratio ( PtDt = Φ (πt, s
σ
t )) satisfies the Euler equation

Φ (πt, s
σ
t ) = Et

[
Mt,t+1

(
1 + Φ

(
πt+1, s

σ
t+1

))
exp (∆dt+1)

]
2.1.3 The AALRRSV model

We consider the long-run risk model of Bansal and Yaron (2004), the specification of which is given

by

∆ct+1 = µc + xt+1 + σtεc,t+1

∆dt+1 = µd + λxt+1 + ϕdσtεd,t+1

xt+1 = ρxxt + ϕxσtεx,t+1

σ2t+1 = µ2σ + ρs
(
σ2t − µ2s

)
+ σwεw,t+1

εc,t+1, εd,t+1, εx,t+1, εw,t+1 ∼ i.i.d.N (0, 1) .
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In Bansal and Yaron’s calibration, xt is a highly persistent component, and σt is the stochastic

volatility component representing time-varying economic uncertainty that is also highly persistent.

The long-run risks literature assumes that xt is fully observable and thus appears as a state variable

in the wealth-consumption ratio and price-dividend ratio. However, this component is difficult to

identify using empirically observed economic variables as documented by Bansal et al. (2007), Ma

(2013), and Johannes et al. (2016), among others. The difficulty in estimating xt gives rise to the

agent’s ambiguity about the mean consumption growth. As a result, we adopt a more plausible

information structure by assuming that xt is unobservable. Collard et al. (2017) provide ample

theoretical support for this assumption.

In particular, we maintain that the agent observes the realizations of ∆ct+1 and ∆dt+1 contem-

poraneously but never observes the realization of xt or (εc,t, εd,t, εx,t). This feature of the model

characterizes ambiguity, i.e., the agent’s lack of confidence in estimating the conditional mean of

consumption growth. Instead, the agent uses consumption and dividend growth realizations to

filter the unobserved long-run risk component xt. To make the model tractable and comparable

to the long-run risks model, we assume that the conditional volatility of consumption growth σt is

observable. We also assume that values of the parameter vector (µc, µd, ϕc, ϕd, ϕx, ρx, λ, µs, ρs, σw)

are known to the agent.

Suppose that x0 has a Gaussian distribution. The standard Kalman filter implies that the agent

updates beliefs according to Bayes’ rule conditional on the history of realizations of ∆ct+1 and ∆dt+1

given the Gaussian prior. The updated belief is also Gaussian with mean x̂t+1 and variance νt+1,

i.e., xt+1 ∼ N (x̂t+1, νt+1). We define x̂t+1|t = E [xt+1|It] and νt+1|t = E
[(
xt+1 − x̂t+1|t

)2 |It]. It

immediately follows that

x̂t+1|t = ρxx̂t, and νt+1|t = ρ2xνt + ϕ2
xσ

2
t .
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The Kalman filter implies the following updating equations

x̂t+1 = x̂t+1|t + νt+1|t

[
1 λ

]
F−1t+1|t

 vct+1|t

vdt+1|t


νt+1 = νt+1|t − ν2t+1|t

[
1 λ

]
F−1t+1|t

[
1 λ

]′

where Ft+1|t is given by

Ft+1|t =

 νt+1|t + σ2t λνt+1|t

λνt+1|t λ2νt+1|t + ϕ2
dσ

2
t



and the innovation vector

[
vct+1|t vdt+1|t

]
is given by

 vct+1|t

vdt+1|t

 =

 ∆ct+1 − µc − ρxx̂t

∆dt+1 − µd − λρxx̂t

 .
This model has three state variables (x̂t, νt, σt). The value function under smooth ambiguity

utility Vt = Vt(C; x̂t, νt, σt) satisfies

Vt =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1)}1−1/ψ

] 1
1−1/ψ

,

Rt (Vt+1) =

(
E{x̂t,νt}

[(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1−η
1−γ
]) 1

1−η

.

The certainty equivalent Rt (Vt+1) reflects the agent’s aversion toward ambiguity in estimating the

long-run risk component xt. The agent lacks confidence in the Gaussian posterior of xt and thus

applies pessimistic distortion to the posterior. This distortion is visible in Figure 1. In what follows,

we describe the mechanism of how ambiguity aversion leads to distortion in the posterior.

The SDF in this model is

Mt,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ

(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

.
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We solve the price-dividend ratio, Pt
Dt

= Φ (x̂t, νt, σt), from the Euler equation

Φ (x̂t, νt, σt) = Et [Mt,t+1 (1 + Φ (x̂t+1, νt+1, σt+1)) exp (∆dt+1)] .

Given the Gaussian posterior obtained according to Bayes’ rule, xt ∼ N (x̂t, νt), we derive the

distorted density of xt due to ambiguity aversion. The SDF Mt,t+1 can be decomposed as Mt,t+1 =

MEZ
t,t+1M

AA
t in which MEZ

t,t+1 and MAA
t are given respectively by

MEZ
t,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ
,MAA

t =


(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

.

The Euler equation can be rewritten as

0 = Et

MEZ
t,t+1

(
Rt+1 −Rft

)
(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ) .

By the law of iterated expectations, we obtain

0 =

∫
Et
[
MEZ
t,t+1

(
Rt+1 −Rft

)
|xt
] (

Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt)∫ (
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt) dxt
dxt (3)

where f (xt|x̂t, νt) denotes the Bayesian density of xt given x̂t and νt. It is clear from (3) that the

distorted density driven by ambiguity, f̃ (xt|x̂t, νt, t), is given by

f̃ (xt|x̂t, νt, t) =

(
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

∫ (
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt) dxt
f (xt|x̂t, νt)
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2.2 Alternative Models Featuring Ambiguity Neutral Preferences

The recursive utility function of Epstein and Zin (1989) takes the form

Vt(C) =

[
(1− β)C

1−1/ψ
t + β

{
Et
(
Vt+1 (C)1−γ

)}1−1/ψ
] 1

1−1/ψ

,

As usual, the SDF under recursive utility, denoted by MEZ
t+1, is

MEZ
t,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Et (Vt+1)

) 1
ψ
−γ
. (4)

By setting η = γ in the generalized recursive smooth ambiguity utility function, we suppress

ambiguity aversion and obtain Epstein-Zin’s recursive utility model as a special case. We impose

this parametric restriction to obtain model “EZMS” as the ambiguity-neutral version of model

AAMS.

The second alternative model is the long-run risk model of Bansal et al. (2012), which we label

as “EZLRRSV”. The model specification is

∆ct+1 = µc + xt + σtεc,t+1

∆dt+1 = µd + λxt+1 + ϕdσtεd,t+1 + ϕcσtεc,t+1

xt+1 = ρxxt + ϕxσtεx,t+1

σ2t+1 = µ2σ + ρσ
(
σ2t − µ2σ

)
+ σwεw,t+1

εc,t+1, εd,t+1, εx,t+1, εw,t+1 ∼ i.i.d.N (0, 1) .

with notations defined in the same way as in model AALRRSV. The two state variables are xt and

σ2t . The price-dividend ratio, Pt
Dt

= Φ
(
xt, σ

2
t

)
, satisfies the Euler equation

Φ
(
xt, σ

2
t

)
= Et

[
Mt,t+1

(
1 + Φ

(
xt, σ

2
t

))
exp (∆dt+1)

]
.

We present the structural parameters to be estimated for each model in Table 2. In estimating

models AALRRSV and EZLRRSV, we impose that µc = µd. We solve all the models examined in

this paper using the collocation projection method with Chebyshev polynomials. Pohl et al. (2017)
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show that this is a reliable solution method for nonlinear asset pricing models. The details of the

implementation and numerical accuracy assessment are available in the Internet Appendix.

3 Data and the Estimation Method

3.1 Data

Throughout this paper, lower case denotes the natural logarithm of an upper case variable; e.g.,

ct = ln(Ct), where Ct is the observed consumption in period t, and dt = ln(Dt), where Dt is

dividends paid in period t. Similarly, we use logarithmic risk-free interest rate (rft ) and aggregate

equity market return inclusive of dividends (rt = ln (Pt +Dt) − lnPt−1) in the analysis, where Pt

is the stock price in period t.

We use real annual data from 1941 to 2015. The sample period 1941–1949 provides initial lags

for the recursive parts of our estimation and the sample period 1950–2015 yields estimation results

and diagnostics. Our measure for the risk-free rate is the one-year U.S. Treasury Bill rate. To

construct the real risk-free rate, we regress the ex-post real one-year Treasury Bill yield on the

nominal rate and past annual inflation, available from Wharton Research Data Services (WRDS)

Treasury and Inflation database. The fitted values from this regression are the proxy for the ex-ante

real interest rate. Using other estimates of expected inflation to construct the real rate does not

lead to significant changes in our results. Our proxy for risky assets is the value-weighted returns

(including dividends) on the aggregate stock market portfolio of the NYSE/AMEX/NASDAQ,

which is obtained from the Center for Research in Security Prices (CRSP) and deflated using the

CPI data. We use the sum of real nondurable and services consumption, items 16 and 17 on the

NIPA Table 7.1 “Selected Per Capita Product and Income Series in Current and Chained Dollars,”

published by the Bureau of Economic Analysis (BEA) as our measure of real consumption. These

values are reported in chained 2009 U.S. Dollars and constructed using mid-year population data.

We construct the dividend growth rate series by first computing the gross dividend level from the

value-weighted returns including and excluding dividends and lagged index levels. We then obtain

the real dividend growth rate by deflating the nominal growth rate.

Table 1 presents the summary statistics of the data used in estimation. The p-values of Jarque
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and Bera (1980) test of normality imply that the assumption of normality is not rejected for the

consumption growth series, but it is rejected for all other variables. Real equity returns, interest

rates, and dividend growth rates all exhibit negative skewness. In addition, both real interest rates

and dividend growth rates show significant excess kurtosis. Figure 2 plots the data.

3.2 GSM: Estimation of the structural model

To estimate model parameters we use a Bayesian method proposed by Gallant and McCulloch

(2009), abbreviated GM hereafter, which they termed General Scientific Models (GSM). The GSM

methodology was refined in Aldrich and Gallant (2011), abbreviated AG hereafter.8 The discussion

here incorporates those refinements and is to a considerable extent a paraphrase of AG.

GSM is a Bayesian counterpart of the indirect inference method of Gouriéroux, Monfort, and

Renault (1993) and the efficient method of moments of Gallant and Tauchen (1996, 1998). As such,

implementing this estimation method requires fitting the data with an over-parameterized auxiliary

model (not rooted in theory) and then recovering parameter estimates from the structural model

(founded on theory) by computing the mapping linking the parameter spaces of these two models.

We discuss the estimation method pertaining to the structural model and the map in detail, and

then discuss the auxiliary model and its estimation briefly.

Let the transition density of a structural model be denoted by

p(yt|zt−1, θ), θ ∈ Θ,

where yt is the vector of observable variables, zt−1 = (yt−1, . . . , yt−L) if Markovian and zt−1 =

(yt−1, . . . , y1) if not, and Θ is the structural parameter space. As a result, zt−1 serves as a shorthand

for lag-lengths that are generally greater than 1. Thus, transition densities may depend on L-lags

of the data (if Markovian) or the entire history of observations (if non-Markovian). There are

five structural models under consideration in this application: the three models featuring smooth

ambiguity and the two alternative models with Epstein-Zin’s recursive utility, all of which are

Markovian and described in Section 2.

