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Abstract. We present a tractable model of platform competition in a general equilibrium 
setting. We endogenize the size, number, and type of each platform, while allowing for

different user types in utility and impact on platform costs. The economy is Pareto ef-

ficient because platforms internalize the network effects of adding more or different types

of users by offering type-specific contracts that state both the number and composition of 
platform users. Using the Walrasian equilibrium concept, the sum of type-specific fees paid

cover platform costs. Given the Pareto efficiency of our environment, we argue against the 
presumption that platforms with externalities need be regulated.
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1. Introduction

We are interested in economic platforms that inherently depend on attracting multiple dif-

ferent types of users. For instance, the quality or usefulness of a payment platform (such

as digital currencies, credit cards, and mobile payments) depend on which merchants accept

the payment and which consumers use the payment. Each party cares about the other. A

mobile phone network is attractive only if it allows a user to message her contacts on the

same technological platform. A dark pool for the trading of financial instruments needs to

attract both buyers and sellers in somewhat proportionate numbers if it is to allow trade

and coexist with other public exchanges. Even traditional financial intermediaries can be

thought of in this way, as they intermediate between savers and borrowers, transforming the

risk, liquidity, and maturity structure of funds.

We ask, in these types of markets with multiple competing platforms how one defines a Wal-

rasian equilibrium. Does it typically exist, or are there inherent problems? If an equilibrium

exists, is it allocatively efficient or is there a case for the regulation of prices? Finally, what is

the relationship between competitive equilibria and the distribution of welfare; specifically,

does one party on the platform have an inherent advantage?

Platform competition has rightly attracted significant academic and regulatory attention,

particularly the interchange fee. The interchange fee is a charge for the acquiring bank

(the bank that processes a credit card payment on behalf of the merchant) levied by the

issuing bank (the bank that issues a consumer’s credit card) to balance the credit card’s

costs between the merchant and the consumer’s bank. Consumers’ utility and merchants’

profits from using or accepting a credit card depend on the number of users of both types, as

well as their respective costs via the interchange fee. In this environment, because a user’s

utility or profit depends on the composition of the card’s users, does this dependence cause

a network externality? Can the interchange fee correct this network externality? Would

a market-determined interchange fee require regulation? Finally, how does the size of the

interchange fee distribute costs between consumers and merchants?

These questions have been asked by the academic and policy literature but only partially

addressed. “The large volume of theoretical literature on interchange fees has arisen for

the simplest of reasons: understanding their termination and effect is intellectually chal-

lenging”, according to Schmalensee and Evans [2005]. Baxter [1983]’s seminal work, seems

to be the first paper to model the multi-sided nature of payment systems: “In the case of
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transactional services, although consumer P’s marginal valuation of the additional use of a

particular payment mechanism may differ markedly from consumer M’s marginal valuation,

these valuations cannot be independent of one another.” Baxter models these interdepen-

dencies across platform users in a competitive framework. In more recent work, Rochet

and Tirole [2003], Schmalensee and Evans [2005], Armstrong [2006], Hagiu [2006], Rochet

and Tirole [2006], Rysman [2009], Weyl [2010], Weyl and White [2016] argue that platforms

are unable to fully internalize the merchant’s marginal utility gain from an extra consumer,

which leads to an unpriced “externality”, and consequently, a market inefficiency.

Though the credit card payment system links directly to policy issues at stake, it also

conjures up the image of imperfect competition, as the credit card industry is relatively

concentrated with the leading companies being Visa, MasterCard, American Express, and

Discover. However, crypto currencies are entering, and beginning to compete. There are

number of crypto currencies that feature payments, including not only Bitcoin, but also

Dogecoin, Litecoin, Monero, Ripple, Stellar, and Zcash.

This inevitably raises the question of whether there is scope for the existence of multiple

coins, or in the language of this paper, can there be multiple payment platforms co-existing

in equilibrium. This competitive battle is being waged against the key constraint—the

problem of scaling up. Bitcoin’s miners are validators using a proof-of-work protocol which

consumes significant electricity, yet has limited capacity and slow transaction speed—an

estimated 7 transactions per second for bitcoin (Croman et al. [2016]). But new entrants

with alternative protocols are faster and cheaper, for example, Stellar with its Federated

Byzantine Agreement; or Algorand’s with its proof-of-stake protocol. Visa is typically held

up as the “gold standard” on these dimensions with a stated capacity to handle more than

24,000 transactions per second. No doubt facing competitive pressures, Facebook, along with

a consortium of financial intermediaries, have announced a new digital currency for payments.

In short, the payments industry has become much more competitive. Notably, these different

currencies have in-built product differentiation across them and these various currencies

typically appeal to different customer bases—both in characteristics of the platform’s users

and the relative size of the platform.

Likewise, the financial intermediation industry has become more competitive, with financial

technology firms entering with peer-to-peer (P2P) and business-to-business (B2B) platforms

competing against more traditional commercial banks (Frost et al. [2019]). More broadly,
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competition in financial intermediation has been noted in other markets. For instance, there

were more than 40 different platforms for trading listed securities available to traders in 2008

(O’Hara and Ye [2011]).

Given this background, with credit cards, coins and P2P interfaces as examples of platforms,

and in contrast to the recent literature on two-sided markets, we return to the competitive

framework first introduced by Baxter. We extend the original literature in two key ways:

(i) We use tools from general equilibrium theory to model platform competition, and (ii) we

allow platforms to offer bundles that detail the composition of a platform’s users—that is, we

are clear about the platform characteristics, the commodity point, as it were. Through the

use of this modified contract, we show that the prices for the platform membership, varying

by type of user, overcome the inherent externality, in a similar manner as that suggested

by Arrow [1969]. That is, the competitive equilibrium is Pareto optimal, and the usual first

and second welfare theorems hold.

Our paper has four main results: First, building on Prescott and Townsend [2006], who

analyzed firms as clubs in general equilibrium, we provide a framework that shows that

platform contracts and competition among platforms can internalize the previously described

externality. To be consistent with the presumption of a competitive market, we make the key

assumption that platforms experience some form of decreasing returns. In reality, payment

platforms face the problem of scale—the difficulty of processing many transactions in a

limited amount of time. The validation protocols of distributed ledgers require the ledgers

to be synchronized in real-time, meaning every node is connected to every other, so the

complexity of synchronization increase combinatorially with the number of nodes. That is

related to the size of the blocks for underlying transactions to be validated and hence to

speed. See Mallet [2009] and Townsend [Forthcoming]. In a different context, Altinkiliç and

Hansen [2000] and O’Hara and Ye [2011] document non-increasing returns to scale in equity

underwriting and equity exchanges, respectively.

Second, and more specifically, we prove that both the first and second welfare theorems hold

in our model environment; the competitive equilibrium is Pareto optimal; and, any opti-

mal allocation of resources can be achieved by lump-sum taxes and transfers on underlying

wealth. To prove these results, we model that each basic user type faces a user price for

each of a (infinite) number of potential platforms, which vary in the number of own-type

participants and other-type participants. In equilibrium, at given prices, the solution to
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these decentralized problems delivers the mix and number of participants in active platforms

that each user anticipated when they chose their platforms. That is, in equilibrium each

active platform is populated with user types and numbers exactly as anticipated. Multiple

types of platforms can coexist simultaneously, though far fewer than the potential number

one can envision.

The solution is efficient because the type-specific market prices for joining platforms, which

each user takes as given, change across the many potential platforms in a way that internalizes

the marginal effect of altering the composition of the platform. Put differently, each agent of

each type (having tiny, negligible influence), is buying a bundle that includes the composition

and number of total participants, and buying the right to interface with her own and other

types in known numbers. Although the problem is decentralized and each type independently

determines the platform they want to join, type-specific prices to join a platform of a given

size direct traffic, so that for each and every type, the composition of active platforms will

have the membership that was purchased. In short, the commodity space is expanded to

include the intrinsic externality feature of the platform and prices on that commodity space

decentralize the problem.

Third, we use this framework to do some comparative statics: We characterize how the

equilibrium prices for each type of user to join the platform and the composition of a plat-

form’s users change as we alter parameters of the underlying economic environment. We

make a distinction between a fundamental type of user (consumer and merchants) versus

within-a-type users that differ only in wealth or preferences. In this way we can examine how

the equilibrium changes as we alter different consumers’ wealth. The latter allows us to see

how higher wealth for a certain type leads to more advantageous matches for that type but

subsequently spills over to others’ and hence to their own utility. Specifically, a change in the

wealth distribution towards a favored type not only increases the competitively determined

utility of that type, but also potentially increases the utility of those that the favored types

wish to be matched with, and likewise, decreases the utility of others with lower wealth who

are in direct competition with that favored type. Moreover, our comparative statics allow

us to explore how the equilibrium allocation and utility may change in response to future

developments in the payment industry. For example, in response to the cost of building

and maintaining platforms falling, our model demonstrates that this could cause both larger

platforms and greater utility for poorer users.
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We exploit in these latter comparative static exercises the fact that changing Pareto weights

is equivalent to changing wealth—that is, we use a programming problem to maximize the

Pareto weighted sums of utilities, and then change the weights, and subsequently tracing out

all the Pareto optimal equilibria. A given optimum requires lump-sum taxes and transfers,

or equivalently, a change in the initial underlying distribution of wealth.

Fourth, we demonstrate the generality of our framework for modeling platforms. We extend

the model to allow for heterogeneous agent preferences, and allow agents to join multiple

platforms (multihoming). In addition, we compare a competitive and a monopoly framework

to demonstrate the marked difference in their platform allocations. In this sense, competition

matters even though both modes of organization internalize the externality.

Our Walrasian framework offers a compelling model for approximating the outcome of com-

petition among financial intermediaries, holding the type of intermediation fixed. In the

limit, as the number of platforms becomes arbitrarily large, we can ignore strategic aspects;

of course, this approach sets us apart from the industrial organization literature, which fo-

cuses on smaller numbers and imperfect competition. To ensure the outcome that each

platform is essentially a price-taker, we do need to assume in our setting that platforms do

not have ever increasing returns to scale, though again we find that realistic in the context

of some of the key examples.

Our framework builds heavily on club theory and in particular, the firms as club literature.

Koopmans and Beckmann [1957] discuss the problem of assigning indivisible plants to a

finite number of locations and its link to more general linear assignment or programming

problems. A system of rents sustains an optimal assignment in the sense that the profit from

each plant-location pair can be split into an imputed rent to the plant and an imputed rent

to the location. At these prices landowners and factory owners would not wish to change the

mix of tenants or location. As Koopmans and Beckman point out, the key to this beyond

linear programming is Gale et al. [1951]’s theorem that delivers Lagrange multipliers on

constraints. Every location has a match and the firms and location are not over- or under-

subscribed. A linear program ignores the intrinsic indivisibilities—the integer nature of the

actual problem—yet nevertheless achieves the solution.

Utilizing two related methods developed in the firms as club literature, we likewise overcome

the non-convexity in our production set (assigning individuals to platforms). First, with a

large number of agents one can approximate the environment with a production set that



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 6

has constant returns, that is, when the non-convexity is small relative to the size of the

economy. Essentially, the production set becomes a convex cone, as in McKenzie [1959,

1981]’s formulation of general equilibrium. Second, more specifically, we use lotteries (at the

aggregate level) as developed in Prescott and Townsend [2006], to assign fractions of agent

types to contracts and platforms even though the individual assignments are discrete. The

firms as clubs methodology is well suited for our setting because it allows us to solve for

which platforms emerge in equilibrium, the size of each platform, and who is part of each

platform.

The closest literature to our work on platforms is the two-sided markets’ literature. This

literature considers platforms that sell to at least two different user groups, and whose utility

is dependent on who else uses the platform. In contrast to our paper, in general, the two-

sided markets literature uses an industrial organization, partial equilibrium framework. The

main finding in Rochet and Tirole [2003, 2006], Armstrong [2006], Weyl [2010], Weyl and

White [2016] is that two-sided markets can lead to market failure. In particular, in the

two-sided market literature, a key concern is how the distribution of users’ fees will cover

the platform’s fixed and marginal costs.

