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Abstract

This paper introduces a method for estimating productivity and quality at the
firm-product level using a transformation function framework. We use firm optimization
conditions to establish a one-to-one mapping between observed data and unobserved
productivity and quality. We do not need to impute firm-product input shares and can
avoid imposing productivity evolution processes. The method is scalable to numerous
products and can address the bias caused by unobserved heterogeneous intermediate
input prices. We apply the method to a set of Mexican manufacturing industries and
examine the roles of across-firm and within-firm technological spillovers, accounting for
the trade-off between productivity and quality. Our quantitative analysis shows that
an exogenous, product-specific technological improvement generates substantial gains
in welfare, amplified by both within-firm and across-firm spillovers by approximately
17 percent and 5 percent, respectively. Moreover, within-firm resource reallocation
toward the most productive products accounts for 60 percent of the resulting firm-level
productivity gains.
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1 Introduction

The production landscape of many manufacturing industries is dominated by multi-product

firms, which operate across a diverse range of product lines. However, existing empirical

studies that explore the determinants of firm performance have primarily focused on analyzing

variations across different firms, such as heterogeneity in productivity levels and demand

characteristics (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016; Kumar and Zhang, 2019).

Consequently, there remains a considerable gap in the understanding of the factors that drive

within-firm heterogeneity and resource reallocation, as well as their subsequent impact on

firm growth. This knowledge gap is due to methodological limitations and data constraints,

which hinder the accurate estimation of heterogeneity at the firm-product level.

This paper introduces a method to estimate productivity and quality (product appeal)

at the firm-product level, along with the transformation function and demand parameters.

This method constructs a unique one-to-one mapping from observed data to unobservable

variables by using firm optimization conditions. This offers several advantages over recent

methods (e.g., Dhyne et al., 2022; Orr, 2022; Valmari, 2023). First, it eliminates the need for

imputing within-firm input allocations. Second, it does not need to impose restrictions on

productivity evolution, allowing for flexibility in exploring complex productivity dynamics

after estimation. Third, it is scalable to handle a large number of products. Fourth, it

addresses the estimation bias caused by heterogeneous firm-level intermediate input prices,

which are usually unobservable in available data sets.1 To demonstrate the advantages, we

apply our method to three major industries in the Mexican manufacturing sector, where

multi-product production is a central feature of firms. We examine the role of both across-firm

and within-firm technological spillovers in the dynamic evolution of technical efficiency, as

well as the role of within-firm resource reallocation in shaping firm performance.

In modeling the production side, our method is designed to address the challenges commonly

faced in estimating multi-product production functions. Most production function estimation

methodologies implicitly assume that each firm produces a single product (e.g., Olley and

Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). In

this context, the input allocation is observable to researchers and each firm only has a single

dimension of unobservable productivity, which can be controlled for by an observable proxy.

Multi-product firms, on the contrary, may have different levels of productivity for each

product. Extending the proxy-based methods to the context of multi-product firms requires

at least the same number of proxies as the number of products (cf., Dhyne et al., 2022).

1In the cases where intermediate input prices are observed, our method can be modified to allow for
non-Hicks’ neutral efficiency (i.e., labor-augmenting efficiency), as shown in recent literature (e.g., Doraszelski
and Jaumandreu, 2016; Zhang, 2019; Raval, 2019; Rubens et al., 2024).
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Moreover, researchers do not observe the within-firm division of inputs used to produce

different products because firms usually only report total inputs at the firm level.2 Finally,

intermediate input prices, which vary significantly across firms and over time due to various

reasons such as bargaining power in the input market and transport costs, as documented by

Atalay (2014), should be controlled for to avoid “input price bias” (Ornaghi, 2006; De Loecker

et al., 2016; Grieco et al., 2016). However, these firm-level input prices are rarely observable.

To address these issues, we model the production technology using a transformation

function, which is a mapping from a vector of inputs at the firm level to an aggregator of

product-specific outputs. This saves us from modeling how the inputs are divided for the

production of each individual product. Each product is associated with a potentially different

level of physical productivity (i.e., quantity-based productivity, or TFPQ, as in Foster et al.,

2008).3 The productivity levels, together with a parameter in the transformation function

that characterizes the technological substitutability of the products, govern the marginal

rate of transformation between any two products. The firm observes these productivity

levels before making input and output decisions to maximize profits. In the spirit of Grieco

et al. (2016), we show that the optimization conditions implied from our model can be

inverted to form an explicit one-to-one mapping from observed input and output decisions to

unobserved productivity at the firm-product level (regardless of the number of products),

while controlling for unobserved intermediate input prices. Intuitively, the variation in product

prices within a firm identifies the productivity difference across products within the firm,

after controlling for differences in markups and production scale. We exploit the inverted

relationship to replace unobserved productivity in the transformation function, enabling

estimation of the transformation function parameters. Once the parameters are estimated,

we compute productivity (TFPQ) at the firm-product level from the one-to-one mapping.

Although the primary innovation of our method lies on the production side, it is flexible

enough to accommodate a variety of demand systems. Conditional on the availability of

valid instrumental variables, the approach can be applied to widely used demand models

such as Constant Elasticity of Substitution (CES) demand, discrete-choice demand (e.g.,

Berry, 1994), and random-coefficients logit demand (e.g., Berry et al., 1995). In our empirical

application, we adopt a CES demand specification, which is appropriate given the level of

product aggregation in our data. To address the classic endogeneity issue in estimating the

2This is an empirical challenge because of the potential input sharing (e.g., machinery and workers) across
product lines within a firm (e.g., Cairncross et al., 2025; Koh and Raval, 2025). For example, a printing firm
may use the same design software to create multiple products, such as product labels; workers with specialized
skills, such as pattern makers, may be used across different product lines within the same footwear firm; in
pharmaceutical industries, a firm may use the same reactors to produce different products by adjusting the
process parameters.

3We refer to physical productivity as simply “productivity” in this paper unless explicitly stated otherwise.
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price elasticity of demand, we depart from the traditional literature by exploiting a key feature

of multi-product firms: within-firm profit maximization implies a structural relationship

between the revenues of products produced by the same firm. Following estimation, we

recover product quality as the residual component of the demand function after controlling

for price.

After demonstrating the performance of our method through Monte Carlo simulations,

we apply it to establishment-level panel data from three major Mexican manufacturing

industries—footwear, printing, and pharmaceuticals—that include firm-product-level prices

and quantities, along with detailed firm-level input data. Multi-product firms represent

approximately 56% of all firms and account for 86% of total revenues in these industries.

Given the product classification used, the number of total products ranges from 4 in the

footwear industry to 16 in the pharmaceutical industry, with multi-product firms producing

an average of 6.9 products per year. Within each industry, the markets for different product

categories (e.g., women’s shoes vs. men’s shoes in the footwear industry) are largely segmented.

However, within each product category, firms’ outputs are likely vertically differentiated, as

reflected in the substantial dispersion in prices. These empirical features support our use of

a CES demand model, which abstracts from competition across horizontally differentiated

product markets while capturing vertical differentiation through quality differences.

After estimation, the recovered TFPQ and product quality at the firm-product level allow

us to examine heterogeneity and performance both within and across firms. Following the

literature (e.g., Melitz, 2000), we construct a revenue-based productivity measure (TFPR)

that incorporates heterogeneity in both TFPQ and quality at the firm-product level. We find

substantial variation in TFPR, with heterogeneity across firms dominating that within firms.

Interestingly, although our estimation does not impose any relationship between TFPQ

and quality, we find a significant negative correlation (i.e., trade-off) between them, with a

coefficient of -0.34. This implies that producing higher quality comes at the cost of lower

TFPQ when inputs are held fixed.4 We refer to the component of TFPQ that is adjusted

for the cost of quality as technical efficiency. Unlike raw TFPQ, this measure is comparable

across firms and products because it accounts for variation in quality.

A further advantage of our method is that it does not necessarily require any ex-ante

assumptions about the dynamic evolution of technical efficiency. This feature allows us to

investigate complex interdependencies in productivity dynamics within multi-product firms

after estimating the model parameters, a task that would be considerably more difficult if

4This result is broadly consistent with the emerging literature emphasizing the negative correlation between
physical productivity and quality across firms (e.g., Grieco and McDevitt, 2017; Roberts et al., 2018; Orr,
2022; Eslava et al., 2024; Forlani et al., 2023; Li et al., 2025).
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the productivity process had to be estimated jointly with other parameters. To demonstrate

this advantage, we study technological spillovers—both across firms and within firms—while

allowing for the trade-off between TFPQ and quality. Compared to the existing literature,

which typically focuses on across-firm spillovers (e.g., Malikov and Zhao, 2023), our results

suggest that within-firm spillovers are also economically meaningful, although across-firm

spillovers are indeed more prominent. To quantify the importance of these spillover channels,

we conduct a counterfactual exercise where the technical efficiency of one product is improved

exogenously. Compared with the benchmark without spillover, the across-firm spillover

contributes an additional 16.6% to the total welfare gain, while the within-firm spillover

contributes an extra 5.4%. More importantly, over half of the improvement in firm-level TFPR

resulting from the product-specific shock is attributable to within-firm resource reallocation

toward more productive products—regardless of spillover types.

Our methodology builds on recent advances in the estimation of heterogeneous productivity

of multi-product firms. In addressing the common data challenge of input data being

observable only at the firm level, while outputs and revenues are reported separately by

product, the literature has evolved into two main approaches. The first approach, pioneered

by De Loecker et al. (2016), characterizes multi-product production as a collection of single-

product production functions, coupled with a rule for allocating firm inputs to each of these

functions. Subsequent studies have extended this approach. In particular, Orr (2022) models

product lines sharing the same technology (i.e., production parameters) but with individual

productivity, and shows how demand data can be used to assist estimation under profit

maximization conditions. Valmari (2023) develops a similar framework, incorporating flexible

production parameters across product-specific production functions. Chen and Liao (2022)

generalize the previous papers by allowing single-product firms and multi-product firms to

have different production functions and by estimating both non-parametric and parametric

production functions for multi-product firms. In contrast, the second approach, led by Dhyne

et al. (2022), departs from the assumption that multi-product production is a collection of

single-product firms. They adopt a transformation function and show how it can be used to

recover the production frontier and estimate firm-product-specific marginal costs.

We integrate the strengths of both approaches to overcome their respective limitations.

First, we model multi-product production using a transformation function, similar to Dhyne

et al. (2022). This avoids the need to allocate firm-level inputs, as in Orr (2022) and

Valmari (2023), and allows for potential within-firm input sharing across product lines.

Second, in addressing unobserved firm-product productivity, we adopt the profit maximization

assumption, similar to Orr (2022) and Valmari (2023). However, instead of imputing input

allocation shares, we use the profit-maximizing conditions to establish a one-to-one mapping
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from observed firm decisions to unobserved productivity, extending the insights of Grieco et al.

(2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022) to the context of multi-product

firms. Importantly, the number of profit-maximizing conditions, which naturally increase

with the number of products, ensures the scalability of our method. This differs from Dhyne

et al. (2022), whose method requires a separate proxy for each additional firm-product-level

productivity. Rather, it is more similar to recent approaches to identify markdowns (Morlacco,

2020; Caselli et al., 2021; Kirov and Traina, 2023) or factor-augmenting productivity (Demirer,

2022; Raval, 2023) using necessary conditions for optimality with respect to multiple flexible

inputs. Third, our method addresses the bias due to unobserved firm-level heterogeneity in

input prices without requiring the availability of input price data. This is in contrast to the

existing methods (e.g., Orr, 2022; Valmari, 2023), which typically require access to such data.

Finally, our method does not rely on modeling the evolution of productivity, which offers

a distinct advantage in exploring the evolution of productivity after estimation. Such an

advantage is particularly beneficial in studying complex (e.g., interdependent) productivity

dynamics, factors that endogenously shape the productivity trajectory (e.g., Chen et al., 2021;

Malikov and Zhao, 2023), and frequent product turnovers, such as for exported products.

In terms of empirical application, our paper integrates the analysis of the productiv-

ity–quality trade-off, technological spillovers, and resource reallocation in the context of

multi-product firms. Focusing on firm-level analysis, Grieco and McDevitt (2017) and Li et al.

(2025) have documented a significant trade-off between productivity and quality—interpreted

as the cost of quality—in the U.S. healthcare sector and the Chinese steel industry, re-

spectively. A natural implication of their findings is that the cost of quality should be

explicitly considered when modeling the evolution of productivity. Our paper identifies a

similar trade-off at the firm-product level and incorporates this feature into the productivity

evolution process to investigate technological spillovers. On the spillover front, our study

complements the firm-level literature on productivity spillovers (e.g., Malikov and Zhao,

2023). While most existing research focuses on spillovers across firms, we demonstrate that

within-firm spillovers can also be economically significant. These within-firm productivity

spillovers reflect economies of scope arising from the internal sharing of knowledge (e.g.,

Bilir and Morales, 2020; Merlevede and Theodorakopoulos, 2023; Ding, 2025). We show

that such spillovers substantially enhance both firm performance and aggregate welfare,

primarily through within-firm resource reallocation, a mechanism increasingly recognized

in the recent literature on multi-product firms (e.g., Mayer et al., 2021). Our evidence

highlights within-firm reallocation as a novel and important channel through which firm-level

productivity responds to product-specific shocks. In doing so, our study complements a large

body of work emphasizing the role of across-firm resource reallocation in driving aggregate
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productivity growth (e.g., Aw et al., 2001; Foster et al., 2008; Syverson, 2011; Collard-Wexler

and De Loecker, 2015).

The remainder of the paper is organized as follows. Section 2 introduces the general

theoretical framework of demand and production in the context of multi-product firms.

Section 3 develops the estimation methodology for the general framework, while Section 4

describes the data used in the empirical analysis. Section 5 presents the empirical model

and demonstrates the performance of the method using Monte Carlo simulations. Section 6

reports the estimation results. Section 7 presents our empirical application and quantitative

exercise studying the dynamic evolution of technical efficiency. Section 8 concludes.

2 Theoretical Framework

This section develops a general framework of demand and production for multi-product firms,

aimed at estimating firm-product-level measures of productivity and quality, along with the

associated model parameters. While the general framework highlights the broad applicability

of our estimation methodology, researchers may adopt specific functional forms suited to

their empirical contexts. In Section 5, we demonstrate such an implementation in the context

of our empirical application.

Consider an industry with J firms indexed by j = 1, 2, . . . , J . There is a total of N

products, indexed by n = 1, 2, . . . , N , that firms can choose to produce. The timeline of

the decisions is as follows. At the beginning of period t, the set of products that firm j has

decided (at the end of the previous period) to produce in this period is Λjt. Each product

n ∈ Λjt is associated with a level of technical efficiency ωjnt and a level of quality ξjnt, both

of which have been determined and observed by the firm at the end of the previous period.

The firm’s capital stock is also determined in the previous period via an investment decision.

Given these state variables, the firm’s static decisions consist of choosing material input

and labor input at the firm level and the quantities of individual products to maximize total

period profit, conditional on the observed material price, wage rate, and capital stock. The

optimization conditions associated with these static decisions form the basis of our estimation

strategy. At the end of period t, the firm also makes dynamic decisions regarding its capital

stock and product portfolio for the following period, including the selection of products to

produce and the associated levels of product quality and technical efficiency. Although our

estimation strategy does not explicitly model these dynamic choices, Online Appendix C

outlines the structure of these decisions, providing conceptual insight into how they are

endogenously determined.
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2.1 Demand

The demand for product n of firm j in period t is modeled as an inverse demand function:

Pjnt = Pjnt(Qjt,Q−jt; ξt), (1)

where Pjnt is the product price. Importantly, Qjt = {Qjnt}, n ∈ Λjt is a vector of quantities

of the products produced by firm j in period t; Q−jt = {Qkt}, k ̸= j is a vector of quantities

of the products produced by the competitors of firm j in period t; ξjt = {ξjnt}, for all j and

n, is a vector of quality levels of all products produced by firm j and its competitors. This

function may also include a set of product characteristics if they are observable in the data.

Empirically, the realized (observed) price of a product is subject to an unexpected shock:

P̃jnt = Pjnte
ujnt , (2)

where ujnt is assumed to be independent, identically distributed, across firm, product, and

time, and E(eujnt) = 1. Crucially, the firm does not observe ujnt (an ex-post shock) when

making production decisions of inputs and outputs. In contrast, the firm observes ξjnt (an

ex-ante shock) at the time of production decisions. The explicit modeling of the ex-ante and

ex-post shocks is also adopted by Barrows et al. (2024). It is also worth noting that ujnt is

the sole source of discrepancy between the model-predicted revenue Rjnt and the realized

revenue observed by researchers, R̃jnt = P̃jntQjnt = PjntQjnte
ujnt = Rjnte

ujnt , while there is

no ex-post, unexpected shock to product quantity.5

Depending on the empirical context, the demand system can be specified in various ways,

including the widely-used CES demand, discrete-choice demand (e.g., Berry, 1994), and

random-coefficients logit demand (e.g., Berry et al., 1995). These demand systems may

allow for the possibility that a product’s demand may be affected by cannibalization and

competition, arising not only from the products of rival firms but also from other products

offered by the same firm.

