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Abstract

This paper introduces a method for estimating productivity and quality at the
firm-product level using a transformation function framework. We use firm optimization
conditions to establish a one-to-one mapping between observed data and unobserved
productivity and quality. We do not need to impute firm-product input shares and can
avoid imposing productivity evolution processes. The method is scalable to numerous
products and can address the bias caused by unobserved heterogeneous intermediate
input prices. We apply the method to a set of Mexican manufacturing industries and
examine the roles of across-firm and within-firm technological spillovers, accounting for
the trade-off between productivity and quality. Our quantitative analysis shows that
an exogenous, product-specific technological improvement generates substantial gains
in welfare, amplified by both within-firm and across-firm spillovers by approximately
17 percent and 5 percent, respectively. Moreover, within-firm resource reallocation
toward the most productive products accounts for 60 percent of the resulting firm-level
productivity gains.
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1 Introduction

The production landscape of many manufacturing industries is dominated by multi-product
firms, which operate across a diverse range of product lines. However, existing empirical
studies that explore the determinants of firm performance have primarily focused on analyzing
variations across different firms, such as heterogeneity in productivity levels and demand
characteristics (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016; Kumar and Zhang, 2019).
Consequently, there remains a considerable gap in the understanding of the factors that drive
within-firm heterogeneity and resource reallocation, as well as their subsequent impact on
firm growth. This knowledge gap is due to methodological limitations and data constraints,
which hinder the accurate estimation of heterogeneity at the firm-product level.

This paper introduces a method to estimate productivity and quality (product appeal)
at the firm-product level, along with the transformation function and demand parameters.
This method constructs a unique one-to-one mapping from observed data to unobservable
variables by using firm optimization conditions. This offers several advantages over recent
methods (e.g., Dhyne et al., 2022; Orr, 2022; Valmari, 2023). First, it eliminates the need for
imputing within-firm input allocations. Second, it does not need to impose restrictions on
productivity evolution, allowing for flexibility in exploring complex productivity dynamics
after estimation. Third, it is scalable to handle a large number of products. Fourth, it
addresses the estimation bias caused by heterogeneous firm-level intermediate input prices,
which are usually unobservable in available data sets.! To demonstrate the advantages, we
apply our method to three major industries in the Mexican manufacturing sector, where
multi-product production is a central feature of firms. We examine the role of both across-firm
and within-firm technological spillovers in the dynamic evolution of technical efficiency, as
well as the role of within-firm resource reallocation in shaping firm performance.

In modeling the production side, our method is designed to address the challenges commonly
faced in estimating multi-product production functions. Most production function estimation
methodologies implicitly assume that each firm produces a single product (e.g., Olley and
Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). In
this context, the input allocation is observable to researchers and each firm only has a single
dimension of unobservable productivity, which can be controlled for by an observable proxy.
Multi-product firms, on the contrary, may have different levels of productivity for each
product. Extending the proxy-based methods to the context of multi-product firms requires

at least the same number of proxies as the number of products (cf., Dhyne et al., 2022).

'In the cases where intermediate input prices are observed, our method can be modified to allow for
non-Hicks’ neutral efficiency (i.e., labor-augmenting efficiency), as shown in recent literature (e.g., Doraszelski
and Jaumandreu, 2016; Zhang, 2019; Raval, 2019; Rubens et al., 2024).



Moreover, researchers do not observe the within-firm division of inputs used to produce
different products because firms usually only report total inputs at the firm level.? Finally,
intermediate input prices, which vary significantly across firms and over time due to various
reasons such as bargaining power in the input market and transport costs, as documented by
Atalay (2014), should be controlled for to avoid “input price bias” (Ornaghi, 2006; De Loecker
et al., 2016; Grieco et al., 2016). However, these firm-level input prices are rarely observable.
To address these issues, we model the production technology using a transformation
function, which is a mapping from a vector of inputs at the firm level to an aggregator of
product-specific outputs. This saves us from modeling how the inputs are divided for the
production of each individual product. Each product is associated with a potentially different
level of physical productivity (i.e., quantity-based productivity, or TFPQ, as in Foster et al.,
2008).% The productivity levels, together with a parameter in the transformation function
that characterizes the technological substitutability of the products, govern the marginal
rate of transformation between any two products. The firm observes these productivity
levels before making input and output decisions to maximize profits. In the spirit of Grieco
et al. (2016), we show that the optimization conditions implied from our model can be
inverted to form an explicit one-to-one mapping from observed input and output decisions to
unobserved productivity at the firm-product level (regardless of the number of products),
while controlling for unobserved intermediate input prices. Intuitively, the variation in product
prices within a firm identifies the productivity difference across products within the firm,
after controlling for differences in markups and production scale. We exploit the inverted
relationship to replace unobserved productivity in the transformation function, enabling
estimation of the transformation function parameters. Once the parameters are estimated,
we compute productivity (TFPQ) at the firm-product level from the one-to-one mapping.
Although the primary innovation of our method lies on the production side, it is flexible
enough to accommodate a variety of demand systems. Conditional on the availability of
valid instrumental variables, the approach can be applied to widely used demand models
such as Constant Elasticity of Substitution (CES) demand, discrete-choice demand (e.g.,
Berry, 1994), and random-coefficients logit demand (e.g., Berry et al., 1995). In our empirical
application, we adopt a CES demand specification, which is appropriate given the level of

product aggregation in our data. To address the classic endogeneity issue in estimating the

2This is an empirical challenge because of the potential input sharing (e.g., machinery and workers) across
product lines within a firm (e.g., Cairncross et al., 2025; Koh and Raval, 2025). For example, a printing firm
may use the same design software to create multiple products, such as product labels; workers with specialized
skills, such as pattern makers, may be used across different product lines within the same footwear firm; in
pharmaceutical industries, a firm may use the same reactors to produce different products by adjusting the
process parameters.

3We refer to physical productivity as simply “productivity” in this paper unless explicitly stated otherwise.



price elasticity of demand, we depart from the traditional literature by exploiting a key feature
of multi-product firms: within-firm profit maximization implies a structural relationship
between the revenues of products produced by the same firm. Following estimation, we
recover product quality as the residual component of the demand function after controlling
for price.

After demonstrating the performance of our method through Monte Carlo simulations,
we apply it to establishment-level panel data from three major Mexican manufacturing
industries—footwear, printing, and pharmaceuticals—that include firm-product-level prices
and quantities, along with detailed firm-level input data. Multi-product firms represent
approximately 56% of all firms and account for 86% of total revenues in these industries.
Given the product classification used, the number of total products ranges from 4 in the
footwear industry to 16 in the pharmaceutical industry, with multi-product firms producing
an average of 6.9 products per year. Within each industry, the markets for different product
categories (e.g., women’s shoes vs. men’s shoes in the footwear industry) are largely segmented.
However, within each product category, firms’ outputs are likely vertically differentiated, as
reflected in the substantial dispersion in prices. These empirical features support our use of
a CES demand model, which abstracts from competition across horizontally differentiated
product markets while capturing vertical differentiation through quality differences.

After estimation, the recovered TFPQ and product quality at the firm-product level allow
us to examine heterogeneity and performance both within and across firms. Following the
literature (e.g., Melitz, 2000), we construct a revenue-based productivity measure (TFPR)
that incorporates heterogeneity in both TFP(Q and quality at the firm-product level. We find
substantial variation in TFPR, with heterogeneity across firms dominating that within firms.

Interestingly, although our estimation does not impose any relationship between TFPQ
and quality, we find a significant negative correlation (i.e., trade-off) between them, with a
coefficient of -0.34. This implies that producing higher quality comes at the cost of lower
TFPQ when inputs are held fixed.? We refer to the component of TFPQ that is adjusted
for the cost of quality as technical efficiency. Unlike raw TFPQ, this measure is comparable
across firms and products because it accounts for variation in quality.

A further advantage of our method is that it does not necessarily require any ex-ante
assumptions about the dynamic evolution of technical efficiency. This feature allows us to
investigate complex interdependencies in productivity dynamics within multi-product firms

after estimating the model parameters, a task that would be considerably more difficult if

4This result is broadly consistent with the emerging literature emphasizing the negative correlation between
physical productivity and quality across firms (e.g., Grieco and McDevitt, 2017; Roberts et al., 2018; Orr,
2022; Eslava et al., 2024; Forlani et al., 2023; Li et al., 2025).



the productivity process had to be estimated jointly with other parameters. To demonstrate
this advantage, we study technological spillovers—both across firms and within firms—while
allowing for the trade-off between TFPQ and quality. Compared to the existing literature,
which typically focuses on across-firm spillovers (e.g., Malikov and Zhao, 2023), our results
suggest that within-firm spillovers are also economically meaningful, although across-firm
spillovers are indeed more prominent. To quantify the importance of these spillover channels,
we conduct a counterfactual exercise where the technical efficiency of one product is improved
exogenously. Compared with the benchmark without spillover, the across-firm spillover
contributes an additional 16.6% to the total welfare gain, while the within-firm spillover
contributes an extra 5.4%. More importantly, over half of the improvement in firm-level TFPR
resulting from the product-specific shock is attributable to within-firm resource reallocation
toward more productive products—regardless of spillover types.

Our methodology builds on recent advances in the estimation of heterogeneous productivity
of multi-product firms. In addressing the common data challenge of input data being
observable only at the firm level, while outputs and revenues are reported separately by
product, the literature has evolved into two main approaches. The first approach, pioneered
by De Loecker et al. (2016), characterizes multi-product production as a collection of single-
product production functions, coupled with a rule for allocating firm inputs to each of these
functions. Subsequent studies have extended this approach. In particular, Orr (2022) models
product lines sharing the same technology (i.e., production parameters) but with individual
productivity, and shows how demand data can be used to assist estimation under profit
maximization conditions. Valmari (2023) develops a similar framework, incorporating flexible
production parameters across product-specific production functions. Chen and Liao (2022)
generalize the previous papers by allowing single-product firms and multi-product firms to
have different production functions and by estimating both non-parametric and parametric
production functions for multi-product firms. In contrast, the second approach, led by Dhyne
et al. (2022), departs from the assumption that multi-product production is a collection of
single-product firms. They adopt a transformation function and show how it can be used to
recover the production frontier and estimate firm-product-specific marginal costs.

We integrate the strengths of both approaches to overcome their respective limitations.
First, we model multi-product production using a transformation function, similar to Dhyne
et al. (2022). This avoids the need to allocate firm-level inputs, as in Orr (2022) and
Valmari (2023), and allows for potential within-firm input sharing across product lines.
Second, in addressing unobserved firm-product productivity, we adopt the profit maximization
assumption, similar to Orr (2022) and Valmari (2023). However, instead of imputing input

allocation shares, we use the profit-maximizing conditions to establish a one-to-one mapping



from observed firm decisions to unobserved productivity, extending the insights of Grieco et al.
(2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022) to the context of multi-product
firms. Importantly, the number of profit-maximizing conditions, which naturally increase
with the number of products, ensures the scalability of our method. This differs from Dhyne
et al. (2022), whose method requires a separate proxy for each additional firm-product-level
productivity. Rather, it is more similar to recent approaches to identify markdowns (Morlacco,
2020; Caselli et al., 2021; Kirov and Traina, 2023) or factor-augmenting productivity (Demirer,
2022; Raval, 2023) using necessary conditions for optimality with respect to multiple flexible
inputs. Third, our method addresses the bias due to unobserved firm-level heterogeneity in
input prices without requiring the availability of input price data. This is in contrast to the
existing methods (e.g., Orr, 2022; Valmari, 2023), which typically require access to such data.
Finally, our method does not rely on modeling the evolution of productivity, which offers
a distinct advantage in exploring the evolution of productivity after estimation. Such an
advantage is particularly beneficial in studying complex (e.g., interdependent) productivity
dynamics, factors that endogenously shape the productivity trajectory (e.g., Chen et al., 2021;
Malikov and Zhao, 2023), and frequent product turnovers, such as for exported products.
In terms of empirical application, our paper integrates the analysis of the productiv-
ity—quality trade-off, technological spillovers, and resource reallocation in the context of
multi-product firms. Focusing on firm-level analysis, Grieco and McDevitt (2017) and Li et al.
(2025) have documented a significant trade-off between productivity and quality—interpreted
as the cost of quality—in the U.S. healthcare sector and the Chinese steel industry, re-
spectively. A natural implication of their findings is that the cost of quality should be
explicitly considered when modeling the evolution of productivity. Our paper identifies a
similar trade-off at the firm-product level and incorporates this feature into the productivity
evolution process to investigate technological spillovers. On the spillover front, our study
complements the firm-level literature on productivity spillovers (e.g., Malikov and Zhao,
2023). While most existing research focuses on spillovers across firms, we demonstrate that
within-firm spillovers can also be economically significant. These within-firm productivity
spillovers reflect economies of scope arising from the internal sharing of knowledge (e.g.,
Bilir and Morales, 2020; Merlevede and Theodorakopoulos, 2023; Ding, 2025). We show
that such spillovers substantially enhance both firm performance and aggregate welfare,
primarily through within-firm resource reallocation, a mechanism increasingly recognized
in the recent literature on multi-product firms (e.g., Mayer et al., 2021). Our evidence
highlights within-firm reallocation as a novel and important channel through which firm-level
productivity responds to product-specific shocks. In doing so, our study complements a large

body of work emphasizing the role of across-firm resource reallocation in driving aggregate



productivity growth (e.g., Aw et al., 2001; Foster et al., 2008; Syverson, 2011; Collard-Wexler
and De Loecker, 2015).

The remainder of the paper is organized as follows. Section 2 introduces the general
theoretical framework of demand and production in the context of multi-product firms.
Section 3 develops the estimation methodology for the general framework, while Section 4
describes the data used in the empirical analysis. Section 5 presents the empirical model
and demonstrates the performance of the method using Monte Carlo simulations. Section 6
reports the estimation results. Section 7 presents our empirical application and quantitative

exercise studying the dynamic evolution of technical efficiency. Section 8 concludes.

2 Theoretical Framework

This section develops a general framework of demand and production for multi-product firms,
aimed at estimating firm-product-level measures of productivity and quality, along with the
associated model parameters. While the general framework highlights the broad applicability
of our estimation methodology, researchers may adopt specific functional forms suited to
their empirical contexts. In Section 5, we demonstrate such an implementation in the context
of our empirical application.

Consider an industry with J firms indexed by j = 1,2,...,J. There is a total of N
products, indexed by n = 1,2,..., N, that firms can choose to produce. The timeline of
the decisions is as follows. At the beginning of period ¢, the set of products that firm j has
decided (at the end of the previous period) to produce in this period is Aj;. Each product
n € Aj; is associated with a level of technical efficiency w;,; and a level of quality ;,,;, both
of which have been determined and observed by the firm at the end of the previous period.
The firm’s capital stock is also determined in the previous period via an investment decision.

Given these state variables, the firm’s static decisions consist of choosing material input
and labor input at the firm level and the quantities of individual products to maximize total
period profit, conditional on the observed material price, wage rate, and capital stock. The
optimization conditions associated with these static decisions form the basis of our estimation
strategy. At the end of period ¢, the firm also makes dynamic decisions regarding its capital
stock and product portfolio for the following period, including the selection of products to
produce and the associated levels of product quality and technical efficiency. Although our
estimation strategy does not explicitly model these dynamic choices, Online Appendix C
outlines the structure of these decisions, providing conceptual insight into how they are

endogenously determined.



2.1 Demand

The demand for product n of firm j in period ¢ is modeled as an inverse demand function:
Pjnt = ]Djnt(ij Q*jt; Et)v (1)

where Pj,; is the product price. Importantly, Q;: = {Qjnt}, n € Aji is a vector of quantities
of the products produced by firm j in period ¢t; Q_;; = {Q:}, k # j is a vector of quantities
of the products produced by the competitors of firm j in period ¢; &;; = {&;nt}, for all j and
n, is a vector of quality levels of all products produced by firm ;7 and its competitors. This
function may also include a set of product characteristics if they are observable in the data.