Rysman [2009]’s comprehensive overview of the empirical and theoretical work on two-sided

market states that “the main result (in the two-sided market literature) is that pricing to

one side of the market depends not only on the demand and costs that those consumers

bring but also on how their participation affects participation on the other side.” This

statement highlights three of the main advantages of our general equilibrium framework

with a Walrasian allocation mechanism: First, we show that net prices are appropriate—the

indirect effect on the ‘other side’ is priced in, as the price is on the composition of the

platform which all believe they have a right to buy—and outcomes are efficient. Second, we

show how the equilibrium changes—the prices for joining a platform, the size of platforms,

and the resulting agent utilities—as we alter the underlying wealth distribution or the cost

of building a platform. For instance, in one of our examples, we show that as we increase the

fixed cost of building a platform, the relative cost for joining a platform rises the most for

the poorest individuals, thereby increasing inequality in the system. Third, the Walrasian

framework has a vastly different allocation relative to the monopoly framework.
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Weyl and White [2016] consider the general equilibrium implications of two-sided mar-

kets with imperfect competition. They provide a new solution concept—Insulated Equi-

librium—to explain how platforms may induce agents to coordinate over which platforms to

join. Our paper focuses on modeling perfect competition with the full observability of an

agent’s type. In contrast to our paper, Weyl and White argue that there remains a poten-

tial for market failure due to an unpriced consumption externality. The key difference in

our papers’ predictions arises from our differing modeling choices. Our paper’s economy is

perfectly competitive, whereas Weyl and White assume an oligopolistic platform economy

where each platform has market power and cannot extract the full consumer surplus. This

oligopolistic competition potentially leads the platforms to charge socially inefficient prices.

In our economy, the platforms are perfectly competitive and earn no rents, removing this

potential source of social inefficiency.1

Indeed, we need to emphasize the limitations of what we are doing and, specifically, what we

are not doing. We do not consider agents to have any pricing power. We do not consider the

problem of establishing new products or platforms in the sense of innovation and entry into

an existing equilibrium outcome and the problem of changing client expectations. Relatedly,

we do not discuss the historical development of platforms or consider current regulatory

restrictions, including well-intended but potentially misguided regulations that may limit

our ideal market design. Nor do we model oligopolistic competition, though we do allow our

platforms to be configured with different compositions of customers so there is clear product

differentiation (just no market power). Finally, we do not allow ever increasing economies of

scale in platform size.

2. Model

There are two types of individuals, merchants (A) and consumers (B).2 There is a continuum

of measure one of each type. There is variation within these types – namely, there are sub-

types of merchants and consumers who differ in their endowment levels, wealth. We index

each agent by (T, s) where T is the type (merchant or consumer) and s is the sub-type. There

are I subtypes of merchants, A (indexed by i), and J subtypes of consumers, B (indexed

1Within our framework we can also model a monopolist platform sector. In this model, the monopolist will
maximize profits by severely restricting supply and producing a negligible mass of platforms.
2For clarity, we restrict our model to two types, but our model is sufficiently general to accommodate multiple
types.
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by j). By introducing variation in an agent’s wealth, we can analyze how changes in the

economic environment affect both the composition of a platform and an agent’s utility.3

There is a fraction αT,s of each type T and subtype s, and there is a measure of each one

of each type T ,
∑

s αT,s = 1 ∀T ∈ {A,B}.4 Clearly, the fraction of each subtype αT,s are

arbitrary real numbers on the unit interval, not integers. Each agent has an endowment of

capital, denoted by κT,s > 0. Capital will be the numeraire.

We model utility at a reduced-form level. That is, we assume agents procure utility from

being matched with other agents. Although this assumption is not realistic per se, we

presume the process of being matched with other agents facilitates trade over the platform,

and trade gives final allocations, resulting in utility. We do not model that underlying

environment explicitly—and in some ways that makes our model more general. Further, we

could generalize and introduce a term for any private benefit the platform provides over and

above its matching service. In short, the utilities we use are to be thought of as indirect.

We only allow non-negative integers of merchants and consumers to join a platform. The

utility of a merchant, A (of any subtype s), matched with NA merchants (including the

merchant herself) and NB consumers is:

UA,s(NA, NB) = UA(NA, NB) =

{
0 if NB = 0[(

NB
NA

)γA
+N εA

B

]
else

Note that the baseline utility of not being on any platform and being matched with none of

the other type is zero.5 This situation is the “opt-out” or autarky option, and it is always

available.

Symmetrically, for a consumer, B (of any subtype s), it is:

UB,s(NA, NB) = UB(NA, NB) =

{
0 if NA = 0[(

NA
NB

)γB
+N εB

A

]
else

3Section (6.1) extends the baseline model to allow subtypes to have different preferences.
4We use this assumption for computational ease but it is straightforward to allow different measures of each
type. Additionally, some insights can be drawn from varying agents’ wealth endowments.
5This is a natural assumption for the opt-out utility because the lower bound for NA is one (because as soon
as a merchant joins a platform, there must be at least one merchant on the platform), and, if NA is positive,

the limit of UA(NA, NB) as NB goes to zero is zero (limNA≥1,NB→0

(
NB

NA

)γA
+N εA

B = 0).
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Where {γA, γB, εA, εB}∈ (0, 1)4 are the key parameters.

This utility function exhibits two important features which Ellison and Fudenberg [2003]

highlight:

(1) Market Impact Effects: Each type prefers more of the other type and less of

it’s own

UA(NA, NB + 1)− UA(NA, NB) =
[(NB + 1)γA −NγA

B ]

NγA
A

+ [(NB + 1)εA −NB
εA ] > 0

UA(NA + 1, NB)− UA(NA, NB) =

[(
1

NA + 1

)γA
−
(

1

NA

)γA]
NγA
B < 0

Individuals will compete between agents of their own type, though they prefer more of the

other type. For example, in the general merchant and consumer case, we are presuming that

merchants dislike more merchants, as this situation would lead to greater competition and

possibly reduce the good’s price. Therefore, we are modeling a reduced form specification

for competition between agents of the same type.

(2) Scale effects: An individual prefers larger platforms for a given ratio

- assume τ > 1, therefore:

UA(τNA, τNB)− UA(NA, NB) = (τ εA − 1)N εA
B > 0

For a given ratio of participants, individuals prefer to be on larger platforms, as such plat-

forms provide more possibilities for trade and may promote economies of agglomeration.

Symmetrically, both effects also apply for the type B utility function.

The assumption that epsilon is greater than zero might seem to bias us in the direction

of having large platforms, undercutting our results, or make the price taking assumption

unrealistic, but we shall see this does not happen.

In the model, agents buy personal contracts that stipulate the number of merchants and

consumers on the platform.

We denote the contract by dT (NA, NB), where NA and NB are the number of merchants

and consumers, respectively, on the given platform, and T denotes the type of individual

the contract is for—a dummy as it were—indicating whether it is for merchants (A) or
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consumers (B). Types are observed, and Type T cannot buy a contract indexed by T ′. Fur-

ther, one can think of any individual agent of a given type T and subtype s as allowed

to join only one platform. Thus, we can create a function xT,s[dT (NA, NB)] ≥ 0 such that∑
s xT,s[dT (NA, NB)] = 1, which is an indicator (or, more generally, a probability distribu-

tion, on which in the following) for the assignment of an agent (T, s) to contract dT (NA, NB).6

The set of all possible contracts for type A, the space in which dA(NA, NB) lies, is denoted

as DA and, similarly, the set of contracts for type B is denoted DB.

The consumption set of type A, s agents can be written as the following:

XA,s =

{
xA,s[dA(NA, NB)] ≥ 0 ∀dA ∈ DA,

∑
dA∈DA

xA,s[dA(NA, NB)] = 1, xA,s[dB(NA, NB)] = 0 ∀dB ∈ DB

}

The above condition states that type A, s agents can purchase any non-negative amount of

contract dA ∈ DA, but none of the type B contracts, and in total, must purchase a total of

one unit of contracts, that is, the individual must join a a platform with probability one.

Since, the agent’s consumption set is convex, and since the agent’s utility function is linear,

the utility function is concave.

Symmetrically the consumption set of type B, s agents can be written as:

XB,s =

{
xB,s[dB(NA, NB)] ≥ 0 ∀dB ∈ DB,

∑
dB∈DB

xB,s[dB(NA, NB)] = 1, xB,s[dA(NA, NB)] = 0 ∀dA ∈ DA

}

As individuals can join only a single platform, this constraint introduces an indivisibility into

an agent’s consumption space. To overcome this problem we allow individuals to purchase

mixtures, or probabilities of being assigned to a platform of a certain size including the

opt-out option.7 For example, consider an agent who buys two different contracts: the first

contract assigns the agent to a platform consisting of four merchants and three consumers

with probability one-third, and the second contract assigns the agent to a platform consisting

of three merchants and one consumer with probability two-thirds. The deterministic case,

6In Subsection 6.2, we extend the model to allow multihoming (agents can join multiple platforms) by
omitting the requirement that an agent is matched to only one platform (

∑
s xT,s[dT (NA, NB)] = 1).

7A similar modeling approach is used in Prescott and Townsend [1984], Prescott and Townsend [2005],
Pawasutipaisit [2010].



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 11

where an agent buys a contract that matches them with a platform of size (NA, NB) with

certainty, can be seen as a special case. We do not insist that there be mixing in a competitive

equilibrium but it can happen as a special case. For instance, there can be mixing between

a given platform and an opt-out contract when agents are poor because the poor agent has

insufficient wealth to buy fully into a platform.

As a technical assumption, we assume there is a maximal platform of size (NA, NB), and any

platform up to this size can be created. Assuming there is a maximal platform size bounds

the possible set of platforms and hence makes the commodity space finite. This maximal

platform size is for simplicity of our proofs because we can choose NA and NB arbitrarily

large such that this condition does not bind.

The commodity space is thus:

L = R2(NA×NB+1)+1

There are contracts for every possible platform size, in turn indexed by the two types.

Therefore, there are (NA×NB + 1) contracts for each type because we defined the maximal

platform size to be (NA, NB) and there is always the opt-out contract. Because there are two

types, we multiply this number by two to calculate the total number of contracts available.

Finally, there is a market for capital, as we describe in the following paragraph.8

All contracts dT (NA, NB) are priced in units of the capital good and the type T price for

contract dT (NA, NB) is denoted as pT [dT (NA, NB)] for types A and B (where T ∈ {A,B}).

2.1. Agent’s Problem. In summary, agent T, s takes prices pT [dT (NA, NB)] ∀dT ∈ DT as

given and solves the maximization problem:

8For instance, assume NA and NB are equal to 2. Then for type A agents there would be five possible
contracts to join a platform. There are platforms of size and composition (NA, NB): (1,0) [opt-out contract],
(1,1), (2,1), (1,2) and (2,2). Similarly for type B agents, the agents could join platforms of composition
(NA,NB): (0,1) [opt-out contract], (1,1), (2,1), (1,2) and (2,2). Finally, agents have their capital endowment,
κ. Therefore, in total there area eleven contracts.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 12

max
xT,s∈XT,s

∑
dT (NA,NB)

xT,s[dT (NA, NB)]UT [dT (NA, NB)](1)

s.t.
∑

dT (NA,NB)

xT,s[dT (NA, NB)]pT [dT (NA, NB)] ≤ κT,s(2)

∑
dT (NA,NB)

xT,s[dT (NA, NB)] = 1(3)

where each type of individual has an endowment of κT,s (that is strictly positive) of capital

and the price of capital is normalized to one—that is, capital is the numeraire.

Equation (1) is the agent’s expected utility from the assignment problem. Equation (2) is the

agent’s budget constraint. Equation (3) is the agent’s matching constraint, which requires

the agent to join a platform or opt-out.9

Figure 1 illustrates the agent’s maximization problem. The green dots represent the utility

and price (recall that we have normalized the price of the capital good to one) for each degen-

erate platform choice (that is, when xT,s[dT (NA, NB)] = 1), the dashed blue line represents

the agent’s hypothetical budget constraint, κT,s, and the dashed green area represents the

set of points that satisfy the agent’s matching constraint (inequality (3)). In this example,

the agent’s optimal choice and resultant utility is represented by the red dot.

2.2. Platforms. We assume there are intermediaries or marketmakers who create platforms

and sell contracts for each type to join platforms. As will be evident, there are constant

returns to scale for the intermediaries, so for simplicity we can envision that just one mar-

ketmaker is needed in equilibrium. We denote yA[dA(NA, NB)], as the number of contracts

produced for type A of platform size and composition (NA, NB) and yB[dB(NA, NB)] as the

number of contracts produced for type B of platform size and composition (NA, NB). These

are counting measures and there is nothing random. Further, we denote the number of plat-

forms of size and composition (NA, NB) as y(NA, NB). Thus NA× y(NA, NB) is the number

of type A’s in total on the type of platform counted as y(NA, NB). Similarly, NB×y(NA, NB)

is the number of type B’s in total on the type of platform counted as y(NA, NB). In turn,

9Because an agent can join a platform that is only populated by that agent (autarky or a singleton platform),
this matching constraint essentially requires agents to join at most one platform in equilibrium.
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Figure 1. The agent’s maximization problem
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each of these must equal the numbers yA[dA(NA, NB)] and yB[dB(NA, NB)] respectively, as

defined earlier.