8 The code implementing the method with AG refinements, together with a User’s Guide, is in the public domain at
http://www.aronaldg.org/webfiles/gsm.
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We presume that there is no straightforward algorithm for computing the likelihood but that we

can simulate data from p(·|·, θ) for a given θ ∈ Θ. We presume that simulations from the structural

model are ergodic. We assume that there is a transition density f (called the auxiliary model)

f(yt|zt−1, ω), ω ∈ Ω

and Ω is the auxiliary model parameter space. In addition, we assume that a map exists

g : θ 7→ ω

such that

p(yt|zt−1, θ) = f(yt|zt−1, g(θ)), θ ∈ Θ. (5)

We assume that f(yt|zt−1, ω) and its gradient (∂/∂ω)f(yt|zt−1, ω) are fairly easy to evaluate. Then

g is called the “implied map”.9 When Equation (5) holds, f is said to “nest” p. Whenever we need

the likelihood
∏n
t=1 p(yt|zt−1, θ), we use

L(θ) =
n∏
t=1

f(yt|zt−1, g(θ)), (6)

where {yt, zt−1}nt=1 are the data and n is the sample size. After substituting L(θ) for
∏n
t=1 p(yt|zt−1, θ),

standard Bayesian MCMC methods become applicable. That is, we have a likelihood L(θ) from

Equation (6) and a prior ξ(θ) from Subsection 3.5 that are sufficient for us to implement Bayesian

methods by means of MCMC. A good introduction to these methods is Gamerman and Lopes

(2006).

The difficulty in implementing GM’s proposal is to compute the implied map g accurately

enough that the accept/reject decision in an MCMC chain (Step 5 in the algorithm below) is

correct when f is a nonlinear model. The algorithm proposed by AG to address this difficulty is

described next.

9 Gouriéroux, Monfort, and Renault (1993), Gallant and Tauchen (1996), Gallant and McCulloch (2009), and Gal-
lant and Tauchen (2010) provide rigorous support for conditions ensuring that the auxiliary model f is a good
approximation for the structural model p.
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Given θ, ω = g(θ) is computed by minimizing Kullback-Leibler divergence

d(f, p) =

∫ ∫
[log p(y|z, θ)− log f(y|z, ω)] p(y|z, θ) dy p(z|θ) dz

with respect to ω. The advantage of Kullback-Leibler divergence over other distance measures is

that the part that depends on the unknown p(·|·, θ),
∫∫

log p(y|z, θ) p(y|z, θ) dy p(z|θ) dz, does not

have to be computed to solve the minimization problem. We approximate the integral that must

be computed by

∫ ∫
log f(y|z, ω) p(y|z, θ) dy p(z|θ) dx ≈ 1

N

N∑
t=1

log f(ŷt|ẑt−1, ω),

where {ŷt, ẑt−1}Nt=1 is a simulation of length N from p(·|·, θ). Upon dropping the division by N ,

the implied map is computed as

g : θ 7→
ω

argmax
N∑
t=1

log f(ŷt | ẑt−1, ω). (7)

We use N = 1000 in the estimation of all the five models. Results (posterior means, posterior

standard deviations, etc.) are not sensitive to N ; doubling N makes no difference other than

doubling computational time. It is essential that the same seed be used to start these simulations

so that the same θ always produces the same simulation.

GM run a Markov chain {ωt}Kt=1 of length K to compute ω̂ that solves expression (7). There are

two other Markov chains discussed below and so this chain is called the ω-subchain to distinguish

among them. While the ω-subchain must be run to provide the scaling for the model assessment

method that GM propose, the ω̂ that corresponds to the maximum of
∑N

t=1 log f(ŷt | ẑt−1, ω) over

the ω-subchain is not a sufficiently accurate evaluation of g(θ) for our auxiliary model. This is

mainly because our auxiliary model is a multivariate GARCH specification of Bollerslev (1986) that

Engle and Kroner (1995) call BEKK. Likelihoods incorporating BEKK are notoriously difficult to

optimize. AG use ω̂ as a starting value and maximize the expression (7) using the BFGS algorithm,

see Fletcher (1987). This also is not a sufficiently accurate evaluation of g(θ). A second refinement

is necessary. The second refinement is embedded within the MCMC chain {θt}Ht−1 of length H

20



that is used to compute the posterior distribution of θ. It is called the θ-chain. The θ-chain is

generated using the Metropolis algorithm. The Metropolis algorithm is an iterative scheme that

generates a Markov chain whose stationary distribution is the posterior of θ. To implement it, we

require a likelihood, a prior, and transition density in θ called the proposal density. The likelihood

is Equation (6) and the prior, ξ(θ), is described in Section 3.5.

The prior may require quantities computed from the simulation {ŷt, ẑt−1}Nt−1 that are used in

computing Equation (6). In particular, quantities computed in this fashion can be viewed as the

evaluation of a functional of the structural model of the form p(·|·, θ) 7→ %, where % ∈ P and P

is the space of functionals of the form θ 7→ p(·|·, θ) 7→ %. Thus, the prior is a function of the

form ξ(θ, %). But since the functional % is a composite function with θ 7→ p(·|·, θ) 7→ %, ξ(θ, %) is

essentially a function of θ alone. Thus, we only use ξ(θ, %) notation when attention to the subsidiary

computation p(·|·, θ) 7→ % is required.

Let q denote the proposal density. For a given θ, q(θ, θ∗) defines a distribution of potential

new values θ∗. We use a move-one-at-a-time, random-walk, proposal density that puts its mass on

discrete, separated points, proportional to a normal density. Two aspects of the proposal scheme

are worth noting. The first is that the wider the separation between the points in the support of q

the less accurately g(θ) needs to be computed for α at step 5 of the algorithm below to be correct.

A practical constraint is that the separation cannot be much more than a standard deviation of

the proposal density or the chain will eventually stick at some value of θ. Our separations are

typically 1/2 of a standard deviation of the proposal density. In turn, the standard deviations of

the proposal density are typically no more than the standard deviations of the prior distributions of

structural parameters shown in Tables 3 to 7 and no less than one order of magnitude smaller. The

second aspect worth noting is that the prior is putting mass on these discrete points in proportion

to ξ(θ). Because one does not have to normalize either the likelihood or the prior in an MCMC

chain, normalization of densities does not matter for the computation of the chain and similarly

for the joint distribution f(y|z, g(θ))ξ(θ) considered as a function of θ. However, f(y|z, ω) must be

normalized such that
∫
f(y|x, ω) dy = 1 to ensure that the implied map expressed in (7) is computed

correctly.

The algorithm for the θ-chain is as follows. Given a current θo and the corresponding ωo = g(θo),
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we obtain the next pair (θ ′, ω ′) as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, ẑt−1}Nt=1 according to p(yt|zt−1, θ∗).

3. Compute ζ∗ = g(θ∗) and the functional %∗ from the simulation {ŷt, ẑt−1}Nt=1.

4. Compute α = min
(

1, L(θ
∗) ξ(θ∗,%∗) q(θ∗, θo)

L(θo) ξ(θo,%o) q(θo,θ∗)

)
.

5. With probability α, set (θ ′, ω ′) = (θ∗, ω∗), otherwise set (θ′, ω ′) = (θo, ωo).

It is at step 3 that AG made an important modification to the algorithm proposed by GM. At that

point one has putative pairs (θ∗, ω∗) and (θo, ωo) and corresponding simulations {ŷ∗t , ẑ∗t−1}Nt=1 and

{ŷot , ẑot−1}Nt=1. AG use ω∗ as a start and recompute ωo using the BFGS algorithm, obtaining ω̂o. If

N∑
t=1

log f(ŷot | ẑot−1, ω̂o) >
N∑
t=1

log f(ŷot | ẑot−1, ωo),

then ω̂o replaces ωo. In the same fashion, ω∗ is recomputed using ωo as a start. Once computed,

a (θ, ω) pair is never discarded. Neither are the corresponding L(θ) and ξ(θ, %). Because the

support of the proposal density is discrete, points in the θ-chain will often recur, in which case

g(θ), L(θ), and ξ(θ, %) are retrieved from storage rather than computed afresh. If the modification

just described results in an improved (θo, ωo), that pair and corresponding L(θo) and ξ(θo, %o)

replace the values in storage; similarly for (θ∗, ω∗). The upshot is that the values for g(θ) used at

step 4 will be optima computed from many different random starts after the chain has run awhile.

3.3 GSM: Estimation of the auxiliary model

The observed data are yt for t = 1, . . . , n, where yt is a vector of dimension M . The vector

of observable variables used in estimation has four components: real equity returns, real interest

rates, real per capita consumption growth rates, and real dividend growth rates. The symbols P,Q,

V , etc. that appear in this section are general vectors (matrices) of statistical parameters and are

not instances of the model parameters or functionals in Section 2.

The data are modeled as

yt = µzt−1 + Uzt−1εt
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where

µzt−1 = b0 +Bzt−1, (8)

which is the location function of a k-lag vector auto-regressive (VAR(k)) specification, obtained by

letting columns of B past the first kM be zero. In this formulation, Uzt−1 is the Cholesky factor of

Σzt−1 = U0U
′
0 (9)

+QΣzt−2Q
′ (10)

+P (yt−1 − µzt−2)(yt−1 − µzt−2)′P ′ (11)

+ max[0, Ṽ (yt−1 − µzt−2)] max[0, Ṽ (yt−1 − µzt−2)]′, (12)

where, as with B, the lag length is determined by letting the trailing columns of P and Ṽ be zeros.

In this application, the auxiliary model is not Markovian due to the recursion in expression (10).10

As in Gallant and Tauchen (2014), the last term in the model above captures the leverage effect.

In computations, max(0, x) in expression (12), which is applied element-wise, is replaced by a twice

differentiable cubic spline approximation that plots slightly above max(0, x) over (0.00,0.10) and

coincides elsewhere.

The density h(ε) of the i.i.d. εt is the square of a Hermite polynomial times a normal density,

the idea being that the class of such h is dense in Hellenger norm and can therefore approximate a

density to within arbitrary accuracy in Kullback-Leibler distance, see Gallant and Nychka (1987).

Such approximations are often called sieves; Gallant and Nychka term this particular sieve semi-

nonparametric maximum likelihood estimator, or SNP.11 The density h(ε) is the normal when the

degree of the Hermite polynomial is zero. In addition, the constant term of the Hermite polynomial

can be a linear function of zt−1. This has the effect of adding a nonlinear term to the location

function (8) and the variance function (9). It also causes the higher moments of h(ε) to depend on

zt−1 as well. The SNP auxiliary model is determined statistically by adding terms as indicated by

the BIC protocol for selecting the terms that comprise a sieve, see Schwarz (1978).

In our specification, U0 is an upper triangular matrix, P and Ṽ are diagonal matrices, and Q

10 See Gallant and Long (1997) for the properties of estimators of the form used in this section when the model is not
Markovian.

11 See Gallant and Tauchen (2014) for an introduction and implementation of the SNP estimation.
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is scalar. The degree of the SNP h(ε) density is four. We specify that the constant term of the

SNP density does not depend on the past. The auxiliary model chosen for our analysis, based on

the BIC, has 1 lag in the conditional mean component, 1 lag in each of ARCH and GARCH terms.

Although the univariate analysis of stock price dynamics generally incorporates a leverage term,

we find in our SNP estimation with four variables that this term is not necessary according to the

BIC.

