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Abstract

The responsiveness of job creation to shocks is procyclical, while the responsive-

ness of job destruction is countercyclical. This new finding can be explained by a

heterogeneous-firm model in which hiring costs lead to lumpy employment adjustment.

The model predicts that policies that aim to stimulate employment by encouraging job

creation, such as hiring subsidies, are significantly less effective in recessions: These

are times when few firms are near their hiring threshold and many firms are near their

firing threshold. Policies that target the job destruction margin, such as employment

protection subsidies, are particularly effective at such times.
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1 Introduction

Aggregate employment growth can be decomposed into the contributions from job creation,

the increase in employment coming from expanding or entering establishments, and job de-

struction, the decrease in employment coming from contracting or exiting establishments1.

The main contribution of this paper is to show that the relative contribution of job creation

and job destruction to changes in aggregate employment is not constant over the business

cycle. Job creation is significantly more responsive to aggregate shocks in expansions, while

job destruction is more responsive in recessions. This time-varying responsiveness has im-

portant implications for the effectiveness of various labor market policies at different stages

of the business cycle.

I begin by using panel data on job creation and destruction rates at the state-level to show

that job creation and destruction exhibit significant time-varying responsiveness. Using a

predicted employment growth strategy, as in Bartik (1991), I show that the relative contribu-

tion of job creation and job destruction to changes in employment growth varies significantly

over the business cycle. Consider a shock that raises employment. In states where annual

employment growth is 3%, half of the increase in employment comes from higher job creation

and half from lower job destruction. However, when annual employment growth is -3%, the

contribution of lower job destruction rises to two-thirds and that of higher job creation falls

to one-third.

An implication of this time-varying responsiveness is that the job creation rate should be

more volatile when employment growth is high, and the job destruction rate should be

more volatile when employment growth is low. In the state-level data I find exactly this:

the volatility of the job creation rate is roughly 60% higher at the 95th percentile of the

employment growth distribution than at the 5th percentile.

To understand the causes and implications of this time-varying responsiveness, I study a

heterogeneous-firm business cycle model with lumpy employment adjustment. In the model,

employment adjustment is lumpy because firms face per-worker hiring costs, while firing

workers is costless. Such kinked adjustment costs lead to an inaction region in firms’ policy

functions: for a range of productivity levels, firms keep their employment unchanged.

This model is capable of generating time-varying responsiveness of job creation and destruc-

1These definitions were proposed by Davis, Haltiwanger, and Schuh (1998).
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tion because of movements in the underlying distribution of firms over the business cycle.

In an expansion, more firms are either hiring workers or are near their hiring threshold, and

fewer firms are firing or near their firing threshold. This makes the job creation rate more

responsive to either aggregate shocks or unexpected policy changes than it would be in a

recession. The opposite is true for the job destruction rate.

The model with lumpy employment adjustment is able to quantitatively match the time-

varying responsiveness of job creation and destruction seen in the state-level data. I show

that the presence of adjustment frictions is crucial: in a frictionless model, where there is

no inaction and all firms are either hiring or firing each period, the responsiveness of job

creation and destruction to aggregate shocks is acyclical.

I then investigate the aggregate implications of time-varying responsiveness by matching

the model to US employment data from 1977 to the present. Due to the sharp decline

in employment associated with the COVID-19 pandemic, the model implies that the job

creation rate is currently almost entirely unresponsive, while the job destruction rate is

almost three times as responsive as usual. In short, job destruction is currently the only

relevant margin for the vast majority of firms’ employment decisions.

In the final section I investigate the policy implications of this time-varying responsiveness

by estimating the impact of unexpected hiring subsidies or employment protection subsidies2

at different points in time. The effectiveness of these policies is highly state-dependent. The

model implies that hiring subsidies, which operate at the job creation margin, are significantly

less effective at stimulating employment during recessions. Employment protection subsidies

(or firing taxes), which operate at the job destruction margin, are significantly more effective

than normal at these times. This suggests that providing incentives for firms to retain their

existing employees is likely the most effective way to support employment levels during

the COVID-19 pandemic. Indeed, the Paycheck Protection Program in the US tries to do

exactly this for small businesses. Policies that attempt to stimulate new hiring would likely

be entirely ineffective at this time.

2I define an employment protection subsidy as a payment made to firms whose employment does not
contract.

2



1.1 Literature Review

There is a large literature studying models of lumpy employment adjustment. The model

in this paper is related to that in Hopenhayn and Rogerson (1993). However, their paper

only studies the steady-state implications of adjustment frictions in the form of a firing tax,

while I focus on the cyclical implications of lumpy adjustment caused by hiring costs. My

model is also related to the more recent multiple-worker search and matching models of

Elsby and Michaels (2013) and Fujita and Nakajima (2016). In those papers the adjustment

friction takes the form of vacancy posting costs, implying that the cost of hiring a worker is

time-varying, as it depends on the probability that a vacancy is filled. In contrast to these

search models, in this paper the cost of hiring a worker is constant over time3.

In this paper the focus is on the time-varying responsiveness of job creation and destruction

rates over the business cycle. The mechanism in this paper is related to that in Foote

(1998), which studies the implications of trend employment growth for the relative volatility

of job creation and destruction rates. His paper argues that the high relative volatility of

job destruction in the manufacturing sector is explained by the fact that the manufacturing

sector in the US is in a secular decline, and consequently relatively more firms are close to

the job destruction threshold than the job creation threshold.

The model in this paper is consistent with the empirical evidence on employment adjustment

put forward in Caballero, Engel, and Haltiwanger (1997). They use micro-data from the

Longitudinal Research Database (LRD) to characterize the employment adjustment process

of manufacturing establishments. They show that employment adjustment is characterized

by both frequent inaction and an increasing adjustment hazard: firms respond more to large

deviations of employment from their target level than small ones. In Appendix D I show

that firms in my model adjust their employment in exactly this fashion.