2.2 Production

We use a transformation function to model the production technology. Given the set of

products to be produced (Λjt) and associated product quality (ξjnt, n ∈ Λjt), the firm uses

labor (Ljt), material (Mjt), and capital (Kjt) to produce output quantity (Qjnt, n ∈ Λjt) via

5An example of ex-post shock to prices arise if the firm commits to its product quantity before demand is
realized. As a result, if the realized market demand exceeds expectations, the firm increases its price by a
factor of eujnt , and reduces it when the realized demand is weaker.
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a transformation function:

G(e−ω̃jtQjt) = F (Ljt,Mjt, Kjt). (3)

The transformation function (3) maps the firm-level input vector (Ljt,Mjt, Kjt) to a vector of

outputs Qjt ≡ {Qjnt}, n ∈ Λjt, given the vector of quantity-based productivity (i.e., physical

productivity, or TFPQ) ω̃jt ≡ {ω̃jnt}, n ∈ Λjt of firm j in period t. Intuitively, a higher level

of ω̃jnt means that the firm is able to produce a higher quantity of output Qjnt, conditional

on the inputs and the quantity and productivity of other outputs. In this paper, we use

TFPQ and productivity interchangeably.

The transformation function (3) represents the frontier of production possibility character-

ized by two aggregating functions F (·) and G(·).6 Function F (·) is a general input aggregator.

In empirical settings, it can take functional forms such as CES and translog. We adopt a

CES function in our application in Section 5 and describe the implementation with a translog

function in Online Appendix A.7 While we assume that the firm uses a single material input

Mjt in production, our approach can readily accommodate cases in which firms employ

multiple types of material inputs—whether horizontally or vertically differentiated—when

only the total firm-level expenditure on materials is observed. Details of this extension are

provided in Online Appendix B.

The function G(·) is an output aggregator. We adopt a functional form that allows for

potentially nonlinear technological substitution across products:

G(e−ω̃jtQjt) ≡

∑
n∈Λjt

[
Qjnte

−ω̃jnt
]θ

1
θ

, (4)

where θ is a parameter that governs the elasticity of technological substitution across products

and thereby influences the marginal cost differences among the products produced by the

same firm. When θ = 1, the marginal cost difference between two products depends solely on

their relative productivities. In contrast, when θ ̸= 1, marginal cost differences are shaped

by both productivity differences and relative output levels. Consequently, the value of θ

characterizes the marginal rate of transformation (MRT) between any two products, defined

6The transformation function approach characterizes a firm’s production possibility frontier following an
approach pioneered by Powell and Gruen (1968) and used in recent literature (e.g. Cairncross et al., 2025;
Koike-Mori and Martner, 2024).

7We exclude the Cobb–Douglas function for the purpose of controlling for unobservable firm heterogeneity
of material prices. As will become clear in Section 3, our estimation methodology leverages the first-order
conditions of profit maximization to uncover firm heterogeneity in material prices by examining the firm-level
variation in the ratio of material expenditures to labor expenditures. However, the Cobb–Douglas functional
form of F (·) implies a constant ratio of material to labor expenditures, which prevents us to do so.
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as the ratio of their marginal costs. For any two products n and m, the MRT represents the

amount of product m that must be forgone to produce an additional unit of n, holding inputs

and all other outputs constant. Graphically, it corresponds to the slope of the production

possibility frontier in the (Qjnt, Qjmt) space, conditional on everything else. In our setting,

MRTnm = −eθ(ω̃jnt−ω̃jmt)
(
Qjmt

Qjnt

)θ−1

. Thus, θ influences how relative marginal costs are related

to relative output levels. Such a relationship is analogous to the marginal cost implications

derived from the transformation function model in Dhyne et al. (2022). In Section 3.2, we

will use such dependence to identify θ. The CES functional form in (4) is also derived by

Cairncross et al. (2025) from product-level production functions under a set of assumptions

in the context of multi-product firms.

A few features of the transformation function are worth noticing. First, for multi-product

firms, the transformation function can be interpreted as the frontier of joint production of all

products, Qjnt, n ∈ Λjt. This interpretation has three implications: (i) different products are

manufactured with the same set of inputs; (ii) the inputs can be costlessly transferred across

different products within the firm; (iii) producing more of one product means producing less

of another product, holding inputs fixed. These implications are consistent with the modeling

assumptions used by Dhyne et al. (2022), Orr (2022), and Valmari (2023). Second, our

framework does not explicitly model input allocation within a firm. Instead, it accommodates

the possibility of jointly utilized inputs across products, similar to the approach in Dhyne et al.

(2022). This contrasts with existing methods that impute product-specific (exclusive) input

allocations, thus abstracting away from the public-good nature of inputs within firms. Finally,

an input-output separability assumption is embodied in our transformation function (3).

Specifically, there are no interaction terms between outputs and inputs, although interaction

among outputs and among inputs is allowed within the respective aggregators G(·) and F (·).
This assumption implies that marginal cost differences across products produced by the same

firm do not depend on the input mix. Such separability is also assumed in the literature (e.g.,

Dhyne et al., 2022; Cairncross et al., 2025).

2.3 Productivity

A key element of our model is the quantity-based productivity ω̃jnt in (3), which varies

by firm, product, and period. We model the potential components and evolution of ω̃jnt

to highlight the key differences compared with the assumptions in the existing literature.

Specifically, we unpack productivity into two components:

ω̃jnt = ωjnt − h(ξjnt), (5)
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where ωjnt is technical efficiency and h(ξjnt) is a function of product quality ξjnt. We

model h(ξjnt) as a part of quantity-based productivity because varieties of the same product

category produced by different firms can be vertically differentiated by quality and such

quality differences have potential implications for productivity. Producing one additional unit

of the high-quality product may require more production procedures (e.g., longer refinements

in the steel industry in Li et al., 2025), better (or more specialized, exclusive) machinery,

higher-quality (or more) intermediate materials, higher standards of quality control (e.g., lower

septic infections rate in the healthcare industry in Grieco and McDevitt, 2017), and extra

dedicated workers (e.g., promoting quality or demand rather than production as discussed by

Bond et al., 2021). In turn, this leads to a lower quantity of output, holding the inputs fixed,

and thus it implies an increase in the marginal cost of production (or equivalently a lower

productivity). Thus, we refer to h(ξjnt) as the cost of quality.8

As a result, differences in quantity-based productivity can be due to not only technical

efficiency but also the cost of quality. Theoretically, explicitly modeling the cost of quality

h(ξjnt) as a component of productivity allows for a trade-off between product quantity and

quality, conditional on inputs. Empirically, this also implies that comparisons of quantity-

based productivity across firms and over time require controlling for quality differences.

Thus, instead of modeling the evolution of quantity-based productivity, we model the

evolution of technical efficiency, ωjnt, as a Markov process:

ωjnt = gn(ωt−1,xjt−1) + ϵjnt, ∀n = 1, 2, . . . , N, (6)

where ϵjnt is an innovation term.

The function gn(·) flexibly captures the relevant determinants of the evolution of technical

efficiency, depending on the focus of the application. For instance, in the context of tech-

nological spillovers (e.g., Malikov and Zhao, 2023), vector ωt−1 may include the technical

efficiency of other products within the same firm as well as the same product produced by

other firms. Alternatively, in settings focused on the endogenous evolution of productivity,

vector xjt−1 can include firm-level decisions made in period t − 1—such as investment in

research and development, as emphasized by Doraszelski and Jaumandreu (2013)—which

affect the future trajectory of technical efficiency.

A key methodological advantage of our approach is that the estimation of production and

demand functions does not necessarily rely on the evolution equation (6) or the productivity-

8Note that the term cost of quality in this paper refers only to the impact of quality on the marginal cost
of production, rather than the overall cost of quality (including research cost for new products with higher
quality, which is more dynamic in nature, or the installation cost of new equipment to produce higher quality
products, which are usually one-time fixed costs).
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quality trade-off (5). This allows researchers to estimate the technical efficiency process after

obtaining efficiency measures, enabling a flexible modeling of dynamics. We demonstrate this

advantage by exploring within- and across-firm technological spillovers in Section 7.

2.4 Inputs and Outputs Decisions

At the beginning of period t, the firm observes a vector of pre-determined variables, which

includes the product scope Λjt, capital stock Kjt, intermediate input price PMjt, wage rate

PLjt, technical efficiency ωjt, and product quality ξjt of all the products. Note that observing

technical efficiency and product quality implies that the firm also knows productivity, ω̃jt,

because the firm knows the trade-off (5). The intermediate input price and wage rate can

differ across firms and fluctuate over time, driven by factors such as localized input markets

and transportation costs. In empirical work, while the wage rate is typically observable, the

intermediate input price is rarely recorded. This creates a challenge due to input price bias,

as emphasized by De Loecker et al. (2016). Our empirical approach, detailed in Section 3, is

able to address this issue. A key assumption is that firms’ static input and output decisions

do not influence input prices contemporaneously. While input prices may be endogenously

determined—through negotiations or supply-chain investment decisions—and evolve over

time, we treat them as predetermined with respect to static production choices.

The firm’s objective is to maximize its total profit from all products in period t after

observing its state, by optimally choosing the quantity of material (Mjt), the quantity of

labor (Ljt), and the quantities of all the products to be produced (Qjt = {Qjnt}, n ∈ Λjt):

maxQjt,Mjt,Ljt

∑
n∈Λjt

E(P̃jntQjnt)− PMjtMjt − PLjtLjt

subject to: (1) and (3), (7)

where the expectation is taken over the unexpected shock ujnt embodied in the realized price

P̃jnt. However, this does not affect the firm’s decisions on inputs and outputs because the

firm does not observe the ex-post shock at the time of decisions and E(eujnt) = 1.

3 Estimation Methodology

The estimation method leverages a set of implications from the model that can be used to

estimate productivity and quality at the firm-product-period level. The method is built upon

the insights of Grieco et al. (2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022),

who utilize the first-order conditions of static profit maximization to control for unobservable

variables in the production function estimation, but it is extended to the multi-product

setting where within-firm allocation of inputs is unobserved. Specifically, while researchers
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do not observe key variables such as productivity and quality, the firm observes them before

making optimal production decisions. Thus, the idea is to invert the implications from

the profit maximization problem to establish a unique one-to-one mapping from observable

production decisions to variables that are unobservable to researchers and control for them

in the estimation of the transformation function. Crucially, under mild conditions, our model

admits such a mapping regardless of the number of products.

Table 1: Comparison to existing estimation methods

Production Firm-product Proxy Evolution Material price Demand
system productivity free free* unobservable system

DGKP Product •
Orr Product • •
Valmari Product • •
CL Product • •
DPSW Transformation •
This paper Transformation • • • • •

Notes: DGKP refers to De Loecker et al. (2016), Orr refers to Orr (2022), Valmari

refers to Valmari (2023), CL refers to Chen and Liao (2022), and DPSW refers to

Dhyne et al. (2022). [*] This applies when the input aggregator has a CES form.

Compared with the existing methods in the literature, our method has several important

innovations, as summarized by Table 1. First, our method models the production technology

flexibly as a transformation function and not as a collection of single-product production

functions (De Loecker et al., 2016; Orr, 2022; Valmari, 2023; Chen and Liao, 2022). This saves

us from potentially restrictive assumptions regarding how firms allocate inputs to produce

different products. This is especially important in the presence of shared inputs that serve as

public goods within firms. In this regard, Dhyne et al. (2022)’s model is the most similar to

ours. Second, our model offers the advantage of scalability as it does not require proxies for

product-level productivity and rather relies on static optimization conditions that naturally

increase with the number of products. This advantage allows for the analysis of industries

with a large number of products without relying on assumptions to aggregate products.

Third, our method is designed to deal with the bias caused by unobserved material prices,

like De Loecker et al. (2016). We employ the variation of labor and material expenditure

ratio (conditional on the wage rate) to identify material prices. This is particularly useful

when material prices are heterogeneous across firms and over time but are unobservable to

researchers. Fourth, our method has the potential to explore the productivity evolution after

the estimation, contrary to the existing methods which rely on productivity evolution for the
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estimation.9

This section is organized as follows. Section 3.1 establishes a one-to-one mapping between

the observed data and unobservable heterogeneity using firm’s static profit maximization

conditions. Section 3.2 derives the estimating equations using the established mapping and

develops the estimation strategy.

3.1 From Observables to Unobservables: a One-to-one Mapping

We begin the description of the estimation strategy by distinguishing the observable and

unobservable variables to researchers in the estimation procedure. The researchers observe

capital stock Kjt, labor input Ljt, labor expenditure ELjt, material expenditure EMjt, and

the quantity Qjnt and price Pjnt for each product n ∈ Λjt. The researchers do not observe

the material price PMjt (or equivalently, the material input Mjt), as well as productivity ω̃jnt

and quality ξjnt for n ∈ Λjt. Our objective is to estimate these unobserved variables alongside

the parameters of the transformation and demand functions.

We establish the relationship between the observed data and the unobservables, leveraging

the firm’s profit-maximization behavior. The idea is as follows. Although researchers cannot

observe ω̃jnt, ξjnt, or PMjt, as described in Section 2.4 these variables are observed by the

firm and thus influence the firm’s optimal input and output decisions. By using the firm’s

optimization conditions, we establish a unique one-to-one mapping (up to a set of unknown

production and demand parameters) from observable data Kjt, Ljt, ELjt, EMjt, Qjnt, and

Pjnt to unobservable variables ω̃jnt, ξjnt, and PMjt. We develop the strategy as follows.

Mapping to quality. We write quality, ξjnt, as a function of observed output price and

quantity according to the inverse demand function (1). That is,

ξjnt = P−1
jnt(Pt,Qt), (8)

where Pt and Qt are the vectors of prices and qualities of all products and firms in period t.10

As an identification condition, the demand system must admit a unique solution for the

quality levels given observable output prices and quality outcomes. This requirement is

satisfied by a broad class of demand functions, including the widely adopted CES demand,

discrete-choice demand, and random-coefficients logit demand models.

9This depends on the functional form of the input aggregator, F (·). If F (·) has a CES form or a restricted
version of translog, then the methodology can be implemented without relying on the productivity evolution;
if F (·) has an unrestricted translog form, then additional conditions are required to estimate all translog
parameters. Online Appendix A describes how to use the productivity evolution for such conditions.

10Empirically, the recovered ξjnt contains the unexpected shock ujnt, which usually appears as a (log-)
additive term in popular demand functions. We clarify this further in the setup of CES demand in Section 5.
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Standard methods for estimating these demand systems, typically relying on the use of

appropriate instrumental variables, are well-established in the literature. Consequently, the

identification and estimation of the demand system within our framework can be conducted

as a standalone process. Once the demand system is estimated, the quality level ξjnt can be

recovered using (8). Moreover, the estimated demand system allows us to compute the price

elasticity of demand for any product n of firm j with respect to product m of firm j′ as:

∂Qjnt

∂Pj′mt

Pj′mt
Qjnt

≡ −ηjtnm. (9)

Note that we have slightly abused the notation because product m can be either a product

of the same firm j′ = j (i.e., cannibalization) or a product of another firm j′ ̸= j (i.e.,

competition). That is, the elasticity can be flexible and vary by firm, product, and time.

Mapping to material price. We derive the mapping using the firm’s static profit

maximization problem. The Lagrange function implied by the problem (7) is:

Ljt =
∑
n∈Λjt

Pjnt(Qjt,Q−jt; ξt)Qjnt−PLjtLjt−PMjtMjt−λjt

{
G(e−ω̃jtQjt)−F (Ljt,Mjt, Kjt)

}
,

(10)

where λjt is the Lagrangian multiplier. The random shock ujnt is not included in this equation

because it is ex post and E(eujnt) = 1.

The first-order conditions with respect to labor and material inputs are, respectively:

∂Ljt

∂Ljt
= −PLjt + λjt

∂F (Ljt,Mjt, Kjt)

∂Ljt
= 0, (11)

∂Ljt

∂Mjt

= −PMjt + λjt
∂F (Ljt,Mjt, Kjt)

∂Mjt

= 0. (12)

Multiply them by Ljt and Mjt, respectively, and take the ratio of the two to obtain:

∂F
∂Ljt

Ljt

F

∂F
∂Mjt

Mjt

F

=
ELjt
EMjt

. (13)

This equation only involves a single unobservable variable, Mjt, and, for functional forms
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of F (·) such as CES and translog, admits a unique solution:11

Mjt =M(Ljt, ELjt, EMjt, Kjt), (14)

and consequently,

PMjt =
EMjt

M(Ljt, ELjt, EMjt, Kjt)
. (15)

The identification strategy for PMjt is based on the relationship implied by the first-order

conditions for labor and material inputs, and is conceptually aligned with Grieco et al.

(2016). Conditional on the wage rate, changes in PMjt induce a non-Hicks-neutral effect by

altering the optimal ratio of labor to material expenditures. Consequently, variations in

the labor-to-material expenditure ratio observed in the data (conditional on the wage rate)

provide a basis for identifying PMjt. This strategy presents an alternative to the method

proposed by De Loecker et al. (2016), who use output prices as proxies for input prices to

address the input price bias arising from unobserved heterogeneity in input prices.

