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Abstract

We assess the impacts from physical hazards (or severe weather events) on
economic activity in a panel of 98 countries using local projection methods. Prox-
ying the strength of an event by the monetary damages it caused, we find severe
weather events to reduce the level of GDP. For most events in the EM-DAT data
set the effects are small. The largest events in our sample (above the 90th per-
centile of damages) bring down the level of GDP by 0.5 percent for several years
without recovery to trend. Smaller events (below the 90th percentile) see a less
immediate decrease in initial years (0.1 percent) that progressively widens to be-
come similar to the effect of larger disasters after 10 years. Climatological hazards
(droughts and forest fires) appear to have the largest effects. These findings are
robust across country groupings by development and alternative measures of the
strength of the physical hazard.

Keywords: Climate-related risk, GDP growth, Natural hazards and disasters, Rare disas-
ters, Vulnerability to climate impacts
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1 Introduction

Each year, extreme weather events take their toll by displacing millions of people and

causing tremendous physical damages around the globe.1 And these costs seem to

be on the rise. As a share of global GDP, direct weather-related disaster damages

have grown from around 0.03% in the 1970s to nearly 0.16% today (Figure 1). In the

United States alone these damages reached $170 billion in 2022, see NOAA National

Centers for Environmental Information (2023). However, these numbers only reflect the

direct costs associated with the destruction of physical output and capital, and they

do not include the indirect macroeconomic effects (e.g., foregone production, lower

production efficiency, unavailable/displaced work force) which can reach multiples of

the direct damages as the weather-related shocks propagate through various channels

to the broader economy.

Many factors have driven up the costs from severe weather events, including in-

creased economic and human activity in economically attractive but hazard-prone and

vulnerable areas. But the prospect that severe weather events are very likely to in-

crease both in their physical intensity and frequency in many locations as a result of

climate change, raises the risk of even higher economic damages associated with physical

hazards.2

Against this backdrop we revisit the broader economic costs from severe weather

events in a panel of 98 countries using local projection methods. Following Jordà (2005),

we run a sequence of regressions of the cumulative change in per-capita-country GDP on

the disaster shock variable at each horizon up to 10 years. For information on disaster

shocks we turn to the EM-DAT database maintained by the Centre for Research on the

Epidemiology of National Disasters (CRED). As we are interested in the effects of all

weather-related disasters across types and severity, our preferred measure of disaster

are the associated direct dollar damages recorded in EM-DAT.3 To capture possible

nonlinearities in the effects from severe weather, we distinguish between events with

damages in the 90th percentile of damages (referred to alternatively as “very costly”)

and those below (“costly”).

When pooling all weather-related disasters, we find that the average disaster shock

in the 90th percentile is associated with a larger year-on-year decrease in GDP (around

1The Office Of The United Nations High Commissioner For Refugees (UNHCR) estimates that
since 2008 around 20 million people are displaced each year because of severe physical hazards.

2According to the IPCC Sixth Assessment Report from 2023, temperature extremes, heavy rainfall,
and droughts, and other physical hazards are set to become more frequent and intense compared to
the historical norm as global temperatures increase, see Pörtner et al. 2022.

3In addition to facilitating comparison across disaster types and aggregation (both across types and
time), direct damages also reflect the vulnerability of the affected areas to physical hazards. When
using purely geophysical measures (such as wind speeds or precipitation) instead additional data are
required to obtain a data on economic implications.
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Figure 1: Cost of all natural disasters as a share of world GDP

Note: Share (%) of GDP measures direct physical damages in nominal dollars divided by
nominal GDP.
Sources: EM-DAT, CRED/UCLouvain, Brussels, Belgium – www.emdat.be; World Bank,
World Development Indicators.

-0.5%) than for those below the 90th percentile (less than -0.1%). Nevertheless, the

cumulative effect after 10 years is about the same for both groups of disasters, at −0.5%.

The timing and shape of the physical effects differ noticeably between the two groups

confirming the importance to allow for nonlinearities in the effects.

We repeat our exercise distinguishing disasters by types of physical hazard to ac-

count for the fact that the various hazards propagate through different channels.4 Con-

sider, for example, the likely effects of a cyclone (a meteorological disaster) with those

from a drought (a climatological disaster). A cyclone primarily damages and impairs

the use of physical capital, public infrastructure, and private and commercial real estate.

In addition to the temporary loss of productive capacity, the loss in assets amplifies the

effects of the cyclone via the financial sector. By contrast, droughts impact dispropor-

tionately the agricultural sector via their effects on water resources (rivers, lakes, and

reservoirs). Agricultural output is destroyed, but the physical capital stock is largely

unaffected.

Our analysis suggests that climatological disasters (droughts and forest fires) have

more pronounced effects on per-capita GDP for very costly and costly events than

4We distinguish weather-related disasters into three categories: climatological (droughts, forest
fires), meteorological (hurricanes, extreme heatwaves) and hydrological (floods, land slides, wave ac-
tions) disasters.
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other severe weather events. These types of disasters are associated with a cumulative

decrease in per capita growth of 10% (at the 90% confidence level) over 10 years for

disasters in the 90th percentile, while those below the 90th percentile experience a 1%

drop over the same time frame (at the 68% confidence level).

When we do not separate disasters into very extreme ones (above the 90 percentile of

damages) and other extreme events, the shape of the response of the economy resembles

the shape of the very extreme ones. However, the average magnitudes of the uncovered

effects are smaller. First, by construction the mean (over all observations without

distinguishing percentiles) with which we scale the responses is smaller. Second, we

show that the marginal effects from severe weather events are smaller for more powerful

events. Combining smaller scaling factors and smaller marginal effects lowers the overall

impact that we uncover. The changes in the estimated economic impact of severe

weather events when distinguishing these events by percentiles of damages reveal the

importance of splitting them into two groups in the first place. Without the distinction

by intensity, the economic effects from severe weather events are understated.

