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Abstract
This paper documents several stylized facts on the real effects of economic uncertainty.

First, higher uncertainty is associated with a more dispersed and negatively skewed dis-

tribution of output growth. Second, the response of economic growth to an increase in

uncertainty is highly nonlinear and asymmetric. Third, higher asset volatility magnifies

the negative impact of uncertainty on growth. We develop and estimate an analytically

tractable model in which rapid adoption of new technology may raise economic uncertainty

which causes measured productivity to decline. The equilibrium growth distribution is

negatively skewed and higher uncertainty leads to a thicker left tail.
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1 Introduction

Contemporary macro literature often finds uncertainty about the future to be an impor-

tant driver of economic fluctuations. A growing body of work proposes uncertainty as

a cause of economic slowdown and sluggish recovery. For example, Bloom (2009) and

Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2018) argue that higher un-

certainty stems from the process governing technological innovation, which subsequently

causes a decline in real activity.

Empirically, this evidence has been found to be robust to the use of various proxy

variables such as implied stock volatility (VIX), economic policy uncertainty (EPU) from

Baker, Bloom and Davis (2016), or a broad-based measure of macroeconomic and financial

uncertainty, as in Jurado, Ludvigson and Ng (2015) (JLN) and Ludvigson, Ma and Ng

(2019) (LMN). However, these papers usually investigate the impact of higher uncertainty

on expected mean growth either via a linear forecasting regression or a structural vector

autoregression (SVAR). Consequently, they are silent about the effect of uncertainty on the

volatility or other higher moments of the growth distribution, and this may underestimate

the impact of economic uncertainty on growth downside risk.

In this paper, we provide evidence that uncertainty is highly correlated with the higher

moments of the growth distribution. Figure 1 depicts the contemporaneous relationship

between JLN macro uncertainty and 36-month rolling window average industrial produc-

tion (IP) growth (left panel), growth volatility (middle panel), and growth skewness (right

panel). While uncertainty is highly negatively correlated (−36%) with the mean growth

as shown in the literature, we find that uncertainty is also highly correlated with growth

volatility (44%) and growth skewness (−22%), respectively. Therefore, higher uncertainty

is not only associated with lower mean growth but also contributes to a more disperse

and negatively skewed growth distribution.

We empirically estimate the distribution of future real growth in industrial production

as a function of uncertainty measures using quantile regression methods.1 We document

three stylized facts from the estimations. First, higher economic uncertainty is associ-

ated with a more dispersed and left-skewed future growth distribution. A one-standard-

deviation increase in uncertainty statistically significantly increases the interquartile range

of the one-month ahead annualized growth distribution by 2%, and decreases the lower

5th percentile by 5%. This indicates that the marginal effects of higher uncertainty are

1This empirical model is based on Adrian, Boyarchenko and Giannone (2019) (ABG). Instead of using
uncertainty measure, ABG uses national financial condition index (NFCI) as the conditional variable to
estimate the growth distribution.
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Figure 1: Uncertainty and Higher Moments of Growth. Note: this figure depicts the contem-
poraneous relationship between JLN macro uncertainty and 36-month rolling window average IP growth

(left panel), growth volatility (middle panel), and growth skewness (right panel). The sample spans the

period 1971:01 to 2018:12.

to significantly increase growth downside risk.

Second, the response of IP growth to changes in uncertainty is highly asymmetric,

the response being much higher when uncertainty rises than when it falls. An increase in

uncertainty is associated with a larger decrease in the lower tail of the growth distribution

while it has a much smaller impact on its upper tail. These results suggest that higher

uncertainty could lead to an abrupt economic decline whereas lower uncertainty does

not necessarily rebound the economy from the recession. Third, higher asset volatility

magnifies the negative impact of uncertainty on growth. We find that when the asset

market is more volatile as measured by higher VIX, an increase in macro uncertainty has

a larger negative impact on the lower tail of the expected growth distribution. A one

standard deviation increase in VIX increases in the marginal effect of uncertainty on the

lower 5th percentile by 10%.

Motivated by this empirical evidence, we present and estimate an analytically tractable

model that generate endogenous growth and uncertainty. The equilibrium growth is the

result of the adoption of technologies of uncertain quality. A technology’s “quality”refers

to how closely the technology’s needs match the economy’s input endowments. Since

technology needs are unpredictable, rapid irreversible adoption of new technologies can

lead to high uncertainty and decline in the growth.

In equilibrium, uncertainty affects growth because firms adopt technologies the exact

character of which they do not know. How well a technology fits a firm’s asset endowments

is revealed only after the fact. The mismatch is distributed symmetrically but the cost of
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that mismatch is quadratic so that maximal losses from technology adoption exceed the

maximal gains. The firm’s growth rate is therefore negatively skewed as observed in the

data.

The model provides an analytic characterization of the equilibrium growth distribu-

tion. Consistent with our empirical evidence, higher uncertainty about the newly adopted

technologies leads to a lower average growth as well as a more dispersed and negatively

skewed growth distribution. By assuming that the uncertainty has no long-run impacts

on growth, the calibrated model is able to quantitatively match the marginal effect of

uncertainty on several key moments of the growth distribution. As in the data, the model

suggests that higher asset price volatility, measured from the estimated option prices of

a Lucas (1978) representative security, leads to a higher marginal effect of uncertainty on

the lower tail of the growth distribution.