Substituting (14) into the first order condition for labor, we obtain a unique solution for

the Lagrangian multiplier:

λjt =
PLjt

∂F (Ljt,M(Ljt,ELjt,EMjt,Kjt),Kjt)

∂Ljt

. (16)

That is, the Lagrangian multiplier is derived from equalizing the marginal benefit and marginal

cost of labor input. This equation can also be cast in terms of material input, which is

equivalent to (16) due to how (unobserved) material input and its price are recovered.

Mapping to productivity. The first-order condition with respect to each product

quantity Qjnt, n ∈ Λjt, is:

∂Ljt

∂Qjnt

=

 ∑
m∈Λjt

∂Pjmt(Qjt,Q−jt; ξt)

∂Qjnt

Qjmt + Pjnt

− λjt
∂G(e−ω̃jtQjt)

∂Qjnt

=
Pjnt
µjnt︸︷︷︸

marginal revenue

−λjte
−θω̃jntQθ−1

jnt [G(e
−ω̃jtQjt)]

1−θ︸ ︷︷ ︸
marginal cost

= 0, (17)

11When the functional form of F satisfies the condition proposed by Proposition 1 of the Online Appendix
of Grieco et al. (2016), there exists a unique solution for Mjt. In our empirical application, the CES functional
form of F (·) satisfies this condition. We provide a full procedure for estimating a translog functional form
of F (·) in Appendix A under mild conditions for the evolution of technical efficiency, and we establish the
condition to ensure the unique solution for Mjt. For the Cobb-Douglas form of F (·), such a solution does not
exist because the elasticity ratio on the left-hand side of (13) is always a constant. Intuitively, the material
price variation in a Cobb-Douglas production function does not change the optimal ratio of labor and material
expenditures. Thus, we refrain from using the Cobb-Douglas form of F (·).
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where

µjnt ≡
1

1−
∑

m∈Λjt

1
ηjtnm

Rjmt

Rjnt

(18)

is the markup of product n and ηjtnm is the price elasticity of demand defined by (9).

Notably, λjte
−θω̃jntQθ−1

jnt [G(e
−ω̃jtQjt)]

1−θ is the marginal cost of producing Qjnt. Across

firms, the marginal cost of a product varies due to λjt; within a firm, the marginal cost also

differs due to productivity ω̃jnt and scale of production Qjnt. As a result, conditional on a

firm, the variation in product prices identifies the productivity difference across products

within the firm, after accounting for the markup µjnt and production scale Qjnt.

This idea is formally developed to derive the productivity mapping. Using (17) and

substituting Mjt in it by (14), we obtain:

eθω̃jnt =
µjnt
Pjnt

λjtQ
θ−1
jnt [F (Ljt,M(Ljt, ELjt, EMjt, Kjt), Kjt)]

1−θ, (19)

where we have substituted G(·) by using (3) and λjt is given by (16).12

In summary, we have established a one-to-one mapping—comprising (8), (15), and (19) —

from observable data to the unobservable variables ξjnt, PMjt, and ω̃jnt, conditional on the

demand and production parameters to be estimated. This mapping is unique for widely used

demand functions, such as CES demand, discrete-choice demand, and random-coefficients

demand models, as well as for common production function specifications, including CES and

translog functional forms. Conceptually, our approach parallels the proxy-based methodology

pioneered by Olley and Pakes (1996), and extended by a large body of methodological

work, which uses observable proxies (such as investment and material inputs) to control for

unobserved productivity when estimating production functions. However, in the context

of multi-product firms with product-level heterogeneity, the proxy-based approach faces a

scalability challenge: the number of required proxies grows with the number of products, as

recognized by Dhyne et al. (2022). Our methodology leverages firms’ first-order conditions to

construct the mapping, offering a key advantage in scalability. As the number of products

increases, so does the number of first-order conditions. This scalability is shared with recent

approaches such as Orr (2022) and Valmari (2023), while we also adopt a transformation

function approach as in Dhyne et al. (2022) to avoid assigning inputs to the production of

individual outputs.

12Empirically, the recovered productivity contains the unexpected shock ujnt (as a log-additive term).
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3.2 Estimating Equations and Estimation Strategy

In the previous subsection, we have constructed a one-to-one mapping from observable

variables to the unobserved ξjnt, ω̃jnt, and PMjt (orMjt equivalently) up to a set of parameters

to be estimated. This mapping is the key to developing the equations to estimate these

parameters, which we derive in this subsection.

Estimating a general demand system (1) is challenging due to unobservable demand factors

(e.g., quality) and the endogeneity of prices. Depending on specific context and functional

form of (1), strategies are well-developed (e.g. Berry, 1994; Berry et al., 1995) to address these

challenges, mainly using a set of instrumental variables. Since our focus is on the production

transformation function, we assume the existence of a valid set of instrumental variables,

allowing researchers to estimate the demand system (1). Consequently, the firm-product-

time-specific quality ξjnt and markup µjnt can be recovered via (8) and (18), respectively.

To derive our main estimating equation, we start by multiplying both sides of the equation

implied by the first-order condition (17) by Qjnt. Rearranging this equation gives:

Rjnt

µjnt
= λjte

−θω̃jntQθ
jnt[G(e

−ω̃jtQjt)]
1−θ, (20)

where Rjnt = PjntQjnt.

Sum the above equation over n ∈ Λjt to obtain:

∑
n∈Λjt

Rjnt

µjnt
= λjt

[
G(e−ω̃jtQjt)

]1−θ ∑
n∈Λjt

(
e−θω̃jntQθ

jnt

)
= λjtF (Ljt,Mjt, Kjt), (21)

where we have used the transformation function to replace G(·) to obtain the last equality.

From the first-order conditions of labor input and material input, (11) and (12), we obtain

λjtFjt =
ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

, (22)

where Fjt is a short-hand notation of F (Ljt,M(Ljt, ELjt, EMjt, Kjt), Kjt).

Substitute this equation into (21) to obtain:13

∑
n∈Λjt

Rjnt

µjnt
=

ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

. (23)

13An alternative expression is
∑

n∈Λjt

Rjnt

µjnt
=

ELjt
∂Fjt
∂Ljt

Ljt
Fjt

or
∑

n∈Λjt

Rjnt

µjnt
=

EMjt
∂Fjt
∂Mjt

Mjt
Fjt

. Nonetheless, because

we substitute the recovered material quantity (14), which is derived from (13), into these equations, both of
these equations are equivalent to (23).
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Therefore, (23) describes the relationship between revenues (adjusted by the reciprocal

of markups) and inputs for a general system of demand and production transformation

functions in the context of multi-product firms. This equation is an analog of the popular

ratio estimator of markup in De Loecker et al. (2016) in the context of single-product firms.14

De Loecker et al. (2016) focus on uncovering markups after estimating the production function

parameters (and the output elasticities), without relying on the estimation of any demand

system. In the context of multi-product firms, this equation is also an analog of the markup-

input share relationship examined by Cairncross et al. (2025). Both De Loecker et al. (2016)

and Cairncross et al. (2025) estimate markups using production data only without making

assumptions on the demand structure.

Our methodology uses the same relationship but takes a different approach: we utilize the

demand system to first uncover the markups and then proceed to estimate the production

parameters using (23) as the estimating equation. This strategy offers several advantages. It

is scalable for handling a large number of products, addresses bias caused by unobservable

material price heterogeneity, and makes it possible to estimate production parameters without

relying on productivity evolution process, because all unobserved firm heterogeneity (i.e.,

multi-dimensional productivity and quality as well material quantity) are substituted by

observable variables in the data using the mapping developed in Section 3.1.

It is important to notice that (23) holds for the theoretically predicted revenue Rjnt, because

it is derived from the firm’s profit maximization problem. Empirically, researchers do not

observe the theoretically predicted revenue Rjnt; instead, the observed revenue contains the

unexpected shock as defined in (2): R̃jnt = P̃jntQjnt = PjntQjnte
ujnt = Rjnte

ujnt . Substitute

this relationship into (23) to replace the theoretically predicted revenue, and rearrange to

obtain an empirical estimating equation that involves the observed revenue directly:

ln

∑
n∈Λjt

R̃jnt

µjnt

 = ln

[
ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

]
− ujt, (24)

where

ujt = ln

∑
n∈Λjt

[
R̃jnt/µjnt∑

n∈Λjt
R̃jnt/µjnt

e−ujnt

] (25)

is a firm-level composite error term. Intuitively, it is a geometric mean (in logarithm) of

14To see this, notice that, for single-product firms, (23) degenerates to
Rjt

µjt
=

ELjt+EMjt
∂Fjt
∂Ljt

Ljt
Fjt

+
∂Fjt
∂Mjt

Mjt
Fjt

, and

consequently, the markup can be written as µjt =

∂Fjt
∂Ljt

Ljt
Fjt

+
∂Fjt
∂Mjt

Mjt
Fjt

(ELjt+EMjt)/Rjt
.
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firm-product level unexpected shock ujnt, using within-firm share of R̃jnt/µjnt as the weights.
15

We estimate the associated production parameters, denoted as β, using generalized method

of moments (GMM):

β̂ = argminβ

[
1

N
∑
j,t

ujtZjt

]′
W

[
1

N
∑
j,t

ujtZjt

]
, (26)

where ujt = ln

[
ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

]
− ln

∑
n∈Λjt

R̃jnt

µjnt

 .
W is a weight matrix, N is the number of firm-time observations, and Zjt is a set of

instrumental variables. Because ujt is a composite of ex-post error terms of prices, natural

candidates of instrumental variables include firm-level inputs such as Ljt, ELjt, EMjt and Kjt.

In addition, in settings where firms compete in product markets, product characteristics of

rival firms, if observable, may be also included in the instrumental variable set.

Although this estimation strategy offers a straightforward approach to estimating the

primary production parameters, the parameter θ which characterizes the technological

substitution of outputs within the firm, does not appear in the estimating equation (23). To

identify and estimate θ, we leverage the influence of θ on the marginal rate of transformation

(via within-firm marginal cost differences) across products within a firm.

Take the ratio of the equation implied by the first-order condition (17) of product n to

that of product m. The logarithm of the ratio is:

ln

[
Pjnt/µjnt
Pjmt/µjmt

]
︸ ︷︷ ︸

marginal cost ratio, in log

= (θ − 1) ln

(
Qjnt

Qjmt

)
+ vjnt︸ ︷︷ ︸

marginal rate of transformation, in log

, (27)

where vjnt = θ(ω̃jmt − ω̃jnt) is the relative difference between the productivity of the two

products, adjusted by parameter θ. Intuitively, this equation aligns with the definition of

the marginal rate of transformation discussed in Section 2.2. The left-hand side corresponds

to the ratio of marginal costs, while the right-hand side represents the marginal rate of

transformation—both expressed in logarithmic terms. Unless θ = 1, the marginal cost ratio

depends not only on productivity differences but also on the relative scale of production

between the two products. Therefore, we identify θ by examining how marginal costs

15In the context of the firm-level shock (i.e., ujnt = ujt, ∀n) or in the context of single-product firms, there is

only one unexpected shock per firm. Consequently, (24) simplifies to ln
[
R̃jt

µjt

]
= ln

[
ELjt+EMjt

∂Fjt
∂Ljt

Ljt
Fjt

+
∂Fjt
∂Mjt

Mjt
Fjt

]
+ ujt.

This degenerated form aligns with the estimating equation proposed by Grieco et al. (2016).
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differ across products based on their relative output levels within the same firm. A similar

identification strategy is also adopted by Khmelnitskaya et al. (2025).

To implement this idea, we treat vjnt as an error term. Since vjnt is correlated with the

production scale ratio, there is an endogeneity problem. Empirically, researchers can estimate

(27) using a Two-Stage Least Squares (2SLS) estimator with a set of IVs. Ideally, firm-product-

level instrumental variables are preferred. For example, differences in product characteristics

may shift the quantity ratio due to varying demand driven by these characteristics, while

being traditionally assumed to be uncorrelated with cost-side (productivity) differences.

When firm-product-level instruments are unavailable, firm-level variables, such as the wage

rate, can be used as instruments. This approach benefits from examining relative differences

between two products within the same firm. For instance, conditional on other factors, a

lower wage rate decreases the firm’s overall marginal cost, leading to higher production

quantities for both products. However, the product with less elastic demand (e.g., product

m) expands more, resulting in a lower quantity ratio (Qjnt/Qjmt). Thus, the wage rate and

production scale ratio are correlated. Of course, the validity of firm-level instruments depends

on the assumption that the levels of these variables are uncorrelated with the differences in

productivity between two products, which is discussed in Online Appendix D. We examine

the performance of our estimation method in a Monte Carlo setting in Section 5.3.

As a summary of the full estimating approach, the first step is to estimate the demand

system (1) to obtain the estimates of demand parameters and product markups. Second, we

estimate θ from the within-firm marginal rate of transformation relationship (27) using 2SLS.

The third step is to estimate the production parameters using (23) via GMM. With these

estimates, researchers can compute quality and productivity via (8) and (19), respectively.

Although the model and estimation strategy are presented in a general framework, re-

searchers should tailor their choice of functional forms to their specific context, balancing

flexibility with the feasibility of empirical implementation. In our application, we select a

CES demand system and a transformation function with a CES input aggregator, due to the

consideration of the characteristics of the industries, the market structure, and the availability

of instrumental variables. The next section focuses on the industry characteristics and market

structure, providing the context for these choices.

4 Data

We estimate our model using firm-level Mexican manufacturing data, collected by the Instituto

Nacional de Estad́ıstica y Geograf́ıa (National Institute of Statistics and Geography, INEGI

henceforth) and covering the period 1994-2007. We use two datasets: the Encuesta Industrial

Anual (Annual Industrial Survey, EIA henceforth), the main annual survey covering the
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manufacturing sector, and the Encuesta Industrial Mensual (Monthly Industrial Survey, EIM

henceforth), a monthly survey that monitors short-term trends related to employment and

output.16 These datasets are particularly useful for our analysis because they provide quantity

and sales information at the firm-product level. However, similar to most production data,

information regarding inputs, viz. physical capital, intermediate input, number of workers

and wage bills, are only available at the firm level.17

Firms are classified by INEGI into one of the classes of activity based on their principal

product. A class of activity is the most disaggregated level of industrial classification and is

defined at six digits according to the 1994 Clasificación Mexicana de Actividades y Productos

(Mexican System of Classification for Activities and Products, CMAP henceforth). Firms

report quantity and sales information product by product based on their industries.

We focus on three specific classes of activities: manufacturing of footwear, mainly of leather

(class 324001, footwear in short); printing and binding (class 342003, printing in short); and

manufacturing of pharmaceutical products (class 352100, pharmaceuticals in short).18 These

three industries were chosen because each industry is made up of more than 500 firm-year

observations, a number of observations large enough for implementing our estimation strategy.

More importantly, multi-product firms are particularly prevalent in these industries: 56% of

firms in these industries are multi-product producers and such firms account for 86% of total

revenues and produce on average 6.9 products per year. They also represent a diverse set

of manufacturing industries with clear concepts of product quality: for example, advanced

design and assembly that provide superior comfort and durability in the footwear industry;

acid-free paper and durable binding in the printing industry; potent active ingredients and

16This paper uses plant -level Mexican manufacturing data, collected from the Instituto Nacional de
Estadistica y Geografia (National Institute of Statistics and Geography), INEGI. Mauro Caselli obtained
access to the data. Arpita Chatterjee, the author affiliated with the Federal Reserve Board, has no unauthorized
access to the data. The unit of observation in both surveys is a plant rather than a firm and the sample
includes all plants with more than 100 employees as well as a sample of smaller plants. For simplicity and in
line with the literature, we will use the term “firm” to refer to a plant. More information on the EIA and
EIM can be found in Caselli et al. (2017).

17All nominal variables are deflated using the consumer price index. To facilitate comparison, we normalize
average industry output prices to 1. Initial capital stock and investment are deflated using industry-level
price indices.

18For the purpose of our analysis, all products with fewer than 100 observations are aggregated together
in a residual product category. The residual product category is defined as “Others” (product code 99) in
Table A1 in the Online Appendix. The prices and quantities of the aggregated residual product category are
estimated following Diewert et al. (2009). While this aggregation is required to estimate the demand elasticity
of substitution for each product based on a large enough number of observations, it only implies that the
demand elasticity of substitution is by assumption equal across all products included in the residual product
category within an industry. In addition, this aggregation involves a relatively small share of products: the
main (i.e., not aggregated) products account for between 81% and 93% of observations and between 82% and
90% of revenue across the three industries. Accordingly, the descriptive statistics and patterns demonstrated
in this section are reported based on the aggregated categories, which is the data used in our estimation.
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degrading-preventing packaging in the pharmaceutical industry.

There are a few patterns worth noting. First, multi-product production is an essential

feature of the firms in our sample. We demonstrate this point by using an index that is

analogous to the traditional Herfindahl–Hirschman Index (HHI) as the sum of the squared

shares of sales within a firm. A higher HHI index means a higher level of concentration

of sales within a firm.19 The index is naturally equal to one for single-product producers.