The intermediary must satisfy the following matching constraint:

(4)
yA[dA(NA, NB)]

NA

=
yB[dB(NA, NB)]

NB

= y(NA, NB) ∀dA ∈ DA,∀dB ∈ DB

In other words, this constraint states that the number of platforms created for type A of

size and composition (NA, NB), relative to the number of platforms created for type B of

the same size and composition (NA, NB) must equal the relative number of type B to the
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number of type A on the platform.10 Also, all of the numbers dealing with the number of

platforms are on a continuum and so do not have to take on integer values. This is because

the mathematics takes into account the continuum measure of each type of mass 1.11

A platform of size (NA, NB) requires the following amount of capital:

C(NA, NB) =

{
0 if NA = 0 or NB = 0

cANA + cBNB + cNANB +K else

The capital requirement of a singleton or opt-out platform is normalized to zero, as it costs

nothing to produce and is always available. In creating a platform, there is positive marginal

costs for an extra agent on each side of the platform (captured by cA and cB) and for the

multiple of agents on both sides (captured by the interaction term c). Additionally, there

can be some positive fixed cost, K, in creating a platform. For a more flexible specification

we allow cA and cB to be different. We assume that cA, cB, c ∈ (0,∞) and K ∈ [0,∞). We

require cA, cB and c to be strictly larger than zero; this assumption ensures we can bound

the size of the equilibrium platforms. In particular, with c strictly greater than zero, the

cost of doubling the size of any given platform rises more than proportionally (excluding the

fixed cost)—that is, there are decreasing returns to scale in this technology after some size.12

We denote the amount of capital input purchased by the intermediary as yκ – this amount has

to be sufficient to build the proposed platforms, as counted in y(NA, NB). Recall again that

10For instance, assume that there are 0.1 platforms of size and composition (NA = 2, NB = 1) (that is,
y(2, 1) equals 0.1). Then, to ensure there are the appropriate number of type As to type Bs on the platform,
we require that the number of contracts for type of A for platform of composition (2,1) to be equal to 0.2
(that is, yA[dA(2, 1)] equals 0.2), and that the number of contracts for type B for platform of composition
(2,1) to be equal to 0.1 (that is, yB [dB(2, 1)] equals 0.1).
11For example, if we multiply each type by 100, we will have larger numbers for each type but the same
proportions. Now consider if 0.1 platforms are created that match three merchants and two consumers, a
platform of composition (3, 2). This matching would require 0.1×3 = 0.3 merchant contracts and 0.1×2 = 0.2
consumer contracts. We could multiply this figure by the common factor of 100 to have 10 platforms each
with the composition (3, 2) in total, hence with 30 type As and 20 type Bs in total. If the fraction of platforms
created were 0.135 and we used 100 as the base, we would end up with 13.5 platforms, but multiplying by
1000, and we are back to integers, with 135 platforms, and so on. The point is that the counting measures
y are a more general way to do the math and do not require integers. Also, any single individual, or any
single platform, for that matter, has zero mass.
12Recall that the production of platform of a certain size and composition has constant returns to scale (for
example, creating ten platforms of size (NA, NB) will require ten times the amount of capital as creating
one platform of size (NA, NB) and the stated cost function shows that creating a larger platform (that is, a
platform with more individuals on that platform) has decreasing returns to scale after some size (due to the
strictly positive coefficient c).
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there can be a variety of platforms. Thus we can write the intermediary’s capital constraint

as the following:

(5)
∑
NA,NB

y(NA, NB)[C(NA, NB)] ≤ yκ

Hence, the intermediary’s production set is:

Y =
{

(y, yA, yB, yκ) ∈ R2(NA×NB+1)+1| (7) and (8) are satisfied
}

It is a convex cone as in McKenzie [1959]. Note the choice objects are the y(NA, NB)’s, while

the cost function enters only as a weighting coefficient. Hence there are constant returns to

scale in the cost function as in constraint (8).

We explore the role of market power in platform supply and agent welfare by modeling two

different environments: First, we model a price-taking intermediary, and second, we model

a price-setting intermediary who has market power and who can set both the quantity and

price of each platform contract.

2.3. Competition: price-taking intermediary. The intermediary takes the Walrasian

prices pT [dT (NA, NB)] ∀dT ∈ DT , T ∈ {A,B} as given parametrically and maximizes profits

by constructing platforms and selling type-specific matchings (as before, the price of capital

is normalized to one):

(6)

π = max
y,yA,yB ,yκ∈Y

∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}−yκ

such that:

(7)
yA[dA(NA, NB)]

NA

=
yB[dB(NA, NB)]

NB

= y(NA, NB) ∀dA ∈ DA,∀dB ∈ DB
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(8)
∑
NA,NB

y(NA, NB)[C(NA, NB)] ≤ yκ

Equation (6) states that the intermediary maximizes the number of platforms of a given size

(NA, NB) to produce given the prices for each position in the platform. The intermediary’s

profits are equal to the number of contracts the intermediary constructs multiplied by their

respective price, minus the cost of the capital input.

The intermediary’s Lagrange problem is:

L(yA, yB, y, yκ, µ) =
∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}

−yκ +
∑
NA,NB

[
µANA,,NB

(
yA[dA(NA, NB)]

NA

− y(NA, NB)

)]

+
∑
NA,NB

[
µBNA,,NB

(
yB[dB(NA, NB)]

NB

− y(NA, NB)

)]
+µk(

∑
NA,NB

y(NA, NB)[C(NA, NB)]− yκ)

where µANA,NBand µBNA,NB are the Lagrange multipliers for the intermediary’s matching con-

straints for a platform of size (NA, NB) and for types A and B respectively (equation (7)).

µk is the Lagrange multiplier for the intermediary’s capital constraint (equation (8)).

Solving the intermediary’s Lagrange problem gives the following first order condition for

creating a platform of size y(NA, NB):

(9) C(NA, NB) ≥ pA[dA(NA, NB)] ∗NA + pB[dB(NA, NB)] ∗NB

where equation (9) holds with equality if there is a positive number of active platforms of

that size (NA, NB) in equilibrium. If equation (9) is a strict inequality then no such platform

exists in equilibrium. Notice this natural condition requires that the payments received

by the platform must cover all of the platform’s costs. The payments come from type-

specific prices and in that sense, the interchange fee in the credit card example is emerging



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 17

endogenously. Also note when the inequality in equation (9) is strict, such platforms of that

type do not exist. One could raise the price marginally; however, this increase would only

discourage demand and still would not cover the supply side’s costs. The market for inactive

platforms is thus clearing at a zero quantity with the minimum price the intermediary is

willing to accept, which is greater than the maximum sum of prices the household types are

willing to pay.

2.3.1. Competition: Market Clearing. For market clearing we require the following condi-

tions to hold

∑
s

αT,sxT,s[dT (NA, NB)] = yT [dT (NA, NB)] ∀NA, NB, T ∈ {A,B}(10) ∑
T,s

αT,sκT,s = yκ(11)

Equation (10) ensures that the (decentralized) amount of demand for each contract for each

type equals the (decentralized) supply of that contract. Equation (11) states that the total

endowment of capital (the supply) must equal the amount of capital used by the intermediary.

2.3.2. Competitive Equilibrium. Let us define x as the vector of contracts bought xT,s[dT (NA, NB)]

for all subtypes (T, s), then a competitive equilibrium in this economy is (p, x, {y, yA, yB, yκ})
such that for given prices pT [dT (NA, NB)]:

(1) The allocation {xT,s[dT (NA, NB)]} solves the agent’s maximization problem [that is,

xT,s[dT (NA, NB)] solves equation (1) subject to equations (2 and 3)].

(2) The allocation {y, yA, yB, yκ} solves the platform’s maximization problem [that is,

{y, yA, yB, yκ} solves equation (6) subject to {y, yA, yB, yκ} ∈ Y ].

(3) The market clearing conditions hold [equations (10) and (11) hold].

In equilibrium, the pricing mechanism will determine the size and number of each platform

and subsequently the relative proportions of merchants and consumers on each platform.

2.4. Monopoly: price-setting intermediary. In contrast to Section (2.3), we model the

intermediary as a price-setting monopolist, who sets prices pT [dT (NA, NB)] ∀dT ∈ DT , T ∈
{A,B} and quantities yT (dT (NA, NB) ∀dT ∈ DT , T ∈ {A,B} to maximize profits subject
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to aggregate demand equals aggregate supply, where aggregate demand is derived from the

consumer’s problem.

(12)

π = max
p,yA,yB ,yκ∈L×Y

∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}−yκ

(13) s.t.
∑
s

αT,sxT,s[dT (NA, NB)] ≥ yT [dT (NA, NB)] ∀NA, NB, T ∈ {A,B}

Equation (12) states that the intermediary problem maximizes how many platforms of a

given size to produce and the price to charge each side of the market (pA[dA(NA, NB)]

and pB[dB(NA, NB)]) for each position in the platform; subject to, quantity supplied being

less than or equal to total demand for each contract and the allocation being within the

intermediary’s production set, Y .13

2.4.1. Monopoly Equilibrium. Then a monopoly equilibrium in this economy is (p, x, {y, yA, yB, yκ})
such that:

(1) The allocation {xT,s[dT (NA, NB)]} solves the agent’s maximization problem [that is,

xT,s[dT (NA, NB)] solves equation (1) subject to equations (2 and 3)].

(2) The allocation {y, yA, yB, yκ} and prices p solves the platform’s maximization problem

[that is, (p{y, yA, yB, yκ}) solves equation (12) subject to (p{y, yA, yB, yκ}) ∈ L × Y
and equation (13)].

3. Social Planner’s Problem

First, we set up the social planner’s problem and determine the set of all Pareto optimal

contracts. We show (i) a competitive equilibrium is Pareto optimal, (ii) any Pareto optimal

allocation can be achieved with lump-sum transfers and taxes among agents and (iii) there

exists a competitive equilibrium. These results have two important implications: (i) the de-

centralized problem is Pareto optimal, and (ii) when solving for the competitive equilibrium,

we can use the simpler social planner’s problem to compute the allocation. Consequently, we

13Recall that the production set requires the intermediary’s matching constraint (equation 7) and capital
constraint to be satisfied (equation 8).
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can use the Lagrange multipliers to impute the competitive equilibrium prices and wealth

associated with that allocation.

The social planner’s welfare maximizing problem with Pareto weights λA,s and λB,s for types

(A, s) and (B, s), respectively, is

max
x≥0,y≥0

∑
s

λA,s

 ∑
dA(NA,NB)

αA,sxA,s[dA(NA, NB)]UA(NA, NB)


+
∑
s

λB,s

 ∑
dB(NA,NB)

αB,sxB,s[dB(NA, NB)]UB(NA, NB)


s.t.

∑
dT (NA,NB)

xT,s[dT (NA, NB)] = 1 ∀T, s(14)

∑
s

αT,sxT,s[dT (NA, NB)] = y(NA, NB)×NT ∀dT ∈ DT ,∀T ∈ {A,B}(15) ∑
NA,NB

y(NA, NB)[C(NA, NB)] ≤
∑
T,s

αT,sκT,s(16)

Equation (14) ensures that each individual is assigned to a platform, equation (15) ensures

that the total purchase of contracts equals the number of contracts produced, and equation

(16) ensures the total number of contracts produced is resource feasible.

3.1. Dual. The Pareto problem can also be written in terms of its dual equivalent:

min
p

∑
T,s

(pT,s + pκαT,sκT,s)

s.t. pT,s + αT,spT [dT (NA, NB)] ≥ λT,sαT,sUT (NA, NB) ∀i,∀T,∀(NA, NB)(17)

pκC(NA, NB)− {pA[dA(NA, NB)]×NA + pB[dB(NA, NB)]×NB} ≥ 0 ∀(NA, NB)

In this formulation pT,s, pT [dT [NA, NB)], and pκ are the Lagrangian multipliers associated

with the participation constraint for the agent of type T, s (equation 14), the Lagrangian

multiplier associated with the matching constraint for type T for all platforms (equation 15),
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and the Lagrangian multiplier associated with the economy’s resource constraint (equation

16), respectively.

The dual minimizes the aggregate cost of the economy (in terms of prices of each type and

total capital) such that each type of agent receives a given level of Pareto weighted utility.

Whereas, the primal problem maximizes the Pareto weighted expected utility of each type

subject to the matching and resource constraints.

The Pareto problem is well defined in both the primal and dual form therefore, by the “strong

duality property”14 there must exist an optimal solution (p∗, x∗, y∗) such that:

∑
T,s

λT,s

 ∑
dT (NA,NB)

αT,sx
∗
T,s[dT (NA, NB)]UT (NA, NB)

 =
∑
T,s

αT,s(p
∗
T,s + p∗κκT,s)

In the proofs of going between the Pareto allocation and competitive equilibrium we will

assume that individuals are non-satiated, but this assumption is not crucial because we can

always expand the commodity space such that this assumption holds.

