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1 Introduction

As a result of the financial crisis of 2007-2009, the U.S. economy experienced a sharp contraction

in activity followed by a markedly slow recovery. At the same time, the federal funds rate fell and

remained at its effective lower bound for a protracted period of time. Accordingly, the zero lower bound

(ZLB) constraint became a practical concern for monetary policymakers, limiting their ability to offset

contractionary disturbances to the economy. In light of these developments, an important question

remains: What role did this constraint play in exacerbating the economic slump that occurred in the

aftermath of the financial crisis?

In this paper, we address this question by formally estimating and evaluating a dynamic stochastic

general equilibrium (DSGE) model. In doing so, the paper offers a methodological contribution by

estimating a nonlinear DSGE model in which a lower bound is occasionally binding. We apply this

methodology to the interest-rate lower bound, but our approach is more general and could be used in

many different contexts, including models with financial constraints. When applied to the interest-rate

lower bound, the technique allows us to identify the nature and size of disturbances that pushed the

interest rate to the lower bound in the United States in late 2008 and quantify the role of the constraint

in exacerbating the resulting economic slump. Moreover, our methodology provides a new perspective

on the relative contributions of the endogenous and exogenous sources of business cycle fluctuations.

We estimate a nonlinear version of a medium-scale model widely used in macroeconomics and mon-

etary economics. In particular, we use a model similar to those of Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2007), as these models have been successful in providing an empirically

plausible account of key macroeconomic variables including output, consumption, investment, inflation,

and the nominal interest rate. The model includes several real and nominal frictions including habit

persistence in consumption, costly adjustment of investment, and costs to adjusting nominal wages and

prices. Because of these features, the model has many state variables, and we demonstrate that it is

possible to estimate a model of this size nonlinearly using Bayesian techniques.

Fluctuations in the model are driven by five shocks including those to total factor productivity,

government spending, and monetary policy. We also include two other shocks that can be interpreted

in a reduced-form manner as financial shocks. The first is the marginal efficiency of investment (MEI)

shock discussed in Justiniano, Primiceri, and Tambalotti (2011), which affects the transformation in

which goods can be turned into productive capital. As shown in Justiniano, Primiceri, and Tambalotti
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(2011), this shock can be viewed as a disturbance to the financial sector’s ability to channel savings into

investment. The second is a disturbance to the household’s intertemporal Euler equation governing

the purchase of a risk-free bond as in Smets and Wouters (2007) and Christiano, Eichenbaum, and

Trabandt (2015). Following Smets and Wouters (2007), we refer to this shock as a ‘risk premium’ shock

since it affects the spread between the risk-free rate and the return on risky assets.

In the model, the lower bound constraint is potentially an important factor influencing the stance

of monetary policy and hence economic outcomes. By constraining the current interest rate, the

lower bound limits the degree of monetary stimulus. However, monetary policy can still be effective

in influencing expectations about future output and inflation, thereby affecting the current levels of

prices and spending. Similarly, the current decisions of households and firms are influenced by the

expectation that in future states the constraint may be binding.

Our solution method takes into account the effect that uncertainty about the ZLB has on the

economic decisions of households and firms, as we do not impose certainty-equivalence or perfect

foresight to solve the model. With this solution, we estimate the nonlinear model using Bayesian

methods via a Markov chain Monte Carlo (MCMC) algorithm. Since our likelihood function is not

available in closed form, we use the particle filter to evaluate the likelihood function. Although others

have estimated nonlinear models with these techniques, this paper is the first to our knowledge to do

so using a nonlinear model with an occasionally binding constraint.

Our empirical approach offers several advantages. First, as noted above, it explicitly takes into

account the effect of future uncertainty about whether the ZLB will bind or not on the economic deci-

sions of agents, and this uncertainty is accounted for in the estimation of the model. In contrast, others

including Ireland (2011) estimate a linearized DSGE model without the constraint, which neglects to

consider how the lower bound systematically changes monetary policy and thus the behavior of eco-

nomic agents—a key aspect at the heart of our analysis. Moreover, we find evidence that the risk of a

binding ZLB constraint affected economic behavior during the 2003-2004 episode in which the federal

funds rate was near-but-never-at the constraint.

A second advantage of our approach is that it uses all available data, including the period over which

the ZLB binds, to estimate the model. In contrast, an alternative approach is to estimate a linear model

over a sample period in which the ZLB does not bind and use those estimates to simulate a nonlinear
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version of the model that imposes the constraint.1 This approach precludes jointly estimating the

parameters of the model and the shocks that occurred over the zero lower bound period and then using

them to quantify the economic effects of the constraint, a central feature of our analysis.

We also find that there are important differences between the parameter estimates coming from the

linearized version of the model and those coming from the nonlinear version, suggesting that inference

based on the estimates of the linearized model is flawed. In particular, we find that the linear version

of the model attributes an overly large role to the marginal efficiency of investment shock in explaining

economic fluctuations. This result arises because the nonlinear version of the model has a stronger in-

ternal propagation mechanism than its linear counterpart. This stronger propagation reflects, in part,

the nonlinearity associated with the ZLB but more importantly that the linear dynamics understate

the sensitivity of investment to economic disturbances in models with costs to adjusting investment

as in Christiano, Eichenbaum, and Evans (2005). Thus, our results highlight the importance of esti-

mating the nonlinear model in order to properly quantify the relative contributions of endogenous and

exogenous sources of business cycle fluctuations.

We estimate the model using U.S. quarterly data on output, consumption, and investment as well

as inflation and the nominal interest rate from 1983 through 2014. For this sample period, there is

a single episode spanning from 2009 until the end of the sample in which the nominal interest rate

is effectively at the lower bound. We examine the model’s estimated shocks during this episode and

characterize which shocks were important in causing the Great Recession and in driving the nominal

rate to the lower bound.

For the episode in which the interest rate was at the lower bound, the two financial disturbances

– the risk premium and MEI shocks – were key driving forces pushing the interest rate down and

keeping it at the lower bound during and after the Great Recession. However, the risk premium

shock is the relatively more important of the two financial shocks, especially in explaining the large

contraction in output, consumption, and investment that occurred. The productivity shock played a

role in contributing to the slow economic recovery and in explaining why inflation did not fall more

sharply during the Great Recession. Monetary policy shocks contributed little to the dynamics of

inflation, output, and the nominal interest rate over the course of this episode. However, this does not

necessarily imply that monetary policy was unimportant, as our results highlight that the systematic

1 See, for example, Aruoba, Cuba-Borda, and Schorfheide (2012) and Christiano, Eichenbaum, and Trabandt (2015).
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portion of the monetary policy rule was critical to understanding the dynamics of the economy during

and in the aftermath of the financial crisis.

Using the estimates of the shocks, the central question we address is how much the lower bound

constrained the ability of monetary policy to stabilize the economy. We answer this question by

comparing our estimated model in which the lower bound is imposed to the hypothetical case in which

monetary policy can act in an unconstrained manner. Our mean estimate from this counterfactual

experiment implies that about 25 percent of the sharp contraction in output during the Great Recession

was due to the interest-rate lower bound. The zero lower bound played an even larger role in accounting

for the slow recovery following this contraction, as U.S. GDP did not recover back to its pre-recessionary

level until the end of 2012. In the absence of the ZLB constraint, our mean estimates imply that output

would have recovered to its pre-recessionary level about a year earlier and that the ZLB explains about

half of the lower output over the 2008-2012 period. Moreover, the ZLB constraint was an important

factor in contributing to inflation running persistently below the Federal Reserve’s target over this

period. An important caveat, however, associated with these estimates is that there is considerable

uncertainty surrounding them.

The rest of the paper proceeds as follows. The next section presents the macroeconomic model

that we estimate, while Section 3 discusses how the model is solved and estimated. The next three

sections present the model’s results. Section 4 discusses the model’s parameter estimates and time

series properties of the model. Section 5 examines the estimated shocks that took the economy to the

lower bound and that account for the Great Recession, and Section 6 quantifies the effects of the zero

lower bound constraint on the economy. Section 7 presents some conclusions.

2 The Model

The model is similar to Christiano, Eichenbaum, and Evans (2005) or Smets and Wouters (2007).

The economy consists of a continuum of households, a continuum of firms producing differentiated

intermediate goods, a perfectly competitive final goods firm, and a government in charge of fiscal and

monetary policy. We now lay out the objectives and constraints of the different agents as well as the

sources of uncertainty.
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2.1 Firms

There is a continuum of monopolistically competitive firms producing differentiated intermediate goods.

These goods are used as inputs by a perfectly competitive firm producing a single final good. The final

good is produced by a representative, perfectly competitive firm with a constant-returns technology,

Yt =

(∫ 1
0 Yt(j)

εp−1

εp dj

) εp
εp−1

, where Yt(j) denotes intermediate good j ∈ [0, 1], and εp > 1 is a constant

elasticity of demand. Profit maximization implies that the final goods producer’s demand for good j is

given by Yt(j) =
(
Pt(j)
Pt

)−εp
Yt, where Pt(j) denotes the price for intermediate good j and Pt denotes

the aggregate price level.