Having explored differences across types of physical hazards we turn to shedding

some light on the role of country characteristics. Disaster damages combine different

characteristics of a severe weather event: they reflect the geophysical strength of the

physical hazard, the assets exposed to the hazard, and their vulnerability in case of a

hazard. Thus, two countries (or locations) that are affected by a hazard of identical

geophysical strength may experience very different direct damages. For example, if the

first location enjoys greater human and economic activity (exposure) but also features

poor infrastructure/protection against the hazard (vulnerability) than the second one,

the first location will experience greater direct damages for the same physical hazard

treatment. As disaster vulnerability may depend to a large extent on a country’s level of

development, we split our sample into a high-, middle- and low-income group. To have

a sufficient number of observations for each country group, we drop the classification

of events into above and below the 90th percentile bins by severity in this part of the

analysis.

Qualitatively, the results for each country group are generally in line with the find-

ings derived from the full sample: physical hazards lower economic activity for several

years with climatological disasters having more pronounced effects than other types of

disasters. The exception are low income countries where meteorological disasters (hur-

ricanes and heatwaves) are worse. Overall, and consistent with our initial expectation,

low-income countries also bear larger immediate effects from a mean shock in disaster

damages (decreasing 0.5% in the first year). In wealthier countries, technologies like air

conditioning, flood barriers or dams that limit the impact from severe weather events

are prevalent, whereas the adaptation to physical hazards lacks sufficient funding in
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low-income countries to prevent larger effects.

The contribution of this paper lies in computing the dynamic economic effects caused

by the different types of severe weather events while differentiating by disaster sever-

ity. Most existing works either focus on the short-term (Felbermayr and Gröschl 2014)

or the long-term impacts (Hsiang and Jina 2014). Regarding the measure of disaster

occurrence and strength, two other approaches found in the literature are a simple dis-

aster incidence measure (Raddatz 2009 or Roth Tran and Wilson 2023) and measures

of geophysical strength of the hazards (Felbermayr and Gröschl 2014, Hsiang and Jina

2014). We find our approach appealing as direct damages allow comparability across

events with regard to their strength and allow for the aggregation of disaster events over

the time interval used in the analysis (dictated by the availability of GDP data). In

addition, direct damages reflect exposure and vulnerability of the affected areas, data

that are hard to obtain for the entire set of countries in our sample. By contrast, geo-

physical data need to be merged with data on exposure of human and economic activity

to the event and with vulnerabilities. Simple disaster incidence measures contain no

information about the disaster strength. However, we also conduct our analysis using

such a measure and find larger effects than with our original approach.

The study closest to ours is Raddatz (2009). Using slightly different methodology

and relying on a disaster incidence measure, Raddatz (2009) argues that severe weather

events have a negative impact on GDP growth over a five-year average. Given that the

paper uses only the number of disasters in a given year in each country as the shock

measure, disasters cannot be differentiated by their strength.

Other authors have investigated the differential effects of extreme disasters. Using

data on the geophysical strength of disasters from 1979 to 2010, Felbermayr and Gröschl

(2014) establish that the initial output loss from a severe disaster rises nonlinearly with

the intensity of the event. The output loss due to a disaster in the top 1-percentile of

their disaster intensity measure is about 14 times higher than in the top 5-percentile.

Cavallo, Galiani, Noy, and Pantano (2013) find that disasters in the 99th percentile

of damages have long-lasting negative effects on GDP, 10% lower on average than it

was before the disaster. The effects are far less severe when considering disasters in

the 90th or 75th percentile. Hsiang and Jina (2014) use windspeed of global tropical

cyclones from 1950-2008 to proxy the strength of the disaster shock and find that GDP

growth is lower for years following a cyclone. Disasters in the 90th percentile imply

losses of per-capita income of 7.3%. Finally, von Peter, von Dahlen, and Saxena (2012),

for their part, also find sustained negative impacts from natural disasters, with annual

GDP growth lowered by more than 0.5% for two years. Our paper differs from all these

studies by including 10 more years of disaster data and the choice of methodology.

Not all studies find a negative impact from severe weather events on economic ac-
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tivity. Skidmore and Toya (2002) form long-run averages of GDP growth to understand

the long-term effects from disasters. They find that disaster occurrence (represented

by a dummy variable taking on the value of 1 if a disaster occurred in a given year)

boosts long-run GDP growth. However, Noy and Nualsri (2007) and Jaramillo (2009)

come to the opposite conclusion, when using data on deaths and damages to proxy the

strength of events instead of a simple dummy variable. Other related papers use panel

data on at the local level. Roth Tran and Wilson (2023) study the U.S. county-level

impact of disaster incidence on income. Barattieri, Borda, Brugnol, Pelli, and Tschopp

(2021) estimate the firm- and county-level employment effects following hurricanes in

Puerto Rico. Both of these papers interpret their findings as providing partial support

for disasters having positive economic effects in the medium to long run.

Section 2 presents the data used in our analysis. Section 3 details our methodology

while Section 4 discusses our results. Concluding remarks are offered in Section 5.

2 Data

We assess the effects of severe weather events on aggregate economic activity at the

country level across a large set of countries. In addition to information about the

occurrence of a weather-related disaster (disaster incidence), we also include information

about their strength (disaster severity). The EM-DAT database provides data on the

direct damages to physical output and capital (in U.S. dollars) from over 22,000 disasters

between 1900 and today.5 Many papers in the literature have utilized the EM-DAT

database to study the effects from natural disasters, amongst others Cavallo et al.

(2013), Noy (2009), Skidmore and Toya (2002) and Parker (2018).

Given our interest in assessing the economic implications from severe weather events

across the globe, the EM-DAT data on direct damages are appealing. The literature dis-

tinguishes three dimensions that determine the physical impact from disasters: physical

hazard, exposure, and vulnerability. The first dimension relates to the occurrence, type,

and intensity of the event. The exposure dimension reflects the total value of assets

and socioeconomic elements. Finally, the vulnerability dimension describes the degree

of damage of the exposed assets and socioeconomic elements expected at different haz-

ard intensities. The EM-DAT data on damages combines these three dimensions into

5A disaster is included in EM-DAT if at least one of the following criteria is met: 10 or more
deaths, 100 or more people affected/injured/homeless, or some declaration by the country of a state of
emergency and/or appeal for international aid. The database also records detail on the type of disaster,
as well as estimated deaths, damages, and total population affected, amongst other physical and human
capital metrics. EM-DAT uses national reporting and insurance claims to estimate the direct monetary
damages from natural disasters to the extent possible. Source: EM-DAT, CRED/UCLouvain, Brussels,
Belgium – www.emdat.be.
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a single measure. Dollar damages tend to be greater for disasters of great intensity, oc-

curring in areas with greater economic and human activity, and in a setting that makes

the exposed assets and socioeconomic elements more vulnerable to physical hazards.

