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1 Introduction

As a result of the financial crisis of 2007-2009, the U.S. economy experienced a sharp contraction

in activity followed by a markedly slow recovery. At the same time, the federal funds rate fell and

remained at its effective lower bound for a protracted period of time. Accordingly, the zero lower bound

(ZLB) constraint became a practical concern for monetary policymakers, limiting their ability to offset

contractionary disturbances to the economy. In light of these developments, an important question

remains: What role did this constraint play in exacerbating the economic slump that occurred in the

aftermath of the financial crisis?

In this paper, we address this question by formally estimating and evaluating a dynamic stochastic

general equilibrium (DSGE) model. In doing so, the paper offers a methodological contribution by

estimating a nonlinear DSGE model in which a lower bound is occasionally binding. We apply this

methodology to the interest-rate lower bound, but our approach is more general and could be used in

many different contexts, including models with financial constraints. When applied to the interest-rate

lower bound, the technique allows us to identify the nature and size of disturbances that pushed the

interest rate to the lower bound in the United States in late 2008 and quantify the role of the constraint

in exacerbating the resulting economic slump. Moreover, our methodology provides a new perspective

on the relative contributions of the endogenous and exogenous sources of business cycle fluctuations.

We estimate a nonlinear version of a medium-scale model widely used in macroeconomics and mon-

etary economics. In particular, we use a model similar to those of Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2007), as these models have been successful in providing an empirically

plausible account of key macroeconomic variables including output, consumption, investment, inflation,

and the nominal interest rate. The model includes several real and nominal frictions including habit

persistence in consumption, costly adjustment of investment, and costs to adjusting nominal wages and

prices. Because of these features, the model has many state variables, and we demonstrate that it is

possible albeit challenging to estimate a model of this size nonlinearly using Bayesian techniques.

Fluctuations in the model are driven by five shocks including those to total factor productivity,

government spending, and monetary policy. We also include two other shocks that can be interpreted

in a reduced-form manner as financial shocks. The first is the marginal efficiency of investment (MEI)

shock discussed in Justiniano, Primiceri, and Tambalotti (2011), which affects the transformation

through which goods can be turned into productive capital. As shown in Justiniano, Primiceri, and
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Tambalotti (2011), this shock can be viewed as a disturbance to the financial sector’s ability to channel

savings into investment. The second is a disturbance to the household’s intertemporal Euler equation

governing the purchase of a risk-free bond as in Smets and Wouters (2007) and Christiano, Eichenbaum,

and Trabandt (2015). Following Smets and Wouters (2007), we refer to this shock as a ‘risk premium’

shock since it affects the spread between the risk-free rate and the return on risky assets.

In the model, the lower bound constraint is potentially an important factor influencing the stance

of monetary policy and hence economic outcomes. By constraining the current interest rate, the

lower bound limits the degree of monetary stimulus. However, monetary policy can still be effective

in influencing expectations about future output and inflation, thereby affecting the current levels of

prices and spending. Similarly, the current decisions of households and firms are influenced by the

expectation that the constraint may be binding in future states.

Our solution method takes into account the effect that uncertainty about the ZLB has on the

economic decisions of households and firms, as we do not impose certainty-equivalence or perfect

foresight to solve the model. With this solution, we estimate the nonlinear model using Bayesian

methods via a Markov chain Monte Carlo (MCMC) algorithm. Since we cannot evaluate the likelihood

using the Kalman filter, we use the particle filter. Although others have estimated nonlinear models

with these techniques, this paper is the first to our knowledge to do so using a nonlinear model with

an occasionally binding constraint.

Our empirical approach offers several advantages. First, as noted above, it explicitly takes into

account the effect of future uncertainty about whether the ZLB will bind or not on the economic deci-

sions of agents, and this uncertainty is accounted for in the estimation of the model. In contrast, others

including Ireland (2011) estimate a linearized DSGE model without the constraint, which neglects to

consider how the lower bound systematically changes monetary policy and thus the behavior of eco-

nomic agents—a key aspect at the heart of our analysis. Moreover, we find evidence that the risk of a

binding ZLB constraint affected economic behavior during the 2003-2004 episode in which the federal

funds rate was near-but-never-at the constraint.

A second advantage of our approach is that it uses all available data, including the period over which

the ZLB binds, to estimate the model. In contrast, an alternative approach is to estimate a linear model

over a sample period in which the ZLB does not bind and use those estimates to simulate a nonlinear
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version of the model that imposes the constraint.1 This approach precludes jointly estimating the

parameters of the model and the shocks that occurred over the zero lower bound period and then using

them to quantify the economic effects of the constraint, a central feature of our analysis.

We also find that there are important differences between the parameter estimates coming from the

linearized version of the model and those coming from the nonlinear version, suggesting that inference

based on the estimates of the linearized model is flawed. In particular, we find that the linear version

of the model attributes an overly large role to the marginal efficiency of investment shock in explaining

economic fluctuations. This result arises because the nonlinear version of the model has a stronger in-

ternal propagation mechanism than its linear counterpart. This stronger propagation reflects, in part,

the nonlinearity associated with the ZLB but more importantly that the linear dynamics understate

the sensitivity of investment to economic disturbances in models with costs to adjusting investment

as in Christiano, Eichenbaum, and Evans (2005). Thus, our results highlight the importance of esti-

mating the nonlinear model in order to properly quantify the relative contributions of endogenous and

exogenous sources of business cycle fluctuations.

We estimate the model using U.S. quarterly data on output, consumption, and investment as well

as inflation and the nominal interest rate from 1983 through 2014. For this sample period, there is

a single episode spanning from 2009 until the end of the sample in which the nominal interest rate

is effectively at the lower bound. We examine the model’s estimated shocks during this episode and

characterize which shocks were important in causing the Great Recession and in driving the nominal

rate to the lower bound.

For the episode in which the interest rate was at the lower bound, the two financial disturbances

– the risk premium and MEI shocks – were key driving forces pushing the interest rate down and

keeping it at the lower bound during and after the Great Recession. However, the risk premium

shock is the relatively more important of the two financial shocks, especially in explaining the large

contraction in output, consumption, and investment that occurred. The productivity shock played a

role in contributing to the slow economic recovery and in explaining why inflation did not fall more

sharply during the Great Recession. Monetary policy shocks contributed little to the dynamics of

inflation, output, and the nominal interest rate over the course of this episode. However, this does not

necessarily imply that monetary policy was unimportant, as our results highlight that the systematic

1 See, for example, Aruoba, Cuba-Borda, and Schorfheide (2016) and Christiano, Eichenbaum, and Trabandt (2015).
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portion of the monetary policy rule was critical to understanding the dynamics of the economy during

and in the aftermath of the financial crisis.

Using the estimates of the shocks, the central question we address is how much the lower bound

constrained the ability of monetary policy to stabilize the economy. We answer this question by

comparing our estimated model in which the lower bound is imposed to the hypothetical case in which

monetary policy can act in an unconstrained manner. Our mean estimate from this counterfactual

experiment implies that about 30 percent of the sharp contraction in output during the Great Recession

was due to the interest-rate lower bound. The zero lower bound played an even larger role in accounting

for the slow recovery following this contraction, as U.S. GDP did not recover back to its pre-recessionary

level until the end of 2012. In the absence of the ZLB constraint, our mean estimates imply that output

would have recovered to its pre-recessionary level about a year earlier and that the ZLB explains a litle

more than half of the lower output over the 2008-2012 period. Moreover, the ZLB constraint was an

important factor in contributing to inflation running persistently below the Federal Reserve’s target

over this period. An important caveat, associated with these estimates is that there is considerable

uncertainty surrounding them.

Our paper is most closely related to Chung, Laforte, Reifschneider, and Williams (2012), who use

counterfactual simulations in which policy is unconstrained to evaluate the cost of the ZLB in the

context of a large-scale macroeconomic model. By comparing actual outcomes to the counterfactual

outcomes of unconstrained simple policy rules, they argue that the ZLB was a significant constraint

on monetary policy, contributing to lower inflation and a higher unemployment rate. We also perform

a similar counterfactual exercise; however, our methodology differs significantly from theirs, including

the fact that we estimate the policy rule used in our counterfactual analysis.

Our paper is also related to Christiano, Eichenbaum, and Trabandt (2015) and Campbell, Fisher,

Justiniano, and Melosi (2016), who study the effectiveness of the Federal Reserve’s forward guidance

policies during the ZLB episode. Although this question is important in assessing the cost of the

ZLB, these papers do not disentangle the effects of the ZLB from other frictions that contributed to

the Great Recession as we do. Similarly, Wu and Xia (2016) also focus on evaluating the benefits

of unconventional policy rather than the cost of the ZLB constraint. In doing so, they use a term

structure model to construct a measure of the shadow or desired rate that policymakers would choose

if they could ignore the ZLB constraint. We also construct such a measure, though our estimates are
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derived from an estimated structural model.

The rest of the paper proceeds as follows. The following section presents the macroeconomic model

that we estimate, while Section 3 discusses how the model is solved and estimated. The next three

sections present the model’s results. Section 4 discusses the model’s parameter estimates and time

series properties of the model. Section 5 examines the estimated shocks that took the economy to the

lower bound and that account for the Great Recession, and Section 6 quantifies the effects of the zero

lower bound constraint on the economy. Section 7 presents some conclusions.

2 The Model

The model is similar to Christiano, Eichenbaum, and Evans (2005) or Smets and Wouters (2007).

The economy consists of a continuum of households, a continuum of firms producing differentiated

intermediate goods, a perfectly competitive final goods firm, and a government in charge of fiscal and

monetary policy. We now lay out the objectives and constraints of the different agents as well as the

sources of uncertainty.

2.1 Firms

There is a continuum of monopolistically competitive firms producing differentiated intermediate goods.

These goods are used as inputs by a perfectly competitive firm producing a single final good. The final

good is produced by a representative, perfectly competitive firm with a constant-returns technology,

Yt =

(∫ 1
0 Yt(j)

εp−1

εp dj

) εp
εp−1

, where Yt(j) denotes intermediate good j ∈ [0, 1], and εp > 1 is a constant

elasticity of demand. Profit maximization implies that the final goods producer’s demand for good j is

given by Yt(j) =
(
Pt(j)
Pt

)−εp
Yt, where Pt(j) denotes the price for intermediate good j and Pt denotes

the aggregate price level.

The production function for good j is:

Yt(j) = Kt(j)
α (ZtNt(j))

1−α , (1)

where Zt denotes the aggregate level of technology, and Kt(j) and Nt(j) denote the capital and labor
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services hired by firm j, respectively. Technology is assumed to evolve according to:

Zt = Zt−1GZ exp (εZ,t) , (2)

where εZ,t ∼ iid N
(
0, σ2

Z

)
denotes a random disturbance to technological growth that causes it to

depart from a deterministic growth rate, GZ .

Intermediate goods firm j sells its output in a monopolistically competitive market and sets its

nominal price Pt(j) subject to a quadratic cost to adjusting its price as in Rotemberg (1982). We

depart from Christiano, Eichenbaum, and Evans (2005) and use Rotemberg contracts instead of Calvo

contracts to model nominal price and wage stickiness, as this choice helps reduce the dimensionality of

the model’s nonlinear state space.2 A firm’s cost to adjusting its price in period t is given by:

ϕp
2

(
Pt(j)

π̃t−1Pt−1(j)
− 1

)2

Yt,

where the parameter ϕp ≥ 0 governs the size of the adjustment cost and Yt denotes aggregate output.

A producer’s price change is indexed to π̃t−1 = πaπ1−a
t−1 where π denotes the central bank’s inflation

target and πt−1 = Pt−1

Pt−2
. The parameter a satisfies 1 ≥ a ≥ 0 and determines the extent to which price

indexation is tied to the central bank’s inflation target or to the lagged inflation rate. The cost of price

adjustment makes the problem of the intermediate goods producer dynamic; that is, it chooses Pt(j)

to maximize its expected present discounted value of profits:

E0

∞∑
t=1

βtΛt

[(
Pt(j)

Pt
−mct

)
Yt(j)−

ϕp
2

(
Pt(j)

π̃t−1Pt−1(j)
− 1

)2

Yt

]
,

taking mct, Yt, π̃t−1, and Λt as given. In equilibrium, the variable Λt is equal to the marginal value of

an additional unit of real profits to a household in period t, reflecting the ownership of the firm by a

household in the economy. The variable mct denotes real marginal costs, which are the same for all of

the intermediate goods producers and are given by mct = 1
Φ

(
rkt
)α (Wt

Pt

)1−α
, where Wt

Pt
and rkt denote

the aggregate real wage and rental rate of capital services, respectively, and Φ ≡ αα(1− α)1−α.

2 With Rotemberg adjustment costs the model has twelve state variables. If, instead, we used Calvo contracts, there
would be two additional state variables reflecting the dispersion of wages across households and prices across firms.
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2.2 Households

We assume that there is a continuum of monopolistically competitive households indexed by i ∈ [0, 1]

supplying a differentiated labor service, Nt(i). This allows us to model nominal wage rigidities in an

analogous manner to the nominal price rigidities described earlier. Household i sells labor services to

a representative employment agency producing a single labor input, Nt, which is in turn supplied to

the intermediate goods firms in a perfectly competitive labor market. The Dixit-Stiglitz aggregator for

labor services is given by:

Nt =

(∫ 1

0
Nt(i)

εw−1
εw di

) εw
εw−1

,

with εw > 1. Profit maximization by the employment agency taking as given the aggregate wage, Wt,

and each household’s wage, Wt(i), yields the following set of demand schedules: nt(i) =
(
Wt(i)
Wt

)−εw
Nt,

∀i.
A household’s preferences are given by:

E0

∞∑
t=0

βt
{

ln (Ct(i)− γCt−1(i))− ψL
Nt(i)

1+σL

1 + σL
− ϕwt (i)

}
, (3)

where Ct(i) denotes the consumption of household i, and ϕwt (i) is the loss in utility associated with

adjusting the household’s wage, Wt(i). The parameter γ governs the importance of habits in consump-

tion. Household i also experiences disutility from working, with the parameter ψL affecting the level

of this disutility and σL affecting the Frisch elasticity of labor supply. Similar to the cost of adjusting

prices, the wage adjustment cost is quadratic:

ϕwt (i) =
ϕw
2

[
Wt(i)

π̃wt Wt−1(i)
− 1

]2

,

where ϕw ≥ 0 governs the size of this cost. Wage contracts are indexed to productivity and inflation,

since π̃wt = GZπ
aw (exp (εZ,t)πt−1)1−aw with 0 < aw < 1.

A household’s budget constraint in period t is:

Ct(i) + It(i) +R−1
t

Bt+1(i)

ηtPt
+ a(ut(i))Kt(i) =

Wt(i)

Pt
nt(i) + rktKt(i) +

Bt(i)

Pt
+
Dt

Pt
− Tt. (4)

A household receives labor income from the employment agency and income from purchases of a risk-free
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nominal bond, Bt(i). Each household receives the same amount of dividends, Dt, from the economy’s

intermediate goods producers and pays the same amount of lump-sum taxes, Tt. Household i also owns

capital, Kt(i), which it combines with its desired level of capital utilization, ut(i), to transform into

capital services, Kt(i) = ut(i)Kt(i). To utilize physical capital and transform it into capital services, a

household incurs the cost a (ut(i))Kt(i), where the function a (ut(i)) is given by:

a (ut(i)) =
rk

σa
{exp (σa(ut(i)− 1))− 1} . (5)

A household purchases the final good and uses it for consumption, Ct(i), or investment, It(i).