The auxiliary model in the SNP estimation has 51 parameters of which 50 are estimated and

one determined by a normalization rule. The error distributions implied by the auxiliary model

differ significantly from the distributions of innovation shocks assumed in those structural models

in Section 2. We numerically solve the structural models assuming normally distributed innovation

shocks to consumption and dividend growth rates. The error distributions of simulations from

these models are markedly non-Gaussian. For example, in addition to GARCH effects, the four-

dimensional error distribution implied by the AAMS model is skewed in all four components and

has fat-tails for consumption growth, dividend growth and stock returns and thin tails for bond

returns.

3.4 Relative model comparison

Relative model comparison is standard Bayesian inference. The posterior probabilities of the five

structural models may be computed using the Newton and Raftery (1994) p̂4 method for computing

the marginal likelihood from an MCMC chain when assigning equal prior probability to each model.

An alternative is method f5 of Gamerman and Lopes (2006), Section 7.2.1. The advantage of these

methods is that knowledge of the normalizing constants of the likelihood L(θ) and the prior ξ(θ)

are not required. We do not know these normalizing constants due to the imposition of support

conditions. It is important, however, that the auxiliary model be the same for all models. Otherwise

the normalizing constant of L(θ) would be required. One divides the marginal density for each

model by the sum for all models to get the posterior probabilities for relative model assessment.

Unfortunately, these and similar methods require that the range of the likelihoods that occur in

the MCMC be within the float limits of the computing equipment employed. This can be remedied

by left truncating the MCMC draws, which can be interpreted as a modification to the prior.
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However, not only is it hard to interpret a truncation prior of this sort, but also we found that

the implied ordering of the models is sensitive to the truncation for both the p̂4 and f5 methods.

Therefore, in the results reported below we used the BIC for model selection.

3.5 The prior and its support

All structural models considered in this paper are richly parameterized. We represent the parameter

vector by θ. Table 2 summarizes structural parameters of all asset pricing models in Section 2. The

prior of any structural parameter vector is the combination of the product of independent normal

density functions and support conditions. The product of independent normal density functions is

given by

ξ (θ) =
ñ∏
i=1

N
[
θi|
(
θ∗i , σ

2
θ

)]
where ñ denotes the number of parameters. The complete set of location and scale parameters for

independent normal priors as well as support conditions are available in the Internet Appendix. We

set the location parameter values such that the asset pricing models generate mean risk-free rate

that is not too high and mean equity premium that is not close to zero. For all models’ parameters,

we set the scale parameter values to be sufficiently large and use wide support intervals. This

allows a wide range of parameter values of any model to be explored in the estimation, which in

turn, provides ample room for asset pricing models to contribute to the identification of estimated

parameters. Due to the support conditions, the effective prior is not an independence prior. For

some values of θ∗ proposed in Step 1 of the θ-chain described in Section 3, a model solution at

Step 2 may not exist. In such cases, α at Step 5 is set to zero.

The prior support of the subjective discount factor (β), the coefficient of risk aversion (γ), and

the EIS (ψ) parameter are set to 0.9 < β < 0.995, 0.1 < γ < 100, and 0.1 < ψ < 10, respectively.

The subjective discount factor must be high enough to imply a reasonably low risk-free rate. The

range 0.9 < β < 0.995 is wide compared to the prior on this parameter in Schorfheide et al. (2017).

The support interval for γ that we use is much wider than the reasonable range 1 < γ < 10

suggested by Mehra and Prescott (1985). Different from calibration studies on long-run risks, we

do not impose ψ > 1 but allow for possibilities of ψ < 1 and a preference for late resolution of

uncertainty. For the ambiguity aversion parameter η, the support interval is γ < η < 200. Again,
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this interval is wide given calibrated studies such as Ju and Miao (2012), Jahan-Parvar and Liu

(2014) and Altug et al. (2017). Because the agent is ambiguity averse when η > γ, we impose

this condition in estimating models with smooth ambiguity utility. The location parameters for

β, γ, ψ and η in the prior are set at values consistent with the extant calibration studies. The scale

parameters for these preference parameters are set to large values to deliver loose priors.

For models EZMS, AAMS and AAMSSV, we use the parameter estimates and the associated

standard errors reported in Cecchetti, Lam, and Mark (2000) to determine the location and scale

parameter values for parameters µh, µl, σc, phh and pll in the Markov-switching model of consump-

tion growth. In the AAMSSV model with time-varying volatility, our parameter choices for location

and scale of pσhh, pσll, σh and σl rely on estimates of Lettau et al. (2008) and Boguth and Kuehn

(2013). The location values of the dividend volatility parameter σd and the leverage parameter

λ are determined by the calibration of Ju and Miao (2012). Following Abel (1999), we impose

λ ≥ 1 in the estimation. Estimation results of Bansal et al. (2007), Aldrich and Gallant (2011),

and Schorfheide et al. (2017) lead to values of λ in the [1.5, 4.5] range. We choose 1 ≤ λ ≤ 6 as the

support interval.

For models AALRRSV and EZLRRSV, we use the calibrated parameter values in Bansal et al.

(2012) and priors postulated in Schorfheide et al. (2017) to choose the location and scale parameter

values, and support intervals as well. For example, the location of the unconditional mean of

consumption growth, µc, is set at 0.02 with a small scale parameter value. The location of the

persistence parameter of the long-run risk component, ρx, is set at 0.95 with a large scale parameter

value of 0.2. The support interval for ρx is −0.99 < ρx < 0.99. Similarly, other model parameters

also have loose priors and wide support intervals as in Schorfheide et al. (2017).

3.6 Estimation results

We summarize estimation results using the GSM method in Tables 3 to 7.12 We plot the prior

and posterior densities of the estimated structural parameters in Figures 3 to 7. These plots show

considerable shifts in both location and scale between priors and posteriors, suggesting that the

estimation procedure and data have a significant impact on the estimation results. The impact of

12 For each asset pricing model, we run the standard MCMC chain with the likelihood put to 1 at every draw to obtain
the prior distribution of model parameters presented in Tables 3 to 7 and Figures 3 to 7.
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priors and support conditions is notable, but of second order of importance.

Estimation results show that the posterior estimates of β are tightly bounded in all models and

generally imply low risk-free rates. There is an ongoing debate about the value of the EIS parameter

(ψ) in the macro-finance literature. This parameter is crucial for equilibrium asset pricing models

to match macroeconomic and financial moments in the data, see Bansal and Yaron (2004), Croce

(2014) and Liu and Miao (2015) among others. Some studies (e.g., Hall, 1988 and Ludvigson, 1999)

find that the EIS estimate is less than 1, based on aggregate consumption and asset returns data.

Other studies find higher values using cohort- or household-level data (e.g., Attanasio and Weber,

1993 and Vissing-Jorgensen, 2002). Our estimation strongly suggests an EIS greater than 1 and

thus a preference for early resolution of uncertainty. As shown in Tables 3 to 7, the posterior mean,

median, 5 and 95 percentiles of ψ estimates are all above 1 in all models presented in Section 2. The

plots of the posterior density for ψ in Figures 3 to 7 also reveal that the posterior dispersion of this

parameter over the MCMC chain is small. Jeong et al. (2015) estimate the recursive multiple prior

utility model using asset prices data and obtain estimates of ψ greater than 10. High estimates of

ψ generated from our estimation imply low and stable risk-free rates (see Section 4). In a DSGE

analysis with broader scope, Bianchi et al. (2016) rely on the mechanism of time-varying ambiguity

on operating costs to ease the tension between excess equity volatility and smooth risk-free rates.

The posterior estimates of ψ for models AAMS and EZMS are high and comparable to the

estimates in the long-run risk literature. The posterior mean, median and 5 and 95 percentiles of ψ

estimates are moderately higher in the EZMS model than in the AAMS model, with the posterior

mean and median being above 2. The ψ estimates in the EZMS model are close to results obtained

by Schorfheide et al. (2017) and Bansal, Kiku, and Yaron (2016). Our estimation results suggest

that incorporating ambiguity in the model leads to lower estimates of ψ. This is also evident from

a comparison of estimates in the EZLRRSV model and in the AALRRSV model. The posterior

estimates of ψ are significantly lower in a long-run risk model with ambiguity than in a pure long-

run risk model. Nevertheless, our estimates of ψ in the long-run risk model are still lower than

those reported by Schorfheide et al. (2017). The discrepancy arises because 1) we use the projection

method rather than log-linear approximation to solve models, 2) we use the GSM Bayesian method

for model estimation, and 3) we use a different sample of data.
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Our estimation results strongly support asset pricing models with smooth ambiguity. The

posterior estimates of the ambiguity aversion parameter η are significantly large in models AAMS,

AAMSSV and AALRRSV. Not surprisingly, the estimates obtained for the AAMS model are close

to the calibrated value in Ju and Miao (2012) (η = 8.864). In addition, the estimates of η are

modestly higher when regime-switching volatility in consumption growth is incorporated in the

estimation. We observe that the posterior mean and median of η are about 10 in the AAMSSV

model while about 7 in the AAMS model. In the long-run risk setting, the GSM Bayesian estimation

generates high posterior estimates of η with mean and median of about 23. These results suggest

that empirical support for models with smooth ambiguity is robust to different specifications of

consumption dynamics and that the extent of ambiguity aversion largely depend on other preference

parameters and primitive parameters in the consumption and dividend growth processes. While

the estimated degree of ambiguity aversion varies across several models, these estimates are all

reasonable from the perspective of decision-making. One could conduct thought experiments as

in Halevy (2007) and Ju and Miao (2012) to gauge reasonable values of the ambiguity aversion

parameter.

Estimates of the coefficients of risk aversion γ importantly hinge on the presence of ambiguity

aversion. Estimation results of models EZMS and EZLRRSV show that the posterior mean and

median of γ are high and the 5 and 95 percentiles imply tight bounds for the estimate. In particular,

the posterior estimates of γ in the estimated long-run risk model EZLRRSV are close to the results

reported by Schorfheide et al. (2017) and Bansal et al. (2016). The posterior mean of γ is 8.4,

and the associated 95 percentile value is 10.4. These values are also close the the calibrated values

in Bansal and Yaron (2004) and Bansal et al. (2012). On the other hand, the γ estimate is more

dispersed in models with smooth ambiguity, i.e., models AAMS, AAMSSV and AALRRSV, as

is evident from wide (5%, 95%) intervals. In a related work, Chen, Favilukis, and Ludvigson

(2013) estimate preference parameters of recursive utility using a semiparametric technique. Their

estimated relative risk aversion parameter ranges from 17 to 60.

In the GSM Bayesian estimation, primitive parameters in the consumption and dividend growth

processes are jointly estimated with preference parameters. Models AAMS, AAMSSV and EZMS

have Markov-switching consumption growth while models AALRRSV and EZLRRSV feature long-
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run risks. In the Markov-switching environment, our estimation method identifies a normal regime

and a contraction regime for mean consumption growth. The posterior estimates of µh are largely

in line with the historical average annual consumption growth. For instance, the posterior mean

and median of µh in the AAMS model are about 2%. In addition, the posterior estimates of the

transition probability phh (pµhh in model AAMSSV) are close to 1 and thus indicate that this regime

is very persistent. Furthermore, the estimates of low mean growth regime for these models indicate

a relatively transitory contraction regime with lower estimates of the transition probability pll (pµll

in model AAMSSV).