This paper is also related to Bachmann, Caballero, and Engel (2013) and Berger and Vavra

(2015). These papers show that aggregate investment and durable consumption are sig-

nificantly less responsive to shocks in recessions. The key difference between the case of

employment and either investment or durable consumption is that the establishment-level

employment growth distribution is symmetric, implying that the job destruction and job

creation margins are equally important for aggregate employment dynamics. Hence, while

job creation is less responsive in recessions, job destruction is more responsive.

3Consistent with the evidence cited in Christiano, Eichenbaum, and Trabandt (2016).
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2 Empirical Evidence of Time-Varying Responsiveness

In this section, I provide evidence of the time-varying responsiveness of job creation and

destruction using two complementary approaches. First, I use a local labor demand shock

approach, following Bartik (1991). I construct a measure of predicted state-level employ-

ment growth, based on local industry shares, and national variation in industry employment

growth rates. I then investigate the extent to which this predicted employment growth feeds

through into changes in job creation or job destruction, and whether this pass-through varies

over time. The second approach is based on conditional heteroskedasticity in job creation

and destruction rates. Both methods lead to the same conclusions: job creation is around

60% more volatile at the 95th percentile of the state-level employment growth distribution

than when it is at the 5th percentile of the distribution. The opposite is true of job destruc-

tion.

2.1 Approach 1: Bartik Method

In this section, I estimate the response of state-level job creation and destruction to changes

in predicted employment growth, constructed following Bartik (1991). I construct predicted

employment growth for state i at time t using industry-level employment growth rates in the

remainder of the country at time t and weights based on each industry’s employment share

in state i in a given base period:

Bi,t “

K
ÿ

k“1

φi,k,τg
N
´i,k,t (2.1)

where φi,k,τ is the employment share of industry k in state i in the base year τ “ 1990,

and gN´i,k,t is national employment growth in industry k excluding state i in year t. The

Bartik method predicts high employment growth in a state if the industries that the state

has specialized in are growing fast in the rest of the country4.

Using this measure of predicted employment growth, I then use the following regression

4This method has become popular as a method of identifying exogenous changes in labor demand at
the state-level. For example, Notowidigdo (2011) or Charles, Hurst, and Notowidigdo (2012). Goldsmith-
Pinkham, Sorkin, and Swift (2018) provides a thorough discussion of the Bartik approach.
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specification to estimate time-varying responsiveness:

∆Yi,t “ αi ` γt ` β0Bi,t ` β1Bi,t ¨ gNi,t´1 ` Γ1Zi,t´1 ` ϵi,t (2.2)

where ∆Yi,t is the change in the state’s job creation rate, job destruction rate, or employment

growth, gNi,t´1 is lagged state employment growth and Zi,t´1 is a vector of control variables.

The main coefficient of interest is β1. This shows how the impact of a change in predicted

employment growth on the outcome variable is affected by the current cyclical position of

the state, measured by local employment growth in the previous year.

I estimate these regressions using annual data at the state-level from the Census Bureau’s

Business Dynamics Statistics (BDS) database. I construct the Bartik instrument using

annual data on state-industry employment from the Quarterly Census of Employment and

Wages (QCEW). Appendix B gives more details on the data used, the construction of the

Bartik instrument, and the controls used to estimate equation 2.2. Table 1a shows the

results.

The first columns shows the effect of the Bartik shock on overall employment growth. As

might be expected, on average the change in employment growth predicted by the Bartik

measure is correct: employment growth moves one-for-one with the Bartik shock. The second

row shows that there is no evidence of time-varying responsiveness of overall employment

growth. The third and fourth rows of the table use the estimated values β̂0 and β̂1 to com-

pare estimates of the response at the mean level of lagged employment growth and when

employment growth is one standard deviation higher. The fifth row compares the respon-

siveness at the 5th and 95th percentiles of the state-level employment growth distribution.

The responsiveness of employment growth is acyclical.

The next two columns show that the acyclical responsiveness of employment masks significant

time-varying responsiveness in job creation and destruction. The estimate of β̂1 is positive

and significantly different from zero for both job creation and job destruction. A one standard

deviation increase in employment growth from its mean level increases the responsiveness of

the job creation rate by just under 20%, and reduces the responsiveness of the job destruction

rate by a similar amount. Looking at the tails of the distribution: job creation is around 60%

more responsive at the 95th percentile compared to the 5th percentile of the employment

growth distribution. The opposite is true of job destruction.
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Table 1: Empirical Evidence of Time-Varying Responsiveness

(a) Bartik Method

∆gNi,t ∆JCi,t ∆JDi,t

Bi,t 0.99 0.40 -0.59
(0.20) (0.13) (0.14)

Bi,t ¨ gNi,t´1 -0.003 0.025 0.027
(0.017) (0.010) (0.010)

β̂0 ` β̂1ḡ
N 0.99 0.45 -0.53

β̂0 ` β̂1pḡ
N ` 1SDq 0.98 0.54 -0.44

logpσ95
σ5

q -0.03 0.60 -0.55

Observations 1173 1173 1173
R2 0.415 0.305 0.369

(b) Conditional Heteroskedasticity

|∆gNi,t| |∆JCi,t| |∆JDi,t|

gNi,t´1 0.015 0.080 -0.101
(0.028) (0.013) (0.024)

logpσ95
σ5

q 0.06 0.63 -0.64

Observations 1836 1836 1836
R2 0.17 0.06 0.16

Notes: Panel (a) uses data from 1990-2014. Panel (b) uses data from 1977-
2014. Standard errors clustered by state. The mean and standard deviation
of state-level employment growth are 2.1% and 3.3%. The 5th and 95th per-
centiles of the state-level employment growth distribution are -3.4% and 7.1%.
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2.2 Approach 2: Conditional Heteroskedasticity

An alternative approach to measuring time-varying responsiveness is simply to investigate

whether or not the volatility of job creation and destruction is state dependent. If the

job creation rate is particularly responsive during expansions, then the volatility of the

job creation rate should be higher at such times. The opposite should be true of the job

destruction rate.