Nominal bonds are purchased at the price 1
RtηtPt

, where Rt denotes the nominal interest rate. Following

Smets and Wouters (2007) and Christiano, Eichenbaum, and Trabandt (2015), ηt is an exogenous

disturbance to a household’s return on the risk-free bond. Fisher (2015) discusses how an increase in

ηt, to first order, can be interpreted as a rise in the demand for risk-free bonds. This risk premium

shock affects the spread between the nominal rate and the return on risky assets, and is assumed to

evolve according to:

ln(ηt) = ρη ln(ηt−1) + εη,t, (6)

where εη,t ∼ iid N
(
0, σ2

η

)
.

A household’s purchases of investment augment the physical stock of capital according to:

Kt+1(i) = (1− δ)Kt(i) + µt (1− St(i)) It(i), (7)

where δ is the depreciation rate of capital and µt is an exogenous disturbance to the marginal efficiency

of transforming final goods into tomorrow’s physical capital. This shock is assumed to evolve according

to:

ln(µt) = ρµ ln(µt−1) + εµ,t, (8)

where εµ,t ∼ iid N
(
0, σ2

µ

)
. As discussed in Justiniano, Primiceri, and Tambalotti (2011), this shock

can be interpreted as a reduced-form way of capturing financial frictions that affect the transformation

of aggregate savings into investment. In accumulating capital, households must also incur an adjust-

ment cost, St(i), to transform investment into capital available for production next period. Following
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Christiano, Eichenbaum, and Evans (2005), these adjustment costs are given by:

St(i) =
ϕI
2

(
It

GZIt−1
− 1

)2

. (9)

2.3 Monetary and Fiscal Policies

The central bank must set the nominal rate Rt in accordance with its lower bound constraint:

Rt = max
[
1, RNt

]
, (10)

where RNt denotes the notional or desired rate that the central bank would like to set in the absence

of the constraint. The notional rate is set according to:

ln(
RNt
R

) = ρR ln(
RNt−1

R
) + (1− ρR)

[
γπ ln

(πt
π

)
+ γxx

g
t + γg ln

(
Yt

GZYt−1

)]
+ εR,t, (11)

with 0 < ρR < 1, γπ ≥ 0, γg ≥ 0, and γx ≥ 0. In the above, R = β−1GZπ denotes the interest rate

in the non-stochastic steady state, Yt denotes aggregate output, and xgt denotes the output gap. The

variable εR,t is an exogenous disturbance to the policy rule satisfying εR,t ∼ iid N
(
0, σ2

R

)
.

The output gap is defined as a weighted average of the deviations of utilization and labor from

their non-stochastic steady state values: xgt = α log ut + (1 − α) log(NtN ), where ut is the aggregate

level of capital utilization, whose non-stochastic steady state value is equal to one, and N denotes the

non-stochastic steady state level of labor. This concept of the output gap departs from Smets and

Wouters (2007), who use the natural level of output (i.e., the level of output in the absence of price and

wage rigidities). Use of such a concept would considerably increase the size of the nonlinear state space

needed to solve the model so our use of xgt in part reflects that it is computationally convenient. In

addition, in practice a central bank may rely on estimates of an output gap concept more closely related

to xgt than the natural level of output, and we find that when we use this concept of the output gap, it

tracks reasonably well the measure constructed by the Congressional Budget Office (see Appendix E).

Government spending is determined exogenously as a time-varying fraction of output: Gt = (1 −
1
gt

)Yt, where gt evolves according to:

ln(gt) = (1− ρg) ln g + ρg ln(gt−1) + εg,t, (12)
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where g denotes the steady state share of government spending and εg,t ∼ iid N
(
0, σ2

g

)
. Finally, the

government budget constraint is assumed to be satisfied on a period-by-period basis so that Gt = Tt.

2.4 Market Clearing

We focus on a symmetric equilibrium in which all intermediate goods producing firms and all households

make the same decisions, and we denote aggregate variables by dropping a variable’s dependence on i

or j. In a symmetric equilibrium, the aggregate production function is given by:

Yt = Kα
t [ZtNt]

1−α, (13)

since Kt = Kt(j), Nt = Nt(j) ∀j. The market clearing condition for the final good is:

Ct + It +Gt +
ϕp
2

[
πt
π̃t−1

− 1]2Yt + a(ut)Kt = Yt, (14)

where we have used that ut = ut(i), Ct = Ct(i), and It = It(i) for all i in a symmetric equilibrium.

3 Solution and Econometric Inference

3.1 Model Solution

The model is solved for a minimum state variable solution using a projection method similar to Chris-

tiano and Fisher (2000) and Judd, Maliar, Maliar, and Valero (2014), and the details of the method

are provided in a Technical Appendix.3 Because we are estimating the model, it might be tempting

to use a computationally-efficient solution algorithm that respects the nonlinearity in the Taylor rule

but log-linearizes the remaining equilibrium conditions. This approach has been used by Bodenstein,

Guerrieri, and Gust (2013) and Guerrieri and Iacoviello (2015) among others. Unfortunately, we find

3 The minimum state variable solution rules out equilibria with additional state variables such as a sunspot or those
with nonstationary dynamics. See McCallum (1999) for a discussion. However, Benhabib, Schmitt-Grohe, and Uribe
(2001) emphasize that there is a second steady state that is deflationary due to the imposition of the ZLB on the
Taylor rule. Our solution algorithm in principle does not rule out dynamics that fluctuate around this deflationary
steady state. But, in practice, we use the linearized solution as the initial guess for the solution algorithm and find that
that the solution algorithm never converged to this unintended deflationary equilibrium: for every estimated parameter
draw that we examined from the posterior distribution, the ergodic mean of inflation was greater than zero. Moreover,
such deflationary outcomes do not characterize the U.S. data over our sample period. As discussed in Christiano and
Eichenbaum (2012), this deflationary equilibrium is also not E-learnable.
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that this approach performs poorly when applied to our model, as the linearized dynamics poorly

approximate the nonlinear dynamics even for moderately-sized shocks. Instead, as discussed in the

Technical Appendix, we develop a computationally-efficient algorithm that is easy to parallelize and

ideal for solving a nonlinear, medium-scale DSGE model with an occasionally binding constraint. Using

this solution algorithm, we show that there are differences between the nonlinear and linear versions

of the model and that they have important implications for the estimates of the model’s parameters

and the propagation of shocks. Another attractive feature of our solution method is that it takes into

account the uncertainty about the likelihood that the economy will be at the lower bound, as it does

not rely on perfect foresight or certainty equivalence.

3.2 Data and Estimation

The solution algorithm characterizes a transition equation for the model variables, st, as a function,

Φ, of its past realization, st−1, and current innovations to the shocks, εt, which we write as

st = Φ(st−1, εt; θ), εt ∼ N(0, I), (15)

where

st =
[
kt+1,yt, ct, it, πt, R

N
t , wt, ηt, µt, gt,yt−1, ct−1, it−1

]
,

εt = [εη,t, εµ,t, εZ,t, εg,t, εR,t] , and

θ =
[
β, Π̄, gz, α, ρR, γΠ, γg, γx, γ, σL, σa, ϕI , ϕp, ϕw, a, aw, ρg, ρµ, ση, σµ, σZ , σg, σR

]
.

Within the model variables st, kt+1, yt, ct, wt, and it denote the level of the capital stock, output,

consumption, real wage, and investment scaled by the level of technology, Zt.

Our goal is to determine plausible values for the parameters, θ, for tracking and explaining the

U.S. macroeconomic experience since the early 1980s. Specifically, we base the empirical analysis

on quarterly U.S. data from 1983:Q1 to 2014:Q1, using five time series to estimate the model. As

measures of real activity, we use per-capita GDP growth, per-capita consumption growth, and per-

capita investment growth. Inflation is measured as the change in the log of the GDP deflator, while

our measure of the short-term interest rate is given by the quarterly average of the daily three-month
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U.S. Treasury bill (quarterly) rate, following Ireland (2011). Additional details about the data are

provided in Appendix A.

We assume that the observables contain measurement error, so the relationship to our model vari-

ables is given by,



Output Growth

Consumption Growth

Investment Growth

Inflation

Interest Rate


=



ln(yt)− ln(yt−1) + ln(GZ) + εZ,t

ln(ct)− ln(ct−1) + ln(GZ) + εZ,t

ln(it)− ln(it−1) + ln(GZ) + εZ,t

ln(πt)

ln(Rt)


+ measurement error, (16)

which we write compactly as,

yt = Ψ(st, εt; θ) + ut, ut ∼ N(0,Σu). (17)

We estimate θ using Bayesian methods. Herbst and Schorfheide (2015) and the references therein

provide background on Bayesian estimation of (linear and nonlinear) DSGE models; here we give a

brief overview and leave the details to the Technical Appendix. Stacking the five observed time series

as Y1:T , Bayesian inference is characterized by a posterior distribution over the parameters, p(θ|Y1:T ),

that is proportional to the product of the likelihood for Y1:T and prior distribution for θ,4

p(θ|Y1:T ) ∝ p(Y1:T |θ)︸ ︷︷ ︸
likelihood

× p(θ)︸︷︷︸
prior

.

Constructing the posterior distribution is conceptually straightforward but computationally very chal-

lenging. The transition equation defined by equation (15) along with the observation equation (17)

define a nonlinear state space model. Since the observables are only a subset of the model variables,

we are required to integrate out the unobserved states to compute the likelihood. Unlike a linear

(Gaussian) state space model, we cannot evaluate these integrals analytically via the Kalman filter.

Instead, we use a (Sequential) Monte Carlo technique known as a particle filter. This simulation-based

approach provides us with an estimate of the likelihood, p̂(Y1:T |θ), for a given parameter draw, θ, by

4 In a slight abuse of notation, Yt denotes aggregate output at date t and Y1:T denotes the five observed time series
from 1983:Q1 to 2014:Q1.
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constructing discrete approximations (“particles”) to the distributions of the underlying states.5

We also resort to simulation-based methods to elicit draws from the posterior. Markov-chain Monte

Carlo (MCMC) techniques construct a Markov chain {θi}Ni=1 whose invariant distribution coincides with

the posterior distribution of interest, p(θ|Y1:T ). We use the so-called random walk Metropolis-Hastings

(RWMH) algorithm first used in DSGE model estimation by Schorfheide (2000) and Otrok (2001). A

complication here is that, like Fernandez-Villaverde and Rubio-Ramirez (2007), we are using MCMC

with a particle-filter-based estimate of the likelihood. We appeal to Andrieu, Doucet, and Holenstein

(2010), who show formally that, despite the use of the particle filter, the Markov chain will still have the

desired posterior distribution as its invariant distribution. For more details on the MCMC algorithm,

including hyperparameters and run time, see the Technical Appendix.

Measurement errors. As mentioned above, we include measurement error in the observation equation

(16). One reason for its presence is feasibility: without measurement error–or with only very small

measurement errors–our particle filter degenerates and the accuracy of the likelihood estimate becomes

very poor.6 The measurement error is defined as

Σu = me × diag (V[Y1:T ]) ,

where we set me = 0.25 for the baseline parameter estimates of the model and me = 0.1 for a lower

measurement error case. These values imply that, for each observable, the variance of its measurement

error is 25 percent (me = 0.25) or 10 percent (me = 0.1) of its total variance over the estimation period,

respectively. As discussed in the Technical Appendix, either of these values ensures that the particle

filter estimates are stable, and we present results for two values of me to highlight how measurement

error affects our estimates.

The inclusion of measurement error represents a departure from the majority–though not all–of

the literature estimating linear DSGE models. In particular, it means that our estimates are more

uncertain than they otherwise might be. The benefit of this approach, though, is that we are able

to conduct inference using the full nonlinear structure of the model, including the zero lower bound.

Given that the dynamics of the nonlinear model differ considerably from the linearized dynamics, we

5 There is a long literature on particle filtering–see Creal (2012) for a survey. We use a very basic version of the
particle filter, the so-called bootstrap particle filter described in Gordon, Salmond, and Smith (1993) with some minor
modifications. The Technical Appendix contains the details on the implementation of the particle filter.

6Another important reason, as discussed later, is that measurement error can absorb some of the model misspecification.
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think that it is a trade off worth making.

Parallelization. While most of the technical aspects are relegated to the Technical Appendix, it is

worth mentioning some of the key innovations that we make in order to estimate a nonlinear, medium-

scale DSGE model. The principal obstacle in our empirical exercise is time. It can take a long time

to solve the model and evaluate the particle filter. Finally, the MCMC estimation strategy requires

solving the model and evaluating the particle filter many times in an iterative fashion. For both the

solution of the model and evaluation of the particle filter, we rely on extensive parallelization to reduce

computational time. The parallelization of the projection method used to construct the model solution

is straightforward. The parallelization of the particle filter, on the other hand, is more difficult, as the

filter requires frequent communication amongst all particles. The Technical Appendix shows how to

circumvent many of the problems associated with naive parallelization. With these modifications to

the solution algorithm and particle filter, we leverage a large distributed computing environment to

sample from our posterior quickly.7

4 Estimation Results

4.1 Parameter Estimates

Bayesian inference requires that we specify a prior distribution. Many of our marginal prior distribu-

tions are the same as in Justiniano, Primiceri, and Tambalotti (2011). The prior distributions for the

Rotemberg adjustment cost parameters are specified to be consistent with prior beliefs that nominal

wages are more rigid than prices. More details about the prior distributions are shown in Appendix

B. We also fix several parameters. In particular, the elasticity of the demand for labor inputs, εw,

and the elasticity of the demand for intermediate goods, εp, are not estimated and are fixed at 6. The

depreciation rate, δ, is set to 0.025, and the non-stochastic steady state share of government spending,

g, is set equal to 20 percent. The preference parameter ψL is normalized to one.

Estimating the nonlinear model is a challenging task, particularly for a model of this size, and this

task is made more complicated because of the zero lower bound constraint, whose presence makes it

difficult to solve the model for highly-persistent risk premium shocks. To simplify the estimation of the

7We could, in principal, enjoy further gains by modifying the MCMC algorithm along the lines of Smith (2011), who
develops a Surrogate MCMC algorithm wherein the particle filter is not evaluated when the likelihood is predicted to be
a low value. See Gust, López-Salido, and Smith (2012) for details.
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model, we fix ρη at 0.85, a relatively high value that helps the model fit the data. In particular, this

value is consistent with the micro-econometric evidence presented in Gilchrist and Zakraǰsek (2012),

whose measure of the excess bond premium has an autocorrelation of 0.84 over our sample period.

Moreover, a value of ρη = 0.85 is not at odds with the aggregate data: as shown in Appendix B, the

likelihood function is increasing in ρη; however, as ρη gets close to one, it becomes more difficult to

compute a solution to the model for a wide range of parameter configurations, considerably complicating

the estimation of the model.8

Table 1 presents the means and the intervals bracketed by the 5th and 95th percentiles of the

marginal posterior distributions of the parameters for the baseline value of the measurement error

(me = 0.25). The mean estimates of the discount factor and the deterministic trend to the technology

growth rate are just below one and 0.5 percent on a quarterly basis, respectively, implying a real rate

of about 2.6 percent on an annualized basis in the non-stochastic steady state. The central bank’s

inflation target is estimated to have a mean of about 2.5 percent, which is higher than the current 2

percent target of the Federal Reserve, reflecting that the sample mean of inflation from 1983-2014 is

close to 2.5 percent.

For the policy rule, the estimates are largely in line with Del Negro, Eggertsson, Ferrero, and

Kiyotaki (2011). The posterior mean for the interest-rate smoothing parameter, ρR, is near 0.7, while

the posterior means for the policy-rate responses to inflation and output growth, γπ and γg, are about

1.7 and 0.7, respectively. The policy rule also involves a smaller but statistically significant response

of the short-term nominal rate to the output gap, as the posterior mean of γx equals 0.14.