Related Literature

Our paper relates closely to two major strands of literature. First, a growing body of

empirical studies the real effect of uncertainty. Carriero, Clark and Marcellino (2018)

finds that economic uncertainty has a strong negative effect on economic outcomes. Simi-

larly, based on breaks in the volatility of macroeconomic variables, Angelini, Bacchiocchi,

Caggiano and Fanelli (2019) shows that macro uncertainty has a contractionary effect on

output. Using a shock-restricted SVAR approach, Ludvigson et al. (2019) finds that fi-

nancial uncertainty could be a possible source of business cycle fluctuation. In spite of

the mixed evidence on which type of uncertainty has a contractionary effect on economic

growth, it’s evidential that the higher uncertainty about future economy exhibits large

impact on expected mean growth. However, all these papers empirically investigate uncer-

tainty and real variables using structural vector autoregression (SVAR) framework and

thus cannot establish the relationship between uncertainty and higher moments of the

growth distribution.2

One exception is Hengge (2019). As in our paper, she uses quantile regression analysis

and shows that the relationship between macroeconomic uncertainty and future quar-

terly GDP growth is highly nonlinear and asymmetric. Our empirical evidence on the

asymmetric response of expected IP growth to higher uncertainty is consistent with hers

despite using monthly industrial production as the measure of economic growth. Using

quantile regression estimates, we further construct the Growth-at-Risk measure and study

2Other examples include Caldara, Fuentes-Albero, Gilchrist and Zakrajšek (2016), Alfaro, Bloom and
Lin (2016), and Shin and Zhong (2018).
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its interaction with asset pricing volatility and capacity utilization both empirically and

theoretically. To the best of our knowledge, ours is the first paper to provide a theo-

retical framework to study the impact of uncertainty on higher moments of the growth

distribution.

Second, a large body of theoretical literature proposes that higher economic uncer-

tainty as a cause of the decline in growth. This includes models of the real options effects

of uncertainty (Bernanke (1983), McDonald and Siegel (1986)), models in which uncer-

tainty influences financing constraints (Gilchrist, Sim and Zakrajsek (2010), Arellano, Bai

and Kehoe (2011)), investment (Fajgelbaum, Schaal and Taschereau-Dumouchel (2017)),

or precautionary saving (Basu and Bundick (2017), Leduc and Liu (2016), Fernández-

Villaverde, Pablo Guerrón-Quintana and Uribe (2011)). Our notion of uncertainty in the

model is similar to Bloom (2009) and Bloom et al. (2018) that assumes that higher uncer-

tainty originates directly in the process governing technological innovation and adoption.

Our model follows the putty-clay tradition of Johansen (1959), assuming irreversible

technological commitment. It builds on Jovanovic (2006) by deriving the closed-form

expression of equilibrium growth, and studying the relationship between uncertainty and

higher moments of the growth distribution.3

The rest of this paper is organized as follows. Section 2 provides some empirical

evidence on the asymmetric real effect of uncertainty. Section 3 presents the model, ana-

lyzes the model’s empirical implications, and provides an extended model with learning.

Section 4 concludes the paper.

2 Empirical Evidence

In this section, we describe the data and present the key empirical fact that the relation-

ship between future economic growth and uncertainty is highly nonlinear. To document

this feature in the data, we follow Adrian et al. (2019) and investigate the relationship

between uncertainty and future growth via forecasting quantile regressions. Compared

to the traditional OLS forecasting regressions, quantile regressions describe how the set

of conditional variables, including uncertainty measures, affect different quantiles of the

future growth. This methodology thus allows the estimated relationship between uncer-

tainty and future growth to differ across quantiles. This extension of a simple linear

regression model can capture the potential nonlinear relationship between the shocks in

uncertainty and vulnerability of the growth, which is largely neglected in the literature.

3Other related models are Ramey and Ramey (1991), Chalkley and Lee (1998), Veldkamp (2005),
Klenow (1998), and Acemoglu and Scott (1997).
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More formally, we regress the h-month-ahead real industrial production growth (thereafter

"IP growth") on a vector of condition variables xt,

∆ipt+h,α = δ′α,hxt + εt, (1)

where the conditional variables xt include a constant, the lag of the IP growth, and

uncertainty Ut.

The regression slope can be solved by minimizing the quantile-weighted absolute value

of errors:

δ̂α,h = arg min
∑
t

{
α1∆ipt+h,α>δ

′
α,hxt
|∆ipt+h,α − δ′αxt|

+ (1− α)1∆ipt+h,α<δ
′
α,hxt
|∆ipt+h,α − δ′αxt|

}
, (2)

where h is the forecasting horizon, α is the quantile and 1 is the indicator variable. For

inference, standard errors are estimated via the bootstrap.

2.1 Data

The monthly industrial production data is obtained from FRED Economic database main-

tained by the Federal Reserve Bank of St. Louis. Our main measures of uncertainty Ut
are constructed following the framework of Jurado et al. (2015) and Ludvigson et al.

(2019), which aggregates over a large number of estimated uncertainties constructed from

a panel of data. Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period

ahead uncertainty, denoted by UCjt(h), is defined to be the volatility of the purely un-

forecastable component of the future value of the series, conditional on all information

available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
,

where It denotes the information available. Uncertainty in category C is an aggregate of

individual uncertainty series in the category:

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)].

If the expectation today of the squared error in forecasting yjt+h rises, uncertainty in the

variable increases. In this paper, we focus on macro uncertainty and use a monthly macro

dataset, consisting of 134 mostly macroeconomic time series taken from McCracken and
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Figure 2: Impact of a one-standard deviation increase in uncertainty measure on the
annualized growth rate. Note: this figure report the estimated coeffi cient of uncertainty over h =
1, 2..., 60 months from the baseline quantile regression described in the texts. The bootstrapped 67%

confidence intervals are reported in red dashed lines.

Ng (2016).4 Following Ludvigson et al. (2019), 1-month ahead macro uncertainty as our

baseline measure of uncertainty. Our sample is monthly and spans the period 1971:01 to

2018:12, unless otherwise noted.

2.2 Results

By construction, any effects of changes in xt on h-month ahead growth at α percentile is

captured by the slope estimate δ̂α,h. Figure 2 reports the estimates of marginal coeffi cient

of uncertainty over h = 1, 2..., 60 months. The top panel reports the effect of uncertainty

on changes in expected median growth. We find that a one-standard-deviation increase

in uncertainty decreases the median of the annualized growth by 3% over the next month.

The effect gradually weakens over time with a half-life of 23 months. The middle panel

shows that the distribution of the growth becomes more dispersed following an increase

in uncertainty. The interquartile range rises at short- and medium- terms. Similarly, the

bottom panel shows that when uncertainty increases, the distribution of the growth is

more negatively skewed. The 5th percentile of the growth falls by 6% at short horizon,

4Therefore, the category C is set to be the macro category M in Ludvigson et al. (2019).
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Figure 3: Asymmetric impact of uncertainty on growth. Note: this figure reports the estimated
uncertianty coeffi cients for different quantiles α over horizon h from the baseline quantile regression

described in the texts.

and 2% over 2 to 4 years. As a result, the impact of the uncertainty on skewness of the

distribution is long-lasting.