In addition, exposure and vulnerability can evolve over time. Monetary damages do

incorporate such changes. Moreover, dollar damages of disaster occurrences can easily

be aggregated across time and type. If the dependent variable of interest is available

only at a low frequency—many disaster-prone countries publish GDP data of sufficient

quality only annually over large parts of our sample—some countries may experience

multiple severe weather events during one unit of time measurement.

One of the shortcomings of the EM-DAT damage data is that estimates can be inac-

curate due to faulty government reporting or low insurance penetration. Noy (2009) and

Skidmore and Toya (2007) document that economic and social indicators can themselves

be correlated with damages, with less developed countries seeing more severe effects in

the aftermath of a disaster.

An alternative approach is to gather separate data on hazard intensity, exposure

and vulnerability by country and over time. Hsiang and Jina (2014) or Felbermayr and

Gröschl (2014) collect geophysical information such as wind speed or precipitation to

measure the intensity of physical hazards.6 The resulting measures are free from the

spatial distribution of economic activity and thus some of the events included in their

data sets may be of little to no economic consequences when they affect an area without

economic activity. As such, these data assess the economic impact from all physical

hazards (in the data set) regardless of where they strike, whereas the intensity mea-

sures from EM-DAT (deaths, people affected, or direct damages) provide information

conditional on the hazard having struck an area of sufficiently significant human and

economic activity. Both approaches are of interest. Ideally, spatial data on the geo-

physical strength of physical hazards is complemented with spatial data on exposure

and vulnerability to derive conditional estimates. Microeconomic studies have explored

various directions in this regard.

Our analysis uses annual data of constant dollar damages from natural disasters,

across a panel of 98 countries and 40 years, from 1980 to 2019. We collect the de-

pendent variable, GDP growth, by taking the logarithm of the World Development

Indicators (WDI) GDP series, and generate dummy variables classifying countries into

three groups of development.7 These groupings are a High-Income, Middle-Income and

Low-Income country group, classified according to the United Nations cutoffs of GDP

per capita in every given year, meaning some countries in our sample switch between

6IRI/LDEO Climate Data Library is a collection of numerous databases that contain information
on the geophysical strength of severe weather events.

7World Development Indicators. Washington D.C. : The World Bank.
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groups. Additional series are taken from the Penn World Tables (Feenstra, Inklaar,

and Timmer 2015), specifically the population or current account indicators. Our set

of countries is similar to that in Noy and Nualsri (2007), likewise with a similar aggre-

gation of damage data, which we found to be a representative mix of size, geographies

and varied economies. The complete list can be found in Appendix A.

Each EM-DAT database entry corresponds to a recorded disaster. We normalize

the country and year sum of damages by total country GDP to account for a country’s

economic size. For disasters that last multiple years—such as the droughts in Zimbabwe

from 2013 to 2017 or Iran from 1999 to 2001—we allocate the total damages from the

disaster evenly over its duration. Furthermore, we sort disasters into the following

categories, as defined by EM-DAT:

• Climatological disasters: droughts, wildfires and glacial lake outbursts. These are

disasters that are “caused by long-lived, atmospheric processes.”

• Meteorological disasters: extreme temperatures, fog, and storms. These disasters

are “caused by short-lived, extreme weather and atmospheric conditions.”

• Hydrological disasters: floods, landslides and wave actions. These disasters are

“caused by the occurrence, movement and distribution of surface and subsurface

of bodies of water.”

Table 1 summarizes the yearly disaster data, for all years and countries with break-

downs by type of disaster and country income group. Hydrological disasters have the

most entries (at 636 in total), while climatological ones have the lowest share (at 228

across all countries and years). Middle-income countries also constitute the largest

number of observations (see third column “Obs.”). The final column shows the number

of observations that are in the 90th percentile of damages as a share of GDP of all disas-

ter events, that fall into the different country income groups and disaster types. Cavallo

et al. (2013) group “large” natural disasters in a similar way. We restrict attention to

the 90th percentile to make sure to have sufficient observations for each disaster type in

our “large” disaster group. As a proportion of the number of overall observations (final

column), low-income countries and middle-income countries experience a high share of

disasters in the 90th percentile. Conversely, high-income countries have a smaller share

of disasters in the 90th percentile, and lower mean values of damages as a share of GDP.

The large share of middle-income countries in both the total population and land

area throughout the span of our sample, see also Figure 12 of Appendix A, suggests

great exposure to disaster risk by this group of countries. Countries with more land

mass and population are more likely to experience a larger number of disasters affecting

8



Table 1: Summary Statistics

Damages (% of GDP, only
years with disasters)

Years with D > 90th
percentile

Mean SD Obs. Obs.
Total 0.73 2.77 1,030 126 (12.2%)

High-Income 0.20 0.44 351 10 (2.8%)

Middle-Income 0.98 3.51 573 93 (16.2%)

Lower-Income 1.18 2.48 106 23 (21.7%)

Climatological 0.39 1.57 228 14 (6.1%)

High-Income 0.27 0.40 79 4 (5.1%)

Middle-Income 0.48 2.01 134 8 (6.0%)

Lower-Income 0.29 0.59 15 2 (13.3%)

Meteorological 0.79 3.57 461 39 (8.5%)

High-Income 0.14 0.46 212 2 (0.9%)

Middle-Income 1.41 5.06 211 32 (15.2%)

Lower-Income 1.05 2.62 38 5 (13.2%)

Hydrological 0.47 1.50 636 84 (13.2%)