To test this prediction, I regress the absolute value of changes in a variable on its lagged

value and the lagged value of employment growth in that state, using the same state-level

panel of job creation and destruction rates from the BDS database.

|∆Yi,t| “ αi ` γt ` β0|∆Yi,t´1| ` β1g
N
i,t´1 ` ϵi,t (2.3)

Again, the main parameter of interest is β1. In this case, β1 measures the extent to which

the absolute size of changes in a variable are related to lagged employment growth. Table

1b shows the results of estimating this regression for employment growth, job creation, and

job destruction.

The results mirror those using the Bartik approach: There is no evidence of time-varying

volatility of total employment growth, the job creation rate is more volatile when lagged

employment growth is high, and the job destruction rate is more volatile when lagged em-

ployment growth is low. The magnitude of these effects is also similar to those from the

Bartik approach: The final row of Table 1a shows that the volatility of the job creation rate

is around 60% higher at the 95th percentile compared to the 5th percentile of the employment

growth distribution, while the opposite is true for the job destruction rate5.

Overall, the results from Section 2.1 and Section 2.2 are consistent. When employment

growth is high, the job creation rate is much more responsive to shocks than the job de-

struction rate. The opposite is true when employment growth is low. An explanation for

this finding is that in expansions many firms are near a hiring threshold, where they decide

to hire extra workers, while in recessions more firms are close to a firing threshold, where

they decide to lay off employees. In the next section, I study a model which formalizes this

argument.

5I estimate these counterfactuals at the mean value of the fixed effects estimated across states, holding
the lagged value of volatility at its average level.
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3 A Model of Lumpy Employment Adjustment

In this section, I study a heterogeneous-firm business cycle model, in order to understand

the causes and implications of the time-varying responsiveness of job creation and job de-

struction rates. In the baseline model, firms are subject to linear hiring costs, which leads to

infrequent employment adjustment. By comparing this model to one in which employment

adjustment is frictionless, I will show that infrequent adjustment is crucial for matching the

empirical evidence presented in Section 2. Below I describe the firm problem, then that of

the representative household, before defining an equilibrium and discussing computational

issues.

3.1 The Firm’s Problem

The economy consists of a continuum of regions, each containing a continuum of firms. The

mass of firms and regions is normalized to one. Each firm operates a decreasing returns to

scale production function using only labor, n, as an input. Firms are subject to aggregate,

regional, and idiosyncratic productivity shocks. The production function is:

y “ Azrzin
α (3.1)

where A, zr, and zi denote aggregate, region, and idiosyncratic productivity, respectively.

All productivity processes are AR(1) in logs. The firm’s idiosyncratic state variables are

their employment level, n, and their idiosyncratic and regional productivity, zi and zr. The

aggregate state variables are the distribution of firms over their idiosyncratic states, µ, and

aggregate productivity, A. I denote the aggregate state by S “ pA, µq.

Firm employment is predetermined. After productivity shocks are realized, firms make their

employment decision for the next period. Firing workers is costless, but firms are subject

to a per-worker hiring cost, κ, paid in units of output. The firm’s problem can be written

recursively as:

V pzr, zi, n;Sq “ max
n1

Azrzin
α ´ wpSqn ´ gpn, n1q ` Ez1

r,z
1
i,A

1rΛpS, S 1qV pz1
r, z

1
i, n

1;S 1qs (3.2)

subject to

gpn, n1q “ κpn1 ´ nq1pn1 ą nq
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µ1 “ ΓpA, µq

logA1 “ ρA logA ` σAϵ
1
A

log z1
r “ ρr log zr ` σrϵ

1
r

log z1
i “ ρi log zi ` σiϵ

1
i

where ϵ1
A, ϵ

1
r, and ϵ

1
i are iid Np0, 1q random variables, wpSq is the wage, and ΛpS, S 1q is the

stochastic discount factor of the representative household, whose problem is outlined in the

next section. The presence of the linear hiring cost means that the firm’s optimal employment

decision is characterized by two thresholds, npzr, zi;Sq and n̄pzr, zi;Sq. If employment is

below npzr, zi;Sq then the firm raises employment to this threshold in the next period. If

employment is above n̄pzr, zi;Sq then the firm reduces its employment to this threshold. If

employment is between these thresholds then the firm leaves employment unchanged. The

thresholds are defined by following first-order conditions:

Ez1
r,z

1
i,A

1rΛpS, S 1qVnpz1
r, z

1
i, npzr, zi;Sq;S 1qs “ κ (3.3)

Ez1
r,z

1
i,A

1rΛpS, S 1qVnpz1
r, z

1
i, n̄pzr, zi;Sq;S 1qs “ 0 (3.4)

where Ez1
r,z

1
i,A

1rΛpS, S 1qVnpz1
r, z

1
i, n;S

1qs is the expected marginal benefit of a worker to the

firm.

3.2 The Household’s Problem

Firms are owned by a continuum of identical households. As in Khan and Thomas (2008), it

is sufficient to focus on the first-order conditions of the household’s problem that determines

the equilibrium wage and stochastic discount factor.

Households have the following preferences6:

UpC,Nq “
1

1 ´ γ

ˆ

C ´ ψ
N1`ϕ

1 ` ϕ

˙1´γ

(3.5)

6As in Greenwood, Hercowitz, and Huffman (1988).
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Consequently, the stochastic discount factor can be written as:

ΛpS, S 1q “ β

¨

˝

CpS 1q ´ ψNpS1q1`ϕ

1`ϕ

CpSq ´ ψNpSq1`ϕ

1`ϕ

˛

‚

´γ

(3.6)

The first-order conditions of the household’s intra-temporal problem define the equilibrium

wage:

wpSq “ ´
UNpC,Nq

UCpC,Nq
“ ψNpSqϕ (3.7)

The choice of preferences, combined with the fact that labor is predetermined in the model,

implies that the wage is also predetermined. This simplifies computation of the model

substantially, as discussed in Appendix C.

3.3 Equilibrium Definition

A recursive competitive equilibrium of the model is a set of functions tV, n1, w,Λ, C,N,Γu

such that:

1. Taking w,Λ,Γ as given, n1pzr, zi, n;Sq solves the firm’s problem (3.2) and V pzr, zi, n, Sq

is the associated value function.