The posterior mean of the adjustment cost parameter for investment, ϕI , is 3.7 with a 90 percent

credible interval covering values from 2.2 to 5.2. This mean estimate is above the value of 3 estimated

by Justiniano, Primiceri, and Tambalotti (2011), but below that of Smets and Wouters (2007). The

posterior mean of the habit persistence parameter, γ, is equal to 0.7, and the 90 percent credible

interval—covering values between 0.63 to 0.76—is relatively tight. The parameter governing the elas-

ticity of labor supply, σL, has a mean of 2. The posterior mean of the elasticity of the rental cost of

capital with respect to the utilization, σa, is 5.3 – similar to the estimates of Justiniano, Primiceri, and

Tambalotti (2011) and Altig, Christiano, Eichenbaum, and Lindé (2011).

8 Whether it is possible to compute a solution for ρη close to one or not depends importantly on the other model
parameters and in particular the adjustment costs for investment. Characterizing the parameter space for which we can
find a solution to the model is an extremely difficult task given that the model is nonlinear and has many parameters.
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The posterior mean of the price adjustment cost parameter, ϕp, is around 100 with a weight on

lagged indexation, 1 − a, equal to 0.56, implying a linearized slope coefficient for the New Keynesian

Phillips curve of 0.07. As shown in Appendix F, such a slope coefficient corresponds to a frequency

of price changes of slightly more than one year in a model with Calvo contracts. Nominal wages are

estimated to be extremely rigid but, as shown in Appendix F, less so than in Justiniano, Primiceri,

and Tambalotti (2011).

While the discussion so far has emphasized that most of the estimates are similar to those in the

literature, this is not the case for the shock parameters. Most strikingly, the mean of the standard

deviation of the innovation to this shock, σµ, is about half the value found by Justiniano, Primiceri,

and Tambalotti (2011). This lower estimate primarily reflects our use of the nonlinear model rather

than its linear approximation.9 To highlight this difference, the right panel of Figure 1 shows that the

posterior distribution of σµ is considerably below the distribution derived from estimating the linearized

version of the model. While the estimate of this parameter is the one that is most substantially affected

by estimating the nonlinear model rather than the linear model, there are other notable differences

in the estimates as well. The estimated volatilities of the risk premium shock, government spending

shock, and technology shocks are all smaller using the nonlinear model, and the parameter estimates

of the policy rule differ somewhat as well.10 Moreover, the left panel shows that the estimate of the

adjustment cost on investment is higher in the nonlinear model, though the difference is not as dramatic

as the estimate of the innovation variance of the MEI shock.

In Appendix D we show the parameter estimates imposing a lower measurement error (me = 0.1).

Most of the parameter estimates are similar to the baseline case. However, there are a couple of

important exceptions. The degree of wage and price rigidities is notably smaller than under the

baseline estimates, and the estimated size of the technology shock is much larger.

4.2 The Nonlinear Propagation of Shocks

If the linear model approximated the nonlinear dynamics well, the two sets of parameter estimates

would be the same. However, Figure 1 demonstrates that some of the parameters from these two

9 The differences in parameter estimates between the linear and nonlinear versions of the model would be larger if the
measurement error were smaller. All other things equal, the estimated structural shocks would be larger in that case,
causing the performance of the linear approximation to deteriorate further relative to the nonlinear solution.

10 See Appendix C for the estimates based on the linear version of our model.
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versions of the model can differ substantially, and in this subsection we show that this result reflects

that the linear approximation understates the endogenous propagation of shocks in the model. To

do so, we use the mean estimates derived from the nonlinear model to simulate both the linear and

nonlinear versions of the model and compare the impulse responses to the economy’s two financial

shocks.

In order to highlight the difference between the linear and nonlinear solutions, Figure 2 shows the

effects of a one standard deviation increase in εη,t, the innovation to the risk premium shock, using initial

conditions in which the economy is moderately away from its non-stochastic steady state.11 The solid

dark lines display the responses using the nonlinear solution, and dashed red lines show the responses

using the linear solution. By raising risky spreads, this shock reduces economic activity and inflation

and also puts downward pressure on the nominal interest rate in both model versions. But, the fall

in economic activity is notably larger in the nonlinear version of the model, especially for investment,

where the difference is substantial. Because this larger fall in investment persists and because it also

reduces the stock of capital, there is a larger and more persistent fall in output, consumption, and

hours worked in the nonlinear version of the model. In contrast, the price of installed capital falls by

less in the nonlinear version of the model than in the linear version. Overall, Figure 2 indicates that

the linear solution poorly approximates the stronger propagation inherent in the nonlinear dynamics

even for moderately-sized innovations in the shock.12 Of course, these differences are magnified for

larger shocks.

The stronger propagation inherent in the nonlinear dynamics is not driven by the ZLB but by the

investment adjustment costs, which imply that optimal investment satisfies:

1 + qtµt

[
St + ϕI

(
It
It−1

− 1

)
It
It−1

]
= qtµt + ϕIEt

{
qt+1µt+1mt+1

(
It+1

It
− 1

)(
It+1

It

)2
}
, (18)

where St is defined in equation (9), mt+1 = β Λt+1

Λt
denotes the stochastic discount factor, qt denotes the

price of newly installed capital, and for convenience we have abstracted from the trend in technological

11 In particular, we choose initial conditions for the risk premium shock (η0) so that it is one standard deviation above
its unconditional mean while the lagged values of the other state variables are equal to their non-stochastic steady state
values.

12 The bottom right panel compares the approximation error associated with the Euler equation that determines the
relationship between the price of investment and a household’s optimal supply of investment, equation (18) along the
shocked path. This error is about ten times larger using the linear solution than the nonlinear solution.
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growth. The left-hand side of equation (18) reflects the cost of increasing investment by an extra unit

and the right-hand side reflects the benefit. On the cost side, increasing investment in the current

period means that the household foregoes consumption today and also incurs costs to transform the

final good into new capital. On the benefit side, the extra investment boosts the amount of installed

capital and the value to doing so reflects both the price of the installed capital, qt, and the efficiency

of the extra investment, µt. The benefits also reflect that raising investment today reduces the burden

associated with incurring the adjustment costs in the future.

Although the quadratic nature of the adjustment costs make it difficult to see, equation (18) implies

the supply of investment is an increasing function of qt. All else equal, a reduction in the stochastic

discount factor, either due to an increase in the real policy rate or the risky spread, tends to lower

the supply of investment because the future benefits fall. This effect, however, is absent from the

linearized counterpart of equation (18), because the linearized equation is approximated around the

non-stochastic steady state where this effect is negligible. However, away from there, this effect will not

necessarily be inconsequential, as Figure 2 demonstrates. In that case, the increase in the risky rate

leads to a reduction in investment supply that contributes to a slump in investment. Furthermore, this

shift in investment supply does not have to be large, because the elasticity of investment demand with

respect to qt is high meaning that relatively small changes in investment supply can induce relatively

large movements in the level of investment.13 The linearized dynamics neglect the shift in investment

supply, and hence tend to understate the drop in investment.

The linear dynamics also poorly capture the propagation of the MEI shock, whose estimated volatil-

ity is much smaller once we account for the stronger nonlinear propagation. Figure 3 shows the effects

of a one standard deviation reduction in the innovation to the marginal efficiency of investment, εµ,t.

This shock also produces a much larger fall in investment in the nonlinear version of the model than

in the linear version. This lower investment in turn induces a larger fall in the stock of capital, which

helps engender more persistent declines in output and hours worked in the nonlinear version of the

model.

What are the implications of the stronger propagation of the nonlinear dynamics for the business

cycle? As shown in Table 2, the nonlinear version of the model relies on its stronger internal propagation

13 The investment-demand relationship can be derived from the Euler equation for the capital stock which relates qt to
the rental rate of capital. The rental rate of capital, in turn, can be expressed to depend on investment using the capital
accumulation equation. See the Technical Appendix for the details of this equation.
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mechanism to generate output volatility in line with the observed data. To see this, the third column

of the table, labeled ‘Nonlinear Constrained,’ shows the volatility of output, consumption, investment,

and hours at business cycle frequencies simulating the nonlinear model using its parameter estimates.

The standard deviations of output and consumption are near their empirical counterparts, while the

volatilities of investment and hours are only somewhat lower than their empirical counterparts. If

instead we used these same parameter estimates and simulated the linearized dynamics of the model,

the linearized version of the model would substantially understate the volatility of investment, as

shown in the final column. This reflects that, if the linearized model has to rely on the parameter

estimates coming from the nonlinear model, the estimate of the volatility of the MEI shock is too small

given its weaker endogenous propagation. Thus, it fails to generate enough volatility in output, hours,

and especially in investment. For the linearized model to generate a realistic volatility of investment,

it must rely on a much larger exogenous MEI shock, because it poorly approximates the nonlinear

model’s dynamics. Hence, to reliably disentangle the endogenous and exogenous sources of business

cycle fluctuations, one should estimate the nonlinear model rather than its linear approximation.

4.3 Time Series Properties of the Model

Figure 4 shows the implications of the estimated parameters by comparing the observed data on

output growth, investment growth, consumption growth, inflation, and the nominal interest rate with

the smoothed estimates produced by the model under the baseline value of the measurement error

(me = 0.25). The figure also shows the 68 percent credible interval around these values.14

The model generally tracks the fluctuations in output, consumption, and investment growth, and

generates contractions in these variables in all three of the recessions included in our sample period.

For the Great Recession, the model accounts for the sharp falls in output and investment that occurred

and modestly understates the fall in consumption. In addition, the model mimics well the slow growth

in the variables that characterized the subsequent recovery. The model captures most of the low and

medium frequency variation in quarterly inflation, displayed in the middle-right panel, though some of

the high-frequency movements remain unexplained. For the Great Recession, the model accounts for

a substantial part of the fall in inflation as well as its rebound.

14 To construct these series, we proceed as follows: For each draw θ ∼ p(θ|Y1:T ), we sample from p(S1:T |Y1:T , θ) using
the particle filter and report h(S1:T ) for the appropriate function h(·). The credible intervals include both uncertainty
surrounding θ as well as uncertainty surrounding S1:T .
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The lower-left panel shows that the smoothed values for the nominal interest rate are close to the

observed values and the lower-right panel displays the central bank’s notional or desired path for the

nominal interest rate, which provides a measure of the severity of the lower-bound constraint on actual

monetary policy. From 2009 onwards, the notional interest rate is well below zero. It falls to about

minus 5.5 percent in the first half of 2009, gradually moves up to about minus 1 percent at the end of

2012, and then hovers around that level through 2014:Q4.

Figure 5 displays the (smoothed) estimates of output growth and inflation for the model with

baseline measurement error (me = 0.25) and compares them to the corresponding estimates from the

model version with lower measurement error (me = 0.1). Although the two versions of the model

produce similar estimates of output (as well as consumption and investment), the version with lower

measurement error does a better job fitting the high frequency movements in inflation. This result

is due to the more prominent role of technology shocks and the lower degree of price stickiness that

produce larger and more transitory movements in inflation when me = 0.1.

In Figure 6, we examine the estimated model’s implications for the probability of hitting the lower

bound and the duration of a lower bound spell.15 The top panel displays the distribution of the

probability of the nominal rate being at the zero lower bound by simulating data from the model

using parameter draws from the posterior distribution. On average, the model implies that there is

about a 4 percent probability of the nominal rate being at the ZLB. In comparison, in our sample

from 1983:Q1-2014:Q1, the nominal rate was at the zero lower bound in the last 21 quarters of the

125 observations, yielding a probability near 17 percent. Although this is considerably larger than the

mean estimate derived from the model, the top panel of Figure 6 also shows that estimates of this

probability are disperse and that the distribution has a long right tail: about 15 percent of the draws

have a probability of being at the ZLB more than 10 percent of the time and about 3 percent of the

draws have a probability of being there more than 17 percent of the time.

The bottom panel of Figure 6 displays the distribution of the duration of lower bound episodes.

The average duration for a lower bound spell is just over 3.5 quarters and the median is two. The

distribution for the duration of a spell is skewed to the right and also has a long right tail. The ZLB spell

at the end of our sample lasted twenty-one quarters, and spells with durations of twenty-one quarters or

longer occur account for about 1
2 percent of the total number of lower bounds spells. Accordingly, our

15 For each draw of parameters, we simulate 1,000 datasets each with 125 observations. We used 1,000 draws of
parameters from the posterior distribution.
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model implies that the long ZLB spell in the United States was very unlikely, and from the perspective

of households and firms in the model, would have been difficult to predict ex ante. The result is in line

with the view that the financial crisis and its effects on the macroeconomy were difficult to foresee.

5 What Accounts for the Great Recession?

Before quantifying how much the zero lower bound contributed to the Great Recession, we examine

the estimated path of the shocks and their relative contributions to the Great Recession.

5.1 The Path of the Estimated Shocks

Figure 7 displays the smoothed estimates of the risk premium and the marginal efficiency of investment

shocks.16 The vertical axes in these panels display the magnitudes of the risk premium and MEI shocks

relative to their standard deviations, and thus, for example, a value of two denotes that the size of

the shock is two standard deviations above its mean. The bottom left panel of Figure 7 shows the

innovations (εη,t) to the risk premium shock (ηt) and the bottom right panel displays the equity premium

implied by the model.

At the beginning of 2008, the risk premium shock was already elevated and then there was a

four standard deviation innovation in this shock when the financial crisis began. Although such an

innovation is extremely unlikely, the financial crisis itself was an unprecedented event that was followed

by the largest contraction in U.S. economic growth since the Great Depression.17 The model also

requires a sequence of positive innovations in the risk premium shock from 2012:Q1 to 2013:Q2; however,

these innovations are small, less than one standard deviation away from their zero mean.

Because the risk premium shock plays an important role in our analysis, it is interesting to compare

it to movements in empirical measures of credit spreads during the financial crisis. The top left panel of

Figure 7 also compares the estimated risk premium shock to the interest rate differential between BAA

16 The government spending and monetary policy shocks contributed less, according to the model. Smoothed estimates
of the paths of these shocks are available in Appendix E. The fact that the government spending shock does not play
a large role in the Great Recession does not necessarily mean that fiscal policy was unimportant during the episode.
The government spending shock in our analysis is a reduced-form shock affecting the economy’s resource constraint and
reflects other factors besides changes in government spending such as movements in international trade that we do not
have in the model.

17 To be consistent with the literature, we choose to estimate the model using normally-distributed shocks. However,
with our methodology, it would be straightforward to allow for distributions with fatter tails or time-varying volatility
and formally test different assumptions regarding the shock distributions. However, we viewed such an exercise as beyond
the scope of this paper.
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corporate bonds and 10-year Treasury bonds and a measure of credit spreads constructed by Gilchrist

and Zakraǰsek (2012), who abstract from the effect of the expected loss stemming from default on

spreads and attempt to isolate the credit risk premium. Since the units of the estimated risk premium

shock are not comparable to those of the other two measures of financial stress, it is more useful to focus

on how movements in the risk premium shock correlate with these measures, both of which rose sharply

in 2008 and declined thereafter. Although the measure constructed by Gilchrist and Zakraǰsek (2012)

falls relatively soon after the financial crisis, the BAA spread remains persistently elevated even after

falling in 2009. Similar to the two empirical measures, the model’s estimate of the risk premium shock

also rose sharply at the end of 2008 and fell in 2009. Even after falling in 2009, like the BAA spread,

the risk premium shock remains persistently high. In sum, even though we do not use information on

asset prices in our empirical approach, the model’s estimated risk premium displays broadly similar

behavior as empirical measures of financial stress did at the time.