High-Income 0.12 0.23 170 5 (2.9%)

Middle-Income 0.52 1.60 384 62 (16.1%)

Lower-Income 0.99 2.21 82 17 (20.7%)

Higher-income countries are defined as all observations where GDP per capita is above $12,000.
Middle-income countries are all countries with GDP per capita between $1,036 and $12,000,
while low-income countries are all observations below $1,036. There are 3,920 observations
total, split between 1,193 for high-income countries, 1,860 for middle-income countries, and
716 for low-income countries.
Sources: EM-DAT, CRED / UCLouvain, Brussels, Belgium – www.emdat.be. World Devel-
opment Indicators. Washington D.C. : The World Bank.
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their area and settlements as evidenced by Table 1. Since we define our country income

groups by per-capita GDP year by year, the group compositions change over time.8

Figure 2: Distribution of all climate disasters by % of GDP damaged

(a) All disasters (b) All disasters above 2.5%

Note: Distribution shows all disasters in EM-DAT. The plot on the right, 2b, excludes disasters
below 2.5% to emphasize outliers.

Figure 2 displays the distribution of disaster damages (as share of GDP) in the

EM-DAT database. As seen in the left panel, Figure 2a, the distribution is skewed to

the right with a mass point of disasters between 0 and 0.1% of GDP damages and a

scattering of rare but highly intense damages above 10% of GDP. The panel on the

right zooms in on the density function for events that exceed physical damages of 2.5%

of GDP.

3 Methodology

To estimate the impact of extreme weather events on GDP, we use a panel fixed-effects

regression to compute local projections over different year horizons in line with Jordà

(2005). As shown in Li, Plagborg-Møller, and Wolf (2022) and Plagborg-Møller and

Wolf (2021), local projections imply the same impulse responses as Vector Autoregres-

sions (VARs) in many circumstances. Since we study the effects of a clearly defined

shock (disasters) on a particular variable (cummulative per capita GDP growth), local

projections are sufficient for identifying the effects of interest.

8Middle-income countries account for a much larger share of population than any other income
group towards the end of our sample (more than 70%) as evidenced by Figure 12b in Appendix A,
and equally account for around half of the land mass. Meanwhile, low-income countries have a small
share of the total land area and population towards the end of our sample (under 10%), due to the
progression of China and India into middle-income status in the 1990s and 2000s, respectively. High-
income countries are consistently around 20% of the total population, and between 30% and 40% of
the land mass.
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The main independent variable is direct disaster damages (as a percent of GDP),

with the dependent variable being the log difference in GDP per capita between different

time periods. Using a panel-data regression allows us to control for unobserved, time-

invariant, country-specific quantities.9 We add time-dummy variables to introduce time

fixed-effects which control for any cross-country, time-specific shocks such as global

recessions. Finally, we treat the extreme values in our sample of disasters as measured

by GDP damages separately as discussed in the previous section. One dummy variable

indicates whether a given year contains a “very costly” disaster in the 90th percentile

(1(> 90%)), and another dummy indicates “costly” disasters below the 90th percentile

(1(< 90%)).

Specifically, we estimate the regression over the set of horizons s ∈ {0, 1, 2, ..., 10}:

log yi,t+s − log yi,t−1 = βs
1Di,t × 1(< 90%) + βs

2Di,t × 1(> 90%)

+
s∑

h=−3
h̸=0

γs
hDi,t+h +

3∑
k=1

θsk∆ log yi,t−k + αi + αt + εi,t+s (1)

yi,t denotes GDP per capita in constant prices for country i in year t, Di,t is the

(standardized) dollar damage as a share of GDP of country i in year t, and αi, αt are

country and year-fixed effects, respectively. The first sum,
∑s

h=−3
h̸=0

γhDi,t+h, represents

a series of leads and lags in the value of Di,t to control for disaster damages in the past

(or that occur in the future up to horizon s when projecting forward). This approach

resembles Roth Tran and Wilson (2023) to prevent the impulse response functions from

being subjected to biases from unrelated past or future disasters. Even in the case of

related past or future damages (such as droughts), taking this approach allows us to

isolate the (estimated) effect of each year’s damages.10

The final sum in equation (1) brings in lagged values of year-on-year economic

growth, ∆ log yi,t = log yi,t − log yi,t−1, to control for any pre-disaster growth dynamics

that may influence post-disaster growth dynamics in time period s. We include 3 years

of past GDP growth, beyond which any additional lagged values do not confer much

statistical significance in our linear regression.

The coefficients βs
i over the 11 readings (with the first year 0 as the contemporaneous

effect of disaster damages) summarize the impulse response function for cummulative

9This approach may help to reduce certain biases in our regression, such as the level of development,
education, or other general variables that are country-specific, correlated with growth, and have broadly
remained constant over our observation period. Even so, our findings remain generally robust to
inclusion of additional explanatory variables, such as GDP per capita level, openness to trade, or
fertility.

10The inclusion of these additional variables does not significantly change our results. However, we
are able to estimate the effects of individual years more accurately under this approach.

11



GDP growth in response to a severe weather event. We distinguish between βs
1 and βs

2

for the impulse responses for costly and very costly disasters, respectively. When assess-

ing the effects from each disaster type (climatological, meteorological and hydrological)

or for country groupings we only include the relevant data.

4 Results

We plot the two impulse response functions (IRFs) of GDP for severe weather events

below and above the 90th percentile of damages in Figure 3. The figure shows the

results for all extreme weather events and separates by type of disaster, i.e., clima-

tological (droughts, forest fires), meteorological (storms, extreme temperatures), and

hydrological (floods, wave actions). We plot the mean IRFs as well as 68% confidence

bands (dark gray), and 90% confidence bands (light gray). The responses are scaled by

the mean of GDP damages for the respective percentile group. The IRF plots in the left

column are for costly disasters (below the 90th percentile group) and those in the right

column are for very costly disasters (in the 90th percentile). To facilitate comparisons,

we repeat the mean response of the costly disasters in the columns on the right.