Empirically, the realized (observed) price of a product is subject to an unexpected shock:

P)jnt = Pjnteujnt7 (2)

where u;y, is assumed to be independent, identically distributed, across firm, product, and
time, and E(e**) = 1. Crucially, the firm does not observe wu;,; (an ex-post shock) when
making production decisions of inputs and outputs. In contrast, the firm observes ;,; (an
ex-ante shock) at the time of production decisions. The explicit modeling of the ex-ante and
ex-post shocks is also adopted by Barrows et al. (2024). It is also worth noting that w;,, is
the sole source of discrepancy between the model-predicted revenue R;,; and the realized
revenue observed by researchers, ]:ij = ijQjm = Pjn1Q e’ = Rje”mt, while there is
no ex-post, unexpected shock to product quantity.®

Depending on the empirical context, the demand system can be specified in various ways,
including the widely-used CES demand, discrete-choice demand (e.g., Berry, 1994), and
random-coefficients logit demand (e.g., Berry et al., 1995). These demand systems may
allow for the possibility that a product’s demand may be affected by cannibalization and
competition, arising not only from the products of rival firms but also from other products

offered by the same firm.

2.2 Production

We use a transformation function to model the production technology. Given the set of
products to be produced (Aj;) and associated product quality (£, n € Aj;), the firm uses
labor (Lj;), material (M), and capital (Kj;) to produce output quantity (Q;nt, n € Aj;) via

5An example of ex-post shock to prices arise if the firm commits to its product quantity before demand is
realized. As a result, if the realized market demand exceeds expectations, the firm increases its price by a
factor of %t and reduces it when the realized demand is weaker.



a transformation function:
G(e™*Qjs) = F(Ljp, My, Kjy). (3)

The transformation function (3) maps the firm-level input vector (L;;, M., Kj;) to a vector of
outputs Qj¢ = {Qjnt}, n € Ajy, given the vector of quantity-based productivity (i.e., physical
productivity, or TFPQ) w;; = {@jni}, n € Aj; of firm j in period ¢. Intuitively, a higher level
of w;n+ means that the firm is able to produce a higher quantity of output @), conditional
on the inputs and the quantity and productivity of other outputs. In this paper, we use
TFPQ and productivity interchangeably.

The transformation function (3) represents the frontier of production possibility character-
ized by two aggregating functions F'(-) and G(+).® Function F(-) is a general input aggregator.
In empirical settings, it can take functional forms such as CES and translog. We adopt a
CES function in our application in Section 5 and describe the implementation with a translog
function in Online Appendix A.” While we assume that the firm uses a single material input
Mj; in production, our approach can readily accommodate cases in which firms employ
multiple types of material inputs—whether horizontally or vertically differentiated—when
only the total firm-level expenditure on materials is observed. Details of this extension are
provided in Online Appendix B.

The function G(-) is an output aggregator. We adopt a functional form that allows for

potentially nonlinear technological substitution across products:

Gl Qu) =1 Y [Que™]" b (4)

nGA]‘t

where 0 is a parameter that governs the elasticity of technological substitution across products
and thereby influences the marginal cost differences among the products produced by the
same firm. When 6 = 1, the marginal cost difference between two products depends solely on
their relative productivities. In contrast, when 6 # 1, marginal cost differences are shaped
by both productivity differences and relative output levels. Consequently, the value of

characterizes the marginal rate of transformation (MRT) between any two products, defined

6The transformation function approach characterizes a firm’s production possibility frontier following an
approach pioneered by Powell and Gruen (1968) and used in recent literature (e.g. Cairncross et al., 2025;
Koike-Mori and Martner, 2024).

"We exclude the Cobb-Douglas function for the purpose of controlling for unobservable firm heterogeneity
of material prices. As will become clear in Section 3, our estimation methodology leverages the first-order
conditions of profit maximization to uncover firm heterogeneity in material prices by examining the firm-level
variation in the ratio of material expenditures to labor expenditures. However, the Cobb—Douglas functional
form of F'(-) implies a constant ratio of material to labor expenditures, which prevents us to do so.



as the ratio of their marginal costs. For any two products n and m, the MRT represents the
amount of product m that must be forgone to produce an additional unit of n, holding inputs
and all other outputs constant. Graphically, it corresponds to the slope of the production

possibility frontier in the (Q;n¢, @;mt) Space, conditional on everything else. In our setting,

MRT,,,,, = —e?@int—@jmt) (%)04 . Thus, # influences how relative marginal costs are related
to relative output levels. Such a relationship is analogous to the marginal cost implications
derived from the transformation function model in Dhyne et al. (2022). In Section 3.2, we
will use such dependence to identify §. The CES functional form in (4) is also derived by
Cairncross et al. (2025) from product-level production functions under a set of assumptions
in the context of multi-product firms.

A few features of the transformation function are worth noticing. First, for multi-product
firms, the transformation function can be interpreted as the frontier of joint production of all
products, Qjne, n € Aj. This interpretation has three implications: (i) different products are
manufactured with the same set of inputs; (ii) the inputs can be costlessly transferred across
different products within the firm; (iii) producing more of one product means producing less
of another product, holding inputs fixed. These implications are consistent with the modeling
assumptions used by Dhyne et al. (2022), Orr (2022), and Valmari (2023). Second, our
framework does not explicitly model input allocation within a firm. Instead, it accommodates
the possibility of jointly utilized inputs across products, similar to the approach in Dhyne et al.
(2022). This contrasts with existing methods that impute product-specific (exclusive) input
allocations, thus abstracting away from the public-good nature of inputs within firms. Finally,
an input-output separability assumption is embodied in our transformation function (3).
Specifically, there are no interaction terms between outputs and inputs, although interaction
among outputs and among inputs is allowed within the respective aggregators G(-) and F\(+).
This assumption implies that marginal cost differences across products produced by the same
firm do not depend on the input mix. Such separability is also assumed in the literature (e.g.,
Dhyne et al., 2022; Cairncross et al., 2025).

2.3 Productivity

A key element of our model is the quantity-based productivity @, in (3), which varies
by firm, product, and period. We model the potential components and evolution of @j,;
to highlight the key differences compared with the assumptions in the existing literature.

Specifically, we unpack productivity into two components:

Wjnt = Wint — "(Ejne), (5)
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where wj,; is technical efficiency and h(&;,:) is a function of product quality ;.. We
model h(§;,:) as a part of quantity-based productivity because varieties of the same product
category produced by different firms can be vertically differentiated by quality and such
quality differences have potential implications for productivity. Producing one additional unit
of the high-quality product may require more production procedures (e.g., longer refinements
in the steel industry in Li et al., 2025), better (or more specialized, exclusive) machinery,
higher-quality (or more) intermediate materials, higher standards of quality control (e.g., lower
septic infections rate in the healthcare industry in Grieco and McDevitt, 2017), and extra
dedicated workers (e.g., promoting quality or demand rather than production as discussed by
Bond et al., 2021). In turn, this leads to a lower quantity of output, holding the inputs fixed,
and thus it implies an increase in the marginal cost of production (or equivalently a lower
productivity). Thus, we refer to h(£;,) as the cost of quality.®

As a result, differences in quantity-based productivity can be due to not only technical
efficiency but also the cost of quality. Theoretically, explicitly modeling the cost of quality
h(&;nt) as a component of productivity allows for a trade-off between product quantity and
quality, conditional on inputs. Empirically, this also implies that comparisons of quantity-
based productivity across firms and over time require controlling for quality differences.

Thus, instead of modeling the evolution of quantity-based productivity, we model the

evolution of technical efficiency, w;n, as a Markov process:
Wint :gn(wt—lamjt—l)+€jnt7 Vn = 172a"'7N7 (6)

where €;,,; is an innovation term.

The function g,(-) flexibly captures the relevant determinants of the evolution of technical
efficiency, depending on the focus of the application. For instance, in the context of tech-
nological spillovers (e.g., Malikov and Zhao, 2023), vector w;_; may include the technical
efficiency of other products within the same firm as well as the same product produced by
other firms. Alternatively, in settings focused on the endogenous evolution of productivity,
vector xj;—; can include firm-level decisions made in period ¢ — 1-—such as investment in
research and development, as emphasized by Doraszelski and Jaumandreu (2013)—which
affect the future trajectory of technical efficiency.

A key methodological advantage of our approach is that the estimation of production and

demand functions does not necessarily rely on the evolution equation (6) or the productivity-

8Note that the term cost of quality in this paper refers only to the impact of quality on the marginal cost
of production, rather than the overall cost of quality (including research cost for new products with higher
quality, which is more dynamic in nature, or the installation cost of new equipment to produce higher quality
products, which are usually one-time fixed costs).

11



quality trade-off (5). This allows researchers to estimate the technical efficiency process after
obtaining efficiency measures, enabling a flexible modeling of dynamics. We demonstrate this

advantage by exploring within- and across-firm technological spillovers in Section 7.

2.4 Inputs and Outputs Decisions

At the beginning of period ¢, the firm observes a vector of pre-determined variables, which
includes the product scope Aj;, capital stock Kj;, intermediate input price Py, wage rate
Pr i, technical efficiency wj, and product quality &;; of all the products. Note that observing
technical efficiency and product quality implies that the firm also knows productivity, wjq,
because the firm knows the trade-off (5). The intermediate input price and wage rate can
differ across firms and fluctuate over time, driven by factors such as localized input markets
and transportation costs. In empirical work, while the wage rate is typically observable, the
intermediate input price is rarely recorded. This creates a challenge due to input price bias,
as emphasized by De Loecker et al. (2016). Our empirical approach, detailed in Section 3, is
able to address this issue. A key assumption is that firms’ static input and output decisions
do not influence input prices contemporaneously. While input prices may be endogenously
determined—through negotiations or supply-chain investment decisions—and evolve over
time, we treat them as predetermined with respect to static production choices.

The firm’s objective is to maximize its total profit from all products in period t after
observing its state, by optimally choosing the quantity of material (M), the quantity of
labor (Lj;), and the quantities of all the products to be produced (Qj: = {Qjnt}, 7 € Ajr):

MaxQ,, Ly Yonen,, B(PintQint) = ParjtMye — Prji Ly,
subject to: (1) and (3), (7)

where the expectation is taken over the unexpected shock u;,; embodied in the realized price

Pj,:. However, this does not affect the firm’s decisions on inputs and outputs because the

firm does not observe the ex-post shock at the time of decisions and E(e%t) = 1.

3 Estimation Methodology

The estimation method leverages a set of implications from the model that can be used to
estimate productivity and quality at the firm-product-period level. The method is built upon
the insights of Grieco et al. (2016, 2022), Harrigan et al. (2021) and Li and Zhang (2022),
who utilize the first-order conditions of static profit maximization to control for unobservable
variables in the production function estimation, but it is extended to the multi-product

setting where within-firm allocation of inputs is unobserved. Specifically, while researchers
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do not observe key variables such as productivity and quality, the firm observes them before
making optimal production decisions. Thus, the idea is to invert the implications from
the profit maximization problem to establish a unique one-to-one mapping from observable
production decisions to variables that are unobservable to researchers and control for them
in the estimation of the transformation function. Crucially, under mild conditions, our model

admits such a mapping regardless of the number of products.

Table 1: Comparison to existing estimation methods

Production Firm-product Proxy Evolution Material price Demand
system productivity free free* unobservable  system

DGKP Product °

Orr Product ° °
Valmari Product ° °

CL Product ° °
DPSW Transformation °

This paper | Transformation ° ° ° ° °

Notes:  DGKP refers to De Loecker et al. (2016), Orr refers to Orr (2022), Valmari
refers to Valmari (2023), CL refers to Chen and Liao (2022), and DPSW refers to
Dhyne et al. (2022). [*] This applies when the input aggregator has a CES form.

Compared with the existing methods in the literature, our method has several important
innovations, as summarized by Table 1. First, our method models the production technology
flexibly as a transformation function and not as a collection of single-product production
functions (De Loecker et al., 2016; Orr, 2022; Valmari, 2023; Chen and Liao, 2022). This saves
us from potentially restrictive assumptions regarding how firms allocate inputs to produce
different products. This is especially important in the presence of shared inputs that serve as
public goods within firms. In this regard, Dhyne et al. (2022)’s model is the most similar to
ours. Second, our model offers the advantage of scalability as it does not require proxies for
product-level productivity and rather relies on static optimization conditions that naturally
increase with the number of products. This advantage allows for the analysis of industries
with a large number of products without relying on assumptions to aggregate products.
Third, our method is designed to deal with the bias caused by unobserved material prices,
like De Loecker et al. (2016). We employ the variation of labor and material expenditure
ratio (conditional on the wage rate) to identify material prices. This is particularly useful
when material prices are heterogeneous across firms and over time but are unobservable to
researchers. Fourth, our method has the potential to explore the productivity evolution after

the estimation, contrary to the existing methods which rely on productivity evolution for the
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estimation.’

This section is organized as follows. Section 3.1 establishes a one-to-one mapping between
the observed data and unobservable heterogeneity using firm’s static profit maximization
conditions. Section 3.2 derives the estimating equations using the established mapping and

develops the estimation strategy.

3.1 From Observables to Unobservables: a One-to-one Mapping

We begin the description of the estimation strategy by distinguishing the observable and
unobservable variables to researchers in the estimation procedure. The researchers observe
capital stock K}, labor input Lj;, labor expenditure Ep;, material expenditure Eyj;, and
the quantity @)j,; and price P}, for each product n € Aj;. The researchers do not observe
the material price Py ; (or equivalently, the material input Mj;), as well as productivity @,
and quality &;s for n € Aj;. Our objective is to estimate these unobserved variables alongside
the parameters of the transformation and demand functions.

We establish the relationship between the observed data and the unobservables, leveraging
the firm’s profit-maximization behavior. The idea is as follows. Although researchers cannot
observe Wjnt, Eint, Or Parji, as described in Section 2.4 these variables are observed by the
firm and thus influence the firm’s optimal input and output decisions. By using the firm’s
optimization conditions, we establish a unique one-to-one mapping (up to a set of unknown
production and demand parameters) from observable data K, Lj;, Epji, Envji, Qjnt, and
Pj,: to unobservable variables Wj,t, §jne, and Pyrji. We develop the strategy as follows.

Mapping to quality. We write quality, &;,, as a function of observed output price and

quantity according to the inverse demand function (1). That is,

Eint = Pt (Pr, Qy), (8)

where P, and Q; are the vectors of prices and qualities of all products and firms in period ¢.1°

As an identification condition, the demand system must admit a unique solution for the
quality levels given observable output prices and quality outcomes. This requirement is
satisfied by a broad class of demand functions, including the widely adopted CES demand,

discrete-choice demand, and random-coefficients logit demand models.

9This depends on the functional form of the input aggregator, F(-). If F'(-) has a CES form or a restricted
version of translog, then the methodology can be implemented without relying on the productivity evolution;
if F(-) has an unrestricted translog form, then additional conditions are required to estimate all translog
parameters. Online Appendix A describes how to use the productivity evolution for such conditions.

OEmpirically, the recovered &jnt contains the unexpected shock wj,¢, which usually appears as a (log-)
additive term in popular demand functions. We clarify this further in the setup of CES demand in Section 5.
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Standard methods for estimating these demand systems, typically relying on the use of
appropriate instrumental variables, are well-established in the literature. Consequently, the
identification and estimation of the demand system within our framework can be conducted
as a standalone process. Once the demand system is estimated, the quality level ;,,; can be
recovered using (8). Moreover, the estimated demand system allows us to compute the price

elasticity of demand for any product n of firm j with respect to product m of firm j’ as:

0Qint Pirm
Qj Lim = _njtnm- (9)
aPj’mt‘ ant

Note that we have slightly abused the notation because product m can be either a product

of the same firm j* = j (i.e., cannibalization) or a product of another firm j' # j (i.e.,

competition). That is, the elasticity can be flexible and vary by firm, product, and time.
Mapping to material price. We derive the mapping using the firm’s static profit

maximization problem. The Lagrange function implied by the problem (7) is:

ofjt = Z Pjnt(tha ijtS £t)ant_Pthth_Pthth_)\jt{G(e&thjt)_F(th: th7 Kjt)}a
neAjt

(10)

where Aj; is the Lagrangian multiplier. The random shock u;y, is not included in this equation

because it is ex post and E(e%t) = 1.