For firms with a larger product scope, HHI decreases sharply becoming close to 0.3 for

firm-year pairs producing 5 products and close to 0.2 for firm-year pairs producing 10 or

more products.20 These values imply that producers are genuine multi-product firms – they

do not concentrate production entirely on their top products, and all products, albeit to

different degrees, are important for firms’ total revenues.21 Thus, multi-product firms need

to be treated and modeled as such and they cannot be simplified as single-product producers.

This characteristic of the industries is also an important feature that enables us to exploit the

within-firm relationship to identify model parameters, as discussed in Online Appendix D.

Table 2: Descriptive statistics: prevailing multi-product firms

Variable Footwear Printing Pharmaceutical

Product scope, MPFs only 2.403 6.195 8.000
(0.624) (4.107) (3.018)

Share of number of MPFs 0.201 0.538 0.845
Revenue share of MPFs 0.386 0.597 0.939

Total number of products 4 15 16
Total number of firms 72 79 80
Number of firm-year pairs 617 744 867

Notes: The table reports the means and standard deviations (in parenthesis) for each vari-

able by industry. Product scope is the number of products manufactured by firm. MPFs

refers to multi-product firms only.

The importance of multiple-product production is also present in all the industries of

our analysis, albeit with some degrees of variation, as shown in Table 2.22 The percentage

19In Figure A1 in the Online Appendix, we aggregate the firm-level index with weights equal to the firms’
total revenues, by firm-year pairs’ product scope.

20These values indeed show some degree of concentration of sales within firms. For example, if a firm
produces 5 products with equal sales, the index would be 0.2. The fact that the index is close to 0.3 implies
that there exists an uneven distribution of sales. We explore this heterogeneity using quality and productivity
within firms in Section 7.

21To confirm that firms rely heavily on all products for their total sales, Online Appendix Table A2 shows
the average within-firm product shares by product scope. For instance, for firms producing 5 or more products,
the share of products other than the top product is 0.556 and the share of products with rank 5 and beyond
is 0.147, on average.

22Additional descriptive statistics are available in Table A3 in the Online Appendix.
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of multi-product firms ranges from 20% in the footwear industry to 54% in printing and

85% in pharmaceuticals and they account for an even larger share of revenues (from 39%

in the footwear industry to 94% in pharmaceuticals). The average product scope is larger

in printing and pharmaceuticals (respectively, 6.2 and 8.0 for multi-product firms) than in

the footwear industry (2.4). These differences in average product scope are in line with the

number of product categories available in each industry, which ranges from 4 in footwear to

16 in pharmaceuticals.

Second, the status of being a multi-product firm is quite persistent, and so is the product

scope. In particular, using a simple autoregressive process of the number of products produced

by each firm, we measure the persistence coefficients to be 0.87, 0.96, and 0.98 in the three

industries, respectively.23 Thus, multi-product firms unequivocally dominate manufacturing

production in our data and their within-firm adjustment across products is more salient than

the extensive margin adjustment in changing the number of products.

These patterns imply that both within-firm and across-firm heterogeneity is important.

On the one hand, there exist persistent characteristics at the firm level that determine the

performance across firms. On the other hand, within-firm heterogeneity and product scope

play a significant role in shaping these characteristics within firms. These implications are in

line with the specification for productivity (32), which contains a common component at the

firm level to capture the differences across firms as well as an individual component varying

at the firm-product level to explain the variation of performance within a firm.

Finally, the sample reflects patterns consistent with the choice of the empirical demand

model in Section 5. On average, about 16 to 37 firms compete in the market for any given

product in any given year. The majority of the firms do not command a dominant share of

the market – the median (traditionally defined) HHI across firms at the product-year level

ranges between 0.15 in the pharmaceutical industry and 0.31 in the printing industry. More

importantly, given the level of product disaggregation, the markets for different products

(e.g., women’s shoes vs. men’s shoes in the footwear industry, and more examples in Online

Appendix Table A1) are reasonably assumed as segmented. For each product, firms’ outputs

are vertically differentiated as evidenced by the large dispersion in prices.24 Overall, these

patterns support abstracting from demand cannibalization across products made by the same

firm and assuming that firms face monopolistic competition within each product category.

23The entry of new products and the exit of old products only account for 6.8 and 7.3 percent of the
observations, respectively.

24For example, the interquartile range of prices in logarithm is about 1.4 (i.e., a 400% difference) within a
product category, on average, across the three industries.
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5 Empirical Model and Estimation

This section presents an empirical model and applies the estimation strategy developed in

Section 3 to the Mexican manufacturing industries. We choose specific functional forms for

the demand and production model considering the characteristics of the industries, product

classification, market structure, and availability of instrumental variables.

5.1 Empirical Specification

On the demand side, we adopt a CES demand function, assuming that while the demand

for each of the N products is segmented, there is monopolistic competition among firms

producing vertically differentiated products within the same product line. Formally, the

realized price, P̃jnt, from the inverse demand function (1), after accounting for the unexpected

shock in (2), for product n of firm j in period t, is specified as:

ln P̃jnt = − 1

ηn
lnQjnt +

1

ηn
(ϕnt + ψjn + vjt)︸ ︷︷ ︸

ξjnt

+ujnt, (28)

where ηn denotes the constant elasticity of demand for product n. The term ξjnt represents

product quality and comprises three components: ϕnt (product-time fixed effects), ψjn

(firm-product fixed effects), and vjt (firm-time fixed effects). The term ujnt represents an

idiosyncratic firm-product-time specific ex-post price shock. We follow the tradition in the

literature (e.g., Melitz, 2000; Khandelwal, 2010; Hottman et al., 2016; Pozzi and Schivardi,

2016; Eslava et al., 2024) to refer to the residual recovered from the CES demand system as

the perceived product quality: ξ̃jnt ≡ lnQjnt + ηn ln P̃jnt = ξjnt + ηnujnt.

The empirical demand model (28) excludes complementarity or substitution across different

product lines. This choice is driven by empirical considerations in our context. First, given

the level of product classification in our data, complementarity or substitution on the demand

side is unlikely. For example, the demand for women’s shoes is unlikely to be influenced by

competition from men’s shoes. Similar functional forms have been employed by De Loecker

(2011) and Valmari (2023) in modeling demand functions for multi-product contexts. Second,

while estimating a richer model is conceptually appealing, a major difficulty arises from

the lack of suitable instrumental variables to address the endogeneity issue associated with

unobserved product quality. Traditional instruments, such as cost shifters, may fail in

vertically differentiated markets where higher-quality inputs (thus higher input prices) are

chosen to enhance product quality. In general, estimating flexible demand systems requires

carefully constructed instruments that are uncorrelated with product quality. For example,
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Berry et al. (1995) utilize the characteristics of other automobiles produced by the firm itself

and similar automobiles produced by its rivals. In our case, the dataset does not include such

rich and strong instruments. Therefore, we adopt the CES functional form for the demand

function, which enables us to leverage the within-firm variation in sales across products to

estimate the constant demand elasticity parameter ηn, as described in Section 5.2.

On the production side, we use a CES input aggregator in the transformation function (3):

F (Ljt,Mjt, Kjt) ≡
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ , (29)

where γ ≡ σ−1
σ

governs the elasticity of substitution across inputs. ρ is a parameter for the

returns to scale in the transformation of inputs into output. αL, αM , and αK are share

parameters associated with labor, material, and capital, respectively. We normalize their

sum to 1. We maintain the output aggregator as defined in (4).

5.2 Estimation

Applying the methodology described in Section 3.2 to the empirical model, we obtain an

explicit, unique mapping from observable data to the unobservable variables:

ξ̃jnt = lnQjnt + ηn ln P̃jnt, (30)

PMjt =

[
αM
αL

] 1
γ
[
EMjt

ELjt

]1− 1
γ

PLjt, (31)

eθω̃jnt =
ηn

(ηn − 1)P̃jnt

ELjt
ραLL

γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρθ
γ

Qθ−1
jnt . (32)

Equations (30), (31), and (32) empirically represent the mappings of quality (8), material

price (15), and productivity (19) in the general model. Specifically, ξ̃jnt is expressed as a

function of observed price and quantity, capturing how product quality can be inferred from

observable market outcomes. Similarly, PMjt is determined as a function of the labor-to-

material expenditure ratio, conditional on the wage rate, in the same spirit as in Grieco et al.

(2016). Finally, the identification of ω̃jnt integrates variations at both the firm level (i.e., Ljt,

Kjt, ELjt, and EMjt) and the firm-product level (i.e., Pjnt and Qjnt).

After substituting the mapping to the transformation function to replace the unobserved
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productivity and material input, we obtain an explicit expression of (24) in logarithm as:

ln

∑
n∈Λjt

(ηn − 1)ρ

ηn
R̃jnt

 = ln

[
EMjt

+ ELjt

(
1 +

αK
αL

(
Kjt

Ljt

)γ)]
− ujt, (33)

where

ujt = ln

∑
n∈Λjt

[
(ηn−1)
ηn

R̃jnt∑
n∈Λjt

(ηn−1)
ηn

R̃jnt

e−ujnt

] . (34)

This equation is the multi-product version of the estimating equation proposed by Grieco

et al. (2016) (see their equation 8), who assume that each firm produces a single product.25

In the context of multi-product firms, the individual product revenues are adjusted by the

reciprocal of their corresponding markups.26

As explained in Section 3.2, the parameter θ is not present in the estimating equation (33)

and thus is not identified by (33) alone. Thus, we estimate (27) via 2SLS to identify θ. In

our implementation, the IV set consists of a constant and the logarithm of the wage rate

(PLjt), the capital stock (Kjt), and the ratio of material expenditure to labor (EMjt/Ljt, as a

proxy for material prices, conditional on the wage rate).27 This provides an estimate θ̂.

Nonetheless, we still face two additional challenges to estimate all the parameters.28 First,

ρ is not separately identified from demand elasticities in (33). In fact, only a combination of

ηn and ρ (i.e., (ηn−1)ρ
ηn

) is identified. Second, estimating (33) via GMM requires (at least) the

same number of instrumental variables as the number of products to identify (ηn−1)ρ
ηn

of each

product, because product revenues are correlated with composite shock ujt.

To address both challenges simultaneously, we leverage the context of multi-product firms,

which provides valuable within-firm variation. We explore the relationship between the

revenues of any two products implied by the firm’s static maximization problem, taking into

25More broadly, (33), without logarithms, is also similar to the estimating equations used by Das et al.
(2007), Aw et al. (2011), and Li (2018) with data on the firm’s total variable cost to estimate demand
elasticities in multiple markets.

26If the elasticities (markups) are the same, then the estimating equation is the same as in Grieco et al.
(2016). We also allow for the returns to scale parameter, ρ, to be estimated, while Grieco et al. (2016) assume
it to be one.

27To see this, note that (31) is equivalent to PMjt =
[
αM

αL

] 1
γ
[
EMjt

Ljt

]1− 1
γ

P
1
γ

Ljt. Taking logarithm, we obtain

ln(PMjt) =
1
γ ln

[
αM

αL

]
+ (1− 1

γ ) ln
[
EMjt

Ljt

]
+ 1

γ ln(PLjt). Because we include the logarithm of the wage rate,

ln(PLjt), in the IV set, using ln
[
EMjt

Ljt

]
is equivalent to using ln(PMjt) in this setting, although PMjt is not

observable. Our result is quantitatively similar if the expenditure ratio of material and labor is used as an IV.
28These additional challenges arise because we are estimating the returns to scale parameter, ρ, and because

the standard input data available in the Mexican dataset lacks instrumental variables to estimate the demand
function (28) directly. See footnote 29 for further discussion.
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account that the markets for different products are segmented in our empirical context. Here,

ηn influences the sales of individual products, while ρ represents the returns to scale of the

production transformation function and affects the overall sales of all products. Thus, the

firm’s optimal decision on trading off the sales of different products within the firm helps

identify ηn from ρ. In other words, the variation in the sales of a product relative to another

product contains information on how the elasticities of the two products differ. This addresses

the first challenge. Meanwhile, the identified relationship between elasticities reduces the

number of parameters to be estimated in (33). Consequently, the number of instrumental

variables required to estimate the rest of the parameters does not increase with the number

of products. This addresses the second challenge.

To implement this idea, we take the ratio of (17) of a reference product (i.e., product

1) and that of another product n produced by the same firm. Using R̃jnt = P̃jntQjnt, we

obtain:29

ln(R̃j1t) = cn +
1− θ ηn

ηn−1

1− θ η1
η1−1

ln(R̃jnt) + ζjnt, n = 2, . . . , N, (35)

where

cn =
1

1− θ η1
η1−1

ln

[
η1

η1 − 1

ηn − 1

ηn

]
and

ζjnt =
θ

1− θ η1
η1−1

(ω̃jnt + 1

ηn − 1
ξ̃jnt)− (ω̃j1t +

1

η1 − 1
ξ̃j1t)︸ ︷︷ ︸

difference in TFPR

 .
The latter, ζjnt, contains the difference of the capability (or TFPR, ω̃ + 1

η−1
ξ̃, as will be

formally defined in Section 6) of producing a product relative to that of the reference product.

This equation predicts that the (logarithmic) revenues of two products are linearly related

conditional on the difference of production capability. In particular, firm-level inputs are

not a part of the equation explicitly. This equation is similar to the estimating equation

developed by Grieco et al. (2022), who explore the relationship of revenues of two markets

(domestic sales and exports).30

29Note that this approach contrasts with much of the existing literature, which often relies on direct
estimation of the demand function (28) using firm-level IVs (e.g., cost shifters). However, these IVs may be
correlated with the level of quality, potentially biasing the results. When we estimate the demand function
(28) directly using the same firm-level IVs, the resulting demand elasticities are biased downward: the mean
elasticities are estimated at 2.539, −2.024, and 0.470 for the three industries, respectively. Of course, when
appropriate instrumental variables exist, such as the case in Orr (2022), one can estimate demand function
(28), or even a more flexible version of it, directly without resorting to this set of estimating equations.

30One difference is that Grieco et al. (2022) model the error term as an unexpected shock because the
productivity and quality of the domestic and export products are assumed to be the same and are canceled.
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Intuitively, because the demand for each product is segmented in our setting, as discussed

in Section 4, the relative revenue of one product over another product in the same firm

depends on their own demand elasticities (conditional on their relative levels of TFPR, ζjnt, as

well as the estimated technological substitution parameter θ) rather than on complementarity

or substitution between them on the demand side. As a result, the variation of one revenue

relative to another in (35) provides the identification of the ratio,
1−θ ηn

ηn−1

1−θ η1
η1−1

for n = 2, 3, . . . , N .

In contrast, the variation of revenue levels in (33) identifies (ηn−1)ρ
ηn

, n = 1, 2, . . . , N . That is,

the returns to scale parameter affects the sales of all products but not the relative relationship

of sales between different products, while demand elasticities affect both the level and the

relative relationship of sales of different products. As a result, ρ and ηn, n = 1, 2, . . . , N ,

are separately identified as long as there are at least two products with different demand

elasticities in the industry. More precisely, the elasticities and returns to scale parameter

can be identified as long as there is a firm that manufactures two products with different

demand elasticities for a number of periods, which is a very mild assumption. The model is

over-identified when there are more than two such products produced by the firms in the

industry.

To estimate (35), we choose the product produced by most firms in the industry as the

reference product, in order to maximize the number of observations used in the estimation.31

We treat ζjnt as an error term. We allow the mean of ζjnt to vary by product and year and

use a set of flexible product-year dummies as controls (which also absorb cn). ζjnt is likely

correlated with R̃jnt – the revenue of product n is lower if the capability of producing n is

lower than that of the reference product. We use a set of IVs to address the endogeneity issue.

In our implementation, we use the same set of IVs used in estimating (27): the IV set consists

of a constant and the logarithm of the wage rate, the capital stock, and the ratio of material

expenditure to labor (as a proxy for material prices after conditional on wage rate). Grieco

et al. (2022) uses a similar set of firm-level IVs to estimate an equation analogous to (35) in a

two-product scenario. The same insight carries over in our context. These firm-level variables

influence the level of revenue (i.e., R̃jnt), but they are uncorrelated with the difference of

capability (i.e., ζjnt) between two products. For example, conditional on everything else, a

higher level of capital stock potentially leads to higher revenues of a given product, but it is

not necessarily associated with the production capability of one product being larger than

that of another product within the same firm. We use these firm-level variables as IVs for all

product pairs in (35).32

31In our data, the percentage of firm-year pairs that produce the reference product ranges from 62% in the
footwear industry to 72% in printing and 88% in the pharmaceutical industry.

32The model is over-identified if there is more than one IV. For example, if there are 2 IVs, then there are
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The validity of these IVs relies on the condition that the production of a product is not

systematically more intensive in the use of a specific input (e.g., capital) than other products

and that the firm-level wage rate and input price are not systematically correlated with the

capability differences between products. We use Monte Carlo exercises to demonstrate the

performance of our approach and IVs under this condition in Section 5.3. We further discuss

this condition and alternative strategies in Online Appendix D.