As can be seen by the upper right panel, low realizations of the MEI shock also contributed to weak

activity at the time, as the MEI shock is more than one standard deviation below its mean in 2008

and in the first half of 2009. Thus, the model’s two financial shocks are consistent with the view that

strains in financial markets triggered the economic slump. In subsequent periods, both shocks begin to

move back toward their mean values, but the risk premium shock remains at a high level – 2 standard

deviations above its mean – through the end of 2014. Moreover, the MEI shock’s recovery is followed

by another fall in 2010 after which it recovers and falls again at the end of 2013.

The bottom right panel displays the model’s equity or finance premium, which we measure as the

expected excess return on capital:

EtR
k
t+1

Rt
=
r̃kt+1 + qt+1(1− δ)

Rtqt
,

where r̃kt = rkt ut − a (ut) is the user or rental cost of capital adjusted for utilization. The panel also

shows an empirical measure of the equity premium from Adrian, Crump, and Moench (2012). The

model’s estimate of the equity premium peaks at a level of about 11 percent at the end of 2008 and

drops in 2009 but remains elevated, averaging about 6 percent through 2013. These movements are

broadly consistent with the estimates of Adrian, Crump, and Moench (2012), though our model implies

a larger jump in the equity premium at the end of 2008 and a less elevated equity premium overall.
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The top panel of Figure 8 shows the difference in the level of technology beginning in 2008:Q1 from

the level if it grew at its deterministic rate, GZ , for the baseline estimates. Technology or total factor

productivity was below trend during the Great Recession and fell further below trend through the end

of the sample (2014:Q1). The dashed and dotted lines show the estimates in Christiano, Eichenbaum,

and Trabandt (2015) and Fernald (2014), respectively. Despite our different econometric strategy from

these authors, our estimates of total factor productivity are broadly similar to theirs, as total factor

productivity, according to these measures, is also estimated to be below trend with the exception of a

temporary increase in the measure constructed by Fernald (2014) in 2009.

The large risk premium shock as well as reductions in productivity and the marginal efficiency

of investment are all important in accounting for the large drop in activity that occurred during

the Great Recession with only a moderate disinflation. The latter two shocks put upward pressure

on inflation, offsetting the significant downward pressure on inflation stemming from the risk premium

shock. These results are broadly consistent with Christiano, Eichenbaum, and Trabandt (2015) and Del

Negro, Giannoni, and Schorfheide (2015b) albeit with some differences. In particular, these authors

introduce model features that allow financial frictions to break the link between prices and future

marginal costs in the NK Philips curve and help mitigate the disinflationary pressure stemming from

the risk premium shock.18

Figure 8 also compares the smoothed estimates of the technology shocks from 2008-2013 for the

baseline value of the measurement error to the case with low measurement error (bottom panel). For

the other shocks, the estimated paths are similar across model versions; however, the technology shock

is notably different. For the model with lower measurement error, the level of technology is estimated

to have fallen substantially more during the Great Recession and its aftermath: the level of technology

at the end of 2013 is about 7 percent below trend, compared to only 3.5 percent below trend under the

baseline estimates. Moreover, with lower measurement error, the estimated path of technology shocks

lies well below the estimates in Fernald (2014).

Figure 8 highlights another reason for the inclusion of measurement error in the model. Specifically,

the model is misspecified to the extent that it omits factors such as oil and commodity price movements

that help explain high frequency fluctuations in inflation. Because of such misspecification, the model

version with lower measurement error, as suggested by the estimates in Fernald (2014), overstates the

18 For an alternative explanation emphasizing the role of fiscal policy in mitigating the disinflationary pressure, see
Bianchi and Melosi (2016).
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role of technology shocks in accounting for the Great Recession; hence, we chose the model version

with higher measurement error as the baseline with the implication that there is greater uncertainty

surrounding our estimates of the cost of the ZLB.19

5.2 The Contribution of the Estimated Shocks to the Great Recession

Figure 9 shows how much of the model’s fit is attributable to individual shocks for output growth,

investment growth, consumption growth, inflation, and both the observed and the notional nominal

interest rates in the baseline model. More specifically, it displays the model’s dynamics if only one of

the estimated shocks were present during the Great Recession and compares this path to the smoothed

values that are generated using all five shocks (the solid line denoted as the baseline in the figure).20

A clear picture emerges from the figure: the large contraction in output, consumption and investment

growth is mostly explained by the risk premium shock. This shock also generates a somewhat larger

fall in inflation than under the baseline path. However, as shown in the middle right panel, these

disinflationary effects are offset by the upward pressure on inflation induced by the fall in the level of

technology.

The risk premium shock is also largely responsible for driving the nominal rate to the zero lower

bound. By reducing both output growth and inflation, this shock pushes the notional interest rate well

below zero (to about -5.5 percent), causing the interest rate to hit and then stay at the lower bound.

A decline in the MEI shock in 2011 helped put downward pressure on the nominal interest rate in 2011

and 2012 and contributed significantly to the sharp decline in investment in late 2008.

While the technology shock plays an important role in moderating the decline in inflation during

the ZLB episode, the model estimates imply that monetary policy shocks were not important during

the ZLB episode.21 However, this does not necessarily imply that monetary policy is unimportant,

because the systematic part of the rule and the lower bound constraint are crucial determinants of the

19 For a related approach in addressing model misspecification, see Canova (2014), who proposes a flexible, non-
structural link between a DSGE model and the data. It would be preferable, of course, to incorporate features into the
structural model that allow it to capture the high-frequency movements in inflation and we leave this task to future
research.

20 We compute the counterfactual with only one shock present as follows: Starting in 2007:Q4, we take the estimated
state as an initial value, and simulate the economy forward feeding in the smoothed values of one of the shock processes,
assuming that the variances of the other shocks are set to zero.

21 Monetary policy shocks are still identified at the lower bound, because these shocks can persistently lower the
notional interest rate. As a result, agents anticipate that the actual nominal rate will be at the lower bound for longer,
an expectation that affects current outcomes.
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model’s dynamics.

Appendix D presents the shock decomposition for the model version with lower measurement er-

ror. In that version, the risk premium shocks still play the predominant role in generating the large

contraction in output but now technology shocks contribute noticeably to the declines in output and

consumption growth at the end of 2008. Moreover, there is more upward pressure on inflation emanat-

ing from the technology shock in this version of the model.

6 How Costly Was the Zero Lower Bound?

6.1 The Contribution of the Lower Bound to the Great Recession

To determine the role of the zero lower bound constraint during the Great Recession, we compare the

estimated model outcomes (in which the ZLB constraint is imposed) to the outcomes in a hypothetical

scenario in which monetary policy is free to adjust the nominal interest rate in an unconstrained

manner.22 Figure 10 compares the levels of output and the price level in these two scenarios under

the posterior mean estimates of the baseline model. The left panel shows that in 2009:Q2 output was

about 6 percent below its level in 2007:Q4. If monetary policy could have cut the nominal interest rate

more aggressively, it would have helped to offset the contractionary effects of the shocks and output

would have fallen by only 4 percent; thus, the zero lower bound accounted for about 30 percent of the

sharp drop in output that occurred in 2009.23

While the ZLB contributed significantly to the sharp fall in economic activity in 2009, it was an

even more important factor in holding back activity during the subsequent recovery. Figure 10 shows

that output did not recover back to its 2007:Q4, pre-recessionary level until 2012:Q4, five years later.24

During those five years, the average level of output was 2.4 percent below its level in 2007:Q4. In

comparison, average output over those years would have only been about 1.1 percent lower in the

unconstrained scenario, as output would have been above its pre-recessionary level about a year earlier

than in the estimated, constrained scenario. Thus, these estimates imply that the presence of the ZLB

22 The hypothetical scenario uses the same estimated initial conditions and time series for the shocks as the estimated
model in which the constraint is imposed. These values are then used to simulate the model ignoring the ZLB constraint
on the estimated rule.

23 This is the mean estimate, and the 68 percent interval around it is wide, covering values between 6 to 46 percent.
24 The baseline path does not exactly match the observed output series because of measurement error and recovers two

quarters earlier than observed output.
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accounted for a little over 50 percent of the lower output over the 2008-2012 period.

The right panel of Figure 10 shows that the ZLB constraint also contributed to a lower price level.

Inflation averaged 1.45 percent per year from 2008:Q1 until the end of 2012, below the Federal Reserve’s

inflation target. Absent the zero lower bound constraint, the mean estimates indicate that inflation

would have averaged around 1.75 percent per year, and hence was 0.3 percentage points lower, on

average, over the 2008-2012 period. Overall, our results suggest that the interest-rate lower bound was

a significant constraint on monetary policy that exacerbated the recession, inhibited the recovery, and

contributed to inflation outcomes below the Federal Reserve’s inflation target.

Figure 11 displays the difference in outcomes from the estimated, constrained scenario for output,

investment, consumption, and the notional rate. For each variable, the solid line shows the point

estimate of the effect of ZLB constraint and the shaded region displays the 68 percent credible region.

As emphasized above, output is about 1.2 percent lower, on average, over the 2008-2012 period because

of the constraint. Consumption would have been about 1 percent higher in absence of the constraint,

and investment would have been 4 percent higher. Figure 11 also highlights an important caveat

to interpreting these results: the estimates are subject to considerable uncertainty as the 68 percent

credible region does not exclude the possibility that the estimated effects of the ZLB constraint were

much smaller or much larger.

Figure 11 also shows the point estimates of the effect of the ZLB constraint in the model version

with lower measurement error. The ZLB constraint accounts for about 15 percent of the sharp drop

in output that occurred in 2009 and about 20 percent of the lower level of output over the 2009-2012

period. These smaller effects are driven by the more prominent role of technology shocks in accounting

for the fall in output over this period. In particular, there is less of a role for monetary policy to

stabilize the fall in output if more of its decline is driven by technology shocks. Hence, the zero lower

bound is a less important constraint on monetary policy in this version of the model; however, as

discussed earlier, there is evidence that this model version may overstate the role of technology shocks

during this period and thus may understate the cost of the ZLB constraint.

6.2 The Contribution of the Lower Bound to the 2003-2004 Deflationary Scare

Our methodology can be used to examine episodes in which the realized nominal rate did not hit the

lower bound but economic behavior was affected by the prospect that policy could become constrained.
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One such episode in which uncertainty about the zero lower bound may have affected economic behavior

was in 2003 when inflation was low and the Federal Open Market Committee (FOMC) was concerned

about the possibility of further disinflation. This view was summarized by Alan Greenspan, the Chair

of the FOMC at the time:

“.. [W]e face new challenges in maintaining price stability, specifically to prevent inflation

from falling too low...[T]here is an especially pernicious, albeit remote, scenario in which

inflation turns negative...engendering a corrosive deflationary spiral...” (Greenspan (2003))

Although this deflationary scenario never materialized and policy rates never reached the lower bound,

this risk was an important consideration in 2003, and we use the estimated model to investigate the

effect of the ZLB during this episode. In the model, this constraint has effects on inflation and economic

activity, even if it never binds, because agents in the model take into account the entire probability

distribution of future outcomes, including those in which the nominal interest rate obtains the zero

lower bound, in making their current decisions. Accordingly, we follow the same approach as we used

for the Great Recession and compare outcomes in the estimated, constrained model to the hypothetical

scenario in which policy is unconstrained.

The left panel in Figure 12 shows the mean trajectories of output with and without the ZLB

constraint, and the right panel shows the uncertainty faced by the agents about the future likelihood

of being at the constraint. It shows that at the end of 2002, taking into the economy’s current state

and the estimated policy rule, private sector agents believed there was a 12 percent chance that the

nominal interest rate would fall to its lower bound during 2003. Because scenarios in which the ZLB

binds also imply higher future real policy rates than if monetary policy could act in an unconstrained

fashion, these scenarios are also characterized by downward shifts in the distributions of outcomes in

aggregate spending and output; accordingly, the estimated mean outcome for output is lower in the

constrained case than the unconstrained case. Figure 12 shows that the effects of this uncertainty on

the estimated mean outcomes are relatively small: the estimated level of output is about 0.2 percent

lower throughout 2003 and 2004 than in the unconstrained case. Still, the effect is a persistent one,

and the results highlight that uncertainty about the course of monetary policy did have a tangible

economic impact during this episode, an effect that is omitted a priori using the standard approach to

estimate DSGE models.
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6.3 Forward Guidance and the Estimated Policy Rule

In both the 2003 episode and during the Great Recession, forward guidance about the policy rate

played a prominent role in FOMC communications. In late 2008, forward-guidance language was

reintroduced into the FOMC statement, which indicated that “weak economic conditions are likely to

warrant exceptionally low levels of the federal funds rate for some time.” This guidance grew more

forceful and specific over time, and in late 2012, the FOMC made this forward-guidance more explicitly

state contingent, linking the maintenance of the low funds rate to projected inflation and the level of

the unemployment rate. We capture forward guidance through the state-contingent path of rates

implied by our estimated interest-rate rule. The presence of the lagged notional rate, in particular, is

an important element of a strategy that seeks to maintain future rates at a low level.25 In particular,

when the notional rate is negative, a higher coefficient on the lagged notional rate in the rule, all else

equal, increases private sector beliefs that future policy rates will remain at the zero lower bound.

Moreover, the further the lagged notional rate falls below zero, the more likely the future policy rate

will remain at zero.

To investigate the role of the lagged notional rate in the policy rule, Figure 13 shows a counterfactual

simulation of how the economy would have evolved during the Great Recession had policy be governed

by an alternative rule that responds to the lagged actual policy rate rather than the lagged notional rate.

Because the lagged notional rate fell sharply below zero during the recession and remained negative

during the recovery, the estimated rule generates a policy rate path that is more accommodative than

the alternative rule. As shown in the bottom left panel, the mean estimates for the path of the real

interest rate are lower under the estimated rule than the rule that depends on the lagged actual rate.

Accordingly, the fall in the mean estimates of output and prices during the Great Recession are smaller

for the estimated rule than the alternative rule.

The estimated rule is more accommodative than the alternative rule, because the inclusion of the

lagged notional rate generates the belief by private agents that the nominal rate will remain at the zero

lower bound longer and under a wider set of circumstances. To highlight this, the bottom right panel

shows the uncertainty faced by the agents in the model about whether the policy rate one-quarter

25 In light of the evolving nature of the forward-guidance language in FOMC communications throughout the ZLB
spell, it remains an open question as to how best to model it. An an alternative way of modeling forward guidance is to
allow for anticipated shocks in the monetary policy rule. See, for instance, Del Negro, Giannoni, and Patterson (2015a).
Also, Keen, Richter, and Throckmorton (2015) study the effects of forward guidance modeled in this way in the context
of a simple, nonlinear New Keynesian model.
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ahead will be at the zero lower bound or not. In 2010:Q1, for example, under the estimated rule,

private sector agents believed the probability that the nominal rate would ‘liftoff’ next quarter was

very close to zero. In contrast, in the counterfactual using the alternative rule with lagged actual rate,

agents in 2010:Q1 would have believed there was about at 15 percent chance that the policy rate would

rise in 2010:Q2.

Under both of these rules the nominal interest rate is estimated to remain at the zero lower bound

through the end of our sample, but the probability of a departure from the ZLB is notably higher under

the alternative rule than the estimated rule. In 2014:Q1, for instance, the agents would have believed

that there was about a 40 percent chance of liftoff next quarter under the alternative rule compared

to only a 10 percent chance under the estimated rule. Thus, the simulation demonstrates that the

inclusion of the lagged notional rate captures the forward-guidance language used by the FOMC at the

time by validating private sector beliefs that policy is more likely to remain at the zero lower bound,

thereby stimulating the economy.