The following Theorems 1 to Theorem 3 prove that for all Pareto weights, there is a com-

petitive equilibrium that replicates the social planner’s problem.

Theorem 1. If all agents are non-satiated, a competitive equilibrium (p∗, x∗, y∗) is a Pareto

optimal allocation (x∗, y∗). [First Welfare Theorem]

The proof is standard, and is in the Appendix.

Theorem 2. Any Pareto optimal allocation (x∗, y∗) can be achieved through a competitive

equilibrium with transfers between agents subject to there being a cheaper point for all agents

and agents are non-satiated.

The proof is in the Appendix. The proof relies on first showing that any solution to Pareto

program can be supported as a compensated equilibrium and subsequently showing that we

can map the Lagrange multipliers and other variables from any Pareto optimal allocation

into a compensated equilibrium. Finally, the proof shows that a compensated equilibrium

is a competitive equilibrium, subject to the existence of a cheaper point. The proof follows

from Prescott and Townsend [2005].

14See Bradley et al. [1977] pages 142-143 for more details.
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Theorem 3. For any given distribution of endowments, if the Pareto weights at a fixed point

of the mapping are non-zero, then a competitive equilibrium exists.

The proof is in the Appendix. The proof relies on finding a mapping that satisfies the

conditions of Kakutani’s fixed point theorem and subsequently showing that this fixed point

is a competitive equilibrium, subject to the existence of a cheaper point. The proof follows

from Prescott and Townsend [2005].

4. Results

4.1. How does market power affect the allocation of resources and rent? In section

(3) we showed that the competitive equilibrium is a Pareto optimal allocation. Here we will

analyze the monopoly equilibrium. The main difference between the competitive equilibrium

and the monopoly equilibrium is the number and type of platforms created. In particular, the

price-setting intermediary in the monopoly equilibrium will restrict the supply of platforms

to maximize its rent.

Theorem 4. The price-setting intermediary in the monopoly equilibrium will capture all the

rent in the economy and will produce fewer slots than the price-taking intermediary in the

competitive equilibrium.

The proof shows that in the monopoly equilibrium, the intermediary will use its price set-

ting power to charge higher prices (than the competitive equilibrium), thereby reducing the

number of platforms created in equilibrium. Moreover, in our environment the price-setting

intermediary can set prices in such a way that it captures the whole rent. In constrast, in the

competitive equilibrium, the prices to join a platform adjust such that in equilibrium, the

economy’s total resources will be fully utilized to build platforms. The full proof is provided

in Section (8.4) in the Appendix.

Overall, market structure changes both the allocation of rents and the allocation of resources

within the economy. In particular, competition ensures that the intermediary makes no

profits, and that surplus is accrued by the agents. Further, competition ensures that all the

resources in the economy are used to produce platforms.
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4.2. Prices for joining a platform in a competitive equilibrium. To better under-

stand how prices are determined in the competitive equilibrium, we analyze the agent’s

maximization problem in more detail. The agents’ maximization problem can be written

as the following Lagrange maximization problem. We can use this problem to show which

contracts the agent of type T buys.

L =
∑
dT

xT,s[dT (NA, NB)]UT [dT (NA, NB)]− µWT,s

(∑
dT

xT,s[dT (NA, NB)]pT [dT (NA, NB)]− κT,s

)

−µPT,s

(∑
dT

xT,s[dT (NA, NB)]− 1

)

The first order condition for Type T and contract xT,s[dT (NA, NB)] is the following:

(18) UT (NA, NB)− µPT,s − µWT,s ∗ pT [dT (NA, NB)] ≤ 0

Where µPT,s is the Lagrange multiplier associated with the individual being assigned to some

platform, and µWT,s is the Lagrange multiplier associated with the agent’s budget constraint.

Furthermore, for any platform the agent buys with positive probability (xT,s[dT (NA, NB)] >

0 ), the equation will hold with equality. If the left-hand side of equation (18) is strictly less

than zero, that agent will not purchase that contract.

Let us analyse what equation (18) implies; consider an agent of type T who purchases strictly

positive measures of two different contracts, dT (NA, NB) and dT (N ′A, N
′
B). Let us define the

variable ∆U ≡ UT (NA, NB)−UT (N ′A, N
′
B) and ∆p ≡ pT [dT (NA, NB)]−pT [dT (N ′A, N

′
B)], then

we can state:

∆U = µWT,s ∗∆p

Therefore, if an agent buys strictly positive measures of two contracts, the difference in

utility between the two contracts will be a constant multiplied by the difference in price.

In general, an agent is unwilling to pay proportionally more for a contract that confers pro-

portionally more utility (that is, ∆U
U
6= ∆p′

p
); the agent is only willing to pay proportionally

more when the individual’s matching constraint is not binding (that is, µPT,s = 0). Intu-

itively, when an individual’s matching constraint binds, this individual would prefer to join
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more platforms but is constrained by the ability to join only one platform. In turn, the

limitation on the number of platforms to join ensures the percentage increase in the indi-

vidual’s willingness to pay to join a platform that confers greater utility will be more than

the percentage change in utility. Intuitively, both platforms require the same assignment of

type component, but one platform confers greater utility.

Figure 2 demonstrates this result. If the agent buys bundle “B”, the agent’s utility per

dollar is lower than if the agent buys bundle “A”—raising the question, why does the agent

not just buy more of bundle A? The agent would like to buy more of bundle “A” but is

constrained by only joining one platform in equilibrium (the matching constraint in the

agent’s maximization problem, inequality 3).

Figure 2. Agent’s optimal bundle choice
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To compute the prices paid in equilibrium, we explain our procedure in greater detail in

Section 8.5 (in the Appendix), specifically we solve the social planner’s problem and subse-

quently solve for the prices paid by each agent in equilibrium.
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5. Competitive Equilibrium Examples

In a general equilibrium framework we can analyze how both the composition of platforms

and the resulting utilities change as we alter parameters. To develop intuition, we provide

five experiments in our environment.

First, as a useful benchmark we examine an equilibrium where we have symmetric parameters

for both sides of the market—that is, the same costs, preferences, and wealth.

Second, we analyze an example that varies the wealth within and across types. Leveraging

our general equilibrium approach, we demonstrate that even with symmetric preferences and

costs, a subtype with lower wealth may actually be better off than an alternative subtype.

Third, we explore more generally how the equilibrium—and, subsequently, agents’ utili-

ties—change, as we redistribute wealth within our economy.

Fourth, we examine how the equilibrium utilities change as we alter the Pareto weights.

Counter-intuitively, we show that even if an agent’s relative Pareto weight falls, their equi-

librium utility can actually rise, depending on the general equilibrium matching effects.

Fifth, given that the cost of producing platforms changes over time (for instance because

of technological improvement), we demonstrate how the equilibrium utilities change as we

alter the fixed cost of producing platforms. We show that increasing fixed costs leads to

heterogeneous effects and, potentially, to increases in inequality.

To improve intuition, in the following examples, let us apply our model to digital currency

platforms. Each digital currency platform connects merchants to consumers. We have in

mind platforms such as Bitcoin, Ethereum, Kodakcoin, and Zcash. For ease of exposition, we

limit attention to only two subtypes of merchants—‘Small’ merchants (A, 1) and ‘Big’ mer-

chants (A, 2)—and to only two subtypes of consumers—‘Lay’ consumers (B, 1) and ‘Tech’

consumers (B, 2)—who also may vary in wealth. Each consumer would prefer to be on a

platform with more merchants (more advantageous terms) and fewer consumers (less ad-

vantageous terms). Similarly, merchants want many consumers to be on their platform but

would like fewer rival merchants on their platform, golding the number of consumers fixed.

5.1. Example 1: Symmetric wealth, preferences, population proportions, and

cost parameters. To simplify the exercise, our initial example is symmetric—there are

equal fractions of each subtype (αA1 = αA2 = αB1 = αB2), each subtype has the same
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Pareto weight (λA1 = λA2 = λB1 = λB2), the cost function is the same for both types

(cA = cB) and the utility functions’ parameters are the same (γA = γB and εA = εB).15 In

this initial example, although there are nominally two subtypes of merchants and consumers

in the notation, they are in fact identical, and therefore there is no variation by subtype.

Table 1. Equilibrium platforms and user utility for Example 1

Equilibrium platforms

Platform Size Number of Platforms Created Cost of Production
(NA, NB) y(NA, NB) C(NA, NB)

(2,2) 0.5 8

Equilibrium user utility and platform choice

Type Wealth Platform Joined Price of Joining Pr(joining) Utility on Platform
(T, s) (κT,s) (NA, NB) p(dT [NA, NB]) xT,s(dT [NA, NB]) UT (NA, NB)

A,1 2 (2,2) 2 1 2.41
A,2 2 (2,2) 2 1 2.41
B,1 2 (2,2) 2 1 2.41
B,2 2 (2,2) 2 1 2.41

In this equilibrium, all users, merchants and consumers, pay a price of two units of capital

to join a digital payment platform that matches them with two users of the other type, and

one more user of their own type so the total number of people on each platform is four. All

platforms are of equal size and producing each platform requires 8 units of capital. In total,

there is a measure of 0.5 of these platforms, which makes sense, as that number multiplied

by the number of each type on the platform, 2, delivers the measure of each type, unity.

5.2. Example 2: Different wealth but otherwise same preferences, population

proportions and cost parameters as earlier. Our second example varies wealth both

within and across types but otherwise keeps all parameters and demographics the same.16

15The parameter values are: αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1, K = 0; γA = γB = εA = εB =

1
2 ; λA1 = λA2 = λB1 = λB2 = 1

4 .
16There are equal fractions of each type (αA1 = αA2 = αB1 = αB2), the cost function is the same for both
types (cA = cB), and the utility functions’ parameters are the same (γA = γB and εA = εB); however, the
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Table 2. Equilibrium platforms and user utility for Example 2

Equilibrium platforms

Platform Size Number of Platforms Created Cost of Production
(NA, NB) y(NA, NB) C(NA, NB)

(3,2) 0.25 11
(1,2) 0.25 5

Equilibrium user utility and platform choice

Type Wealth Platform
Joined

Price of
Joining

Pr(joining) Platform
Utility

Expected
Utility

T, s κT,s (NA, NB) p(dT [NA, NB]) xT,s(dT [NA, NB]) UT (NA, NB)

Merchant (A)
Small (A,1) 1.37 (3,2) 1.37 1.0 2.23 2.23

Big (A,2) 1.64
(3,2) 1.37 0.5 2.23

2.52
(1,2) 1.91 0.5 2.80

Consumer (B)
Lay (B,1) 1.54 (1,2) 1.54 1.0 1.70 1.70

Tech (B,2) 3.45 (3,2) 3.54 1.0 2.96 2.96

In this equilibrium, two different sizes of platforms are created. One set of platforms are

larger than the other, of size 5, and are populated with relatively more merchants than

consumers. Its existence is due to the richer tech consumers—the wealthiest group in the

entire population. Tech consumers obtain the highest utility, as they join platforms that are

bigger and have a more favorable ratio of merchants to consumers. The poorer lay consumers

join smaller platforms, of size 3; these platforms are populated with a less favorable ratio

of merchants to consumers. This less favorable ratio causes lower utility for lay consumers

(and the lower utility for consumers is reflected by lower prices for consumers to join that

agents vary in wealth. The parameter values are: αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1, K = 0;

γA = γB = εA = εB = 1
2
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platform). Thus, the poorer lay consumers absorb the population imbalance created by

platforms catering to the richer tech consumers.

Turning to the type of contracts purchased. The tech consumers, lay consumers, and the

small merchants all buy contracts, where they are assigned to a particular platform with

probability one. Whereas, the big merchants buy a mixture of probabilities in two different

platforms; 50 percent are allocated to the platforms of size (3, 2), and 50 percent are allocated

to the platforms of size (1, 2). The respective prices for these two different contracts are 1.37

and 1.91. Note that solely buying the platform (1,2) for merchants costs 1.91, which is

beyond the big merchants’ budget of 1.64.

In line with intuition, those that benefit the most from the platforms pay the majority of

the total costs (here the consumers). For example, for platforms of size (3, 2), consumers

pay 63 percent of the cost of making that platform, yet, consumers are only 40 percent of

that platform’s population.17

Finally, even though preferences and costs are symmetric, and that lay consumers (B,1)

are wealthier than small merchants (A,1), note that lay consumers are relatively worse off

than small merchants. This result follows from the general equilibrium set-up and that tech

consumers are relatively rich and want to join platforms populated with a high number and

fraction of merchants. This demand for merchants ensures that small merchants (A,1) are

compensated for joining these platforms by contributing relatively less. An alternate way

to examine this distribution of costs is that the merchants are in scarcer supply (because

consumers are so much wealthier; average consumer wealth is 2.5, and average merchant

wealth is only 1.5), yet they need to participate equally on platforms, on average. Therefore,

the merchants’ price schedule is lower than the consumers’ price schedule.