We denote the estimated relationship between elasticities as b̂n =
1−θ ηn

ηn−1

1−θ η1
η1−1

, n = 2, . . . , N ,

and, naturally, b̂1 = 1 by definition. Thus, ηn = 1 + θ(η1−1)
bn+(1−θ)(η1−1−bnη1) . Substitute it as ηn in

(33) and solve for ujt to construct moment conditions for the GMM estimation:33

ujt = ln ρ+ln

∑
n∈Λjt

θ(η1 − 1)

(η1 − 1) + b̂n + (θ − 1)b̂nη1
R̃jnt

−ln

[
EMjt

+ ELjt

(
1 +

αK
αL

(
Kjt

Ljt

)γ)]
.

(36)

There are only four parameters, β ≡ (ρ, η1,
αK

αL
, γ), to be estimated. This means that the

number of instrumental variables required does not increase with the number of products.

Firm-level input choices can serve as valid IVs because they are not correlated with the

unexpected shocks. In the implementation, we use Zjt = (1, EMjt, ELjt, Ljt, Kjt/Ljt) as IVs.

Equation (36) can only identify αK

αL
rather than αL, αM , and αK separately. The full set

of (αL, αM , αK) can be identified with two constraints naturally implied by the model. The

first constraint is a normalization of distribution parameters in the CES production function:

αL + αM + αK = 1. The second constraint equalizes the ratio of geometric means of labor

expenditure (EL) and material expenditure (EM) to the ratio of distribution parameters in

the CES production function. That is, αM

αL
= EM

EL
. This constraint results from taking the

geometric mean of (13), which is implied by the first-order conditions of labor and material

2(N − 1) moment equations that can be formed to identify (N − 1) coefficients (i.e., η1−1
ηn−1 , n = 2, . . . , N).

33The identification of ρ relies on the condition E(eujnt) = 1, as assumed in Section 2.1. Due to the
log-additivity of ρ in the main estimating equation (36), the value of ρ does not affect the estimation
of the rest of the parameters. Thus, the rest of the parameters can be estimated before ρ is estimated.
The following describes how ρ is estimated. Although the composite error term ujt, defined in (34), does
not have a zero mean (i.e., E(ujt) ̸= 0), the composite error for single-product firms is the same as
the product-level shock (i.e., ujt = uj1t). After the rest of the parameters are estimated, (36) can be

written for these single-product firms as euj1t

ρ =
η̂1−1
η̂1

R̃j1t[
EMjt

+ELjt

(
1+

α̂K
α̂L

(
Kjt
Ljt

)γ̂
)] . Taking the expectation for

both sides, we have 1
ρ = E

 η̂1−1
η̂1

R̃j1t[
EMjt

+ELjt

(
1+

α̂K
α̂L

(
Kjt
Ljt

)γ̂
)]
 . Therefore, the estimate of ρ can be recovered as

ρ̂ = 1/E

 η̂1−1
η̂1

R̃j1t[
EMjt

+ELjt

(
1+

α̂K
α̂L

(
Kjt
Ljt

)γ̂
)]
 .
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quantities, (11) and (12), of all firms.34

As a result, β can be estimated as:

β̂ = argminβ

[
1

N
∑
j,t

ujtZjt

]′
W

[
1

N
∑
j,t

ujtZjt

]
, (37)

subject to: αL + αM + αK = 1 and
αM
αL

=
EM

EL

,

where W is a weight matrix, N is the number of firm-time observations, and ujt is the

composite error term (36).

As a summary of the full estimating approach, the first step is to estimate θ̂ from (27)

via 2SLS. The second step is to estimate b̂n =
1−θ ηn

ηn−1

1−θ η1
η1−1

, n = 2, . . . , N via 2SLS using the

relationship imposed by the within-firm relative sales in (35). The third step is to estimate

(ρ̂, η̂1, α̂L, α̂M , α̂K , γ̂) using (37) via GMM. With these estimates, the demand elasticities can

be recovered as η̂n = 1 + θ̂(η̂1−1)

bn+(1−θ̂)(η̂1−1−b̂nη̂1)
. After that, we compute ξ̃jnt and ω̃jnt via (30)

and (32), respectively.

5.3 Monte Carlo Exercise

In this section, we conduct a Monte Carlo exercise to demonstrate the performance of our

estimation method. In the Monte Carlo setting, the choice of product sets is exogenous

and random. The productivity and quality levels of each product are not only serially

correlated over time but also negatively correlated with each other in the same period. Across

products, productivity and quality exhibit different degrees of persistence and dispersion.

Consequently, the levels and variability of productivity and quality differ systematically

across products, generating heterogeneous revenue shares within a firm, thereby mimicking

patterns observed in actual data. Wage rates, material prices, and capital stock are simulated

as serially correlated and exogenous AR(1) processes. These variables are correlated with

contemporaneous input and output decisions because the firm observes their realized values

before choosing inputs and outputs to maximize profit.

Our Monte Carlo exercise consists of 200 replications of simulated datasets for J firms

observed over T periods, based on a model with a set of true parameters for five products:

34As shown by Grieco et al. (2016), this constraint holds conditional on a normalization of the CES
production function. We follow the same procedure to normalize the inputs using their corresponding
industry-level geometric means (e.g., Klump and de La Grandville, 2000; León-Ledesma et al., 2010).
Nonetheless, to ease our notation, we directly denote the normalized input variables as (Ljt,Mjt,Kjt). As a

result, the ratio of the geometric means of material and labor is M
L

= 1, which implies αM

αL
= EM

EL
, by taking

the geometric mean of (13) across firms.
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Table 3: Monte Carlo: Estimates of Production and Demand Function Parameters

Production Demand

Parameter True Estimate Parameter True Estimate

αL 0.400 0.400 η1 3.000 3.022
(0.005) (0.257)

αM 0.400 0.400 η2 4.000 4.035
(0.005) (0.363)

αK 0.200 0.200 η3 5.000 5.022
(0.010) (0.403)

σ 2.000 2.000 η4 6.000 6.016
(0.023) (0.398)

ρ 1.100 1.100 η5 7.000 7.001
(0.024) (0.368)

θ 0.900 0.900
(0.004)

Note: The parameter estimates are reported as the mean esti-
mates from the Monte Carlo simulations. Standard errors in
parentheses are the standard deviations of the estimates.

(η1, η2, η3, η4, η5, αL, αM , αK , σ, ρ, θ). In each replication, we simulate productivity (ω̃jnt) and

quality (ξ̃jnt) for each product n, firm j, and period t, as well as wage rates (PLjt
), material

prices (PMjt
), and capital stocks (Kjt) for each firm j and period t, using AR(1) processes

with different persistence parameters and dispersion degrees of innovation shocks.

Given these variables, and the production and demand specifications in Section 5, we

use the firm’s static profit maximization problem to derive the optimal choices of labor

and material inputs (Ljt and Mjt), as well as the optimal output quantity (Qjnt) and price

(Pjnt) for firm j and product n in each period t. The observed product price incorporates

an idiosyncratic shock: P̃jnt = Pjnte
ujnt , where ujnt is a firm-product-time specific shock.

Consequently, the observed product revenue is given by R̃jnt = P̃jntQjnt.

The parameter values used in the data-generating process are summarized in Online

Appendix Table A4. The variables used in the estimation procedure and the same set of instru-

mental variables as detailed in Section 5.2 are (Qj1t, . . . , Qjnt, R̃j1t, . . . , R̃jnt, Kjt, Ljt, ELjt
, EMjt

).

The simulated data exhibit realistic distributional patterns. First, productivity and quality

are negatively correlated (coefficient: –0.2). Second, as shown in Online Appendix Table

A6, both the levels and heterogeneity of productivity and quality differ across products,

reflecting technological and demand variation. Third, the mean within-firm revenue share

varies across products, ranging from 6% to 57%, indicating differences in product importance

within firms. Moreover, the dispersion of within-firm revenue shares differs substantially by

32



product, suggesting heterogeneity in the relative importance of each product across firms.

Table 3 reports the mean estimates of the key parameters alongside their standard errors.

In addition, the estimates for the parameters of (35) also closely match the true values,

as shown in Table A5, demonstrating the effectiveness of the IVs proposed in Section 5.2.

Overall, the results indicate that the estimation procedure successfully recovers the true

parameters of the production and demand functions.

6 Estimation Results

This section reports the estimation results, including the production and demand function

parameter estimates by industry as well as firm-product level productivity and quality.

Because our empirical analysis relies on estimated variables, we employ bootstrapping with

100 samples to compute all standard errors presented in the subsequent tables.

Table 4: Production function estimates

Parameter Footwear Printing Pharmaceutical

αL 0.199 0.228 0.218
(0.014) (0.015) (0.025)

αM 0.763 0.676 0.574
(0.039) (0.027) (0.068)

αK 0.037 0.096 0.208
(0.049) (0.035) (0.089)

σ 1.225 1.264 1.142
(0.516) (0.111) (0.179)

ρ 1.054 1.129 1.037
(0.146) (0.123) (0.196)

θ 0.950 0.779 0.720
(0.053) (0.066) (0.082)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (100 repetitions).

Table 4 presents the production parameters. αM is significantly larger than αL and αK ,

consistent with the intensive use of intermediate material input across all industries. αK in the

pharmaceutical industry is the highest among the three industries, reflecting the importance

of capital in this industry. Parameter σ, which is the elasticity of substitution across inputs,

i.e., labor, material, and capital, is greater than one across all industries. This is different

from those in the classical literature which does not control for heterogeneous material prices.

But it is largely consistent with the estimates in Grieco et al. (2016, 2022), Harrigan et al.

(2021), and Li and Zhang (2022) based on a similar method but using different datasets from
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Colombia, France, and China, respectively. It is also close to the average estimate of the

elasticity of substitution among Chinese industries by Berkowitz et al. (2017) using a different

method. Furthermore, the returns to scale parameter ρ of the three industries is larger than

one, but it is not significantly different from one, implying that production is close to constant

returns to scale in these industries. Finally, the estimated values of θ range from 0.720 in the

pharmaceutical industry to 0.950 in the footwear industry. Taking θ = 1 as the benchmark

case where products are perfectly substitutable in production, these estimates suggest that

products in the footwear industry (e.g., men’s vs. women’s shoes) are considerably more

substitutable in production than those in the pharmaceutical industry (e.g., antiparasitics vs.

hormones).

Table 5 presents the estimated demand elasticity parameters for different products across

the three industries. These estimates generally fall within the range reported in the existing

literature (e.g., Roberts et al., 2018; Grieco et al., 2016; Dubois and Lasio, 2018). The

estimated variation in demand elasticities across products implies meaningful heterogeneity

in product-level markups. In the footwear industry, markups range from 1.218 to 1.400, while

in the pharmaceutical industry they are significantly higher, ranging from 1.478 to 1.614.

Because firms produce different sets of products in different years, we compute firm-year-level

markups as weighted averages of product-level markups, using revenue shares as weights.

Across the three industries, the average firm-year markup is 1.403, with a standard deviation

of 0.102. This dispersion is smaller than the estimate reported by De Loecker and Warzynski

(2012), which reflects a broader range of markup variation. Our measure of markup dispersion

reflects only heterogeneity in product demand elasticities and composition across firms and

years. Despite this narrower definition, the dispersion in firm-year markups is substantial.

The estimated quality and productivity also demonstrate substantial dispersion across firms,

even conditional on a given product. However, if the objective is to compare technological

production efficiency, the productivity measure (e.g., TFPQ) is not directly comparable

across or within firms, as varieties within the same product category differ in quality levels.

In contrast, quality-adjusted output is directly comparable across firms and products, as

pointed out by Melitz (2000). Thus, we follow the literature (e.g., Orr, 2022; Li et al., 2025)

to construct a revenue-based productivity (TFPR) measure that takes both quality and

productivity into account:35

TFPRjnt = ω̃jnt +
1

ηn − 1
ξ̃jnt. (38)

As expected, TFPR reflects significant dispersion across firms even within a specific

35Note that quality enters TFPR as 1
ηn−1 ξ̃jnt. This is due to the demand specification in Section 5.1.
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Table 5: Demand function estimates

Parameter Footwear Printing Pharmaceutical

η1 4.009 4.128 2.965
(1.620) (1.030) (1.166)

η2 3.497 4.262 2.927
(1.777) (0.898) (1.200)

η3 4.263 3.699 2.998
(1.780) (1.192) (1.070)

η4 5.593 3.890 3.047
(1.835) (1.352) (1.274)

η5 4.276 2.911
(0.881) (1.219)

η6 4.111 2.805
(0.931) (1.264)

η7 3.787 2.923
(1.184) (1.158)

η8 4.016 2.856
(1.164) (1.182)

η9 4.210 2.878
(0.909) (1.195)

η10 4.251 2.866
(0.886) (1.188)

η11 4.004 2.926
(1.056) (1.282)

η12 4.042 2.907
(1.070) (1.151)

η13 4.123 3.176
(0.968) (1.395)

η14 4.200 3.062
(0.914) (1.415)

η15 4.147 2.628
(0.952) (1.334)

η16 2.907
(1.138)

Note: Elasticity parameters in each column within each
industry are ordered to correspond with the column entries
of products in Online Appendix Table A1, respectively.
Bootstrapped standard errors clustered at the firm level and
stratified by industry and scope are shown in parentheses
(100 repetitions).
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product category.36 The mean standard deviation within a product is 2.667 (calculated

across all products in the three industries), which is similar in magnitude to that of revenue

productivity documented by Grieco et al. (2022) in the Chinese paint industry. Regarding

the components of TFPR, the standard deviation of ω̃jnt within a product has a mean of

2.867, while the standard deviation of 1
ηn−1

ξ̃njt within a product has a mean of 1.474.37

Interestingly, our results also reveal that within-firm heterogeneity in TFPR is substantial.

Among multi-product firms, the average standard deviation of TFPR across products within

a firm is 0.337, which is approximately one-eighth of the standard deviation of TFPR

across firms for a given product. This indicates that while across-firm heterogeneity is more

prominent, within-firm TFPR dispersion is also economically significant.

Overall, our estimation results reflect reasonable parameter estimates and productivity

and quality measures at the firm-product level. In the following section, we turn to use these

measures to explore the roles of productivity, quality, and within-firm resource reallocation

in shaping firm performance.

7 Technological Spillovers & Within-firm Reallocation

A key advantage of our estimation method is that we do not need to impose any structure

on the dynamic evolution of productivity. When the objective is to study potentially rich

interdependencies in productivity dynamics—such as spillovers in the context of multi-product

firms—we can estimate these processes after recovering the productivity measure itself rather

than jointly estimating the interdependent dynamics with the model parameters. We illustrate

this advantage by examining various forms of technological spillovers. In Section 7.1, we

consider a conceptually novel within-firm, across-product spillover, which is particularly

relevant for multi-product firms, in addition to the traditionally studied within-product,

across-firm spillover (e.g., Malikov and Zhao, 2023). In Section 7.2, we show that within-firm

reallocation of resources serves as an important mechanism through which multi-product

firms are influenced by these technological spillovers.

7.1 Technological Spillovers: Across-firm and Within-firm

In this section, we assess spillovers both across firms and within firms. In our context of

multi-product firms, an across-firm spillover for a given product is defined as the impact

of technical efficiency of the same product produced by other firms on that product’s own

36The distributions of TFPR by product, as well as the distributions of its components, ω̃njt and ξ̃njt, are
reported in Online Appendix Figures A2, A3 and A4, respectively.

37The standard deviation of ω̃jnt is slightly larger than that of TFPR because the two components of
TFPR, productivity, and quality, are negatively related, as will be clear in Section 7.
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technical efficiency. A within-firm spillover is defined as the impact of technical efficiency of

other products produced by the same firm on the product in question.

Formally, we propose an evolution process for firm-product-level technical efficiency ωjnt,

following (6), which allows for both across-firm and within-firm spillover components:

ωjnt = g1ωjnt−1 + gfω
f
jnt−1 + gpω

p
jnt−1 + dt + ϵjnt, (39)

where dt is a time fixed effect and ϵjnt is an i.i.d. innovation shock. ωfjnt−1 is the across-

firm, within-product average technical efficiency: ωfjnt−1 =
1

Nf
nt−1−1

∑
i ̸=j ωint−1, where N

f
nt−1

is the total number of firms producing product n in period t − 1. Similarly, ωpjnt−1 is the

across-product, within-firm average technical efficiency: ωpjnt−1 =
1

Np
jt−1−1

∑
m ̸=n ωjmt−1, where

Np
jt−1 is the total number of products produced by firm j in period t− 1. Both ωfjnt−1 and

ωpjnt−1 vary at the firm-product-time level. Therefore, the term gfω
f
jnt−1 captures across-firm,

within-product spillovers in technical efficiency. Similarly, gpω
p
jnt−1 captures across-product,

within-firm spillovers—that is, the effect of changes in the average technical efficiency of a

firm’s other products in period t − 1 on the technical efficiency of product n for firm j in

period t.

Equation (39) can be interpreted as a multi-product extension of the single-product case

in Malikov and Zhao (2023), in which we allow for the possibility of spillovers across products

within firms. The lagged dependent variable captures persistence within product-firm pairs.

In addition, modeling the evolution of technical efficiency rather than TFPQ makes it possible

to mitigate differences across products due to different units of measurement.