7 Conclusions

In this paper, we estimated a nonlinear DSGE model in which the interest-rate lower bound is occa-

sionally binding. This allowed us to quantify the size and nature of the disturbances that caused the

Great Recession as well as pushed the nominal rate to the lower bound in late 2008 and kept it there

throughout the economy’s long slump. Overall, our results suggest that the interest-rate lower bound

was a significant constraint on monetary policy that exacerbated the recession, inhibited the recovery,

and contributed to inflation outcomes below the Federal Reserve’s inflation target.

Our results also highlight the importance of estimating the nonlinear model instead of the linear

approximation to it. Because the nonlinear model that we estimate has a stronger internal propagation

mechanism than its linearized counterpart, we find that there are significant differences in the parameter

estimates. In particular, estimates based on the linearized version overstate the importance of the

exogenous shocks, and thus the estimation of the nonlinear model is essential in properly quantifying

the relative contributions of endogenous and exogenous sources of business cycle fluctuations.
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Gust, C., D. López-Salido, and M. E. Smith (2012): “The Empirical Implications of the
Interest-Rate Lower Bound,” Finance and Economics Discussion Papers, Federal Reserve
Board, 2012 - 83.

Herbst, E. and F. Schorfheide (2015): Bayesian Estimation of DSGE Models, Princeton:
Princeton University Press.

Ireland, P. N. (2011): “A New Keynesian Perspective on the Great Recession,” Journal of
Money, Credit, and Banking, 43, 31–54.

Judd, K. L., L. Maliar, and S. Maliar (2011): “Numerically Stable and Accurate Stochastic
Simulation Approaches for Solving Dynamic Economic Models,” Quantitative Economics, 2,
173–210.

Judd, K. L., L. Maliar, S. Maliar, and R. Valero (2014): “Smolyak Method for Solving
Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain,”
Journal of Economic Dynamics and Control, 44, 92–123.

31



Justiniano, A., G. Primiceri, and A. Tambalotti (2011): “Investment Shocks and the
Relative Price of Investment,” Review of Economic Dynamics, 14, 101–121.

Keen, B. D., A. W. Richter, and N. A. Throckmorton (2015): “Forward Guidance and
the State of the Economy,” University of Oklahoma, manuscript.

McCallum, B. T. (1999): “Role of the Minimal State Variable Criterion in Rational Expectations
Models,” International Tax and Public Finance, 6, 621–639.

Otrok, C. (2001): “On Measuring the Welfare Costs of Business Cycles,” Journal of Monetary
Economics, 47, 61–92.

Pitt, M. K., R. d. S. Silva, P. Giordani, and R. Kohn (2012): “On Some Properties of
Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter,” Journal of
Econometrics, 171, 134–151.

Rotemberg, J. (1982): “Sticky Prices in the United States,” Journal of Political Economy, 90,
1187–1211.

Schorfheide, F. (2000): “Loss Function-Based Evaluation of DSGE Models,” Journal of Applied
Econometrics, 15, 645–670.

Smets, F. and R. Wouters (2007): “Shocks and Frictions in the U.S. Business Cycles: A
Bayesian DSGE Approach,” American Economic Review, 97, 586–606.

Smith, M. (2011): “Estimating Nonlinear Economic Models Using Surrogate Transitions,” Federal
Reserve Board, manuscript.

Wu, J. C. and F. D. Xia (2016): “Measuring the Macroeconomic Impact of Monetary Policy
at the Zero Lower Bound,” Journal of Money, Credit and Banking, 48, 253–291.

32



Table 1: Posterior Distribution of Parameters

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β−1 − 1) 0.14 [ 0.06, 0.23] 100(Π̄− 1) 0.61 [ 0.54, 0.68]
100 log(Gz) 0.50 [ 0.46, 0.54] α 0.19 [ 0.16, 0.22]

Policy Rule

ρR 0.70 [ 0.59, 0.78] γΠ 1.67 [ 1.21, 2.14]
γg 0.73 [ 0.39, 1.07] γx 0.14 [ 0.07, 0.24]

Endogenous Propagation

γ 0.70 [ 0.63, 0.76] σL 2.00 [ 1.01, 3.17]
σa 5.32 [ 3.78, 7.09] ϕI 3.70 [ 2.24, 5.21]
ϕp 100.41 [65.10, 136.88] 1− a 0.56 [ 0.36, 0.76]
ϕw 4420.49 [1693.15, 8356.34] 1− aw 0.51 [ 0.29, 0.72]

Exogenous Processes

ρG 0.67 [ 0.29, 0.96] 100σG 0.15 [ 0.11, 0.20]
ρµI 0.80 [ 0.64, 0.92] 100σµI 2.39 [ 1.43, 3.70]
100ση 0.44 [ 0.34, 0.54] 100σZ 0.56 [ 0.38, 0.80]
100σR 0.18 [ 0.14, 0.24]

Notes. Table reports the mean, fifth, and ninety-fifth percentile of the posterior distribution estimated
by pooling 4 MCMC chains with 50,000 draws each (including a 10,000 draw burn-in period.)
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Table 2: Standard Deviations of Aggregate Variables at Business Cycle Frequencies

Model Versions

Nonlinear Nonlinear
Variable Data Constrained Unconstrained Linear

Output 1.13 1.15 1.10 0.88
Consumption 0.78 0.77 0.75 0.81
Investment 4.96 4.01 3.92 1.59
Hours 1.80 1.34 1.29 1.04

Notes. The model series are constructed from 1000 draws from the posterior distribution. For each
parameter draw, a data series with 125 observations is simulated, and the HP-filter is applied to the
series with a smoothing parameter of 1600. Simulations for all three model versions use the parameters
estimated using the nonlinear, constrained version of the model.
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Figure 1: A Comparison of the Posterior Estimates: Nonlinear versus Linear
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Notes. Figure shows the posterior density functions (kernel density estimate) for ϕI (left panel) and
100σµ (right panel) under the nonlinear (solid lines) and linearized (dashed lines) versions of the model.
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Figure 2: Response to an Exogenous Increase in the Risk Premium
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Notes. Figure reports the difference between the mean values of a shocked path, which introduces
a one-standard deviation innovation in the risk premium shock at date 1, εη,1, and the mean values
of a path in which this innovation does not occur. Both paths are constructed using the posterior
mean parameter values and initial conditions such that ln(η0) is one standard deviation above its non-
stochastic steady-state, and all other variables are at their non-stochastic steady states. The dashed
line shows the responses for the unconstrained linear model, while the solid line shows the responses
for the constrained nonlinear model. The lower right panel with the investment Euler error shows the
mean absolute values of the errors along the shocked path at each date.
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Figure 3: Response to a Fall in Investment Efficiency
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Notes. Figure reports the difference between the mean values of a shocked path, which introduces a one-
standard deviation innovation in the MEI shock at date 1, εµ,1, and the mean values of a path in which
this innovation does not occur. Both paths are constructed using the posterior mean parameter values
and initial conditions such that ln(µ0) is one standard deviation above its nonstochastic steady-state,
and all other variables are at their nonstochastic steady states. The dashed line shows the responses for
the unconstrained linear model, while the solid line shows the responses for the constrained nonlinear
model. The lower right panel with the investment Euler error shows the mean absolute values of the
errors along the shocked path at each date.
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Figure 4: Smoothed Estimates of Model Objects
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Notes. Figure shows the time series of the means (solid lines) and 68% bands (shaded regions) of
the smoothed distributions of model variables, as well as their data counterparts over the estimation
period. The bottom right panel shows estimates of the shadow (notional) rate from 2008:Q1 onwards.
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Figure 5: Model Objects For Different Values of Measurement Error
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Notes. The four panels show the time series of the means (solid lines) and 68% bands (shaded regions)
of the smoothed distributions of model variables, as well as their data counterparts over the estimation
period. Baseline ME corresponds to the estimated model in which me = 0.25, and Low ME corresponds
me = 0.1.
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Figure 6: Distribution of the Probability and Duration of Being at the Zero Lower Bound
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Notes. We draw 1000 times from our posterior distribution. For each draw, we simulate the economy
for 1,000,000 time periods. For the top panel, we break the 1,000,000 time periods into bins of 125 time
periods, compute the fraction of time the economy is at the ZLB, and report that distribution. For
these simulations, the bottom panel computes the duration of ZLB spells using each of the 1,000,000
time periods.
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Figure 7: The Path of the Estimated Shocks and Equity Premium During the Great Recession
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
smoothed distributions of ln(ηt) (top left panel), ln(EtR

k
t+1/Rt), the model-implied equity premium

(bottom right panel), εη,t (bottom left panel), and ln(µt) (top right panel). Both ln(ηt) and ln(µt) are
normalized by their unconditional standard deviations.

The top left panel also includes the standardized estimates of the credit spread from Gilchrist
and Zakraǰsek (2012) and BAA spread, while the bottom right panel shows an estimate of the equity
premium, computed as in Adrian, Crump, and Moench (2012).
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Figure 8: The Path of the Estimated Technology Shock
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Notes. The two panels show the time series of the mean (solid line) and 68% bands (shaded regions) of
the smoothed distribution of the difference between the smoothed estimate of ln(Zt) and its forecasted
trajectory in 2007:Q4 under alternative assumptions for the measurement error. The panels also show
the utilization-adjusted estimate of TFP (red dotted line) of Fernald (2014) and the calibrated TFP
measure (purple dashed line) used in Christiano, Eichenbaum, and Trabandt (2015), both taken from
Christiano, Eichenbaum, and Trabandt (2015). Baseline ME corresponds to the estimated model in
which me = 0.25, and Low ME corresponds me = 0.1.
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Figure 9: The Contribution of the Estimated Shocks to the Great Recession
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Notes. Figure shows counterfactual trajectories of output growth (upper left panel), investment growth
(upper right panel), consumption growth (middle left panel), inflation (middle right panel), the interest
rate (bottom left panel), and the notional rate (bottom right panel). The trajectories are computed
using smoothed estimates of the states in 2007:Q4 as initial conditions and the smoothed shock esti-
mates from 2008:Q1 to 2014:Q1 for only liquidity shocks (dashed lines), only MEI shocks (dotted line),
only technology shocks (line with triangles), and all of the structural shocks (solid line).
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Figure 10: The Contribution of the Zero Lower Bound to the Great Recession
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Notes. Figure shows the posterior mean trajectories of the levels of output (left panel) and prices (right
panel). The solid lines show the effects imposing the ZLB constraint and the dashed lines show the
effects without this constraint. The simulations use the smoothed estimates of the states in 2007:Q4 as
initial conditions and the smoothed shock estimates from 2008:Q1 to 2014:Q1 to construct the paths.
Each series is normalized to 100 in 2007:Q4.
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Figure 11: The Effect of the Lower Bound on Aggregate Spending
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
distribution of differences for of the level of output (top right panel), consumption (bottom left panel),
and investment (bottom right panel) simulated with and without the zero lower bound respectively.
The top left panel shows the mean estimated path of the notional rate along with 68% bands. The
dashed red lines correspond to the mean estimates of the effect of the ZLB constraint in the model
with lower measurement error (me = 0.1).
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Figure 12: The 2003–2004 Episode
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Notes. Figure shows the posterior mean trajectories of the levels of output (left panel). The solid
line shows the effects imposing the ZLB constraint and the dashed line shows the effects without this
constraint. The simulations use the smoothed estimates of the states in 2002:Q4 as initial conditions
and the smoothed shock estimates from 2003:Q1 to 2004:Q4 to construct the paths. The level of
output is normalized to 100 in 2002:Q4. The right panel shows the probabilities, conditional on
the posterior mean parameter estimates, of hitting the ZLB in 2003 and 2004, given 2002:Q4 initial
condition (posterior mean of smoothed estimates).
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Figure 13: The Effect of Inertia in the Policy Rule
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Notes. Figure shows the posterior mean trajectory of the level of output (top left panel), prices (top
right panel), and the real interest rate (bottom left panel) under the estimated monetary policy rule
(solid lines) and the rule with the lagged actual rate (dotted lines). The simulation uses the smoothed
estimates of the states in 2007:Q4 as initial conditions and the smoothed shock estimates from 2008:Q1
to 2014:Q1 to construct the paths. The level of output and prices are normalized to 100 in 2007:Q4.

The bottom right panel shows the probability at each point in time—according to the agents
in the model—that the interest rate next quarter will be away from the ZLB. In computing the
probabilities, we use the mean parameter estimates and the mean estimates of the smoothed states.
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Appendix

A Data

Output growth is measured by quarter-to-quarter changes in the log of real GDP (chained 2005 dollars,
seasonally adjusted, converted to per capita terms using the civilian non-institutional population ages
16 and over). Non-durable consumption is measured by personal consumption expenditures, and
investment corresponds to fixed private investment in the National Income and Product Accounts. The
inflation rate is measured as the quarter-to-quarter change in the log of the GDP deflator, seasonally
adjusted. The short-term nominal interest rate is measured by quarterly averages of daily readings on
the three-month U.S. Treasury bill rate, converted from an annualized yield on a discount basis to a
quarterly yield to maturity. The three-month T-bill rate tracks the federal funds rate closely over our
sample period, and at the end of the sample, after the FOMC established a target range from 0 to 25
basis points for the federal funds rate, the quarterly average federal funds rate and three-month T-bill
rate were within a few basis point of each other.

B Prior Distribution of the Parameters

Table B.1 shows the values for the fixed parameters in the estimation. Table B.2 displays the prior
distribution for the estimated parameters.

Table B.1: Fixed Parameters

Parameter Value Description

δ 0.025 Depreciation of capital stock.
g 1.25 Steady state government spending (G/Y = 0.2)

1/(εp − 1) 0.20 Steady state net price markup.
1/(εw − 1) 0.20 Steady state net wage markup.