5.3. How does the competitive equilibrium change as we redistribute endow-

ments? If we redistribute wealth in our economy, this redistribution will change the relative

demand for merchants and consumers and subsequently change the relative prices to join

a given platform. To examine the general equilibrium effects of redistributing wealth, we

construct two placebo interventions that reallocate wealth within our economy while holding

the total resources constant.

172 consumers pay 3.45 units of capital each and the 3 merchants pay 1.37 units each. Therefore, consumers
pay 6.9 units to join the platform out of the 11 units of capital required to produce the platform.
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Figure (3) uses the same cost and preferences as in the previous examples but varies agents’

wealth. The left panel shows the effects on the utility of (A, 1) and (B, 2) from redistributing

wealth across types, in particular from (A, 2) to (B, 1)—that is, κA,2 + κB,1 ≈ 2.4.18 The

right panel shows the effects on the utility of (A, 1) and (A, 2) from redistributing wealth

within a type, in particular between (B, 1) and (B, 2).19

Starting with the intervention that reallocates wealth across types. Recall our payment

platform example that connects merchants to consumers. As we increase lay consumers’

wealth (κB,1) (at the expense of small merchants, A,2), their willingness to pay to join

platforms with a higher number and ratio of merchants rises. Subsequently, the price schedule

for consumers to join platforms for a given number of merchants will also rise. Therefore,

because tech consumers’ wealth (κB,2) is a constant and they now face higher prices, their

utility must fall. We help the subtype receiving more wealth (in this case B,1) at the

expense of the other subtype in the same type (B,2) (and symmetrically, hurt the subtype

losing wealth (A,2) and help the other subtype in the same type (A,1)).

Further (in the right-panel of figure 3), we consider how the equilibrium changes as we

adjust the endowments within a type (consumers) and hold the endowments of the other

types (merchants) fixed. There is no effect on merchants’ utilities because any reduction in

purchasing power by one of the consumer subtypes is compensated by an equal change in

the other slightly richer consumer subtype.20

5.4. How does the competitive equilibrium change as we alter the Pareto weights?

We can also consider how the equilibrium changes as we adjust the Pareto weights on only

one subtype (B, 2).21

18We solve the model using the Pareto problem and then impute the wealth and prices which replicate the
same allocation. We simulate 2880 equilibria for different Pareto weights, and then collect only the equilibria
in which 0.51 < κA,1 < 0.59 and 1.01 < κB,2 < 1.19. We then ‘join up’ all the points to plot a smooth curve.
19We solve the model using the Pareto problem and then impute the wealth and prices which replicate
the same allocation. We simulate 2880 equilibria for different Pareto weights, and then collected only the
equilibria in which 0.51 < κA,1 < 0.59 and 1.01 < κA,2 < 1.1. We are approximately holding the endowment
of (A, 1) and (A, 2) constant.
20There is a tiny change in the utility of (A, 2) because of the discrete nature of the possible platform
combinations and the changes in the platforms type (B) can purchase.
21The parameter values are:
αA1 = αA2 = αB1 = αB2 = 1

2 ; cA = cB = c = 1,K = 0 ;γA = γB = εA = εB = 1
2

λA1 = 1.01−x
3 , λA2 = 0.99−x

3 , λB1 = 1−x
3 , λB2 = x. We introduce a tiny wedge between (A, 1) and (A, 2) to

highlight the effects on a favored subtype.
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Figure 3. Redistributing wealth across- and within-agent type
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Figure (4) demonstrates (for given parameters) how the resulting utilities change as the

Pareto weight for type (B, 2) increases. First, it is clear and intuitive the utility of (B, 2)

monotonically weakly increases with their respective Pareto weight. This is a general result.

As figure (4) shows, type (B, 1) is clearly disadvantaged. This is a general result and follows

from the utility of subtype (B, 2) rising.

Recall our merchant and consumer example from before. If we increase the Pareto weight

on tech consumers (λB,2), the allocation will match them in both larger platforms and with

more merchants. This Pareto weight change has two effects in equilibrium: First, there

are fewer resources left for the lay consumers, and second, there are fewer merchants left

unmatched.

The story is more complicated for the merchants. An increase in the tech consumers’ Pareto

weight can lead to lower or higher utility for merchants. One of the merchants subtypes will

always be made worse off (A, 2) by the rise in (λB,2) because some platforms are composed

of relatively more merchants, favoring consumers on those platforms.
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Figure 4. How does the utility for each subtype change as we alter the Pareto
weight (λ) for Tech Consumers (B,2)?
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As seen in figure (4), it is possible for one of the merchant subtypes (A, 1) to be made better

off—even as their relative Pareto weight falls (as the Pareto weight for B,2 increases from 0.3

to 0.35). This result occurs because the most favored consumer subtype (tech) is matched

to proportionally more merchants as λB,2 increases, and so the proportion of remaining

merchants to consumers declines. Subsequently, those merchants who are not matched with

tech consumers may be matched at favorable ratios of consumers to merchants, increasing

their utility.

5.5. How does the competitive equilibrium change as we alter the costs of building

platforms? A further important consideration is how the equilibrium changes as we adjust

costs; for instance, lower electricity costs or technological innovations may decrease the costs

of creating a platform. Figure (5) shows how the equilibrium changes as the fixed cost of

building a platform changes.22 As one would expect for a given distribution of wealth, as the

22The economy’s parameters are αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1 ;γA = γB = εA = εB = 1

2 ;
κA1 = 0.5, κA2 = 1.5, κB1 = 0.8, κB2 = 1.1. For computational simplicity, we allow the equilibrium wealth
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fixed cost rises, utility falls. However, interestingly, the distribution of utility also changes.

Figure (5) shows that the richest subtype (A, 2) is barely affected by the rise in platform

costs. In contrast, the poorest subtype’s utility, (A, 1)’s utility, falls about 50 percent as we

increase the fixed cost of building a platform from 0.2 units of capital to 2 units of capital.

In this example, the poorest agents are most adversely affected by increasing the platforms’

fixed costs.

Figure 5. How does the utility for each subtype change as we alter the fixed
cost of building a platform?
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For larger fixed costs of producing a platform, the distribution becomes more dispersed, and

inequality between different subtypes becomes more pronounced. To gain intuition for this

result, recall our interpretation that agents are endowed with two assets: labor and capital.

As we increase the costs of producing platforms of a given size, the relative value of capital

to labor becomes larger. Therefore, agents who are endowed with more capital are less hurt

by the rise in costs, leading to greater inequality.

levels to be close to the desired wealth levels (κA1 = 0.5, κA2 = 1.5, κB1 = 0.8, κB2 = 1.1). We only plot
the equilibrium utilities for those equilibria such that the maximum difference between the desired wealth
endowment and the plotted capital endowment is less than 0.1 units of capital for each subtype.
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Figure 6. How do the platform characteristics vary as we alter the fixed cost
of building a platform?
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In figure (6) we examine how the characteristics of the equilibrium change as we increase

the fixed cost from 0 to 2 units of capital. Specifically, we plot the number of platforms (top

left); the average size of the platforms (top right); the total number of slots (bottom left);

and the number of agents in autarky (bottom right). As the fixed cost rises, the number

of active platforms falls by nearly 50 percent (top-left panel), the average size of platforms

increases by nearly 25 percent (top-right panel), and, on net, participation falls (bottom left

and bottom right panels). That is, the number of agents in autarky, not participating in

platforms in any way, is increasing. The intuition for this result follows from two key effects.

First, the cost of building platforms of any size rises, hitting the resource constraint and

causing the set of platforms to become smaller. The mass of platforms drops from 0.52 to
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Figure 7. How does participation by subtype change as the fixed cost of
building a platform rises?
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0.31 as the fixed cost of building a platform rises from 0 to 2 units of capital (upper left

panel). Second, note that the relative cost per slot increases more for small platforms than

for big platforms, causing larger platforms to be produced in equilibrium. The number of

users per platform rises to 5 (upper-right panel). Again, the net effect is that the number

of available contracts drops to 1.55 (bottom-left panel) and the number of agents in autarky

rises to 0.45 (bottom-left panel).

To examine the distributional effect on participation as the fixed cost rises, figure (7) shows

participation by subtype. As the fixed cost rises—and, subsequently, the cost of joining

platforms rises—the poorest subtypes (A,1 and B,1) become less likely to participate, whereas

the richer subtypes (A,2 and B,2) continue to always join a platform.

Do these distributional effects suggest a rationale for regulating prices? No—the equilibrium

outcome is Pareto optimal, so the optimal government intervention would be to introduce

lump-sum taxation on the rich and transfers to the poor. This transfer of wealth would
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increase the utility of the poorest, achieving a more equitable division of utility while main-

taining a Pareto optimal allocation. Alternative interventions would be distorting.

6. Extensions to the model

Our model is relatively general and can be extended in multiple ways. In this section,

we present two extensions. In the first extension (Section 6.1, we allow subtypes to have

differences in preferences, and in the second extension (Section 6.2), we allow agents to join

multiple platforms (multihoming).

6.1. How does user heterogeneity in preferences (within type) affect the compet-

itive equilibrium? We have concentrated on all types having the same preferences, but

potentially varying in their wealth endowments. In this subsection, we consider how varying

preferences within type affect the competitive equilibrium.

In our reformulated economy we introduce three new parameters (βT,s1 , βT,s2 , βT,s3 ), which

potentially vary across type (T ) and subtype (s). Further, we had allowed the preference

parameters γ, and ε to vary across types in previous sections, in these future experiments

we are varying across both type and subtype. The merchant (A, i)’s utility function is now:

UA,i(NA, NB) =

{
0 if NA or NB = 0[

βA,i1

(
NB
NA

)γA
+ βA,i2 N

εA,
B + βA,i3

]
else

In particular note that: βA,i1 alters the merchant (A, i)’s utility with respect to the ratio

of consumers and merchants on the platform. βA,i2 alters the merchant (A, i)’s utility with

respect to the size of the platform (holding the ratio of consumers and merchants constant).

Finally, βA,i3 is the merchant (A, i)’s intrinsic value from joining a platform. Therefore, the

introduction of the parameters (βT,s1 , βT,s2 , βT,s3 ) facilitates the comparison of how users who

vary in their preferences alter the resulting equilibrium.23

Symmetrically, consumer (B, j)’s utility function is:

23Note if βT,s1 = 1, βT,s2 = 1 and βT,s3 = 0 for all types and subtypes, we have the same utility function as
previous sections.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 35

UB,j(NA, NB) =

{
0 if NA or NB = 0[

βB,j1

(
NA
NB

)γA
+ βB,j2 N

εB,
A + βB,j3

]
else

Recalling our prior example describing a payment platform, it is natural to consider that lay

and tech consumers will vary in preferences as well as wealth. For instance, a lay consumer

may both be poor and prefer to be on any platform (high βB,j3 ), whereas the tech consumer

may prefer to have a choice of merchants (higher βB,j1 ).

In contrast, to Armstrong [2006], Weyl and White [2016], who show that heterogeneity

in user preferences leads to market failure, our economy’s competitive equilibrium remains

Pareto efficient. The main difference in our papers’ results is caused by our differing modeling

choices. In Armstrong [2006] and Weyl and White [2016]’s models, each oligopolistic platform

potentially serves users with varying preferences and can only partially extract consumer

surplus, leading to potentially socially inefficient prices, whereas our model has free entry for

platforms (as opposed to exogenously fixing the number of platforms), which (i) allows the

possibility of complete platform differentiation, and (ii) prevents pricing distortions due to

market power. Subsequently, users may separate according to their preferences; for instance,

if there are subtypes who strongly prefer larger platforms, they can join other agents who

strongly prefer larger platforms. Note, that once we have converted our economy to a

standard looking Walrasian one, it is less surprising that heterogeneity in preferences is not

a source of problems.

The introduction of consumer heterogeneity in preferences does lead to interesting compar-

ative statics. To understand in greater detail how the differences in preferences affect the

competitive equilibrium, we apply the new utility function to the experiment from Section

(5.5).