2. Taking w as given, household’s labor supply satisfies (3.7). Λ is implied by household

consumption and labor supply as in (3.6).

3. The goods market clears:

CpSq “

ż

rAzrzin
α ´ κpn1pzr, zi, n;Sq ´ nq1pn1pzr, zi, n;Sq ą nqs dµ

4. The labor market clears:

NpSq “

ż

ndµ

5. The evolution of the distribution, µ1 “ ΓpA, µq is induced by the policy function

n1pzr, zi, n;Sq and the exogenous processes for zr, zi and A.
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Table 2: Parameter Values

Parameter Baseline Frictionless

Hiring cost κ 0.47 0
Regional shock volatility σr 0.0045 0.0025
Idiosyncratic shock volatility σi 0.10 0.079
Aggregate shock volatility σA 0.0049 0.0039
Regional productivity persistence ρr 0.97 0.97
Idiosyncratic productivity persistence ρi 0.97 0.97
Aggregate productivity persistence ρA 0.974 0.984
Decreasing returns to scale α 0.65 0.65
Discount factor β 0.99 0.99
Risk aversion γ 1 1
Elasticity of labor supply 1

ϕ
2 2

Disutility of labor supply ψ 0.78 0.73

3.4 Equilibrium Calibration and Computation

The model period is one quarter. Table 2 summarizes the parameter values for the baseline

and frictionless versions of the model. The key parameters governing employment adjust-

ment in the model are the hiring cost, κ, and the dispersion of idiosyncratic and regional

productivity shocks, σi and σr. In the baseline model, I set κ equal to 60% of the quarterly

wage in steady-state, in line with the evidence provided by Silva and Toledo (2009). This

value corresponds broadly to the lower end of estimates of hiring costs in the literature.

In both calibrations, I choose σr to match the standard deviation of annual employment

growth at the state level in the US, equal to 0.012. I choose σi to match the standard

deviation of annual employment growth among continuing establishments of 0.4 reported

in Davis, Haltiwanger, Jarmin, and Miranda (2007). I choose to target only continuing

establishments as the model abstracts from firm entry and exit and because entry and exit

do not contribute to the volatility of aggregate job creation and destruction rates7. I set

ρr “ ρi “ 0.97 and choose ρA and σA to match the persistence and volatility of de-trended

US employment8.

I follow Cooper, Haltiwanger, and Willis (2007) in setting the curvature of the production

7See Figure 3 in the Appendix.
8I de-trend quarterly US employment using the HP filter with λ “ 105, the parameter used in Shimer

(2005) and related papers.
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function, α, to 0.65. I set the remaining parameters to conventional values. The discount

factor β is 0.99 and I assume that the household has log preferences. I set ϕ “ 0.5, implying a

Frisch elasticity of labor supply of 2. In the Appendix I show that the main results are robust

to lower values of the labor supply elasticity or a risk-neutral representative household. I

select ψ, the parameter governing the disutility of labor supply, to normalize aggregate

employment to 1 in the steady-state of the model.

It is not computationally feasible to solve the firm’s problem (3.2), as µ is an infinite dimen-

sional object. I use the method proposed in Krusell and Smith (1998) and approximate µ

by the first moment of the employment distribution. Further details of my computational

strategy and proof of its accuracy are given in Appendix C.

4 Model Validation: The Importance of Hiring Costs

To show the importance of hiring costs in generating time-varying responsiveness, I now

replicate the experiments from Section 2 in both versions of the model.

As the model does not include industries, it is not possible to exactly replicate the Bartik

experiment in the model. However, it is possible to use aggregate employment growth as a

measure of predicted firm employment growth, in order to run the same regressions as in

Section 2.1. In the model, aggregate employment growth is equal to mean firm employment

growth by construction. For the volatility regressions in Section 2.2, it is possible to run the

regressions exactly as in the data.

Table 3a shows the results of the Bartik regressions for the baseline and frictionless models.

The baseline model replicates closely the time-varying responsiveness seen in Table 1a: em-

ployment growth does not exhibit time-varying responsiveness, while the responsiveness of

job creation is procyclical, and that of job destruction is countercyclical. The final three rows

of the table show that the magnitudes of the time-varying responsiveness are quantitatively

very close to those seen in Table 1a.

The frictionless model generates almost no time-varying responsiveness. The coefficients

on the interaction terms are all close to zero and the final three rows of the table show

that there is no quantitatively significant time-varying responsiveness. Without employment

adjustment frictions, the relative contribution of job creation and destruction to changes in

12



Table 3: Time-Varying Responsiveness in the Model

(a) Bartik Method

Baseline Model Frictionless Model

∆gNi,t ∆JCi,t ∆JDi,t ∆gNi,t ∆JCi,t ∆JDi,t

Bi,t 1.04 0.58 -0.46 0.99 0.54 -0.45
Bi,t ¨ gNi,t´1 0.005 0.027 0.022 0.002 0.003 0.000

β̂0 ` β̂1ḡ
N 1.04 0.58 -0.46 0.99 0.54 -0.45

β̂0 ` β̂1pḡ
N ` 1SDq 1.06 0.67 -0.38 0.99 0.54 -0.45

logpσ95
σ5

q 0.05 0.49 -0.51 0.03 0.05 -0.00

(b) Conditional Heteroskedasticity

Baseline Model Frictionless Model

|∆gNi,t| |∆JCi,t| |∆JDi,t| |∆gNi,t| |∆JCi,t| |∆JDi,t|

gNi,t´1 0.021 0.068 -0.048 0.007 0.012 -0.005

logpσ95
σ5

q 0.11 0.67 -0.58 0.02 0.06 -0.03

Notes: I run the regressions on data generated by simulating the model for 10000
periods. In the model mean employment growth is zero. I use the standard
deviation of state employment growth of 3.3% estimated in the data. For the
95th and 5th percentiles of the employment growth distribution I use -5.2% and
5.2% (de-meaning the values of -3.4% and 7.1% from the data).
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employment growth does not vary over the business cycle.