ψL 1 Disutility of Labor.
ρη 0.85 Persistence of the Liquidity Shock.
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Table B.2: Prior Distribution

Parameter Dist. Para(1) Para(2) Parameter Dist. Para(1) Para(2)

Steady State

100(β−1 − 1) Gamma 0.25 0.10 100(Π̄− 1) Normal 0.62 0.10
100 ln(Gz) Normal 0.50 0.03 α Normal 0.30 0.05

Monetary Policy Rule

ρR Beta 0.60 0.20 γΠ Normal 1.70 0.30
γg Normal 0.40 0.30 γx Normal 0.40 0.30

Endogenous Propagation

γ Beta 0.60 0.10 σL Gamma 2.00 0.75
σa Gamma 5.00 1.00 ϕI Gamma 4.00 1.00
ϕp Normal 100.00 25.00 1− a Beta 0.50 0.15
ϕw Normal 3000.00 5000.00 1− aw Beta 0.50 0.15

Exogenous Processes

ρg Beta 0.60 0.20 ρµ Beta 0.60 0.20
100σg Inv. Gamma 0.33 2.00 100σµ Inv. Gamma 0.33 2.00
100σZ Inv. Gamma 0.33 2.00 100σR Inv. Gamma 0.33 2.00
100ση Inv. Gamma 0.33 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta, Gamma, and
Normal distributions and to the upper and lower bounds of the support for the Uniform distribution.
For the Inverse (Inv.) Gamma distribution, Para (1) and Para (2) refer to s and ν, where p(σ|ν, s) ∝
σ−ν−1e−νs

2/2σ2
.
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Figure B.1: Likelihood Function of ρη
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Notes. Figure shows the mean estimates (black line) of the likelihood function from the particle filter,
as well as 90% bands (grey region), as a function of ρη, with all other parameters held fixed at their
posterior mean level. The red shaded region shows the area for which the model does not solve.
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C Parameter Estimates from the Linearized Version of the Model

Table C.1: Posterior Distribution of Parameter Estimates from the Linearized Version of the Model

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β−1 − 1) 0.16 [ 0.07, 0.26] 100(Π̄− 1) 0.64 [ 0.56, 0.72]
100 ln(Gz) 0.50 [ 0.46, 0.55] α 0.20 [ 0.17, 0.23]

Policy Rule

ρR 0.77 [ 0.69, 0.83] γπ 1.78 [ 1.34, 2.21]
γg 0.57 [ 0.27, 0.87] γx 0.07 [ 0.01, 0.13]

Endogenous Propagation

γ 0.76 [ 0.68, 0.83] σL 2.05 [ 1.03, 3.36]
σa 5.27 [ 3.79, 7.04] ϕI 3.51 [ 2.08, 5.22]
ϕp 102.25 [64.01, 142.54] 1− a 0.64 [ 0.44, 0.82]
ϕw 5102.38 [2025.78, 9502.62] 1− aw 0.55 [ 0.33, 0.76]

Exogenous Processes

ρg 0.70 [ 0.37, 0.94] 100σg 0.15 [ 0.12, 0.20]
ρµ 0.73 [ 0.61, 0.84] 100σµ 9.12 [ 4.84, 14.80]
100ση 0.50 [ 0.31, 0.73] 100σZ 0.50 [ 0.31, 0.76]
100σR 0.17 [ 0.13, 0.21]

Notes. The table reports the mean, fifth, and ninety-fifth percentiles of the posterior distribution
under the linearized model. The model was estimated using a Sequential Monte Carlo algorithm
tailored towards linearized DSGE models; see Herbst and Schorfheide (2015).
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D Estimates Using Low Measurement Error

Table D.1: Posterior Distribution of Parameter Estimates Using Low Measurement Error (me = 0.1)

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β−1 − 1) 0.14 [ 0.07, 0.23] 100(Π̄− 1) 0.62 [ 0.55, 0.70]
100 log(Gz) 0.50 [ 0.44, 0.54] α 0.18 [ 0.16, 0.21]

Policy Rule

ρR 0.78 [ 0.71, 0.82] γΠ 1.60 [ 1.21, 2.01]
γg 0.67 [ 0.40, 0.95] γx 0.24 [ 0.11, 0.46]

Endogenous Propagation

γ 0.67 [ 0.61, 0.72] σL 2.00 [ 0.95, 3.30]
σa 5.64 [ 4.04, 7.55] ϕI 3.95 [ 2.74, 5.42]
ϕp 77.41 [38.31, 116.64] 1− a 0.15 [ 0.07, 0.26]
ϕw 1287.68 [275.41, 3100.21] 1− aw 0.34 [ 0.16, 0.53]

Exogenous Processes

ρG 0.71 [ 0.39, 0.97] 100σG 0.17 [ 0.13, 0.23]
ρµI 0.72 [ 0.54, 0.86] 100σµI 3.81 [ 2.68, 5.43]
100ση 0.42 [ 0.33, 0.52] 100σZ 0.94 [ 0.73, 1.20]
100σR 0.16 [ 0.13, 0.19]

Notes. The table reports the mean, fifth, and ninety-fifth percentiles of the posterior distribution for
the model with low measurement error using an MCMC chain of length 75,000 after a burn in period
of 5,000 draws.
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Figure D.1: The Contribution of the Estimated Shocks to the Great Recession
Low Measurement Error (me = 0.1)
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Notes. Figure shows counterfactual trajectories of output growth (upper left panel), investment growth
(upper right panel), consumption growth (middle left panel), inflation (middle right panel), the interest
rate (bottom left panel), and the notional rate (bottom right panel). The trajectories are computed
using smoothed estimates of the states in 2007:Q4 as initial conditions and the smoothed shock esti-
mates from 2008:Q1 to 2014:Q1 for only liquidity shocks (dashed lines), only MEI shocks (dotted line),
only technology shocks (line with triangles), and all of the structural shocks (solid line).
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E The Paths of the Output Gap and Additional Shocks

Figure E.1 plots the posterior median and 68 percent pointwise credible sets for model-implied output
gap,

xgt = α log ut + (1− α) log

(
Nt

N

)
,

along with the Congressional Budget Office’s (CBO) estimate of the output gap from February 2014.
This vintage of the CBO output gap is chosen to be consistent with the end of our sample. The model’s
estimated output gap shares the same general features as the one estimated by the CBO, though the
CBO output gap often lies outside of the 68 percent bands associated with the model estimate. In
particular, the CBO’s output gap closes more quickly in the aftermath of the Great Recession.

Figure E.1: The Path of the Estimated Output Gap
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
smoothed distributions of the model’s output gap. The red dashed line shows the February 2014
vintage of the CBO output gap, constructed using real potential GDP from the CBOs February 2014
report, The Budget and Economic Outlook: 2014 to 2024, and real GDP from Table 1.1.6 of the BEAs
February 2014 release of National Accounts (NIPA) data.
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Figure E.2: The Path of Two Estimated Shocks During the Great Recession
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Notes. Figure shows the time series of the mean (solid line) and 68% bands (shaded region) of the
smoothed distributions of ln(gt) (top panel) and εR,t (bottom panel). Both are normalized by their
unconditional standard deviations.

55



F Rotemberg and Calvo Estimates of Nominal Rigidities

Under Calvo, the slope of the price inflation equation is given by:

κCalvop =
(1− ξpβ)(1− ξp)
ξp(1 + ιpβ)

,

where ξp corresponds to the probability of changing prices and ιp represents the degree of price index-
ation. Evaluating this expression at ξp = 0.787, ιp = 0.131, and β = 0.9986, the posterior medians
estimated by Justiniano, Primiceri, and Tambalotti (2011) yields κCalvop = 0.0512. Under Rotemberg
contracts, the slope coefficient is:

εp − 1

(1 + β(1− a))ϕp

Setting β = 0.9986, (1 − a) = ιp = 0.131, and εp − 1 = 1
0.180 as in Justiniano, Primiceri, and

Tambalotti (2011) implies a parameter of price adjustment cost of:

ϕp =
εp − 1

(1 + β(1− a))κCalvop

≈ 93.5.

In comparison, our posterior mean estimate of this parameter is 100, and 93.5 is well within the 90
percent credible band.

Regarding the slope of the wage inflation equation, under Calvo, the expression is given by:

κCalvow =
(1− ξwβ)(1− ξw)

ξw(1 + β)(1 + ν(1 + 1
λw

))
.

If this expression is evaluated at the posterior medians estimated by Justiniano, Primiceri, and
Tambalotti (2011) in which ξw = 0.777, λw = 0.144 (which corresponds to εw − 1 = 1

λw
, εw ' 7.9),

and ν = 4.492, then κCalvow ≈ 0.0009, which implies wage inflation responds very little to labor market
slack.

The equivalent slope coefficient using Rotemberg contracts is given by:

εw − 1

ϕw
mc

(1− α)
c
y

,

where the steady state marginal costs is given by: mc =
εp−1
εp

. To relate this to Calvo contracts, we
use:

ϕw =
εw − 1

κCalvow

(1− α)mc
c
y

.

The estimates of Justiniano, Primiceri, and Tambalotti (2011) imply that (1−α)
c
y

' 1.5 and mc '
0.84 implying extremely high nominal wage adjustment costs as ϕw

1000 ≈ 9936. This estimate of wage
adjustment costs is outside the upper end of the 90 percent credible set and is substantially higher
than our posterior mean estimate.
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Technical Appendix
This appendix describes the equilibrium conditions of the model. It uses those equilibrium condi-

tions to characterize the solution as time-invariant functions. We approximate the nonlinear solution
using a computationally efficient algorithm that is easily parallelizable and well-suited for handling an
occasionally binding constraint. With this algorithm, we then describe the particle filtering algorithm
for estimating the likelihood of a nonlinear state space system, highlighting the modifications made
to facilitate estimation, including its parallelization. Finally, we lay out the particle filter Metropolis-
Hastings algorithm used in conjunction with the particle filter to elicit draws from the posterior distri-
bution.

1 Equilibrium Conditions

In a symmetric equilibrium, optimization by the firms in the economy implies:

[
πt
π̃t−1

− 1]
πt
π̃t−1

= βEt

{
Λt+1

Λt

[
πt+1

π̃t
− 1

]
πt+1

π̃t

Yt+1

Yt

}
+
εp
ϕp

{
mct −

εp − 1

εp

}
, (1.1)

(1− α)mct =
WtNt

PtYt
, (1.2)

Ptr
k
t =

α

1− α
WtNt

utKt

, (1.3)

where the indexation term for price changes is given by:

π̃t−1 = πaπ1−a
t−1 . (1.4)

The aggregate production function is given by:

Yt =
(
utKt

)α
(ZtNt)

1−α . (1.5)

Household optimization for consumption, bond holdings, and wages implies:

Λt = [Ct − γCt−1]−1 − γβEt [Ct+1 − γCt]−1 , (1.6)

Λt = βRtηtEt
{

Λt+1π
−1
t+1

}
, (1.7)[

πw,t
π̃w,t

− 1

]
πw,t
π̃w,t

= βEt

{[
πw,t+1

π̃w,t+1
− 1

]
πw,t+1

π̃w,t+1

}
+NtΛtεwϕ

−1
w

{
ψL

Nt
σL

Λt
− εw − 1

εw

Wt

Pt

}
. (1.8)

In the above, wage inflation is defined by:

πw,t =
Wt

Wt−1
(1.9)

and the indexation term for wage changes is given by:

π̃w,t = GZπ
aw (exp (εZ,t)πt−1)1−aw . (1.10)
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A household’s optimal choice of physical capital, investment, and utilization imply:

qt = βEt

{
Λt+1

Λt

[
rkt+1ut+1 − a(ut+1) + (1− δ)qt+1

]}
, (1.11)

1 = qtµt

(
1− ϕI

2

(
It

GZIt−1
− 1

)2

− ϕI
(

It
GZIt−1

− 1

)
It

GZIt−1

)
+ (1.12)

βϕIEt

{
qt+1

Λt+1

Λt
µt+1

(
It+1

GZIt
− 1

)
I2
t+1

GZI2
t

}
,

rkt = rk exp (σa(ut − 1)) , (1.13)

where rk denotes the rental cost of capital in the non-stochastic steady state and the utilization cost
is given by:

a(ut) =
rk

σa
{exp (σa(ut − 1))− 1}. (1.14)

The capital stock evolves according to:

Kt+1 = (1− δ)Kt + µt

{
1− ϕI

2

(
It

GZIt−1
− 1

)2
}
It. (1.15)

The central bank’s desired or notional interest rate is given by:

ln

(
RNt
R

)
= ρR ln

(
RNt−1

R

)
+ (1− ρR)

[
γπ ln(

πt
π

) + γxx
g
t + γg ln

(
Yt

GZYt−1

)]
+ εR,t, (1.16)

where R = β−1GZπ denotes the steady state nominal rate. The output gap is given by:

xgt = α ln(ut) + (1− α) (ln(Nt)− ln(N)) , (1.17)

where N denotes the non-stochastic steady state value of hours worked. The nominal interest rate
satisfies the zero lower bound (ZLB) constraint so that:

Rt = max
(
1, RNt

)
. (1.18)

The economy’s resource constraint is:

Ct + It +Gt +
ϕp
2

[
πt
π̃t−1

− 1]2Yt + a(ut)Kt = Yt (1.19)

The economy’s disturbances evolve according to:

Zt = Zt−1GZ exp (εZ,t) , εZ,t ∼ iid N
(
0, σ2

Z

)
, (1.20)

ln(ηt) = ρη ln(ηt−1) + εη,t, εη,t ∼ iid N
(
0, σ2

η

)
, (1.21)

ln(µt) = ρµ ln(µt−1) + εµ,t, εµ,t ∼ iid N
(
0, σ2

µ

)
, (1.22)

ln(gt) = (1− ρg) ln g + ρg ln(gt−1) + εg,t, εg,t ∼ iid N
(
0, σ2

g

)
, (1.23)

58



where gt = 1

1−Gt
Yt

and g denotes its value in the non-stochastic steady state. The monetary policy

disturbance satisfies εR,t ∼ iid N
(
0, σ2

R

)
.

1.1 Stationary Representation of Equilibrium Conditions

The random walk in the technology shock, expression (1.20), implies that some of the real variables
will be non-stationary. The system of equations can be transformed so that it becomes stationary.
The transformed variables are denoted as the lower case of a variable. So, yt = Yt

Zt
, ct = Ct

Zt
, it = It

Zt
,

wt = Wt
PtZt

, kt+1 = Kt+1

Zt
, and λt = ZtΛt. It is also convenient to define GZ,t = GZ exp (εZ,t).

The stationary versions of the price and wage inflation equations are:[
πt
π̃t−1

− 1

]
πt
π̃t−1

= βEt

{
λt+1

λt

[
πt+1

π̃t
− 1

]
πt+1

π̃t

yt+1

yt

}
+
εp
ϕp

{
mct −

εp − 1

εp

}
, (1.24)[

πw,t
π̃w,t

− 1

]
πw,t
π̃w,t

= βEt

{[
πw,t+1

π̃w,t+1
− 1

]
πw,t+1

π̃w,t+1

}
+Ntλtεwϕ

−1
w

{
ψL

NσL
t

λt
− εw − 1

εw
wt

}
, (1.25)

where the price and wage indexation terms are given by equations (1.4) and (1.10).
The stationary representations for the consumption Euler equation and its associated Lagrange

multiplier can be written as:

λt = Vλ,t ≡ βηtRtEt{
λt+1

GZ,t+1
π−1
t+1}, (1.26)

λt =

[
ct − γ

ct−1

GZ,t

]−1

− γβVc,t, (1.27)

where Vc,t, is defined as:

Vc,t ≡ Et
{

1

GZ,t+1

[
ct+1 − γ

ct
GZ,t+1

]−1
}
. (1.28)

The stationary representations of the optimal conditions for capital and investment supply are given
by:

qt = Vq,t ≡ βEt
{

λt+1

λtGZ,t+1

[
rkt+1ut+1 − a(ut+1) + (1− δ)qt+1

]}
, (1.29)

1 = qtµt

(
1− ϕI(

it
it−1

exp (εZ,t)− 1)
it
it−1

exp (εZ,t)

)
+ Vi,t, (1.30)

where Vi,t is defined as:

Vi,t ≡ βϕIEt
{
qt+1µt+1

λt+1

λt

(
it+1

it
exp (εZ,t+1)− 1

)(
it+1

it

)2

exp (εZ,t+1)

}
−qtµt

ϕI
2

(
it
it−1

exp (εZ,t)−1)2.