The first-order conditions with respect to labor and material inputs are, respectively:

0L, OF (Ljs, Mjy, K )

Y it gt ) g 11
OLj M 0Ly, -
OLj; OF (Ljt, My, Kjt)

— — P+ N\ JO I TN ), 12
M, Mt A M, 0 (12)

Multiply them by Lj; and Mj;, respectively, and take the ratio of the two to obtain:

oF Mt By’
oM, F J

This equation only involves a single unobservable variable, M;;, and, for functional forms
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of F(-) such as CES and translog, admits a unique solution:'!

th = M(thaEthaEth)Kjt)7 (14)

and consequently,
Enje
M (Ljt, Evjt, Esrje, Kji)

The identification strategy for Pysj; is based on the relationship implied by the first-order
conditions for labor and material inputs, and is conceptually aligned with Grieco et al.
(2016). Conditional on the wage rate, changes in P;; induce a non-Hicks-neutral effect by
altering the optimal ratio of labor to material expenditures. Consequently, variations in
the labor-to-material expenditure ratio observed in the data (conditional on the wage rate)
provide a basis for identifying Pys;;. This strategy presents an alternative to the method
proposed by De Loecker et al. (2016), who use output prices as proxies for input prices to
address the input price bias arising from unobserved heterogeneity in input prices.

Substituting (14) into the first order condition for labor, we obtain a unique solution for
the Lagrangian multiplier:

Prj

OF(Ljt,M(Ljt,Erjt,Enrje, Kje),Kje)
L,

Ajt = (16)

That is, the Lagrangian multiplier is derived from equalizing the marginal benefit and marginal
cost of labor input. This equation can also be cast in terms of material input, which is
equivalent to (16) due to how (unobserved) material input and its price are recovered.

Mapping to productivity. The first-order condition with respect to each product
quantity Qjne, n € Ajy, is:

0Lt 8ijt<th7 Q _ji; &) 8G(@—@jt th)
annt mezj\jt annt QJ ! mt 7t annt
Din —00; - oy _
= Iuj, t —\)\jte [4 ]ntQ;?ntl[G(e Jszt>]1 QJ: O, (17)
Int —~—

) marginal cost
marginal revenue

1'When the functional form of F satisfies the condition proposed by Proposition 1 of the Online Appendix
of Grieco et al. (2016), there exists a unique solution for Mj;. In our empirical application, the CES functional
form of F(-) satisfies this condition. We provide a full procedure for estimating a translog functional form
of F(+) in Appendix A under mild conditions for the evolution of technical efficiency, and we establish the
condition to ensure the unique solution for Mj;. For the Cobb-Douglas form of F(-), such a solution does not
exist because the elasticity ratio on the left-hand side of (13) is always a constant. Intuitively, the material
price variation in a Cobb-Douglas production function does not change the optimal ratio of labor and material
expenditures. Thus, we refrain from using the Cobb-Douglas form of F(-).
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where )
lujnt = 1 Rjme ( 18)

1—
ZmeAjt Njtnm Fjnt

is the markup of product n and 74, is the price elasticity of demand defined by (9).
Notably, )\jte*%f"tQ?;tl [G(e7*tQ;;)]* 77 is the marginal cost of producing Q. Across
firms, the marginal cost of a product varies due to \j;; within a firm, the marginal cost also
differs due to productivity w;,; and scale of production @j,;. As a result, conditional on a
firm, the variation in product prices identifies the productivity difference across products
within the firm, after accounting for the markup f;,; and production scale Q.
This idea is formally developed to derive the productivity mapping. Using (17) and

substituting Mj; in it by (14), we obtain:

eMoint — ?ni Nt QG [F (Lje, M (Lyt, Erje, Enrje, Kji), Kje)]' ™, (19)
in

where we have substituted G(-) by using (3) and \j; is given by (16).'?

In summary, we have established a one-to-one mapping—comprising (8), (15), and (19) —
from observable data to the unobservable variables ., Puji, and @j,;, conditional on the
demand and production parameters to be estimated. This mapping is unique for widely used
demand functions, such as CES demand, discrete-choice demand, and random-coefficients
demand models, as well as for common production function specifications, including CES and
translog functional forms. Conceptually, our approach parallels the proxy-based methodology
pioneered by Olley and Pakes (1996), and extended by a large body of methodological
work, which uses observable proxies (such as investment and material inputs) to control for
unobserved productivity when estimating production functions. However, in the context
of multi-product firms with product-level heterogeneity, the proxy-based approach faces a
scalability challenge: the number of required proxies grows with the number of products, as
recognized by Dhyne et al. (2022). Our methodology leverages firms’ first-order conditions to
construct the mapping, offering a key advantage in scalability. As the number of products
increases, so does the number of first-order conditions. This scalability is shared with recent
approaches such as Orr (2022) and Valmari (2023), while we also adopt a transformation
function approach as in Dhyne et al. (2022) to avoid assigning inputs to the production of

individual outputs.

12Empirically, the recovered productivity contains the unexpected shock ujne (as a log-additive term).
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3.2 Estimating Equations and Estimation Strategy

In the previous subsection, we have constructed a one-to-one mapping from observable
variables to the unobserved &, @jnt, and Pyyje (or M, equivalently) up to a set of parameters
to be estimated. This mapping is the key to developing the equations to estimate these
parameters, which we derive in this subsection.

Estimating a general demand system (1) is challenging due to unobservable demand factors
(e.g., quality) and the endogeneity of prices. Depending on specific context and functional
form of (1), strategies are well-developed (e.g. Berry, 1994; Berry et al., 1995) to address these
challenges, mainly using a set of instrumental variables. Since our focus is on the production
transformation function, we assume the existence of a valid set of instrumental variables,
allowing researchers to estimate the demand system (1). Consequently, the firm-product-
time-specific quality &;,,» and markup g, can be recovered via (8) and (18), respectively.

To derive our main estimating equation, we start by multiplying both sides of the equation

implied by the first-order condition (17) by @,n:. Rearranging this equation gives:

Rjnt
Hint

= Aje QL [G e % Q)] (20)

gnt

where Rjnt = Pjnt@jnt-

Sum the above equation over n € Aj; to obtain:

Rjnt -\

P (G Qu] ™" S (@) = AP (L M Ky, (21)

TLEA]'t

where we have used the transformation function to replace G(-) to obtain the last equality.

From the first-order conditions of labor input and material input, (11) and (12), we obtain

Erje + Enje

A = OFj Lz | 0Fj My’ (22)
8L3t th BMJt th
where Fj; is a short-hand notation of F'(Lj;, M (Lji, Erjt, Enje, Kjt), Kjt).
Substitute this equation into (21) to obtain:'3
Rjnt  Erj+ Enmge (23)
Z Lineg Ot Lje | OFj My~
HEAjt J ath th 8th th
13An alternative expression is Bpme — Prar  or 3 Bime — _PMit_ Nonetheless, because
p n€Ajt pjne 9T Lje n€Ajr pjne 9T My * ’
DL, Fjy M Fjy

we substitute the recovered material quantity (14), which is derived from (13), into these equations, both of
these equations are equivalent to (23).
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Therefore, (23) describes the relationship between revenues (adjusted by the reciprocal
of markups) and inputs for a general system of demand and production transformation
functions in the context of multi-product firms. This equation is an analog of the popular
ratio estimator of markup in De Loecker et al. (2016) in the context of single-product firms.'*
De Loecker et al. (2016) focus on uncovering markups after estimating the production function
parameters (and the output elasticities), without relying on the estimation of any demand
system. In the context of multi-product firms, this equation is also an analog of the markup-
input share relationship examined by Cairncross et al. (2025). Both De Loecker et al. (2016)
and Cairncross et al. (2025) estimate markups using production data only without making
assumptions on the demand structure.

Our methodology uses the same relationship but takes a different approach: we utilize the
demand system to first uncover the markups and then proceed to estimate the production
parameters using (23) as the estimating equation. This strategy offers several advantages. It
is scalable for handling a large number of products, addresses bias caused by unobservable
material price heterogeneity, and makes it possible to estimate production parameters without
relying on productivity evolution process, because all unobserved firm heterogeneity (i.e.,
multi-dimensional productivity and quality as well material quantity) are substituted by
observable variables in the data using the mapping developed in Section 3.1.

It is important to notice that (23) holds for the theoretically predicted revenue Rj,;, because
it is derived from the firm’s profit maximization problem. Empirically, researchers do not
observe the theoretically predicted revenue R;,;; instead, the observed revenue contains the
unexpected shock as defined in (2): ij = ]%ntQjm = PjQ et = Rjeint. Substitute
this relationship into (23) to replace the theoretically predicted revenue, and rearrange to

obtain an empirical estimating equation that involves the observed revenue directly:

o |30 B gy | Rt P\ (24)
! fint | | P Ly OF My | T
nEAjt Jn Bth th 8th th
where
R‘ t/ Wint )
Ujp = In E Jn {M]n e tint (25)
TLGA]'t ZTLEAjt Rjnt/ujnt

is a firm-level composite error term. Intuitively, it is a geometric mean (in logarithm) of

. . . R E . E .
14To see this, notice that, for single-product firms, (23) degenerates to T;Z = o, th"+a§§-7t" w» and
BLy, Fyy T 0Mj; Fyy

O Lyt | OFju My
. . __ 9Ly Fy "My Fyy

consequently, the markup can be written as p;; = BB B
Jt J Jt
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firm-product level unexpected shock w;,, using within-firm share of Rjnt /tint as the weights.!®
We estimate the associated production parameters, denoted as (3, using generalized method
of moments (GMM):

~

P
. 1 1
f = argming —E uiZi| W —E it Zjt | (26)
N < N 4
.77t o J7t
Erji + Euj R;
o jt Mjt _ Jnt
where ujr = In OFy L . 0Fy Iy In i
OLjt Fjy OMji Fjy J nehj 7

W is a weight matrix, N is the number of firm-time observations, and Z;; is a set of
instrumental variables. Because u;; is a composite of ex-post error terms of prices, natural
candidates of instrumental variables include firm-level inputs such as L, Er i, Earje and Kjy.
In addition, in settings where firms compete in product markets, product characteristics of
rival firms, if observable, may be also included in the instrumental variable set.

Although this estimation strategy offers a straightforward approach to estimating the
primary production parameters, the parameter § which characterizes the technological
substitution of outputs within the firm, does not appear in the estimating equation (23). To
identify and estimate 6, we leverage the influence of # on the marginal rate of transformation
(via within-firm marginal cost differences) across products within a firm.

Take the ratio of the equation implied by the first-order condition (17) of product n to
that of product m. The logarithm of the ratio is:

P'nt Hjnt Q int
In {u = (0—1)In I + Vjne (27)
ijt/,ujmt jmt
o N >
vV vV
marginal cost ratio, in log marginal rate of transformation, in log

where vj,; = 0(@Djmi — @jne) s the relative difference between the productivity of the two
products, adjusted by parameter 6. Intuitively, this equation aligns with the definition of
the marginal rate of transformation discussed in Section 2.2. The left-hand side corresponds
to the ratio of marginal costs, while the right-hand side represents the marginal rate of
transformation—both expressed in logarithmic terms. Unless # = 1, the marginal cost ratio
depends not only on productivity differences but also on the relative scale of production

between the two products. Therefore, we identify # by examining how marginal costs

15In the context of the firm-level shock (i.e., wjns = ujs, ¥n) or in the context of single-product firms, there is

. . Rt | _ Erjt+Enjt
only one unexpected shock per firm. Consequently, (24) simplifies to In {TJJJ =In |5, S TLITRLT
OL ;¢ Fyy T OMjy Fjy

+ujt~

This degenerated form aligns with the estimating equation proposed by Grieco et al. (2016).
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differ across products based on their relative output levels within the same firm. A similar
identification strategy is also adopted by Khmelnitskaya et al. (2025).

To implement this idea, we treat v;,; as an error term. Since v, is correlated with the
production scale ratio, there is an endogeneity problem. Empirically, researchers can estimate
(27) using a Two-Stage Least Squares (2SLS) estimator with a set of IVs. Ideally, firm-product-
level instrumental variables are preferred. For example, differences in product characteristics
may shift the quantity ratio due to varying demand driven by these characteristics, while
being traditionally assumed to be uncorrelated with cost-side (productivity) differences.
When firm-product-level instruments are unavailable, firm-level variables, such as the wage
rate, can be used as instruments. This approach benefits from examining relative differences
between two products within the same firm. For instance, conditional on other factors, a
lower wage rate decreases the firm’s overall marginal cost, leading to higher production
quantities for both products. However, the product with less elastic demand (e.g., product
m) expands more, resulting in a lower quantity ratio (€Q;nt/Qjmt). Thus, the wage rate and
production scale ratio are correlated. Of course, the validity of firm-level instruments depends
on the assumption that the levels of these variables are uncorrelated with the differences in
productivity between two products, which is discussed in Online Appendix D. We examine
the performance of our estimation method in a Monte Carlo setting in Section 5.3.

As a summary of the full estimating approach, the first step is to estimate the demand
system (1) to obtain the estimates of demand parameters and product markups. Second, we
estimate 6 from the within-firm marginal rate of transformation relationship (27) using 2SLS.
The third step is to estimate the production parameters using (23) via GMM. With these
estimates, researchers can compute quality and productivity via (8) and (19), respectively.

Although the model and estimation strategy are presented in a general framework, re-
searchers should tailor their choice of functional forms to their specific context, balancing
flexibility with the feasibility of empirical implementation. In our application, we select a
CES demand system and a transformation function with a CES input aggregator, due to the
consideration of the characteristics of the industries, the market structure, and the availability
of instrumental variables. The next section focuses on the industry characteristics and market

structure, providing the context for these choices.

4 Data

We estimate our model using firm-level Mexican manufacturing data, collected by the Instituto
Nacional de Estadistica y Geografia (National Institute of Statistics and Geography, INEGI
henceforth) and covering the period 1994-2007. We use two datasets: the Encuesta Industrial

Anual (Annual Industrial Survey, EIA henceforth), the main annual survey covering the

21



manufacturing sector, and the Encuesta Industrial Mensual (Monthly Industrial Survey, EIM
henceforth), a monthly survey that monitors short-term trends related to employment and
output.'® These datasets are particularly useful for our analysis because they provide quantity
and sales information at the firm-product level. However, similar to most production data,
information regarding inputs, viz. physical capital, intermediate input, number of workers
and wage bills, are only available at the firm level.!”

Firms are classified by INEGI into one of the classes of activity based on their principal
product. A class of activity is the most disaggregated level of industrial classification and is
defined at six digits according to the 1994 Clasificacion Mezicana de Actividades y Productos
(Mexican System of Classification for Activities and Products, CMAP henceforth). Firms
report quantity and sales information product by product based on their industries.

We focus on three specific classes of activities: manufacturing of footwear, mainly of leather
(class 324001, footwear in short); printing and binding (class 342003, printing in short); and
manufacturing of pharmaceutical products (class 352100, pharmaceuticals in short).'® These
three industries were chosen because each industry is made up of more than 500 firm-year
observations, a number of observations large enough for implementing our estimation strategy.
More importantly, multi-product firms are particularly prevalent in these industries: 56% of
firms in these industries are multi-product producers and such firms account for 86% of total
revenues and produce on average 6.9 products per year. They also represent a diverse set
of manufacturing industries with clear concepts of product quality: for example, advanced
design and assembly that provide superior comfort and durability in the footwear industry;

acid-free paper and durable binding in the printing industry; potent active ingredients and

16This paper uses plant -level Mexican manufacturing data, collected from the Instituto Nacional de
Estadistica y Geografia (National Institute of Statistics and Geography), INEGI. Mauro Caselli obtained
access to the data. Arpita Chatterjee, the author affiliated with the Federal Reserve Board, has no unauthorized
access to the data. The unit of observation in both surveys is a plant rather than a firm and the sample
includes all plants with more than 100 employees as well as a sample of smaller plants. For simplicity and in
line with the literature, we will use the term “firm” to refer to a plant. More information on the EIA and
EIM can be found in Caselli et al. (2017).

17 All nominal variables are deflated using the consumer price index. To facilitate comparison, we normalize
average industry output prices to 1. Initial capital stock and investment are deflated using industry-level
price indices.