In Figure 3, we plot the estimated uncertainty coeffi cients δα,h for different α over

horizon h. In most cases, an increase in uncertainty is associated with a larger decrease

in the lower tail of the growth distribution while it has much smaller impact on the upper

tail. This asymmetric response shows that the impact of uncertainty on growth is highly

nonlinear.

2.3 Growth-at-Risk

The Growth-at-Risk (GaR) in our paper is defined as the estimated lower 5th percentile of

the distribution of expected real IP growth. It’s worth noting that our measure of GaR is

different from the one in Adrian, Grinberg, Liang and Malik (2018) because they use the

national financial condition index (NFCI) from the Chicago Fed in conditional variables

xt whereas we include the uncertainty measure.5 Figure 4 shows the time series of one-

month ahead GaR estimated using uncertainty measure. The red line in the figure shows

5In addition, Adrian et al. (2018) uses quarterly GDP growth whereas we use monthly industrial
production as the measure of economic growth.
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the he GaR estimated using NFCI for comparisons. First, it shows that both measures of

GaR are counter-cyclical and with a less than 5% probability, a one-standard deviation

increase in uncertainty is associated with as large as 3% decline in IP Growth within a

month during recessions. Second, GaR estimated with uncertainty is more volatile and

exhibit larger spikes during recessions. For the rest of the paper, we refer to GaR as the

one that is estimated using uncertainty.

One­month­ahead Growth­at­Risk (%)

1970 1980 1990 2000 2010 2020
­4

­3.5

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1
Macro Uncertainty
NFCI

Figure 4: Growth-at-Risk. Note: this figure reports the estimated Growth-at-Risk using NFCI (red
line) and JLN Macro uncertainty (black line). The baseline quantile regression is described in the texts.

The sample spans the period 1971:01 to 2018:12.

Our baseline measure of uncertainty is based on macro variables but some papers in

the literature, such as Ludvigson et al. (2019), found evidence that volatility related to

the asset returns also lead to persistent decline IP growth. This evidence suggests that the

uncertainty should be associated with a larger decline in growth when the asset prices are

more volatile. To directly test this argument, Figure 4 plots the estimated GaR against

the standardized implied volatility indices (VIX), which is a popular measure of the stock

market’s expectation of volatility implied by S&P 500 index options.6 It shows that

when asset market is more volatile, an increase in macro uncertainty has a larger negative

impact on IP growth and thus leads to a lower GaR. On average, a two-standard-deviation

6In the paper, we chose to use the VXO implied volatility index that is available since 1962 instead of
VIX because the latter is only available after 1990 and the two measures are 99% correlated.
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increase in VIX is associated with a 0.5% decline in GaR.
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Figure 5: Growth-at-Risk and VIX. Note: this figure shows the contempraneous relationship
between standardized VIX and estimated Growth-at-Risk. The Growth-at-Risk is estimated conditional

on JLN macro uncertainty. The red line reports the OLS Estimate. The sample spans the period 1971:01

to 2018:12.

To sum up, we document some empirical evidence on the real effect of uncertainty.

First, we find that an increase in uncertainty leads to lower median and yet more volatile

IP growth, and a more negative GaR. Second, the response of IP growth to an increase in

uncertainty is highly nonlinear, especially at the short term. Third, higher asset volatility

magnifies the negative effect of uncertainty on growth. In the next section, we set up a

tractable model that is able to capture these key features in the data.

3 Model

The model features a single agent “Crusoe”, his preferences over consumption sequences

(ct) are

E0

{ ∞∑
0

βtlnct

}
.

Production —For simplicity of the exposition, we assume there is a single production
good y and there is no physical capital. The output depends on the level of technology A
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as well as Crusoe’s skill mix h. The potential output, yp, is defined as

yp = exp

{
A− λ

2
(sA − h′)2

}
.

where sA is the skill-mix ideal for technology A. By construction, λ
2

(sA − h′)2 captures

the foregone output due to the "skill gap" between Crusoe’s current skill and the ideal

skill for technology A.

Adoption of Technology —Crusoe can raise his technology by any amount, x ≥ 0,

so that starting today at A, tomorrow’s technology is

A′ = A+ x.

Crusoe must use technology A′ for at least one period. We assume that adopting a new

technology is free but adoption of the new technology A′ makes unpredictable demands

on the skill mix,

sA′ = sA + xε, (3)

where ε ∼ F (ε) is time specific and i.i.d., having mean zero and variance σ2. Once ε is

drawn, sA′ becomes an invariant skill requirement for technology A′. Crusoe chooses A′

before seeing ε, and he cannot return to technologies that he used in the past.

Adjustment of h.– Crusoe starts the period with h. Before producing, he can change
it to h′ ≡ h+ ∆ at a adjustment cost of

C (yp,∆) ≡
[
1− exp

{
−θ

2
∆2

}]
yp.

Finally, Crusoe’s net output is

yp − C (yp,∆) ≡ y (u,∆, A) = exp

{
A− λ

2
(u−∆)2 − θ

2
∆2

}
,

where

u = sA − h, (4)

is the gap between ideal and actual skill (hereafter the “skill gap”).

3.1 Optimal Skill Investment

The state consists of the technology level and his skill gap (u,A), and his decisions are

(x,∆). He has no assets other than h and A, and he simply consumes his output. His

Bellman equation is

V (u,A) = max
x,∆

{
lny (u,∆, A) + β

∫
V (u+ xε−∆, A+ x) dF (ε)

}
. (5)

The solution to (5), derived in Appendix 1, can be summarized as follows:
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Proposition 1 (Jovanovic 2006) The policy functions are

x =
1

θσ2 (1− β) (1− α)
, (6)

and

∆ = (1− α)u, (7)

where

α =
1

2β

1 + β +
λ

θ
−

√(
1 + β +

λ

θ

)2

− 4β

 , (8)

is the fraction of the gap that Crusoe leaves open. The solution for V is

V (u,A) =
A

1− β −
1

2
θ (1− α)u2 + Υ, (9)

where

Υ =
β

1− β

(
x

1− β −
[

ψ

1− βα2

]
x2σ2

)
, and ψ =

1

2

(
λα2 + θ (1− α)2) . (10)

Proposition 1 states that Crusoe’s adjustment of skills ∆ is proportional to his current

skill gap u. As a result, using equation (3) and (4), the skill gap u follows a AR(1) process

as follows,

ut+1 = αut + xεt+1. (11)

Uncertainty —Our notion of uncertainty is captured by the variance of the skill gap
u. Because α is between zero and one, ut is stationary and its variance is

τ ≡ V ar (u) =
x2σ2

1− α2
=
(
(1− β)2 (1− α2

)
θ2 (1− α)2)−1

σ2,

where the second equality comes from equation (6). Conditional on the current skill gap u,

an increase in Crusoe’s skill investment, through lower α or θ, leads to lower uncertainty.