The production function for good j is:

Yt(j) = Kt(j)
α (ZtNt(j))

1−α , (1)

where Zt denotes the aggregate level of technology, and Kt(j) and Nt(j) denote the capital and labor

services hired by firm j, respectively. Technology is assumed to evolve according to:

Zt = Zt−1GZ exp (εZ,t) , (2)

where εZ,t ∼ iid N
(
0, σ2

Z

)
denotes a random disturbance to technological growth that causes it to

depart from a deterministic growth rate, GZ .

Intermediate goods firm j sells its output in a monopolistically competitive market and sets its

nominal price Pt(j) subject to a quadratic cost to adjusting its price as in Rotemberg (1982). We

depart from Christiano, Eichenbaum, and Evans (2005) and use Rotemberg contracts instead of Calvo

contracts to model nominal price and wage stickiness, as this choice helps reduce the dimensionality of

the model’s nonlinear state space.2 A firm’s cost to adjusting its price in period t is given by:

ϕp
2

(
Pt(j)

π̃t−1Pt−1(j)
− 1

)2

Yt,

where the parameter ϕp ≥ 0 governs the size of the adjustment cost and Yt denotes aggregate output.

A producer’s price change is indexed to π̃t−1 = πaπ1−a
t−1 where π denotes the central bank’s inflation

2 With Rotemberg contracts the model has twelve state variables. If, instead, we used Calvo contracts, there would
be two additional state variables reflecting the dispersion of wages across households and prices across firms.

5



target and πt−1 = Pt−1

Pt−2
. The parameter a satisfies 1 ≥ a ≥ 0 and determines the extent to which price

indexation is tied to the central bank’s inflation target or to the lagged inflation rate. The cost of price

adjustment makes the problem of the intermediate goods producer dynamic; that is, it chooses Pt(j)

to maximize its expected present discounted value of profits:

E0

∞∑
t=1

βtΛt

[(
Pt(j)

Pt
−mct

)
Yt(j)−

ϕp
2

(
Pt(j)

π̃t−1Pt−1(j)
− 1

)2

Yt

]
,

taking mct, Yt, π̃t−1, and Λt as given. In equilibrium, the variable Λt is equal to the marginal value

of an additional unit of real profits to a household in period t, reflecting the ownership of the firm by

a household in the economy. The variable mct denotes real marginal costs, which are the same for all

the intermediate goods producers and are given by mct = 1
Φ

(
rkt
)α (Wt

Pt

)1−α
, where Wt

Pt
and rkt denote

the aggregate real wage and rental rate of capital services, respectively, and Φ ≡ αα(1− α)1−α.

2.2 Households

We assume that there is a continuum of monopolistically competitive households indexed by i ∈ [0, 1]

supplying a differentiated labor service, Nt(i). This allows us to model nominal wage rigidities in an

analogous manner to the nominal price rigidities described earlier. Household i sells labor services to

a representative employment agency producing a single labor input, Nt, which is in turn supplied to

the intermediate goods firms in a perfectly competitive labor market. The Dixit-Stiglitz aggregator for

labor services is given by:

Nt =

(∫ 1

0
Nt(i)

εw−1
εw di

) εw
εw−1

,

with εw > 1. Profit maximization by the employment agency taking as given the aggregate wage Wt

and each household’s wage Wt(i) yields the following set of demand schedules: nt(i) =
(
Wt(i)
Wt

)−εw
Nt,

∀i.
A household’s preferences are given by:

E0

∞∑
t=0

βt
{

ln (Ct(i)− γCt−1(i))− ψL
Nt(i)

1+σL

1 + σL
− ϕwt (i)

}
, (3)

where Ct(i) denotes the consumption of household i, and ϕwt (i) is the loss in utility associated with

adjusting the household’s wage, Wt(i). The parameter γ governs the importance of habits in consump-
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tion. Household i also experiences disutility from working, with the parameter ψL affecting the level

of this disutility and σL affecting the Frisch elasticity of labor supply. Similar to the cost of adjusting

prices, the wage adjustment cost is quadratic:

ϕwt (i) =
ϕw
2

[
Wt(i)

π̃wt Wt−1(i)
− 1

]2

,

where ϕw ≥ 0 governs the size of this cost. Wage contracts are indexed to productivity and inflation,

since π̃wt = GZπ
aw (exp (εZ,t)πt−1)1−aw with 0 < aw < 1.

A household’s budget constraint in period t is:

Ct(i) + It(i) +R−1
t

Bt+1(i)

ηtPt
+ a(ut(i))Kt(i) =

Wt(i)

Pt
nt(i) + rktKt(i) +

Bt(i)

Pt
+
Dt

Pt
− Tt. (4)

A household receives labor income from the employment agency and income from purchases of a risk-free

nominal bond, Bt(i). Each household receives the same amount of dividends, Dt, from the economy’s

intermediate goods producers and pays the same amount of lump-sum taxes, Tt. Household i also owns

capital, Kt(i), which it combines with its desired level of capital utilization, ut(i), to transform into

capital services, Kt(i) = ut(i)Kt(i). To utilize physical capital and transform it into capital services, a

household incurs the cost a (ut(i))Kt(i) where the function a (ut(i)) is given by:

a (ut(i)) =
rk

σa
{exp (σa(ut(i)− 1))− 1} . (5)

A household purchases the final good and uses it for consumption, Ct(i), or investment, It(i).

Nominal bonds are purchased at the price 1
RtηtPt

, where Rt denotes the nominal interest rate. Following

Smets and Wouters (2007) and Christiano, Eichenbaum, and Trabandt (2015), ηt is an exogenous

disturbance to a household’s return on the risk-free bond. Fisher (2015) discusses how an increase in

ηt, to first order, can be interpreted as a rise in the demand for risk-free bonds. This risk premium

shock affects the spread between the nominal rate and the return on risky assets, and is assumed to

evolve according to:

ln(ηt) = ρη ln(ηt−1) + εη,t, (6)

where εη,t ∼ iid N
(
0, σ2

η

)
.
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A household’s purchases of investment augment the physical stock of capital according to:

Kt+1(i) = (1− δ)Kt(i) + µt (1− St(i)) It(i), (7)

where δ is the depreciation rate of capital and µt is an exogenous disturbance to the marginal efficiency

of transforming final goods into tomorrow’s physical capital. This shock is assumed to evolve according

to:

ln(µt) = ρµ ln(µt−1) + εµ,t, (8)

where εµ,t ∼ iid N
(
0, σ2

µ

)
. As discussed in Justiniano, Primiceri, and Tambalotti (2011), this shock

can be interpreted as a reduced-form way of capturing financial frictions that affect the transformation

of aggregate savings into investment. In accumulating capital, households must also incur an adjust-

ment cost, St(i), to transform investment into capital available for production next period. Following

Christiano, Eichenbaum, and Evans (2005), these adjustment costs are given by:

St(i) =
ϕI
2

(
It

GZIt−1
− 1

)2

. (9)

2.3 Monetary and Fiscal Policies

The central bank must set the nominal rate Rt in accordance with its lower bound constraint:

Rt = max
[
1, RNt

]
, (10)

where RNt denotes the notional or desired rate that the central bank would like to set in the absence

of the constraint. The notional rate is set according to:

ln(
RNt
R

) = ρR ln(
RNt−1

R
) + (1− ρR)

[
γπ ln

(πt
π

)
+ γxx

g
t + γg ln

(
Yt

GZYt−1

)]
+ εR,t, (11)

with 0 < ρR < 1, γπ ≥ 0, γg ≥ 0, and γx ≥ 0. In the above, R = β−1GZπ denotes the interest rate

in the non-stochastic steady state, Yt denotes aggregate output, and xgt denotes the output gap. The

variable εR,t is an exogenous disturbance to the policy rule satisfying εR,t ∼ iid N
(
0, σ2

R

)
.

The output gap is defined as a weighted average of the deviations of utilization and labor from

their non-stochastic steady state values: xgt = α log ut + (1 − α) log(NtN ), where ut is the aggregate
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level of capital utilization, whose non-stochastic steady state value is equal to one, and N denotes the

non-stochastic steady state level of labor. This concept of the output gap departs from Smets and

Wouters (2007), who use the natural level of output (i.e., the level of output in the absence of price and

wage rigidities). Use of such a concept would considerably increase the size of the nonlinear state space

that we need to solve the model so our use of xgt in part reflects that it is computationally convenient.

In addition, in practice a central bank may rely on estimates of an output gap concept more closely

related to xgt than the natural level of output.

Government spending is determined exogenously as a time-varying fraction of output: Gt = (1 −
1
gt

)Yt, where gt evolves according to:

ln(gt) = (1− ρg) ln g + ρg ln(gt−1) + εg,t, (12)

where g denotes the steady state share of government spending and εg,t ∼ iid N
(
0, σ2

g

)
. Finally, the

government budget constraint is assumed to be satisfied on a period-by-period basis so that Gt = Tt.