The plots in Figure 3 reveal that severe weather events negatively impact GDP per

capita for a prolonged period. The effects are of varying statistical significance and

magnitudes, but remain negative for almost all time periods of the different disaster

groups. Figures 3a and 3b show that costly and very costly severe weather events exhibit

a decrease in cumulative GDP per capita growth of around 0.5% after 10 years, but in

initial years this decrease is not as immediate for costly disasters (approximately -0.1%

in the year of the disaster) as for the very costly ones. These numbers are comparable

to Raddatz (2009) who reports that “a climatic disaster affecting at least half a percent

of a country’s population [...] reduces real GDP per capita by 0.6 percent” 10 years

after the initial disaster. The year-on-year results are also corroborated by Felbermayr

and Gröschl (2014), who find that year-on-year growth decreases by 0.18% in response

to a sample mean shock of a natural disaster.

When comparing the magnitudes of the indirect macroeconomic effects to the ini-

tial direct damages it is key to keep the following in mind. The direct damages are

concentrated on the physical capital stock (private and public). While some (stored)

output might be directly destroyed by the disaster, the output loss both in the year of

the severe weather event and thereafter stems from the loss in productive capacity and

the associated drops in productive efficiency and work force availability. These supply

side effects are amplified through financial and demand channels.

Moving on to the sub-categories of disasters, cumulative GDP per-capita growth is

about 0.5% lower for meteorological and hydrological disasters after a period of 10 years

12



Figure 3: Cumulative growth responses to shock from damage and 90th per-
centile

(a) All: Di,t ∗ 1(< 90%) (b) All: Di,t ∗ 1(> 90%)

(c) Climatological: Di,t ∗ 1(< 90%) (d) Climatological: Di,t ∗ 1(> 90%)

(e) Meteorological: Di,t ∗ 1(< 90%) (f) Meteorological: Di,t ∗ 1(> 90%)

(g) Hydrological: Di,t ∗ 1(< 90%) (h) Hydrological: Di,t ∗ 1(> 90%)

Note: The shock is scaled by the average value of the interaction term.

13



for both costly and very costly disasters, as in Figures 3e, 3f, 3g and 3h. Hydrological

disasters seem to drive the shape of the IRFs when using the full sample of observations

which is not too surprising given the large share of hydrological events in the EM-DAT

database. In contrast to the other disaster types, the effects from climatological costly

and very costly disasters differ markedly from each other: cumulative GDP per capita

decreases by 1% after 10 years for disasters below the 90th percentile, whereas it drops

by around 12% for disasters in the 90th percentile. Both of these impacts cumulate over

time, with the initial years registering a 0.2% decrease and 2% decrease, respectively.

One possible explanation for the particularly damaging impact of climatological

disasters may be their sustained impact. Raddatz (2009) also finds that “among climatic

disasters, droughts have the largest average impact, with cumulative losses of 1% of

GDP per capita” in response to their occurrence. Unlike other disasters such as storms

or floods, droughts can last months or years, while forest fires and droughts both have

long-run consequences on land resources due to soil deterioration.

Given the size differences between costly and very costly direct damages, one would

generally expect the response of cumulative GDP per-capita growth to be noticeably

larger for disasters in the 90th percentile than those below the 90th percentile. Although

true for climatological disasters, and for meteorological and hydrological disasters in the

first few years, this does not hold for meteorological and hydrological disasters further

out.

To shed some light on the differences between percentiles, we perform auxiliary

regressions in (2)-(4). These regressions re-obtain the coefficients of the year-on-year

growth effects on the groups of costly and very costly GDP damages. This approach

provides a robustness check and helps distinguishing the marginal from the overall

effects. As a bi-product, we are able to visualize the data distribution of each GDP

damage percentile group separately, by plotting the residuals. Consider the regressions

identifying the effect of costly disasters below the 90th percentile:

log(yi,t)− log(yi,t−1) = β′
2Di,t × 1(> 90%) + λ′

2C + ε′i,t (2)

Di,t × 1(< 90%) = β∗
2Di,t × 1(> 90%) + λ∗

2C + νi,t (3)

ε′i,t = βs
1νi,t + ϵi,t (4)

First, we regress the one-period ahead GDP per-capita growth on our control vari-

ables (regression 2), then we regress our interaction term of interest on the controls

(regression 3), where C =
∑3

h=1 (Di,t−h +∆ log yi,t−h) + αi + αt is the vector of control

variables and λ is the corresponding coefficient estimate vector. The residuals from

the first regression ε′i,t are the variation in GDP growth unexplained by very costly
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disasters (disasters above the 90th percentile) and remaining controls. The residuals

from the second regression νi,t are the variations in the damages from costly disasters

(below the 90th percentile) unexplained by the very costly disasters and the controls.

Regressing the residuals of the former regression on those of the latter (as in 4) gives

us the same coefficients of the interaction term as our baseline regression, βs
1. We also

run the regression with the roles of the percentile groups reversed to obtain βs
2.

Figure 4: Scatter plots of residual regressions to all disasters

(a) All: below 90th percentile (b) All: above 90th percentile

Note: Fitted lines for the residual regression from Di,t ∗ 1(> 90%) and Di,t ∗ 1(< 90%).

Figure 4 plots the slope βs
1 and βs

2 and the residuals from the regressions concerning

all disasters, for each interaction term of GDP damages with 90th percentile splits.

While the average effect one year ahead is worse for very costly disasters (−0.48 versus

−0.070 for disasters below the 90th percentile) as is consistent with the early years of

Figures 3a and 3b, the marginal effect (which corresponds to the unscaled slope β in

response to 0.1% additional GDP damages) is more negative for costly disasters: the

coefficient in Figure 4a is −0.04, whereas that in 4b is −0.01.11 A key concern of our

analysis is how outliers may inflate our estimates, in particular for βs
2. The residual

scatter plot in Figure 4b reveals the existence of some outlier events in the very costly

disaster damages with residual values above 300. However, these outliers reduce the

slope estimate; when removing them, the slope estimate almost doubles in absolute

value.12 Hsiang and Jina (2014) report a similar finding. They find that the marginal

effect of smaller disasters on growth (defined as cyclones with wind speeds below 10

meters per second) is more negative than the marginal effect of larger disasters (wind

11A breakdown by type of disaster can be found in Appendix B, summarized in scatter plot shown
in Figure 14.