In addition, noisier ε (higher σ2) leads to higher uncertainty.

Free-riding incentives and decentralization of the optimum – If all agents

start in the same state and then take the same action, the equilibrium is symmetric and

it has only aggregate risk. Section 4 of Jovanovic (2006) analyzes the incentives of agents

to deviate from this situation by considering the option to “wait and see”how other firms

fare with the newly adopted technology. The decentralized version assumes that there

are two markets: A market for output, and a market for firm’s shares —the only assets

available to households. No markets exist for either A which, since it was free for Crusoe

to augment, naturally would also be freely copied in a decentralized setting, and yet firms

11



still reject the option to wait and see.7 On the other hand, a firm cannot buy h from

other firms; one interpretation of h is that of organization capital in the sense of Prescott

and Visscher (1980).

3.2 Growth Distribution

Suppose that C (yp,∆) consists entirely of foregone output. The log of measured output

then is,

lnyt = A− λ

2
α2u2

t −
θ

2
(1− α)2 u2

t (12)

= A0 + xt− ψu2
t ,

Because ut is stationary, lny is trend-stationary, the trend and the long-run rate of output

growth is x. The log growth can be expressed as,

gt+1 ≡ lnyt+1 − lnyt = x− ψ
(
u2
t+1 − u2

t

)
. (13)

Equation (13) shows that the growth is driven not just by the adoption of new technology,

x, as studied in the traditional macro literature. It is also by the changes in Crusoe’s skill

gap u2
t+1 − u2

t . On one hand, a decrease in the skill gap stimulates the growth. On the

other hand, adjusting h towards its technologically ideal value is costly and will therefore

take time, but output will fall sharply whenever an unlucky draw of sA occurs. So we

should expect the growth distribution is negative skewed especially when θ is large. This

leads to the following proposition.

Proposition 2 Condition on initial output and technology level y0 and A0, if εt follows a

normal distribution N (0, σ2), the distribution of growth gt is left skewed and is expressed

as

gt = x− ψ
[
Ct +

(
1− α2

)
τξ2

t + (αAt −Bt)α
tu0ξt

]
,

7One could add features that would imply a coexistence of heterogeneous technologies in a putty-
clay framework. These include a labor market (Johansen (1959)) and firm-specific shocks to the cost of
investment (Campbell (1998) and Gilchrist and Williams (2000)). These features would allow the model
to match facts about technology-diffusion lags.
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where ξt ∼ N (0, 1) follows standard normal distribution and

At =

√
4 (1− α2) τ

(
1− α2t

1− α2
+ 1

)

Bt =

√
4 (1− α2) τ

(
1− α2t

1− α2

)
Ct =

(
αtu0

)2 −
(
αt−1u0

)2

u0 =

√
1

ψ
(lny0 − A0)2.

Because ξt follows a normal distribution, ξ
2
t follows the chi-squared distribution with

the degree of freedom of one. Since ψ > 0, the distribution of ∆lnyt is negatively skewed.

The following corollary characterizes the first two moments of the growth distribution,

such mean, median, variance and interquartile range (IQR).

Corollary 1 In equilibrium, the distribution of growth gt+1 satisfies

E (gt+1) = x− ψCt+1 − ψ
(
1− α2

)
τ

Median (gt+1) = x− ψCt+1 − 0.47ψ
(
1− α2

)
τ

V (gt+1) = 2ψ2
(
1− α2

)2
τ 2 + ψ2

(
(αAt+1 −Bt+1)αtu0

)2

IQR (gt+1) = ψ
(
1.22

(
1− α2

)
τ + 1.34 (αAt −Bt)α

tu0

)
.

Mean and median of the growth distribution are decreasing in uncertainty τ whereas the

variance and IQR increases in uncertainty,

∂E (gt+1)

∂τ
< 0,

∂Median (gt+1)

∂τ
< 0,

∂V (gt+1)

∂τ
> 0,

∂IQR (gt+1)

∂τ
> 0.

As uncertainty increases, the average and median growth decreases while the growth

distribution becomes more dispersed. In the long run, we find that the growth distribution

doesn’t depend on the initial values of u0 and measures of centrality and dispersion of

the growth distribution are bounded as long as ut is stationary. The following corollary

summarizes this finding.

Corollary 2 When t → ∞, the (long run) distribution of growth gt doesn’t depend on
the initial condition u0 and satisfies

gt = x− ψx2σ2ξ2
t (14)
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The first two moments of the growth distribution are bounded in the limit and satisfy the

following expressions if and only if α < 1,

lim
t→∞

E (g) = x− ψ
(
1− α2

)
τ

lim
t→∞

V (g) = 2ψ2
(
1− α2

)2
τ 2

lim
t→∞

Median (g) = x− 0.47ψ
(
1− α2

)
τ

lim
t→∞

IQR (g) = 1.22ψ
(
1− α2

)
τ .

Growth-at-Risk (GaR) —Following Adrian et al. (2018), the Growth-at-Risk (GaR)
at time t is defined as the lower 5th percentile of the growth distribution gt+1. Using the

fact that 95th percentile of the standard normal is 1.65 and the 95th percentile of chi-

square is 3.84, GaR χt in our model can be expressed as

χt = x− ψCt+1 − 3.84ψ
(
1− α2

)
τ + 1.65ψ (αAt+1 −Bt+1)αtu0, (15)

In equilibrium, GaR decreases in uncertainty (τ),

∂χt
∂τ

< 0.