2.4 Market Clearing

We focus on a symmetric equilibrium in which all intermediate goods producing firms and all households

make the same decisions, and we denote aggregate variables by dropping a variable’s dependence on i

or j. In a symmetric equilibrium, the aggregate production function is given by:

Yt = Kα
t [ZtNt]

1−α, (13)

since Kt = Kt(j), Nt = Nt(j) ∀j. The market clearing condition for the final good is:

Ct + It +Gt +
ϕp
2

[
πt
π̃t−1

− 1]2Yt + a(ut)Kt = Yt, (14)

where we have used that ut = ut(i), Ct = Ct(i), and It = It(i) for all i in a symmetric equilibrium.
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3 Solution and Econometric Inference

3.1 Model Solution

The model is solved for a minimum state variable solution using a projection method similar to Chris-

tiano and Fisher (2000) and Judd, Maliar, Maliar, and Valero (2014), and the details of the method

are provided in a Technical Appendix.3 Because we are estimating the model, it might be tempting

to use a computationally-efficient solution algorithm that respects the nonlinearity in the Taylor rule

but log-linearizes the remaining equilibrium conditions. This approach has been used by Bodenstein,

Guerrieri, and Gust (2013) and Guerrieri and Iacoviello (2015) among others. Unfortunately, we find

that this approach performs poorly when applied to our model, as the linearized dynamics poorly

approximate the nonlinear dynamics even for moderately-sized shocks. Instead, as discussed in the

appendix, we develop a computationally-efficient algorithm that is easy to parallelize and ideal for

solving a nonlinear, medium-scale DSGE model with an occasionally binding constraint. Using this

solution algorithm, we show that there are differences between the nonlinear and linear versions of the

model and that they have important implications for the estimates of the model’s parameters and the

propagation of shocks. Another attractive feature of our solution method is that it takes into account

the uncertainty about the likelihood that the economy will be at the lower bound, as it does not rely

on perfect foresight or certainty equivalence.

3.2 Data and Estimation

The solution algorithm characterizes a transition equation for the model variables, st, as a function,

Φ, of its past realization, st−1, and current innovations to the shocks, εt, which we write as

st = Φ(st−1, εt; θ), εt ∼ N(0, I), (15)

3 The minimum state variable solution rules out equilibria with additional state variables such as a sunspot or those
with nonstationary dynamics. See McCallum (1999) for a discussion. However, Benhabib, Schmitt-Grohe, and Uribe
(2001) emphasize that there is a second steady state that is deflationary due to the imposition of the ZLB on the
Taylor rule. Our solution algorithm in principle does not rule out dynamics that fluctuate around this deflationary
steady state. But, in practice, we use the linearized solution as the initial guess for the solution algorithm and find that
that the solution algorithm never converged to this unintended deflationary equilibrium: for every estimated parameter
draw that we examined from the posterior distribution, the ergodic mean of inflation was greater than zero. Moreover,
such deflationary outcomes do not characterize the U.S. data over our sample period. As discussed in Christiano and
Eichenbaum (2012), this deflationary equilibrium is also not E-learnable.
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where

st =
[
kt+1,yt, ct, it, πt, R

N
t , wt, ηt, µt, gt,yt−1, ct−1, it−1

]
,

εt = [εη,t, εµ,t, εZ,t, εg,t, εR,t] , and

θ =
[
β, Π̄, gz, α, ρR, γΠ, γg, γx, γ, σL, σa, ϕI , ϕp, ϕw, a, aw, ρg, ρµ, ση, σµ, σZ , σg, σR

]
.

Within st, kt+1, yt, ct, wt, and it denote the level of the capital stock, output, consumption, real wage,

and investment scaled by the level of technology, Zt.

Our goal is to determine plausible values for the parameters, θ, for tracking and explaining the

U.S. macroeconomic experience since the early 1980s. Specifically, we base the empirical analysis

on quarterly U.S. data from 1983:Q1 to 2014:Q1, using five time series to estimate the model. As

measures of real activity, we use per-capita GDP growth, per-capita consumption growth, and per-

capita investment growth. Inflation is measured as the change in the log of the GDP deflator, while

our measure of the short-term interest rate is given by the quarterly average of the daily three-month

U.S. Treasury bill (quarterly) rate, following Ireland (2011). Additional details are provided in the

Appendix.

We assume that the observables contain measurement error, so the relationship to our model vari-

ables is given by,



Output Growth

Consumption Growth

Investment Growth

Inflation

Interest Rate


=



ln(yt)− ln(yt−1) + ln(GZ) + εZ,t

ln(ct)− ln(ct−1) + ln(GZ) + εZ,t

ln(it)− ln(it−1) + ln(GZ) + εZ,t

ln(πt)

ln(Rt)


+ measurement error, (16)

which we write compactly as,

yt = Ψ(st, εt; θ) + ut, ut ∼ N(0,Σu). (17)

We estimate θ using Bayesian methods. Herbst and Schorfheide (2016) and the references therein

provide background on Bayesian estimation of (linear and nonlinear) DSGE models; here we give a
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brief overview and leave the details to the Technical Appendix. Stacking the five observed time series

as Y1:T , Bayesian inference is characterized by a posterior distribution over the parameters, p(θ|Y1:T ),

that is proportional to the product of the likelihood for Y1:T and prior distribution for θ,4

p(θ|Y1:T ) ∝ p(Y1:T |θ)︸ ︷︷ ︸
likelihood

× p(θ)︸︷︷︸
prior

.

Constructing the posterior distribution is conceptually straightforward but computationally very chal-

lenging. The transition equation defined by equation (15) along with the observation equation (17)

define a nonlinear state space model. Since the observables are only a subset of the model variables,

we are required to integrate out the unobserved states to compute the likelihood. Unlike a linear

(Gaussian) state space model, we cannot evaluate these integrals analytically via the Kalman filter.

Instead, we use a (Sequential) Monte Carlo technique known as a particle filter. This simulation-based

approach provides us with an estimate of the likelihood, p̂(Y1:T |θ), for a given parameter draw, θ, by

constructing discrete approximations (“particles”) to the distributions of the underlying states.5

We also resort to simulation-based methods to elicit draws from the posterior. Markov-chain Monte

Carlo (MCMC) techniques construct a Markov chain {θi}Ni=1 whose invariant distribution coincides with

the posterior distribution of interest, p(θ|Y1:T ). We use the so-called random walk Metropolis-Hastings

(RWMH) algorithm first used in DSGE model estimation by Schorfheide (2000) and Otrok (2001). A

complication here is that, like Fernandez-Villaverde and Rubio-Ramirez (2007), we are using MCMC

with a particle-filter-based estimate of the likelihood. We appeal to Andrieu, Doucet, and Holenstein

(2010), who show formally that, despite the use of the particle filter, the Markov chain will still have the

desired posterior distribution as its invariant distribution. For more details on the MCMC algorithm,

including hyperparameters and run time, see the Technical Appendix.

Measurement errors. As mentioned above, we include measurement error in the observation equation

(16). The principal reason for its presence is feasibility: without measurement error–or with only very

small measurement errors–our particle filter degenerates and the accuracy of the likelihood estimate

4 In a slight abuse of notation, Yt denotes aggregate output at date t and Y1:T denotes the five observed time series
from 1983:Q1 to 2014:Q1.

5 There is a long literature on particle filtering–see Creal (2012) for a survey. We use a very basic version of the
particle filter, the so-called bootstrap particle filter described in Gordon, Salmond, and Smith (1993) with some minor
modifications. The Technical Appendix contains the details on the implementation of the particle filter.
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becomes very poor. We fix the magnitude of the measurement error so that

Σu = 0.25× diag (V[Y1:T ]) ,

i.e., for a given observable, the variance of its measurement error is 25 percent of the series’ variance

over the estimation period. This ensures that our particle filter estimates are stable (for more details,

see the Technical Appendix). The inclusion of measurement error represents a departure from the

majority–though not all–of the literature estimating linear DSGE models. In particular, it means that

our estimates are more uncertain than they otherwise might be. The benefit of this approach, though,

is that we are able to conduct inference using the full nonlinear structure of the model, including

the zero lower bound. Given that the dynamics of the nonlinear model differ considerably from the

linearized dynamics, we think that it is a trade off worth making.

Parallelization. While most of the technical aspects are relegated to the Technical Appendix, it is

worth mentioning some of the key innovations that we make in order to estimate a nonlinear, medium-

scale DSGE model. The principal obstacle in our empirical exercise is time. It can take a long time

to solve the model and evaluate the particle filter. Finally, the MCMC estimation strategy requires

solving the model and evaluating the particle filter many times in an iterative fashion. For both the

solution of the model and evaluation of the particle filter, we rely on extensive parallelization to reduce

computational time. The parallelization of the projection method used to construct the model solution

is straightforward. The parallelization of the particle filter, on the other hand, is more difficult, as the

filter requires frequent communication amongst all particles. The Technical Appendix shows how to

circumvent many of the problems associated with naive parallelization. With these modifications to

the solution algorithm and particle filter, we leverage a large distributed computing environment to

sample from our posterior quickly.6

6We could, in principal, enjoy further gains by modifying the MCMC algorithm along the lines of Smith (2011), who
develops a Surrogate MCMC algorithm wherein the particle filter is not evaluated when the likelihood is predicted to be
a low value. See Gust, López-Salido, and Smith (2012) for details.
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4 Estimation Results

4.1 Parameter Estimates

Bayesian inference requires that we specify a prior distribution. Many of our marginal prior distribu-

tions are the same as in Justiniano, Primiceri, and Tambalotti (2011). The prior distributions for the

Rotemberg adjustment cost parameters are specified to be consistent with prior beliefs that nominal

wages are more rigid than prices. More details about the prior distributions are shown in the Appendix.