In figure (8) we plot how the equilibrium utilities (for the new utility function) for each

subtype vary, and, in addition, we alter the fixed cost of building a platform for some given

parameters.24 To introduce differences in user preferences, we alter the tech consumers’,

24The economy’s parameters are αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1 ;γA = γB = εA = εB = 1

2 ;
κA1 = 0.7, κA2 = 1.3, κB1 = 1, κB2 = 1.
Further we make tech consumers (B, 2) strongly prefer platforms that have a favorable ratio of consumers

to merchants (βB,21 = 3), be mostly indifferent about the size of the platform (βB,22 = 0.01) and have little

to no benefit from being on a platform (βB,23 = 0.01). For all other types, we maintain the previous utility

function (βA,11 = βA,21 = βB,11 = 1), (βA,12 = βA,22 = βB,12 = 1) and (βA,13 = βA,23 = βB,13 = 0).
For computational simplicity, we allow the equilibrium wealth levels to be close to the desired wealth levels.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 36

subtype (B,2), preferences, while keeping all other subtypes preferences unchanged from the

previous section. We change the tech consumers’ preferences in two ways: (i) tech consumers

(B, 2) strongly prefer to be on a platform with a large number of merchants (βB,21 = 3) relative

to lay consumers (βB,11 = 1) and (ii) tech consumers are relatively indifferent about the size

of the platform (βB,22 = 0.01), whereas lay consumers prefer larger platforms (βB,12 = 1).

Figure 8. How does the utility for each subtype change as we alter the fixed
cost of building a platform with the new utility function?
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Comparing figure (5) and figure (8), we see that the tech consumers (B,2) are the most

adversely affected by increasing the platform’s fixed cost with the new utility function,

whereas, the other subtypes are significantly less affected.

Intuitively, as the platform’s fixed cost increases, the relative price of smaller platforms be-

comes higher. Therefore, the competitive equilibrium is composed of larger platforms but

with a small number of active platforms. Consequently, even though the cost of building

platforms is larger (and, subsequently, the production possibility frontier of the economy

is shrinking), the equilibrium utility of lay consumers and the merchants are relatively un-

changed. The big losers in this experiment are the tech consumers—who relatively prefer
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smaller platforms with a higher fraction of merchants. In contrast, the other subtypes rel-

atively prefer larger platforms and subsequently are less affected by the rise in the fixed

cost.

6.2. Multihoming. Agents may wish to join multiple platforms. For instance, some con-

sumers may prefer to use multiple forms of payment, some companies may prefer to list their

stock on multiple exchanges, or some traders may prefer to trade over many dark pools.

Our framework is sufficiently flexible to allow endogenous multihoming (agents can choose

to join multiple platforms). In previous sections, we restricted individuals to only joining

one platform via our matching constraint,
∑

dT (NA,NB) xT,s[dT (NA, NB)] = 1. We can re-

lax the matching constraint and yet retain the linear programming nature of the problem.

By relaxing this constraint, we can model various different forms of multihoming. For in-

stance, we could require agents to join two platforms (the matching constraint would be∑
dT (NA,NB) xT,s[dT (NA, NB)] = 2), a maximum of two platforms (the matching constraint

would be
∑

dT (NA,NB) xT,s[dT (NA, NB)] ≤ 2), or as many platforms as the agent as the agent

can afford (no matching constraint).

Relaxing the matching constraint tends to create smaller, more numerous platforms in equi-

librium. For instance, consider some very rich subtype; with singlehoming (an agent is only

allowed to join a maximum of one platform), the rich subtype would only be able to sponsor

larger or more unequal platforms. With the possibility of joining more than one platform,

the rich subtype could sponsor multiple, smaller platforms, which would lead to a higher

utility (because utility is concave in the number of users of each type) and would generally

be cheaper to produce (to be precise, the cost function for producing platforms exhibits

decreasing returns to scale if there are no fixed costs of platform production; that is, if

K = 0).

A potential shortcoming of our model is that utility is additive in the number of platforms

an agent joins. Therefore, if an agent joins two identical platforms, or even two slots in the

same platform, the agent’s utility would be double the utility from joining only one platform.

7. Conclusion

There are many economic platforms that must cater to multiple, differentiated users who,

in turn, care about who else the platform serves—for instance, credit cards, clearinghouses,
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and dark pools, to name but a few (Rochet and Tirole [2003], Ellison and Fudenberg [2003],

Rochet and Tirole [2006], Caillaud and Jullien [2003], Armstrong [2006], Rysman [2009], Weyl

[2010] and Weyl and White [2016]). Over-the-counter markets can also be conceptualized

in this way—who is trading with whom, what is the network architecture, and what is the

overall degree of direct and indirect connectedness (Allen and Gale [2000], Leitner [2005],

Allen et al. [2012], Acemoglu et al. [2015], Cohen-Cole et al. [2014], Elliott et al. [2014]).

Modeling each of these arrangements is inherently difficult and there is much more to be

done. Here we try to capture each of the applications in a stylized way by building a common

conceptual framework for analysis.

Our paper has four main contributions.

Our first contribution is methodological. As in the prior work on firms as clubs by Prescott

and Townsend [2006], which builds on Koopmans and Beckmann [1957], Sattinger [1993],

Hornstein and Prescott [1993], Prescott and Townsend [1984] Hansen [1985] and Rogerson

[1988], we model an economy with competing platforms in a general equilibrium framework,

with platforms as clubs. Our framework is relatively general; we can analyze an economy with

many (that is, more than two) types of users, who may have heterogeneous preferences; an

economy with heterogeneous costs for servicing different users; or an economy with inherent

differences within a type’s wealth.

Second, our economy incorporates the fact that an individual’s utility may be contingent

on the actions of others—in short an externality. But we show how to internalize interde-

pendencies so that they do not lead to an inefficient equilibrium overall. In particular, the

potential externality is “priced” – in a manner suggested by Arrow [1969]. The competitive

equilibrium is efficient.

Third, we demonstrate how changes in one agent’s wealth (or Pareto weight) have interesting

general equilibrium effects both within- and across-types. The matching in the economy is

endogenous, and the math of assignment has to work out in the general equilibrium. For

instance, consider a payment platform for consumers and merchants where there are two

subtypes of consumers, lay and tech. An increase in the lay consumer’s wealth will lead to

decreases in the tech consumer’s welfare and ambiguous effects on the merchant’s welfare.

This result follows from our assumption that agents do not like to be on a platform with

more of their own type, and therefore as we increase the lay consumer’s wealth, the lay

consumers will prefer platforms with more merchants (and fewer consumers). This increase
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in lay consumers’ wealth is also bad for some merchants with low wealth, as they are now

on platforms with fewer consumers and relatively more merchants. Further, the rise in the

lay consumer’s wealth will lead lay consumers to pay a greater fraction of the costs of being

on a platform.

Fourth, we show how technological progress may reduce inequality. A reduction in the

fixed cost of building a platform reduces the relative value of capital (that is wealth) and

subsequently allows both bigger and more platforms to be created which in turn creates

more demand from the various subtypes. The biggest utility gain is for the lowest wealth

subtypes, who can now join some platforms rather than reside in autarky/non participation.

We should make clear at the same time the limitations of our framework. First, our model is

purely static, and we exclude any coordination failures (Caillaud and Jullien [2003], Ellison

and Fudenberg [2003], Ellison et al. [2004], Ambrus and Argenziano [2009], Lee [2013], Weyl

and White [2016]) and any possibility of innovation in platform design as an intrinsic part

of the model.

Second, no platforms or agents have any pricing power in our model, which as Weyl [2010]

and Weyl and White [2016] show may interact with the agent’s preferences over other agents’

actions to exacerbate or minimize market failures. A key question in the two-sided market

literature is the allocation of fees. In our Walrasian set up there is no rationale for the

regulation of prices on a platform – if a social planner wishes to implement a more equitable

allocation, a social planner should redistribute wealth and not regulate prices.

Third, the only source of platform differentiation arises from the size and composition of

a platform’s users. Relatedly, we also require the characteristics of agents to be clearly

identified and rules enforced (that is, no adverse selection or false advertising). Some might

find it implausible that the neighborhood composition can be so tightly controlled.

Fourth, we do not allow ever increasing economies of scale in platform size. The existence

of economies of scale remains an empirical matter, depending on the particular platform

and the market one has in mind. But for some there is no presumption of ever increasing

returns. Duffie and Zhu [2011] argue there are economies of scales for central counterparty

clearinghouse (CCP) platforms but O’Hara and Ye [2011] for equity market platforms and

Altinkiliç and Hansen [2000] for capital issuance find contrary evidence.

Our work’s most significant difference to the existing two-sided market literature and the

macro financial literature is our methodology. We concentrate on modeling platforms in
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a Walrasian equilibrium with an extended commodity space with complete contracts and

exclusivity. In contrast, the two-sided market literature concentrates on modeling platforms

in a partial equilibrium environment and the macro financial literature typically imposes

incomplete contracts or a particular institutional arrangement or game. Moreover, the two

sided market literature focuses on how market power and imperfect competition affect plat-

form economics, while our framework considers perfect competition between platforms. The

macro financial literature argues explicitly or implicitly for regulation, to ensure stability,

and sometimes, externalities is the key rationale. Whereas, we argue for the appropriate

design of markets ex ante and letting rights to trade be priced in equilibrium to remove ex-

ternalities (see also Kilenthong and Townsend [2014]). Therefore, our alternative modelling

methodology—explicitly looking at perfect competition with complete contracts—ensures

that we can analyze different questions (such as whether the outcome is Pareto optimal),

and examine different comparative statics (such as how does inequality change as we increase

the fixed cost of building a platform).

We do not view our paper as the final word. In some sense we are trying to arbitrage across

distinct literatures, bringing some general equilibrium insights to applied problems in indus-

trial organization and market design/ regulation. Ultimately, modeling and understanding

platform economies with more nuanced, but important, details is crucial. We hope this paper

ignites a discussion on how to model and analyze multiple, competing platforms.
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8. Appendix

To simplify the exposition of the proofs for Theorems (1), (2) and (3), we transform the

model presented in Section (2) to an environment that is more general with more abstract

and simpler notation. Without loss of generality, we denote subagent type (T, s) as agent

i and let there be I types.25 As before there are αi of each agent type i. Let there be n

number of possible commodities (or contracts or goods) available to agents. We denote an

agent of type i’s purchase of each commodity j as xij, summarized in vector xi.
26 Moreover,

one element of the vector, xi includes an agent of type i′s consumption of the resource

endowment (in the model in the text, this element is each agent type i’s capital endowment,

κi), but as in the earlier text, agents’ receive no direct utility from the consumption of this

capital good.27 Finally, we let ξi denote the vector endowment of a type i. In the model

described in the text, this vector for type i would be zero for all goods except the capital

good, where it would be equal to κi.

We can write the agent’s consumption set using a finite number of linear inequalities (which

may hold as an equality or as an inequality), that is,

(19) Xi = {xi ∈ Rn
+|gixi − bi ≤ 0}

where gi is a matrix. The linear constraints (gixi− bi ≤ 0) are the constraints on the agent’s

choice of contracts. In the model in the text, the agent’s consumption set consisted of three

constraints: (i) each agent must purchase exactly one measure of contracts (that is, the agent

must join a platform with certainty but recall this set of platforms includes the “opt-out”

platform, where the agent is on a platform by themselves), (ii) each agent could buy only

non-negative measures of contracts, and (iii) each agent could only buy contracts ear-marked

for that type. It is trivial to map these constraints into the more general notation above.

Turning to the intermediaries. We can denote the intermediary’s production by the vector

y, where each element of y is a measure of the commodity produced for agent type i, or the

capital input good, yκ. As such, we represent the intermediary’s production set by a finite

number of linear inequalities, specifically as:

25 This new formulation reduces the number of subscripts and eases the exposition of the proof.
26 xij is the equivalent of subtype (T, s)’s purchase of contract xT,s[dT (NA, NB ] in the earlier model.
27 In our earlier model, n would be equal to 2(NA ×NB + 1) + 1, for further explanation, see footnote ??.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 45

(20) Y = {y ∈ Rn
+|fy ≤ 0}

where f is a matrix and the constraints may hold with equality or as an inequality.

Using dot-product notation, the Pareto program can be written as:

max
{xi}≥0,y

∑
i

λiαiuixi(21)

s.t.
∑
i

αi(xi − ξi)− y = 0(22)

fy ≤ 0(23)

gixi − bi ≤ 0,∀i(24)

where λi is the Pareto weight for agent i and ui is the agent of type i′s utility from commodity

bundle xi.

To complete our proofs of the welfare theorems and existence of an equilibrium, we make

three additional assumptions.

Assumption 1. For all i, Xi is bounded.

Assumption 2.
∑

i αi(xi − ξi) ∩ Y 6= 0.