12This observation reaffirms our finding that the marginal effects of disasters are declining in the
magnitude of the disaster, as evidenced by the slope comparisons between costly and very costly
disasters.
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speeds above 20 meters per second).

This larger “marginal” effect for costly direct damages (below the 90th percentile)

could reflect larger upfront costs (or a threshold effect) to severe weather events. For

instance, a flood of 60 cm likely incurs more damage than a flood of 30 cm, but both

will have upfront costs that will close roads, erode river banks, or cause displacement.

An additional 10 cm on the 60 cm flood will likely not be as significant as an additional

10 cm on a 10 cm flood.

Figure 5: Response of GDP (percent deviation) to a mean shock to physical
damages, all countries

(a) All disasters (b) Climatological disaters

(c) Meteorological disasters (d) Hydrological disasters

When we remove the interaction dummy corresponding to percentiles in Figure

5, the shape of the IRFs resembles the ones for very costly disasters across disaster

groupings. However, the magnitudes of the effects differ importantly between Figure

5 and Figure 3. First, the mean with which we scale the IRFs is smaller in Figure 5.

Second, as just discussed, the marginal effects from severe weather events are smaller for

more powerful events. Combining smaller scaling factors and smaller marginal effects

lowers the overall impact that we uncover. The changes in the estimated economic

impact of severe weather events when distinguishing percentiles of damages reveal the

importance of classifying disasters by their intensity.
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4.1 Country income blocks

The economic effects of severe weather events differ by country characteristics. The

level of development is commonly viewed as a major determinant of weather-related

disasters. Richer countries (in terms of per-capita GDP) have a different capacity to

absorb the damages associated with severe weather events as they have better access

to financial markets and can mobilize domestic resources more easily. They also have

the financial means to build greater resilience through adaptation. In addition, many

rich countries rarely experience disastrous weather events by virtue of their geography

(Western Europe) or, if they do, the events are localized given the size of the country

(United States and Canada) and affect only a small share of economic activity.13 For

middle income countries, some authors have raised the possibility that severe weather

events may have a positive effect on economic activity if the event leads to subsequent

upgrading of the physical capital stock and infrastructure. While such a relationship

may be observed in the data, assigning meaningful causality to it appears questionable.

The severe weather event may only determine the timing of the upgrading but not the

fact that eventually such upgrading would have happened anyways.

Given the sparsity of very costly events in our data set we refrain from differentiating

between events above and below the 90th percentile when analyzing country groups.

In light of the earlier discussion of Figure 5, comparisons across the country groups

may not be meaningful. Therefore, we focus on the comparisons between types of

disasters for each group. We define the group of high-income countries for a given year

as including those countries for which real GDP per capita is above $12, 000 in that

year, in accordance with the United Nations’ most recent definition. Middle-income

countries are defined as countries with per-capita income between $1, 035 and $12, 000.

Low-income countries feature per-capita income below $1, 035.

Figure 6 isolates the effect of GDP damages on high-income countries. In response to

all severe weather events, per-capita GDP declines on impact in high-income countries

and accumulated over 10-years stays negative. This result is driven by the effects of

climatological disasters (-1% over 10 years) and meteorological disasters (-0.2% over 10

years), both of which are significant at the 68% level. Only hydrological disasters buck

this trend, with an initial decrease that turns positive after 4 years and grows to a 1%

expansion after 10 years.

Figure 7 shows the results for middle-income countries. This is the group with the

most observations for all categories of disasters. When pooling disasters, the impact of

a mean shock is negative for the initial year at about -0.1%, but over the duration of 10

13For large countries, given the joint historic geographic distribution over severe weather events and
economic activity most physical hazards are small from a national perspective.
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Figure 6: High-income countries: response of GDP (percent deviation) to a
mean shock to physical damages

(a) All disasters (b) Climatological disaters

(c) Meteorological disasters (d) Hydrological disasters

Note: The figure represents the response of GDP, in percent deviation from year preceding the
shock year (year 0), to a mean shock of GDP disaster damages. All disasters are classified as
climatological, meteorological, and hydrological. High-income countries are all observations
where GDP per capita is above $12,000.
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Figure 7: Middle-income countries: response of GDP (percent deviation) to
a mean shock to physical damages

(a) All disasters (b) Climatological disaters

(c) Meteorological disasters (d) Hydrological disasters

Note: The figure represents the response of GDP, in percent deviation from year preceding the
shock year (year 0), to a mean shock GDP destroyed by disasters. All disasters are classified as
climatological, meteorological, and hydrological. Middle-income countries are between $1,035
and $12,000.
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years, seems to hover around no change (0%) compared to there not being a shock. This

result is broadly in line with the hydrological category. While meteorological disasters

see an initial drop as well, the 10-year cumulative GDP growth trends slightly positive.

Climatological events cause the largest drop with about -2% of GDP per-capita growth

spread out over 10 years and significant at the 90% confidence level.

Figure 8: Low-income countries: response of GDP (percent deviation) to a
mean shock to physical damages

(a) All disasters (b) Climatological disaters

(c) Meteorological disasters (d) Hydrological disasters

Note: The figure represents the response of GDP, in percent deviation from year preceding the
shock year (year 0), to a mean shock GDP destroyed by disasters. All disasters are classified
as climatological, meteorological, and hydrological. Low-income countries are those below
$1,035.

The under-performance of middle-income countries for climatological disasters com-

pared to other categories shows the heterogeneity with which different disasters affects

this income group. Benson and Clay (2004) theorize that economic development may

not reduce the negative effects of disasters in a linear fashion, and they specifically single

out middle-income countries as being most susceptible to climatological disasters. This

is because these countries tend to be more integrated than low-income countries, which

can “increase the multiplier effects of adverse performance.” Furthermore, developed

countries may not have as large a proportion of their economies exposed to sectors prone

to damages from droughts or forest fires, such as the agricultural, livestock, or manu-
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facturing sectors dependent on agro-processing (more common in developing countries).