(1.31)
The stationary representation for the optimal utilization of capital is unchanged and given by equation
(1.13). The expression for the utilization cost is also unchanged and given by equation (1.14).
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After solving for output, the stationary representation for the resource constraint is:

yt = A−1
y,t

(
ct + it + a(ut)

kt
GZ,t

)
, (1.32)

where Ay,t is given by:

Ay,t =
1

gt
− ϕp

2

[
πt
π̃t−1

− 1

]2

. (1.33)

The stationary representation for the real wage is given by:

wt =
πw,twt−1

GZ,tπt
. (1.34)

The stationary representation of the production function can be expressed to determine hours worked:

Nt =

(
utkt
GZ,t

) α
α−1

y

1
1−α
t . (1.35)

Real marginal cost and the rental rate of capital are given by:

mct =
wtNt

(1− α)yt
, (1.36)

rkt =
α

1− α
GZ,twtNt

utkt
. (1.37)

The stationary representation of the capital accumulation equation is:

kt+1 = (1− δ) kt
GZ,t

+ µt

[
1− ϕI

2
(
it
it−1

exp (εZ,t)− 1)2

]
it. (1.38)

The notional rate is given by:

ln

(
RNt
R

)
= ρR ln

(
RNt−1

R

)
+ (1− ρR)

[
γπ ln(

πt
π

) + γxx
g
t + γg ln

(
yt exp (εZ,t)

yt−1

)]
+ εR,t (1.39)

where the output gap, xgt , is defined in equation (1.17) and the nominal rate is defined in equation
(1.18).

1.2 Steady State

In the non-stochastic steady state, equation (1.31) implies Vi = 0 and equation (1.30) implies q = 1.
Similarly, in the non-stochastic steady state, π = π̃ = π, πw = GZπ, and u = 1. The other steady state
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relationships include:

mc =
εp − 1

εp
, (1.40)

mc =
wN

(1− α)y
, (1.41)

λc =
(
1−G−1

Z γ
)−1 (

1− βG−1
Z γ

)
, (1.42)

R = β−1GZπ, (1.43)

i

k
= 1−G−1

Z (1− δ), (1.44)

y =
(
G−1
Z k

)α
N1−α, (1.45)

rk = β−1GZ − 1 + δ, (1.46)

εwψL
NσL

λc
= (εw − 1)

w

c
, (1.47)

rk =
α

1− α
ωN

k/GZ
, (1.48)

y = g (c+ i) . (1.49)

From equations (1.46) and (1.48) it follows that:

k =
α

1− α
GZωN

(β−1GZ − 1 + δ) .

Using equation (1.41) to replace wN yields the following expression for the capital-output ratio:

k

y
=

(εp − 1)

εp

αGZ
(β−1GZ − 1 + δ)

.

The steady state capital to output ratio and equation (1.44) can be combined to determine the
investment-output ratio:

i

y
=
(
1−G−1

Z (1− δ)
) k
y

=
(εp − 1)

εp

(
1−G−1

Z (1− δ)
)
αGZ

(β−1GZ − 1 + δ)
.

From equation (1.49) it follows:
c

y
=

1

g
− i

y
,

where g is a parameter fixed to match the sample average of the ratio of government spending to
output, i.e., g = 1

1−G
Y

.

Combining equations (1.47) and (1.42) yields:

ψL(1− γ

GZ
)N1+σL

c

y
=
εw − 1

εw

ωN

y
(1− γ

GZ
β).
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Using expression (1.41) to rewrite the above expression gives:

ψL(1− γ

GZ
)N1+σL

c

y
=
εw − 1

εw
mc(1− α)(1− γ

GZ
β).

This expression can be used to determine steady state hours:

N =

[
εw−1
εw

mc(1− α)(1− γ
GZ
β)

ψL(1− γ
GZ

) c
y

] 1
1+σL

. (1.50)

2 Solution Algorithm

This section discusses the characterization of the model’s solution and then how to approximate it.

2.1 Characterizing the Solution

The model’s equilibrium conditions are written as time-invariant functions that depend on the minimum
state vector, (Xt−1, τt), where

Xt−1 =
(
kt, ct−1, it−1, wt−1, R

N
t−1, πt−1,yt−1,

)
, (2.1)

τt = (ηt, µt, εZ,t, εR,t, gt) . (2.2)

We denote the endogenous state vector, Xt−1, as depending on date t − 1 variables, because kt is
determined at date t− 1.

It is convenient to define the time invariant functions, Vπ (Xt−1, τt) ≡ Vπ,t and Vw (Xt−1, τt) ≡ Vw,t
using equations (1.24) and (1.25):

Vπ,t = βEt

{
λt+1

λt

[
πt+1

π̃t
− 1

]
πt+1

π̃t

yt+1

yt

}
+
εp
ϕp

{
mct −

εp − 1

εp

}
, (2.3)

Vw,t = βEt

{[
πw,t+1

π̃w,t+1
− 1

]
πw,t+1

π̃w,t+1

}
+Ntλtεwϕ

−1
w

{
ψL

NσL
t

λt
− εw − 1

εw
wt

}
. (2.4)

Given these two functions, equations (1.24) and (1.25) can be rewritten as:

π (Xt−1, τt) =
π̃t−1

2

(
1 +

√
1 + 4Vπ,t

)
(2.5)

πw (Xt−1, τt) =
π̃w,t

2

(
1 +

√
1 + 4Vw,t

)
(2.6)

where π (Xt−1, τt) ≡ πt and πw (Xt−1, τt) ≡ πw,t.
More broadly, the decision rules for the remainder of the endogenous state variables in Xt−1 can be

determined given the vector of functions:

V (Xt−1, τt) = (Vπ (Xt−1, τt) , Vw (Xt−1, τt) , Vc (Xt−1, τt) , Vi (Xt−1, τt) , (2.7)

Vλ (Xt−1, τt) , Vq (Xt−1, τt) , Vu (Xt−1, τt)) ,

where Vu (Xt−1, τt) ≡ ut is a function determining the equilibrium value for the utilization of capital.
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Using these functions, we determine the remaining endogenous variables as follows. The Lagrange
multiplier on the household’s budget constraint, λ (Xt−1, τt), can be determined using equation (1.26)
and Vλ (Xt−1, τt). Equation (1.27) then determines the decision rule for consumption, c (Xt−1, τt) as:

c (Xt−1, τt) = γ
ct−1

GZ,t
+ (λt + γβVc,t)

−1 . (2.8)

Taking Vi,t as given and applying the quadratic equation to expression (1.30), equilibrium investment
is given by:

i (Xt−1, τt) =
it−1

2 exp (εZ,t)

[
1 +

√
1 +

4

ϕI

(
1− 1− Vi,t

qtµt

)]
. (2.9)

Given the functions for ct, it, πt and the vector of functions, V (Xt−1, τt), equilibrium output, y (Xt−1, τt),
is determined using expression (1.32). Equation (1.34) determines the real wage, w (Xt−1, τt), using
the functions for πt and πw,t, while equation (1.35) determines hours worked, N (Xt−1, τt) using the
functions for yt and ut. Equations (1.36)-(1.39) can be used to determine the functions, mc (Xt−1, τt),
rk (Xt−1, τt), k (Xt−1, τt) ≡ kt+1, and RN (Xt−1, τt). Accordingly, given V (Xt−1, τt), we can define the
vector of functions that define the decision rules, Xt = gX (Xt−1, τt), where

gX (Xt−1, τt) = (k (Xt−1, τt) , c (Xt−1, τt) , i (Xt−1, τt) , w (Xt−1, τt) , (2.10)

RN (Xt−1, τt) , π (Xt−1, τt) ,y (Xt−1, τt)
)
.

We use the functions, V (Xt−1, τt), to determine the decisions rule though we do not approximate
V (Xt−1, τt), directly, because they inherit a kink associated with the zero lower bound constraint on the
nominal rate. Instead, we follow the methodology described in Gust, López-Salido, and Smith (2012),
which builds on Christiano and Fisher (2000). Specifically, we approximate functions, Vl,i (Xt−1, τt),
that are smoother and easier to approximate by specifying:

Vl (Xt−1, τt) = Vl,1 (Xt−1, τt) I (Xt−1, τt) + Vl,2 (Xt−1, τt) (1− I (Xt−1, τt)) . (2.11)

for l ∈ {π,w, c, i, λ, q, u} and j = 1, 2 and where I (Xt−1, τt) is defined by:

I (Xt−1, τt) = 1 if R (Xt−1, τt) > 0 (2.12)

= 0 otherwise. (2.13)

In the above, R (Xt−1, τt) = max
(
1, RN1 (Xt−1, τt)

)
where RN1 (Xt−1, τt) denotes the value of the notional

rate derived from evaluating the functions Vl,1 (Xt−1, τt) and using expression (1.39). (For each variable,
we use j = 1 to denote the function associated with the regime with a positive nominal rate and j = 2
to denote that function associated with the ZLB regime; similarly, gX,j (Xt−1, τt) denotes the vector of
regime-specific decision rules.)

The functions, Vl,j (Xt−1, τt), satisfy the residual functions, νl,j (Xt−1, τt), for l ∈ {π,w, c, i, λ, q, u}
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and j = 1, 2:

νλ,1 (Xt−1, τt) = Vλ,1 (Xt−1, τt)− βηtRtEt{
λ(Xt, τt+1)

GZ,t+1
π−1(Xt, τt+1)} = 0, (2.14)

νλ,2 (Xt−1, τt) = Vλ,2 (Xt−1, τt)− βηtEt{
λ(Xt, τt+1)

GZ,t+1
π−1(Xt, τt+1)} = 0,

νc,j (Xt−1, τt) = Vc,j (Xt−1, τt)− Et
{

1

GZ,t+1

[
c(Xt, τt+1)− γ cj(Xt−1, τt)

GZ,t+1

]−1
}

= 0, (2.15)

νq,j (Xt−1, τt) = Vq,j (Xt−1, τt)− βEt
{

λ̃j
GZ,t+1

[
r̃k(Xt, τt+1) + (1− δ)q(Xt, τt+1)

]}
= 0, (2.16)

νi,j (Xt−1, τt) = Vi,j (Xt−1, τt)− βϕIEt
{
q(Xt, τt+1)µt+1λ̃j (̃ij exp (εZ,t+1)− 1)̃i2j exp (εZ,t+1)

}
(2.17)

−qj (Xt−1, τt)µt
ϕI
2

(
ij (Xt−1, τt)

it−1
exp (εZ,t)− 1

)2

= 0,

νπ,j (Xt−1, τt) = Vπ,j (Xt−1, τt)− βEt
{
λ̃j

[
π(Xt, τt+1)

π̃t
− 1

]
π(Xt, τt+1)

π̃t

y(Xt, τt+1)

yj(Xt−1, τt)

}
+ (2.18)

εp
ϕp

{
mcj(Xt−1, τt)−

εp − 1

εp

}
= 0,

νw,j (Xt−1, τt) = Vw,j (Xt−1, τt)− βEt
{[

πw(Xt, τt+1)

π̃w,t+1
− 1

]
πw(Xt, τt+1)

π̃w,t+1

}
+ (2.19)

Nj(Xt−1, τt)λj(Xt−1, τt)εwϕ
−1
w

{
ψL

Nj(Xt−1, τt)
σL

λj(Xt−1, τt)
− εw − 1

εw
wj(Xt−1, τt)

}
= 0,

νu,j (Xt−1, τt) = Vu,j(Xt−1, τt)− 1− 1

σa
log

(
rkj (Xt−1, τt)

rk

)
= 0, (2.20)

where

r̃k(Xt, τt+1) = rk(Xt, τt+1)u(Xt, τt+1)− a(u(Xt, τt+1)),

λ̃j ≡ λ̃j (Xt,Xt−1, τt, τt+1) =
λ (Xt, τt+1)

λj (Xt−1, τt)
,

ĩj ≡ ĩj (Xt,Xt−1, τt, τt+1) =
i (Xt, τt+1)

ij (Xt−1, τt)
,

and Xt = gX,j (Xt−1, τt).
Because the functions, Vl (Xt−1, τt) depend directly on the nominal interest rate, we expect them

to have a kink or non-differentiability. By contrast, the counterpart functions, Vl,j (Xt−1, τt), that are
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indexed by the interest-rate regime do not depend on the current indicator function and thus are more
likely to be smooth. The regime-specific functions still depend on a secondary effect that the kink in
the nominal rate next period has on the expectations of future variables. This secondary effect enters
through evaluating the decision rule in the next period (i.e., Xt+1 = gX (Xt, τt+1)) but it does not
affect Xt which depends on gX,j (Xt, τt). Following the arguments in Christiano and Fisher (2000), the
secondary effects of the kink on the regime-specific functions should be small because of the presence
of the expectations operator, which involves summing over the future states of τ and acts to smooth
out the regime-specific functions. While our approach of using relatively smooth functions is similar to
Christiano and Fisher (2000), our approach is more general as it does not require that we parameterize
functions that depend only on future variables.

2.2 Approximating the Solution

We approximate the functions, Vl,j (Xt−1, τt), as follows:

Vl,j (Xt−1, τt) ≈
Nτ∑
k=1

T (ϕ(Xt−1)) al,j,kΓk (τt) , (2.21)

where T (ϕ(Xt−1)) is a 1 × 17 vector constructed from an anistropic Smolyak method. Specifically,
T (ϕ(Xt−1)) includes a constant and the first and second degree Chebyshev polynomials for each variable
in Xt−1. It also includes the third and fourth degree Chebyshev polynomials for investment. We
augment investment with higher-order polynomials, because we found that in practice this helped
reduce the size of the residual error, νq,j (Xt−1, τt). (See Judd, Maliar, Maliar, and Valero (2014) for a
discussion of anistropic Smolyak methods.)

For each state variable in Xt−1, we use ϕf : [Xf ,Xf ]→ [−1, 1] for f = 1, 2, .., 7, where ϕf (Xt−1,f ) =
2(Xt−1,f−Xf )

Xf−Xf
and f indexes one of the state variable in Xt−1. So ϕ (Xt−1) is given by:

ϕ (Xt−1) = [ϕ1(Xt−1,1), ..., ϕ7(Xt−1,7)] ,

and Xf and Xf ) are maximum and minimum values of each state variable chosen to encompass a wide
interval.

In equation (2.21), al,j,k is a 17 × 1 vector of parameters for l ∈ {λ, c, q, i, π, w, u}, j = 1, 2, and
k = 1, 2, .., N τ . The function Γk (τt) is the product of univariate piecewise linear basis functions for
each variable in τt. These basis functions use evenly-spaced breakpoints which are also the interpolation
nodes. We use 3 breakpoints for each shock except ηt for which we use 7 so that N τ = 567. We could
in principle use a sparse grid to construct Γk (τt) as we did for T (ϕ(Xt−1)).

Our solution strategy involves finding the matrix of coefficients, a? such that:

νl,j (Xm, τk; a?) = 0, (2.22)

for j = 1, 2, and l ∈ {π,w, c, i, λ, q, u}. In equation (2.22), Xm denotes that the vector of state
variables is evaluated at each point, m = 1, 2, .., 17, on an appropriately constructed Smolyak grid
using Chebyshev extrema for the unidimensional grid points. Also, each exogenous state variable is
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evaluated at one of its equally-spaced breakpoints, k = 1, 2, .., N τ . The matrix a? consists of:

a? =
[
a?λ,1,1, ..., a

?
λ,1,Nτ , a?λ,2,1, ..., a

?
λ,2,Nτ , a?c,1,1, ...., a

?
u,2,Nτ

]
,

and is 17 × 14N τ . With N τ = 567, the matrix a? has 134, 946 elements. We find even though this a
very large number of coefficients, we are able to solve and estimate the model because, as discussed
below, there are substantial gains to parallelizing the solution algorithm.

Before discussing how we determine a?, it is important to note that we use Gauss-Hermite inte-
gration to approximate the conditional expectations operator in νl,j (Xt−1, τt). We use 3 nodes per
shock and construct the multidimensional integral as a tensor product of the one-dimensional nodes so
that there are 243 nodes in total. It may be possible to speed up the solution algorithm further using
the monomial rule discussed in Judd, Maliar, and Maliar (2011) to approximate the multidimensional
integrals.