While technical efficiency ωjnt is not directly estimated in our procedure described in

Section 5, it is shaped by two key estimated measures of heterogeneity: TFPQ (ω̃jnt) and

quality (ξ̃jnt), as linked through the TFPQ-quality tradeoff specified in (5). We do not impose

such a trade-off in our estimation but after estimation the raw correlation between these

two aspects of heterogeneity is negative, as shown in Online Appendix Figure A5. The

emerging literature using firm-level data (e.g., Grieco and McDevitt, 2017; Atkin et al., 2019;

Li et al., 2025) has documented a cost of quality: conditional on technical efficiency, producing

higher-quality products raises marginal costs and therefore reduces measured TFPQ. This

cost of quality can generate such a negative correlation between TFPQ and product appeal,

a pattern consistent with findings from the broader literature (e.g., Orr, 2022; Forlani et al.,

2023; Eslava et al., 2024). We exploit this relationship to characterize technical efficiency

ωjnt and estimate its evolution process in (39).
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Specifically, we adopt a linear version of the TFPQ-quality tradeoff (5):38

ω̃jnt = ωjnt − γξ ξ̃jnt, (40)

where γξ ξ̃jnt is interpreted as the cost (in terms of lowering productivity) of increasing quality,

holding inputs fixed. γξ is the elasticity of productivity with respect to the change in quality.

Replacing technical efficiency in (39) by that in (40) gives:

ω̃jnt = g1ω̃jnt−1−γξ ξ̃jnt+ g1γξ ξ̃jnt−1+ gf ω̃
f
jnt−1+ gfγξ ξ̃

f
jnt−1+ gpω̃

p
jnt−1+ gpγξ ξ̃

p
jnt−1+dt+ ϵjnt,

(41)

where ω̃fjnt−1 and ξ̃fjnt−1 are the across-firm, within-product average productivity and qual-

ity, respectively. Similarly, ω̃pjnt−1 and ξ̃pjnt−1 are the across-product, within-firm average

productivity and quality, respectively.39

Although all variables (except ϵjnt) are already estimated from our structural model, the

innovation shock ϵjnt can be correlated with contemporaneous quality choice ξ̃jnt. To address

such an endogeneity problem, we estimate (41) via GMM using a set of instrumental variables

that includes internal instruments in period t− 2. According to the timing assumption, these

variables are uncorrelated with the i.i.d innovation term ϵjnt.

The estimation results for various specifications of (41) are presented in Table 6. Column

(1) reports estimates from a simplified specification that excludes both year fixed effects

and spillover terms, while Column (2) adds year fixed effects. Column (3) introduces the

across-firm spillover term, gfω
f
jnt−1. Finally, Column (4) augments this specification by

including an additional term, gpω
p
jnt−1, which captures within-firm technological spillovers.

We treat Column (4) as our main specification for capturing the evolution of firm-product-

level technical efficiency, allowing for a rich pattern of across- and within-firm technological

spillovers and the trade-off between productivity and quality. As expected, technical efficiency

is highly persistent, as indicated by the estimated value of g1. Consistent with the literature,

there is a negative trade-off between productivity and quality at the firm-product level: a

1-percent increase in quality lowers productivity by 0.340 percent, holding all else constant.

The magnitude is comparable to the estimated productivity-quality trade-off elasticity of

0.2 in the U.S. healthcare industry (Grieco and McDevitt, 2017) and 0.5 in the Chinese

steel-making industry (Li et al., 2025).

More importantly, the across-firm spillover of technical efficiency is economically significant.

For a given product, a 1-percent increase in the average technical efficiency of this product

38Higher order terms of ξ̃jnt can be added to this relationship to allow for nonlinearity of the tradeoff.
39The within-product and within-firm averages are divided, respectively, by the number of firms and

products minus one, since each average excludes its own observation from the sum.
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Table 6: Productivity, cost of quality, and spillovers

Dep. var.: Productivity (1) (2) (3) (4)

g1 0.905*** 0.903*** 0.884*** 0.842***
(0.035) (0.035) (0.031) (0.030)

γξ 0.129 0.131 0.337 0.340
(0.201) (0.202) (0.287) (0.242)

gf 0.145*** 0.137***
(0.030) (0.028)

gp 0.056***
(0.002)

Year FE no yes yes yes

Observations 4806 4806 4806 4806

Note: The dependent variable is quantity-based productivity at the firm-product-year level.
The coefficients are estimated via GMM. The instrument set includes twice-lagged productiv-
ity and quality in all columns. In columns (3) and (4), the instrument set also includes the
simple average of twice-lagged productivity and quality of the same product produced by
other firms. In column (4), the instrument set also includes the simple average of twice-lagged
productivity and quality of the other products produced by the same firm. Bootstrapped
standard errors clustered at the firm level and stratified by industry and scope are shown in
parentheses (100 repetitions). *** p < 0.01, ** p < 0.05.

produced by other firms raises the technical efficiency of this product by 0.137 percent. This

magnitude is similar to that documented by Malikov and Zhao (2023), who report an across-

firm spillover elasticity of 0.33 for the Chinese electric machinery manufacturing industry.

In addition, our results reveal a within-firm spillover, with an elasticity approximately 40%

of the magnitude of the across-firm spillover. This comparison suggests that while spillover

effects are larger across firms, within-firm spillovers are also economically meaningful.

Our estimates of within-firm spillovers are closely related to economies of scope, an idea

emphasized by Koike-Mori and Martner (2024), Argente et al. (2025), Ding (2025), and

Khmelnitskaya et al. (2025). The importance of within-firm spillovers has also been noted for

multinational firms when studying innovation and the role of intangible assets (see, e.g., Bilir

and Morales, 2020; Merlevede and Theodorakopoulos, 2023). While intangible assets (ideas,

knowledge) may diffuse more readily within firm boundaries than across them, they can also

be rival inputs internally due to limits on managerial attention and information-processing

capacity.40 Thus, whether within-firm or across-firm spillovers dominate is an empirical

question that depends on the context. Our contribution is to establish the quantitative

40See Crouzet et al. (2022) for a discussion of potential rivalry in intangible capital within the firm.
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importance of within-firm spillovers—relative to across-firm spillovers—in a context with

multi-product firms and substantial product-level heterogeneity in production efficiency. As

we demonstrate in Section 7.2, product-specific shocks are amplified into firm-level and

industry-level outcomes through internal resource reallocation, operating via both across-firm

and within-firm spillovers.

7.2 Within-firm Reallocation in Response to Product-specific Shocks

What are the implications of an exogenous, product-specific shock for multi-product firms?

Spillovers—both across and within firms—imply that the effects can be complex. Across-firm

spillovers reflect the additional impact of a product-specific productivity improvement on all

other firms that produce the same product, while within-firm spillovers imply that all other

products within the same firm are also directly affected. These direct spillover effects on firm-

level productivity are further amplified by within-firm resource reallocation: a productivity

improvement in any product can trigger reallocation of resources across all products within

the firm. In this section, we quantify the importance of across-firm and within-firm spillovers

in terms of their impacts on social welfare and firm-level productivity via counterfactual

analysis, and we highlight within-firm resource reallocation, which is not considered in the

single-product firm literature, as a key mechanism through which these effects operate.

As a counterfactual exercise, we consider a 1 percentage point exogenous improvement

in the technical efficiency of a representative product—denoted without loss of generality

as product 1, the reference product produced by the most firms in an industry—in period

t for all firms that produce this product.41 Formally, we set ω′
j1t−1 = ωj1t−1 + 0.01 for

each firm that produces product 1, while holding the technical efficiency of other products

unchanged: ω′
jnt−1 = ωjnt−1 for n ≠ 1. According to the dynamics of technical efficiency in

(39), this improvement in period t− 1 directly affects the technical efficiency of product 1

in period t through the persistence term, g1ωj1t−1. The across-firm direct spillover effect on

all firms that produce product 1 is captured through the term gfω
f
j1t−1, while the within-

firm spillover effect on another product n ̸= 1 of firm j operates through gpω
p
jnt−1. As a

result, this 1-percent improvement generates differential direct effects on products in period t:

∆ωj1t = g1 × 0.01 + gf × 0.01 for the reference product n = 1, and ∆ωjnt = gp × 0.01
Np

jt−1−1
for

other products n ̸= 1, where Np
jt−1 is the number of products produced by firm j in period

t− 1.

41We focus on the short-term effects, holding all dynamic decisions (i.e., product quality, scope, and
investment) described in Online Appendix C fixed. The overall long-term impacts of spillovers would likely
be even larger, as firms adjust their dynamic decisions in response to spillovers. However, evaluating these
long-term effects would require estimating a fully dynamic model, which we leave for future research.
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These disproportionate impacts across products within a firm not only directly improve

the productivity of individual products but also indirectly affect firm-level productivity, a

traditional measure of firm performance, through within-firm resource reallocation towards

more productive products in multi-product firms: firms allocate a larger share of resources

to products whose productivity has improved more. Both the direct and indirect effects

contribute to the improvement in firm-level TFPR. To assess the relative importance of these

contributions, we aggregate firm-level TFPR from the underlying firm-product-level measures

and decompose the overall effect into a direct impact and an indirect impact operating

through within-firm reallocation.

In choosing an aggregation method, we follow the spirit of the standard production function

estimation literature on multi-product firms, where productivity is typically allowed to vary

only at the firm level, TFPRjt, rather than at the firm–product level. This benchmark

treats firms as multi-product producers but abstracts from within-firm productivity hetero-

geneity, so reallocation across products does not affect measured firm productivity. Our

firm–product–level productivity measure TFPRjnt is closely related to the firm-level concept,

but by allowing for within-firm heterogeneity it enables us to study how resource reallocation

across products shapes firm-level performance, which is a mechanism that is absent in single-

product settings or in analyses that rely solely on firm-level productivity. Applying such a

concept of firm-level productivity to our model setup in Section 5, Online Appendix E shows

that, this firm-level TFPRjt and our measure of firm-product level TFPRjnt are related as:42

eTFPRjt =

∑
Λjt

(
sjnte

−TFPRjnt
)θ

− 1
θ

, (42)

42This relationship is derived under the assumption that the firm produces multiple products, each with its
own elasticity parameter in the CES demand function (28), while revenue productivity varies only at the firm
level, not by product, as shown in Online Appendix E. A more conventional measure of firm-level TFPR
follows the tradition of estimation methods that treat each firm as producing a single (aggregated) product.
In that case, with a CES demand function for the aggregated product and elasticity parameter η̄, firm-level

TFPR and our firm–product-level TFPR are related by eTFPRjt =
{∑

Λjt

(
sjnt e

−TFPRjnt
)θ}− 1

θ

, where

sjnt =
R̃

ηn
ηn−1
jnt[∑

Λjt
R̃jnt

] η̄
η̄−1

is a weight. Relative to the relationship in (42), the only difference lies in how the share

sjnt is constructed. We refrain from using this aggregation because the elasticity parameter η̄ for the aggregated
firm-level product is not a primitive object in our framework. Finally, a more straightforward measure
of firm-level TFPR aggregates the firm-product-level measures using sales shares as weights: TFPRjt =∑

n∈Λjt
sjnt TFPRjnt, where sjnt =

R̃jnt∑
Λjt

R̃jnt
is the within-firm sales share of product n. Accordingly, the

within-firm decomposition can be performed in the spirit of the within-industry, across-firm decomposition
proposed by Olley and Pakes (1996). Our key result regarding the relative contributions of the direct and
indirect impacts remains qualitatively similar under this alternative aggregation.
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where sjnt =
R̃

ηn
ηn−1
jnt{∑

Λjt

[
R̃

ηn
ηn−1
jnt

]θ} 1
θ
is a weight based on the revenues of different products within

the firm. Combining the definition of firm-product level TFPR in (38) and the TFPQ-quality

trade-off in (40), TFPRjnt can be expressed in terms of technical efficiency and quality:

TFPRjnt = ωjnt + ( 1
ηn−1

− γξ)ξ̃jnt.
43 The counterfactual exogenous shock affects TFPRjnt

directly through ωjnt, while ξ̃jnt is held fixed.

Given the disproportionate changes in technical efficiency across products (∆ωjnt), each

firm re-optimizes its profit by adjusting its input and product-level outputs. Let R̃′
jnt

denote the resulting product-level revenue in the counterfactual scenario. The corresponding

counterfactual firm-level TFPR, computed using (42), is denoted by TFPR′
jt. The overall

effect of a 1-percent improvement in the technical efficiency of the reference product is then

measured by (TFPR′
jt − TFPRjt).

Table 7: Effects of 1-percent exogenous increase in technical efficiency of the reference product

Spillover type
No Across-firm Within-firm Both

Total welfare, million Pesos 1.543 1.799 1.626 1.881
(0.327) (0.347) (0.327) (0.347)

Firm-level TFPR, percentage 0.315 0.368 0.320 0.373
(0.154) (0.158) (0.155) (0.159)

– Direct impact 0.126 0.146 0.133 0.154
(0.028) (0.030) (0.028) (0.030)

– Within-firm reallocation 0.190 0.222 0.187 0.219
(0.160) (0.163) (0.160) (0.163)

Note: The total welfare is measured as the sum of consumer surplus and pro-
ducer surplus. A detailed decomposition is reported in Online Appendix Table
A7. The TFPR improvement is measured in percentage point and calculated
as the weighted average of the improvements in TFPR at the firm-year level
with firms’ total sales in the baseline scenario as weights. Bootstrapped stan-
dard errors, reported in parentheses, are computed based on 100 repetitions.

To isolate the role of within-firm resource reallocation, we compute a firm-level TFPR

using the updated firm-product-level TFPRs but holding the within-firm revenue shares sjnt

fixed at their original values. Denote this measure as TFPR∗
jt. The difference (TFPR∗

jt −
TFPRjt) reflects the direct impact of the technical efficiency improvement, while the difference

(TFPR′
jt − TFPR∗

jt) captures the indirect impact operating through within-firm reallocation.

43Intuitively, this expression implies that while product quality promote TFPR, a sizable portion of its
impact is offset by its cost, as documented in Li et al. (2025).
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We conduct this decomposition for each firm and aggregate the results to the industry level

using firm sales as weights.

We implement this decomposition for four distinct cases: (a) no spillover (gf = 0, gp = 0);

(b) allowing for only across-firm spillover (gf = 0.137, gp = 0); (c) allowing for only within-firm

spillover (gf = 0, gp = 0.056); and (d) allowing for both spillovers (gf = 0.137, gp = 0.056). In

addition to the decomposition of TFPR improvement, we also evaluate the welfare implications

by computing the change in total social welfare. Total welfare is defined as the sum of firm

profits and consumer surplus. Given the demand functions in (28), consumer surplus is

computed as
∑

j,n
R̃jnt

ηn−1
.

The results are presented in Table 7. A 1-percent increase in the technical efficiency of

the reference product leads to an improvement in total welfare of 1.543 million Pesos in the

absence of any technological spillover. When only across-firm spillover presents, the welfare

gain increases to 1.799 million Pesos—approximately 16.6% higher than in the no-spillover

case. In comparison, allowing only within-firm spillovers results in a 5.4% larger welfare

improvement relative to the no-spillover baseline. When both spillover channels are active,

the total welfare gain is approximately the sum of the net effects from the individual spillover

scenarios. This comparison implies that both across-firm and within-firm technological

spillovers are economically significant, though the former plays a more dominant role.

Figure 1: Contribution of within-firm resource reallocation to TFPR growth
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Notes: All firms producing more than 10 products are clustered in the “10” group.

A similar pattern emerges in the impact on firm-level TFPR. Notably, within-firm resource

reallocation accounts for approximately 60% of the overall TFPR improvement across all

four scenarios.44 This highlights the importance of within-firm reallocation in shaping how

44This magnitude is based on the ratio of the indirect effect (Row 4) to the total effect (Row 2) across all
columns of Table 7.
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multi-product firms benefit from productivity shocks. While a large literature emphasizes

across-firm reallocation as a driver of aggregate productivity growth—showing that resources

tend to flow toward more productive firms (e.g., Baily et al., 1992; Bartelsman and Doms,

2000; Baily et al., 2001; Aw et al., 2001; Foster et al., 2006, 2008; Syverson, 2011; Collard-

Wexler and De Loecker, 2015)—our firm-product-level analysis demonstrates that within-firm

resource reallocation makes a sizable contribution to the firm-level productivity growth.

Interestingly, within-firm resource reallocation plays an even greater role when a firm’s top-

selling products experience a productivity shock. This pattern is illustrated in Figure 1, which

shows that the contribution of within-firm reallocation to firm-level TFPR improvement

declines steadily with the within-firm rank of the impacted product.45 Specifically, a 1

percentage point increase in the technical efficiency of a firm’s top product (ranked 1st)

results in a 0.4 percentage point improvement in firm-level TFPR attributable to within-firm

reallocation. By contrast, when the same improvement occurs in the firm’s least-selling product

(ranked 10th), the contribution from reallocation falls to less than 0.05 percentage points. This

result has important implications for the endogenous productivity dynamics of multi-product

firms. In settings where firms make dynamic decisions about productivity investment, the

relative sales performance of products within the firm may be a key determinant of where

research efforts are directed—echoing insights from Kim (2024).