Note that we obtain these estimates from structural estimation of asset pricing models using

data on both fundamentals and asset returns. The GSM Bayesian estimation takes into account

equilibrium asset prices and yields estimated consumption dynamics that corresponds to the agent’s

subjective belief. Compared with estimates of the parameters of the Markov-switching model

reported by calibration studies (e.g., Cecchetti et al. (2000) and Ju and Miao (2012)), our estimates

imply a “peso” version of the model. That is, the severe contraction state rarely occurs in the

observed data or simulations due to its low likelihood (1 − phh). However, because an agent

cannot observe the mean growth state and is also aware of severity (µl) and persistence (pll) of the

contraction regime, the agent is always concerned about state uncertainty and moreover, ambiguity

aversion magnifies the impact of this concern. In addition, the posterior estimates of the low mean

regime µl seem too low given the post-war experience of the economy, and the estimated persistence

of this regime varies significantly across different models. These results suggest that apart from

ambiguity on the mean growth state, extra sources of ambiguity about parameters of the Markov-

switching model may co-exist.

In estimating the AAMSSV model, we find two distinct volatility regimes, both of which are

persistent. This result is consistent with the findings of Lettau et al. (2008) and Boguth and

Kuehn (2013). However, the posterior estimates of the high volatility regime σh are too high to

be reconciled with the post-war consumption data. The estimates of µl are even more negative

than the estimates for the AAMS model. Nevertheless, these estimates are more consistent with

the long sample of Shiller’s data.13 Again, extra sources of ambiguity may arise due to learning

13 We thank Robert Shiller for making the data available at http://www.econ.yale.edu/∼shiller/data/chapt26.xlsx.
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from past experiences or parameter uncertainty.14 For models AAMS and AAMSSV, the leverage

parameter λ and the dividend growth volatility σd estimates are reasonably close to the calibrated

values considered by Abel (1999), Bansal and Yaron (2004) and Ju and Miao (2012). The posterior

estimates of λ are roughly between 2 and 4 with a posterior mean of about 3 for both models. The

estimates of λ and σd for the EZMS model are significantly higher than those for models AAMS

and AAMSSV.

Turning to estimation results of models featuring long-run risks, we find that the estimated

models AALRRSV and EZLRRSV both provide support to the presence of a persistent component

in the consumption growth process. This empirical support is evident even when ambiguity about

conditional mean growth is incorporated in the model. The posterior estimates of the persistence

parameter ρx are close to 1 with narrow (5%, 95%) intervals. Converted into estimates at a monthly

frequency, our results are similar to those reported by Schorfheide et al. (2017). In addition,

the stochastic volatility component is also persistent in our estimation, a result consistent with

Schorfheide et al. (2017).15 Other parameter estimates including µc, µs, σw λ, φd and φc are

similar to the estimates reported by the studies on long-run risks such as Bansal et al. (2012),

Bansal et al. (2016) and Schorfheide et al. (2017).

We present results of relative model comparison in Tables 3 to 7, based on the maximum of

the log likelihood and the BIC for all estimated models. We use the auxiliary model presented in

Section 3.3 and the MCMC chain of structural parameters of each asset pricing model to compute

the maximum of the log likelihood and the BIC of the model. According to these two criteria, among

all five estimated models the AAMSSV best characterizes the data in that the model provides the

best fit of the SNP density given the observed data. The log likelihood computation leads to the

model ranking AAMSSV�AALRRSV�EZLRRSV�EZMS�AAMS. The BIC gives us the same

ranking except that EZMS�EZLRRSV because the number of model parameters is also taken

into account. Based on the BIC ranking the AALRRSV model is “close” to AAMSSV, but the

remainder are more than 40 orders of magnitude distant. These findings suggest that (1) time-

14 A full-fledged analysis of modeling multiple sources of ambiguity requires development of new models that have
parameter uncertainty, state uncertainty and learning. Estimating this class of models is beyond the scope of our
current study.

15 Applying the GSM Bayesian estimation, we find that the parameter value of ρs in the MCMC chain remains stagnant
at a high level (ρs = 0.95).
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varying volatility in consumption is important for asset pricing models to deliver the SNP densities

that fit the data well, because according to the log likelihood criterion priority is given to models

AAMSSV, AALRRSV and EZLRRSV, all of which feature time-varying volatility, and (2) asset

pricing models (AAMSSV and AALRRSV) with ambiguity, learning and time-varying volatility

are preferred to the long-run risk model EZLRRSV in the statistical model comparison. Although

the model of Ju and Miao (2012), AAMS, receives less statistical support than other models do, it

can match key financial moments well, as shown in the next section.

4 Asset Pricing Implications

4.1 Variance risk premium

The moments of equity returns are naturally defined under the physical measure implied by fun-

damentals and the state variables in any asset pricing model. Furthermore, we can study the

dynamics of the risk-neutral variance and variance risk premium (henceforth, VRP) generated

from models considered above. As noted in Bollerslev, Tauchen, and Zhou (2009), the market

variance risk premium is defined as the difference between the expected equity return variances

under the risk-neutral and physical measures, and it measures the risk premium compensation for

investors bearing the variance risk. Several studies show that the mean and volatility of the market

variance risk premium are high, which poses a serious challenge to many existing asset pricing

models, for example, see the discussion in Drechsler (2013). In a calibration study, Miao, Wei, and

Zhou (2012) find that the AAMS model can roughly match the mean and volatility of the VRP in

the data. Here, we take a different stance in that we do not calibrate any model to target moments

of the VRP. Instead, we examine whether our estimated models produce empirically reasonable

dynamics of the VRP.

In the literature, a commonly used empirical proxy for the risk-neutral volatility is the Chicago

Board Options Exchange (CBOE)’s volatility index (VIX). In the empirical analysis, we measure

the market variance risk premium as the difference between the model-free implied variance and

the conditional projection of realized variance. Our empirical estimation of the VRP closely follows

the study of Liu and Zhang (2015), which applies the CBOE’s methodology of constructing the
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VIX to index options with 90 days maturity. To estimate the variance of equity returns under the

physical measure, we first compute realized returns and then take a linear projection to obtain the

conditional variance, which denoted by V OL2
t . The variance risk premium is defined as

V RPt = V IX2
t − V OL2

t .

In the model, the risk-neutral variance V IX2
t takes the form

V IX2
t = EQt

[
σ2r,t+1

]
=

Et
[
Mt,t+1σ

2
r,t+1

]
Et [Mt,t+1]

where Q denotes the risk-neutral measure, and the expected variance under the physical measure

is given by

V OL2
t = Et

[
σ2r,t+1

]
where σ2r,t = Et

[
r2t+1

]
− (Et [rt+1])

2.

4.2 Impulse responses

We perform impulse responses analyses for the estimated asset pricing models by investigating

key financial variables including the SDF, price-dividend ratio, conditional equity premium, equity

volatility and variance risk premium. We use mean estimates reported in Tables 3 to 7 to param-

eterize models and compute impulse responses functions. Results for models AAMS, AAMSSV,

AALRRSV and EZLRRSV are plotted in Figures 8 and 9. We assume that the shock to mean

growth rate of consumption occurs in the third period and lasts only one period.

Figure 8 shows that when the mean consumption growth regime shifts from “high” (µh) to “low”

(µl), Bayesian updating leads to a lower level of belief πt. Veronesi (1999) has shown that with

CRRA utility, the impact will be an increase in conditional equity volatility and equity premium.

This effect is amplified under ambiguity aversion. The plotted ambiguity-distorted belief manifests

endogenous pessimism that implies a sharp increase in the SDF and a decrease in the price-dividend

ratio. As a result, the conditional equity volatility and equity premium rise significantly. Since

conditional volatility rises in states where the SDF is high, the risk-neutral variance increases
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more than the physical return variance does, leading to an increase in the VRP. Figure 8 displays

qualitatively similar impulse responses of beliefs and financial variables for the AAMSSV model

where the consumption volatility state is assumed to be σh throughout the response periods.16 The

notable discrepancies in the magnitude of responses between the AAMS model and the AAMSSV

model are largely due to the inclusion of time-varying volatility in the AAMSSV model and different

parameter estimates as discussed in Section 3.6.

Figure 9 displays the responses of key variables in models AALRRSV and EZLRRSV when a

negative shock of size −4ϕxµs hits the long-run risk component xt, which is assumed to be zero

initially. Different from the AAMS model with Markov-switching growth rates, in the AALRRSV

model Bayesian filtering of xt implies persistent movements in financial variables because of its

long-run risk feature. Again, the plotted ambiguity-distorted belief reflects the agent’s pessimistic

view about the conditional mean growth rate of consumption. In line with the long-run risk model,

learning about xt produces a SDF and a price-dividend ratio that move in the opposite directions

upon the impact of the shock. Thus, in the AALRRSV model the long-run risk component carries

a positive risk premium. Because the conditional volatility of consumption growth is assumed to

be constant in this analysis, the conditional equity volatility decreases on impact and rises slowly

afterwards. The conditional equity premium exhibits a similar response as a consequence. The VRP

falls at first and rises afterwards, due to the response of the conditional equity volatility. Figure 9

shows similar impulse responses for the EZLRRSV model in which the long-run risk component is

fully observable. In both models, the response of the VRP is negligible compared to the results for

models AAMS and AAMSSV.

4.3 Financial moments

We investigate the ability of all estimated models in replicating unconditional moments of key

macroeconomic and financial variables. Unlike calibration studies, our aim is not to match uncon-

ditional moments of asset returns in the data as closely as possible. Instead, we assess the impact

of ambiguity aversion on financial variables based on estimated parameter values. In addition, we

examine how well our estimated models can match moments of asset returns, given that our estima-

16 The impulse responses plot for the EZMS model is similar and thus omitted here for the sake of brevity.
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tion strategy is designed not to match moments but to fit the SNP densities of asset pricing models

given the observed data. If any estimated model is reasonably successful in reproducing uncondi-

tional moments of consumption growth and asset returns, we view this outcome as confirmation

that the model characterizes the underlying data generating process well. This analysis makes our

structural estimation more relevant from an alternative empirical perspective. By examining asset

pricing implications of estimated models, our analysis supersedes previous studies on structural

estimations such as Bansal et al. (2007), Aldrich and Gallant (2011) and Jeong et al. (2015).

Table 8 presents unconditional moments of asset returns simulated from all asset pricing models

considered in this paper. For each model, we compute these moments on a MCMC chain of 12,000

estimates and report mean, median, standard deviation, 5th and 95th percentiles of simulation

results. To facilitate comparison, we present moments computed from the historical U.S. data.

Due to the high EIS estimates in all models and resulting intertemporal substitution effect, the

mean and volatility of the risk-free rate are low across these models. All models produce simulations

on their chains of estimates that contain the historical equity premium and return volatility in the

(5%, 95%) intervals.

Table 8 shows that among all models, the AAMS model can best match moments of returns.