2.3 Parallelization of Solution Algorithm

For an initial guess of a?, we can evaluate the decision rule, gX (Xt, τt),, and conditional expectations
operators in equations (2.14)-(2.20). With these expressions in hand, we use the fixed point algorithm
described in Judd, Maliar, Maliar, and Valero (2014) to update our guess for a?. Given that our
polynomial approximation is linear in these coefficients, updating these coefficients involves only trivial
calculations and avoids using a numerical routine for solving nonlinear equations. Moreover, updating
these coefficients is easily parallelizable, as updating each of the 17X1 vectors, al,j,k, involves a rela-
tively small set of calculations that is independent from the calculations necessary to update the other
coefficients. Using a Message Passing Interface, we can distribute this updating step for al,j,k across
processors and make the necessary calculation independently. Figure 2.1 shows the runtime for solving
the model 100 times (in log seconds) against the number of processors used in the procedure. With
1 processor, the model takes about three and half hours to solve 100 times, or a little over 2 minutes
on average. With 300 processors, the model takes about 3 minutes to solve 100 times, or about 1.8
seconds on average.

3 Particle Filter

This section describes the particle filter used to estimate the likelihood given a set of parameters. The
literature on particles filters is vast: surveys and tutorials can be found, for instance, in Arulampalam,
Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Moulines (2007), Doucet and Johansen (2011),
and Creal (2012). The presentation of the algorithm is adapted from Herbst and Schorfheide (2015).

The starting point is the nonlinear state space model:

st = Φ(st−1, εt; θ), εt ∼ N(0, I), (3.1)

yt = Ψ(st, εt; θ) + ut, ut ∼ N(0,Σu), (3.2)
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Figure 2.1: Effects of Parallelization: Model Solution
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where

st =
[
kt+1, yt, ct, it, πt, R

N
t , wt, ηt, µt, gt, yt−1, ct−1, it−1

]
,

εt = [εη,t, εµ,t, εZ,t, εg,t, εR,t] , and

θ =
[
β, Π̄, gz, α, ρR, γΠ, γg, γx, γ, σL, σa, ϕI , ϕp, ϕw, a, aw, ρg, ρµ, ση, σµI , σZ , σg, σR

]
.

The nonlinear transition equations, Φ(st−1, εt; θ), are formed using the nonlinear approximation to the
decision rules, gX (Xt, τt), described in Section 2 and the transition equations for the shocks:

τt = Ω1τt−1 + εt, (3.3)

where Ω1 is a 5×5 diagonal matrices whose diagonal elements are the AR(1) coefficients of the shocks.
The particle filter recursively produces discrete approximations to the distribution of the states, st,

condition on time t− 1 information (forecasting distribution) and t information (updated distribution).
We generically refer to the set of the tuples {sjt ,W j

t }Mj=1, which approximates st|Y1:t, as particles, where

M denotes the number of particles in the approximation. The object sjt references a point in the state
space and W j

t denotes the weight associated with that point. Note that
∑M

j W j
t = M .

The recursive formulation is useful for helping to understand the particle filter. Given a time t− 1
particle approximation {sjt−1,W

j
t−1}Mj=1, obtain a t time particle approximation, roughly speaking, as

follows. First, simulate forward the proposed particles sjt−1 to obtain particles sjt , and second, re-weight
these particles using the new data, yt. The first step is known as forecasting and the second updating.
We use the simplest particle filter—with some modifications described in Section 3.1—known as the
Bootstrap particle filter (BSPF), which was first used in Gordon, Salmond, and Smith (1993). The
key idea is that forecasted states come by drawing εjt and iterating the state equation (3.1) forward
to obtain: sjt = Φ(sjt−1, ε

j
t ; θ). A nice by-product of the BSPF is that the likelihood function can be

computed directly from the weights. The details are produced in Algorithm 1.
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Algorithm 1 (Bootstrap Particle Filter)

1. Initialization. Simulate the initial particles from the distribution sj0
iid∼ p(s0) and set W j

0 = 1,
j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Propagate the period t − 1 particles {sjt−1,W
j
t−1} by iterating the state-

transition equation forward:

s̃jt = Φ(sjt−1, ε
j
t ; θ), εjt ∼ Fε(·; θ). (3.4)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt )W
j
t−1. (3.5)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ). (3.6)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (3.7)

The incremental weights take the form

w̃jt = (2π)−n/2|Σu|−1/2 exp

{
− 1

2

(
yt −Ψ(s̃jt , t; θ)

)′
Σ−1
u

(
yt −Ψ(s̃jt , t; θ)

)}
, (3.8)

where n here denotes the dimension of yt.

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (3.9)

An approximation of E[h(st)|Y1:t, θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃jt )W̃
j
t . (3.10)

(d) Selection. Define the Effective Sample Size as:

ÊSSt = M
/ 1

M

M∑
j=1

(W̃ j
t )2

 .
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Let ρt = 1{ESSt<M/2}. Case (i): If ρt = 1 resample the particles via multinomial resampling.

Let {sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by support

points and weights {s̃jt , W̃ j
t } and set W j

t = 1 for j =, 1 . . . ,M .
Case (ii): If ρt = 0, let sjt = s̃jt and W j

t = W̃ j
t for j =, 1 . . . ,M .

An approximation of E[h(st)|Y1:t, θ] is given by

h̄t,M =
1

M

M∑
j=1

h(sjt )W
j
t . (3.11)

3. Likelihood Approximation. The approximation of the log-likelihood function is given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

 1

M

M∑
j=1

w̃jtW
j
t−1

 . (3.12)

3.1 Adaption

While the BSPF is extremely simple to implement, it can perform poorly in practice, particularly in the
presence of outliers. The forecast distribution can be highly mismatched with the updated distribution,
which manifests itself as an extremely uneven distribution of the weights, and thus imprecise estimates
of the likelihood function. To avoid degeneration of the particle filter in t =2008:Q4, we adapt the
innovations of the proposal distribution, similar to Aruoba, Cuba-Borda, and Schorfheide (2016).
Details. For the BSPF, s̃t is generated by drawing εjt ∼ N(0, I) and using equation (3.1), and has
density p(s̃jt |sjt−1; θ). Under a generic PF, we construct s̃t by sampling from an arbitrary distribution

with density gt(s̃
j
t |sjt−1; θ). Specifically, we simulate εjt instead from N(µ,Σ), to elicit a proposal from

gt(s̃
j
t |sjt−1; θ).
When using this proposal distribution, the weights in the particle filter must be adjusted by a

factor:

κ =
p(s̃jt |sjt−1; θ)

gt(s̃t|sjt−1; θ)
. (3.13)

When applying a change of variable formula to represent p(s̃jt |sjt−1; θ) and gt(s̃
j
t |sjt−1; θ), both densities

contain the same Jacobian. This term drops out from the multiplicative ratio in (3.13), and it is easy
to deduce that

κ =
exp

{
−1

2ε
j
t

′
εjt

}
|Σ|−1/2 exp

{
(εjt − µ)′Σ−1(εjt − µ)

} , (3.14)

with n the dimensionality of yt. Unlike Aruoba, Cuba-Borda, and Schorfheide (2016), we do not use
a gridsearch algorithm to generate µ and Σ. Instead, after extensive experimentation, for t =2008:Q4,
we set

µ = [3, 0, 0, 0, 0]′ and Σ = 1.2× I.
For every other time period we set µ = 0 and Σ = I; i.e., we use the standard BSPF.
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4 Parallelization of the Particle Filter

Parallelization of the particle filter is difficult because of the required communication during the re-
sampling phase. We construct a particle filter adapted to a distributed computing environment. In
this section, we sketch out some key aspects of the filter.

Suppose that we have K processors26 and we are using M total particles in the particle filter.
Let Mlocal = M/K, assume that Mlocal is an integer, and let si,kt denote the ith particle on the kth

processor and similarly for W i,k
t . It is obvious that the forecasting step can be done in parallel across

the K processors. To update, we use a Message Passing Interface to aggregate the weights. The key
part of the parallelized particle filter is selection and rebalancing. First, we resample every period
(ρt = 1, for all t), but we only resample (using systematic resampling) among the Mlocal particles on
each processor. Instead of a sample with uniform weights, we are left with a sample which is evenly
weighted on a given processor, with each particle having weight:

W i,k
t = Mlocal

−1
Mlocal∑
j=1

W̃ j,k
t .

We account for the fact that distribution of total weight across processors can become uneven using
the following procedure. Let:

αk =

∑Mlocal
i=1 W i,k

t∑K
j=1

∑Mlocal
i=1 W i,j

t

, (4.1)

where αk is the mass of the particle distribution located on processor k. Define the effective number
of processors as

EPt =
1∑K

k=1 α
2
k

. (4.2)

If EPt < K, then reshuffle the particles among the processors by first ranking the processors according
to αk. Then assign each processor a partner in reverse order: the k with the largest αk with the k
with the smallest αk, and so on. To rebalance the weights across particles, have each partner exchange
Mexchange (< Mlocal) particles with one another deterministically (i.e., use the first Mexchange particles).

This procedure helps ensure that particles will not degenerate on any one processor, while still
reducing the size of the resampling problem. Moreover, parallelization allows one to use extremely
large number of particles without performance degradation because of memory constraints. Figure 4.1
demonstrates the effectiveness of parallelization. by plotting the run time for 100 evaluations of the
particle filter on the vertical axis and for different values of K in Figure 4.1. As seen in the Figure,
using two processors, it takes about 7 hours for 100 evaluations of the particle filter, or 4 minutes and
12 seconds per evaluation. When using 300 processors, it takes only about 13 minutes. While the
returns to parallelization are not as large using as for the solution algorithm, they are still substantial.

26This is shorthand for whatever the lowest unit of instruction is.
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Figure 4.1: Effects of Parallelization: Particle Filter
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5 Stability Analysis

It is crucial for the particle filter to produce stable—i.e., with low variance—estimates of the likelihood.
When used within an MCMC algorithm, particle-filter-based estimators of the likelihood with high
variance will tend to get stuck at a single value after an improbably high likelihood estimate. This
means that the chain generated by the MCMC algorithm will converge very slowly (or not at all). In
this section, we repeatedly apply the particle filter on a single representative parameter draw to show
that our filter produces stable estimates.

In this section, we repeatedly apply the particle filter to a single, representative parameter value to
highlight the stability of our particle filter. We also examine the contribution of the adaption discussed
in Section 3.1. The parameter values use are given in Table 5.1.

Table 5.1: Parameter Values for Stability Analysis

Parameter Value Parameter Value Parameter Value

100(β−1 − 1) 0.11 γ 0.69 ρg 0.53
100(Π̄− 1) 0.60 σL 1.27 100σg 0.14
100 ln(Gz) 0.54 σa 4.60 ρµI 0.72
α 0.21 ϕI 2.79 100σµI 2.33
ρR 0.77 ϕp 61.32 100ση 0.45
γΠ 1.18 1− a 0.59 100σZ 0.56
γg 0.91 ϕw 4615.94 100σR 0.15
γx 0.20 1− aw 0.69

We apply the particle filter Nsim = 100 using M = 500, 000 particles. (In the actual estimation, we
use M = 1, 500, 000.) The sampling distribution of standard BSPF and the adapted BSPF are shown
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in Figure 5.1. Both estimators are fairly stable, with standard deviations less than one, the rule-of-
thumb given in Pitt, Silva, Giordani, and Kohn (2012). However, the adapted BSPF has a standard
deviation of 0.15 about six times less than the standard BSPF, indicating that there is substantial gain
to adapting the particle filter during the Great Recession period.

Figure 5.1: Sampling Distribution of Log Likelihood Function Plus Log Prior
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6 Particle Filter Metropolis-Hastings

In this section we describe the particle filter Metropolis-Hastings (PFMH) algorithm for generating
a Markov Chain that converges to the posterior distribution of interest. The general algorithm to
construct {θi}Ni=0 is given in Algorithm 2.

Algorithm 2 (PFMH Algorithm) For i = 1 to N :

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation p̂(Y |ϑ) is computed using Algorithm 1.

As in Fernandez-Villaverde and Rubio-Ramirez (2007), we use the random walk variant of the PFMH
algorithm, which amounts to:

q(·|θi−1) = N(θi−1, cΣ̂). (6.1)

The key choices in this algorithm are the matrix Σ̂ and scaling factor c. We set

Σ̂ = diag(V[{θj}Ntuningj=1 ]),
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the estimated variance from a tuning run with Ntuning = 500027 and we set c to ensure a reasonable
acceptance rate. Table 6.1 gives an overview of the hyperparameter choices we made for the PFMH
algorithm. Setting c = 0.20 yields us an average acceptance rate of about 27 percent. To obtain 50,000
draws, the algorithm took about 10 days.

Table 6.1: PFMH details

Object Description Value

N Length of Chain 50000
K Number of Processors 336
M Number of Particles in Adapted BSPF 1500000

Σ̂ Proposal Variance Tuning Run
c Scaling Factor 0.2
Acceptance Rate 0.27
Run Time 10 days

Notes: We run 4 chains each of length 50000.

Table 6.2 reproduces Table 1 in the main text, while also providing the standard deviation of the
posterior means across the 4 runs.

7 Computational Environment

We performed all computations at the High Performance Computing (HPC) Cluster maintained at
the Federal Reserve Board. The project is coded in Fortran, and compiling using the Intel Fortran
Compiler (version: 13.1.0 20130121), including the Math Kernel Library. The distributed aspects of
the computation (i.e., parallelization) use MPICH, an implementation of the Message Passing Interfact
standard–the servers are connected using Infiniband, a high-speed, low-latency connection.

27The proposal variance for the tuning run came from an estimation the linearized version of the model.
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Table 6.2: Posterior Distribution – Nonlinear Model

Parameter Mean [05, 95] Parameter Mean [05, 95]

Steady State

100(β ∗ ∗−1− 1) 0.14 ( 0.01) [ 0.06, 0.23] 100(Π̄− 1) 0.61 ( 0.01) [ 0.54, 0.68]
100 log(Gz) 0.50 ( 0.00) [ 0.46, 0.54] α 0.19 ( 0.00) [ 0.16, 0.22]

Policy Rule

ρR 0.70 ( 0.01) [ 0.59, 0.78] γΠ 1.67 ( 0.04) [ 1.21, 2.14]
γg 0.73 ( 0.02) [ 0.39, 1.07] γx 0.14 ( 0.01) [ 0.07, 0.24]

Endogenous Propagation

γ 0.70 ( 0.01) [ 0.63, 0.76] σL 2.00 ( 0.05) [ 1.01, 3.17]
σa 5.32 ( 0.08) [ 3.78, 7.09] ϕI 3.70 ( 0.15) [ 2.24, 5.21]
ϕp 100.41 ( 1.09) [65.10, 136.88] 1− a 0.56 ( 0.00) [ 0.36, 0.76]
ϕw 4420.49 (170.02) [1693.15, 8356.34] 1− aw 0.51 ( 0.02) [ 0.29, 0.72]

Exogenous Processes

ρG 0.67 ( 0.04) [ 0.29, 0.96] 100σG 0.15 ( 0.00) [ 0.11, 0.20]
ρµI 0.80 ( 0.02) [ 0.64, 0.92] 100σµI 2.39 ( 0.16) [ 1.43, 3.70]
100ση 0.44 ( 0.02) [ 0.34, 0.54] 100σZ 0.56 ( 0.02) [ 0.38, 0.80]
100σR 0.18 ( 0.01) [ 0.14, 0.24]

Notes. Table reports the mean, fifth, and ninety-fifth percentile of the posterior distribution estimated
by pooling 4 MCMC chains with 50,000 draws each (including 10,000 draw burn-in period.) The
number in parentheses is the standard deviation of the mean across the 4 runs.
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