We also fix several parameters. In particular, the elasticity of the demand for labor inputs, εw, and

the elasticity of the demand for intermediate goods, εp, are not estimated and are fixed at 6. The

depreciation rate, δ, is set to 0.025, and the non-stochastic steady state share of government spending,

g, is set equal to 20 percent. The preference parameter ψL is normalized to one.

Estimating the nonlinear model is a challenging task, particularly for a model of this size, and this

task is made more complicated because of the zero lower bound constraint, whose presence makes it

difficult to solve the model for highly-persistent risk premium shocks. To simplify the estimation of the

model, we fix ρη at 0.85, a relatively high value that helps the model fit the data and greatly enhances

the speed of the estimation routine. In principle, we could estimate ρη using a non-dogmatic prior

distribution but at considerable cost in terms of estimation time.

Table 1 presents the means and the intervals bracketed by the 5th and 95th percentile of the

marginal posterior distributions of the parameters. The mean estimates of the discount factor and the

deterministic trend to the technology growth rate are just below one and 0.5 percent on a quarterly

basis, respectively, implying a real rate of about 2.6 percent on an annualized basis in the non-stochastic

steady state. The central bank’s inflation target is estimated to have a mean of about 2.5 percent,

which is higher than the current 2 percent target of the Federal Reserve, reflecting that the sample

mean of inflation from 1983-2014 is close to 2.5 percent.

For the policy rule, the estimates are largely in line with Del Negro, Eggertsson, Ferrero, and

Kiyotaki (2011). The posterior mean for the interest-rate smoothing parameter, ρR, is near 0.70, while

the posterior means for the policy-rate responses to inflation and output growth, γπ and γg, are 1.6

and 0.69, respectively. The policy rule also involves a smaller but statistically significant response of

the short-term nominal rate to the output gap, as the posterior mean of γx equals 0.15.

The posterior mean of the adjustment cost parameter for investment, ϕI , is slightly higher than 4
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with a 90 percent credible interval covering values from 2.5 to 6.2. This mean estimate is above the value

of 3 estimated by Justiniano, Primiceri, and Tambalotti (2011), but below that of Smets and Wouters

(2007). The posterior mean of the habit persistence parameter, γ, is equal to 0.71, and the 90 percent

credible interval—covering values between 0.66 to 0.77—is relatively tight. The parameter governing

the elasticity of labor supply, σL, has a mean of about 2. The posterior mean of the elasticity of the

rental cost of capital with respect to the utilization, σa, is 5.3 – similar to the estimates of Justiniano,

Primiceri, and Tambalotti (2011) and Altig, Christiano, Eichenbaum, and Lindé (2011).

The posterior mean of the price adjustment cost parameter, ϕp, is around 103 with a weight on

lagged indexation, 1 − a, equal to 0.56, implying a linearized slope coefficient for the New Keynesian

Phillips curve of 0.07. As shown in the Appendix, such a slope coefficient corresponds to a frequency

of price changes of slightly more than one year in a model with Calvo contracts. Nominal wages are

estimated to be extremely rigid but, as shown in the Appendix, less so than in Justiniano, Primiceri,

and Tambalotti (2011).

While the discussion so far has emphasized that most of the estimates are similar to those in the

literature, this is not the case for the shock parameters. Most strikingly, the mean of the standard

deviation of the innovation to this shock, σµ, is about half the value found by Justiniano, Primiceri, and

Tambalotti (2011). This lower estimate primarily reflects our use of the nonlinear model rather than its

linear approximation.7 To highlight this difference, the right panel of Figure 1 shows that the posterior

distribution of σµ is considerably below the distribution derived from estimating the linearized version

of the model. While the estimate of this parameter is the one that is most substantially affected by

estimating the nonlinear model rather than the linear model, there are other notable differences in the

estimates as well. The estimated volatilities of the risk premium shock, government spending shock,

and technology shocks are all smaller using the nonlinear version of the model than the linear version,

and the parameter estimates of the policy rule differ somewhat as well.8 Moreover, the left panel shows

that the estimate of the adjustment cost on investment is higher in the nonlinear model, though the

difference is not as dramatic as the estimate of the innovation variance of the MEI shock.

7 The differences in parameter estimates between the linear and nonlinear versions of the model would be larger if the
measurement error were smaller. All other things equal, the estimated structural shocks would be larger in that case,
causing the performance of the linear approximation to deteriorate further relative to the nonlinear solution.

8 See the Appendix for the estimates based on the linear version of our model.
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4.2 The Nonlinear Propagation of Shocks

If the linear model approximated the nonlinear dynamics well, the two sets of parameter estimates

would be the same. However, Figure 1 demonstrates that some of the parameters from these two

versions of the model can differ substantially, and in this subsection we show that this result reflects

that the linear approximation understates the endogenous propagation of shocks in the model. To

do so, we use the mean estimates derived from the nonlinear model to simulate both the linear and

nonlinear versions of the model and compare the impulse responses to the economy’s two financial

shocks.

Figure 2 shows the effects of a one standard deviation increase in εη,t, the innovation to the risk

premium shock. The solid dark lines display the responses using the nonlinear solution, and dashed

red lines show the responses using the linear solution.9 By raising risky spreads, this shock reduces

economic activity and inflation and also puts downward pressure on the nominal interest rate in both

model versions. But, the fall in economic activity is notably larger in the nonlinear version of the model,

especially for investment, where the difference is substantial. Because this larger fall in investment

persists and because it also reduces the stock of capital, there is a larger and more persistent fall in

output, consumption, and hours worked in the nonlinear version of the model. In contrast, the price of

installed capital falls by less in the nonlinear version of the model than in the linear version. Overall,

Figure 2 indicates that the linear solution poorly approximates the stronger propagation inherent in the

nonlinear dynamics even for moderately-sized innovations in the shock.10 Of course, these differences

are magnified for larger shocks.

The stronger propagation inherent in the nonlinear dynamics is not driven by the ZLB but by the

investment adjustment costs, which imply that optimal investment satisfies:
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where St is defined in equation (9), mt+1 = β Λt+1

Λt
denotes the stochastic discount factor, qt denotes the

9 These responses are computed as the difference between the mean values of a shocked path, which introduces an
unexpected increase in εη,t at date 1, and the mean values of a path in which this innovation does not occur. Both paths
use the same initial conditions in which η0 is one standard deviation above its unconditional mean and the lagged values
of the other state variables are equal to their non-stochastic steady state values.

10 The bottom right panel compares the approximation error associated with the Euler equation that determines the
relationship between the price of investment and a household’s optimal supply of investment, equation (18) along the
shocked path. This error is about ten times larger using the linear solution than the nonlinear solution.
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price of newly installed capital, and for convenience we have abstracted from the trend in technological

growth. The left-hand side of equation (18) reflects the cost of increasing investment by an extra unit

and the right-hand side reflects the benefit. On the cost side, increasing investment in the current

period means that the household foregoes consumption today and also incurs costs to transform the

final good into new capital. On the benefit side, the extra investment boosts the amount of installed

capital and the value to doing so reflects both the price of the installed capital, qt, and the efficiency

of the extra investment, µt. The benefits also reflect that raising investment today reduces the burden

associated with incurring the adjustment costs in the future.

Although the quadratic nature of the adjustment costs make it difficult to see, equation (18) implies

the supply of investment is an increasing function of qt. All else equal, a reduction in the stochastic

discount factor, either due to an increase in the real policy rate or the risky spread, tends to lower

the supply of investment because the future benefits fall. This effect, however, is absent from the

linearized counterpart of equation (18), because the linearized equation is approximated around the

non-stochastic steady state where this effect is negligible. However, away from there, this effect will not

necessarily be inconsequential, as Figure 2 demonstrates. In that case, the increase in the risky rate

leads to a reduction in investment supply that contributes to a slump in investment. Furthermore, this

shift in investment supply does not have to be large, because the elasticity of investment demand with

respect to qt is high meaning that relatively small changes in investment supply can induce relatively

large movements in the level of investment.11 The linearized dynamics neglect the shift in investment

supply, and hence tend to understate the drop in investment.

The linear dynamics also poorly capture the propagation of the MEI shock, whose estimated volatil-

ity is much smaller once we account for the stronger nonlinear propagation. Figure 3 shows the effects

of a one standard deviation reduction in the innovation to the marginal efficiency of investment, εµ,t.

This shock also produces a much larger fall in investment in the nonlinear version of the model than

in the linear version. This lower investment in turn induces a larger fall in the stock of capital, which

helps engender more persistent declines in output and hours worked in the nonlinear version of the

model.