Consistent with the empirical finding, larger uncertainty is associated with higher down-

side risk.

3.3 Impact of Uncertainty on Growth

We now examine the impact of uncertainty on growth. Starting with σ = 1, we raise the

σ to 1.05 and 1.15 so that τ , the variance of u, increases by 15% and 30%, respectively.

A 15% increase in uncertainty corresponds to a one-standard-deviation increase in the

empirical measure of uncertainty.

In order to capture the transitory impact of uncertainty as in the empirical section,

we further restrict parameters so that the uncertainty shock does not have a permanent

effect on the distribution of the growth rate. More specifically, we adjust the parameter

pair (λ, θ) so that the long-run mean and variance of the growth rate do not change with

their long-run values remaining at

lim
t→∞

E (gt+1) = x− ψx2σ2 = 1.5%, and

lim
t→∞

V (gt+1) = 2ψ2x4σ4 = 1%.

14



We simulate the model for 60 periods and compute the changes in growth relative to the

case that σ2 is fixed at 1. Figure 6 depicts the response of median growth in the top panel

, interquartile range in the middle panel and 5th percentile (GaR) in the bottom panel to

a unexpected increase in uncertainty at time 0. The blue line depicts the case with small

uncertainty (σ = 1.05) while the red line reports results with large uncertainty (σ = 1.15).

The dotted black line depicts the data counterpart reported in Figure 2. Similar to the

empirical evidence, an increase in uncertainty is associated with a lower median growth,

higher interquartile range, and lower Growth-at-Risk. Quantitatively, our model suggests

that one standard deviation increase in uncertainty immediately results in 2% decline in

median growth, 3% increase in the growth dispersion and a 6% decline in GaR. Compared

to the data, our model fits the impact response well but underpredicts (overpredicts) the

median and GaR (interquartile range) in the medium term. This suggests the effect of

uncertainty is more persistent in the data.
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Figure 6: Uncertainty and Growth. Note: this figure depicts the response of median growth in
the top panel , interquartile range in the middle panel and 5th percentile (GaR) in the bottom panel to

an unexpected 15% (blue line) and 30% increase (red line) in uncertainty at time 0. The dashed black

line is the empirical estimates from the baseline quantile regression described in the texts.

Figure 7 depicts the response of various quantiles of the expected growth distribution to
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Figure 7: Asymmetric impact of uncertainty on growth. Note: the left panel depicts the
response of various quantiles of the expected growth distribution to a 15% increase in uncertainty. The

right panel reports the the empirical estimates from the baseline quantile regression described in the

texts.

a 15% increase in uncertainty (σ = 1.05). Consistent with the empirical evidence reported

in Figure 3, the response of the expected growth is highly nonlinear: an increase in

uncertainty is associated with a larger decrease in the lower tail of the growth distribution

whereas it has much smaller impact on the upper tail. Quantitatively, a 15% increase in

uncertainty results in 4% decrease in 25th percentile of the expected growth distribution

but only contributes to a 1% decline of the 75th percentile.

3.4 Growth-at-Risk, the value of options and VIX

For the price of a representative security p (u,A) we have the Lucas (1978) equation

p (u,A) = β

∫
c (u,A)

c (u′, A+ x)
[c (u′, A+ x) + p (u′, A+ x)] dΦ, (16)

because U ′(c(u′,A+x))
U ′(c(u,A))

= c(u,A)
c(u′,A+x)

. Although preferences being log, prices will fluctuate

because consumption growth is autocorrelated. If low consumption today means high

consumption growth, a disaster is accompanied by very low asset prices. A put option8 is

8From Investopedia: A put option is an option contract giving the owner the right, but not the obliga-
tion, to sell a specified amount of an underlying security at a specified price within a specified time frame.
.
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more valuable in such states, i.e., more likely to be “in the money.”The opposite for call

options. Therefore today’s prices of those two derivative assets should be a good signal

of Growth-at-Risk. Taking today’s price as the strike price for both assets,

pput =

∫
p(u′,A+x)≤p(u,A)

(p (u,A)− p (u′, A+ x)) dΦ (17)

pcall =

∫
p(u′,A+x)≥p(u,A)

(p (u′, A+ x)− p (u,A)) dΦ. (18)

The VIX index used in the empirical exercise contains put and call options on the in-

dividual firms in the S&P 500 index, and its price would reflect idiosyncratic as well as

aggregate risk. The natural definition in our model is the sum of the prices of a call op-

tion and a put option with a strike price tomorrow equal to today’s price of the security

p (u,A),

VIX (u,A) ≡ pput + pcall. (19)

We do not have idiosyncratic risk in the model so the cross section of asset prices is

degenerate. We also are not matching the VIX with the volatility of the price of capital.

Instead, we are using the pricing kernel to price the put and call options.9

As before, we increase σ and adjust the parameter pair (λ, θ) so that the long-run

mean and variance of the growth rate do not change with their long-run values. We then

simulate the model and calculate the price the security from equation (16), and price

of options and VIX according to equations (17) to (19). The calculated VIX is further

standardized to have zero mean and unit variance as in the empirical exercise.

Three series are plotted in Figure 8: the red line portrays data regression slope of

GaR in the data on the VIX, while yellow and purple lines depict model-generated values

under 15% and 30% increase in uncertainty τ , respectively. It shows that an increase in

the VIX decreases the GaR in the model for both values of σ. This is consistent with

the feature in the data that higher asset price volatility magnifies the negative impact of

uncertainty on IP growth. In addition, Figure 8 also shows that VIX has larger negative

impact on GaR when there is higher uncertainty captured by σ. Compared to a naive

empirical linear regression, our model produces a better fit for the relationship between

VIX and GaR: it has 38% and 14% smaller root-mean squared error for σ = 1.05 and

9It’s worth noting that if the goal is to match stock market values using the price of firm capital, firm
leverage should be taken into account (e.g. Bianchi, Ilut and Schneider (2017)).
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Figure 8: Asset Volatility and Growth-at-Risk. Note: The yellow (purple) reports model-

generated contempraneous relationship between standardized asset volatility and Growth-at-Risk under

15% (30%) increase in uncertainty. The blue dots depict the empirical relationship between standardized

VIX and Growth-at-Risk. The red line reports the OLS Estimate.