18For the purpose of our analysis, all products with fewer than 100 observations are aggregated together
in a residual product category. The residual product category is defined as “Others” (product code 99) in
Table A1 in the Online Appendix. The prices and quantities of the aggregated residual product category are
estimated following Diewert et al. (2009). While this aggregation is required to estimate the demand elasticity
of substitution for each product based on a large enough number of observations, it only implies that the
demand elasticity of substitution is by assumption equal across all products included in the residual product
category within an industry. In addition, this aggregation involves a relatively small share of products: the
main (i.e., not aggregated) products account for between 81% and 93% of observations and between 82% and
90% of revenue across the three industries. Accordingly, the descriptive statistics and patterns demonstrated
in this section are reported based on the aggregated categories, which is the data used in our estimation.
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degrading-preventing packaging in the pharmaceutical industry.

There are a few patterns worth noting. First, multi-product production is an essential
feature of the firms in our sample. We demonstrate this point by using an index that is
analogous to the traditional Herfindahl-Hirschman Index (HHI) as the sum of the squared
shares of sales within a firm. A higher HHI index means a higher level of concentration
of sales within a firm.' The index is naturally equal to one for single-product producers.
For firms with a larger product scope, HHI decreases sharply becoming close to 0.3 for
firm-year pairs producing 5 products and close to 0.2 for firm-year pairs producing 10 or
more products.?’ These values imply that producers are genuine multi-product firms — they
do not concentrate production entirely on their top products, and all products, albeit to
different degrees, are important for firms’ total revenues.?! Thus, multi-product firms need
to be treated and modeled as such and they cannot be simplified as single-product producers.
This characteristic of the industries is also an important feature that enables us to exploit the

within-firm relationship to identify model parameters, as discussed in Online Appendix D.

Table 2: Descriptive statistics: prevailing multi-product firms

Variable Footwear Printing Pharmaceutical
Product scope, MPFs only 2.403 6.195 8.000
(0.624) (4.107) (3.018)
Share of number of MPF's 0.201 0.538 0.845
Revenue share of MPF's 0.386 0.597 0.939
Total number of products 4 15 16
Total number of firms 72 79 80
Number of firm-year pairs 617 744 867

Notes: The table reports the means and standard deviations (in parenthesis) for each vari-
able by industry. Product scope is the number of products manufactured by firm. MPFs

refers to multi-product firms only.

The importance of multiple-product production is also present in all the industries of

our analysis, albeit with some degrees of variation, as shown in Table 2.22 The percentage

)

9Tn Figure A1 in the Online Appendix, we aggregate the firm-level index with weights equal to the firms
total revenues, by firm-year pairs’ product scope.

20These values indeed show some degree of concentration of sales within firms. For example, if a firm
produces 5 products with equal sales, the index would be 0.2. The fact that the index is close to 0.3 implies
that there exists an uneven distribution of sales. We explore this heterogeneity using quality and productivity
within firms in Section 7.

21To confirm that firms rely heavily on all products for their total sales, Online Appendix Table A2 shows
the average within-firm product shares by product scope. For instance, for firms producing 5 or more products,
the share of products other than the top product is 0.556 and the share of products with rank 5 and beyond
is 0.147, on average.

22 Additional descriptive statistics are available in Table A3 in the Online Appendix.
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of multi-product firms ranges from 20% in the footwear industry to 54% in printing and
85% in pharmaceuticals and they account for an even larger share of revenues (from 39%
in the footwear industry to 94% in pharmaceuticals). The average product scope is larger
in printing and pharmaceuticals (respectively, 6.2 and 8.0 for multi-product firms) than in
the footwear industry (2.4). These differences in average product scope are in line with the
number of product categories available in each industry, which ranges from 4 in footwear to
16 in pharmaceuticals.

Second, the status of being a multi-product firm is quite persistent, and so is the product
scope. In particular, using a simple autoregressive process of the number of products produced
by each firm, we measure the persistence coefficients to be 0.87, 0.96, and 0.98 in the three
industries, respectively.?> Thus, multi-product firms unequivocally dominate manufacturing
production in our data and their within-firm adjustment across products is more salient than
the extensive margin adjustment in changing the number of products.

These patterns imply that both within-firm and across-firm heterogeneity is important.
On the one hand, there exist persistent characteristics at the firm level that determine the
performance across firms. On the other hand, within-firm heterogeneity and product scope
play a significant role in shaping these characteristics within firms. These implications are in
line with the specification for productivity (32), which contains a common component at the
firm level to capture the differences across firms as well as an individual component varying
at the firm-product level to explain the variation of performance within a firm.

Finally, the sample reflects patterns consistent with the choice of the empirical demand
model in Section 5. On average, about 16 to 37 firms compete in the market for any given
product in any given year. The majority of the firms do not command a dominant share of
the market — the median (traditionally defined) HHI across firms at the product-year level
ranges between (.15 in the pharmaceutical industry and 0.31 in the printing industry. More
importantly, given the level of product disaggregation, the markets for different products
(e.g., women’s shoes vs. men’s shoes in the footwear industry, and more examples in Online
Appendix Table A1) are reasonably assumed as segmented. For each product, firms’ outputs
are vertically differentiated as evidenced by the large dispersion in prices.?* Overall, these
patterns support abstracting from demand cannibalization across products made by the same

firm and assuming that firms face monopolistic competition within each product category.

23The entry of new products and the exit of old products only account for 6.8 and 7.3 percent of the
observations, respectively.

24For example, the interquartile range of prices in logarithm is about 1.4 (i.e., a 400% difference) within a
product category, on average, across the three industries.
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5 Empirical Model and Estimation

This section presents an empirical model and applies the estimation strategy developed in
Section 3 to the Mexican manufacturing industries. We choose specific functional forms for
the demand and production model considering the characteristics of the industries, product

classification, market structure, and availability of instrumental variables.

5.1 Empirical Specification

On the demand side, we adopt a CES demand function, assuming that while the demand
for each of the N products is segmented, there is monopolistic competition among firms
producing vertically differentiated products within the same product line. Formally, the
realized price, IBjnt, from the inverse demand function (1), after accounting for the unexpected

shock in (2), for product n of firm j in period t, is specified as:

~ 1 1
In Pjnt = ——1In ant + 77_ (¢nt + wjn + ’th)l_‘_ujnta (28)
€t

where 7,, denotes the constant elasticity of demand for product n. The term &,,; represents
product quality and comprises three components: ¢, (product-time fixed effects), 1;,
(firm-product fixed effects), and v;; (firm-time fixed effects). The term wu;,; represents an
idiosyncratic firm-product-time specific ex-post price shock. We follow the tradition in the
literature (e.g., Melitz, 2000; Khandelwal, 2010; Hottman et al., 2016; Pozzi and Schivardi,
2016; Eslava et al., 2024) to refer to the residual recovered from the CES demand system as
the perceived product quality: éjnt =InQjn +n,In f’jm = Eint + MnWUjne.

The empirical demand model (28) excludes complementarity or substitution across different
product lines. This choice is driven by empirical considerations in our context. First, given
the level of product classification in our data, complementarity or substitution on the demand
side is unlikely. For example, the demand for women’s shoes is unlikely to be influenced by
competition from men’s shoes. Similar functional forms have been employed by De Loecker
(2011) and Valmari (2023) in modeling demand functions for multi-product contexts. Second,
while estimating a richer model is conceptually appealing, a major difficulty arises from
the lack of suitable instrumental variables to address the endogeneity issue associated with
unobserved product quality. Traditional instruments, such as cost shifters, may fail in
vertically differentiated markets where higher-quality inputs (thus higher input prices) are
chosen to enhance product quality. In general, estimating flexible demand systems requires

carefully constructed instruments that are uncorrelated with product quality. For example,
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Berry et al. (1995) utilize the characteristics of other automobiles produced by the firm itself
and similar automobiles produced by its rivals. In our case, the dataset does not include such
rich and strong instruments. Therefore, we adopt the CES functional form for the demand
function, which enables us to leverage the within-firm variation in sales across products to
estimate the constant demand elasticity parameter 7,, as described in Section 5.2.

On the production side, we use a CES input aggregator in the transformation function (3):

2

F(Lji, M, K) = |arLl), + anMj, + ax K}, (29)

where v = "T’l governs the elasticity of substitution across inputs. p is a parameter for the
returns to scale in the transformation of inputs into output. «p, ajs, and agx are share
parameters associated with labor, material, and capital, respectively. We normalize their

sum to 1. We maintain the output aggregator as defined in (4).

5.2 Estimation

Applying the methodology described in Section 3.2 to the empirical model, we obtain an

explicit, unique mapping from observable data to the unobservable variables:

éjnt =1In ant + Mn In f’jm, (30)
1 E 11
an (7 Bt |
Pup= | = |5, | P 31
W [ ar, } { EpLji } Lot (31)
1—p8
00 7771 EL]t y Eth . P o1
jnt — — L 1 PR K 4 ' 32
‘ (nn - ]')P]nt pOZLLj.t |:aL Jt ( + Eth ) + ok gt jnt ( )

Equations (30), (31), and (32) empirically represent the mappings of quality (8), material
price (15), and productivity (19) in the general model. Specifically, éjm is expressed as a
function of observed price and quantity, capturing how product quality can be inferred from
observable market outcomes. Similarly, FPyj; is determined as a function of the labor-to-
material expenditure ratio, conditional on the wage rate, in the same spirit as in Grieco et al.
(2016). Finally, the identification of @;,; integrates variations at both the firm level (i.e., Ly,
K, Epj, and E)pp ;) and the firm-product level (i.e., Py, and Q).

After substituting the mapping to the transformation function to replace the unobserved
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productivity and material input, we obtain an explicit expression of (24) in logarithm as:

n—1)p ~ K \"
jt

«
nGAjt nn L

where

" gnt o
uje = In g 4 —e “int| b (34)
J S (m=1) f5.
nEA]’t nGA]-t Nn Jnt

This equation is the multi-product version of the estimating equation proposed by Grieco
et al. (2016) (see their equation 8), who assume that each firm produces a single product.?
In the context of multi-product firms, the individual product revenues are adjusted by the
reciprocal of their corresponding markups.?°

As explained in Section 3.2, the parameter 6 is not present in the estimating equation (33)
and thus is not identified by (33) alone. Thus, we estimate (27) via 2SLS to identify 6. In
our implementation, the IV set consists of a constant and the logarithm of the wage rate
(Pr;t), the capital stock (K;), and the ratio of material expenditure to labor (Ejj:/Ljt, as a
proxy for material prices, conditional on the wage rate).?” This provides an estimate 9.

Nonetheless, we still face two additional challenges to estimate all the parameters.?® First,
p is not separately identified from demand elasticities in (33). In fact, only a combination of
N, and p (i.e., (""n;nl)p) is identified. Second, estimating (33) via GMM requires (at least) the
same number of instrumental variables as the number of products to identify W of each
product, because product revenues are correlated with composite shock u;;.

To address both challenges simultaneously, we leverage the context of multi-product firms,
which provides valuable within-firm variation. We explore the relationship between the

revenues of any two products implied by the firm’s static maximization problem, taking into

2 More broadly, (33), without logarithms, is also similar to the estimating equations used by Das et al.
(2007), Aw et al. (2011), and Li (2018) with data on the firm’s total variable cost to estimate demand
elasticities in multiple markets.

26Tf the elasticities (markups) are the same, then the estimating equation is the same as in Grieco et al.
(2016). We also allow for the returns to scale parameter, p, to be estimated, while Grieco et al. (2016) assume
it to be one.

1 1—1 1
?TTo see this, note that (31) is equivalent to Pryj; = [M] K [%} K ngt. Taking logarithm, we obtain

ar gt

In(Pasji) = %ln {%} +(1- %) In [ELL;} + %1n(Pth). Because we include the logarithm of the wage rate,

1n(Pth)7 in the IV set, using In |:ELMJ1,

; is equivalent to using In(Paz;¢) in this setting, although Pyj; is not
observable. Our result is quantitatively similar if the expenditure ratio of material and labor is used as an IV.

28These additional challenges arise because we are estimating the returns to scale parameter, p, and because
the standard input data available in the Mexican dataset lacks instrumental variables to estimate the demand

function (28) directly. See footnote 29 for further discussion.
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account that the markets for different products are segmented in our empirical context. Here,
71, influences the sales of individual products, while p represents the returns to scale of the
production transformation function and affects the overall sales of all products. Thus, the
firm’s optimal decision on trading off the sales of different products within the firm helps
identify n,, from p. In other words, the variation in the sales of a product relative to another
product contains information on how the elasticities of the two products differ. This addresses
the first challenge. Meanwhile, the identified relationship between elasticities reduces the
number of parameters to be estimated in (33). Consequently, the number of instrumental
variables required to estimate the rest of the parameters does not increase with the number
of products. This addresses the second challenge.

To implement this idea, we take the ratio of (17) of a reference product (i.e., product

1) and that of another product n produced by the same firm. Using ij = ijQjm, we

obtain:?’
_ L—0-y
ln(let) = Cp, + m ln(ij) + Cjntv n = 2, <oy N, (35)
m—1
where
Tol-0  m—1 m
and
0 . 1 - ~ 1 -
Cjnt = (Djnt + Eint) — (@10 + Eine)

1—6-0 | My — 1 m—1""

~
difference in TFPR

The latter, (jn, contains the difference of the capability (or TFPR, @ + n—ilé, as will be
formally defined in Section 6) of producing a product relative to that of the reference product.
This equation predicts that the (logarithmic) revenues of two products are linearly related
conditional on the difference of production capability. In particular, firm-level inputs are
not a part of the equation explicitly. This equation is similar to the estimating equation
developed by Grieco et al. (2022), who explore the relationship of revenues of two markets

(domestic sales and exports).?

29Note that this approach contrasts with much of the existing literature, which often relies on direct
estimation of the demand function (28) using firm-level IVs (e.g., cost shifters). However, these IVs may be
correlated with the level of quality, potentially biasing the results. When we estimate the demand function
(28) directly using the same firm-level IVs, the resulting demand elasticities are biased downward: the mean
elasticities are estimated at 2.539, —2.024, and 0.470 for the three industries, respectively. Of course, when
appropriate instrumental variables exist, such as the case in Orr (2022), one can estimate demand function
(28), or even a more flexible version of it, directly without resorting to this set of estimating equations.

300ne difference is that Grieco et al. (2022) model the error term as an unexpected shock because the
productivity and quality of the domestic and export products are assumed to be the same and are canceled.
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Intuitively, because the demand for each product is segmented in our setting, as discussed
in Section 4, the relative revenue of one product over another product in the same firm
depends on their own demand elasticities (conditional on their relative levels of TFPR, (j, as
well as the estimated technological substitution parameter ) rather than on complementarity
or substitution between them on the demand side. As a result, the variation of one revenue

n

nn—1 _

) T forn=2,3,...,N.
m-

relative to another in (35) provides the identification of the ratio

In contrast, the variation of revenue levels in (33) identifies (77"77;”1)’3, n=1,2,...,N. That is,
the returns to scale parameter affects the sales of all products but not the relative relationship
of sales between different products, while demand elasticities affect both the level and the
relative relationship of sales of different products. As a result, p and n,, n = 1,2,..., N,
are separately identified as long as there are at least two products with different demand
elasticities in the industry. More precisely, the elasticities and returns to scale parameter
can be identified as long as there is a firm that manufactures two products with different
demand elasticities for a number of periods, which is a very mild assumption. The model is
over-identified when there are more than two such products produced by the firms in the
industry.