The estimated AAMS model delivers mean and volatility of the risk-free rate, equity premium

and return volatility, and mean and volatility of the VRP close to the moments computed from

the data. In addition, the 5th and 95th percentiles of simulated moments are sufficiently tight to

include the data moments except for the volatilities of the risk-free rate and VRP. The intuition of

the impact of ambiguity on asset returns has been illustrated in previous studies, for example see

Ju and Miao (2012) and Collard et al. (2017). That is, the precautionary savings motive driven

by ambiguity aversion reduces the risk-free rate, and in addition to the standard risk premium

the agent also demands an uncertainty premium for being ambiguous about the data-generating

process. The latter mechanism is evident from inspecting the market price of risk, which is defined

as σ(Mt,t+1)/E(Mt,t+1). According to the conditional version of the Euler equation:

Et (Rt+1)−Rf,t = −σt (Mt,t+1)

Et (Mt,t+1)
σt (Rt+1) ρt (Mt,t+1, Rt+1) ,
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the high market price of risk implied by the AAMS model leads to a high equity premium. Since

the estimated model also produces volatility of dividend growth close to the data and the leverage

parameter consistent with previous calibration studies, the model can naturally match the volatility

of equity returns in the data.

The AAMS model also generates a high VRP close to the data. This is a remarkable result,

since we do not use the risk-neutral variance data to aid estimation. The implied high VRP is a

consequence of strong co-movement of the SDF and the return volatility when the economy shifts

to a bad state. The co-movement therefore leads to a substantial wedge between the risk-neutral

variance and the objective variance. On the other hand, the estimated EZMS model (ambiguity

neutral case) shows poor performance in matching the moments. The mean of simulated equity

premium in this model is only half of the historical equity premium whereas the moments of the

VRP are much higher than the data.

It is evident in Table 8 that incorporating time-varying consumption volatility in the Markov-

switching model does not yield significantly better asset pricing results, though the GSM Bayesian

estimation provides statistical support to this model relative to the more parsimonious model

AAMS. The model predicts mean values of equity premium and VRP moderately higher than the

data. The range of the 5th−95th percentile is wider than that in the AAMS model both for the

simulated equity premium and the VRP. The mean of the market price of risk increases greatly

with the addition of regime-switching conditional volatility.

In the long-run risk setting, the equity premium and market price of risk implied by the AAL-

RRSV model is higher than those in the EZLRRSV model due to the significant impact of ambiguity.

However, neither model is able to match moments of the VRP in the data. Both models generate

mean and volatility of the VRP close to zero. This is in contrast to models AAMS and AAMSSV

that can match both equity premium and mean VRP well. In fact, one must introduce jumps in

state processes to generate a high and volatile VRP in the long-run risk setting, for example see

Drechsler (2013). We leave structural estimation of this class of models for future research.

As the AAMS model can best match unconditional moments of financial variables, we next

study conditional financial moments generated by this model. Because the AAMSSV model is an

extension of AAMS and a statistically preferred model as suggested by the model comparison, we
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also investigate conditional financial moments in AAMSSV. Figure 10 shows simulated conditional

equity premium, return volatility, market price of risk and the VRP plotted against the state vari-

able πt in model AAMS. The conditional moments are drawn from the 5th to 95th percentile of the

simulations implied by 12,000 MCMC estimates of structural parameters of the model. We also

show conditional moments generated from Ju and Miao (2012)’s calibration for comparison. We ob-

serve that the simulated 90% region of conditional moments does not include the calibration results

of Ju and Miao (2012). This is because Ju and Miao (2012) use a long sample for their calibration.

Figure 11 plots simulated conditional moments for model AAMSSV, where in each simulation the

expectation with respect to volatility states is computed using stationary probabilities of the two

volatility regimes. For both models, we observe that the key conditional financial moments exhibit

a hump-shape when plotted against πt, and that conditional equity premium, market price of risk

and VRP peak when πt values are high. Our estimation implies a very persistent normal regime

for consumption growth with phh close to 1, which leads to thisresult. Suppose that the economy

initially stays in the normal regime. A negative shock to consumption prompts the agent to update

his belief πt downward, leading to enhanced state uncertainty. Ambiguity aversion further exac-

erbates the scenario by inducing endogenous pessimism and thus implies a significant increase in

conditional equity premium, market price of risk and VRP.

5 Conclusion

We have estimated a series of consumption-based asset pricing models with and without smooth

ambiguity preferences. We use the GSM Bayesian estimation method developed by Gallant and

McCulloch (2009) and an encompassing and flexible auxiliary model to jointly estimate preference

parameters and dynamic models of consumption and dividend growth postulated in asset pricing

models. We employ the semi-nonparametric method to estimate the auxiliary model and the

GSM Bayesian method to obtain posterior estimates of structural parameters of asset pricing

models. Our structural estimation with macro-finance data provides statistical support to asset

pricing models with smooth ambiguity. Based on our estimation results, the quantitative effects of

smooth ambiguity on asset returns are significant, both in the Markov-switching and long-run risk

environments.

36



Our main findings are: (1) the distinction between risk aversion and ambiguity aversion is

robust to the intertemporal substitution effect, i.e., our estimation provides statistical support

to an ambiguity-averse representative agent who also prefers early resolution of uncertainty (or

has a high EIS), (2) the statistical support for smooth ambiguity is robust to specifications of

consumption and dividend processes, (3) a model comparison shows that models with ambiguity,

learning and time-varying volatility are preferred to the long-run risk model, and (4) in the Markov-

switching environment our estimation identifies a normal regime and a contraction regime for the

mean growth rate of consumption as well as two distinct volatility regimes; in the long-run risk

environment our estimation identifies the long-run risk component.
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Table 1: Summary Statistics of the Data

ret rft ret − r
f
t ∆ct ∆dt

Mean 5.98 0.96 5.03 1.83 1.56
St. Dev. 19.70 2.47 19.96 2.14 14.08
Skewness -0.8193 -1.4763 -0.6988 0.1079 -0.8716
Kurtosis 0.5926 5.0291 0.4457 0.0360 2.8810
J-B Test 0.0135 0.0010 0.0263 0.5000 0.0010

This table reports summary statistics for annual U.S. data (1941–2015). Mean and standard deviations of

aggregate equity returns (rt), one-year Treasury Bill rate (rft ), excess returns (rt − rft ), real per capita log
consumption growth (∆ct), and real log dividend growth (∆dt) are expressed in percentages. “J-B test”
reports the p-values of Jarque and Bera (1980) test of normality, where the null hypothesis is that the time
series is normally distributed.

Table 2: Model Summary

Model State variables Parameters

AAMS πt {β, γ, ψ, η, µh, µl, phh, pll, σ, λ, σd}
AAMSSV (πt, s

σ
t ) {β, γ, ψ, η, µh, µl, pµhh, p

µ
ll, σh, σl, p

σ
hh, p

σ
ll, λ, σd}

AALRRSV (x̂t, νt, σt) {β, γ, ψ, η, µc, ρx, ϕx, λ, ϕd, µσ, ρσ, σw}
EZMS πt {β, γ, ψ, µh, µl, phh, pll, σ, λ, σd}
EZLRRSV (xt,σ

2
t ) {β, γ, ψ, µc, ρx, ϕx, λ, ϕd, ϕc, µσ, ρσ, σw}

This table summarizes relevant state variables and structural parameters for each asset pricing model de-
scribed in Section 2.
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Table 3: GSM Estimation Results: the AAMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.985 0.985 0.978 0.993 0.975 0.974 0.969 0.985
γ 4.908 4.750 3.250 6.750 2.841 3.063 0.563 4.563
ψ 1.512 1.563 1.188 1.813 2.040 2.031 1.781 2.406
η 9.109 9.500 6.500 12.500 6.959 6.938 5.063 8.938
pll 0.543 0.531 0.344 0.781 0.835 0.839 0.786 0.888
phh 0.783 0.813 0.563 0.938 0.996 0.997 0.994 0.997
µl -0.059 -0.059 -0.074 -0.035 -0.039 -0.039 -0.048 -0.031
µh 0.022 0.021 0.014 0.033 0.022 0.022 0.016 0.029
λ 2.598 2.750 1.250 3.750 3.420 3.422 2.703 4.203
σc 0.028 0.029 0.018 0.041 0.019 0.019 0.015 0.022
σd 0.137 0.133 0.086 0.180 0.137 0.137 0.113 0.168

BIC 832.14
Log likelihood -392.32

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters for

the AAMS model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log likelihood”

represents the maximum of the log likelihood of the encompassing model over the MCMC chain of estimates.

MCMC repetitions after transients have dissipated are reported for both the prior and posterior. Estimation

results are for the U.S. annual data 1941–2015.
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Table 4: GSM Estimation Results: the AAMSSV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.984 0.983 0.978 0.991 0.982 0.984 0.972 0.991
γ 4.723 4.750 3.250 6.250 1.167 0.875 0.125 4.125
ψ 1.483 1.438 1.188 1.813 1.357 1.348 1.090 1.668
η 9.235 9.500 6.500 12.500 10.252 10.125 6.875 13.625
pµll 0.508 0.531 0.281 0.719 0.668 0.686 0.504 0.746
pµhh 0.806 0.813 0.563 0.938 0.996 0.998 0.984 0.999
µl -0.059 -0.059 -0.074 -0.027 -0.056 -0.057 -0.068 -0.042
µh 0.022 0.021 0.014 0.029 0.023 0.023 0.014 0.033
pσll 0.849 0.859 0.734 0.953 0.986 0.990 0.948 0.996
pσhh 0.841 0.859 0.734 0.953 0.982 0.984 0.957 0.995
σl 0.015 0.015 0.009 0.021 0.013 0.012 0.004 0.022
σh 0.030 0.029 0.018 0.041 0.038 0.038 0.029 0.050
λ 2.881 2.750 1.750 3.750 2.739 2.641 1.953 4.016
σd 0.131 0.133 0.086 0.180 0.159 0.157 0.122 0.210

BIC 746.31
Log likelihood -342.93

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the AAMSSV model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log

likelihood” represents the maximum of the log likelihood of the encompassing model over the MCMC chain

of estimates. MCMC repetitions after transients have dissipated are reported for both the prior and posterior.

Estimation results are for the U.S. annual data 1941–2015.
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Table 6: GSM Estimation Results: the EZMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.985 0.985 0.978 0.991 0.976 0.976 0.970 0.986
γ 4.771 4.750 3.250 6.250 2.909 2.906 2.344 3.484
ψ 1.488 1.438 1.188 1.813 2.400 2.281 1.844 3.656
pll 0.530 0.531 0.281 0.781 0.972 0.972 0.943 0.989
phh 0.774 0.813 0.563 0.938 0.993 0.993 0.987 0.999
µl -0.059 -0.059 -0.074 -0.035 -0.030 -0.029 -0.042 -0.017
µh 0.022 0.021 0.014 0.029 0.030 0.030 0.020 0.041
λ 2.647 2.750 1.750 3.750 4.974 5.109 3.391 5.859
σc 0.028 0.029 0.018 0.037 0.021 0.022 0.010 0.029
σd 0.134 0.133 0.086 0.180 0.181 0.184 0.137 0.223

BIC 812.98
Log likelihood -384.90

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters for

the EZMS model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log likelihood”

represents the maximum of the log likelihood of the encompassing model over the MCMC chain of estimates.

MCMC repetitions after transients have dissipated are reported for both the prior and posterior. Estimation

results are for the U.S. annual data 1941–2015.
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Table 8: Financial Moments

E(rft ) σ(rft ) E(rt − rft ) σ(rt − rft ) E(V RPt) σ(V RPt) MPR

Data 1.41 2.82 5.32 17.77 11.07 24.94 N.A.