σ = 1.15, respectively.10

3.5 Capacity Utilization

The model has no unemployed resources or spare capacity, but we may assume that the

skill gap ut is an index of the fraction of capital —human or physical —that does not meet

the needs of the date-t technology. That interpretation of ut would match Ljungqvist and

Sargent (1988) explanation for high European unemployment in the last two decades of the

20th century in which higher unemployment reflected restructuring from manufacturing

to services, adoption of new information technologies, and globalization. And since Klein

and Su (1979) a number of studies show a positive correlation between unemployment

and capital utilization measures.

10The root-mean-squared error (RMSE) is defined as

RMSE =

√√√√ 1

T

T∑
i=1

(ŷi − yi)2

where the "hat" refers to the estimated value of GaR at time t.
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From equation (12), the detrended output in the model depends on the skill gap

ut. While it’s empirically challenging to directly estimate the skill gap in the data, the

capacity utilization rate —the ratio of actual output to the potential output —can be used

to test the relationship between u and the growth. The monthly data on U.S. capacity

utilization is available at the FRED economic data maintained by the St. Louis Fed (series

id TCU). As before, we simulate the model using calibrated parameters, and calculate

skill gap ut according to equation (11). We define the capacity utilization as 1/ |ut| so
that an increase in the skill gap leads to a fall in capacity utilization. The calculated

capacity utilization is further standardized to have zero mean and unit variance.
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Figure 9: Capacity Utilization and Growth-at-Risk. Note: The red (yellow) reports model-
generated contempraneous relationship between standardized capacity utilization and Growth-at-Risk

under 15% (30%) increase in uncertainty. The blue dots depict the empirical counterpart.

Figure 9 plots model implied Growth-at-Risk χt on the standardized capacity utiliza-

tion for σ = 1.05 and 1.15, respectively. It shows that, consistent with data, an decrease

in the skill gap ut or an increase in capacity utilization increases the GaR. In addition,

when the capacity utilization is high, an increase in uncertainty (σ) has smaller negative

impact on growth: a 10% increase σ decreases GaR by 0.1% when capacity utilization

is one standard deviation above its unconditional mean whereas decreases GaR by 0.9%

when it is negative one standard deviation below its unconditional mean.
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3.6 Long Run Growth Distribution

Based on equation (14), growth distribution follows a negative chi-squared distribution in

the long run. The top panel of Figure 10 depicts the simulated long run distribution for

different values of σ. We again use calibrated (λ, θ) such that the mean and variance of

the long run distribution remain the same. It shows higher uncertainty (higher σ) leads

to a more negatively skewed distribution (portrayed by red bars) and lower 5th percentile

(red dashed line).

The chi-squared distribution is well known as a light-tailed distribution whereas in the

traditional growth literature (e.g. Barro and Jin (2011)), the heavy-tailed distribution,

such as the Pareto Distribution, has been commonly used to calculate the tail risk. To

address this issue, we assume that in the long horizon, the growth distribution follows,

gt = x− ψx2σ2zt.

The variable zt ∈ [0,∞) follows a Type-II Pareto Distribution with associated CDF,

F (zt) = 1− (1 + x)−α ,

where α is the shape parameter that governs the tail thickness.

We randomly draw 10,000 zt from F (zt) and numerically calculate α by targeting

the lower 5th percentile to be the corresponding value in the calibrated Chi-squared

distribution with σ2 = 1. The bottom panel of Figure 10 depicts the simulated growth

distribution using Pareto distribution with α = 2.83 (in red bars) against the baseline

growth distribution with chi-squared distribution. It shows that Pareto distribution has

a thicker tail than the Chi-squared distribution. Therefore, in order to generate the same

downside risk, measured by the lower 5th percentile, the growth distribution with Pareto

has much smaller mean growth (0.78%) than the chi-squared distribution (1.50%).

3.7 Technological commitment

It’s worth noting that the assumption of irreversible technological commitment is essential

to generate the negatively skewed growth distribution in equilibrium: output could fall

because of commitment to technology before an unfavorable shock ε is realized. If a firm

could revert quickly and costlessly to technologies it used before, it would always use the

best technology up to date and output never declines. For example, Jovanovic and Rob

(1990) assume costless recall of past technologies. In contrast to our empirical evidence,

instead of having a left tail, the distribution of growth rates in their model exhibits a spike

at zero and a right tail. Therefore we need at least partial technological commitment.
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Figure 10: Simulated Long-run Growth Distribution. Note: the upper panel shows the sim-
ulated long-run growth distribution for small uncertainty (blue bars) and large uncertainty (red bars).

The lower panel shows the simulated long-run growth distribution with Pareto distribution (red bars)

and Chi-squared distribution (blue bars).

3.8 Extension with Learning

In the baseline model, we assume that the agent cannot directly learn the ideal skill. We

relax this assumption in this section by adding the learning into the model and show that

the qualitative result remains the same. As in the baseline model, the ideal skill s is

unobservable and the potential output follows,

yp = exp

{
A− λ

2
(s− h)2

}
,

where for simplicity we assume that the ideal skill s is the sum of two components

s = ν + εt.

ν ∈ R is a parameter and εt is i.i.d. with zero mean and variance of σε. We further

assume agent’s prior over εt is diffuse.
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Each period, the agent can purchase n signals of parameter εt with a cost (in foregone

output),

C (yp, n) ≡
[
1− exp

{
−θ

2
n2

}]
yp.

The net output therefore is

yp − C (yp, n) = exp

{
A− λ

2
u2 − θ

2
n2

}
,

where u = s − h is the skill gap, and where n is the number of independent signals on
εt+1, call these signals,

(
ξ1, ..., ξn,t

)
. Each ξi is an independent signal on next period’s ε

as follows:

ξi = εt+1 + ηi,

where ηi ∼ N
(
0, σ2

η

)
are i.i.d. random variables. The agent forms the mean of the sample

of n signals:

ξ̄n =
1

n

n∑
i=1

ξi = εt+1 +
1

n

n∑
i=1

ηi. (20)

Since each period ε is independent of its past draws, ξ̄n ∼ N
(
ε, σ2

η/n
)
is a suffi cient

statistic for forecasting ε. And since the prior over ε is diffuse, conditional on ξ̄n, ε ∼
N
(
ξ̄n, σ

2
η/n
)
. More formally,

lim
σε→∞

Pr
(
ε | ξ̄n

)
= Φ

(
ε− ξ̄n
σ2
η/n

)
, (21)

where Φ is the standard normal integral.