To estimate (35), we choose the product produced by most firms in the industry as the
reference product, in order to maximize the number of observations used in the estimation.?!
We treat (j,: as an error term. We allow the mean of (j,; to vary by product and year and
use a set of flexible product-year dummies as controls (which also absorb ¢,). (e is likely
correlated with Rjnt — the revenue of product n is lower if the capability of producing n is
lower than that of the reference product. We use a set of IVs to address the endogeneity issue.
In our implementation, we use the same set of IVs used in estimating (27): the IV set consists
of a constant and the logarithm of the wage rate, the capital stock, and the ratio of material
expenditure to labor (as a proxy for material prices after conditional on wage rate). Grieco
et al. (2022) uses a similar set of firm-level IVs to estimate an equation analogous to (35) in a
two-product scenario. The same insight carries over in our context. These firm-level variables
influence the level of revenue (i.e., Rj,;), but they are uncorrelated with the difference of
capability (i.e., (jnt) between two products. For example, conditional on everything else, a
higher level of capital stock potentially leads to higher revenues of a given product, but it is
not necessarily associated with the production capability of one product being larger than
that of another product within the same firm. We use these firm-level variables as IVs for all

product pairs in (35).%2

31Tn our data, the percentage of firm-year pairs that produce the reference product ranges from 62% in the
footwear industry to 72% in printing and 88% in the pharmaceutical industry.
32The model is over-identified if there is more than one IV. For example, if there are 2 IVs, then there are
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The validity of these Vs relies on the condition that the production of a product is not
systematically more intensive in the use of a specific input (e.g., capital) than other products
and that the firm-level wage rate and input price are not systematically correlated with the
capability differences between products. We use Monte Carlo exercises to demonstrate the
performance of our approach and IVs under this condition in Section 5.3. We further discuss

this condition and alternative strategies in Online Appendix D.

We denote the estimated relationship between elasticities as b, = el n=2,...,N,
0(m1—1)

1-0)(m—1—bpm

(33) and solve for uj; to construct moment conditions for the GMM estimation:

and, naturally, b =1 by definition. Thus, 7, =1+ ;- i 7 Substitute it as 7, in

3

O(m —1 - K. \7
uj; = In p+In Z <f’1 ) —Rjn | —In {EM# + Eth <1 + K (_J) )} '
nEA;t (771 - 1) + by + (9 - 1)bn771 ay, th
(36)

There are only four parameters, 5 = (p,n, Z—fz,v), to be estimated. This means that the

number of instrumental variables required does not increase with the number of products.
Firm-level input choices can serve as valid IVs because they are not correlated with the
unexpected shocks. In the implementation, we use Z;; = (1, Enje, ELjt, Ljt, Kji/Lji) as IVs.

Equation (36) can only identify ‘;—IL( rather than oy, ays, and ax separately. The full set
of (ar,an, ak) can be identified with two constraints naturally implied by the model. The
first constraint is a normalization of distribution parameters in the CES production function:
ar + ay + ag = 1. The second constraint equalizes the ratio of geometric means of labor
expenditure (E1) and material expenditure (Ej;) to the ratio of distribution parameters in
the CES production function. That is, &£ = LM This constraint results from taking the

’ap Ep
geometric mean of (13), which is implied by the first-order conditions of labor and material

2(N — 1) moment equations that can be formed to identify (N — 1) coefficients (i.e., Zij ,n=2...,N).
33The identification of p relies on the condition E(e%nt) = 1, as assumed in Section 2.1. Due to the
log-additivity of p in the main estimating equation (36), the value of p does not affect the estimation
of the rest of the parameters. Thus, the rest of the parameters can be estimated before p is estimated.
The following describes how p is estimated. Although the composite error term wu;¢, defined in (34), does
not have a zero mean (i.e., E(uj;) # 0), the composite error for single-product firms is the same as
the product-level shock (i.e., ujz = uji;). After the rest of the parameters are estimated, (36) can be

. a1-1p
ewilt - R

written for these single-product firms as —

. =7 Taking the expectation for
374 it
[Ef”’jt+Eth <1+W ij) )]
11 —=1p
both sides, we have 5= E —
|:E1th+Eth (1+%(Tﬂ

1t

)7)] . Therefore, the estimate of p can be recovered as

Jt

gt

SR - P
|:E1th+Eth (1—}-%(%)7)}
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quantities, (11) and (12), of all firms.3*

As a result, $ can be estimated as:

/

5 ) 1 1
5 = argmlnﬂ Nzuﬁzjt w NZUﬁth s (37)
Jit Jit
E
subject to: ap+ay +ag =1 and oM _ _—M,
ap, l;L

where W is a weight matrix, N is the number of firm-time observations, and u;; is the
composite error term (36).

As a summary of the full estimating approach, the first step is to estimate 0 from (27)
nn

via 2SLS. The second step is to estimate b, = 149@’ n = 2,...,N via 2SLS using the
-1

relationship imposed by the within-firm relative sales in (35). The third step is to estimate

(py M, Qr, g, G, ) using (37) via GMM. With these estimates, the demand elasticities can

9:(771—1) _
bn+(1—0)(f1—1—bph1)

be recovered as 7, = 1 + . After that, we compute éjnt and @, via (30)

and (32), respectively.

5.3 Monte Carlo Exercise

In this section, we conduct a Monte Carlo exercise to demonstrate the performance of our
estimation method. In the Monte Carlo setting, the choice of product sets is exogenous
and random. The productivity and quality levels of each product are not only serially
correlated over time but also negatively correlated with each other in the same period. Across
products, productivity and quality exhibit different degrees of persistence and dispersion.
Consequently, the levels and variability of productivity and quality differ systematically
across products, generating heterogeneous revenue shares within a firm, thereby mimicking
patterns observed in actual data. Wage rates, material prices, and capital stock are simulated
as serially correlated and exogenous AR(1) processes. These variables are correlated with
contemporaneous input and output decisions because the firm observes their realized values
before choosing inputs and outputs to maximize profit.

Our Monte Carlo exercise consists of 200 replications of simulated datasets for J firms

observed over 1" periods, based on a model with a set of true parameters for five products:

34As shown by Grieco et al. (2016), this constraint holds conditional on a normalization of the CES
production function. We follow the same procedure to normalize the inputs using their corresponding
industry-level geometric means (e.g., Klump and de La Grandville, 2000; Leén-Ledesma et al., 2010).
Nonetheless, to ease our notation, we directly denote the normalized input variables as (Lj¢, Mj¢, Kji). As a

result, the ratio of the geometric means of material and labor is % = 1, which implies % = %, by taking
L

the geometric mean of (13) across firms.
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Table 3: Monte Carlo: Estimates of Production and Demand Function Parameters

Production Demand
Parameter True Estimate Parameter True Estimate
or 0.400 0.400 m 3.000 3.022
(0.005) (0.257)
s 0.400 0.400 M2 4.000 4.035
(0.005) (0.363)
oK 0.200 0.200 73 5.000 5.022
(0.010) (0.403)
o 2.000 2.000 M4 6.000 6.016
(0.023) (0.398)
p 1.100 1.100 75 7.000 7.001
(0.024) (0.368)
0 0.900 0.900
(0.004)

Note: The parameter estimates are reported as the mean esti-
mates from the Monte Carlo simulations. Standard errors in
parentheses are the standard deviations of the estimates.

(M1, M2, M3, M4, M5, O, M, g, 0, p, ). In each replication, we simulate productivity (@) and
quality (é’jnt) for each product n, firm j, and period ¢, as well as wage rates (Py,,), material
prices (Pay,,), and capital stocks (Kj;) for each firm j and period ¢, using AR(1) processes
with different persistence parameters and dispersion degrees of innovation shocks.

Given these variables, and the production and demand specifications in Section 5, we
use the firm’s static profit maximization problem to derive the optimal choices of labor
and material inputs (L;; and M;,), as well as the optimal output quantity (Q);»;) and price
(Pjn) for firm j and product n in each period ¢. The observed product price incorporates
an idiosyncratic shock: If’jm = Pj,.e"mt, where uj,,; is a firm-product-time specific shock.
Consequently, the observed product revenue is given by ije = pjntant-

The parameter values used in the data-generating process are summarized in Online
Appendix Table A4. The variables used in the estimation procedure and the same set of instru-
mental variables as detailed in Section 5.2 are (Qjur, - - -, Qjnt, Rjtes - - - » Rjnts Kji, Lit, Er,., Eu,).

The simulated data exhibit realistic distributional patterns. First, productivity and quality
are negatively correlated (coefficient: —0.2). Second, as shown in Online Appendix Table
A6, both the levels and heterogeneity of productivity and quality differ across products,
reflecting technological and demand variation. Third, the mean within-firm revenue share
varies across products, ranging from 6% to 57%, indicating differences in product importance

within firms. Moreover, the dispersion of within-firm revenue shares differs substantially by
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product, suggesting heterogeneity in the relative importance of each product across firms.
Table 3 reports the mean estimates of the key parameters alongside their standard errors.
In addition, the estimates for the parameters of (35) also closely match the true values,
as shown in Table A5, demonstrating the effectiveness of the IVs proposed in Section 5.2.
Overall, the results indicate that the estimation procedure successfully recovers the true

parameters of the production and demand functions.

6 Estimation Results

This section reports the estimation results, including the production and demand function
parameter estimates by industry as well as firm-product level productivity and quality.
Because our empirical analysis relies on estimated variables, we employ bootstrapping with

100 samples to compute all standard errors presented in the subsequent tables.

Table 4: Production function estimates

Parameter Footwear Printing Pharmaceutical

ar 0.199 0.228 0.218
(0.014) (0.015) (0.025)

ang 0.763 0.676 0.574
(0.039) (0.027) (0.068)

g 0.037 0.096 0.208
(0.049) (0.035) (0.089)

o 1.225 1.264 1.142
(0.516) (0.111) (0.179)

p 1.054 1.129 1.037
(0.146) (0.123) (0.196)

0 0.950 0.779 0.720
(0.053) (0.066) (0.082)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (100 repetitions).

Table 4 presents the production parameters. a,, is significantly larger than oy and ag,
consistent with the intensive use of intermediate material input across all industries. ag in the
pharmaceutical industry is the highest among the three industries, reflecting the importance
of capital in this industry. Parameter o, which is the elasticity of substitution across inputs,
i.e., labor, material, and capital, is greater than one across all industries. This is different
from those in the classical literature which does not control for heterogeneous material prices.
But it is largely consistent with the estimates in Grieco et al. (2016, 2022), Harrigan et al.
(2021), and Li and Zhang (2022) based on a similar method but using different datasets from
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Colombia, France, and China, respectively. It is also close to the average estimate of the
elasticity of substitution among Chinese industries by Berkowitz et al. (2017) using a different
method. Furthermore, the returns to scale parameter p of the three industries is larger than
one, but it is not significantly different from one, implying that production is close to constant
returns to scale in these industries. Finally, the estimated values of 6 range from 0.720 in the
pharmaceutical industry to 0.950 in the footwear industry. Taking # = 1 as the benchmark
case where products are perfectly substitutable in production, these estimates suggest that
products in the footwear industry (e.g., men’s vs. women’s shoes) are considerably more
substitutable in production than those in the pharmaceutical industry (e.g., antiparasitics vs.
hormones).

Table 5 presents the estimated demand elasticity parameters for different products across
the three industries. These estimates generally fall within the range reported in the existing
literature (e.g., Roberts et al., 2018; Grieco et al., 2016; Dubois and Lasio, 2018). The
estimated variation in demand elasticities across products implies meaningful heterogeneity
in product-level markups. In the footwear industry, markups range from 1.218 to 1.400, while
in the pharmaceutical industry they are significantly higher, ranging from 1.478 to 1.614.
Because firms produce different sets of products in different years, we compute firm-year-level
markups as weighted averages of product-level markups, using revenue shares as weights.
Across the three industries, the average firm-year markup is 1.403, with a standard deviation
of 0.102. This dispersion is smaller than the estimate reported by De Loecker and Warzynski
(2012), which reflects a broader range of markup variation. Our measure of markup dispersion
reflects only heterogeneity in product demand elasticities and composition across firms and
years. Despite this narrower definition, the dispersion in firm-year markups is substantial.

The estimated quality and productivity also demonstrate substantial dispersion across firms,
even conditional on a given product. However, if the objective is to compare technological
production efficiency, the productivity measure (e.g., TFPQ) is not directly comparable
across or within firms, as varieties within the same product category differ in quality levels.
In contrast, quality-adjusted output is directly comparable across firms and products, as
pointed out by Melitz (2000). Thus, we follow the literature (e.g., Orr, 2022; Li et al., 2025)
to construct a revenue-based productivity (TFPR) measure that takes both quality and

productivity into account:*

) 1
TFPRjp: = Wjne + mgjnt- (38)

n

As expected, TFPR reflects significant dispersion across firms even within a specific

35Note that quality enters TFPR as ﬁ@-m. This is due to the demand specification in Section 5.1.
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Table 5: Demand function estimates

Parameter Footwear Printing Pharmaceutical
i 4.009 4.128 2.965
(1.620) (1.030) (1.166)
o 3.497 4.262 2.927
(L.777) (0.898) (1.200)
73 4.263 3.699 2.998
(1.780) (1.192) (1.070)
N4 5.593 3.890 3.047
(1.835) (1.352) (1.274)
5 4.276 2.911
(0.881) (1.219)
N6 4.111 2.805
(0.931) (1.264)
N7 3.787 2.923
(1.184) (1.158)
78 4.016 2.856
(1.164) (1.182)
Mg 4.210 2.878
(0.909) (1.195)
Mo 4.251 2.866
(0.886) (1.188)
M1 4.004 2.926
(1.056) (1.282)
M2 4.042 2.907
(1.070) (1.151)
M3 4.123 3.176
(0.968) (1.395)
nn 4.200 3.062
(0.914) (1.415)
M5 4.147 2.628
(0.952) (1.334)
16 2.907
(1.138)

Note: Elasticity parameters in each column within each
industry are ordered to correspond with the column entries
of products in Online Appendix Table Al, respectively.
Bootstrapped standard errors clustered at the firm level and
stratified by industry and scope are shown in parentheses
(100 repetitions).
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product category.®® The mean standard deviation within a product is 2.667 (calculated
across all products in the three industries), which is similar in magnitude to that of revenue
productivity documented by Grieco et al. (2022) in the Chinese paint industry. Regarding
the components of TFPR, the standard deviation of @;,; within a product has a mean of
2.867, while the standard deviation of nn_lflénﬁ within a product has a mean of 1.474.37

Interestingly, our results also reveal that within-firm heterogeneity in TFPR is substantial.
Among multi-product firms, the average standard deviation of TFPR across products within
a firm is 0.337, which is approximately one-eighth of the standard deviation of TFPR
across firms for a given product. This indicates that while across-firm heterogeneity is more
prominent, within-firm TFPR dispersion is also economically significant.

Overall, our estimation results reflect reasonable parameter estimates and productivity
and quality measures at the firm-product level. In the following section, we turn to use these
measures to explore the roles of productivity, quality, and within-firm resource reallocation

in shaping firm performance.

7 Technological Spillovers & Within-firm Reallocation

A key advantage of our estimation method is that we do not need to impose any structure
on the dynamic evolution of productivity. When the objective is to study potentially rich
interdependencies in productivity dynamics—such as spillovers in the context of multi-product
firms—we can estimate these processes after recovering the productivity measure itself rather
than jointly estimating the interdependent dynamics with the model parameters. We illustrate
this advantage by examining various forms of technological spillovers. In Section 7.1, we
consider a conceptually novel within-firm, across-product spillover, which is particularly
relevant for multi-product firms, in addition to the traditionally studied within-product,
across-firm spillover (e.g., Malikov and Zhao, 2023). In Section 7.2, we show that within-firm
reallocation of resources serves as an important mechanism through which multi-product

firms are influenced by these technological spillovers.

7.1 Technological Spillovers: Across-firm and Within-firm

In this section, we assess spillovers both across firms and within firms. In our context of
multi-product firms, an across-firm spillover for a given product is defined as the impact

of technical efficiency of the same product produced by other firms on that product’s own

36The distributions of TFPR by product, as well as the distributions of its components, @, ;+ and énjt, are
reported in Online Appendix Figures A2, A3 and A4, respectively.

37The standard deviation of Wjnet is slightly larger than that of TFPR because the two components of
TFPR, productivity, and quality, are negatively related, as will be clear in Section 7.
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technical efficiency. A within-firm spillover is defined as the impact of technical efficiency of
other products produced by the same firm on the product in question.
Formally, we propose an evolution process for firm-product-level technical efficiency wj,,

following (6), which allows for both across-firm and within-firm spillover components:
Wint = 1Wjint—1 + gfwjfnt—l + gpwfnt_l + di + € (39)

where d; is a time fixed effect and €;,; is an i.i.d. innovation shock. w{ntfl is the across-

firm, within-product average technical efficiency: w/ , | = —+—
Jn Nnt—lfl

> izj Wint—1, where N/, |
is the total number of firms producing product n in period ¢t — 1. Similarly, wfm_l is the
across-product, within-firm average technical efficiency: w?nt—l = ﬁ > 4n Wimt—1, Where
Nj,_ is the total number of products produced by firm j in period ¢ — 1. Both w{nt_l and
wh,q vary at the firm-product-time level. Therefore, the term gfwfm_l captures across-firm,
within-product spillovers in technical efficiency. Similarly, gpwfntfl captures across-product,
within-firm spillovers—that is, the effect of changes in the average technical efficiency of a
firm’s other products in period ¢ — 1 on the technical efficiency of product n for firm j in
period t.