Assumption 3. For all i, for any xi component of a feasible allocation, there exists x′i ∈ Xi

such that uix
′
i ≥ uixi

The first assumption is satisfied when the consumption set has a probability measure con-

straint, ensuring that the consumption set is convex and closed. The second assumption

merely requires a feasible allocation exists. The third assumption is a no-satiation assump-

tion, and as described earlier, we can increase the possible set of platforms (specifically,

increasing the maximal sized platform) to ensure that this assumption is satisfied.

8.1. Proof of Theorem 1. If all agents are non-satiated, a competitive equilibrium (p∗, x∗, y∗)

is a Pareto optimal allocation (x∗, y∗). [First Welfare Theorem]
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Proof. The proof for this theorem is standard, a proof by contradiction.

Assume there is some competitive equilibrium (p∗, x∗, y∗) which is not Pareto-efficient, it

follows that x∗ must be Pareto-dominated by some other feasible consumption plan x′ and

production plan y′. Therefore, for at least one agent of type i, the bundle x′i, must be strictly

preferred to the bundle x∗i . Since agents are maximising at x∗ for given prices p subject to

the constraints on that agent’s consumption set, then for this agent type, px′i must be strictly

greater than px∗i . Summing over all agents, we must then have the following strict inequality:

(25)
∑
i

αipx
′
i >

∑
i

αipx
∗
i

That is, the total spent by the consumers for allocation x′ must be strictly greater than the

total spent for allocation x∗.

Similarly, from the intermediary’s problem, we know that the intermediary maximises profits

taking prices as given. Hence it follows that the intermediary’s profits cannot be greater for

allocation y′ than allocation y∗ for prices p, implying:

(26) p.y∗ ≥ p.y′

Using these inequalities (25) and (26) and the fact that markets clear, we have the following

relationship:

(27)
∑
i

αipx
′
i >

∑
i

αipx
∗
i = p.y∗ ≥ py′

Implying that:

(28)
∑
i

αix
′
i > y′

But inequality (28) violates the feasibility condition, therefore, allocation (x∗, y∗) must be

Pareto optimal.

�
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Our paper’s modelling environment is similar to Prescott and Townsend [2005], who ana-

lyzed firms as clubs in a general equilibrium setting (whereas our paper analyses platform

competition in a general equilibrium setting), and specifically used lotteries to convexify the

commodity space. As such, the proofs for Theorem (2) and Theorem (3) follow from their

paper. We provide similar proofs to their paper, but try to provide more exposition and

intuition for the underlying results.

In proving the second welfare theorem, it is useful to define a compensated equilibrium and

a competitive equilibrium in our economy.

Definition 8.1. A compensated equilibrium (x∗, y∗, p∗) in this economy is defined as:

(1) ∀i, x∗i minimizes p∗xi subject to xi ∈ Xi and uixi ≥ uix
∗
i (all agents minimize cost

subject to attaining a required level of utility)

(2) y∗ maximises p∗y subject to y ∈ Y (all intermediaries maximise profit subject to

feasibility constraint)

(3)
∑

i αi(x
∗
i − ξi) = y∗ (market clearing)

Definition 8.2. A competitive equilibrium (x∗, y∗, p∗) in this economy is defined as:

(1) ∀i, x∗i maximizes uixi subject to xi ∈ Xi and p∗xi ≤ p∗ξi (all agents maximise utility

subject to their feasibility and budget constraint)

(2) y∗ maximises p∗y subject to y ∈ Y (all intermediaries maximise profit subject to

feasibility constraint)

(3)
∑

i αi(x
∗
i − ξi) = y∗ (market clearing)

8.2. Proof of Theorem 2. Any Pareto optimal allocation (x∗, y∗) can be achieved through

a competitive equilibrium with transfers between agents subject to there being a cheaper point

for all agents and agents are non-satiated.

Proof. To prove this theorem, we first show that any solution to the Pareto program can be

supported as a compensated equilibrium, and second we show that a compensated equilib-

rium is a competitive equilibrium, subject to the existence of a cheaper point.

To show that any solution to Pareto program can be supported as a compensated equilibrium,

we start by showing the first order conditions from the Lagrangian problem are necessary

and sufficient for optimized solutions. Then to prove that any Pareto optimal allocation can
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be achieved with transfers, we show that we can map the Lagrange multipliers and other

variables from any Pareto optimal allocation into a compensated equilibrium.

Earlier we described the Pareto problem (equations 21 to 24), now let us start by character-

izing the solution to the Pareto program using the first-order conditions. Let uij be agent

type i’s utility from good j. Let pj be the Lagrangian variable on the market clearing con-

straint for the jth commodity, let µ be the vector of Lagrangian variables on the production

set constraints, and finally let γi be the Lagrangian variables on agent i’s consumption set

constraints. Let fj and gi,j correspond to the jth column of matrix f and gi respectively

The Lagrangian for this problem is:

L(x, y, p, µ, γ) =
∑
i

λiαiuixi +
∑
j

pj

(
yj −

∑
i

αi(xij − ξij)
)

+ µfy +
∑
i

γi(bi − gixi)

(29)

Lemma 8.1. The allocation (x∗, y∗), with x∗ ≥ 0, is a solution to the Pareto program if and

only if x∗, y∗, and the Lagrangian variables (p∗, µ∗, γ∗ ≥ 0) satisfy:

∀i, j, λiαiuij − p∗jαi − γ∗i gi,j = 0 if x∗ij > 0(30)

∀i, j, λiαiuij − p∗jαi − γ∗i gi,j ≤ 0 if x∗ij = 0(31)

∀j, p∗j − µ∗fj = 0(32)

p∗
(∑

i

αi(x
∗
i − ξi)− y∗

)
= 0(33) ∑

i

αi(x
∗
i − ξi)− y∗ = 0(34)

µ∗fy∗ = 0(35)

fy∗ ≤ 0(36)

∀i, γ∗i (gix
∗
i − bi) = 0(37)

∀i, gix
∗
i ≤ bi(38)

Proof. Since the Pareto program is a linear program, the Kuhn-Tucker conditions are nec-

essary and sufficient �
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To reduce the set of possible results from equations (30) to (38), let us prove a couple of

preliminary results:

Lemma 8.2. For (p∗, y∗) to be part of a solution to the Pareto program, p∗y∗ = 0

Proof. Multiplying equation (32) by yj and summing over all j gives:

(39) p∗y∗ = µ∗fy∗.

Substituting in equation (36) for the right hand side of equation (39) gives p∗y∗ = 0. In-

tuitively, this result follows from constant returns to scale in the intermediary’s production

function. �

Lemma 8.3. With non-satiation, there does not exist a solution to the Pareto program such

that p*=0.

Proof. We prove this lemma by contradiction. By non-satiation there must exist for each i,

x′i ∈ Xi such that uix
′
i > uix

∗
i . If p∗ = 0, then by equations (30) and (37), for some x∗ij > 0:

λiαiuijx
∗
ij = xijγ

∗
i gi,j = γ∗i bi(40)

Since uix
′
i > uix

∗
i , for some x∗ij > 0:

λiαiuijx
′
ij > λiαiuijx

∗
ij = γ∗i bi(41)

where λiαiuijx
∗
ij = γ∗i bi follows from equation (40).

However, by the feasibility inequality (38), we have γ∗i bi ≥ γ∗i gix
′
i, therefore, for some x∗ij > 0:

λiαiuijx
′
ij > λiαiuijx

∗
ij = γ∗i bi ≥ γ∗i gix

′

i(42)

But if p∗ = 0, the inequality λiαiuijx
′
ij > γ∗i gix

′
i contradicts equation (30). Therefore,

p∗ 6= 0. �

To demonstrate that we can map the Lagrange multipliers and other variables from any

Pareto optimal allocation into a compensated equilibrium, it is useful to rewrite conditions

1 and 2 from the definition of the compensated equilibrium (definition 8.1) in terms of the

necessary and sufficiency conditions. For the consumer’s minimization problem let βi ≥ 0 be

the Lagrangian multiplier on the constraint uixi ≥ uix
∗
i and let µ be the vector of Lagrangian

multipliers on the production constraints.
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Lemma 8.4. Conditions 1 and 2 in the definition of the compensated equilibrium (definition

8.1) can be rewritten in the following form:

(1) ∀i, x∗i ≥ 0 and dual variables (βi ≥ 0, vi) satisfy condition 1 of a compensated equi-

librium if and only if they satisfy:

∀j, βiuij − pj − vigi,j = 0, (≤ 0 if xij = 0)

βi(uixi − uix∗i ) = 0

uixi − uix∗i ≥ 0

vi(gixi − bi) = 0

gixi − bi ≤ 0

(2) y and Lagrangian multiplier µ satisfy condition 2 of a compensated equilibrium if and

only if:

∀j, pj − µfj = 0

µfy = 0

fy ≤ 0

Proof. This lemma follows from the agent’s and the intermediary’s problem being linear

programs, and as such, the Kuhn-Tucker conditions are sufficient and necessary. �

Lemma 8.5. Any solution to the Pareto program, with λ ≥ 0 can be supported as a com-

pensated equilibrium.

Proof. Lemma 8.1 shows that the allocation (x∗, y∗) and Lagrangian variables (p∗, µ∗, γ∗ ≥ 0)

must satisfy certain necessary and sufficient conditions to be solutions to the Pareto problem.

Now we show that we can map the Lagrange multipliers and other variables from any Pareto

optimal allocation into a compensated equilibrium.

Let βi = λi, let p = p∗, let µ = µ∗ and let vi = γ∗i /αi. Using these relabelled variables shows

that condition (1) of the compensated equilibrium holds (compare the necessary and sufficient

conditions in condition (1) with equations (30), (31) and (38) and use that xi = x∗i ). Using

these relabelled variables shows that condition (2) of the compensated equilibrium holds

(compare the necessary and sufficient conditions in condition (2) with equations (32) and
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(36)). Finally, condition (3) of the compensated equilibrium holds (compare the necessary

and sufficient conditions in condition (3) with equation (34)).

�

Lemma 8.6. Any solution to the Pareto program, with λ > 0 can be supported as a compet-

itive equilibrium.

Proof. Similar to lemma (8.4) we can rewrite the first condition of the competitive equilib-

rium (where θi ≥ 0 is the Lagrangian variable on agent i’s budget constraint and wi the

Lagrangian variable on agent i’s consumption set constraints) as:

∀j, uij − θipj − wigi,j = 0, (≤ 0 if xij = 0)

θip(xi − ξi) = 0

p(xi − ξi) ≤ 0

wi(gixi − bi) = 0

gixi − bi ≤ 0

As in the proof of lemma (8.5), let p = p∗ and µ = µ∗. Additionally, for all i, let θi = 1/λi

and wi = γ∗/λiαi. Using a similar strategy as the previous lemma, it is trivial to show that

we can map the Pareto problem into the conditions from the competitive equilibrium. �

The last step in the proof is to show that, if there exists a cheaper point, a compensated

equilibrium is a competitive equilibrium.

Lemma 8.7. Take a solution to the Pareto program for λ ≥ 0. If at the corresponding

compensated equilibrium, there exists for all i, a cheaper point satisfying xi ∈ Xi, then

λ > 0.

Proof. We prove this lemma using a proof by contradiction. Let x∗ be the solution to the

Pareto problem, then from equations (30) and (31) we have for all i:

x∗i
(
λiαiui − p∗αi − γ∗i gi

)
= 0(43)
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Take any x′i ∈ Xi, then again from equations (30) and (31) we have:

x′i
(
λiαiui − p∗αi − γ∗i gi

)
≤ 0(44)

Therefore implying:

x∗i
(
λiαiui − p∗αi − γ∗i gi

)
≥ x′i

(
λiαiui − p∗αi − γ∗i gi

)
∀x′i ∈ Xi

Assume there exists a cheaper point x′i ∈ Xi and consider the case λi = 0, then rearranging

the last inequality gives:

p∗x′i ≥ p∗x∗i +
γ∗i gi
αi

(
x∗i − x′i

)
∀x′i ∈ Xi(45)

By equations (37) and (38), we have that:

γ∗i (gix
∗
i − bi) = 0(46)

γ∗i (gix
′
i − bi) ≤ 0 ∀x′i ∈ Xi(47)

Taking equations (46) and (47) together suggest that:

γ∗i gix
∗
i ≥ γ∗i gix

′
i ∀x′i ∈ Xi(48)

Plugging inequality (48) into inequality (45) implies that p∗x′i ≥ p∗x∗i , for all x′i ∈ Xi, hence

contradicting the assumption that a cheaper point exists and λ = 0. �

Taking all the lemmas together, we have proved that any Pareto optimal allocation (x∗, y∗)

can be achieved through a competitive equilibrium with transfers between agents subject to

there being a cheaper point for all agents and agents are non-satiated. �

8.3. Proof of Theorem 3. For any given distribution of endowments, if the Pareto weights

at a fixed point of the mapping are non-zero, then a competitive equilibrium exists.