What are the implications of the stronger propagation of the nonlinear dynamics for the business

11 The investment-demand relationship can be derived from the Euler equation for the capital stock which relates qt to
the rental rate of capital. The rental rate of capital, in turn, can be expressed to depend on investment using the capital
accumulation equation. See the Technical Appendix for the details of this equation.
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cycle? As shown in Table 2, the nonlinear version of the model relies on its stronger internal propagation

mechanism to generate output volatility in line with the observed data. To see this, the third column of

the table labelled ‘Nonlinear Constrained’ shows the volatility of output, consumption, investment, and

hours at business cycle frequencies simulating the nonlinear model using its parameter estimates. As

shown there, the standard deviations of output and consumption are near their empirical counterparts,

while the volatilities of investment and hours are only somewhat lower than their empirical counterparts.

If instead, we used these same parameter estimates and simulated the linearized dynamics of the model,

the linearized version of the model would substantially understate the volatility of investment, as shown

in the final column. This reflects that, if the linearized model has to rely on the parameter estimates

coming from the nonlinear model, the estimate of the volatility of the MEI shock is too small given

its weaker endogenous propagation. Thus, it fails to generate enough volatility in output, hours, and

especially in investment. For the linearized model to generate a realistic volatility of investment,

it must rely on a much larger exogenous MEI shock, because it poorly approximates the nonlinear

model’s dynamics. Hence, to reliably disentangle the endogenous and exogenous sources of business

cycle fluctuations, one should estimate the nonlinear model rather than its linear approximation.

4.3 Time Series Properties of the Model

Figure 4 shows the implications of the estimated parameters by comparing the observed data on

output growth, investment growth, consumption growth, inflation, and the nominal interest rate with

the smoothed estimates produced by the model. The figure also shows the 68 percent credible interval

around these values.12

The model generally tracks the fluctuations in output, consumption, and investment growth, and

generates contractions in these variables in all three of the recessions included in our sample period.

For the Great Recession, the model accounts for the sharp falls in output and investment that occurred

and modestly understates the fall in consumption. In addition, the model mimics well the slow growth

in the variables that characterized the subsequent recovery. The model captures most of the low and

medium frequency variation in quarterly inflation, displayed in the middle-right panel, though some of

the high-frequency movements remain unexplained. For the Great Recession, the model accounts for

12 To construct these series, we proceed as follows: For each draw θ ∼ p(θ|Y1:T ), we sample from p(S1:T |Y1:T , θ) using
the particle filter and report h(S1:T ) for the appropriate function h(·). The credible intervals include both uncertainty
surrounding θ as well as uncertainty surrounding S1:T .
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a substantial part of the fall in inflation as well as its rebound.

The lower-left panel shows that the smoothed values for the nominal interest rate are close to the

observed values and the lower-right panel displays the central bank’s notional or desired path for the

nominal interest rate, which provides a measure of the severity of the lower-bound constraint on actual

monetary policy. From 2009 onwards, the notional interest rate is well below zero. It falls to about

minus 5.5 percent in the first half of 2009, gradually moves up to about minus 1 percent at the end of

2012, and then hovers around that level through 2014:Q4.

Figure 5 displays the distribution of the probability of the nominal rate being at the zero lower

bound by simulating data from the model using parameter draws from the posterior distribution.13 On

average, the model implies that there is a 7 percent probability of the nominal rate being at the ZLB.

In comparison, in our sample from 1983:Q1-2014:Q1, the nominal rate was at the zero lower bound in

the last 21 quarters of the 125 observations, yielding a probability near 17 percent. Although this is

considerably larger than the mean estimate derived from the model, Figure 5 also shows that estimates

of this probability are disperse and that the distribution has a long right tail: over 5 percent of the

draws have a probability of being at the ZLB more than 20 percent of the time and 2.5 percent of

the draws have a probability of more than 26 percent of the time. Accordingly, the model estimates

suggest that it is difficult to estimate this probability with much precision.

5 What Accounts for the Great Recession?

Before quantifying how much the zero lower bound contributed to the Great Recession, we examine

the estimated path of the shocks and their relative contributions to the Great Recession.

5.1 The Path of the Estimated Shocks

Figure 6 displays the smoothed estimates of the three disturbances that, according to the model, played

an important role during the Great Recession: the risk premium, the marginal efficiency of investment,

and productivity shocks, along with an important endogenous object, the equity premium.14 The two

13 For each draw of parameters, we simulate 1,000 datasets each with 125 observations. We used 1,000 draws of
parameters from the posterior distribution.

14 The government spending and monetary policy shocks contributed less, according to the model. Smoothed estimates
of the paths of these shocks are available in the Appendix. The fact that the government spending shock does not play
a large role in the Great Recession does not necessarily mean that fiscal policy was unimportant during the episode.
The government spending shock in our analysis is a reduced-form shock affecting the economy’s resource constraint and
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left panels show the risk premium shock and the MEI shocks. The vertical axes in these panels display

the magnitudes of the shocks relative to their standard deviations, and thus, for example, the number

two denotes that the size of the shock is two standard deviations above its mean.

At the beginning of 2008, the risk premium shock was already high and then rose sharply to an

extraordinarily high level – four standard deviations above its mean – when the financial crisis began.

Although this shock is very unlikely given that we assume that the shock is normally distributed, the

financial crisis itself was an unprecedented event that was followed by the largest contraction in U.S.

economic activity since the Great Depression.15 The risk premium shock plays an important role in

our analysis, and it is interesting to compare it to movements in empirical measures of credit spreads

during the financial crisis. The top left panel of Figure 6 also compares the estimated risk premium

shock to the interest rate differential between BAA corporate bonds and 10-year Treasury bonds and a

measure of credit spreads constructed by Gilchrist and Zakraǰsek (2012), who abstract from the effect of

expected loss stemming from default on spreads and attempt to isolate the credit risk premium. Since

the units of the estimated risk premium shock are not comparable to those of the other two measures

of financial stress, it is more useful to focus on how movements in the risk premium shock correlate

with the these measures, both of which rose sharply in 2008 and declined thereafter. Although the

measure constructed by Gilchrist and Zakraǰsek (2012) falls relatively soon after the financial crisis,

the BAA spread remains persistently elevated even after falling in 2009. Similar to the two empirical

measures, the model’s estimate of the risk premium shock also rose sharply at the end of 2008 and fell

in 2009. Even after falling in 2009, like the BAA spread, the risk premium shock remains persistently

high. In sum, even though we do not use information on asset prices in our empirical approach, the

model’s estimated risk premium displays broadly similar behavior as empirical measures of financial

stress did at the time.

As can be seen by the bottom left panel, low realizations of the MEI shock also contributed to weak

activity at the time, as the MEI shock is more than one standard deviation below its mean in 2008

and in the first half of 2009. Thus, the model’s two financial shocks are consistent with the view that

reflects other factors besides changes in government spending such as movements in international trade that we do not
model.

15 To be consistent with the literature, we choose to estimate the model using normally-distributed shocks. However,
with our methodology, it would be straightforward to allow for distributions with fatter tails or time-varying volatility
and formally test different assumptions regarding the shock distributions. However, we viewed such an exercise as beyond
the scope of this paper.
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strains in financial markets triggered the economic slump. In subsequent periods, both shocks begin to

move back toward their mean values, but the risk premium shock remains at a high level – 2 standard

deviations above its mean – through the end of 2014. Moreover, the MEI shock’s recovery is followed

by another fall in 2010 after which it recovers and falls again at the end of 2013.

The top right panel displays the model’s equity or finance premium, which we measure as the

expected excess return on capital:

EtR
k
t+1

Rt
=
r̃kt+1 + qt+1(1− δ)

Rtqt
,

where r̃kt = rkt ut − a (ut) is the user or rental cost of capital adjusted for utilization. The panel also

shows an empirical measure of the equity premium from Adrian, Crump, and Moench (2012). The

model’s estimate of the equity premium peaks at a level of just under 14 percent at the end of 2008

and drops in 2009 but remains elevated, averaging about 7 percent through 2013. These movements

are broadly consistent with the estimates of Adrian, Crump, and Moench (2012), though our model

implies a larger spike in the equity premium at the end of 2008 and a somewhat less elevated equity

premium thereafter.

The bottom right panel of Figure 6 shows the difference in the level of technology beginning in

2008:Q1 from its deterministic growth path. Clearly, technology or total factor productivity was below

trend during the Great Recession and fell further below trend through the end of the sample (2014:Q1).

The dashed and dotted lines show the estimates of Christiano, Eichenbaum, and Trabandt (2015) and

and Fernald (2014), respectively. Despite our different econometric strategy from these authors, our

estimates of total factor productivity are broadly similar to theirs, as total factor productivity, according

to these measures, is also estimated to be below trend with the exception of a temporary increase in

the measure constructed by Fernald (2014) in 2009.