Equation (39) can be interpreted as a multi-product extension of the single-product case
in Malikov and Zhao (2023), in which we allow for the possibility of spillovers across products
within firms. The lagged dependent variable captures persistence within product-firm pairs.
In addition, modeling the evolution of technical efficiency rather than TFPQ makes it possible
to mitigate differences across products due to different units of measurement.

While technical efficiency wj,; is not directly estimated in our procedure described in
Section b, it is shaped by two key estimated measures of heterogeneity: TFPQ (@;,:) and
quality (éjm), as linked through the TFPQ-quality tradeoff specified in (5). We do not impose
such a trade-off in our estimation but after estimation the raw correlation between these
two aspects of heterogeneity is negative, as shown in Online Appendix Figure A5. The
emerging literature using firm-level data (e.g., Grieco and McDevitt, 2017; Atkin et al., 2019;
Li et al., 2025) has documented a cost of quality: conditional on technical efficiency, producing
higher-quality products raises marginal costs and therefore reduces measured TFPQ. This
cost of quality can generate such a negative correlation between TFPQ and product appeal,
a pattern consistent with findings from the broader literature (e.g., Orr, 2022; Forlani et al.,
2023; Eslava et al., 2024). We exploit this relationship to characterize technical efficiency

w;nt and estimate its evolution process in (39).
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Specifically, we adopt a linear version of the TFPQ-quality tradeoff (5):%®
@jnt = Wjnt — f}/{éjnta (4())

where ygéjnt is interpreted as the cost (in terms of lowering productivity) of increasing quality,
holding inputs fixed. 7, is the elasticity of productivity with respect to the change in quality.
Replacing technical efficiency in (39) by that in (40) gives:

Djnt = G1@jnt—1 — Ve&jnt + P1VeEjmt—1 + gfa)fnt—l + gf%gfnt—l + GpWh1 + gp%éfnt—l + di + €,

(41)
where @fmq and & antq are the across-firm, within-product average productivity and qual-
ity, respectively. Similarly, ‘:’fm—l and ffnt_l are the across-product, within-firm average
productivity and quality, respectively.’

Although all variables (except €j,;) are already estimated from our structural model, the
innovation shock €j,,; can be correlated with contemporaneous quality choice fjnt. To address
such an endogeneity problem, we estimate (41) via GMM using a set of instrumental variables
that includes internal instruments in period ¢ — 2. According to the timing assumption, these
variables are uncorrelated with the i.i.d innovation term €.

The estimation results for various specifications of (41) are presented in Table 6. Column
(1) reports estimates from a simplified specification that excludes both year fixed effects

and spillover terms, while Column (2) adds year fixed effects. Column (3) introduces the

across-firm spillover term, gfwfnt_l. Finally, Column (4) augments this specification by
including an additional term, gpwﬁ»’nt_l, which captures within-firm technological spillovers.

We treat Column (4) as our main specification for capturing the evolution of firm-product-
level technical efficiency, allowing for a rich pattern of across- and within-firm technological
spillovers and the trade-off between productivity and quality. As expected, technical efficiency
is highly persistent, as indicated by the estimated value of g;. Consistent with the literature,
there is a negative trade-off between productivity and quality at the firm-product level: a
1-percent increase in quality lowers productivity by 0.340 percent, holding all else constant.
The magnitude is comparable to the estimated productivity-quality trade-off elasticity of
0.2 in the U.S. healthcare industry (Grieco and McDevitt, 2017) and 0.5 in the Chinese
steel-making industry (Li et al., 2025).

More importantly, the across-firm spillover of technical efficiency is economically significant.

For a given product, a 1-percent increase in the average technical efficiency of this product

38Higher order terms of éjm can be added to this relationship to allow for nonlinearity of the tradeoff.
39The within-product and within-firm averages are divided, respectively, by the number of firms and
products minus one, since each average excludes its own observation from the sum.
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Table 6: Productivity, cost of quality, and spillovers

Dep. var.: Productivity (1) (2) (3) (4)
g1 0.905%+* 0.903*** 0.884%** 0.842%**
(0.035) (0.035) (0.031) (0.030)

Ve 0.129 0.131 0.337 0.340
(0.201) (0.202) (0.287) (0.242)
gy 0.145%** 0.137#%*
(0.030) (0.028)
9p 0.056%**
(0.002)

Year FE no yes yes yes

Observations 4806 4806 4806 4806

Note: The dependent variable is quantity-based productivity at the firm-product-year level.
The coefficients are estimated via GMM. The instrument set includes twice-lagged productiv-
ity and quality in all columns. In columns (3) and (4), the instrument set also includes the
simple average of twice-lagged productivity and quality of the same product produced by
other firms. In column (4), the instrument set also includes the simple average of twice-lagged
productivity and quality of the other products produced by the same firm. Bootstrapped
standard errors clustered at the firm level and stratified by industry and scope are shown in
parentheses (100 repetitions). *** p < 0.01, ** p < 0.05.

produced by other firms raises the technical efficiency of this product by 0.137 percent. This
magnitude is similar to that documented by Malikov and Zhao (2023), who report an across-
firm spillover elasticity of 0.33 for the Chinese electric machinery manufacturing industry.
In addition, our results reveal a within-firm spillover, with an elasticity approximately 40%
of the magnitude of the across-firm spillover. This comparison suggests that while spillover
effects are larger across firms, within-firm spillovers are also economically meaningful.

Our estimates of within-firm spillovers are closely related to economies of scope, an idea
emphasized by Koike-Mori and Martner (2024), Argente et al. (2025), Ding (2025), and
Khmelnitskaya et al. (2025). The importance of within-firm spillovers has also been noted for
multinational firms when studying innovation and the role of intangible assets (see, e.g., Bilir
and Morales, 2020; Merlevede and Theodorakopoulos, 2023). While intangible assets (ideas,
knowledge) may diffuse more readily within firm boundaries than across them, they can also
be rival inputs internally due to limits on managerial attention and information-processing

40

capacity.”” Thus, whether within-firm or across-firm spillovers dominate is an empirical

question that depends on the context. Our contribution is to establish the quantitative

408ee Crouzet et al. (2022) for a discussion of potential rivalry in intangible capital within the firm.
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importance of within-firm spillovers—relative to across-firm spillovers—in a context with
multi-product firms and substantial product-level heterogeneity in production efficiency. As
we demonstrate in Section 7.2, product-specific shocks are amplified into firm-level and
industry-level outcomes through internal resource reallocation, operating via both across-firm

and within-firm spillovers.

7.2 Within-firm Reallocation in Response to Product-specific Shocks

What are the implications of an exogenous, product-specific shock for multi-product firms?
Spillovers—both across and within firms—imply that the effects can be complex. Across-firm
spillovers reflect the additional impact of a product-specific productivity improvement on all
other firms that produce the same product, while within-firm spillovers imply that all other
products within the same firm are also directly affected. These direct spillover effects on firm-
level productivity are further amplified by within-firm resource reallocation: a productivity
improvement in any product can trigger reallocation of resources across all products within
the firm. In this section, we quantify the importance of across-firm and within-firm spillovers
in terms of their impacts on social welfare and firm-level productivity via counterfactual
analysis, and we highlight within-firm resource reallocation, which is not considered in the
single-product firm literature, as a key mechanism through which these effects operate.

As a counterfactual exercise, we consider a 1 percentage point exogenous improvement
in the technical efficiency of a representative product—denoted without loss of generality
as product 1, the reference product produced by the most firms in an industry—in period
t for all firms that produce this product.*’ Formally, we set Wiyp—1 = Wjre—1 + 0.01 for
each firm that produces product 1, while holding the technical efficiency of other products
unchanged: W, | = wjn;—1 for n # 1. According to the dynamics of technical efficiency in
(39), this improvement in period ¢t — 1 directly affects the technical efficiency of product 1
in period ¢ through the persistence term, giwji¢—1. The across-firm direct spillover effect on
all firms that produce product 1 is captured through the term gfwjfltfl, while the within-
As a

result, this 1-percent improvement generates differential direct effects on products in period ¢:

0.01
NP -1

other products n # 1, where IV jptfl is the number of products produced by firm j in period
t—1.

firm spillover effect on another product n # 1 of firm j operates through gpwfnt_l.

Awjiy = g1 X 0.01 + gy x 0.01 for the reference product n = 1, and Awj,; = g, X for

41'We focus on the short-term effects, holding all dynamic decisions (i.e., product quality, scope, and
investment) described in Online Appendix C fixed. The overall long-term impacts of spillovers would likely
be even larger, as firms adjust their dynamic decisions in response to spillovers. However, evaluating these
long-term effects would require estimating a fully dynamic model, which we leave for future research.
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These disproportionate impacts across products within a firm not only directly improve
the productivity of individual products but also indirectly affect firm-level productivity, a
traditional measure of firm performance, through within-firm resource reallocation towards
more productive products in multi-product firms: firms allocate a larger share of resources
to products whose productivity has improved more. Both the direct and indirect effects
contribute to the improvement in firm-level TFPR. To assess the relative importance of these
contributions, we aggregate firm-level TFPR from the underlying firm-product-level measures
and decompose the overall effect into a direct impact and an indirect impact operating
through within-firm reallocation.

In choosing an aggregation method, we follow the spirit of the standard production function
estimation literature on multi-product firms, where productivity is typically allowed to vary
only at the firm level, TFPR;;, rather than at the firm-product level. This benchmark
treats firms as multi-product producers but abstracts from within-firm productivity hetero-
geneity, so reallocation across products does not affect measured firm productivity. Our
firm-product-level productivity measure TFPR,; is closely related to the firm-level concept,
but by allowing for within-firm heterogeneity it enables us to study how resource reallocation
across products shapes firm-level performance, which is a mechanism that is absent in single-
product settings or in analyses that rely solely on firm-level productivity. Applying such a
concept of firm-level productivity to our model setup in Section 5, Online Appendix E shows

that, this firm-level TFPR; and our measure of firm-product level TFPR;,; are related as:*?
_1
6

R DO O R I (42)
Ajt

42This relationship is derived under the assumption that the firm produces multiple products, each with its
own elasticity parameter in the CES demand function (28), while revenue productivity varies only at the firm
level, not by product, as shown in Online Appendix E. A more conventional measure of firm-level TFPR
follows the tradition of estimation methods that treat each firm as producing a single (aggregated) product.
In that case, with a CES demand function for the aggregated product and elasticity parameter 7, firm-level

TFPR and our firm-product-level TFPR are related by eTFPRit = {ZAﬂ (Sjnt efTFPRJ’"‘)G}_§ , where

n

RMm—1

jnt

—— is a weight. Relative to the relationship in (42), the only difference lies in how the share

ZA- Rjnt =t
Sjnt is c[)nstjliucte(]:l. We refrain from using this aggregation because the elasticity parameter 77 for the aggregated
firm-level product is not a primitive object in our framework. Finally, a more straightforward measure
of firm-level TFPR aggregates the firm-product-level measures using sales shares as weights: TFPR;; =
Rjnt

ZAjt ij
within-firm decomposition can be performed in the spirit of the within-industry, across-firm decomposition
proposed by Olley and Pakes (1996). Our key result regarding the relative contributions of the direct and
indirect impacts remains qualitatively similar under this alternative aggregation.

Sjnt =

Zne Ay. Sint TFPR;,:, where 55, = is the within-firm sales share of product n. Accordingly, the
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r is a weight based on the revenues of different products within

s [z L

the firm. Combining the definition of firm-product level TFPR in (38) and the TFPQ-quality
trade-off in (40), TFPR;,; can be expressed in terms of technical efficiency and quality:
TFPRjp: = wjne + (nn_l—l — yg)éjm.‘*?’ The counterfactual exogenous shock affects TFPR;
directly through wjy:, while §;,; is held fixed.

where s, =

Given the disproportionate changes in technical efficiency across products (Awj,,), each
firm re-optimizes its profit by adjusting its input and product-level outputs. Let ]%;nt
denote the resulting product-level revenue in the counterfactual scenario. The corresponding
counterfactual firm-level TFPR, computed using (42), is denoted by TFPR’,. The overall
effect of a 1-percent improvement in the technical efficiency of the reference product is then

measured by (TFPR], — TFPR;,).

Table 7: Effects of 1-percent exogenous increase in technical efficiency of the reference product

Spillover type
No Across-firm  Within-firm  Both

Total welfare, million Pesos  1.543 1.799 1.626 1.881
(0.327) (0.347) (0.327) (0.347)

Firm-level TFPR, percentage 0.315 0.368 0.320 0.373
(0.154) (0.158) (0.155) (0.159)

— Direct impact  0.126 0.146 0.133 0.154

(0.028) (0.030) (0.028) (0.030)

— Within-firm reallocation  0.190 0.222 0.187 0.219
(0.160) (0.163) (0.160) (0.163)

Note: The total welfare is measured as the sum of consumer surplus and pro-
ducer surplus. A detailed decomposition is reported in Online Appendix Table
AT7. The TFPR improvement is measured in percentage point and calculated
as the weighted average of the improvements in TFPR at the firm-year level
with firms’ total sales in the baseline scenario as weights. Bootstrapped stan-
dard errors, reported in parentheses, are computed based on 100 repetitions.

To isolate the role of within-firm resource reallocation, we compute a firm-level TFPR
using the updated firm-product-level TFPRs but holding the within-firm revenue shares s,
fixed at their original values. Denote this measure as TFPR},. The difference (TFPR}, —
TEFPR;;) reflects the direct impact of the technical efficiency improvement, while the difference

(TFPR}t — TFPR},) captures the indirect impact operating through within-firm reallocation.

43Tntuitively, this expression implies that while product quality promote TFPR, a sizable portion of its
impact is offset by its cost, as documented in Li et al. (2025).
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We conduct this decomposition for each firm and aggregate the results to the industry level
using firm sales as weights.

We implement this decomposition for four distinct cases: (a) no spillover (g7 = 0, g* = 0);
(b) allowing for only across-firm spillover (gf = 0.137, g* = 0); (c) allowing for only within-firm
spillover (g/ = 0, g? = 0.056); and (d) allowing for both spillovers (¢/ = 0.137, g = 0.056). In
addition to the decomposition of TFPR improvement, we also evaluate the welfare implications
by computing the change in total social welfare. Total welfare is defined as the sum of firm
profits and consumer surplus. Given the demand functions in (28), consumer surplus is
computed as Zf—ftl

The results are presented in Table 7. A 1-percent increase in the technical efficiency of
the reference product leads to an improvement in total welfare of 1.543 million Pesos in the
absence of any technological spillover. When only across-firm spillover presents, the welfare
gain increases to 1.799 million Pesos—approximately 16.6% higher than in the no-spillover
case. In comparison, allowing only within-firm spillovers results in a 5.4% larger welfare
improvement relative to the no-spillover baseline. When both spillover channels are active,
the total welfare gain is approximately the sum of the net effects from the individual spillover
scenarios. This comparison implies that both across-firm and within-firm technological

spillovers are economically significant, though the former plays a more dominant role.

Figure 1: Contribution of within-firm resource reallocation to TFPR growth

0.5

0.45 |-

Within-firm reallocation, percentage point
0
(4]

1 2 3 4 5 6 7 8 9 10
Within-firm rank of the impacted product

Notes: All firms producing more than 10 products are clustered in the “10” group.