Denote τ the beginning-of-period prior variance over ν, and τ ′ the value next period.

Then we have,

τ ′ =

(
1

τ
+

n

σ2
η

)−1

≡ b (τ , n) , (22)

which shows the persisting benefits of n via the reduction in τ . As in Fajgelbaum et al.

(2017), the notion of uncertainty is captured by the variance of beliefs τ . Its law of motion

is specified in equation (22).

In equilibrium, the agents set h optimally to be the posterior mean and the next

period’s skill gap follows a normal distribution

u′ ∼ N

(
0, τ +

σ2
η

n

)
,
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or alternatively,

u′ =

(
τ +

σ2
η

n

)1/2

ζ,

where ζ follows a standardized normal distribution. Log output can be expressed as

lny = A− λ

2
u2 − θ

2
n2. (23)

It’s straightforward to verify that the state variable are (u, τ), which follow the law of

motion,

u′ =

(
τ +

σ2
η

n

)1/2

ζ

τ ′ =

(
1

τ
+

n

σ2
η

)−1

.

The value function can be expressed as

V (τ , u) = max
n

A− λ

2
u2 − θ

2
n2 + β

∫
V

((
1

τ
+

n

σ2
η

)−1

,

(
τ +

σ2
η

n

)1/2

ζ

)
dF (ζ) .

s.t. V (τ , u) ≥ 0

Using equation (23), growth can be expressed as,

∆lnyt+1 =
λ

2

(
u2
t − u2

t+1

)
=

λ

2

(
u2
t −

(
τ +

σ2
η

n

)
ζ2

)
.

First, we observe that the economy growth is driven by uncertainty though changes in

the skill gap. Reducing the skill cap increases the growth and vice versa. Second, higher

uncertainty leads to lower growth,

∂∆lnyt+1

∂τ
= −λ

2
ζ2 < 0.

Third, conditional on current skill gap ut, the distribution of the growth is left skewed

with the skewness,

skewness(∆lnyt+1) = −λ
(
τ +

σ2
η

n

)
⇒ ∂skewness(∆lnyt+1)

∂τ
= −λ.

Similar to the baseline model without learning, higher uncertainty leads to higher negative

skewness and lower Growth-at-Risk. In the appendix, we provide an analytical solution

to the distribution of growth in the equilibrium when the parameter ν is known.
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4 Conclusion

In this paper, we first empirically documented several stylized facts on the real effect

of uncertainty. First, we showed that higher economic uncertainty is closely associated

with a more dispersed and left-skewed growth distribution. Second, we found that the

response of IP growth to an increase in uncertainty is highly nonlinear and asymmetric.

Third, we presented evidence that higher asset volatility magnifies the negative impact of

uncertainty on growth.

We presented and estimated a model in which rapid adoption of new technology may

lead to higher economic uncertainty which causes measured productivity to decline. The

model is able to match several key features in the data. The equilibrium growth distri-

bution is negatively skewed and higher uncertainty leads to higher downside risk. The

model is also able to generate a negative nonlinear relation between asset price volatility

and Growth-at-Risk in equilibrium as observed in the data.
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Appendix

4.1 Proof of Proposition 1

The first-order condition for the optimality of ∆ is

λ (u−∆)− θ∆− β
∫
V1dF = 0, (24)

and the first-order condition for the optimality of x is∫
(εV1 + V2) dF = 0. (25)

Solving for ∆.– The envelope theorem gives

V1 = −λ (u−∆) + β

∫
V1dF = −θ∆, (26)

where the second equality uses (24). Substituting into (24) we have

λ (u−∆) = θ∆− βθ
∫

∆′dF (ε) . (27)

We seek a solution of the form (7) where α is a constant to be solved for. If (7) holds,

(27) reads

λαu = θ (1− α)u− βθ
∫

(1− α) (αu+ xε) dF (ε)

= θ (1− α)u− βθ (1− α)αu,

which, after cancellation of u leaves a quadratic in α, namely θ (1− α) − βθ (1− α)α −
λα = 0, or

βα2 −
(

1 + β +
λ

θ

)
α + 1 = 0. (28)

This implicit function has the solution for α given in (8).

Solving for x.– The envelope theorem also gives

V2 = 1 + β

∫
V2dF =

1

1− β . (29)

The second equality follows because the right-hand side of (29) is a contraction map with

at most one solution for V2. Substituting from (7) into (26) and from there (in an updated

form) into (25) gives

0 = −
∫
εθ∆′dF +

1

1− β

= −
∫
εθ (1− α) (αu+ xε) dF +

1

1− β , (30)
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because ∆′ = (1− α)u′ = (1− α) (αu+ xε). But E (εu) = 0, which leads to (6).

We must show that this function solves (5). Let us proceed with the method of

undetermined coeffi cients. Since V = aA− bu2 + c,

aA− bu2 + c = A− ψu2 + β

∫ (
a (A+ x)− b (u+ xε−∆)2 + c

)
dF (ε)

= A− ψu2 + β

∫ (
a (A+ x)− b (αu+ xε)2 + c

)
dF (ε)

= A− ψu2 + β (a (A+ x) + c)− βb
∫

(αu+ xε)2 dF (ε)

= A− ψu2 + β (a (A+ x) + c)− βbα2u2 − βbx2σ2.

Equating coeffi cients: a = 1 + aβ, b = ψ + bβα2, and c = β (ax+ c− bx2σ2), so that

a =
1

1− β , b =
ψ

1− βα2
, and c =

β

1− β
(
ax− bx2σ2

)
.