8 Conclusion

Multi-product firms account for a significant share of our economy. Yet, the traditional

firm-level analysis in the literature masks the within-firm heterogeneity. In this paper, we

propose a novel method to estimate firm-product-level productivity and quality along with

demand and transformation function parameters. Compared with the existing methods in

the literature, our method does not impose assumptions on how inputs are allocated across

different products within firms, nor does it necessarily restrict how productivity evolves

over time. This flexibility allows researchers to explore complex productivity dynamics after

estimation. Importantly, the method can be easily scaled up to estimate production functions

with a large number of products, without relying on the availability of productivity proxies.

Finally, the method accounts for heterogeneous intermediate input prices that are usually

unobservable to researchers and lead to biased estimation results when ignored.

We apply our method to three major industries in the Mexican manufacturing sector.

Our findings reveal substantial heterogeneity in both quality and productivity—even when

conditioning on a given product. Moreover, conditional on input usage, firms face a trade-off

between quality and productivity. After accounting for this trade-off, we find that the

45A higher rank indicates a product further from the firm’s top-selling product.
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underlying technical efficiency exhibits both across-firm and within-firm spillovers. This

implies that an exogenous improvement in the technical efficiency of a single product not

only affects the efficiency of other firms producing the same product, but also influences the

efficiency of other products within the same firm. Notably, a large share of the resulting

impact on firm-level TFPR is driven by within-firm resource reallocation. This highlights

the quantitative importance of within-firm reallocation as a key mechanism through which

multi-product firms enhance their performance. Consequently, this channel holds important

implications for understanding aggregate productivity growth.
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Online Appendix

A Input Aggregator: Translog Functional Form

While Section 5 adopts a CES input aggregator for the empirical implementation, the method

is not restricted to that functional form. In this appendix, we outline an estimation strategy

when the input aggregator instead takes a translog functional form.

We maintain the setup of the demand system and output aggregator as (1) and (4),

respectively. As a result, the parameters associated with the demand model and output

aggregator are estimated in the same way as described in the paper. In particular, denote the

estimated markup from the demand model as µ̂njt and denote the estimated parameter in

the output aggregator as θ̂. In what follows, we focus on estimating the parameters specific

to the translog input aggregator.

The input aggregator takes a full translog functional form:

F (Ljt,Mjt, Kjt) = exp

{
αl lnLjt + αm lnMjt + αk lnKjt

+ αkl (lnKjt) (lnLjt) + αkm (lnKjt) (lnMjt) + αlm (lnLjt) (lnMjt)

}
+

1

2
αll (lnLjt)

2 +
1

2
αmm (lnMjt)

2 +
1

2
αkk (lnKjt)

2 , (A.1)

where the input variables, (Ljt,Mjt, Kjt), are normalized by their geometric means (e.g.,
1
N
∑

j,t lnLjt = 0) respectively. Such a normalization is analogous to the normalization

conducted for the specification of the CES input aggregator, as described in Footnote 34.

Applying the methodology described in Section 3.2, we obtain a mapping from observable

data to the unobservable variables:46

ξjnt = P−1
jnt(Pt,Qt), (A.2)

lnMjt =

ELjt

EMjt
(αm + αkm lnKjt + αml lnLjt)− (αl + αll lnLjt + αkl lnKjt)

(αml − αmm
ELjt

EMjt
)

, (A.3)

and

eθω̃jnt =
µjnt
Pjnt

PLjt
FL(Ljt,Mjt, Kjt)︸ ︷︷ ︸

λjt

Qθ−1
jnt [F (Ljt,Mjt, Kjt)]

1−θ, (A.4)

46We assume that αml

αmm
̸= ELjt

EMjt
, so the unique solution of Mjt exists.
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where µjnt in (A.4) is the markup specified in (18), Mjt in (A.4) is the function presented

as (A.3), and FL(Ljt,Mjt, Kjt) =
∂F (Ljt,Mjt,Kjt)

∂Ljt
. The above equations explicitly represent the

mappings of quality (8), material quantity (14), and productivity (19) in the general model.

Consequently, the expression of the main estimating equation, (24), in this setup, is:

ln

 ∑
n∈Λjt

R̃jnt

µjnt

 = ln

 ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

− ujt

= − lnβ0 + ln[EMjt − β1ELjt ]− ln [1 + β2 lnKjt + β3 lnLjt]− ujt, (A.5)

where β0 = αm − αlβ1, β1 = αmm

αml
, β2 = (αkm − αklβ1)/β0, β3 = (αlm − αllβ1)/β0, and

ujt = ln

{∑
n∈Λjt

[
R̃jnt/µjnt∑

n∈Λjt
R̃jnt/µjnt

e−ujnt

]}
is a firm-level composite error term.

As with the CES input aggregator in our empirical implementation, (A.5) alone does not

identify all parameters of the translog function as the input aggregator. This is because

some of the parameters are cancelled out when substituting the unobserved productivity and

material input into the translog function using the mapping. Hence, additional conditions

are required to identify all the translog parameters. Because the translog function is more

flexible than the CES function, we explore both cross-sectional and time-series assumptions.

In particular, the first time-series assumption regards material prices. For demonstration

purposes, we assume that material prices evolve exogenously according to an AR(1) process:

lnPMjt = h0 + h1 lnPMjt−1 + ϵMjt, (A.6)

where ϵMjt is an i.i.d. shock.

The second time-series assumption regards technical efficiency. We only need to utilize

the evolution of one product (e.g., reference product 1) within each firm. For demonstration

purposes, we assume that the technical efficiency evolution of this reference product in (6) is

independent of the evolution of other products in the same firm (i.e., abstracts away from

spillovers):

ωj1t = g0 + ωj1t−1 + ϵj1t. (A.7)

The full estimation procedure is described by the following three steps.

Step 1: Estimate the revenue relationship (A.5).

We first estimate (A.5) via GMM with instrumental variables specified when estimating

its general version (26) in Section 3.2. This provides an estimate of β̂1, β̂2, and β̂3.
47 Another

important output of the estimation is the fitted value of the right-hand side of (A.5), which

47We do not interpret the constant estimated from (A.5) as β0 because the composite error term ujt does
not have a zero mean (i.e., E(ujt) ̸= 0).
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is denoted as Ψ̂jt:

Ψ̂jt ≡
ELjt + EMjt

∂Fjt

∂Ljt

Ljt

Fjt
+

∂Fjt

∂Mjt

Mjt

Fjt

=
EMjt

∂Fjt

∂Mjt

Mjt

Fjt

=
ELjt
∂Fjt

∂Ljt

Ljt

Fjt

, (A.8)

where the last two equalities come from the ratio of first-order conditions (13).

Thus, the elasticity of function F with respect to labor can be computed as υ̂Ljt:

∂Fjt
∂Ljt

Ljt
Fjt

=
ELjt

Ψ̂jt

≡ υ̂Ljt. (A.9)

Given the translog functional form (A.1), this elasticity can be written as:

∂Fjt
∂Ljt

Ljt
Fjt

= αl + αll lnLjt + αlm lnMjt + αkl lnKjt = υ̂Ljt. (A.10)

Similarly, the elasticity of function F with respect to material can be computed as υ̂Mjt:

∂Fjt
∂Mjt

Mjt

Fjt
=
EMjt

Ψ̂jt

≡ υ̂Mjt, (A.11)

and this elasticity can be written as:

∂Fjt
∂Mjt

Mjt

Fjt
= αm + αlm lnLjt + αmm lnMjt + αkm lnKjt = υ̂Mjt. (A.12)

Because the input variables are normalized by their geometric means (e.g., 1
N
∑

j,t lnLjt = 0)

respectively, taking the average of (A.10) and (A.12) we obtain:

α̂l =
1

N
∑
j,t

υ̂Ljt, α̂m =
1

N
∑
j,t

υ̂Mjt, (A.13)

where N is the total number of observations. These are the across-sectional restrictions that

are analogous to the restriction imposed for the specification of the CES input aggregator in

Section 5.2.

With these estimates, we can compute β̂0 as β̂0 = α̂m − α̂lβ̂1.

Step 2: Estimate the evolution process of material prices (A.6).

Using (A.12), we can express lnMjt as:

lnMjt =
1

αmm
(υ̂Mjt − α̂m − αlm lnLjt − αkm lnKjt). (A.14)

This is an equivalent expression of (A.3).
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As a result, lnPMjt can be written as:

lnPMjt =

(
lnEjt +

1

β̂1
lnLjt

)
+

α̂m
αmm

− 1

αmm
υ̂Mjt +

αkm
αmm

lnKjt. (A.15)

Therefore, we can estimate (A.6) via GMM using moment conditions

E(ϵMjtZMjt) = 0, (A.16)

where ϵMjt = lnPMjt − h0 − h1 lnPMjt−1 and ZMjt is the instrument variables ZMjt =

(1, lnEjt−1, lnLjt−1, υ̂Mjt−1, lnKjt−1). ZMjt is uncorrelated with ϵMjt because ϵMjt is not in

the information set of period t. The estimated parameters are (ĥ0, ĥ1, α̂km, α̂mm).

With these estimates, we can recover the following parameters using the estimate in step

1 as: α̂ml =
α̂mm

β̂1
, α̂kl =

α̂km−β̂0β̂2
β̂1

, and α̂ll =
α̂ml−β̂0β̂3

β̂1
.

Step 3: Estimate the technical efficiency evolution process of the reference product (A.7).

We re-write the mapping (A.4) for the reference product as

Φ̂1jt = eω̃1jtF (Ljt,Mjt, Kjt), (A.17)

where Φ̂1jt ≡
[
µ̂1jt
R1jt

ELjt

υ̂Ljt

] 1

θ̂
Q1jt, which can be directly computed using the estimates from the

previous steps.

Substitute the unobserved Mjt in (A.17) by (A.14), and reorganize the terms to obtain:

lnF (Ljt,Mjt, Kjt) = ln F̂jt + γk lnKjt +
1
2
γkk (lnKjt)

2, (A.18)

where γk = αk − α̂m α̂km

α̂mm
, γkk = αkk −

α̂2
km

α̂mm
, and ln F̂jt = γ̂0 + γ̂l lnLjt +

1
2
γ̂ll (lnLjt)

2 +

γ̂lk (lnLjt)(lnKjt) +
1
2
γ̂vv (ln υ̂Mjt)

2 with coefficients γ̂0 = − α̂2
m

2 α̂mm
, γ̂l = α̂l − α̂m α̂lm

α̂mm
, γ̂ll =

α̂ll −
α̂2
lm

α̂mm
, γ̂lk = α̂kl − α̂lmα̂km

α̂mm
, and γ̂vv =

1
α̂mm

.

Note that the only parameters unknown are γk and γkk in the right-hand side of (A.18)

and ln F̂jt is directly computed from the data and the estimated parameters in the previous

steps.

As a result, (A.17) can be used to solve ω̃1jt as:

ω̃1jt = ln Φ̂1jt − ln F̂jt − γk lnKjt − 1
2
γkk (lnKjt)

2. (A.19)

According to the evolution of technical efficiency (A.7) of the reference product and the

cost of quality specification (40), we derive the explicit evolution process of technical efficiency
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of the reference product as:

ω̃j1t = g0 + g1(ω̃j1t−1 + γξ ξ̂jt−1)− γξ ξ̂j1t + ϵj1t. (A.20)

This equation can be estimated via GMM using moment conditions

E(ϵ1jtZ1jt) = 0. (A.21)

Note that ϵ1jt = ω̃j1t − g0 − g1(ω̃j1t−1 + γξ ξ̂jt−1) + γξ ξ̂j1t, where ω̃j1t−1 and ω̃j1t are replaced

by (A.19) for period t − 1 and t, respectively. Z1jt is the instrument variables Z1jt =

(1, ln Φ1jt−1, lnFjt−1, lnKjt−1, (lnKjt−1)
2, ξ̂j1t−1). ZMjt is uncorrelated with ϵMjt because ϵMjt

is not in the information set of period t. The estimated parameters are (ĝ0, ĝ1, γ̂k, γ̂kk). With

these estimates, the final parameters of the translog function parameters can be recovered as

αk = γ̂k +
α̂m α̂km

α̂mm
and αkk = γkk +

α̂2
km

α̂mm
.

The choice of input aggregator functional form (CES vs. translog) depends on the empirical

context, because each functional form has advantages and disadvantages. Although a CES

aggregator is a more restrictive functional form, its estimation does not rely on the technical

efficiency evolution process. This allows researchers to specify a more flexible or complex

technical efficiency evolution after estimating the rest of the model as shown in the paper.

In contrast, the translog aggregator offers greater flexibility in modeling inputs. However,

estimating the translog function requires jointly estimating the technical efficiency evolution

process and the translog parameters, which can limit the flexibility of the technical efficiency

evolution specification in empirical applications.

B Multiple Materials Inputs

In the paper, we follow standard practice in the literature by assuming that each firm uses a

single intermediate input in the production process. In reality, however, especially for multi-

product firms, total intermediate input expenditures encompass a variety of goods that may

differ both horizontally (e.g., rubber versus foam) and vertically (e.g., genuine leather versus

synthetic leather). Unfortunately, most datasets report only total material expenditures,

with no breakdown of types, prices, or quantities. This data limitation constrains researchers’

ability to isolate the effects of individual inputs in the production process.

In this context, a key question is: under what conditions can our method accommodate

the fact that firms use multiple (i.e., horizontally and vertically differentiated) material

inputs, without requiring additional data? More specifically, can we still estimate the model

parameters and recover productivity and quality at the firm-product level when only firm-level

data on intermediate input expenditure (rather than input-type specific expenditures or more
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disaggregated data) are available? The Online Appendix of Grieco et al. (2016) provides a

positive answer in their context of single-product firms. The key assumption they need is

that the effect of different intermediate inputs on production can be summarized through

a homogeneous material index function. With this assumption, the production function

parameters and thus productivity can be recovered even if the full vector of intermediate

input expenditures is not directly observed. Such an idea can be directly applied to our

context of multi-product firms. We present the details as follows.

Suppose a firm utilizes a vector of material inputs, Mjt = (M1jt,M2jt, . . . ,MDjt), in

production. These inputs may include different input types and variations of the same input

at different quality levels.48 However, the researcher observes only the total expenditure on

all materials, EMjt
=
∑D

d=1 PMdjt
Mdjt, rather than the quantity of each specific input, Mdjt,

or its corresponding price, PMdjt
.

We assume that these material inputs enter the transformation function as follows:

G(e−ω̃jtQjt) = F (Ljt, τ(Mjt), Kjt), (B.1)

where τ : RD
+ → R+ is an index function that aggregates the contribution of all material

inputs to production.49 We assume that τ(·) is homogeneous of degree κ. As part of the

production technology, the firm is assumed to know τ . Of course, without observing individual

material inputs, we are not able to estimate the parameters associated within τ(·), although
the value of τ(·) can be recovered. Our goal is to show how our method can be extended

to such a context of multiple material inputs without estimating the parameters associated

within τ(·).
Note that this setup allows firms to use different material inputs to produce different

products within the same firm, without explicitly modeling the allocation of each input

to specific products. Such an assumption aligns with our broader modeling approach in

the paper: rather than specifying separate production functions for individual products,

we treat production as a transformation process. This approach enables us to account for

input differentiation—whether across input types (horizontal differentiation) or quality levels

48An illustrative example in the Online Appendix of Grieco et al. (2016) is as follows. The material
vector consists of three components: (M1, M2, M3). M1 and M2 are vertically differentiated versions of
the same type of input. While the quality for M1 is normalized to be 1, the quality for M2 is modeled
as a scale parameter δ > 1. M3 is a component that is horizontally differentiated to the other two.
For example, consider M1, M2, and M3 as foam sole (lower quality), rubber sole (higher quality), and
leather upper, respectively, for footwear industry. The material index function is modeled as: τ(Mjt) =

max

([
Mγ1

1jt +Mγ1

3jt

]1/γ1

,
[
(δM2jt)

γ2 +Mγ2

3jt

]1/γ2

)
.

49Some firms may not use certain inputs. The Online Appendix of Grieco et al. (2016) demonstrate how a
discrete choice model of input selection can accommodate such cases.
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(vertical differentiation)—without requiring an allocation rule for how each material input is

assigned to each product. In the context that individual material inputs remain unobserved

by researchers, this approach makes it possible to estimate the transformation function

parameters and recover firm-product-level productivity. In the following, we demonstrate

how this estimation is carried out.

As described in the paper, the firm’s static optimization problem is now to choose Ljt

and the vector Mjt to maximize the profit. In the setup with multiple material inputs, the

Lagrange function is:

Ljt =
∑
n∈Λjt

Pjnt(Qjt,Q−jt; ξt)Qjnt − PLjtLjt −
D∑
d=1

PMdjtMdjt

−λjt

{
G(e−ω̃jtQjt)− F (Ljt, τ(Mjt), Kjt)

}
, (B.2)

where λjt is the Lagrangian multiplier.

The first-order conditions with respect to labor and each individual material inputs imply:

λjt
∂F (Ljt, τ(Mjt), Kjt)

∂Ljt
= PLjt, (B.3)

λjt
∂F (Ljt, τ(Mjt), Kjt)

∂τjt
τd(Mjt) = PMdjt, ∀d = 1, 2, . . . , D. (B.4)

where τd(Mjt) =
∂τ(Mjt)

∂Mdjt
.