A similar pattern emerges in the impact on firm-level TFPR. Notably, within-firm resource
reallocation accounts for approximately 60% of the overall TFPR improvement across all

four scenarios.** This highlights the importance of within-firm reallocation in shaping how

44This magnitude is based on the ratio of the indirect effect (Row 4) to the total effect (Row 2) across all
columns of Table 7.
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multi-product firms benefit from productivity shocks. While a large literature emphasizes
across-firm reallocation as a driver of aggregate productivity growth—showing that resources
tend to flow toward more productive firms (e.g., Baily et al., 1992; Bartelsman and Doms,
2000; Baily et al., 2001; Aw et al., 2001; Foster et al., 2006, 2008; Syverson, 2011; Collard-
Wexler and De Loecker, 2015)—our firm-product-level analysis demonstrates that within-firm
resource reallocation makes a sizable contribution to the firm-level productivity growth.
Interestingly, within-firm resource reallocation plays an even greater role when a firm’s top-
selling products experience a productivity shock. This pattern is illustrated in Figure 1, which
shows that the contribution of within-firm reallocation to firm-level TFPR improvement
declines steadily with the within-firm rank of the impacted product.*® Specifically, a 1
percentage point increase in the technical efficiency of a firm’s top product (ranked 1st)
results in a 0.4 percentage point improvement in firm-level TFPR attributable to within-firm
reallocation. By contrast, when the same improvement occurs in the firm’s least-selling product
(ranked 10th), the contribution from reallocation falls to less than 0.05 percentage points. This
result has important implications for the endogenous productivity dynamics of multi-product
firms. In settings where firms make dynamic decisions about productivity investment, the
relative sales performance of products within the firm may be a key determinant of where

research efforts are directed—echoing insights from Kim (2024).

8 Conclusion

Multi-product firms account for a significant share of our economy. Yet, the traditional
firm-level analysis in the literature masks the within-firm heterogeneity. In this paper, we
propose a novel method to estimate firm-product-level productivity and quality along with
demand and transformation function parameters. Compared with the existing methods in
the literature, our method does not impose assumptions on how inputs are allocated across
different products within firms, nor does it necessarily restrict how productivity evolves
over time. This flexibility allows researchers to explore complex productivity dynamics after
estimation. Importantly, the method can be easily scaled up to estimate production functions
with a large number of products, without relying on the availability of productivity proxies.
Finally, the method accounts for heterogeneous intermediate input prices that are usually
unobservable to researchers and lead to biased estimation results when ignored.

We apply our method to three major industries in the Mexican manufacturing sector.
Our findings reveal substantial heterogeneity in both quality and productivity—even when
conditioning on a given product. Moreover, conditional on input usage, firms face a trade-off

between quality and productivity. After accounting for this trade-off, we find that the

45 A higher rank indicates a product further from the firm’s top-selling product.
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underlying technical efficiency exhibits both across-firm and within-firm spillovers. This
implies that an exogenous improvement in the technical efficiency of a single product not
only affects the efficiency of other firms producing the same product, but also influences the
efficiency of other products within the same firm. Notably, a large share of the resulting
impact on firm-level TFPR is driven by within-firm resource reallocation. This highlights
the quantitative importance of within-firm reallocation as a key mechanism through which
multi-product firms enhance their performance. Consequently, this channel holds important

implications for understanding aggregate productivity growth.
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Online Appendix

A Input Aggregator: Translog Functional Form

While Section 5 adopts a CES input aggregator for the empirical implementation, the method
is not restricted to that functional form. In this appendix, we outline an estimation strategy
when the input aggregator instead takes a translog functional form.

We maintain the setup of the demand system and output aggregator as (1) and (4),
respectively. As a result, the parameters associated with the demand model and output
aggregator are estimated in the same way as described in the paper. In particular, denote the
estimated markup from the demand model as fi,,;; and denote the estimated parameter in
the output aggregator as 6. In what follows, we focus on estimating the parameters specific
to the translog input aggregator.

The input aggregator takes a full translog functional form:
F(Lji, Mjy, Kjt) = exp {al In Lj; + v In M + o In Ky
+ ap (In Kjy) (In Ljy) 4+ o, (In Ky) (In M) + ey, (In L) (In th)}

1 1 1
+ S0 (In th)2 + o Qmm (In th)Q + o Ok (In Kjt)2 , (A.1)

where the input variables, (Lj,, Mj;, Kj;), are normalized by their geometric means (e.g.,

1%12 selnLy = 0) respectively. Such a normalization is analogous to the normalization

conducted for the specification of the CES input aggregator, as described in Footnote 34.
Applying the methodology described in Section 3.2, we obtain a mapping from observable

data to the unobservable variables:*6

fjnt = P]:nlf ('Pt7 Qt>7 (AQ)

M(ozm + v In Ky + oy In Ljy) — (oq + g In Ly + oy In Ky)

Enjie
In M, = M ELji , (A.3)
(aml — Qmm Eth)
and .
0 Mjnt Ljt 01 -
eVWint — ! FL',M-,K< 7 A4
Pjni FL(LJtqutaKjt> gt [ (L My, o)) (A.4)

Ajt

“0We assume that 2=t £ =Lt 5o the unique solution of M, exists.
Amm Mijt
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where f1,¢ in (A.4) is the markup specified in (18), M, in (A.4) is the function presented

as (A.3), and Fp(Lj, M, Kji) = WLJTW The above equations explicitly represent the
J

mappings of quality (8), material quantity (14), and productivity (19) in the general model.

Consequently, the expression of the main estimating equation, (24), in this setup, is:

| Z Rijnt | | Erjt + Ewmje o
" Wint | N OF Ly 0Fy My, Hit
TLEAjt 8th th 6th th

= — lnﬁo —+ ID[EM].t — ,BlEth} —1In [1 -+ ﬁg thjt + 53 In th] — Ujt, (A5)

where By = am — i, fi = 2=, By = (Qpm — awB1)/Bo; B3 = (qum — aupi)/Bo, and

mi
Rjnt/ﬂjnt

e "int| 5 is a firm-level composite error term.
neh j, Bint/Hint

ujy = In {zne/\jt [Z

As with the CES input aggregator in our empirical implementation, (A.5) alone does not
identify all parameters of the translog function as the input aggregator. This is because
some of the parameters are cancelled out when substituting the unobserved productivity and
material input into the translog function using the mapping. Hence, additional conditions
are required to identify all the translog parameters. Because the translog function is more
flexible than the CES function, we explore both cross-sectional and time-series assumptions.

In particular, the first time-series assumption regards material prices. For demonstration

purposes, we assume that material prices evolve exogenously according to an AR(1) process:
In Pprje = ho + hiIn Pagje—1 + €arjes (A.6)

where €y, is an i.i.d. shock.

The second time-series assumption regards technical efficiency. We only need to utilize
the evolution of one product (e.g., reference product 1) within each firm. For demonstration
purposes, we assume that the technical efficiency evolution of this reference product in (6) is
independent of the evolution of other products in the same firm (i.e., abstracts away from
spillovers):

Wit = go + Wj1t—1 + €j1¢- (A7)

The full estimation procedure is described by the following three steps.

Step 1: Estimate the revenue relationship (A.5).

We first estimate (A.5) via GMM with instrumental variables specified when estimating
its general version (26) in Section 3.2. This provides an estimate of Bl, BQ, and 33.47 Another

important output of the estimation is the fitted value of the right-hand side of (A.5), which

4TWe do not interpret the constant estimated from (A.5) as By because the composite error term uj; does
not have a zero mean (i.e., E(u;¢) # 0).
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is denoted as \i/jt:

¥ = Erje+ Epmye Euje By (A.8)
It = OF; Ly OFj My, — 8Fj My — 9Fj Ly’ ’
OLj: Fjr ' OMj; Fj OM;j: Fjt 0L+ Fj

where the last two equalities come from the ratio of first-order conditions (13).
Thus, the elasticity of function F' with respect to labor can be computed as Uy j:
OF; Ly By

= —— = 0Ori. A9
aLJt F}'t ‘I/]t Ljt ( )

Given the translog functional form (A.1), this elasticity can be written as:

OF; Ly,
Ly Fy

= o; + Qy In th + Oy In th + Qg In Kjt = QA}th. (AlO)

Similarly, the elasticity of function F’ with respect to material can be computed as Upg;y:

OF; My Ewjy

= —L = O, A1l
oM Fyr Wy, (A.11)
and this elasticity can be written as:
OF;; M; .
(9]\/[]; ﬁ = Qy + 0 In Ljy + g, In My + gy, In Ky = Opgjy. (A.12)

Because the input variables are normalized by their geometric means (e.g., & > i Lj=0)

respectively, taking the average of (A.10) and (A.12) we obtain:
@—120 a —120 (A.13)
l_N ~ Ljt, m—N -~ Mt .

where N is the total number of observations. These are the across-sectional restrictions that
are analogous to the restriction imposed for the specification of the CES input aggregator in
Section 5.2.

With these estimates, we can compute ,@0 as Bg = Qy, — dlﬁAl.

Step 2: Estimate the evolution process of material prices (A.6).

Using (A.12), we can express In M, as:

1
In Mj; = ——(Ongjt — Qo — QI Ljp — gy, In Kjy). (A.14)

mm

This is an equivalent expression of (A.3).

51



As a result, In Py, can be written as:

+ —" — — Oy + —— In K. (A.15)

mm amm mm

1
In Pth = (ln Ejt + B_ In th

) @m 1 X,
1

Therefore, we can estimate (A.6) via GMM using moment conditions
]E(EthZth) = 0, (A16)

where epy = InPyjy — ho — hiln Pyrj—1 and Zyyj is the instrument variables Zy; =
(LInEj 1, InLj_y, Oprje—1, In Kjp—1). Zpgje is uncorrelated with €75, because €y is not in
the information set of period ¢. The estimated parameters are (izo, i, Gm,s Q) -

With these estimates, we can recover the following parameters using the estimate in step

1 as: @y = dgblm’ Qg = Qe —PoB2 amlﬁjlﬁ()ﬂg'
Step 3: Estimate the technical efficiency evolution process of the reference product (A.7).

s and dll =

We re-write the mapping (A.4) for the reference product as

(i)ljt = ealjtF(th, M, Kjy), (A.17)

1

where <i>1jt = [% %ﬂ 6 ()1jt, which can be directly computed using the estimates from the
J J
previous steps.

Substitute the unobserved M;; in (A.17) by (A.14), and reorganize the terms to obtain:

In F(th, th, Kjt) =In ﬁ}'t + Yk In Kjt + %’Ykk (hl Kjt>27 <A18)

” ~ d2 ~ R R N
where v = ap — “22Em gy = agy, — 3=, and InFjy = o + 4 In Ly + Au (In Lj)* +
A2

A~ 1~ A~ 2 . . ~ o 6% A oA A O ~ _

Yix (In L) (In Kjy) + 3900 (In0nrj0)* with coefficients 49 = —552—, 41 = qy — “22=, 4y =
A2 ~ ~

A o— Ym A A MUmOkm 5o 1

o — 5o = ik = Qg G and 9y, = E

Note that the only parameters unknown are 7 and vy in the right-hand side of (A.18)
and In F it 1s directly computed from the data and the estimated parameters in the previous
steps.

As a result, (A.17) can be used to solve @y as:
(Dljt =1In (i)ljt —1In ﬁ}t — Yk In Kjt — %'Ykk (ln Kjt)2- (Alg)

According to the evolution of technical efficiency (A.7) of the reference product and the

cost of quality specification (40), we derive the explicit evolution process of technical efficiency
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of the reference product as:
Wit = go + g1(@Wj1e-1 + ’Y&éjt—l) - ’Ygéjlt + €1t (A.20)
This equation can be estimated via GMM using moment conditions
E(e1j1Z11) = 0. (A.21)

Note that €1, = @1t — 9o — g1 (D11 + %fﬁ_l) + Vgéju, where @;1¢—1 and @1, are replaced
by (A.19) for period t — 1 and ¢, respectively. Zjj; is the instrument variables Z;; =
(1, In®yjp1,In Fjpq,In K1, (In Kjp1)?, éﬂt,l). Zwje is uncorrelated with €75, because €y
is not in the information set of period ¢. The estimated parameters are (o, g1, Yk, Yer). With

these estimates, the final parameters of the translog function parameters can be recovered as

Gm dkm

2
(0%
and apr = Yk + 22

Amm

o =Y+ TEE

The choice of input aggregator functional form (CES vs. translog) depends on the empirical
context, because each functional form has advantages and disadvantages. Although a CES
aggregator is a more restrictive functional form, its estimation does not rely on the technical
efficiency evolution process. This allows researchers to specify a more flexible or complex
technical efficiency evolution after estimating the rest of the model as shown in the paper.
In contrast, the translog aggregator offers greater flexibility in modeling inputs. However,
estimating the translog function requires jointly estimating the technical efficiency evolution
process and the translog parameters, which can limit the flexibility of the technical efficiency

evolution specification in empirical applications.

B Multiple Materials Inputs

In the paper, we follow standard practice in the literature by assuming that each firm uses a
single intermediate input in the production process. In reality, however, especially for multi-
product firms, total intermediate input expenditures encompass a variety of goods that may
differ both horizontally (e.g., rubber versus foam) and vertically (e.g., genuine leather versus
synthetic leather). Unfortunately, most datasets report only total material expenditures,
with no breakdown of types, prices, or quantities. This data limitation constrains researchers’
ability to isolate the effects of individual inputs in the production process.

In this context, a key question is: under what conditions can our method accommodate
the fact that firms use multiple (i.e., horizontally and vertically differentiated) material
inputs, without requiring additional data? More specifically, can we still estimate the model
parameters and recover productivity and quality at the firm-product level when only firm-level

data on intermediate input expenditure (rather than input-type specific expenditures or more
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disaggregated data) are available? The Online Appendix of Grieco et al. (2016) provides a
positive answer in their context of single-product firms. The key assumption they need is
that the effect of different intermediate inputs on production can be summarized through
a homogeneous material index function. With this assumption, the production function
parameters and thus productivity can be recovered even if the full vector of intermediate
input expenditures is not directly observed. Such an idea can be directly applied to our
context of multi-product firms. We present the details as follows.

Suppose a firm utilizes a vector of material inputs, M;; = (M, Majt, ..., Mpji), in
production. These inputs may include different input types and variations of the same input
at different quality levels.*® However, the researcher observes only the total expenditure on
all materials, Eyy,, = 25:1 Py, Mgy, rather than the quantity of each specific input, Mgj,
or its corresponding price, Py, .

We assume that these material inputs enter the transformation function as follows:
G(e " Qji) = F(Lyjt, 7(Myt), Kjr), (B.1)

where 7 : Rf — R, is an index function that aggregates the contribution of all material
inputs to production.’ We assume that 7(-) is homogeneous of degree k. As part of the
production technology, the firm is assumed to know 7. Of course, without observing individual
material inputs, we are not able to estimate the parameters associated within 7(-), although
the value of 7(-) can be recovered. Our goal is to show how our method can be extended
to such a context of multiple material inputs without estimating the parameters associated
within 7(-).

Note that this setup allows firms to use different material inputs to produce different
products within the same firm, without explicitly modeling the allocation of each input
to specific products. Such an assumption aligns with our broader modeling approach in
the paper: rather than specifying separate production functions for individual products,
we treat production as a transformation process. This approach enables us to account for

input differentiation—whether across input types (horizontal differentiation) or quality levels

48 An illustrative example in the Online Appendix of Grieco et al. (2016) is as follows. The material
vector consists of three components: (My, Ma, Msz). My, and My are vertically differentiated versions of
the same type of input. While the quality for M; is normalized to be 1, the quality for M5 is modeled
as a scale parameter § > 1. Mjs is a component that is horizontally differentiated to the other two.
For example, consider Mj, Ms, and M3 as foam sole (lower quality), rubber sole (higher quality), and
leather upper, respectively, for footwear industry. The material index function is modeled as: 7(M;;) =

/m /2
maix [ M7+ M|, [(0Mag)= + M ]

49Some firms may not use certain inputs. The Online Appendix of Grieco et al. (2016) demonstrate how a
discrete choice model of input selection can accommodate such cases.
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(vertical differentiation)—without requiring an allocation rule for how each material input is
assigned to each product. In the context that individual material inputs remain unobserved
by researchers, this approach makes it possible to estimate the transformation function
parameters and recover firm-product-level productivity. In the following, we demonstrate
how this estimation is carried out.