AAMS

Mean 1.595 1.541 5.812 18.441 12.955 9.300 1.280
Median 1.399 1.598 6.349 18.266 12.644 8.833 1.308
Std 0.800 0.286 1.738 2.220 2.967 2.720 0.341
95% 2.941 1.951 8.033 22.729 18.860 14.495 1.819
5% 0.444 1.951 3.010 15.378 8.332 5.411 0.758

AAMSSV

Mean 1.183 1.680 6.371 22.818 17.090 14.007 2.987
Median 1.267 1.673 5.910 22.579 14.678 10.430 2.790
Std 0.959 0.580 3.542 4.469 12.092 13.418 1.414
95% 2.465 2.685 14.446 30.242 35.407 39.337 5.970
5% -0.622 0.800 1.650 15.633 4.835 3.878 1.205

AALRRSV

Mean 1.079 1.555 7.841 21.134 -0.744 1.752 1.312
Median 1.095 1.581 7.817 21.103 -0.288 1.086 1.142
Std 0.473 0.259 1.853 3.629 1.263 1.782 0.772
95% 1.818 1.946 10.838 28.345 0.406 6.490 2.976
5% 0.226 1.128 4.863 16.106 -3.218 0.438 0.489

EZMS

Mean 1.282 2.100 2.919 40.489 58.704 67.854 0.698
Median 1.278 2.035 2.727 41.471 54.164 65.354 0.647
Std 0.468 0.394 1.634 8.211 26.877 35.106 0.208
95% 2.107 2.902 6.007 52.464 107.602 128.264 1.128
5% 0.511 1.579 0.706 28.070 21.067 21.228 0.454

EZLRRSV

Mean 1.708 0.973 4.318 17.633 1.436 0.549 0.569
Median 1.686 0.856 4.458 17.560 1.398 0.524 0.573
Std 0.336 0.385 1.150 1.906 0.396 0.280 0.078
95% 2.289 1.589 5.999 20.903 2.137 1.130 0.692
5% 1.169 0.718 2.337 14.413 0.858 0.200 0.428

This table presents unconditional financial moments generated from the estimated models. These quantities
are computed from simulated variables paths based on 12,000 Bayesian MCMC estimates of the structural
parameters. E(rft ) and E(rt−rft ) are mean risk-free rate and mean equity premium respectively (in percent-

age). σ(rft ) and σ(rt − rft ) are volatilities of risk-free rates and excess returns respectively (in percentage).
Moments of asset returns are computed based on annual data for the period 1941–2015. Variance risk
premium (VRP) data covers the period 1996–2015. σ(Mt)/E(Mt) is the market price of risk.
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Figure 1: Model AALRRSV: Bayesian and distorted densities of x

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
x (LRR component)

0

10

20

30

40

50

60

Bayesian density
Distorted density

Notes: This figure plots Bayesian density and distorted density of the long-run risk component x for the

AALRRSV model. The Bayesian density is xt ∼ N (x̂t, νt), and the distorted density is f̃ (xt|x̂t, νt, t). The

distorted density is generated from solving the model. The state vector is assumed to take the value (x̂t = 0,

νt = ν̄ (steady-state) and σt = µs). Model parameters are set at posterior mean estimates presented in

Table 5.
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Figure 2: Time-series of variables
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The figure shows CRSP value-weighted index returns, one-year Treasury Bill rates, excess returns, per-capita
log consumption growth, and log dividend growth rates for the 1941–2015 period. All series plotted are at
an annual frequency and in real terms. Shaded areas represent NBER recessions.
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Figure 3: Prior and Posterior Densities of Estimated Parameters of AAMS Model

0.96 0.98 1.00

β

−2 0 2 4 6 8 10

γ

0.5 1.5 2.5 3.5

ψ

0 5 10 15 20

η

0.0 0.4 0.8 1.2

pl,l

0.0 0.4 0.8 1.2

ph,h

−0.10 −0.06 −0.02 0.02

μl

−0.01 0.01 0.03 0.05

μh

0 1 2 3 4 5 6

λ

0.00 0.02 0.04 0.06

σc

0.00 0.10 0.20

σd

This figure plots prior and posterior densities of the Ju and Miao (2012) model parameters. The solid lines
depict posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual
data for 1941–2015.
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Figure 4: Prior and Posterior Densities of Estimated Parameters of AAMSSV Model
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This figure plots prior and posterior densities of the AAMSSV model, featuring ambiguity aversion, Markov
switching in both conditional mean and volatility of the consumption process. The solid lines depict posterior
densities and dotted lines depict prior densities. The results are based on the U.S. annual data for 1941–2015.
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Figure 5: Prior and Posterior Densities of Estimated Parameters of AALRRSV Model
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This figure plots prior and posterior densities of the AALRRSV model, featuring ambiguity aversion, Kalman
learning, stochastic volatility, and long-run risks in the conditional mean of the consumption process. The
solid lines depict posterior densities and dotted lines depict prior densities. The results are based on the
U.S. annual data for 1941–2015.
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Figure 6: Prior and Posterior Densities of Estimated Parameters of EZMS Model
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This figure plots prior and posterior densities of the EZMS model parameters, featuring Epstein and Zin
preferences and Markov regimes in the conditional mean of the consumption growth process. The solid lines
depict posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual
data for 1941–2015.
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Figure 7: Prior and Posterior Densities of Estimated Parameters of EZLRRSV BKY
Model
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This figure plots prior and posterior densities of the EZLRRSV BKY model of Bansal et al. (2012), featuring
Epstein-Zin preferences, stochastic volatility and long-run risks in the conditional mean of the consumption
process. The solid lines depict posterior densities and dotted lines depict prior densities. The results are
based on the U.S. annual data for 1941–2015.
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Figure 8: Impulse responses: AAMSSV
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This figure plots the impulse response functions for models AAMS and AAMSSV when the mean consumption

growth state shifts from µh to µl in the third period. Before the realization of the shock, mean consumption

growth is assumed to stay in state µh without the impact of innovation shocks. For the AAMSSV model,

the volatility state is assumed to be σh throughout all periods. The results plotted are for model parameters

set at posterior means of Bayesian MCMC estimates.
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Figure 9: Impulse responses: AALRRSV
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This figure plots the impulse response functions for models AALRRSV and EZLRRSV when a shock of size

−4ϕxµs to xt occurs in the third period. Before the realization of the shock, the AALRRSV economy is

assumed to stay in state (x̂t, νt, σt) for which ∆ct = µc,∆dt = µd, xt = 0, σt = µs and νt = ν̄ (steady-state)

without the impact of innovation shocks. The distorted mean estimate is computed by applying the rejection

sampling method and simulations. Before the realization of the shock, the EZLRRSV economy is assumed

to stay in state (xt = 0, σ2
t = µ2

σ) without the impact of innovation shocks. The results plotted are for model

parameters set at posterior means of Bayesian MCMC estimates.
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Figure 10: AAMS model: Conditional financial moments
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This figure plots conditional financial moments ranging from 5 to 95 percentile of simulated conditional

moments for the AAMS model. The simulation is based on 12,000 Bayesian MCMC estimates of structural

parameters. The dashed line plots the conditional moments calculated based on Ju and Miao’s calibration.

58



Figure 11: AAMSSV model: Conditional financial moments
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This figure plots conditional financial moments ranging from 5 to 95 percentile of simulated conditional

moments for the AAMSSV model. The simulation is based on 12,000 Bayesian MCMC estimates of structural

parameters.
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Internet Appendix to “Does Smooth Ambiguity Matter

for Asset Pricing?”



1 Numerical methods

We use the collocation projection method with Chebyshev polynomials to solve asset pricing models

in the paper. See Judd (1992) for an introduction to projection methods and Pohl et al. (2017) for

applications to solving models with long-run risks.

We solve each model in two steps. In the first step, we use the projection method to solve the

functional equation for the value function Vt(C) to obtain the wealth-consumption ratio. Suppose

that the vector of state variables for a model is denoted by zt (e.g., zt = {πt} in model AAMS).

By homogeneity, we have Vt (C) = CtG (zt) where G (zt) is a function to be determined. As shown

by Epstein and Zin (1989), the wealth-consumption ratio Wt/Ct is given by

Wt

Ct
=

1

1− β

(
Vt
Ct

)1− 1
ψ

.

In the second step, we apply the projection method to solve the Euler equation to obtain the price-

dividend ratio, given that we can determine the SDF Mt,t+1 from the solution in the first step. We

denote the current state of the economy by z and the next period’s state by z′.

1.1 Solving the AAMS Model

This model is developed by Ju and Miao (2012). See “Ambiguity, Learning, and Asset Returns:

Technical Appendix” for details about the numerical method.

The functional equation for G (π) implied by the generalized recursive smooth ambiguity utility

function is given by

G (π) =

(1− β) + β

(
E
[(

E
[
G
(
π′
)1−γ

exp
(
(1− γ) ∆c

(
s′
))∣∣∣ s′]) 1−η

1−γ
∣∣∣∣π])

1−1/ψ
1−η

 1
1−1/ψ

. (1)

1



The intertemporal marginal rate of substitution (or stochastic discount factor) is given by

M
(
π′, s′|π

)
= β exp

(
− 1

ψ
∆c
(
s′
))( G (π′) exp (∆c (s′))

R (G (π′) exp (∆c (s′))|π)

) 1
ψ
−γ

×


(
E
[
G (π′)1−γ exp ((1− γ) ∆c (s′))

∣∣∣ s′, π]) 1
1−γ

R (G (π′) exp (∆c (s′))|π)


−(η−γ)

.

The price-dividend ratio ϕ (π) satisfies the Euler equation

ϕ (π) = E
[
M
(
π′, s′|π

) (
1 + ϕ

(
π′
))

exp
(
∆d
(
s′
))∣∣π] . (2)

The laws of motion of consumption and dividend growth are

∆c (s) = µ (s) + σcεc, εc ∼ N (0, 1)

∆d (s) = λ∆c (s) + gd + σ̃dεd, εd ∼ N (0, 1)

where the transition probabilities are

Pr
(
s′ = l|s = l

)
= pll, Pr

(
s′ = h|s = h

)
= phh

and εc and εd are two independent innovation shocks.

The (nonlinear) law of motion of the state variable π is

π′ =
phhf (∆c (s′) |s′ = h)π + (1− pll) f (∆c (s′) |s′ = l) (1− π)

f (∆c (s′) |s′ = h)π + f (∆c (s′) |s′ = l) (1− π)
.

We approximate the solution functions G(π) and ϕ(π) by Chebyshev polynomials, namely,

Ĝ
(
π;aG

)
=

nπ∑
k=0

aGk Tk (tπ) , ϕ̂ (π;aϕ) =

nπ∑
k=0

aϕkTk (tπ)

where Tk : [−1, 1] → R, k = 0, 1, ..., nπ are Chebyshev polynomials and the transformation of the

2



argument for the polynomial is given by

tπ = 2

(
π − πmin

πmax − πmin

)
− 1

with πmin = 0 and πmax = 1. To implement the collocation method, we solve the two functional

equations (1) and (2) on a grid of π obtained by applying the inverse of the transformation to the

nπ + 1 zeros of the Chebyshev polynomial Tnπ+1.

Equations (1) and (2) define two residual functions that are to be minimized sequentially by

choosing the coefficients aG and aϕ. The collocation projection method leads to two square sys-

tems of nonlinear equations, which can be solved with a nonlinear equations solver (e.g., Powell’s

hybrid algorithm). Because the underlying innovation shocks are Gaussian, we use Gauss-Hermite

quadrature to calculate conditional expectations in the residual functions.