Other factors hypothesized by Benson et al. include the degree of openness, lower in-

vestment in risk reduction, higher levels of poverty, all of which are typically worse in

middle-income countries as opposed to developed countries.

Finally, Figure 8 plots the local projection IRFs for low-income countries. This is

the country group with the least observations in our data set and probably the lowest

data quality. The effects of all disasters are mainly driven by hydrological disasters, the

bulk of disaster damage observations for low-income countries. Meteorological disasters

deliver a sustained negative impact, stabilising around -2% of cumulative GDP per

capita growth at the 10-year mark. Meanwhile, climatological disasters have a slight

negative effect.

4.2 Sensitivity of results

We set the 90th percentile as a cutoff in our baseline specification because it isolates

those disasters that are in the group of outliers while maintaining a large enough sub-

group size. The average damage as a percent of GDP is 4.7% for disasters in this

percentile bracket, whereas disasters between the 80th and 90th percentile feature on

average only direct physical damages of 0.9% of GDP. When going to the 95th per-

centile, the number of observations in the “very costly” disaster group is cut to 57. The

impulse responses in Figure 9 show the effects under alternative cutoffs of the 85th,

90th, and 95th percentiles, respectively. Qualitatively, the responses are similar across

cutoff levels. The magnitude of the effects increases strongly with the cutoff level.

Figure 9: Cumulative growth responses to shock from damage and different
percentiles

We also experiment with alternative measures to test the robustness of our results.

While we still group disasters into costly and very costly groups of direct damages (90th
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percentile splits), we do not make use of the direct damage data in the regression to

distinguish disasters by their intensity. Within the percentile-split groups, individual

disasters are no longer differentiated by their strength. It is only the number of disaster

occurrences in each percentile that matters.

Figure 10: Cumulative GDP growth responses to shock from alternative dis-
aster physical damage measure and 90th percentile

(a) All: 1(< 90%) (b) All: 1(> 90%)

Note: The two disaster measures are dummy variables.

Figures 10a and 10b show our findings (solid blue line) and compare them with

our earlier approach in which we use the detailed direct physical damages. The effects

under the alternative approach appear to be somewhat larger for both costly and very

costly disasters, but qualitatively similar. Also when using disaster occurrence, we find

that very costly disasters in the 90th percentile of damages do, overall, have a more

negative effect on cumulative GDP per capita growth than costly disasters below the

90th percentile.

Additional sensitivity analysis examines the correlation of direct physical damages

with future realisations of damages. Figure 11 shows that across types of disasters

direct physical damages do not predict future damages. Hence, there is no indication

of inter-year correlation.
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Figure 11: Response of GDP (percent deviation) to an increase in disaster
physical damages by 0.1% of GDP

(a) All disasters (b) Climatological

(c) Meteorological (d) Hydrological

Note: The figure plots the response of GDP damages in future periods, in percent deviation
from year preceding the shock year (year 0), to an increase in disaster damages by 0.1% of
GDP. The grey shaded ribbons correspond to confidence bands, with the darker one repre-
senting the 68% confidence interval while the lighter one is the 90% confidence interval.
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5 Conclusion

We use local projections to estimate the impacts severe weather events (measured by

direct disaster damages) on cumulative per-capita GDP growth over a 10-year period.

For very costly disasters in the 90th percentile of direct weather-related damages, the

negative effects are more immediate than for costly disasters below the 90th percentile.

The most severe effects are seen following climatological disasters (comprising droughts

and forest fires), although both meteorological (storms and extreme temperatures) and

hydrological (floods and wave actions) disasters also affect cumulative GDP per-capita

growth negatively. For all disaster types, the marginal effect of direct weather-related

damages from physical hazards (i.e., the decrease of GDP when direct physical dam-

ages increase by 1% of GDP) are larger for costly disasters. However given that the

average (mean) disaster size in the 90th percentile is larger, the GDP effects from very

costly disasters are more negative than for only costly disasters in the years following

the event. Not splitting disasters into two groups lowers yields significantly smaller

estimates of the effects of severe weather events.
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A Country list

Here is a list of the countries used for analysis:

Table 2: List of countries by income group

High-Income
Countries

Middle-Income Countries Low-Income Countries

Australia Algeria Jordan Bangladesh†

Austria Argentina* Kazakhstan* Benin†

Barbados Bolivia Kenya Burundi
Belgium Botswana Malaysia* Central African Republic
Canada Brazil Mauritania Gambia
Hong Kong Cameroon Mauritius Guinea-Bissau
Cyprus* Chile* Mexico India†

Denmark China† Nicaragua Lesotho†

Finland Colombia Pakistan† Malawi
France Congo Panama* Mali
Germany Costa Rica* Paraguay Mozambique
Greece Dominican Repub-

lic
Peru Nepal†

Hungary* Ecuador Philippines Niger
Iceland Egypt Poland* Rwanda
Ireland El Salvador Senegal Sierra Leone
Israel Fiji South Africa Togo
Italy Ghana† Syria† Tanzania†

Japan Guatemala Thailand Uganda
Kuwait Guyana Trinidad and To-

bago*
Venezuela†

Netherlands Haiti Tunisia Zambia†

New Zealand Honduras Turkey*
Norway Indonesia Uruguay*
Portugal* Iran Yemen
Republic of Korea* Jamaica Zimbabwe†

Singapore
Spain
Sweden
Switzerland
United Kingdom
United States

*: country that switches between middle and high income.