5.2 The Contribution of the Estimated Shocks to the Great Recession

Figure 7 shows how much of the model’s fit is attributable to individual shocks for output growth,

investment growth, consumption growth, inflation, and both the observed and the notional nominal

interest rates. More specifically, it displays the model’s dynamics if only one of the estimated shocks

were present during the Great Recession and compares this path to the smoothed values shown in
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Figure 4, which were generated using all five shocks (the line denoted as the baseline in the figure).16

A clear picture emerges from the figure: the large contraction in output, consumption and investment

growth is mostly explained by the risk premium shock. This shock also generates a somewhat larger

fall in inflation than under the baseline path. However, as shown in the middle right panel, these

disinflationary effects are offset by the upward pressure on inflation induced by the fall in the level of

technology.

The risk premium shock is also largely responsible for driving the nominal rate to the zero lower

bound. By reducing both output growth and inflation, this shock pushes the notional interest rate well

below zero (to about -5.5 percent), causing the interest rate to hit and then stay at the lower bound.

A decline in the MEI shock in 2011 contributes to the nominal interest rate remaining at the ZLB in

2011 and 2012. This shock also contributes to the sharp decline in investment and output in late 2008.

While the technology shock plays an important role in moderating the decline in inflation during

the ZLB episode, the model estimates imply that monetary policy shocks were not important during

the ZLB episode.17 However, this does not necessarily imply that monetary policy is unimportant,

because the systematic part of the rule and the lower bound constraint are crucial determinants of the

model’s dynamics.

6 How Costly Was the Zero Lower Bound?

6.1 The Contribution of the Lower Bound to the Great Recession

To determine the role of the zero lower bound constraint during the Great Recession, we compare the

estimated model outcomes (in which the ZLB constraint is imposed) to the outcomes in a hypothetical

scenario in which monetary policy is free to adjust the nominal interest rate in an unconstrained

manner.18 Figure 8 compares the levels of output and the price level in these two scenarios under the

posterior mean estimates. The left panel shows that in 2009:Q2 output was about 6 percent below

16 We compute the counterfactual with only one shock present as follows: Starting in 2007:Q4, we take the estimated
state as an initial value, and simulate the economy forward feeding in the smoothed values of one of the shock processes,
assuming that the variances of the other shocks are set to zero.

17 Monetary policy shocks are still identified at the lower bound, because these shocks can persistently lower the
notional interest rate. As a result, agents anticipate that the actual nominal rate will be at the lower bound for longer,
an expectation that affects current outcomes.

18 The hypothetical scenario uses the same estimated initial conditions and time series for the shocks as the estimated
model in which the constraint is imposed. These values are then used to simulate the model ignoring the ZLB constraint
on the estimated rule.
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its level in 2007:Q4. If monetary policy could have cut the nominal interest rate more aggressively,

it would have helped to offset the contractionary effects of the shocks and output would have fallen

by only 4.5 percent; thus, the zero lower bound accounted for almost 25 percent of the sharp drop in

output that occurred in 2009.19

While the ZLB contributed significantly to the sharp fall in economic activity in 2009, it was an

even more important factor in holding back activity during the subsequent recovery. Figure 8 shows

that output did not recover back to its 2007:Q4, pre-recessionary level until 2012:Q4, five years later.20

During those five years, the average level of output was 2.4 percent below its level in 2007:Q4. In

comparison, average output over those years would have only been about 1.2 percent lower in the

unconstrained scenario, as output would have been above its pre-recessionary level about a year earlier

than in the estimated, constrained scenario. Thus, these estimates imply that the presence of the ZLB

accounted for about 50 percent of the lower output over the 2008-2012 period.

The right panel of Figure 8 shows that the ZLB constraint also contributed to a lower price level.

Inflation averaged 1.45 percent per year from 2008:Q1 until the end of 2012, below the Federal Reserve’s

inflation target. Absent the zero lower bound constraint, the mean estimates indicate that inflation

would have averaged around 1.75 percent per year, and hence was 0.3 percentage points lower, on

average, over the 2008-2012 period. Overall, our results suggest that the interest-rate lower bound was

a significant constraint on monetary policy that exacerbated the recession, inhibited the recovery, and

contributed to inflation outcomes below the Federal Reserve’s inflation target.

Figure 9 displays the difference in outcomes from the estimated, constrained scenario for output,

investment, consumption, and the notional rate. For each variable, the solid line shows the point

estimate of the effect of ZLB constraint and the shaded region displays the 68 percent credible region.

As emphasized above, output is about 1.2 percent lower, on average, over the 2008-2012 period because

of the constraint. Consumption would have been about 1 percent higher in absence of the constraint,

and investment would have been 4 percent higher. Figure 9 also highlights an important caveat to

interpreting these results: the estimates are subject to considerable uncertainty as the 68 percent

credible region does not exclude the possibility that the estimated effects of the ZLB constraint were

much smaller or much larger.

19 This is the mean estimate, and the 68 percent interval around it is wide, covering values between 6 to 46 percent.
20 The baseline path does not exactly match the observed output series because of measurement error and recovers two

quarters earlier than observed output.
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6.2 The Contribution of the Lower Bound to the 2003-2004 Deflationary Scare

Our methodology can be used to examine episodes in which the realized nominal rate did not hit the

lower bound but economic behavior was affected by the prospect that policy could become constrained.

One such episode in which uncertainty about the zero lower bound may have affected economic behavior

was in 2003 when inflation was low and the Federal Open Market Committee (FOMC) was concerned

about the possibility of further disinflation. This view was summarized by Alan Greenspan, the Chair

of the FOMC at the time:

“.. [W]e face new challenges in maintaining price stability, specifically to prevent inflation

from falling too low...[T]here is an especially pernicious, albeit remote, scenario in which

inflation turns negative...engendering a corrosive deflationary spiral...” (Alan Greenspan

before the House Committee on Financial Services, July 15, 2003)

Although this deflationary scenario never materialized and policy rates never reached the lower bound,

this risk was an important consideration in 2003 and we use the estimated model to investigate the

effect of the ZLB during this episode. In the model, this constraint has effects on inflation and economic

activity, even if it never binds, because agents in the model take into account the entire probability

distribution of future outcomes, including those in which the nominal interest rate obtains the zero

lower bound, in making their current decisions. Accordingly, we follow the same approach as we used

for the Great Recession and compare outcomes in the estimated, constrained model to the hypothetical

scenario in which policy is unconstrained.

The left panel in Figure 10 shows the mean trajectories of output with and without the ZLB

constraint, and the right panel shows the uncertainty faced by the agents about the future likelihood

of being at the constraint. It shows that at the end of 2002, taking into the economy’s current state

and the estimated policy rule, private sector agents believed there was a 12 percent chance that the

nominal interest rate would fall to its lower bound during 2003. Because scenarios in which the ZLB

binds also imply higher future real policy rates than if monetary policy could act in an unconstrained

fashion, these scenarios are also characterized by downward shifts in the distributions of outcomes in

aggregate spending and output; accordingly, the estimated mean outcome for output is lower in the

constrained case than the unconstrained case. Figure 10 shows that the effects of this uncertainty on

the estimated mean outcomes are relatively small: the estimated level of output is about 0.2 percent
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lower throughout 2003 and 2004 than in the unconstrained case. Still, the effect is a persistent one,

and the results highlight that uncertainty about the course of monetary policy did have a tangible

economic impact during this episode, an effect that is omitted a priori using the standard approach to

estimate DSGE models.

6.3 Forward Guidance and the Estimated Policy Rule

In both the 2003 episode and during the Great Recession, forward guidance about the policy rate

played a prominent role in FOMC communications. In late 2008, forward-guidance language was

reintroduced into the FOMC statement, which indicated that “weak economic conditions are likely to

warrant exceptionally low levels of the federal funds rate for some time.” This guidance grew more

forceful and specific over time, and in late 2012, the FOMC made this forward-guidance more explicitly

state contingent, linking the maintenance of the low funds rate to projected inflation and the level of

the unemployment rate. We capture forward guidance through the state-contingent path of rates

implied by our estimated interest-rate rule. The presence of the lagged notional rate, in particular, is

an important element of a strategy that seeks to maintain future rates at a low level.21 In particular,

when the notional rate is negative, a higher coefficient on the lagged notional rate in the rule, all else

equal, increases private sector beliefs that future policy rates will remain at the zero lower bound.

Moreover, the further the lagged notional rate falls below zero, the more likely the future policy rate

will remain at zero.

To investigate the role of the lagged notional rate in the policy rule, Figure 11 shows a counterfactual

simulation of how the economy would have evolved during the Great Recession had policy be governed

by an alternative rule that responds to the lagged actual policy rate rather than the lagged notional rate.

Because the lagged notional rate fell sharply below zero during the recession and remained negative

during the recovery, the estimated rule generates a policy rate path that is more accommodative than

the alternative rule. As shown in the bottom left panel, the mean estimates for the path of the real

interest rate are lower under the estimated rule than the rule that depends on the lagged actual rate.

Accordingly, the fall in the mean estimates of output and prices during the Great Recession are smaller

21 In light of the evolving nature of the forward-guidance language in FOMC communications throughout the ZLB
spell, it remains an open question as to how best to model it. An an alternative way of modeling forward guidance is to
allow for anticipated shocks in the monetary policy rule. See, for instance, Del Negro, Giannoni, and Patterson (2012).
Also, Keen, Richter, and Throckmorton (2015) study the effects of forward guidance modeled in this way in the context
of a simple, nonlinear New Keynesian model.
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for the estimated rule than the alternative rule.