1.2 Solving the AAMSSV Model

Compared to AAMS, the AAMSSV model has one additional state variable sσt indicating the

volatility state. It follows that G (π, sσ) satisfies the equation

G (π, sσ) =

(1− β) + β

(
E
[(

E
[
G
(
π′, sσ′

)1−γ
exp

(
(1− γ) ∆c

(
sµ′, sσ′

))∣∣∣ sµ′, sσ]) 1−η
1−γ
∣∣∣∣π])

1−1/ψ
1−η

 1
1−1/ψ

.

The SDF and Euler equation are given by

M
(
π′, sσ′, sµ′|π, sσ

)
= β exp

(
− 1

ψ
∆c
(
sµ′, sσ′

))( G (π′, sσ′) exp (∆c (sµ′, sσ′))

R (G (π′, sσ′) exp (∆c (sµ′, sσ′))|π, sσ)

) 1
ψ
−γ

×


(
E
[
G (π′, sσ′)1−γ exp ((1− γ) ∆c (sµ′, sσ′))

∣∣∣ sµ′, π, sσ]) 1
1−γ

R (G (π′, sσ′) exp (∆c (sµ′, sσ′))|π, sσ)


−(η−γ)

and

ϕ (π, sσ) = E
[
M
(
π′, sσ′, sµ′|π, sσ

) (
1 + ϕ

(
π′, sσ′

))
exp

(
∆d
(
sµ′, sσ′

))∣∣π, sσ] .
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The laws of motions for consumption and dividend growth are

∆c (sµ, sσ) = µ (sµ) + σ (sσ) εc, εc ∼ N (0, 1)

∆d (sµ, sσ) = λ∆c (sµ, sσ) + gd + σ̃dεd, εd ∼ N (0, 1)

where the transition probabilities for the two independent Markov chains of sµ and sσ are given by

Pr
(
sσ′ = l|sσ = l

)
= pσll, Pr

(
sσ′ = h|sσ = h

)
= pσhh

Pr
(
sµ′ = l|sµ = l

)
= pµll, Pr

(
sµ′ = h|sµ = h

)
= pµhh

The law of motion of the state variable π is given by the Bayes’ rule

π′ =
pµhhf (∆c (sµ′, sσ′) |sµ′ = h, sσ′)π +

(
1− pµll

)
f (∆c (sµ′, sσ′) |sµ′ = l, sσ′) (1− π)

f (∆c (sµ′, sσ′) |sµ′ = h, sσ′)π + f (∆c (sµ′, sσ′) |sµ′ = l, sσ′) (1− π)

We approximate the solutions to G (π, sσ) and ϕ (π, sσ) by Chebyshev polynomials as

Ĝ
(
π, sσ = l;aGl

)
=

nπ∑
k=0

aGk,lTk (tπ) , Ĝ
(
π, sσ = h;aGh

)
=

nπ∑
k=0

aGk,hTk (tπ)

ϕ̂
(
π, sσ = l;aϕl

)
=

nπ∑
k=0

aϕk,lTk (tπ) , ϕ̂
(
π, sσ = h;aϕh

)
=

nπ∑
k=0

aϕk,hTk (tπ)

i.e., we seek four sets of coefficients
(
aGl ,a

G
h ,a

ϕ
l ,a

ϕ
h

)
that minimize the residual functions.

1.3 Solving the AALRRSV Model

We consider the long-run risk model

∆ct+1 = µc + xt+1 + σtεc,t+1

∆dt+1 = µd + λxt+1 + ϕdσtεd,t+1

xt+1 = ρxxt + ϕxσtεx,t+1

σ2
t+1 = µ2

σ + ρs
(
σ2
t − µ2

s

)
+ σwεw,t+1

εc,t+1, εd,t+1, εx,t+1, εw,t+1 ∼ i.i.d.N (0, 1) .
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where the long-run risk component xt is unobservable. We define x̂t+1|t = E [xt+1|It] and νt+1|t =

E
[(
xt+1 − x̂t+1|t

)2 |It] where It denotes available information at time t. It immediately follows

that

x̂t+1|t = ρxx̂t, and νt+1|t = ρ2
xνt + ϕ2

xσ
2
t .

The Kalman filter implies the following updating equations

x̂t+1 = x̂t+1|t + νt+1|t

[
1 λ

]
F−1
t+1|t

 vct+1|t

vdt+1|t


νt+1 = νt+1|t − ν2

t+1|t

[
1 λ

]
F−1
t+1|t

[
1 λ

]′

where Ft+1|t is given by

Ft+1|t =

 νt+1|t + σ2
t λνt+1|t

λνt+1|t λ2νt+1|t + ϕ2
dσ

2
t



and the innovation vector

[
vct+1|t vdt+1|t

]
is given by

 vct+1|t

vdt+1|t

 =

 ∆ct+1 − µc − ρxx̂t

∆dt+1 − µd − λρxx̂t

 .
Expressed as an intertemporal equation, the solution function G (x̂, ν, σ) satisfies

G (x̂, ν, σ) =

(1− β) + β

(
E
[(

E
[
G
(
x̂′, ν ′, σ′

)1−γ
exp

(
(1− γ) ∆c

(
x′
))∣∣∣x, σ]) 1−η

1−γ
∣∣∣∣ x̂, ν])

1− 1
ψ

1−η


1

1− 1
ψ

.

5



The SDF and Euler equation are given by

M
(
x′, x, x̂′, ν ′, σ′|x̂, ν, σ

)
= β exp

(
− 1

ψ
∆c
(
x′
))( G (x̂′, ν ′, σ′) exp (∆c (x′))

R (G (x̂′, ν ′, σ′) exp (∆c (x′))| x̂, ν, σ)

) 1
ψ
−γ

×


(
E
[
G (x̂′, ν ′, σ′)1−γ exp ((1− γ) ∆c (x′))

∣∣∣x, x̂, ν, σ]) 1
1−γ

R (G (x̂′, ν ′, σ′) exp (∆c (x′))| x̂, ν, σ)


−(η−γ)

and

ϕ (x̂, ν, σ) = E
[
M
(
x′, x, x̂′, ν ′, σ′|x̂, ν, σ

) (
1 + ϕ

(
x̂′, ν ′, σ′

))
exp

(
∆d
(
x′
))∣∣ x̂, ν, σ] .

We approximate the solution functions G (x̂, ν, σ) and ϕ (x̂, ν, σ) by three-dimensional product

Chebyshev polynomials, namely,

Ĝ
(
x̂, ν, σ;aG

)
=

nx̂∑
kx̂=0

nν∑
kν=0

nσ∑
kσ=0

aGkx̂a
G
kνa

G
kσTkx̂ (tx̂)Tkν (tν)Tkσ (tσ)

ϕ̂ (x̂, ν, σ;aϕ) =

nx̂∑
kx̂=0

nν∑
kν=0

nσ∑
kσ=0

aϕkx̂a
ϕ
kν
aϕkσTkx̂ (tx̂)Tkν (tν)Tkσ (tσ) .

In constructing Chebyshev polynomials as basis functions, we obtain the lower and upper bounds

for each state variable by simulations. Because xt ∼ N (x̂t, νt), we use Gauss-Hermite quadrature

to compute the conditional expectation involving state xt. To compute conditional expectations

with respect to the underlying shocks (εc, εd, εx, εσ), we apply the monomial method with degree

5, see Judd (1999) for details of the monomial method. If the dimension of underlying shocks

is d, the monomial method requires 2d2 + 1 points to compute an expectation, whereas Gauss-

Hermite quadrature requires Nd nodes with N being the number of nodes in one dimension. When

the dimension of underlying shocks is large, the monomial method is much more efficient than

quadrature methods. This gain in efficiency is particularly important for our structural estimation.

A number of simulations suggest that for our model the monomial method yields accurate results

compared with Gauss-Hermite quadrature.

To implement the collocation method, we solve the two square systems of nonlinear equations

derived from equilibrium conditions on a grid of dimension (nx̂ + 1) × (nν + 1) × (nσ + 1) for the

state variables. The grid is constructed from zeros of Chebyshev polynomials of all state variables.

6



An alternative approach is to discretize the AR(1) process of σ2
t into a n−state Markov chain

by the method developed in Tauchen (1986). Caldara et al. (2012) adopt this approach to solve

DSGE models with recursive preferences and stochastic volatility. To avoid negative volatility

states in the Markov chain, we keep positive values only and normalize transition probabilities

accordingly. As such, given each volatility state σi, the solution functions G (x̂, ν, σi) and ϕ (x̂, ν, σi)

can be approximated by two-dimensional product Chebyshev polynomials in x̂ and ν. Through

simulations, we find that this approach yields results that are close to the approximation with

three-dimensional product Chebyshev polynomials.

1.4 Solving the EZLRRSV Model

The laws of motion of ∆c, ∆d, x and σ are given by the long-run risk model

∆c = µc + x+ σεc

∆d = µd + λx+ ϕdσεd + ϕcσεc

x′ = ρxx+ ϕxσεx

σ2′ = µ2
σ + ρσ

(
σ2 − µ2

σ

)
+ σwεw

εc, εd, εx, εw ∼ i.i.d.N (0, 1) .

The solution function G
(
x, σ2

)
satisfies

G
(
x, σ2

)
=

(1− β) + β
(
E
[
G
(
x′, σ2′)1−γ exp ((1− γ) ∆c)

∣∣∣x, σ2
]) 1− 1

ψ
1−γ

 1

1− 1
ψ

The SDF and Euler equation are given by

M
(
x′, σ2′|x, σ2

)
= β exp

(
− 1

ψ
∆c

)(
G
(
x′, σ2′) exp (∆c)

R (G (x′, σ2′) exp (∆c)|x, σ2)

) 1
ψ
−γ

and

ϕ
(
x, σ2

)
= E

[
M
(
x′, σ2′|x, σ2

) (
1 + ϕ

(
x, σ2

))
exp (∆d)

∣∣x, σ2
]
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We approximate the solution functions G
(
x, σ2

)
and ϕ

(
x, σ2

)
by two-dimensional product Cheby-

shev polynomials in x and σ2:

Ĝ
(
x, σ2;aG

)
=

nx∑
kx=0

nσ∑
kσ=0

aGkxa
G
kσTkx (tx)Tkσ (tσ)

ϕ̂
(
x, σ2;aϕ

)
=

nx̂∑
kx=0

nσ∑
kσ=0

aϕkxa
ϕ
kσ
Tkx (tx)Tkσ (tσ) .

2 Numerical accuracy of the solution method

We use the method proposed by Judd (1992) to assess numerical accuracy of our numerical solutions.

The numerical accuracy check is through computing the Euler equation error. Previous studies such

as Guerrieri and Iacoviello (2015) and Collard, Mukerji, Sheppard, and Tallon (2017) rely on this

approach to assess the accuracy of their numerical solutions. Note that instead of computing the

Euler equation error implied by calibrated parameters as previous studies do, we compute the error

based on the MCMC chain of parameter estimates for each asset pricing model. For each model,

we compute several metrics of the error on a chain of estimates (12,000 sets of estimates) obtained

from the GSM Bayesian estimation.