This proof follows from Prescott and Townsend [2005].

Proof. To prove this that a competitive equilibrium exists, first, we find a mapping that

satisfies the conditions of Kakutani’s fixed point theorem and second, we show that this
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fixed point is a competitive equilibrium. For convenience, Kakutani’s theorem is stated

below.

Theorem 8.8 (Kakutani’s fixed point theorem). Suppose that A ∈ RN is non-empty, com-

pact, convex set, and that f : A → A is an upper hemicontinuous correspondence from A

into itself with the property that the set f(x) ⊂ A is nonempty and convex for every x ∈ A.

Then f(·) has a fixed point; that is, there is an x ∈ A such that x ∈ f(x).

First, we normalize possible prices to a bounded, convex, and compact set. Specifically, as

agents do not have free disposal (they have to join one and only one platform with certainty),

we have not ruled out the possibility that some prices are negative. To allow for negative

prices, we restrict prices to the closed unit ball, a compact and convex set:

P = {p ∈ Rn| √p · p ≤ 0}(49)

Second, we want to show there exists a correspondence from (λ, x, y, p) to (λ, x, y, p), that

satisfies the conditions of Kakutani’s fixed point theorem. Our correspondence consists of

two parts:

(λ)→ (x′, y′, p′)

(λ, x, y, p)→ (λ′)

We restrict each variable to lie in a compact, convex set. Recall there are I types of agents,

so we can restrict (i) λ ∈ SI−1 (the unit simplex), (ii) x ∈ X, (iii) y ∈ Γ, (iv) p ∈ P , where

X is the cross product of I and Xi, and Γ = {y ∈ Y |y is feasible}. The set Γ is convex, and

compactness is given by the compactness of Xi and market clearing.

For the first part of the mapping, from the proof of theorem 8.2, for any λ ∈ SI−1, there is

a solution to the Pareto program (x∗, y∗, p∗, µ∗, γ∗). We normalize p to lie in the unit circle

with28:

28Recall that by lemma (8.3), we ensured that p∗ 6= 0, thereby allowing this normalization.
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p̃ =

{
p∗√
p∗ · p∗

Next, we include in the mapping, the convex hull of prices calculated from the normalization,

specifically:

p′ ∈ coP̃

where P̃ is the set of normalized prices.29 This mapping is non-empty, compact-valued,

convex-valued, and upper hemicontinuous.

The second part of the mapping calculates the new Pareto weights, λ′, as a function of the

transfers needed to support an allocation x from prices p. Consider the following function

for any λ ∈ SI−1:

λ̂i = max

{
0, λi +

p(ξi − xi)
A

}
, and λ̂′i =

λ̂′i∑
i λ̂
′
i

(50)

where A is a large positive number such that:30

A >
∑
i

|p(ξi − xi)|

This function is continuous, so it is a non-empty, compact-valued, convex valued, and upper-

hemicontinuous correspondence.

Therefore, we have defined a mapping from SI−1×X ×Γ×P → SI−1×X ×Γ×P .31 Each

of these sets is convex and compact (and cross-products of convex and compact sets are also

convex and compact). Both parts of the mapping are non-empty, convex-calued, compact-

valued, and upper hemicontinuous (and cross-products of correspondences preserve these

properties), therefore by Kakutani’s fixed point theorem, a fixed point (λ, x, y, p) exists.

29This step ensures that we preserve the convexity of the mapping while keeping prices in P , and since the
set of p̃ is convex, this step does not add any relative prices to the mapping.
30Note because the sets P and X are bounded, there exists such a positive number A.
31y is not explicitly used in the portion of this mapping since by Lemma 4.2, any solution to the Pareto
program satisfied py = 0, and as such, scaling p has no impact.
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Notice that the first part of the mapping is a solution to the Pareto program, then by Lemma

(4.5), the solution can be supported as a compensated equilibrium.

Now to complete the proof, we need to show that the fixed point satisfies the necessary and

sufficient conditions from the Consumer’s problem. Assume that λ > 0, from the second

part of the mapping, at a fixed point, p(ξi − xi), must be the same sign for all i. By

combining equation (33) from the necessary and sufficient conditions of the Pareto problem,

(specifically, p∗(
∑

i αi(x
∗
i − ξi) − y∗) = 0), and Lemma (8.2) (specifically, that producers

make zero profits, py = 0), shows that that p(ξi − xi) = 0,∀i, thereby satisfying one of the

conditions. For the other two conditions of the Consumer’s problem, they require setting

θi = 1/λi and wi = γi/(λiαi).

�

8.4. Proof of Theorem 4. The price-setting intermediary in the monopolistic equilibrium

will capture all the rent in the economy and will produce less slots than the price-taking

intermediary in the competitive equilibrium.

Proof. To begin we show that in the monopolistic equilibrium, the intermediary will produce

a negligible amount of platforms. Then we show that the competitive equilibrium will

produce platforms that use the entire endowment in the economy.

For simplicity, let us assume there are only two types of agents A and B with no subtypes.

Assume a monopolistic intermediary produces X (where X is less than one) platforms of

size32 (1, 1) and sells each contract to type T at a price of κT/X, where κT is the agent T ’s

wealth. The agents can either participate (that is, buy contracts) or not buy. If the agent

does not buy any contracts, their resultant utility is zero.

Let us assume each agent buys X contracts of the platform of size (1, 1). Then type T ’s

utility will be XUT (1, 1), that is, the utility of being on a platform of size (1, 1) multiplied

by the probability of being on that platform, X.

Could the agent buy any other contract? No, because the monopolist only produces one

type of platform. Could the agent buy less of the contract? Yes, but utility is increasing in

32We restrict attention to the platform of size (1,1) for expositional ease, although the intermediary could
construct platforms of any given size. Additionally, even though in equilibrium the platform will produce
only a negligible amount of this platform, the platform of size (1, 1) would be the cheapest platform to
produce.
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the purchase of this contract, X, therefore not optimal. Could the agent buy more of the

contract? No, because the agent is constrained by their wealth endowment, κT .

The intermediary’s profit is equal to: κA+κB−X(cA+cB+c). Therefore, the intermediary’s

profit is decreasing in X. Therefore, the intermediary will produce the smallest positive

number of platforms, X, as possible to maximize profits. Therefore, in the monopolistic

equilibrium only a negligible number of platforms will be produced.

In the competitive equilibrium, from theorem (1) – the First Welfare Theorem – we know

that the competitive equilibrium is a Pareto optimal allocation, second, given the interme-

diary’s constant returns to scale technology, we know the intermediary makes zero profits.

Combining these two results, we know in the competitive equilibrium there will be a positive

number of platforms and that the total cost of producing these platforms will be κA plus

κB, the total amount of resources in the economy. �
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8.5. Computation. Attempting to compute the Pareto problem is difficult due to the large

commodity space and the high number of constraints. Therefore, we transform the above

Pareto problem by removing the club constraints and subsequently allowing us to use simplex

algorithms. These algorithms are quicker and more capable at handling the large commodity

and constraint space.

For ease of explanation, let us assume there is only two subtypes of merchants and consumers,

that is, i ∈ {1, 2} and j ∈ {1, 2}.

First we eliminate the club constraints. Recall equation (15), this constraint can be rewritten

in matrices for each contract dT (NA, NB) as

(51)

[
αA,1 αA,2 0 0 −NA

0 0 αB,1 αB,2 −NB

]

xA,1[dA(NA, NB)]

xA,2[dA(NA, NB)]

xB,1[dB(NA, NB)]

xB,2[dB(NA, NB)]

y(NA, NB)

 =

[
0

0

]

Because, xT,s[dT (NA, NB)] and y(NA, NB) must be non-negative, with equation (51), let

us define a polyhedral cone, with a single extreme point at the origin. Therefore, using

the Resolution Theorem of Polyhedrons, the systems of equations can be represented as

the set of all non-negative linear combinations of its extreme rays. Scaling such that each

y(NA, NB) = 1, the extreme rays of this cone are:

(
NA

αA,1
, 0,

NB

αB,1
, 0, 1

)
(
NA

αA,1
, 0, 0,

NB

αB,2
, 1

)
(

0,
NA

αA,2
,
NB

αB,1
, 0, 1

)
(

0,
NA

αA,1
, 0,

NB

αB,2
, 1

)
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Let y(i,j)(NA, NB), the quantity of each ray, where i is the subtype A agent, j is the subtype

B agent. Therefore, we can define the set of {xT,s[dT (NA, NB)],y(NA, NB)} that satisfies (51)

as:

{xT,s[dT (NA, NB)], y(NA, NB)} = [y(1,1)(NA, NB)]

(
NA

αA,1
, 0,

NB

αB,1
, 0, 1

)
+

. . .+ [y(2,2)(NA, NB)]

(
0,
NA

αA,2
, 0,

NB

αB,2
, 1

)

Where y(i,j)(NA, NB) ≥ 0, i = 1, 2 and j = 1, 2. Intuitively, each ray is a different composi-

tion of types of agents to fulfill the contract, for example y(1,1)(NA, NB) corresponds to the

measure of platforms which are fulfilled by agents (A, 1) and (B, 1). There are four extreme

rays hence a linear combination of these four rays is able to replicate any combination of

types of agents. In general, if there are I types of A and J types of B then there will be

I × J extreme rays for each contract.

Furthermore, we have the following relations:

xA,i[dT (NA, NB)] =
∑
j

y(i,j)

αA,i
NA

xB,j[dT (NA, NB)] =
∑
i

y(i,j)

αB,j
NB

y(NA, NB) =
∑
i,i′

y(i,j)(NA, NB)

Hence, we are now ready to redefine the Pareto problem in terms of our new definitions that

satisfy the matching constraints (to reduce notation and clarity, we normalize all αT,s = 1

for all subtypes).
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max
y(i,j)(NA,NB)≥0

∑
i

λA,i

∑
j

∑
(NA,NB)

y(i,j)(NA, NB)×NA × UA(NA, NB)

+

+
∑
j

λB,j

∑
i

∑
(NA,NB)

y(i,j)(NA, NB)×NB × UB(NA, NB)


Such that each agent is assigned to a platform with probability one (the counterpart to

equation (14)). ∑
j

∑
(NA,NB)

y(i,j)(NA, NB)NA = 1 ∀i,(52)

∑
i

∑
(NA,NB)

y(i,j)(NA, NB)NB = 1 ∀j(53)

Such that the resource constraint is satisfied (the counterpart to equation(16)):

(54)
∑

(NA,NB)

[∑
i,j

y(i,j)(NA, NB)× C(NA, NB)

]
≤
∑
T,s

κT,s

The advantage of writing the Pareto problem in the above formulation is that it reduces the

constraint set, in this example, there are only five constraints, however, the number of vari-

ables is very large and we can use a linear programming solver to compute the reformulated

Pareto program.

To calculate the prices paid by each agent we use the shadow prices (duals) from the refor-

mulated problem and the economy’s budget constraint.

The first-order conditions for this reformulated problem are:

(55) γκC(NA, NB) + γA,iNA + γB,jNB ≥ NAλA,iUA(NA, NB) +NBλB,jUA(NA, NB)

where equation (55) holds with equality for those platforms that exist in equilibrium. The

variables, γκ, γA,i, and γB,j are the Lagrange multipliers associated with the resource con-

straint (equation 54), and the matching constraints (equations 52 and 53) respectively.
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Recall that for all platforms that exist (that is, y(NA, NB) > 0), then the sum of prices paid

for the platform must equal the costs of producing the platform. That is,

(56) C(NA, NB) = pA[dA(NA, NB)] ∗NA + pB[dB(NA, NB)] ∗NB

We can use equations (55) and (56) to solve for the price paid by each agent for all platforms

that are created in equilibrium yi,j(NA, NB) > 0. Solving this set of equations gives the

following prices for each slot in a platform:

(57) pT,s(NA, NB) =
λT,sUT (NA, NB)− γT,s

γκ

Where pT,s(NA, NB) is the equilibrium price paid by an agent of subtype T, s to join a plat-

form of size (NA, NB). Notice that the price function varies by subtype, yet, in equilibrium,

if agents of the same type, but different subtype, join the same platform they will still pay

the same price. For example, if xA,1[dA(NA, NB)] > 0 and xA,2[dA(NA, NB)] > 0 for some

[dA(NA, NB)] then:

(58) pA,1[dA(NA, NB)] = pA,2[dA(NA, NB)] ⇐⇒ (λA,1 − λA,2)UA(NA, NB) = (γA,1 − γA,2)

Therefore, the difference in the weighted utility between the different subtypes must be equal

to the difference in the Lagrangian multipliers associated with each agent’s participation

constraint.
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