Table 3b shows the results of the volatility regressions for both versions of the model. Once

again, the baseline model with lumpy employment adjustment generates time-varying volatil-

ity that is almost exactly the same magnitude as seen in the data. In contrast, in the

frictionless version of the model the volatility of employment growth, job creation, and job

destruction is acyclical.

4.1 What Causes Time-Varying Responsiveness?

The previous section showed that the baseline model is able to generate a significant de-

gree of time-varying responsiveness of both job creation and destruction rates, whereas the

frictionless model fails to do so. Why is this the case?

As emphasized by Caballero and Engel (2007), time-varying responsiveness can be decom-

posed into extensive and intensive margin effects. For example, a positive aggregate produc-

tivity shock will increase job creation by increasing the number of firms that increase their

employment (the extensive margin) as well as by increasing the job creation of firms who

would already have been hiring (the intensive margin). Consequently, the responsiveness of

the job creation rate depends on the number of firms already adjusting, as well as the num-

ber of firms that are near their hiring threshold. In the baseline model both of these forces

contribute to procyclical time-varying responsiveness of the job creation rate and counter-

cyclical time-varying responsiveness of the job destruction rate: in an expansion more firms

are either creating jobs or are close to their job creation threshold, while the opposite is true

in recessions.

Figure 3 shows this in a stylized way in the model by sketching the distribution of firms over

the marginal benefit of an extra worker, ErΛpS, S 1qVnpz1
i, z

1
s, n;S

1qs. The shaded area in the

left tail denotes firms that are firing, while the shaded area on the right denotes firms that

are hiring. The unshaded section of the distribution shows firms that keep their employment

unchanged. The left panel sketches the distribution in a recession, while the right panel plots

the distribution in an expansion. As the distribution shifts over time, it clearly affects both

the number of firms creating or destroying jobs, as well as the number that are close to the

thresholds.

As I will show in Section 5.1, time-varying responsiveness has significant implications for the
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effectiveness of different types of employment stabilization policy at different points in time.

Consider the effect of a one-period unexpected hiring subsidy equal to τ per new worker. The

effect of this policy in the model is to temporarily lower the hiring cost from κ to κ1 “ κ´ τ

for one period. This policy will increase job creation through the intensive and extensive

margins described above. Figure 3 predicts that both of these mechanisms will be weaker

in a recession than in an expansion. In contrast, policies which aim to stimulate aggregate

employment by discouraging job destruction, such as an employment protection subsidy (or

firing tax) are likely to be much more potent in a recession than in an expansion.

5 Aggregate Implications

The previous section showed that the baseline model is consistent with the cross-sectional

evidence from Section 2. In this section, I consider the aggregate implications of time-varying

responsiveness. First, I match the model to the US data, and show that the time-varying

responsiveness of aggregate job creation and destruction is quantitatively significant. I then

investigate the implications of this for various policies that are used to support employment

during recessions.

To match the model to the US data, I find the particular sequence of aggregate productivity

shocks9 such that aggregate employment in the model exactly replicates the path of the

cyclical component of US employment from 1977 to the present10. To estimate the degree

of time-varying responsiveness of job creation and destruction in the model, I follow Bach-

mann et al. (2013) in constructing “responsiveness indices”, which measure the impact of a

one standard deviation aggregate productivity shock on job creation, job destruction, and

employment growth at each point in time:

RJC
t ” JCpexpplogpAtq ` σAq, µtq ´ JCpAt, µtq (5.1)

RJD
t ” JDpexpplogpAtq ` σAq, µtq ´ JDpAt, µtq (5.2)

RN
t ” NpexpplogpAtq ` σAq, µtq ´ NpAt, µtq (5.3)

9Bachmann et al. (2013) and Berger and Vavra (2015) use a similar procedure to show time-varying
responsiveness of investment and durable consumption.

10I assume that the model is in steady-state in June 1977. In the Appendix, Figure 7 shows the implied
path of aggregate productivity in the model and Figures 8 and 9 show that the model exhibits realistic
movements in quarterly job creation and destruction rates, as well as the proportion of firms expanding or
contracting.
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Figure 1b plots the responsiveness indices for the baseline model, normalized such that the

mean value is equal to one. The baseline model implies a significant degree of time-varying

responsiveness in aggregate job creation and destruction. The model implies that the job

creation rate was almost 40% less responsive during the Great Recession in 2009 than it

was in the pre-crisis period. Conversely, job destruction was around 50% more responsive in

2009 than in 2006. Turning to the most recent data, the model implies that the job creation

rate is currently almost entirely unresponsive, while the job destruction rate is almost three

times as responsive as usual. In short, job destruction is the only relevant margin for the

vast majority of firms’ employment decisions in response to the COVID-19 pandemic.

Another way of seeing the time-varying responsiveness generated by the baseline model is to

plot the response of job creation and destruction to an aggregate shock at different points

in time. Figure 2a plots the impulse response function to a positive aggregate productivity

shock in the baseline model in the third quarter of 2005 and compares this to the response

if the same shock had occurred in the third quarter of 2008. As implied by Figure 1b,

during a recession the impact of the shock on job destruction is larger and on job creation

is smaller.

5.1 Time-Varying Policy Effectiveness

The previous sections have shown that the responsiveness of job creation is procyclical, the

responsiveness of job destruction is countercyclical, that this time-varying responsiveness is

quantitatively significant, and that it is offsetting such that aggregate employment shows lit-

tle time-varying responsiveness. But if aggregate employment does not exhibit time-varying

responsiveness, should macroeconomists care about the implications of lumpy employment

adjustment at the microeconomic level? The answer is yes, as the time-varying responsive-

ness of job creation and destruction has significant policy implications.

Employment stabilization policies can be categorized into those that aim to encourage job

creation, those that aim to discourage job destruction, and those that aim to operate on both

margins. The Paycheck Protection Program that the US Small Business Administration

(SBA) has initiated in response to the COVID-19 pandemic is an example of a policy that

aims to discourage job destruction. The program provides loans to small businesses that

will be forgiven “if all employees are kept on the payroll for eight weeks and the money is

16



Figure 1: Time-Varying Responsiveness of Job Creation and Destruction

(a) Sketch of Model Distribution

0 κκ1EpΛ1V 1
nq

Recession

0 κκ1EpΛ1V 1
nq

Expansion

Notes: The distribution sketched is over the expected marginal benefit of an extra worker. When this is
above κ the firm increase its employment. When it is below 0 the firm will fire workers.