Define a material price index as Pτjt =
EMjt

ψ(Mjt)
, where ψ(Mjt) =

∑D
d=1Mdjtτd(Mjt). Using

this price index, the information in (B.4) can be summarized into a single equation by

multiplying by Mdjt, summing across d, and dividing it by ψ(Mjt),

λjt
∂F (Ljt, τ(Mjt), Kjt)

∂τjt
= Pτjt. (B.5)

This equation, together with (B.3), can be interpreted as the firm’s first-order conditions,

as if it were optimizing while facing a wage rate PLjt
and a material price index Pτjt for a

single aggregated material input, represented by the quantity index τjt = τ(Mjt). This is

analog to the setup described in Section 3 for the baseline case where only a single material

input is considered. Importantly, neither Pτjt nor τjt needs to be observable.

In this setting, total observed material expenditure is related to the material price index

and the material quantity index via: Pτjtτjt =
EMjt

κ
, where EMjt

is the total expenditure on

materials, and κ is the degree of homogeneity of the function τ(·). This relationship follows
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directly from Euler’s Theorem for homogeneous functions:
∑D

d=1Mdjtτd(Mjt) = κτ(Mjt).

In the special case where the firm uses a single material input, τ(·) reduces to the identity

function, which is homogeneous of degree 1, implying κ = 1.

Thus, we can treat τjt as analogous to Mjt in the single-input case. Thus, the estimation

strategy described in Section 3 remains applicable, with one key modification: material

expenditure EMjt is replaced by
EMjt

κ
, where κ serves as an additional scaling parameter.

The identification of κ depends on the specification of the input aggregator function. In

some cases (e.g., a translog input aggregator), κ may not be separately identified from the

production function parameters. In such cases, it can be normalized to 1 without loss of

generality, as it is absorbed into the primary parameters of the production function. In other

cases (e.g., a CES input aggregator), κ is identifiable through the revenue function, where it

captures the returns to scale of the material aggregator index τ(·). For example, in setup with

the CES functional form of input aggregator as specified in Section 5, the main estimating

equation (33) becomes:

ln

∑
n∈Λjt

(ηn − 1)ρ

ηn
R̃jnt

 = ln

[
EMjt

κ
+ ELjt

(
1 +

αK
αL

(
Kjt

Ljt

)γ)]
− ujt, (B.6)

where

ujt = ln

∑
n∈Λjt

[
(ηn−1)
ηn

R̃jnt∑
n∈Λjt

(ηn−1)
ηn

R̃jnt

e−ujnt

] . (B.7)

After the model parameters are estimated, the firm-product level productivity and quality

can be computed in the same way as specified in Section 5.

In summary, our method extends naturally to the multiple-material input setting (where

the production involves different types or quality levels of material inputs) without requiring

additional data, provided that the contribution of material inputs to production can be

captured by a homogeneous materials index function in the transformation function rather

than being modeled as inputs of individual products. While the specific functional form of

this index function is not identified without additional information, this lack of identification

does not hinder the recovery of the model’s parameters or firm-product level productivity. In

fact, neither the precise functional form nor the dimensionality of the index function needs to

be explicitly specified for our estimation approach to remain valid.

C Firm’s Dynamic Decisions

This appendix describes the dynamic decisions made by the firm as a completion of the full

model. At the end of each period t, the firm chooses the set of products to produce, their
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associated quality levels, and investment in technical efficiency improvement (e.g., research

and development), for the next period t+ 1. These decisions are made conditional on the

current state and after observing the adjustment costs of product scope and quality levels.

Although the evolution of some state variables such as capital stock can be endogenous, we

remain agnostic on modeling their exact evolution processes because our estimation method

focuses on the static decisions and does not rely on how these variables evolve over time.

The adjustment costs of product scope capture the costs incurred by the firm to install and

arrange new production lines. The adjustment costs of product quality contain the costs of

modifying the production procedure and sourcing new suppliers of the material input to meet

the new quality levels.

In making decisions regarding product scope, quality levels, and investment, the firm is

forward-looking and takes into account the impact of the current decisions on the future paths

of the state variables. In particular, the firm knows that the choice of improving the quality

of a product for the next period will reduce the associated (quantity-based) productivity in

the next period (i.e., due to the cost of quality).

Although we do not estimate the full dynamic model in this paper—due to the high

dimensionality of the state space—the model plays a crucial role in clarifying the firm’s

dynamic decision-making and serves as the conceptual foundation for the static model.50

Specifically, while the firm’s choices regarding product scope, quality levels, and technical

efficiency are inherently endogenous in a dynamic setting, we treat them as predetermined

and observed at the time the firm chooses inputs and outputs to maximize current-period

profit. Our estimation method, presented in Section 3, relies on this assumption to establish

the mapping from observed variables to unobserved productivity and quality.

D Discussion of the Instrumental Variables

Our strategy for estimating the relationship of demand elasticity parameters ηn in Section

5.2 exploits the within-firm relationship between the revenues of two products conditional

on relative production capability (TFPR), implemented via an instrumental variable (IV)

approach. This section discusses the validity of our IVs and outlines alternative methods for

estimating ηn.

A key requirement for IV validity is a non-trivial degree of heterogeneity in production

capability (i.e., TFPR) across firms for each product. If the dispersion in TFPR for a given

product is extremely small, our identification strategy—relying on within-firm variation

50For instance, even in the footwear industry with only four products, the dynamic state includes at least 10
continuous variables: four for technical efficiency, four for product quality, and two for input prices (material
and labor).
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in revenues to estimate the elasticity relationship (35)—will fail. As an extreme example,

consider an industry where firms produce a primary product (1) and a secondary product

(2). If TFPR varies substantially across firms for product 1 but is constant for product 2,

then in estimating (35), the firm-level inputs used as IVs would be correlated with the error

term because ζj2t would be mechanically determined by the TFPR of product 1. Thus, a

necessary empirical condition for our IV strategy is that all products exhibit sufficiently large

TFPR heterogeneity. In our application to Mexican manufacturing industries, this condition

is satisfied.

First, products at our level of aggregation display substantial across-firm variation in

TFPR, as reflected in the dispersion of prices and sales across firms. In particular, the lowest

standard deviation of log output prices for any product is 0.27 and the lowest standard

deviation of log sales is 1.25. The TFPR dispersion estimates reported in Online Appendix

Figure A2 further confirm that heterogeneity is sufficiently large for each product in our

sample.

Moreover, within a firm, sales are not concentrated entirely in a single product. Online

Appendix Table A2 and Online Appendix Figure A1 (discussed in Section 4) show that all

products contribute non-trivially to firm-level revenues. For example, Online Appendix Table

A2 reports average within-firm product shares by product scope: among firms producing five

or more products, the average share of all products other than the top-selling one is 0.556,

and the average share of products ranked fifth or lower is 0.147. Online Appendix Figure

A1 shows the within-firm Herfindahl–Hirschman Index (HHI), where a lower value indicates

greater diversification within a firm. The HHI falls to around 0.3 for firm-year pairs with five

products and to about 0.2 for those with ten or more products, indicating that revenues are

not dominated by their top product in these multi-products firms.

The insights from the above discussion also apply to the validity of the same IVs used in

estimating θ from (27), as this estimation likewise exploits the within-firm relationship.

If the above heterogeneity condition does not hold, alternative approaches are available to

estimate the demand elasticities. First, demand elasticities can, in principle, be identified

directly from the demand function (28) using variation in prices and quantities, provided

that suitable IVs uncorrelated with product quality are available. For instance, Orr (2022)

estimates a demand system by constructing IVs that exploit variation in product sets and

input price growth across firms operating in similar input markets but serving different output

markets. In this case, one could directly estimate the demand function as discussed in Section

3 without relying on (35). Second, in the context where the assumption of constant returns

to scale (i.e., ρ = 1) can be plausibly imposed, the demand elasticities can be identified from

(33) alone, bypassing the need for the strategy of estimating (35). In this case, (33) simplifies
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to the estimating equation used in Das et al. (2007), Aw et al. (2011), and Li (2018), which

relates total variable cost (the counterpart to the right-hand side of (33)) to export revenues

(the counterpart to the left-hand side of (33)) across multiple export markets for the same

firm.

E Aggregating to Firm-level TFPR

The literature has a tradition of using revenue-based productivity (TFPR) as a measure of

firm performance. While our framework yields a measure of TFPR at the firm-product level,

these product-level measures can be aggregated when the interest is in evaluating overall firm

performance. This appendix derives the aggregation.

We begin with our framework and impose the standard assumption implicitly assumed in

the literature using firm-level data: the productivity of producing different products within

the same firm is identical (i.e., a common firm-level productivity). Specifically, from the

demand function (28), the revenue for product n can be written as

R̃jnt = P̃jntQjnt = Q
ηn−1
ηn

jnt e
1
ηn
ξ̃jnt =

[
Qjnte

−ω̃jnteTFPRjnt
] ηn−1

ηn , (E.1)

where TFPRjnt is defined in (38).

Rearranging this expression, we obtain:

R̃
ηn

ηn−1

jnt e−TFPRjnt = Qjnte
−ω̃jnt .

Raising both sides to the power θ, summing across all products n ∈ Λjt, and then taking the

1/θ root yields:∑
n∈Λjt

[
R̃

ηn
ηn−1

jnt e−TFPRjnt

]θ
1/θ

=

∑
n∈Λjt

[
Qjnte

−ω̃jnt
]θ

1/θ

= F (Ljt,Mjt, Kjt), (E.2)

where the second equality follows from the transformation function (3).

Given the common revenue-based productivity at the firm level, denoted TFPRjt, we

replace TFPRjnt with TFPRjt in the left-hand side to obtain:∑
n∈Λjt

[
R̃

ηn
ηn−1

jnt

]θ
1/θ

e−TFPRjt = F (Ljt,Mjt, Kjt). (E.3)

Therefore, comparing the two equations above, the firm-level TFPR can be related to
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firm-product-level TFPR as:

eTFPRjt =

∑
n∈Λjt

(
sjnte

−TFPRjnt
)θ

−1/θ

, (E.4)

where

sjnt =
R̃

ηn
ηn−1

jnt{∑
m∈Λjt

[
R̃

ηm
ηm−1

jt

]θ}1/θ
(E.5)

is a weight that depends on the relative contribution of product n to firm j’s aggregate

revenue. For a single-product firm, this relationship degenerates to an identity equation.

F Additional Tables and Figures

Table A1: Product list by industry

Product name (product code)

Footwear, leather (324001) Printing and binding (342003) Pharmaceutical products (352100)

Cow leather, for men (1) Printing of calendars and almanacs (5) Bactericides (11)
Cow leather, for women (2) Folding boxes (6) Antiparasitics (13)
Cow leather, for kids (3) Notebooks and pads (7) Dermatological (15)
Others (99) Labels and prints (13) Products with specific actions (19)

Brochures and catalogs (14) Circulatory system (21)
Continuous forms (15) Digestive system and metabolism (22)
Accounting/admin/tax forms (16) Musculoskeletal system (23)
Telephone directories (17) Respiratory system (24)
Books (18) Sensory organs (25)
Journals (19) Genitourinary system (26)
Checks (21) Blood and hematopoietic organs (27)
Commemorative/business cards (23) Central nervous system (28)
Commercial flyers (24) Hormones (32)
Posters (25) Vitamins and compounds (43)
Others (99) Non-therapeutic products (59)

Others (99)
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Table A2: Within-firm product shares by product scope

Product rank (by sales level)
Product scope 1 2 3 4 5+

1 1.000
2 0.770 0.230
3 0.670 0.240 0.090
4 0.568 0.283 0.117 0.032
5+ 0.444 0.204 0.123 0.082 0.147

Note: All firm-year pairs producing 5 products or more are clustered in the “5+” group. All
products ranked 5 or lower are clustered in the “5+” group.

Table A3: Descriptive statistics

Variable Footwear Printing Pharmaceutical

Revenue per product (R) 70.890 30.713 104.376
(106.830) (75.803) (211.836)

Number of workers (L) 248.722 160.826 465.352
(383.053) (157.036) (492.768)

Labor expenditure (EL) 14.532 18.238 92.608
(30.514) (22.983) (112.902)

Material expenditure (EM) 53.287 65.952 269.550
(81.526) (91.617) (384.567)

Capital stock (K) 3.413 22.839 23.196
(7.428) (49.486) (32.074)

Notes: The table reports the means and standard deviations (in parenthesis) for each

variable by industry. R is revenues by product (1 million 2007 Mexican Peso, 1M MXN);

L is the number of workers by firm, K is the capital stock by firm (1000 physical units);

EL is the expenditure on labor (wage bill) by firm (1M MXN); EM is the expenditure on

intermediates by firm (1M MXN).
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Table A4: Monte Carlo parameter values

Parameter Description Value

N Number of products 5
T Number of periods 15
J Number of firms 500

ηn, n = 1, . . . , 5 Demand elasticity parameters 3, 4, 5, 6, 7
αL CES parameter of labor 0.4
αM CES parameter of material 0.4
αK CES parameter of capital 0.2
σ Elasticity of substitution of inputs 2
ρ Returns to scale parameter 1.1
θ Substitution parameter of output 0.9

gωn , , n = 1, . . . , 5 Persistence parameters in productivity evolution 0.81 0.82 0.83 0.84 0.85
gξn, , n = 1, . . . , 5 Persistence parameter in quality evolution 0.79 0.78 0.77 0.76 0.75
gl Persistence parameter in wage rate evolution 0.85
gm Persistence parameter in material price evolution 0.8
gk Persistence parameter in capital evolution 0.8
r Productivity and quality shock correlation -0.2
sd(εωn), n = 1, . . . , 5 S.D. of productivity shock 0.025 0.020 0.015 0.010 0.005
sd(εξn), n = 1, . . . , 5 S.D. of quality shock 0.025 0.020 0.015 0.010 0.005
sd(εℓ) S.D. of wage rate shock 0.1
sd(εm) S.D. of material price shock 0.1
sd(εk) S.D. of capital stock shock 0.1
sd(u) S.D. of unexpected firm-product price shock (ujnt) 0.05

Table A5: Monte Carlo: Estimates of within-firm revenue relationship

1−θ η2
η2−1

1−θ η1
η1−1

1−θ η3
η3−1

1−θ η1
η1−1

1−θ η4
η4−1

1−θ η1
η1−1

1−θ η5
η5−1

1−θ η1
η1−1

True 0.571 0.357 0.229 0.143
Estimate 0.569 0.357 0.228 0.143
Standard error (0.033) (0.020) (0.012) (0.007)

Note: The estimates, for the parameters of (35), are
reported as the mean estimates from the Monte Carlo
simulations. Standard errors in parentheses are com-
puted as the standard deviation of the estimates.
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Table A6: Monte Carlo: distributional characteristics of key simulated variables

Productivity

ω̃1 ω̃2 ω̃3 ω̃4 ω̃5

Mean 0.921 0.945 0.971 1.000 1.033
Std. deviation 0.040 0.033 0.025 0.017 0.009

Quality

ξ̃1 ξ̃2 ξ̃3 ξ̃4 ξ̃5

Mean 0.607 0.591 0.576 0.563 0.550
Std. deviation 0.039 0.030 0.022 0.015 0.007

Within-firm revenue share

share1 share2 share3 share4 share5

Mean 0.569 0.371 0.275 0.159 0.057
Std. deviation 0.179 0.091 0.105 0.100 0.070

Note: The reported means and standard deviations are
calculated as the average and standard deviation of the
key variables across Monte Carlo simulations.

Table A7: Welfare improvement of 1-percent increase of technical efficiency, million Pesos

No Across-firm With-firm Both

Total welfare 1.543 1.799 1.626 1.881
Consumer surplus 0.845 0.984 0.889 1.029
Producer surplus 0.699 0.814 0.736 0.852

Figure A1: Weighted average within-firm HHI, by number of products
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Notes: All firm-year pairs producing 10 products or more are clustered in the “10+” group.

The weighted average is calculated using revenues as weights.
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Figure A2: Distribution of TFPR
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Notes: TFPR is demeaned, and only products with at least 100 observations are included.

Figure A3: Distribution of productivity, ω̃
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Notes: ω̃ is demeaned, and only products with at least 100 observations are included.
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Figure A4: Distribution of quality, ξ̃
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Notes: ξ̃ is demeaned, and only products with at least 100 observations are included.

Figure A5: The relationship between productivity and quality

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

firm-product-year

fitted slope: -0.30

65


	Introduction
	Theoretical Framework
	Demand
	Production
	Productivity
	Inputs and Outputs Decisions

	Estimation Methodology
	From Observables to Unobservables: a One-to-one Mapping
	Estimating Equations and Estimation Strategy

	Data
	Empirical Model and Estimation
	Empirical Specification
	Estimation
	Monte Carlo Exercise

	Estimation Results
	Technological Spillovers & Within-firm Reallocation
	Technological Spillovers: Across-firm and Within-firm
	Within-firm Reallocation in Response to Product-specific Shocks

	Conclusion
	Appendices
	Input Aggregator: Translog Functional Form
	Multiple Materials Inputs
	Firm's Dynamic Decisions
	Discussion of the Instrumental Variables
	Aggregating to Firm-level TFPR
	Additional Tables and Figures