The estimated rule is more accommodative than the alternative rule, because the inclusion of the

lagged notional rate generates the belief by private agents that the nominal rate will remain at the zero

lower bound longer and under a wider set of circumstances. To highlight this, the bottom right panel

shows the uncertainty faced by the agents in the model about whether the policy rate one-quarter

ahead will be at the zero lower bound or not. In 2010:Q1, for example, under the estimated rule,

private sector agents believed the probability that the nominal rate would ‘liftoff’ next quarter was

very close to zero. In contrast, in the counterfactual using the alternative rule with lagged actual rate,

agents in 2010:Q1 would have believed there was about at 15 percent chance that the policy rate would

rise in 2010:Q2.

Under both of these rules the nominal interest rate is estimated to remain at the zero lower bound

through the end of our sample, but the probability of a departure from the ZLB is notably higher under

the alternative rule than the estimated rule. In 2014:Q1, for instance, the agents would have believed

that there was about a 40 percent chance of liftoff next quarter under the alternative rule compared

to only a 10 percent chance under the estimated rule. Thus, the simulation demonstrates that the

inclusion of the lagged notional rate captures the forward-guidance language used by the FOMC at the

time by validating private sector beliefs that policy is more likely to remain at the zero lower bound,

thereby stimulating the economy.

7 Conclusions

In this paper, we estimated a nonlinear DSGE model in which the interest-rate lower bound is occa-

sionally binding. This allowed us to quantify the size and nature of the disturbances that caused the

Great Recession as well as pushed the nominal rate to the lower bound in late 2008 and kept it there

throughout the economy’s long slump. Overall, our results suggest that the interest-rate lower bound

was a significant constraint on monetary policy that exacerbated the recession, inhibited the recovery,

and contributed to inflation outcomes below the Federal Reserve’s inflation target.

Our results also highlight the importance of estimating the nonlinear model instead of the linear

approximation to it. Because the nonlinear model that we estimate has a stronger internal propagation

mechanism than its linearized counterpart, we find that there are significant differences in the parameter
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estimates. In particular, estimates based on the linearized version overstate the importance of the

exogenous shocks, and thus the estimation of the nonlinear model is essential in properly quantifying

the relative contributions of endogenous and exogenous sources of business cycle fluctuations.
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Table 1: Posterior Distribution of Parameters

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β−1 − 1) 0.15 [ 0.06, 0.28] 100(Π̄− 1) 0.63 [ 0.56, 0.70]
100 ln(GZ) 0.51 [ 0.46, 0.56] α 0.19 [ 0.15, 0.23]

Policy Rule

ρR 0.70 [ 0.61, 0.78] γΠ 1.60 [ 1.16, 2.01]
γg 0.69 [ 0.35, 1.01] γx 0.15 [ 0.09, 0.24]

Endogenous Propagation

γ 0.71 [ 0.64, 0.78] σL 2.14 [ 1.07, 3.48]
σa 5.26 [ 3.76, 6.88] ϕI 4.06 [ 2.51, 6.17]
ϕp 103.64 [66.30, 138.37] 1− a 0.56 [ 0.34, 0.76]
ϕw 4334.84 [1680.45, 7902.12] 1− aw 0.53 [ 0.28, 0.73]

Exogenous Processes

ρg 0.67 [ 0.39, 0.95] 100σg 0.15 [ 0.11, 0.19]
ρµ 0.73 [ 0.50, 0.91] 100σµ 2.94 [ 1.63, 4.80]
100ση 0.46 [ 0.36, 0.59] 100σZ 0.57 [ 0.38, 0.79]
100σR 0.18 [ 0.14, 0.21]

Notes. Table reports the mean, fifth, and ninety-fifth percentile of posterior distribution estimated
using MCMC chain with 40,000 draws after a burn-in period of 5,000 draws.
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Table 2: Standard Deviations of Aggregate Variables at Business Cycle Frequencies

Model Versions

Nonlinear Nonlinear
Variable Data Constrained Unconstrained Linear

Output 1.13 1.23 1.16 0.90
Consumption 0.78 0.79 0.75 0.84
Investment 4.96 4.14 3.94 1.54
Hours 1.80 1.44 1.35 1.06

Notes. The model series are constructed from 1000 draws from the posterior distribution. For each
parameter draw, a data series with 125 observations is simulated, and the HP-filter is applied to the
series with a smoothing parameter of 1600. Simulations for all three model versions use the parameters
estimated using the nonlinear, constrained version of the model.
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Figure 1: A Comparison of the Posterior Estimates: Nonlinear versus Linear
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Notes. Figure shows the posterior density functions (kernel density estimate) for ϕI (left panel) and
100σµ (right panel) under the nonlinear (solid lines) and linearized (dashed lines) versions of the model.
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Figure 2: Response to an Exogenous Increase in the Risk Premium
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Notes. Figure reports the difference between the mean values of a shocked path, which introduces
a one-standard deviation innovation in the risk premium shock at date 1, εη,1, and the mean values
of a path in which this innovation does not occur. Both paths are constructed using the posterior
mean parameter values and initial conditions such that ln(η0) is one standard deviation above its non-
stochastic steady-state, and all other variables are at their non-stochastic steady states. The dashed
line shows the responses for the unconstrained linear model, while the solid line shows the responses
for the constrained nonlinear model. The lower right panel with the investment Euler error shows the
mean absolute values of the errors along the shocked path at each date.
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Figure 3: Response to a Fall in Investment Efficiency
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Notes. Figure reports the difference between the mean values of a shocked path, which introduces a one-
standard deviation innovation in the MEI shock at date 1, εµ,1, and the mean values of a path in which
this innovation does not occur. Both paths are constructed using the posterior mean parameter values
and initial conditions such that ln(µ0) is one standard deviation above its nonstochastic steady-state,
and all other variables are at their nonstochastic steady states. The dashed line shows the responses for
the unconstrained linear model, while the solid line shows the responses for the constrained nonlinear
model. The lower right panel with the investment Euler error shows the mean absolute values of the
errors along the shocked path at each date.
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Figure 4: Smoothed Estimates of Model Objects
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Notes. Figure shows the time series of the means (solid lines) and 68% bands (shaded regions) of
the smoothed distributions of model variables, as well as their data counterparts over the estimation
period. The bottom right panel shows estimates of the shadow (notional) rate from 2008:Q1 onwards.
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Figure 5: Distribution of the Probability of Hitting the Zero Lower Bound
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Notes. Figure plots a histogram for the percent of observations at the zero lower bound for a 1000
simulated datasets of length 125, where each simulation is governed by a different draw from the
posterior distribution of the parameters.
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Figure 6: The Path of the Estimated Shocks and Equity Premium During the Great Recession
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
smoothed distributions of ln(ηt) (top left panel), ln(EtR

k
t+1/Rt), the model-implied equity premium

(top right panel), ln(µt) (bottom left panel), and ln(Zt) (bottom right panel). Both ln(ηt) and ln(µt)
are normalized by their unconditional standard deviations, while TFP is plotted as the difference of
the smoothed estimate for ln(Zt) and its forecasted trajectory in 2007:Q4.

The top left panel also includes the standardized estimates of the credit spread from Gilchrist
and Zakraǰsek (2012) and BAA spread, while the top right panel shows an estimate of the equity
premium, computed as in Adrian, Crump, and Moench (2012). The bottom right panel also shows
the utilization-adjusted estimate of TFP (pink dashed line) of Fernald (2014) and the calibrated TFP
measure (green dotted line) used in Christiano, Eichenbaum, and Trabandt (2015), both taken from
Christiano, Eichenbaum, and Trabandt (2015).
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Figure 7: The Contribution of the Estimated Shocks to the Great Recession
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Notes. Figure shows counterfactual trajectories of output growth (upper left panel), investment growth
(upper right panel), consumption growth (middle left panel), inflation (middle right panel), the interest
rate (bottom left panel), and the notional rate (bottom right panel). The trajectories are computed
using smoothed estimates of the states in 2007:Q4 as initial conditions and the smoothed shock esti-
mates from 2008:Q1 to 2014:Q1 for only liquidity shocks (dashed lines), only MEI shocks (dotted line),
only technology shocks (line with triangles), and all of the structural shocks (solid line).
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Figure 8: The Contribution of the Zero Lower Bound to the Great Recession
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Notes. Figure shows the posterior mean trajectories of the levels of output (left panel) and prices (right
panel). The solid lines show the effects imposing the ZLB constraint and the dashed lines show the
effects without this constraint. The simulations use the smoothed estimates of the states in 2007:Q4 as
initial conditions and the smoothed shock estimates from 2008:Q1 to 2014:Q1 to construct the paths.
Each series is normalized to 100 in 2007:Q4.
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Figure 9: The Effect of the Lower Bound on Aggregate Spending
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
distribution of differences for of the level of output (top right panel), consumption (bottom left panel),
and investment (bottom right panel) simulated with and without the zero lower bound respectively.
The top left panel shows the mean estimated path of the notional rate along with 68% bands.
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Figure 10: The 2003–2004 Episode
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Notes. Figure shows the posterior mean trajectories of the levels of output (left panel). The solid
lines show the effects imposing the ZLB constraint and the dashed lines show the effects without this
constraint. The simulations use the smoothed estimates of the states in 2002:Q4 as initial conditions
and the smoothed shock estimates from 2003:Q1 to 2004:Q4 to construct the paths. The level of
output is normalized to 100 in 2002:Q4. The right panel shows the probabilities, conditional on
the posterior mean parameter estimates, of hitting the ZLB in 2003 and 2004, given 2002:Q4 initial
condition (posterior mean of smoothed estimates).
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Figure 11: The Effect of Inertia in the Policy Rule