For the AAMS model, the Euler equation errors defined on the dividend claim and consumption

claim are respectively given by

EulerErrDt =

−Ct +

Et

βC−1/ψ
t+1

(
Vt+1

Rt(Vt+1)

)1/ψ−γ
(

E{st+1,t}[V
1−γ
t+1 ]

) 1
1−γ

Rt(Vt+1)

−(η−γ)
Pt+1
Dt+1

+1

Pt
Dt

Dt+1

Dt



−ψ

Ct

EulerErrCt =

−Ct +

Et

βC−1/ψ
t+1

(
Vt+1

Rt(Vt+1)

)1/ψ−γ
(

E{st+1,t}[V
1−γ
t+1 ]

) 1
1−γ

Rt(Vt+1)

−(η−γ)
Wt+1
Ct+1
Wt
Ct
−1

Ct+1

Ct



−ψ

Ct
.

The errors are defined in a similar way for other models including AAMSSV, AALRRSV, EZLRRSV

and EZMS. The differences are only with regard to the SDF and conditioning state variables. This

measure is expressed as a fraction of consumption goods, namely the residual of the Euler equation

normalized by consumption. EulerErrDt (EulerErrCt ) quantifies the error the agent would commit

8



if he use the approximate solution for the price of the dividend (consumption) claim to decide on

marginal investment.

Following Judd (1992), we consider several metrics of the error to evaluate numerical accuracy:

ED1 = log10

(
E
[∣∣EulerErrDt ∣∣]) , ED2 = log10

(
E
[(
EulerErrDt

)2])
EC1 = log10

(
E
[∣∣EulerErrCt ∣∣]) , EC2 = log10

(
E
[(
EulerErrCt

)2])
.

We report the mean, 5 percentile and 95 percentile of each metric evaluated on the MCMC chains

of estimates. It is important to note that we compute the Euler equation error outside the grid that

we use to implement the collocation projection method. This is done because we want to assess

whether our approximate solutions perform well for simulated data under each model, and because

in the GSM Bayesian estimation we use the simulated data to find the mapping recovery from

structural parameters to the auxiliary model parameters. We report all measures in log10 terms.

For example, a value of ED1 equal to -3 suggests that if an agent relies on the approximate solution

of the price of the dividend claim, he would expect to make a mistake of 1 dollar for each $1000

risky investment. The economic interpretation is similar for EC1 . The metric ED(C)
2 measures the

quadratic average of the error. Results reported in Table 1 show that our approximate solutions

are accurate.
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Table 1: Numerical accuracy: Euler errors

Model ED1 ED2 EC1 EC2
AAMS
Mean -2.654 -5.281 -3.656 -7.282
95 percentile -2.179 -4.334 -3.230 -6.437
5 percentile -3.256 -6.480 -4.233 -8.420

AAMSSV
Mean -2.594 -4.940 -4.100 -7.985
95 percentile -1.826 -3.282 -3.165 -6.120
5 percentile -3.918 -7.679 -5.612 -11.072

AALRRSV
Mean -2.207 -4.083 -4.093 -7.550
95 percentile -1.633 -2.956 -2.983 -5.551
5 percentile -2.626 -4.951 -4.932 -9.297

EZLRRSV
Mean -2.877 -5.387 -2.820 -5.255
95 percentile -2.724 -5.066 -2.690 -4.966
5 percentile -3.126 -5.880 -3.044 -5.708

EZMS
Mean -3.751 -7.335 -4.572 -8.987
95 percentile -3.251 -6.026 -3.979 -7.834
5 percentile -4.621 -9.077 -5.444 -10.737
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Table 2: Prior: AAMS

Parameter Min Max µ σ

β 0.9 0.995 0.985 0.005
γ 0.1 100 5 1
ψ 0.1 10 1.5 0.2
η γ 200 8.87 2
pll 0.2 0.999 0.516 0.13
phh 0.2 0.999 0.978 0.24
µl -0.08 0.00 -0.0678 0.017
µh 0.00 0.08 0.022 0.006
λ 1 6 2.74 0.8
σc 0.004 0.06 0.03 0.0075
σd 0.03 0.3 0.13 0.03

3 Priors on structural parameters

We report support conditions (Min and Max), prior location and scale parameters for structural

parameters in models AAMS, AAMSSV, AALRRSV and EZLRRSV.1 For each model, the prior is

the combination of the product of independent normal density functions and support conditions.

The product of independent normal density functions is given by

ξ (θ) =
ñ∏
i=1

N
[
θi|
(
θ∗i , σ

2
θ

)]
where ñ denotes the number of parameters. Because this prior is intersected with support conditions

that are not all of product form, and because a support condition that rejects parameter values in

the MCMC chain implies extreme parameter values such that the solution method fails, this is not

an independence prior.

1 The EZMS model has the same prior on parameters as the AAMS model does except for the absence of the ambiguity
aversion parameter η.
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Table 3: Prior: AAMSSV

Parameter Min Max µ σ

β 0.9 0.995 0.985 0.005
γ 0.1 100 5 1
ψ 0.1 10 1.5 0.2
η γ 200 8.87 2
pll 0.2 0.999 0.516 0.13
phh 0.2 0.999 0.978 0.24
µl -0.08 0.00 -0.0678 0.017
µh 0.00 0.08 0.022 0.006
pσll 0.2 0.999 0.85 0.07
pσhh 0.2 0.999 0.85 0.07
σl 0.004 0.06 0.015 0.0038
σh 0.004 0.06 0.03 0.0075
λ 1 6 2.74 0.8
σd 0.03 0.3 0.13 0.03

Table 4: Prior: AALRRSV

Parameter Min Max µ σ

β 0.9 0.995 0.985 0.005
γ 0.1 100 5 1
ψ 0.1 10 1.5 0.2
η γ 200 25 5
µc 0.012 0.025 0.02 0.001
ρx -0.99 0.99 0.8 0.2
φx 0.01 0.5 0.15 0.04
λ 1 10 3 0.8
φd 0.5 10 3 0.8
µs 0.001 0.1 0.02 0.005
ρs 0.3 0.99 0.8 0.2
σw 1e-5 0.001 2.5e-4 6.25e-5
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Table 5: Prior: EZLRRSV

Parameter Min Max µ σ

β 0.9 0.995 0.985 0.005
γ 0.1 100 5 1
ψ 0.1 10 1.5 0.2
µc 0.012 0.025 0.019 0.001
ρx -0.99 0.99 0.80 0.20
φx 0.01 0.5 0.15 0.04
λ 1 10 3 0.8
φd 0.5 10 3 0.8
φc 1 10 3 0.8
µs 0.001 0.10 0.02 0.005
ρs 0.30 0.99 0.8 0.2
σw 1e-5 0.001 2.5e-4 6.25e-5

4 GSM estimation results with augmented priors

We also perform the GSM Bayesian estimation with augmented priors taking into account moments

of asset returns and consumption and dividend growth. The aim of this estimation is to examine

whether our GSM estimation results reported in the paper are robust to the augmented priors.

The augmented prior on moments is specified to be the product of independent normal density

functions as

ξ̄ (m) =
n̄∏
k=1

N
[
mk|

(
m∗k, σ

2
mk

)]
where m ≡ (m1,m2, ...,mn̄) is a vector of moments under consideration. The location and scale pa-

rameters for the moment mk are m∗k and σmk respectively. We use the following location parameter

values for eight moments to form the prior.

E(rft ) = 0.014, σ(rft ) = 0.028, E(rt) = 0.068, σ(rt) = 0.18

E(∆ct) = 0.018, σ(∆ct) = 0.021, E(∆dt) = 0.018, σ(∆dt) = 0.14

The scale parameters are set at values such that the prior put 95% of its mass on being within 10% of

its location parameter. We simulate these moments from asset pricing models in the GSM Bayesian

estimation. The results reported below show that the GSM estimation with the augmented priors
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yield similar results to those reported in the paper.
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Table 6: GSM Estimation Results: the AAMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.991 0.991 0.989 0.991 0.980 0.980 0.977 0.983
γ 4.847 4.750 2.750 6.750 2.219 2.281 0.766 3.531
ψ 0.616 0.563 0.563 0.813 2.202 2.180 1.836 2.680
η 13.155 13.500 11.500 13.500 5.557 5.219 4.594 7.922
pll 0.405 0.406 0.406 0.406 0.860 0.866 0.764 0.923
phh 0.812 0.813 0.813 0.813 0.997 0.997 0.996 0.997
µl -0.043 -0.043 -0.043 -0.043 -0.048 -0.048 -0.054 -0.041
µh 0.033 0.033 0.033 0.033 0.020 0.020 0.018 0.021
λ 2.803 2.750 2.750 3.250 2.791 2.734 2.391 3.547
σc 0.006 0.006 0.006 0.006 0.020 0.020 0.018 0.024
σd 0.130 0.133 0.117 0.133 0.135 0.136 0.124 0.146

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the AAMS model. The GSM estimation imposes the augmented prior on moments of asset returns and

consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for both

the prior and posterior. Estimation results are for annual data 1941–2015.
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Table 7: GSM Estimation Results: the AAMSSV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.989 0.989 0.989 0.989 0.978 0.978 0.974 0.982
γ 4.982 5.250 3.250 6.250 0.848 0.844 0.219 1.531
ψ 0.450 0.438 0.438 0.438 1.779 1.715 1.434 2.199
η 9.496 9.500 9.500 9.500 10.232 9.281 8.531 15.500
pµll 0.282 0.281 0.281 0.281 0.706 0.728 0.611 0.774
pµhh 0.812 0.813 0.813 0.813 0.998 0.999 0.997 0.999
µl -0.066 -0.066 -0.066 -0.066 -0.055 -0.054 -0.060 -0.050
µh 0.033 0.033 0.033 0.033 0.018 0.018 0.016 0.019
pσll 0.863 0.859 0.734 0.984 0.989 0.989 0.982 0.993
pσhh 0.840 0.859 0.703 0.953 0.989 0.990 0.984 0.993
σl 0.006 0.005 0.005 0.009 0.013 0.013 0.006 0.021
σh 0.006 0.006 0.006 0.010 0.029 0.029 0.026 0.032
λ 3.064 3.250 2.750 3.250 2.570 2.547 1.984 3.172
σd 0.107 0.102 0.086 0.117 0.134 0.134 0.122 0.146

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the AAMSSV model. The GSM estimation imposes the augmented prior on moments of asset returns

and consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for

both the prior and posterior. Estimation results are for annual data 1941–2015.
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Table 9: GSM Estimation Results: the EZMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.986 0.985 0.985 0.987 0.981 0.981 0.978 0.984
γ 10.221 10.250 10.250 10.250 4.013 3.953 3.469 4.672
ψ 0.421 0.438 0.313 0.438 2.397 2.359 1.859 2.984
pll 0.343 0.344 0.344 0.344 0.904 0.897 0.860 0.951
phh 0.812 0.813 0.813 0.813 0.996 0.997 0.992 0.997
µl -0.059 -0.059 -0.059 -0.059 -0.039 -0.041 -0.052 -0.018
µh 0.029 0.029 0.029 0.029 0.022 0.021 0.018 0.029
λ 3.252 3.250 3.250 3.250 3.192 3.172 2.641 3.766
σc 0.006 0.006 0.006 0.006 0.019 0.019 0.016 0.023
σd 0.105 0.102 0.102 0.117 0.132 0.133 0.117 0.145

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the EZMS model. The GSM estimation imposes the augmented prior on moments of asset returns and

consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for both

the prior and posterior. Estimation results are for annual data 1941–2015.
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