This leads to

V (u,A) =
A

1− β −
ψ

1− βα2
u2 +

β
(

x
1−β −

[
ψ

1−βα2

]
x2σ2

)
1− β ,

where x = 1
θσ2(1−β)(1−α)

. Then V2 (u,A) = 1/ (1− β) which is consistent with (29). It re-

mains to be shown that V1 (u,A) agrees with (26) and (7). Now, since ψ = 1
2

(
λα2 + θ (1− α)2),

they agree only if
ψ

1− βα2
=

1

2
θ (1− α) ,

i.e., if (
λ

θ
α2 + (1− α)2

)
= (1− α)

(
1− βα2

)
. (31)

But from (28),
λ

θ
=

1

α
+ βα− 1− β.

Substitute for λ/θ into (31) to conclude that V1 (u,A) is consistent with (26) and (7) if

and only if (
α + βα3 − α2 − βα2 + (1− α)2) = (1− α)

(
1− βα2

)
. (32)

But expanding the left-hand side of (32) yields(
α + βα3 − α2 − βα2 + 1 + α2 − 2α

)
= βα3 − βα2 + 1− α.

Conversely, expanding the right-hand side of (32) yields

(1− α)
(
1− βα2

)
= 1− α− βα2 + βα3.

Therefore (32) holds, and V is therefore given by (9).
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4.2 Proof of Proposition 2

Note that we can re-write 11 as MA (t) process

ut = αtu0 + x
t∑

s=0

αt−sεs.

As a result, we have

u2
t+1 − u2

t = (ut+1 + ut) (ut+1 − ut)

=

{(
αt+1 + αt

)
u0 + x

{
t+1∑
s=0

αt+1−sεs +

t∑
s=0

αt−sεs

}}
{(
αt+1 − αt

)
u0 + x

{
t+1∑
s=0

αt+1−sεs −
t∑

s=0

αt−sεs

}}

=

{(
αt+1 + αt

)
u0 + x

{
2

t∑
s=0

αt−sεs + εt+1

}}
︸ ︷︷ ︸

ζ1

{(
αt+1 − αt

)
u0 + xεt+1

}︸ ︷︷ ︸
ζ2

.

This is product of two variables ζ1 and ζ2 that follow normal distributions

ζ1 ∼ N

((
αt+1 + αt

)
u0, x

2

{
4

[
1− α2(t+1)

1− α2

]
+ 1

}
σ2

)
ζ2 ∼ N

((
αt+1 − αt

)
u0, x

2σ2
)
.

It’s worth noting that the product of two variables can be written as

XY =
1

4
(X + Y )2 − 1

4
(X − Y )2.

It follows that since X = ζ1 and Y = ζ2 are normal distribution

ζ1 + ζ2 − 2αt+1u0 ∼ N

(
0, 4x2

[[
1− α2(t+1)

1− α2

]
+ 1

]
σ2

)
= Aξt

ζ1 + ζ2 − 2αtu0 ∼ N

(
0, 4x2

[
1− α2(t+1)

1− α2

]
σ2

)
= Bξt.

where ξt is a standard normal and

A =

√
4x2σ2

[[
1− α2(t+1)

1− α2

]
+ 1

]

B =

√
4x2

[
1− α2(t+1)

1− α2

]
σ2.
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Therefore, we have

ζ1ζ2 =
1

4

(
Aξt + 2αt+1u0

)2 − 1

4

(
Bξt + 2αtu0

)2

=
1

4

(
[Aξt]

2 +
[
2αt+1u0

]2
+ 4αt+1u0Aξt

)
−1

4

(
[Bξt]

2 +
[
2αtu0

]2
+ 4αtu0Bξt

)
= C +

1

4

[
A2 −B2

]
ξ2
t + (αA−B)αtu0ξt,

where the constant

C =
(
αt+1u0

)2 −
(
αtu0

)2
.

Now note that

A2 −B2 = 4x2σ2,

this leads to

ζ1ζ2 = C + x2σ2ξ2
t + (αA−B)αtu0ξt.

We now have the growth distribution

gt = x− ψ
[
Ct + x2σ2ξ2

t + (αA−B)αtu0ξt
]
,

where ξt ∼ N (0, 1) and A, B and C are as stated in the proposition.

4.3 Extension with Learning

The following proposition provides a closed-form expression for the growth distribution

when there is no uncertainty of ν.

Proposition 3 When there is no uncertainty of ν and under log preferences, the optimal
policy function and value function satisfy,

∆ =

(
ψβσ2

θ

) 1
3

V (u) = B − ψu2,

where

B =
1

1− β

(
A− θ

2

(
ψβσ2

θ

) 2
3

− ψβσ2

(
ψβσ2

θ

)− 1
3

)
,

ψ =
λ2

2
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and the log growth g follows

g = ∆lny =
λ

2

(
u2 −

(
ψβσ2

θ

)− 1
3

σ2ζ2

)
.

Therefore conditional on u, the growth distribution is left skewed

E (g) =
λ

2
u2 − λσ2

2

(
ψβσ2

θ

)− 1
3

var (g) = 2

(
λσ2

2

(
ψβσ2

θ

)− 1
3 σ2

∆

)2

skewness (g) = −λσ
2
√

8

2

(
ψβσ2

θ

)− 1
3

.

Proof. When there is no uncertainty of ν, τ = 0,

V (u) = max
∆

A− λ

2
u2 − θ

2
∆2 + β

∫
V

((
σ2

∆

)1/2

ζ

)
dF (ζ)

If we guess and verify V (u) = B − ψu2 and ∆ = C

V (u) = max
∆

A− λ

2
u2 − θ

2
∆2 + β

∫
V

((
σ2

∆

)1/2

ζ

)
dF (ζ)

= max
∆

A− λ

2
u2 − θ

2
∆2 + βB − ψβ

(
σ2

∆

)
First order condition

ψβ

(
σ2

∆2

)
= θ∆

or

∆ =

(
ψβσ2

θ

) 1
3

For the value function,

B − ψu2 = A− λ

2
u2 − θ

2
∆2 + βB − ψβ

(
σ2

∆

)
Matching the coeffi cients,

B = A− θ

2
∆2 + βB − ψβ

(
σ2

∆

)
,

or

B =
1

1− β

(
A− θ

2

(
ψβσ2

θ

) 2
3

− ψβσ2

(
ψβσ2

θ

)− 1
3

)

ψ =
λ

2
,

as stated in the proposition.
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