2008 2009 2010 2011 2012 2013 2014
92

94

96

98

100

102
Estimated Rule

Lagged Actual Rate

Output

2008 2009 2010 2011 2012 2013 2014
100

102

104

106

108

110
Price Level

2008 2009 2010 2011 2012 2013 2014
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

Real Interest Rate

08:Q1 09:Q1 10:Q1 11:Q1 12:Q1 13:Q1 14:Q1
0.0

0.2

0.4

0.6

0.8

1.0
P(Rt+1 > ZLB)

Notes. Figure shows the posterior mean trajectory of the level of output (top left panel) prices (top
right panel), and the real interest rate under the estimated monetary policy rule (solid lines), the rule
with no smoothing term (dashed lines), and the rule with the lagged actual rate (dotted lines). The
simulation uses the smoothed estimates of the states in 2007:Q4 as initial conditions and the smoothed
shock estimates from 2008:Q1 to 2014:Q1 to construct the paths. The level of output and prices are
normalized to 100 in 2007:Q4.

The bottom right panel shows the probability at each point in time—according to the agents
in the model—that the interest rate next quarter will be away from the ZLB. In computing the
probabilities, we use the mean parameter estimates and the mean estimates of the smoothed states.
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Appendix

A Data

Output growth is measured by quarter-to-quarter changes in the log of real GDP (chained 2005 dollars,
seasonally adjusted, converted to per capita terms using the civilian non-institutional population ages
16 and over). Non-durable consumption is measured by personal consumption expenditures, and
investment corresponds to fixed private investment in the National Income and Product Accounts. The
inflation rate is measured as the quarter-to-quarter change in the log of the GDP deflator, seasonally
adjusted. The short-term nominal interest rate is measured by quarterly averages of daily readings on
the three-month U.S. Treasury bill rate, converted from an annualized yield on a discount basis to a
quarterly yield to maturity. The three-month T-bill rate tracks the federal funds rate closely over our
sample period, and at the end of the sample, after the FOMC established a target range from 0 to 25
basis points for the federal funds rate, the quarterly average federal funds rate and three-month T-bill
rate were within a few basis point of each other.

B Prior Distribution of the Parameters

Table B.1 shows the values for the fixed parameters in the estimation. Table B.2 displays the prior
distribution for the estimated parameters.

Table B.1: Fixed Parameters

Parameter Value Description

δ 0.025 Depreciation of capital stock.
g 1.25 Steady state government spending (G/Y = 0.2)

1/(εp − 1) 0.20 Steady state net price markup.
1/(εw − 1) 0.20 Steady state net wage markup.

ψL 1 Disutility of Labor.
ρη 0.85 Persistence of the Liquidity Shock.
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Table B.2: Prior Distribution

Parameter Dist. Para(1) Para(2) Parameter Dist. Para(1) Para(2)

Steady State

100(β−1 − 1) Gamma 0.25 0.10 100(Π̄− 1) Normal 0.62 0.10
100 ln(Gz) Normal 0.50 0.03 α Normal 0.30 0.05

Monetary Policy Rule

ρR Beta 0.60 0.20 γΠ Normal 1.70 0.30
γg Normal 0.40 0.30 γx Normal 0.40 0.30

Endogenous Propagation

γ Beta 0.60 0.10 σL Gamma 2.00 0.75
σa Gamma 5.00 1.00 ϕI Gamma 4.00 1.00
ϕp Normal 100.00 25.00 1− a Beta 0.50 0.15
ϕw Normal 3000.00 5000.00 1− aw Beta 0.50 0.15

Exogenous Processes

ρg Beta 0.60 0.20 ρµ Beta 0.60 0.20
100σg Inv. Gamma 0.33 2.00 100σµ Inv. Gamma 0.33 2.00
100σZ Inv. Gamma 0.33 2.00 100σR Inv. Gamma 0.33 2.00
100ση Inv. Gamma 0.33 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta, Gamma, and
Normal distributions and to the upper and lower bounds of the support for the Uniform distribution.
For the Inverse (Inv.) Gamma distribution, Para (1) and Para (2) refer to s and ν, where p(σ|ν, s) ∝
σ−ν−1e−νs

2/2σ2
.
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C Parameters Estimates from the Linearized Version of the Model

Table C.1: Posterior Distribution of Parameter Estimates from the Linearized Version of the Model

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β−1 − 1) 0.16 [ 0.07, 0.26] 100(Π̄− 1) 0.64 [ 0.56, 0.72]
100 ln(Gz) 0.50 [ 0.46, 0.55] α 0.20 [ 0.17, 0.23]

Policy Rule

ρR 0.77 [ 0.69, 0.83] γπ 1.78 [ 1.34, 2.21]
γg 0.57 [ 0.27, 0.87] γx 0.07 [ 0.01, 0.13]

Endogenous Propagation

γ 0.76 [ 0.68, 0.83] σL 2.05 [ 1.03, 3.36]
σa 5.27 [ 3.79, 7.04] ϕI 3.51 [ 2.08, 5.22]
ϕp 102.25 [64.01, 142.54] 1− a 0.64 [ 0.44, 0.82]
ϕw 5102.38 [2025.78, 9502.62] 1− aw 0.55 [ 0.33, 0.76]

Exogenous Processes

ρg 0.70 [ 0.37, 0.94] 100σg 0.15 [ 0.12, 0.20]
ρµ 0.73 [ 0.61, 0.84] 100σµ 9.12 [ 4.84, 14.80]
100ση 0.50 [ 0.31, 0.73] 100σZ 0.50 [ 0.31, 0.76]
100σR 0.17 [ 0.13, 0.21]

Notes. The table reports the mean, fifth, and ninety-fifth percentiles of the posterior distribution
under the linearized model. The model was estimated using a Sequential Monte Carlo algorithm
tailored towards linearized DSGE models; see Herbst and Schorfheide (2016).
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D Estimated Demand and Monetary Policy Shocks, 2008 - 2014

Figure D.1: The Path of the Estimated Shocks During the Great Recession
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
smoothed distributions of ln(gt) (top panel) and εR,t (bottom panel). Both are normalized by their
unconditional standard deviations.
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E Rotemberg and Calvo Estimates of Nominal Rigidities

Under Calvo, the slope of the price inflation equation is given by:

κCalvop =
(1− ξpβ)(1− ξp)
ξp(1 + ιpβ)

,

where ξp corresponds to the probability of changing prices and ιp represents the degree of price index-
ation. Evaluating this expression at ξp = 0.787, ιp = 0.131, and β = 0.9986, the posterior medians
estimated by Justiniano, Primiceri, and Tambalotti (2011) yields κCalvop = 0.0512. Under Rotemberg
contracts, the slope coefficient is:

εp − 1

(1 + β(1− a))ϕp

Setting β = 0.9986, (1 − a) = ιp = 0.131, and εp − 1 = 1
0.180 as in Justiniano, Primiceri, and

Tambalotti (2011) implies a parameter of price adjustment cost of:

ϕp =
εp − 1

(1 + β(1− a))κCalvop

≈ 93.5

In comparison, our posterior mean estimate of this parameter is 103, and 93.5 is well within the 90
percent credible band.

Regarding the slope of the wage inflation equation, under Calvo, the expression is given by:

κCalvow =
(1− ξwβ)(1− ξw)

ξw(1 + β)(1 + ν(1 + 1
λw

))
.

If this expression is evaluated at the posterior medians estimated by Justiniano, Primiceri, and
Tambalotti (2011) in which ξw = 0.777, λw = 0.144 (which corresponds to εw − 1 = 1

λw
, εw ' 7.9),

and ν = 4.492, then κCalvow ≈ 0.0009, which implies wage inflation responds very little to labor market
slack.

The equivalent slope coefficient using Rotemberg contracts is given by:

εw − 1

ϕw
mc

(1− α)
c
y

,

where the steady state marginal costs is given by: mc =
εp−1
εp

. To relate this to Calvo contracts, we
use:

ϕw =
εw − 1

κCalvow

(1− α)mc
c
y

The estimates of Justiniano, Primiceri, and Tambalotti (2011) imply that (1−α)
c
y

' 1.5 and mc '
0.84 implying extremely high nominal wage adjustment costs as ϕw

1000 ≈ 9936. This estimate of wage
adjustment costs is outside the upper end of the 90 percent credible set and is substantially higher
than our posterior mean estimate.

47