(b) Model-Implied Responsiveness Indices
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Notes: Responsiveness indices show the impact on job creation, job destruction and employment of a one
SD aggregate productivity shock. The mean response is normalized to one.
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Figure 2: State Dependence of IRFs and Policy Effectiveness

(a) Impulse Response Functions
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Notes: Impact on job creation and job destruction of a one SD aggregate productivity shock in an expansion
and in a recession.

(b) Time-Varying Policy Effectiveness
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to 25% of the average quarterly wage. The mean response is normalized to one.
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used for payroll, rent, mortgage interest, or utilities”11. This policy has similarities with the

short-time work schemes that are common in European countries. In such schemes, firms

are able to temporarily reduce employee’s working hours, with the government providing

income support to these workers12.

On the other hand, in previous recessions many employment policies in the US have focused

on the job creation margin. For example, the original version of the 2010 Hiring Incentives to

Restore Employment (HIRE) Act proposed a $5,000 tax credit for every net new employee

hired by small businesses. The New Jobs Tax Credit (NJTC) of 1977-1978 provided a

significant wage subsidy for firms who increased their employment by more than 2%.

To investigate the quantitative impact of time-varying responsiveness for different labor

market policies in the model, I consider the impact on aggregate employment of one-period

unanticipated policy shocks at each point in time. In particular, I consider the effect on

employment of an unexpected hiring subsidy or an unexpected employment protection sub-

sidy equal to 25% of the average quarterly wage13. A hiring subsidy of τ reduces the cost of

increasing employment from κ to κ ´ τ . The hiring threshold now satisfies:

Ez1
r,z

1
i,A

1rΛpS, S 1qVnpz1
r, z

1
i, npzr, zi;Sq;S 1qs “ κ ´ τ (5.4)

I model an employment protection subsidy as a payment of τ per worker to any firm that

does not decrease their employment level. This changes the firing threshold to :

Ez1
r,z

1
i,A

1rΛpS, S 1qVnpz1
r, z

1
i, n̄pzr, zi;Sq;S 1qs “ ´τ (5.5)

Figure 2b shows the impact of these policies on aggregate employment at each point in

time in the baseline model, with the mean impact normalized to one. As is expected, the

impacts of the policies broadly mirror the responsiveness indices shown in Figure 1b. The

effectiveness of a hiring subsidy on aggregate employment is significantly procyclical, while

that of an employment protection subsidy is significantly countercyclical. While it is beyond

the scope of the model in this paper to study the impact of short-time work schemes, it is

likely that they are also particularly effective in recessions, given that they operate on the

job destruction margin.

11https://www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program
12For more detail on such schemes, see Hijzen and Venn (2011).
13The impact of an employment protection subsidy on the firing threshold is exactly equivalent to a firing

tax of the same magnitude.
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6 Conclusion

In this paper I have used state-level data to show that job creation and destruction rates

exhibit significant time-varying responsiveness. The job creation rate is most responsive

in expansions, while the job destruction rate is most responsive in recessions. This time-

varying responsiveness is quantitatively significant: a one standard deviation in state-level

employment growth leads to an almost 20% increase in the responsiveness of job creation

and a 20% decline in the responsiveness of job destruction.

I have shown that a heterogeneous-firm business cycle model with lumpy employment ad-

justment is capable of explaining this new fact. The job creation rate is more responsive in

expansions as these are times when more firms are either already hiring or are near their hir-

ing threshold. The opposite is true for the job destruction rate. The model suggests that the

sharp decline in employment induced by the COVID-19 pandemic means that the aggregate

job creation rate is currently almost entirely unresponsive, while the job destruction rate is

significantly more responsive than usual. This implies that providing incentives for firms to

retain their existing employees is likely the most effective way to support employment levels

during the COVID-19 pandemic.

In future work, I plan to use a similar model to study the impact of undertaking labor market

reforms at different times in the business cycle. The direct effect of removing firing costs is

that it is cheaper for firms in the left-tail of the distribution to fire workers. The indirect

effect is that firms in the right-tail have a larger incentive to hire workers, as they no longer

expect to have to pay firing costs if they need to fire those workers in the future. My model

would suggest that the direct effect is likely to be larger in recessions, and consequently that

the short-run impact on employment of removing firing costs may be most negative at these

times.
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Appendix For Online Publication

A Supplementary Figures

Figure 3: Job Creation and Destruction Rates: Continuing vs. Entry/Exit
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Figure 4: Fraction of Establishments Adjusting Employment
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Notes: Data from the BLS Business Employment Dynamics database.
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Figure 5: State and National Employment Growth
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Notes: Light-blue lines depict state-level annual employment growth. Black line depicts national annual
employment growth. Data is total nonfarm employment from the BLS Current Employment Statistics
Database.

Figure 6: Cyclical Component of US Employment
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Notes: Cyclical component of quarterly US employment de-trended using the Hodrick-Prescott filter with
λ “ 1e5.

B Data

For Section 2.1 and Section 2.2 I use state-level data on job creation and destruction rates

derived from establishment-level data from the US Census Bureau’s Business Dynamics
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Figure 7: Model-Implied Aggregate Productivity Series
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Figure 8: Model-Implied Job Creation and Destruction Rates
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Statistics (BDS) database. This provides annual data from 1977 to 2014.

For Section 2.1, I also require state-industry employment data. This is available on an annual

basis from the BLS Quarterly Census of Employment and Wages (QCEW) database from

1990 to 2016. In both cases I use data on the 50 states of the US as well as the District of

Columbia.
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Figure 9: Model-Implied Expansion and Contraction Rates
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In Section 5 I use total non-farm payrolls from the BLS14 as my measure of US employ-

ment.