†: country that switches between low and middle income.
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Figure 12: Share of country income groups

(a) By land area

(b) By population

*: Source: World Development Indicators (WDI). Washington, D.C. : World Bank.
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B Distribution of extreme events

Figure 13: Distribution of disasters by intensity (% of GDP damaged) and
by type of disaster

(a) Climatological, above 0.1% (b) Climatological, above 2.5%

(c) Meteorological, above 0.1% (d) Meteorological, above 2.5%

(e) Hydrological, above 0.1% (f) Hydrological, above 2.5%

Note: Distribution shows all disasters in EM-DAT. We plot one set of bar charts on a linear
scale (bin width is 0.2% of GDP). Plot 2b excludes disasters below 2.5% to emphasize outliers.
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Table 3: Dummy interaction with 90th percentile cuttoff of disasters: all disasters

Dependent variable:

Year on year per capita GDP growth

(1) (2)
damage*1(< 90th Percentile) - 0.1% Shock −0.0401

(0.0522)

damage*1(> 90th Percentile) - 0.1% Shock −0.0102∗∗∗

(0.00467)

damage*1(< 90th Percentile) - mean shock −0.0702
(0.0912)

damage*1(> 90th Percentile) - mean shock −0.4839∗∗∗

(0.2215)

lag(damage) 0.0024 0.0024
(0.0045) (0.0045)

lag(damage,2) −0.000094 −0.000094
(0.0044) (0.0044)

lag(damage,3) −0.0017 0.0017
(0.0031) (0.0031)

lag(per capita growth) 0.1770∗∗∗ 0.1770∗∗∗

(0.0172) (0.0172)

lag(per capita growth,2) 0.0273 0.0273
(0.0172) (0.0172)

lag(per capita growth,3) 0.0376∗∗ 0.0376∗∗

(0.0164) (0.0164)

Constant 1.3240∗∗∗ 1.3240∗∗∗

(0.0815) (0.0815)

R-squared 0.21 0.21
Number of individuals 97 97
Number of observations 3,381 3,381

Note: the ”mean shock” is the independent variable normalised by the mean disaster value
from all periods where we observe a disaster.
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Table 4: Dummy interaction with 90th percentile cuttoff of disasters: climatological
disasters

Dependent variable:

Year on year per capita GDP growth

(1) (2)
damage*1(< 90th Percentile) - 0.1% Shock −0.1373

(0.0963)

damage*1(> 90th Percentile) - 0.1% Shock −0.0536
(0.0521)

damage*1(< 90th Percentile) - mean shock −0.2507
(0.1760)

damage*1(> 90th Percentile) - mean shock −1.9495
(1.8938)

lag(damage) −0.0163 −0.0163
(0.0161) (0.0161)

lag(damage,2) −0.0246 −0.0246
(0.0160) (0.0160)

lag(damage,3) −0.0143 −0.0143
(0.0159) (0.0159)

lag(per capita growth) 0.1752∗∗∗ 0.1752∗∗∗

(0.0172) (0.0172)

lag(per capita growth,2) 0.0273 0.0273
(0.0171) (0.0171)

lag(per capita growth,3) 0.0374∗∗ 0.0374∗∗

(0.0164) (0.0164)

Constant 1.3258∗∗∗ 1.3258∗∗∗

(0.0771) (0.0771)

R-squared 0.21 0.21
Number of individuals 97 97
Number of observations 3,381 3,381
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Table 5: Dummy interaction with 90th percentile cuttoff of disasters: meteorological
disasters

Dependent variable:

Year on year per capita GDP growth

(1) (2)
damage*1(< 90th Percentile) - 0.1% Shock −0.2070∗∗∗

(0.0736)

damage*1(> 90th Percentile) - 0.1% Shock −0.0061
(0.0052)

damage*1(< 90th Percentile) - mean shock −0.2969∗∗∗

(0.1056)

damage*1(> 90th Percentile) - mean shock −0.4784
(0.4060)

lag(damage) 0.0018 0.0018
(0.0053) (0.0053)

lag(damage,2) 0.0009 0.0009
(0.0052) (0.0052)

lag(damage,3) −0.0002 −0.0002
(0.0052) (0.0052)

lag(per capita growth) 0.1762∗∗∗ 0.1762∗∗∗

(0.0172) (0.0172)

lag(per capita growth,2) 0.0282∗ 0.0282∗

(0.0171) (0.0171)

lag(per capita growth,3) 0.0368∗∗ 0.0368∗∗

(0.0164) (0.0164)

Constant 1.3298∗∗∗ 1.3298∗∗∗

(0.0779) (0.0779)

R-squared 0.21 0.21
Number of individuals 97 97
Number of observations 3,381 3,381
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Table 6: Dummy interaction with 90th percentile cuttoff of disasters: hydrological
disasters

Dependent variable:

Year on year per capita GDP growth

(1) (2)
damage*1(< 90th Percentile) - 0.1% Shock 0.0578

(0.0890)

damage*1(> 90th Percentile) - 0.1% Shock −0.0243∗∗

(0.0108)

damage*1(< 90th Percentile) - mean shock 0.0661
(0.1017)

damage*1(> 90th Percentile) - mean shock −0.6866∗∗

(0.3051)

lag(damage) 0.0150 0.0150
(0.0108) (0.0108)

lag(damage,2) 0.0011 0.0011
(0.0103) (0.0103)

lag(damage,3) −0.0043 −0.0043
(0.0102) (0.0102)

lag(per capita growth) 0.1767∗∗∗ 0.1767∗∗∗

(0.0172) (0.0172)

lag(per capita growth,2) 0.0277 0.0277
(0.0172) (0.0172)

lag(per capita growth,3) 0.0375∗∗ 0.0375∗∗

(0.0164) (0.0164)

Constant 1.2862∗∗∗ 1.2862∗∗∗

(0.0793) (0.0793)

R-squared 0.21 0.21
Number of individuals 97 97
Number of observations 3,381 3,381
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Figure 14: Scatter plots of residual regressions to different disaster types

(a) Climatological: below 90th percentile (b) Climatological: above 90th percentile

(c) Meteorological: below 90th percentile (d) Meteorological: above 90th percentile

(e) Hydrological: below 90th percentile (f) Hydrological: above 90th percentile

Note: Although the fit lines for the residual regression from damage ∗ 1(> 90%) seems to be
more negative than the residual from damage ∗ 1(< 90%), the scale is much larger on the
x-axis, more than compensating for this seemingly more negative effect and netting out to a
less negative one for a marginal shock as illustrated in tables (3) - (6).
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