As described in the paper, the firm’s static optimization problem is now to choose Lj
and the vector M;; to maximize the profit. In the setup with multiple material inputs, the

Lagrange function is:

D
«fjt = Z Pjnt(th7 ijt§ €t)ant - Pthth - Z PMdthdjt
neMjt d=1
—Ajt{G(e_‘bthﬁ) — F(Ljt, 7(Mjy), Kjt)}a (B.2)

where \j; is the Lagrangian multiplier.

The first-order conditions with respect to labor and each individual material inputs imply:

OF (Lji, 7(My), Kj)

Ait OLj = Prje (B.3)
OF (Lj;, T(Mj), K;
)\jt ( ]t77-( Jt>7 J )Td(th) = pMdjt’ Vd=1,2,...,D. (B.4)
aTjt
where 7,(M;;) = 85%;:).
Define a material price index as Prj; = %, where (M) = 25:1 Mgie1a(M;y). Using

this price index, the information in (B.4) can be summarized into a single equation by

multiplying by Mg;;, summing across d, and dividing it by ¢(M,;),

aF(th,T(th>7 Kj ) _ PTjt' (B5)

Adt 0T

This equation, together with (B.3), can be interpreted as the firm’s first-order conditions,
as if it were optimizing while facing a wage rate Pr,, and a material price index P, for a
single aggregated material input, represented by the quantity index 7;; = 7(M,;). This is
analog to the setup described in Section 3 for the baseline case where only a single material
input is considered. Importantly, neither P, nor 7;; needs to be observable.

In this setting, total observed material expenditure is related to the material price index
and the material quantity index via: P.j;7j; = %, where E}yy,, is the total expenditure on

materials, and k is the degree of homogeneity of the function 7(-). This relationship follows
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directly from Euler’s Theorem for homogeneous functions: 25:1 Myjita(Mjy) = k7(Mjy).
In the special case where the firm uses a single material input, 7(-) reduces to the identity
function, which is homogeneous of degree 1, implying x = 1.

Thus, we can treat 7;; as analogous to Mj; in the single-input case. Thus, the estimation
strategy described in Section 3 remains applicable, with one key modification: material
expenditure F);; is replaced by %, where k serves as an additional scaling parameter.

The identification of x depends on the specification of the input aggregator function. In
some cases (e.g., a translog input aggregator), x may not be separately identified from the
production function parameters. In such cases, it can be normalized to 1 without loss of
generality, as it is absorbed into the primary parameters of the production function. In other
cases (e.g., a CES input aggregator), « is identifiable through the revenue function, where it
captures the returns to scale of the material aggregator index 7(-). For example, in setup with
the CES functional form of input aggregator as specified in Section 5, the main estimating

equation (33) becomes:

(N — 1)p » Eu, ax (K \”
In Z —Rjnt =1In - + Eth 1+ Oé_L L_]Jt — Ujt, (B6)

nGAjt Tln

where

wy =1l 3 [ Y ] (B.7)
Gt — 1) 5 . .
TLEAjt ZTZGA]'t (nr]n )R_]Tbt

After the model parameters are estimated, the firm-product level productivity and quality

can be computed in the same way as specified in Section 5.

In summary, our method extends naturally to the multiple-material input setting (where
the production involves different types or quality levels of material inputs) without requiring
additional data, provided that the contribution of material inputs to production can be
captured by a homogeneous materials index function in the transformation function rather
than being modeled as inputs of individual products. While the specific functional form of
this index function is not identified without additional information, this lack of identification
does not hinder the recovery of the model’s parameters or firm-product level productivity. In
fact, neither the precise functional form nor the dimensionality of the index function needs to

be explicitly specified for our estimation approach to remain valid.

C Firm’s Dynamic Decisions

This appendix describes the dynamic decisions made by the firm as a completion of the full

model. At the end of each period ¢, the firm chooses the set of products to produce, their
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associated quality levels, and investment in technical efficiency improvement (e.g., research
and development), for the next period ¢ + 1. These decisions are made conditional on the
current state and after observing the adjustment costs of product scope and quality levels.
Although the evolution of some state variables such as capital stock can be endogenous, we
remain agnostic on modeling their exact evolution processes because our estimation method
focuses on the static decisions and does not rely on how these variables evolve over time.
The adjustment costs of product scope capture the costs incurred by the firm to install and
arrange new production lines. The adjustment costs of product quality contain the costs of
modifying the production procedure and sourcing new suppliers of the material input to meet
the new quality levels.

In making decisions regarding product scope, quality levels, and investment, the firm is
forward-looking and takes into account the impact of the current decisions on the future paths
of the state variables. In particular, the firm knows that the choice of improving the quality
of a product for the next period will reduce the associated (quantity-based) productivity in
the next period (i.e., due to the cost of quality).

Although we do not estimate the full dynamic model in this paper—due to the high
dimensionality of the state space—the model plays a crucial role in clarifying the firm’s
dynamic decision-making and serves as the conceptual foundation for the static model.*”
Specifically, while the firm’s choices regarding product scope, quality levels, and technical
efficiency are inherently endogenous in a dynamic setting, we treat them as predetermined
and observed at the time the firm chooses inputs and outputs to maximize current-period
profit. Our estimation method, presented in Section 3, relies on this assumption to establish

the mapping from observed variables to unobserved productivity and quality.

D Discussion of the Instrumental Variables

Our strategy for estimating the relationship of demand elasticity parameters 7, in Section
5.2 exploits the within-firm relationship between the revenues of two products conditional
on relative production capability (TFPR), implemented via an instrumental variable (IV)
approach. This section discusses the validity of our IVs and outlines alternative methods for
estimating 7,.

A key requirement for IV validity is a non-trivial degree of heterogeneity in production
capability (i.e., TFPR) across firms for each product. If the dispersion in TFPR for a given

product is extremely small, our identification strategy—relying on within-firm variation

50For instance, even in the footwear industry with only four products, the dynamic state includes at least 10
continuous variables: four for technical efficiency, four for product quality, and two for input prices (material
and labor).
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in revenues to estimate the elasticity relationship (35)—will fail. As an extreme example,
consider an industry where firms produce a primary product (1) and a secondary product
(2). If TFPR varies substantially across firms for product 1 but is constant for product 2,
then in estimating (35), the firm-level inputs used as IVs would be correlated with the error
term because (jo; would be mechanically determined by the TFPR of product 1. Thus, a
necessary empirical condition for our IV strategy is that all products exhibit sufficiently large
TFPR heterogeneity. In our application to Mexican manufacturing industries, this condition
is satisfied.

First, products at our level of aggregation display substantial across-firm variation in
TFPR, as reflected in the dispersion of prices and sales across firms. In particular, the lowest
standard deviation of log output prices for any product is 0.27 and the lowest standard
deviation of log sales is 1.25. The TFPR dispersion estimates reported in Online Appendix
Figure A2 further confirm that heterogeneity is sufficiently large for each product in our
sample.

Moreover, within a firm, sales are not concentrated entirely in a single product. Online
Appendix Table A2 and Online Appendix Figure A1 (discussed in Section 4) show that all
products contribute non-trivially to firm-level revenues. For example, Online Appendix Table
A2 reports average within-firm product shares by product scope: among firms producing five
or more products, the average share of all products other than the top-selling one is 0.556,
and the average share of products ranked fifth or lower is 0.147. Online Appendix Figure
A1 shows the within-firm Herfindahl-Hirschman Index (HHI), where a lower value indicates
greater diversification within a firm. The HHI falls to around 0.3 for firm-year pairs with five
products and to about 0.2 for those with ten or more products, indicating that revenues are
not dominated by their top product in these multi-products firms.

The insights from the above discussion also apply to the validity of the same IVs used in
estimating 0 from (27), as this estimation likewise exploits the within-firm relationship.

If the above heterogeneity condition does not hold, alternative approaches are available to
estimate the demand elasticities. First, demand elasticities can, in principle, be identified
directly from the demand function (28) using variation in prices and quantities, provided
that suitable IVs uncorrelated with product quality are available. For instance, Orr (2022)
estimates a demand system by constructing IVs that exploit variation in product sets and
input price growth across firms operating in similar input markets but serving different output
markets. In this case, one could directly estimate the demand function as discussed in Section
3 without relying on (35). Second, in the context where the assumption of constant returns
to scale (i.e., p = 1) can be plausibly imposed, the demand elasticities can be identified from

(33) alone, bypassing the need for the strategy of estimating (35). In this case, (33) simplifies
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to the estimating equation used in Das et al. (2007), Aw et al. (2011), and Li (2018), which
relates total variable cost (the counterpart to the right-hand side of (33)) to export revenues
(the counterpart to the left-hand side of (33)) across multiple export markets for the same

firm.

E Aggregating to Firm-level TFPR

The literature has a tradition of using revenue-based productivity (TFPR) as a measure of
firm performance. While our framework yields a measure of TFPR at the firm-product level,
these product-level measures can be aggregated when the interest is in evaluating overall firm
performance. This appendix derives the aggregation.

We begin with our framework and impose the standard assumption implicitly assumed in
the literature using firm-level data: the productivity of producing different products within
the same firm is identical (i.e., a common firm-level productivity). Specifically, from the

demand function (28), the revenue for product n can be written as

~ ~ Nn—1 1 Nn—1
_ _ n =&t _ —&@jnt , TFPR;
Rjnt - Pjntant - jm? em>" = [ante inte ]nt] " ) (El)

where TFPR,,; is defined in (38).

Rearranging this expression, we obtain:

~_Nn ~
R'{mtfle—TFPRjnt — ante_wjnt.
n

Raising both sides to the power ¢, summing across all products n € Aj;, and then taking the
1/6 root yields:

1/6 1/6
nn 0
Dnin—1 _— int o —Wjnt 0 _
SO [ rer e = > [Qimem]" b = F(Ly, My, Kjy),  (E2)

neAﬁ neAjt

where the second equality follows from the transformation function (3).
Given the common revenue-based productivity at the firm level, denoted TFPR;, we
replace TFPR,,; with TFPR; in the left-hand side to obtain:

1/6

~ _"n 0
Z [R,?n_l] e TFPR — F (L., My, Kjy). (E.3)

Jnt
nEA]‘t

Therefore, comparing the two equations above, the firm-level TFPR can be related to
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firm-product-level TFPR as:

~1/6
eTFPRjt — Z (sjntefTFPij)G : (E4)
nEAjt
where .
R(zn—l
Sint = ot (E.5)

1/6
(S [0}
mGA]‘t Jt

is a weight that depends on the relative contribution of product n to firm j’s aggregate

revenue. For a single-product firm, this relationship degenerates to an identity equation.

F Additional Tables and Figures

Table Al: Product list by industry

Product name (product code)

Footwear, leather (324001)

Printing and binding (342003)

Pharmaceutical products (352100)

Cow leather, for men (1)
Cow leather, for women (2)
Cow leather, for kids (3)
Others (99)

Printing of calendars and almanacs (5)
Folding boxes (6)

Notebooks and pads (7)

Labels and prints (13)

Brochures and catalogs (14)
Continuous forms (15)
Accounting/admin/tax forms (16)
Telephone directories (17)

Books (18)

Journals (19)

Checks (21)
Commemorative/business cards (23)
Commercial flyers (24)

Posters (25)

Others (99)

Bactericides (11)

Antiparasitics (13)

Dermatological (15)

Products with specific actions (19)
Circulatory system (21)

Digestive system and metabolism (22)
Musculoskeletal system (23)
Respiratory system (24)

Sensory organs (25)

Genitourinary system (26)

Blood and hematopoietic organs (27)
Central nervous system (28)
Hormones (32)

Vitamins and compounds (43)
Non-therapeutic products (59)
Others (99)
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Table A2: Within-firm product shares by product scope

Product rank (by sales level)

Product scope 1 2 3 4 o+
1 1.000

2 0.770 0.230

3 0.670 0.240 0.090

4 0.568 0.283 0.117 0.032

o+ 0.444 0.204 0.123 0.082 0.147

Note: All firm-year pairs producing 5 products or more are clustered in the “5+” group. All
products ranked 5 or lower are clustered in the “54+” group.

Table A3: Descriptive statistics

Variable Footwear Printing Pharmaceutical
Revenue per product (R) 70.890 30.713 104.376
(106.830) (75.803) (211.836)
Number of workers (L) 248.722 160.826 465.352
(383.053) (157.036) (492.768)
Labor expenditure (E7) 14.532 18.238 92.608
(30.514) (22.983) (112.902)
Material expenditure (Eyy) 53.287 65.952 269.550
(81.526) (91.617) (384.567)
Capital stock (K) 3.413 22.839 23.196
(7.428) (49.486) (32.074)

Notes: The table reports the means and standard deviations (in parenthesis) for each
variable by industry. R is revenues by product (1 million 2007 Mexican Peso, 1M MXN);
L is the number of workers by firm, K is the capital stock by firm (1000 physical units);
E}, is the expenditure on labor (wage bill) by firm (1M MXN); E) is the expenditure on
intermediates by firm (1M MXN).
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Table A4: Monte Carlo parameter values

Parameter Description Value

N Number of products 5

T Number of periods 15

J Number of firms 500

Mmy,n=1,...,5 Demand elasticity parameters 3,4,5,6,7

ar, CES parameter of labor 0.4

apg CES parameter of material 0.4

g CES parameter of capital 0.2

o Elasticity of substitution of inputs 2

p Returns to scale parameter 1.1

0 Substitution parameter of output 0.9

9w, ,n=1, Persistence parameters in productivity evolution 0.81 0.82 0.83 0.84 0.85
g5, ,n=1, Persistence parameter in quality evolution 0.79 0.8 0.77 0.76 0.75
g Persistence parameter in wage rate evolution 0.85

qgm Persistence parameter in material price evolution 0.8

g~ Persistence parameter in capital evolution 0.8

r Productivity and quality shock correlation -0.2
sd(e¥),n=1,...,5 S.D. of productivity shock 0.025 0.020 0.015 0.010 0.005
sd(€8), n=1,...,5 S.D. of quality shock 0.025 0.020 0.015 0.010 0.005
sd(e?) S.D. of wage rate shock 0.1

sd(e™) S.D. of material price shock 0.1

sd () S.D. of capital stock shock 0.1

sd(u) S.D. of unexpected firm-product price shock (ujn:) 0.05

Table A5: Monte Carlo: Estimates of within-firm revenue relationship

1-0. 125 1-0.8, 1-00 1-0_ 5
e R e S e e e
True 0.571 0.357 0.229 0.143
Estimate 0.569 0.357 0.228 0.143
Standard error  (0.033) (0.020) (0.012) (0.007)

Note: The estimates, for the parameters of (35), are
reported as the mean estimates from the Monte Carlo
simulations. Standard errors in parentheses are com-
puted as the standard deviation of the estimates.
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Table A6: Monte Carlo: distributional characteristics of key simulated variables

Productivity
w1 ) w3 Wy s
Mean 0921 0945 0971 1.000 1.033
Std. deviation 0.040 0.033  0.025 0.017  0.009
Quality
& & & &4 &
Mean 0.607 0.591 0.576  0.563  0.550

Std. deviation 0.039  0.030 0.022 0.015 0.007

Within-firm revenue share

share; shares share; share; shares

Mean 0.569 0371 0.275 0.159 0.057
Std. deviation 0.179  0.091 0.105 0.100  0.070

Note: The reported means and standard deviations are
calculated as the average and standard deviation of the
key variables across Monte Carlo simulations.

Table A7: Welfare improvement of 1-percent increase of technical efficiency, million Pesos

No Across-firm With-firm Both

Total welfare 1.543 1.799 1.626 1.881
Consumer surplus 0.845 0.984 0.889 1.029
Producer surplus  0.699 0.814 0.736 0.852

Figure A1: Weighted average within-firm HHI, by number of products

Average within-firm HHI

o o o o o o
n w kS [6,] [«2] ~
: T :

o
=

0

1 2 3 4 5 6 7 8 9 10+

Number of products
Notes: All firm-year pairs producing 10 products or more are clustered in the “10+” group.

The weighted average is calculated using revenues as weights.
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Figure A2: Distribution of TFPR
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Notes: TFPR is demeaned, and only products with at least 100 observations are included.

Figure A3: Distribution of productivity, w
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Notes: @ is demeaned, and only products with at least 100 observations are included.
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Figure A4:

Distribution of quality, &
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Figure A5: The relationship between productivity and quality
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