B.1 Details on Bartik Approach

To construct a Bartik measure of predicted employment growth, I use state-industry employ-

ment data at the 3-digit NAICS level. I use all 3-digit industries apart from those with the

following NAICS codes: 482, 491, 516, 521. This leaves K “ 88 industries. Bartik predicted

employment growth is defined as:

Bi,t “

K
ÿ

k“1

φi,k,τg´i,k,t (B.1)

φi,k,τ is the employment share of industry k in state i in the base year τ “ 1990. If any

state-industry employment observations are missing for 1990 then I set φi,k,τ “ 0 for those

observations. g´i,k,t is national employment growth in industry k excluding state i in year

t. Goldsmith-Pinkham et al. (2018) point out that it is important to drop state i when

calculating national employment growth rates in this stage.

14FRED code: PAYEMS
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In equation 2.2 the vector of control variables Zi,t´1 contains two lags of the change in the

job creation and destruction rates, the lagged level of employment growth, and the lagged

value of Bartik predicted employment growth.

C Computational Method

Below I outline the computational algorithms used to solve the baseline and frictionless

model.

C.1 Baseline Model

To solve the firm’s problem, I approximate the expected marginal value function using linear

splines. A similar computational procedure is used in Fujita and Nakajima (2016). I follow

Khan and Thomas (2008) and re-write the firm’s recursive problem in terms of utils of the

representative household. Consequently, the problem can be written:

V pzr, zi, n;Sq “ max
n1

ppSqrAzrzin
α ´ wpSqn ´ κpn1 ´ nq1pn1 ą nqs ` βEz1

r,z
1
i,A

1rV pz1
r, z

1
i, n

1;S 1qs

(C.1)

s.t.

µ1 “ ΓpA, µq

where

ppSq ” UCpC,Nq “

ˆ

C ´ ψ
N1`ψ

1 ` ψ

˙´γ

(C.2)

The above problem is not computable due to the infinite dimensionality of µ. I use the tech-

nique of Krusell and Smith (1998) and approximate µ by the first moment of its distribution

over employment (equivalent to aggregate employment). I approximate Γ using log-linear

forecast equations. The problem which I compute is:

V pzr, zi, n;A,Nq “ max
n1

ppA,NqrAzrzin
α ´ wpNqn ´ κpn1 ´ nq1pn1 ą nqs (C.3)

` βEz1
r,z

1
i,A

1rV pz1
r, z

1
i, n

1;A1, N 1qs

s.t.
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logN 1 “ aN ` bN logN ` cN logA

log p “ ap ` bp logN ` cp logA

The firm’s hiring and firing thresholds are described by the following FOCs:

Ez1
r,z

1
i,A

1Vnpzr, zi, npzr, zi;A,N, pq;A,Nq “ pκ (C.4)

Ez1
r,z

1
i,A

1Vnpzr, zi, n̄pzr, zi;A,N, pq;A,Nq “ 0 (C.5)

The firm’s envelope condition for this problem is:

Vnpzr, zi, n;A,Nq “ ppA,NqrAzrziαn
α´1 ´ wpNqs

`

$

’

’

’

&

’

’

’

%

0 if βErVnpz1
r, z

1
i, n;A

1, N 1qs ă 0

βErVnpz1
r, z

1
i, n;A

1, N 1qs if 0 ď βErVnpz1
r, z

1
i, n;A

1, N 1qs ď ppA,Nqκ

ppA,Nqκ if βErVnpz1
r, z

1
i, n;A

1, N 1qs ą ppA,Nqκ

(C.6)

The expected marginal value function, before the realization of zi,zr and A, is then:

W pzr, zi, n;A,Nq ” Ez1
r,z

1
i,A

1Vnpzr, zi, n;A,Nq (C.7)

“ Ez1
r,z

1
i,A

1rA1z1
rz

1
iαn

α´1 ´ w ` minpmaxrβW pz1
r, z

1
i, n;A

1, Nq, 0s, ppA1, Nqκqs

C.1.1 Equilibrium Algorithm (Baseline Model)

1. Guess an initial forecast rule system: Γ̂ “ tai, bi, ciui“N,p

2. Given the forecast rule system, solve for the expected marginal value function by iterating

equation (C.7) until convergence.

3. Use the expected marginal value function along with the FOCs (C.4 and C.5) to approximate

the thresholds that describe the firm’s policy function: npzr, zi;A,N, pq and n̄pzr, zi;A,N, pq.

Note that the firm’s policy can depend on the market-clearing price p.

4. Simulate the model for T periods using the non-stochastic approach of Young (2010), i.e.

on a discrete (but dense) grid of points for zr, zi and n. Each period in the simulation, the

market-clearing price pt must be determined.
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5. When the simulation for T periods is complete, discard an initial T̄ periods, and then use

the remaining periods to update the forecast rules using OLS regression. If these coefficients

Γ̃ have converged with Γ̂, the algorithm is complete. Otherwise, update Γ̂ and return to step

2.

C.2 Frictionless Model

In the frictionless model the firm’s problem is:

V pzr, zi, n;Sq “ max
n1

ppSqrAzrzin
α ´ wpSqns ` βEz1

r,z
1
i,A

1rV pz1
r, z

1
i, n

1;S1qs (C.8)

s.t.

µ1 “ ΓpA,µq

where

ppSq ” UCpC,Nq “

ˆ

C ´ ψ
N1`ψ

1 ` ψ

˙´γ

(C.9)

The firms employment decision for the following period is implied by the following first-order

condition:

Ez1
r,z

1
i,A

1Vnpzr, zi, n;A,Nq “ 0 (C.10)

The firm’s envelope condition is:

Vnpzr, zi, n;Sq “ ppSqrAzrziαn
α´1 ´ wpSqs (C.11)

Using the previous two equations, the employment policy function is given by:

n1pzr, zi;Sq “

„

αEz1
r,z

1
i,A

1

„

A1z1
rz

1
i

wpS1q

ȷȷ
1

1´α

(C.12)

Consequently, in the frictionless version of the model there is no need to forecast p in order to find

the firm’s policy functions. This simplifies the algorithm.

C.2.1 Equilibrium Algorithm (Frictionless Model)

1. Guess an initial forecast rule system: Γ̂ “ taN , bN , cNu

2. Given the forecast rule system, solve for the firm’s policy functions using equation C.12.
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3. Simulate the model for T periods using the non-stochastic approach of Young (2010), i.e. on

a discrete (but dense) grid of points for zr, zi and n.

4. When the simulation for T periods is complete, discard an initial T̄ periods, and then use

the remaining periods to update the forecast rules using OLS regression. If these coefficients

Γ̃ have converged with Γ̂, the algorithm is complete. Otherwise, update Γ̂ and return to step

2.

C.3 Computational Accuracy

Table 4 shows the coefficients of the estimated log-linear forecast rules in the Krusell and Smith

(1998) approach in both the baseline and frictionless models. It is clear from these coefficients that

the baseline model induces persistence in aggregate employment. The most basic test of accuracy of

these forecast equations is their R2. While these are extremely high, they are also a poor measure

of accuracy, as pointed out by Den Haan (2010). The basis issue is that one-period ahead forecast

errors are a poor way of ensuring that the approximated law of motion for the model is close to the

true one. Consequently, I follow Den Haan’s recommendation and simulate the model for a large

number of periods (T = 5000)15. I then compare the average and maximum percentage deviation

between levels of p and N implied by the model and those that occur from iterating on the estimated

forecast rule system. The last four rows of Table 4 show that both mean and maximum percentage

errors from the forecast rule system are small. This confirms that the Krusell and Smith (1998)

approach provides a very accurate approximation.

D Implications of Hiring Costs

The top panel of Figure 10 shows the firm’s employment policy function in the steady-state of

the model. For each level of idiosyncratic productivity, the flat regions of the policy function

corresponding to level of employment that firms adjust to if they either hire or fire workers. In these

regions, future employment does not depend on current employment. There is also an intermediate

range of employment levels where firms leave their employment unchanged. In this area of the state

space, the policy function is clearly upward sloping in current employment.

The bottom panel of Figure 10 shows the distribution of employment gaps and adjustment prob-

abilities implied by the model, where I define a firm’s target employment level as the mid-point

15Note, this is not the same sample for which the equilibrium coefficients of the forecast rules were found.
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Table 4: Accuracy of Equilibrium Forecasting Rules

Baseline Frictionless

aN 0.001 -0.004
bN 0.515 0.000
cN 0.555 1.170
ap 0.365 N/A
bp -0.184 N/A
cp -1.569 N/A

R2
N 0.99982 0.99999

R2
p 0.99997 N/A

Max Error N(%) 0.17 0.11
Mean Error N (%) 0.04 0.10
Max Error p (%) 0.11 N/A
Mean Error p (%) 0.04 N/A

Notes: Mean/maximum errors constructed by sim-
ulating the model for 5000 periods and comparing
p and N series from the model with those from the
forecasting rules.

between the hiring and firing thresholds for their current levels of idiosyncratic and regional pro-

ductivity. Firms whose gap is small are unlikely to adjust. As the employment gap gets larger, the

adjustment probabilities smoothly increase. This shows that the model is capable of generating

employment gaps and adjustment probabilities that are qualitatively similar to those estimated

using Longitudinal Research Database (LRD) micro-data by Caballero et al. (1997).

E Robustness

In this section I show that the time-varying responsiveness of job creation and job destruction is

robust to two alternative calibrations of the model: one with a risk-neutral representative household,

and one with a lower aggregate labor supply elasticity. I show that the time-varying responsiveness

of aggregate job creation and destruction rates predicted by the model is unaffected by either of

these calibration changes.
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Figure 10: Lumpy Employment Adjustment in the Model

(a) Employment Policy Function

Notes: Employment policy functions shown in the steady-state of the model, holding regional productivity
equal to one.

(b) Employment Gaps and Adjustment Probabilities
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Notes: Employment gap is defined as the deviation between current employment and the mid-point of the
hiring and firing thresholds for the current level of productivity.
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Figure 11: Robustness: Model-Implied Responsiveness Indicies
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E.1 Risk-Neutral Representative Household

Khan and Thomas (2008) showed that procyclical real interest rates in general equilibrium have the

ability to neutralize the time-varying responsiveness of aggregate investment in models of lumpy

capital adjustment. The baseline model in this paper uses a standard specification of the repre-

sentative household’s stochastic discount factor, which implies similar movements in real interest

rate movements, yet this model generates significant time-varying responsiveness of job creation

and destruction rates. To understand the impact of general equilibrium effects on the time-varying

responsiveness in the model, I redo the exercise of Section 5 in a model where the representative

household is risk-neutral, i.e. γ “ 0, and consequently where real interest rates are constant. Figure

11 shows that the responsiveness indices from this model, which are very similar to those in the

baseline model.

Why do real interest rate movements have such a limited effect in the case of lumpy labor adjust-

ment? The key reason is that the timing of employment adjustment has little impact on consump-

tion of the representative household. In the model of Khan and Thomas (2008), general equilibrium

effects are important because of the consumption smoothing motive of the representative house-

hold, which causes large real interest rate movements in the face of consumption volatility. In this

model the only impact that employment adjustment has on consumption is through the hiring cost,

which is small.
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E.2 Lower Labor Supply Elasticity

In the baseline calibration I use a Frisch labor supply elasticity of 2, a value that is common in

the macro literature but higher than micro estimates. In this section I repeat the experiment

of Section 5 by generating “responsiveness indices” for the model assuming that the Frisch labor

supply elasticity is lowered to 1. The responsiveness indices shown in Figure 11 are almost identical

to those in Figure 1b. The only difference between this calibration of the model and the baseline

calibration is that aggregate productivity now needs to be more volatile to induce the changes

aggregate employment seen in the data: the standard deviation of aggregate productivity shocks is

raised from 0.0049 in the baseline model to 0.0073 with the lower labor supply elasticity. This can

be seen in Figure 7: the baseline model requires a productivity decline of around 6% to generate

the decline in employment seen in the Great Recession. For the model with a low labor supply

elasticity (high ϕ), the required decline in productivity is closer to 10%.
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